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A bstract

In recent years, the field of quantum gravity phenomenology, which approaches the
quantum gravity problem from an experimental point of view, has gained momentum.
1'ypically, one searches for quantum gravity eflects in particle systems that have high
energies or which have travelled large distances. In this thesis, we consider how high-
energy neutrino astronomy, which observe particles at both high energies and large
path lengths, will be able to test for these elfects.

We consider two possible modifications to standard physics which may arise as
a consequence of quantum gravitational effects.I'he first of these is quantum deco-
herence, in which a pure quantum state evolves into a mixed quantum state. |'he
second effect 1s the violation of Lorentz invariance resulting in modilications of the
standard dispersion relation. Both of these effects potentially alter the torm of the
neutrino oscillation probability.

We consider how neutrino telescopes, such as ANTARES and lceCUBL., both un-
der construction at the moment, will be able to test for these eflects. We consider two
ditterent sources of neutrinos, both of which contribute to events seen within these
detectors, namely atmospheric and astrophysical neutrinos. We find that, in many
cases, these high energy neutrino experiments can test for quantum decoherence and
Lorentz invariance violating eflects with much greater precision than experimental

data.
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Introduction

Perhaps the most pressing problem in modern day fundamental physics 1s that of
quantum gravity; the unification of quantum field theory with general relativity. T'he
traditional way ol attacking the problem is from a purely theoretical direction and
this approach has led to theories such as string theory and loop quantum gravity, to
name just two.

In the last few years, however, an alternative approach of tackling this problem
has emerged; this approach i1s known as quantum gravity phenomenology. Quantum
eravity phenomenology tackles the problem from an experimental point ol view, an
approach that was considered impossible for many vyears.

Recently, many experimental systems have been used to look for possible quan-
tum gravity eflects, including cosmic rays and high energy photons. In this thesis.
we consider high energy neutrinos.

1T'he new lield of neutrino astronomy promises to be a very exciting one as it
opens up a whole new window through which to view the universe. Since neutrino
telescopes typically observe high energy neutrinos that have travelled large distances,
this makes them an ideal system in which to look for quantum gravity eflects.

In chapter 1, we discuss the properties of neutrinos. We consider the sources of
neutrinos which may be viewed through neutrino telescopes, presenting evidence as
to why we might expect to observe neutrinos coming trom these sources. 'I'he current
status of neutrino telescopes is outlined and we describe one particular experiment.
the ANTARES neutrino telescope, in detail. We finish the chapter by outlining
the phenomenon ol neutrino oscillations: presenting the mathematical formalism
describing this effect and describing the current experimental status.

We then go on, in chapter 2, to describe the problem of quantum gravity; why.
even though there 1s no direct experimental evidence for such a theory, we expect
the problem to be solvable; and the current state of play.

In chapter 3, we present the methodology behind our simulations of atmospheric



neutrinos relevant to the ANTARES experiment. We show how we may produce
spectra describing the number of events as a function of neutrino telescope observ-
ables and how we may simulate sensitivity contours, showing us the regions ol pa-
rameter space which the ANTARLES neutrino telescope will be able to probe.

In chapters 4 and 5 we consider the first etfect which may arise due to a quantum
oravity environment; the phenomenon of quantum decoherence. In chapter 4 we
present the theory behind this phenomenon, describing how it may arise and how it
could alter the probability that one atmospheric neutrino oscillates into another. We
then use the simulations presented in chapter 3 to examine whether the ANTARLES
neutrino telescope observe for these novel effects.

In chapters 6 and 7 we consider a second possible quantum gravity effect; the
violation of Lorentz invariance. We present the theory underlying this phenomenon
in chapter 6 and describe how the atmospheric neutrino oscillation probability could
be altered. Chapter 7 presents the results of simulations of atmospheric neutrinos
for the ANTARLES neutrino telescope when we include these effects.

I'inally, in chapter 8, we show how both quantum decoherence and Lorentz in-
variance violating effects manifest themselves in neutrinos oscillations when the neu-
trinos originate in astrophysical objects. We show that by considering these sources,
neutrino telescopes will be able to place the most stringent bounds to date on both
quantum decoherence and Lorentz invariance violating model parameters.

The ultimate goal for many physicists 1s the construction of a unified quantum
theory ol gravity. In its broadest sense, this thesis represents a small step in that
direction. When the neutrino telescopes described in chapter 1 have been completed.

we face an exciting time in both astronomy and the field of quantum gravity.



Chapter 1
Neutrinos

Over the last ten years, there has been an explosion 1n research ito neutrino physics.
In this chapter, we present an overview of the neutrino physics which we shall later
utilize in order to examine the possible etfects of quantum gravity. We begin this
chapter with a summary of the history of the neutrino and our current understanding
ol this elusive particle. We then describe the two sources of neutrinos for our quantum
oravity work; namely atmospheric neutrinos and those from astrophysical sources.
1'he final section of this chapter outlines a phenomenon we shall consider throughout

this thesis: the phenomenon of neutrino oscillations.

1.1 Neutrinos: an overview

The existence of the neutrino was first postulated over seventy years ago by Pauli |78].
Since that time, 1t has played an important part in particle physics and 1s now the
focus of a large body of research. I'he emergence of the phenomena of neutrino
oscillations has opened the first window to physics beyond the standard model of
particle physics. Neutrinos are also playing a central role in the fields of astrophysics
and cosmology. In this section, we shall present an overview of the history of the
neutrino and our current understanding ol neutrino properties. For a comprehensive

overview of neutrino physics, see, for example, reference |244/.

1.1.1 The history of the neutrino

In the early twentieth century, radioactive beta decay seemed to violate the known

laws of physics as 1t appeared to violate the conservation of momentum. Many so-



lutions were suggested, including modifications to the conservation of energy. How-
ever, in December 1930, Wolfgang Pauli suggested a radical alternative (see, for
example |78]). Pauli suggested that, in addition to the known electron, a further
particle, which 1s electrically neutral, 1s also involved in beta decay, thus conserving
momentum. 1'his particle, subsequently named the neutrino by Enrico Fermi, was
first detected by Cowan and Reines in 1956 |85|. Since 1956, neutrinos have been
detected from nuclear reactors 84|, particle accelerators |166], the Sun [22,23|, the
Earth’s atmosphere |131| and, in 1987, from a supernova |27,233|.

In 1962, it was found that there were at least two types of neutrino |99|. The first
was the electron neutrino postulated by Pauli and detected by Cowen and Reines.
1'he second discovered was found to be a partner of the muon and subsequently
named the muon neutrino. In 2001, the third expected neutrino, the tau neutrino
was detected |203].

1.1.2 Neutrinos in the present

One of the most successful models 1n modern day physics is the standard model
ol particle physics which describes the 17 known elementary particles and their in-
teractions. lThree of these fundamental particles are the neutrinos, which are now
known to be neutral partners ol the massive leptons. lable 1.1 shows the standard
model particles and their properties. I'he fermions, particles with non-integer spin.
are separated into two groups, the quarks and leptons. 1he particles within these
groups are lurther categorized into three families with increasing mass. 1he gauge
bosons, particles with integer spin, mediate the particle interactions; with the photon
mediating the electromagnetic interaction, W and 7 bosons the weak force and the
gluons the strong force. I'he final particle within the standard model is the Higgs
boson which 1s responsible for generating the mass of particles. ['his is the only
particle of the standard model not yet directly observed experimentally.

Over the last seventy years, much has been learned about the neutrino and we
present an overview here (all values here are taken from the Particle Data Group |[112

unless otherwise stated):

Number of families The number of families of neutrinos with a mass less than
that of half of the Z mass is 3 £ 0.06. T'his very tight constraint was found by
considering the Z resonance peak at LEP, CERN [137].



Family Particle Mass (MeV) Charge (units of €)
Leptons ¢ 0.511 -1
1 105.7 -1
T 178(0) -1
Ve <3 x107° < 2x 1074
v, < 0.1Y < 2x 1074
Vs < 18.2 <2x 107+
Quarks 1" 1.5-4 é
d 4 -8 —3
5 80 - 130 —1
g 1150 - 1350 2
h 4100 - 4400 —1
1 (1.692 - 1.794)x10° 2
(Gauge bosons v 0 0
1% 80400) +1
7 91200 0
g ( (
Higgs boson h > 114400 y

lTable 1.1: The particle content of the Standard Model of Particle Physics. T'he
particles are categorized into fermions, comprising the leptons and quarks, the gauge
bosons and the, as vet, undiscovered Higgs boson. I'he masses and charges are taken

from |112].

Mass Until recently, the question of whether neutrinos had mass was open. With
the detection of neutrino oscillations, as described 1n section 1.4, this indicates
that, at least one of the neutrinos has mass. However, no direct measurement
of neutrino mass has been possible to date. Direct mass searches are often
performed by considering beta decay and these experiments have been able to

place upper bounds on the neutrino masses ot
me < 3 eV, m, < 0.19 MeV. m, < 18.2 MeV.

Limits on neutrino masses have also been placed from cosmological consider-
ations. Data from the WMAP collaboration |68|, together with that from the
Sloan Digital Sky Survey |242| and another 27 cosmic microwave background
(CMB) experiments have been able to conclude > m, < 0.75 €V

Neutrino Oscillations Although neutrino oscillations were first proposed over 50



years ago |208-210]|, direct proof of oscillations was only found in 1998 at the
Super-Kamiokande experiment in Japan |131]|. The study of neutrino oscilla-
tions makes up a large proportion ol this thesis and, rather than give a briel
description here, we shall introduce neutrino oscillations in detail in section

1.4

Charge Limits on the charge of neutrinos come from astrophysical observations.
By considering the amount ol energy lost from the sun, and from red giant
star clusters, by the escape ol neutrinos created by electromagnetic processes,
limits of 107'* e (where e is the charge on the electron) for all neutrinos have

heen found.

Overall, given the ghost-like nature of the neutrino, large steps have been taken
towards understanding these elusive particles. Much of this thesis relies on the
phenomenon ot neutrino oscillations and we shall present the theory behind this
phenomenon, and the current experimental data, in section 1.4. In the next section.
we shall concentrate on describing the possible sources ol neutrinos in which we shall

be interested and the mechanisms of neutrino production within these sources.

1.2 Sources of high energy neutrinos

In this section, we shall concentrate on two particular sources of high energy neutri-
nos. We shall explain how neutrinos may be produced 1n cosmic accelerators and also
how they may be created within the Earth’s atmosphere from the interaction ot cos-
mic rays with atmospheric nuclei. Although the stages on which these neutrinos are
created are fundamentally different, the two processes are intimately related since the
cosmic rays which generate the atmospheric neutrino flux also originate in cosmic ac-
celerators. I'hese cosmic accelerators may take many forms including Active Galactic
Nuclei (AGN) [54,100,201,212|, Gamma-Ray Bursts (GRB) [101,145,193,236,237].
microquasars |106,178|, supernova remnants, star clusters and X-ray binaries. Figure
1.1 shows an image of an AGN.

Although neutrinos may be created 1n a variety of sources, there are, in general,

two processes which result in the creation of high energy neutrinos:

e All three Havours of neutrino may be created tfrom the decay or interactions

of hadrons. For example, Fermi accelerated protons, or charged nuclei, may



IFigure 1.1: An image of active galaxy 3C31. T'he red parts of the figure were taken
with a radio telescope with the blue regions observed optically (taken from [10]).

collide with other hadrons or photons generating charged and neutral pions.

T'hese pions then decay, generating muon and electron type neutrinos:

= uty, = eTr

T = U, € DU, (1.1)

In an analogous way, tau neutrinos may be created due to the decay ol D
mesons formed by hadronic interactions. However, the tau neutrino Hlux at the
source 18 negligible compared to that of the electron and muon neutrinos since
the D), mesons have a high production threshold and very small production

cross section.

e A beam of pure anti-electron neutrinos, at the source, may be created by the
disintegration of Fermi accelerated atomic nucler by interactions with infra-
red photons around their source. ['hese interactions can strip away atomic

neutrons which decay to give anti-electron neutrinos:

n— pte 7. (1.2)

We now examine in more detail the two sources of high energy neutrinos, beginning
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Figure 1.2: The left plot shows the measured cosmic ray spectrum as a function of
energy from various cosmic ray experiments (modified from |97]). The right diagram
shows how atmospheric neutrinos are generated by the interaction of cosmic rays
with atomic nuclei in the Farth’s atmosphere. ['his diagram 1s modified from that
found at |4].

with those created 1in the Earth’s atmosphere.

1.2.1 Cosmic rays and atmospheric neutrinos

It has been known for many years that there exists a flux of particles bombarding
the BEarth from space. 1'his Hlux has been intensively studied and the cosmic ray
spectrum 1s now very well known. l'he lelt plot of figure 1.2 shows the measured
cosmic ray spectrum. At energies above 10 Gel/, the spectrum can be split into
three parts with each section being fitted by a power law. T'he flux between 10 GeV
and 1 PeV 1s thought to contain galactic protons and the spectrum between these
energies has a spectral index of around —2.7. At 1 PeV, the spectral index changes
from approximately —2.7 to around —3 at point known as the knee. From 1 PeV
to around 3 EeV, the flux is no longer dominated by galactic protons but galactic
heavy nuclei instead. I'he Hux then Hlattens at 3 FeV and regains a spectral index of
—2.7. At this point, the Hux 1s again dominated by protons. I'his proton domination
at very high energies is thought to signal a change in the source of cosmic rays. At
energies lower than the ankle, the flux i1s all galactic, however at energies above the
ankle, the flux 1s considered to be extra-galactic since any galactic protons with these

very large energies would no longer be contained within the galaxy by the galactic



magnetic field.

Recently, anisotropies in the cosmic ray flux at large energies have been detected
63,70, 155|. These anisotropies, it has been argued, are evidence that some of the
cosmic ray flux is due to galactic neutrons rather than protons. Here, the high energy
neutrons would be very Lorentz boosted in order to remain quasi-stable and travel
to the Barth without decaying. If this is the case, then we can expect neutrons with
lower energies to be created in the same sources which decay by the process described
above. 'l'herefore, evidence tfrom the cosmic ray Hux hints that there may be beams
of anti-electron neutrinos present within our galaxy |41].

A second interesting point ol discussion which arises from the cosmic ray flux is
the GZK effect |144,243|. At very high energies, we would expect a cut-oft in the
cosmic ray Hux as the protons would see the CMB as a sea of gamma ray photons
and therefore interact with these photons to produce pions, resulting in the protons
essentially being absorbed. However, there i1s inconclusive evidence to show that
there is a flux of particles above this cut-off energy [229|. This may be a signature
ol new physics and we shall further discuss this possibility in chapter 6.

So, the Barth is constantly bombarded by cosmic rays, mainly protons but also
some neutrons. l'hese particles mnteract with atmospheric nucler at heights ol ap-
proximately 15-20 £m, creating muons and muon neutrinos as we described above
n (1.1). The diagram on the right of figure 1.2 shows a sketch of this process. The
created muons are often of high enough energy that they are sutliciently Lorentz
boosted that they may reach the surface of the earth. However, other muons will
be created with smaller energies and subsequently decay in flight, producing both
electron and muon type neutrinos. 1'hese neutrinos, together with those created in
the first hadronic interaction, are termed atmospheric neutrinos. We would there-
fore expect the ratio of electron neutrinos to muon neutrinos to be approximately
1 : 2. As we shall discuss in section 1.4, this expected ratio 1s not observed when the

neutrino travel large distances.

1.2.2 Astrophysical neutrinos

1'he main signal for which neutrino telescopes are searching originate from astro-
physical objects, such as AGN and GRB’s. Because neutrinos interact weakly, this
makes them ideal candidates with which to perform astronomy compared to tradi-

tional methods; photons, whilst created 1in copious amounts, are readily absorbed at



high energies by the CMB and cosmic infrared background (CIRB) whilst protons
are deflected by magnetic fields making it impossible to determine their source. In
these cosmic accelerators, both of the mechanisms discussed above in (1.1) and (1.2)
may produce neutrinos.

T'he important thing to keep in mind when considering neutrinos from astrophys-
ical sources are the ratios of flavours. Neutrinos produced in pion decay follow the
ratio ve : v, 1 v, = 1/3:2/3 : 0, since the created tau neutrino flux is so small. For
neutrinos created from neutron decay, they follow the ratio v, : v, : v, =1 :0: 0.
It 1s also interesting to note that neutrinos from pion decay produce both neutrinos
and anti-neutrinos whilst only anti-neutrinos are created from neutron decay.

From a measurement point of view, point sources of neutrinos are much more
useful than diffuse neutrino sources. With a point source, it 1s likely that the dis-
tance over which the neutrinos have travelled will be known. Also, sources which
emit neutrinos tfor only a short period time are very usetul in order to reduce the
background by only considering events within a certain window ol time. For this
very reason, AGN and GRB’s are likely to be the most usetul sources. However.
bright galactic sources would also be very usetful.

lo date, the only neutrinos observed from an astrophysical object came in 1987
from a supernova |27,233|. There are, however, tantalizing hints that bright sources
of astrophysical neutrinos exist. We have already discussed the first; the presence
of neutrons in the cosmic ray flux. 1'he second comes from the neutrino telescope
AMANDA-II |43|. The collaboration recently reported the detection of two neutrinos
8,148,216| which were coincident with T'eV flares seen by the Whipple gamma-ray
telescope 158| from the AGN 1ES 1959+650. Unfortunately, these events were
not found within a blind analysis and so their statistical significance cannot be
determined. However, the indirect evidence for neutrinos with astrophysical origins
1s ounting.

Whilst neutrinos created within cosmic accelerators are considered to be the main
source of astrophysical neutrinos, more exotic processes may also be responsible for
the creation of neutrinos. Processes such as annihilating or decayving dark matter or
topological defects [59,69,139,224| and Hawking radiating black holes |83, 149 may
also be responsible for creating neutrinos. However, for the purpose of this thesis.
we shall concentrate on the two standard mechanisms. For an overview of sonrces
of neutrinos and also the detection methods discussed 1n the next section, see, for

example, |147].
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1.3 Neutrino telescopes

We have seen that neutrinos open a new window to the universe and will be able to
tell us about astrophysical processes which are invisible at the moment. Throughout
this thesis, we shall concentrate on neutrinos detected by neutrino telescopes. I'he
numerical simulations in chapters 5 and 7 are applicable to the ANTARES |170
neutrino telescope. We would expect other neutrino telescopes to obtain very similar
results. In this section, we briefly describe the general detection methods for neutrino
telescopes. We shall also describe existing and planned experiments briefly, but

present a slightly more in depth overview of the ANTARES experiment.

1.3.1 Detection methods

Neutrino telescopes consist of arrays of photomultiplier tubes (PMTs). The PM'I's
detect Cherenkov radiation which is emitted by charged particles, the product of
neutrino interactions, travelling faster than light within the medium containing the
experiment. Neutrino telescopes do not, therefore, detect neutrinos directly, rather.
they detect the daughter particles created when a neutrino interacts with atomic
nucler aronnd the detector. Figure 1.3 shows the interaction of a muon neutrino
with an oxygen nucleus in ice and the emission of Cherenkov radiation from the
charged muon.

1'he direction of neutrinos at the detector is isotropic, since neutrinos are able
to travel through the Karth and so the detector sees neutrino from both above and
below the horizon. '1'his turns out to be very useful as the Karth will act as a shield
to all particles originating from the opposite side of the Earth except neutrinos.
Neutrino telescopes, therefore, point downwards. If an up going event occurs, we
can be confident that 1t 1s a neutrino event and not an event from, say, a cosmic
ray. In addition to using the Farth as a shield, the experiments are built as deep as
possible in order to eliminate as much of the background from down-going events as

possible.

1.3.2 High-energy neutrino detection

Once the high-energy neutrinos described in the last section have been created and

propagate to earth, there are several ways in which they may be detected:
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Figure 1.3: A schematic diagram of a neutrino interaction and the emission of
Cherenkov radiation by the daughter muon (taken from [1]).

Shower events All high-energy neutrino interactions produce shower events. Neu-
tral current interactions of neutrinos of all lavours generate hadronic showers
which can be detected. In addition, charged current interactions of electron
neutrinos generate observable electromagnetic showers. Since all Hlavours of
neutrinos generate shower events, 1t 1s not possible to identily the flavour ra-

tios of the neutrinos at the detector by considering shower events alone.

Muon neutrino events High-energy muon neutrinos may interact with the ex-
perimental medium to produce muons by charged current interactions. 1'hese
muons generated in or around the detector are potentially observable and there-

fore present us with a way ol distinguishing the Hlavour ol a muon neutrino.

Tau neutrino events If tau neutrinos have an energy lower than ~ 1 Pel/, then
their flavour cannot be identified. At these lower energies, only shower events
are seen as a tau lepton generated will decay belore it can be detected. 1T'he
situation 1s much more promising, however, at higher energies, since the tau
lepton travels a longer distance belore decay, enabling i1ts track to be 1dentilied.

1'his leads to a class of events unique to tau neutrinos, namely “lollipop” and



“double bang” events. A double bang event 1s observed when the tau neutrino
interacts via a charged current inside the detector. T'he tau neutrino generated
in this event travels across the detector where 1ts decay occurs within the
detector volume. However, in a high-energy neutrino telescope, the showers
must be separated by a distance ol between 100 and 400 meters to be resolved.
1'he second class of events usetul for identifying tau neutrinos are lollipop
events, in this case, the neutrino has a higher energy than that which creates a
double bang event and so the tau lepton travels a greater distance. A lollipop
event occurs when the first shower of a double bang event occurs outside the
volume of the detector but the decay of the tau lepton happens inside the
detector. Unfortunately, the converse, the case 1 which a shower 1s seen.
followed by a leptonic track, does not indicate a tau neutrino as muons or tau
leptons generated in ordinary hadronic or electromagnetic showers could mimic

this event.

1'heretore, we have three types of event which may be detected and from which we
can infer the flavour ratios of the neutrinos. Figure 1.4 shows a schematic overview

ot these processes.

1.3.3 Neutrino telescopes

As we saw 1n the last section, to construct a high-energy neutrino telescope, we need
a deep site with a transparent Cherenkov medium. I'here are two types of sites that
occur naturally which lend themselves to the construction of a neutrino telescope:
the deep sea and deep ice, for example, at the Antarctic. I'here have been varions

attempts to construct neutrino telescopes in these challenging environments:

AMANDA and leeCUBE I'The AMANDA - Antarctic Muon And Neutrino De-
tector Array - neutrino telescope 1s based 1n the Antarctic and so observes the
northern sky. AMANDA uses 1ce at a depth of around 2 kilometers as the
Cherenkov medium. Initially, the experiment was known as Amanda B10 239
and consisted of 302 PM'l's on 10 strings. 1'he results for this generation of the
AMANDA experiment can be found in |44|. The experiment was subsequently
upgraded and at present has 19 lines which house a total of 677 PM'I's. T'his
current phase of the AMANDA experiment is often called AMANDA-II |43].
lo date, the AMANDA neutrino telescope has only been able to detect atmo-

spheric neutrinos. Figure 1.5 shows a map of this data.
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F'igure 1.4: A schematic diagram showing the interactions of different flavours of
nentrinos. The electron neutrino simply creates electromagnetic (ES) and hadronic
showers (HS). A high-energy muon neutrino may be detected by the emitted
Cherenkov light and so a track i1s observed. lau neutrinos may be identified as
double bang or lollipop events. A double bang event occurs when both the hadronic
showers (HS) shown are contained within the detector, linked by the observed track
of the tau lepton. A lollipop event occurs when the hadronic shower 1s seen with
a leptonic track but the first shower occurs outside the detector. Diagram taken
from |74].

l'here are plans to further upgrade this experiment so that the experiment
volume measures one cubic kilometer. 1'his experiment 1s known as lceCUBE
25,138|. Because of the large volume of this experiment, it will be able to
distinguish flavour ratios much better than the current generation of experi-
ments. In chapter 8, where we consider neutrinos of astrophysical origin, we
assume a detector with this volume. Figure 1.6 shows a schematic diagram of

the detector.

Baikal The Baikal neutrino telescope |64|, named after the lake in which it sits
in Siberia, consists of 8 lines of 200 PM'I's. I'he main disadvantages of this
experiment are that it 1s only at a depth of around 1.3 £m and that the optical
properties ol the lake are significantly worse than those in deep ice or the deep

acearl.

Dumand The Dumand experiment | 73| was the first attempt to construct a neutrino

telescope in deep water. It was based in the ocean aronnd Hawaii. Unfortu-
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Figure 1.5: A sky map of atmospheric neutrino data from AMANDA. T'he thick
band of events below the horizon (the red line) is from down-going atmospheric
muon contamination (taken from |[1]).
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I'igure 1.6: A diagram of the IceCUBE neutrino telescope (taken from |5]).
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nately, the project was cancelled 1n 1996 before the experiment was completed.

Nestor The Nestor experiment |217|, which is currently at the testing stage, is a
Greek contribution to neutrino astronomy. l'he site lies in the Mediterranean
sea at a depth of around 3.8 £m. At present, the first stage of the detector is
in place and has started to take data [19].

In addition to these traditional methods of construction of neutrino telescopes, others
have been proposed. 1'hese include acoustic detection as in the case of the ACORNE
experiment |14/, the detection of horizontal air showers in cosmic ray experiments
such as AUGER. |72,86|, EUSO |207| and OWL |227| and radio Cherenkov detection
as 1n the case of the RICE |175| experiment.

1.3.4 The ANTARES experiment

A large proportion ol this thesis 1s particularly relevant for the ANTARES neu-
trino experiment |170]. In chapter 3, we outline numerical simulations of ANTARES
results and then show how this experiment will be able to probe for quantum grav-
ity eflects 1n atmospheric neutrinos in chapters 5 and 7. In this section, we shall.
therefore, describe the ANTARLES neutrino telescope in more detail than those ex-

periments considered above.

The ANTARES site

1T'he ANTARES site lies at a depth of around 2.4 &m, approximately 40 km off the
south coast of France, in the Mediterranean sea, as shown in figure 1.7. T'he black
square towards the bottom of this figure 1s the ANTARLES site and 1s connected to
the shore station, the black square towards the top of the figure, by a cable.

The experiment

A schematic diagram of the experiment is shown in figure 1.8. T'he experiment
consists of lines of PM'l's which are anchored to the sea bed. Buoys on top of these
lines keep them approximately vertical. 1he PM'1's are grouped in threes around
the string and look down towards the sea bed at an angle of 45°. I'hree PM'l's make
up one storey. Kach of the lines houses 90 PM'l's over 30 storeys, with a distance

between the storeys of 12 m. Overall, each line 1s 348 m high. Fach of the lines is
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Figure 1.7: A map ol the ANTARLES site off the south coast of France. I'he black
square towards the bottom of this figure is the ANTARES site with the shore station
shown by the black square towards the top of the figure (taken from [2]).
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Figure 1.8: Schematic diagram of the ANTARES experiment (taken from [2]).

17



connected to a junction box which 1s connected to the cable to the shore station.

Altogether, the experiment has an instrumented volume of 0.1 km.

Current status

1'he construction stage of the ANTARES experiment is under way. ['he electro-
optical cable connecting the experiment to the shore station was laid in October
2001 and the junction box was connected to the cable at the end of 2002. A mini-
instrumentation line comprising of various instruments to measure the environment
at the site and a pre-production sector line consisting of PM'l's were attached to the
junction box in March 2003, both taking data for a number of months. In March
2005, the MILOM, the main instrumentation line, was deployed and connected to
the junction box. I'he main sector lines are being constructed and the whole detector
will be deployed by 2007.

Although the detector itsell will not be finished until this time, the mstrumen-
tation already deployed i1s taking data. As an example, the seismic instrumentation
detected an earthquake, originating in Japan on 30th August 2005, measuring 6.2
on the Richter scale. Figure 1.9 shows the ANTARES data compared to a dedicated

carthquake detector on the French mainland.

1.4 Neutrino oscillations

In the previous sections, we introduced some of the basic properties of neutrinos and
described how they may be created within the Earths atmosphere and astrophysical
objects. One phenomenon we alluded to earlier was that of neutrino oscillations
where one flavour of neutrino may change into another. A large part of this thesis will
be concerned with examining how novel effects due to quantum gravity may alter the
neutrino oscillation probability. Here, we present the standard neutrino oscillation

case and discuss our present knowledge of the neutrino oscillation parameters.

1.4.1 Formalism
Vaciuim oscillations

Normally, neutrinos are identified by their flavour (e, g, 7) rather than their mass.

Neutrinos which have definite lavour need not be states ot definite mass, however. It
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tation (taken from |2]).

this is the case, we consider the flavour eigenstates, |v,), to be a linear combination

- XUai‘Vi>: [13)

where U,; are the components of the unitary leptonic mixing matrix. In the Schrodin-

of mass eigenstates, |v;):

ger representation, the time evolution of the mass eigenstates has the form

d
i vi(t)) = mifvi(t)). (1.4)
where t 1s the time in the mass frame and m; are the mass eigenvalues. Using

equation (1.4), the probability of oscillation from 1, to v3 can be calculated to be

Plv, — vg) 0ap — 42:%( UsiUsiUs ) sin*[Am2(L/AE),

1>

+2) S(ULUsUnUsy) sin[Am? (L/2E). (1.5)
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where Am?, = m? — m7, the quantity I is the energy of the neutrino and L is the
path length. We have assumed that the neutrino is relativistic and set ¢ = h = 1.

It we consider three lavours of Majorana neutrinos, then the 3 X 3 mixing matrix is
given by U =V - M where

C12€13 512€13 spze”%cr
V= —512C93 — C12593513€°7F  €19Co3 — $19593513€"007 $23C13
5192893 — C12€23513€i50P —C12893 — 3120233126i50F C23C13
et 0
M = 0 e 0 |. (1.6)
0 0 1

Here, ¢;; and s;; represent the cosine and sine of the mixing angle #;; respectively.
the quantity ocp 1s a CP violating phase and the phases in M are the Majorana
phases. For Dirac neutrinos, the situation i1s similar but the Majorana phases may
be absorbed into the phases ol the mass eigenstates. In practice, since the mixing
angle ;5 has been found to be small |142|, systems involving just two neutrinos are
olten considered. T'hen, replacing ¢ and h, the vacuum oscillation probability reduces

to

L
P(v, — v5) = sin® 20 sin’ [1.27AmQE] : (1.7)

where Am?* is measured in eV*, the distance the neutrino travels, L. is measured
in kilometers and £/ is measured in (zeV/. By convention, #15 and Am?, are solar
oscillation parameters, describing v, — v, ., with #y3 and AmZ, the atmospheric

neutrino oscillation parameters, describing v, — v;.

Oscillations in matter

T'he situation becomes somewhat more complicated il neutrinos are passing through
dense matter, for example in the Sun. In this case, the Hamiltonian in the mass
basis 1s no longer diagonal which results in the mixing angles taking on an energy
dependence. For simplicity, we will consider a two neutrino system. Incorporating

matter effects, the Hamiltonian in the mass basis 1s |244

i 1 (m%+AC0826 Asinf cos ¥ ): 1.8)

m:ﬁ Asinéfcos¥ mg—l—Asin26’

20)



Parameter Value in 2002 Value im 2005
Am? 7.2x107% eV? 83 x 1077 eV*
Am?, 2.6 x 1072 eV 2.3 x 1073 eV*
sin® 0 .38 .27

sin? 0, ).5() .50

sin? 04 < (.09 < (.05

Table 1.2: Status of neutrino oscillation parameters from Super-Kamiokande (SK).
K2K, KamLAND, (KL), CHOOZ and solar and atmospheric neutrino experiments.
1'he second and third columns show the measured values of the parameters in 2002
140| and 2005 |142| respectively.

where A, embodying the matter effects, is A = 2v2EGrN. with G the Fermi

constant and N. the electron number density. 1'he oscillation probability therefore

becomes
P(vy — vg) = sin® 20,, sin” [Q1L] . (1.9)
where ‘
90 — Am? sin 20 (1.10)
sS1n m — AF Q . .
with
Am? A o
= WG (Am2 — cos%’) + sin 29] : (1.11)

Again, we have set ¢ = h = 1.

1.4.2 Where we stand - the statnus of nentrino oscillations
Solar neutrino oscillations

T'he first indirect evidence for neutrino oscillations came from neutrinos created n
the Sun. The standard solar model [38| describes the complex nuclear processes
occurring in the Sun and from this, predictions of the solar neutrino flux may be
extracted. Early experiments measuring the solar neutrino flux, such as Chlorine |90
and Gallium |15, 150|, were sensitive to electron neutrinos only and reported a neu-
trino flux significantly less than that predicted by the standard solar model. More
recently, the SNO 22, 23] experiment, which is sensitive to all neutrino flavours.
showed the total solar neutrino flux agrees well with the predictions of the standard

solar model but with an appreciable suppression of the electron neutrino flux. T'his
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suppression is definitive evidence of neutrino oscillations trom v, — v, ;. The Kam-
LAND experiment |111], which detects electron anti-neutrinos from nuclear reactors.
reported a significant suppression in event rates thus corroborating the SNO results.
1T'he KamLAND data fits the oscillation picture very well, as shown in figure 1.10.

Using data from these experiments, a global analysis in 2005 found the solar neu

trino oscillation parameters Am3, = Am? and sin® 03, = sin” 6, with high precision.
T'hese values are shown in table 1.2 with the parameter space shown in higure 1.11.
both are taken from |142].

Atmospheric neutrino oscillations

Whilst the first indirect evidence for neutrino oscillations came from solar neutrinos.
the first direct evidence came from atmospheric neutrinos. The Kamiokande |156].
IMB |71] and Soudan |32| experiments reported a significant deficit in the expected
v, o Ve ratio |33,62,157|, which suggested oscillations from v, to . but was not
conclusive. In 1998, this changed when the Super-Kamiokande collaboration showed
the muon neutrino flux had a zenith angle dependence |130,131], shown in figure 1.12.
which implied a dependence upon path length. 1'his was the first direct evidence that
neutrinos oscillate from one flavour to another since the probability of oscillation is
a function of the distance a neutrino travels (see the previous section). A summary
of the values of the atmospheric neutrino oscillation parameters in 2002 and the
present 1s given 1n table 1.2. In chapters 5 and 7 we examine the parameter space
for neutrino oscillations when we include possible quantum gravity eflects. Figure
1.13 shows the allowed parameter space trom the Super-Kamiokande experiment for

standard neutrino oscillations [49|.

Three nentrino oscillations

1'he standard analysis of solar and atmospheric neutrino flux 1s done within the two
neutrino approximation. However, in order to place values on Am?2, and sin® 63, the
data must be analyzed taking all three neutrino flavours into account. Experiments
such as CHOOZ 47| and SNO |22,23| are sensitive to all three flavours of neutrinos
and are able to place values on these parameters. l'able 1.2 again shows the present

state of play and the values as they were in 2002.
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I'igure 1.10: Comparison of KamLAND data and neutrino oscillations (taken from
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The LSND result

It would seem tfrom the discussion above that, give or take the precise values for the
oscillation parameters, the neutrino oscillation situation is well understood. However.
this is not entirely the case. The LSND experiment |53| produces a beam of neutrinos
consisting of v., v, and 7, and then searches for the appearance of 77, that have
oscillated from the muon anti-neutrinos. I'he outcome of this experiment cannot be
reconciled with the solar and atmospheric neutrino oscillations as they found a mass
difference which lies in the range 0.2 < Amj ¢y < 10 €V? [20]. If this result were
corroborated by the miniBoone experiment |214|, then it would provide indications
ol new physics, for in order to combine the LSND result with the atmospheric and
solar oscillation results, one would have to invoke oscillations into sterile neutrinos

or break CP'l' invariance. T'his latter possibility will be discussed 1n chapter 4.

Current and future neutrino experiments

In addition to those experiments already mentioned, there are a whole host of other

experiments running or being planned, including;:

K2K The K2K experiment |24| is a long baseline experiment. A beam of 12 (GeV
protons creates pions after interacting with an aluminium target at the High
Energy Accelerator Research Organization (KEK) in Tsukuba city. The pions
decay to muons and then muon neutrinos. 1'he flux of neutrinos 1s measured
at a near target in 'I'sukuba and also at the Super-Kamiokande detector, 250
km trom the neutrino source to 1dentity neutrinos of electron or tau flavours

which have oscillated from the generated muon neutrinos.

T2K The T2K |163| experiment is somewhat similar to the K2K experiment and
construction of the experiment 1s expected to be completed by 2009. In this
case, a beam of 50 GeV protons will be created and used to generate an intense
beam of muon neutrinos which travel to the Super-Kamiokande detector. T'he

distance from source of the neutrinos to the far detector 1s 295 £m.

MINOS The MINOS |225| experiment, due to start taking data imminently, is sim-
ilar in design to the K2K and 12K experiments but the distance the neutrinos
travel 1s much larger at 730 km. A beam ol protons interact with a target

of graphite or beryllium to produce pions. As in the K2K case, the MINOS
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experiment has both a near and a tar detector to quantity the appearance of

neutrino Havours not in the original neutrino beam.

1.5 Summary

In this chapter, we have presented a briel overview of neutrino physics. We described

the basic properties of the neutrino, including neutrino oscillations.

o We described how neutrinos were first postulated as a last resort to save the
conservation of energy and momentum. We then described our present un-
derstanding of neutrinos and how they fit into the standard model of particle

physics (section 1.1).

o We outlined the sources of neutrinos which will be important for our studies
ol quantum gravity. In particular, we are interested in neutrinos created in
the Karth’s atmosphere by the interactions of cosmic rays with atmospheric
nuclel and those neutrinos created in astrophysical accelerators, such as GRBs
(section 1.2).

o We described the processes by which neutrino telescopes detect neutrinos and
outhined how, 1n principle, these experiments will be able to measure the flavour
ratios of neutrinos via the combination of leptonic tracks, electromagnetic and

hadronic showers. We then described the current status of various neutrino
telescopes such as AMANDA and lceCUBE and described in more detail the
ANTARES experiment (section 1.3).

® '|'’he phenomenon of neutrino oscillations was then considered. We outlined the
formalism by which the probability of oscillation may be calculated and then

described the current experimental situation (section 1.4).

1'he field of neutrino astronomy and astrophysics 1s a vast and very interesting one.
However, in this thesis, we are interested in probing possible quantum gravity ef-
fects. Therefore, we have presented only an overview ol the general processes which
generate neutrinos in cosmic accelerators. We shall not concern ourselves with the
details of these neutrino sources, rather, we shall simply be interested in the neutri-
nos generated. Of course, it a signal of quantum gravity were to be seen in a neutrino

telescope, then we would have to be sure of the neutrino production process.
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By considering the neutrinos generated in the Earth’s atmosphere, we will show
that neutrino telescopes will be able to place stringent bounds on quantum gravity
effects in chapters 5 and 7. In chapter 8, we consider quantum gravity effects on

neutrinos from astrophysical sources.
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Chapter 2
Quantum gravity

At present, we have two supreme theories in fundamental physics. The first, general
relativity, describes the gravitational interaction, whilst quantum theory, in the guise
ol quantum field theory, describes the strong, weak and electromagnetic interactions.
In this chapter, we will begin with a brief overview ol these two theories. We then
move on to explain why a quantum theory of gravity is needed, why 1t 1s so diflicult
to develop and discuss the attempts that have been made to solve this problem. We
finish this chapter by discussing the field of quantum gravity phenomenology.

Over the last thirty vears, the subject of quantum gravity has grown immensely.
T'here exists, therelore, a huge body of literature outlining many ditferent approaches
ol quantum gravity. 1'his chapter presents a short review but for more in depth

overviews, see, for example, |52,161,168,226|.

2.1 Two successful theories

At the end of the nineteenth century, many physicists believed that they could de-
scribe the world around them and, with the exception of a few loose ends, all physical
phenomena could be explained. However, at the beginning of the twentieth century.
1t soon became clear that this was not the case. In 1905, Einstemn published papers
on Brownian motion |[115|, the photo-electric effect |113] and the special theory of
relativity |114]. The first of these theories provided evidence for the existence of
atoms whilst the second showed that light was quantized. I'hese two theories were,
in essence, the birth of quantum mechanics. 1The special theory of relativity was

subsequently generalized to describe gravity in the general theory of relativity |118].
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Figure 2.1: A diagrammatic illustration of the principle of equivalence. I'he situa-
tions shown in the left and right frames are experimentally indistinguishable (figure

modified from |3]).

At present, both quantum mechanics and general relativity have been tested to great
accuracy. In the following sections, we describe these two theories, their successes

and their shortcomings.

2.1.1 General relativity

The theory of general relativity (GR) |118] is a classical theory which links gravity
to geometry. Within GR, all observables are numbers or tunctions. 1'he theory of

GR 1s dependent upon two postulates:

® '|'he speed of light is a constant in all reference frames.

e 'I'he equivalence principle. 1'his assumes that freely falling frames can be as-
sumed to be local 1nertial frames. An alternative way of stating this principle
1s that inertial mass and gravitational mass are identical. Figure 2.1 shows this

principle diagrammadtically.
Assuming these postulates are true leads to the Einstein field equations:

. 87TGN

ol

G 1y, (2.1)

where (7, 1s the Einstein tensor and 7, is the stress-energy tensor. I'he classical

Einstein tensor describes the geometry and curvature of space-time since 1t 1s made
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up of the Riemann tensor, whilst the classical stress-energy tensor describes the
matter and energy content of the space-time. So, the energy and matter content
alters the geometry of the space-time and the geometry of the space-time atlects the
motion of matter. Kssentially, matter tells space-time how to curve whilst space-time
tells matter how to move. From a quantum gravity point of view, the key aspect
ol this theory of gravitation is the dynamical nature of space-time. It 1s not simply
a stage upon which physical processes take place, rather, the space-time plays an

integral role within these processes.

Experimental evidence

When GR was first published, it solved one long standing physical problem and
predicted a new phenomena.

In the early twentieth century, the orbit of Mercury was puzzling. '1'he perihelion.,
the point of closest approach of Mercury to the Sun, rotates around the Sun. Using
Newtonian mechanics, the rotation of the perihelion had been calculated and, includ-
ing perturbations from the other planets, and was found to differ from the measured
value by 43”7 per century. Assuming a Schwarzschild metric |222|, this value can be
exactly accounted for using GR |117| and so provided the first experimental evidence
for GR.

One of the first predictions Finstein made using GR was that light should be
deflected by gravitational fields |116]. So, for example, light which passes close to
the Sun will be deflected. 'T'his deflection could cause us to see multiple images of a
single object which lies on the opposite side of the Sun. 'I'his prediction was observed
in the solar eclipse of 1919 [110| and was the first GR phenomenon to be predicted
before 1t was observed. The detection of this ellect led to Einstein becoming an
international celebrity. 1'his etfect 1s used 1n modern day astronomy and 1s termed
oravitational lensing |215].

Since the early twentieth century, many other experiments testing general rela-
tivity have been performed and GR has passed with flying colours. However, one
prediction of GR which has not yet been confirmed directly is the existence of grav-
itational waves [119], although they have been observed indirectly by considering
in-spiralling binary pulsars 230|. It is expected that nearly all astrophysical ob-
jects emit gravitational radiation and the most violent ones, such coalescing black

holes, would emit the most radiation. Many experiments, such as the VIRGO |16].
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LIGO |167], TAMA |42] and AIGO |192| interferometers are looking for these waves
but have not yet been successtful. A new space based experiment, LISA |182|, will
be launched 1n 2015 and should have the required sensitivity to detect these waves
it they exist. In addition to LISA, second generation interferometers, such as ad-
vanced LIGO [12|, due to start taking data in 2013, are also being constructed. The
detection of gravitational waves by ground or space based experunents will provide
further experimental evidence that GR is the correct classical theory of gravity and

open up a whole new area of astronomy.

The shortcomings of GR

1'he most obvious shortcoming of GR 1s that it is a purely classical theory, and so
1s readily applied to describing the gravitational interaction between planets, stars
and the evolution of the universe itself, but is unable to describe how atoms tall. Of
course atoms do fall under gravity and so the theory needs extending to include the
quantum realm.

In addition, GR, to some extent, predicts its own downfall. When a large amount
ol matter collapses under its own gravity, a black hole may form, at the center of

which lies a singularity. Here, classical physics, including GR, breaks down.

2.1.2 Quantum field theory

As the name suggests, quantum field theory (QFT) theory describes the remaining
three interactions, the electromagnetic, the weak and the strong nuclear interactions,
on quantum scales. T'hese interactions are represented by the exchange of quanta, so.
for example, the electromagnetic interaction between two electrons is mediated by a
photon as shown in figure 2.2. Similarly, the weak interaction is mediated by the W
and Z bosons with the strong interaction being mediated by gluons. I'he quantum
field theories which describe these three interactions collectively form the standard
model of particle physics. For an in depth overview ol quantum field theory, see, for
example, |146,165, 186,206, 238].

1'here are various ways to construct a quantum field theory, such as the path
integral method [126] or the algebraic approach |55| but the one introduced in many
text books in that of canonical quantization |146, 165, 186,206, 238|. Utilizing this
method, at least in flat space-times, one begins with a Lagrangian density from

which an action may be defined. By varying this action, one 1s able to derive the
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Figure 2.2: A feynman diagram showing electron-positron scattering. 1'he force
between the two particles 1s mediated by a photon (figure modified from |11]).

field equations. T'he solutions of these equations form a set of mode solutions which
are defined to have positive frequency. By defining a scalar product with respect
to these mode solutions and choosing an appropriate normalization, one obtains an
orthonormal basis of solutions to the field equations. Expanding the solutions of
the field equations and the corresponding canonical conjugate variable in terms of
this orthonormal basis and, ensuring that the solutions satisty relevant equal time
commutation relations, promotes the measurable quantities to operators. I'his is one
of the major differences between a classical theory and a Q1 1n a classical theory.
measurable quantities are represented by numbers or tfunctions whilst those in a
QF'l" are represented by operators. Once these operators have been defined, we are
able to detine a vacuum state from which particles may be created and subsequently
destroyed.

In practice, QF'l's often lead to infinities and physically meaningful results are
only obtained after the process of renormalization |77,93|. Renormalization is nec-
essary as we, for example, do not measure the bare mass of an electron, rather we
measure the bare mass plus all the possible internal interactions. By redefining these

quantities, the theory becomes physically meaningful and predictive.

Experimental evidence

Unlike GR, which was formulated to include gravity into the relativity picture, QEF'L

was formulated as a way to explain experimental results. However, as in every good
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physical theory, 1t also leads to testable predictions. On particularly fine example of
this 1s the anomalous magnetic moment of the electron, the famous ¢ — 2 experiment
94|. The magnetic moment of a charged lepton 1s given by pu= gups where s, =
+1/2. Using the Dirac equation, the quantity ¢ = 2. However, using QF'I', ¢ is
no longer exactly 2, there 1s an anomaly. 1he experimental measurement of this

anomaly and the full QFT theoretical values are |95|:

T 0.001159652209 + 31
Wi 0.001159652411 + 166 (2.2)

where 2a = (g — 2). There 1s an agreement between theory (at the three loop level)
and experiment of 1 part in 10®. Various other experiments have been performed.
such as measuring the anomalous magnetic moment of the muon |95|, which have
veritied the validity of quantum field theory.

Quantum field theory i1s the language of the standard model of particle physics.
introduced in chapter 1. T'he success of the standard model is intimately related to
the success of QK1

2.2 A quantum theory of gravity?”

We have seen above that we have two supreme theories which seem to describe nature
to incredible accuracy. So, one could ask the question: why do we need a quantum
theory of gravity? Aflter all, we have no experimental indications for such a theory
and we can describe the universe around us without such a theory. 1'his may be the

case, but there are some reasons to tackle this problem:

e I'rom an aesthetic point of view, we would like to unily the force of gravity with
the other three forces. After all, there 1s only one ‘nature’ and 1t seems strange

that this entity would be described by two completely separate theories:

e Although the force of gravity is very weak compared to the other three forces
in the world around us, there are regions ol our universe where this is not the

case, for example:

— Black-holes are regions in which matter has collapsed to form objects so

dense that not even light may escape. In these regions of space, gravity
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1s extremely strong and, i1 we want to know what quantum ellects are
taking place within the event horizon of a black hole, we need to be able

to describe gravity on quantum scales.

— When the universe was very young, at times prior to the Planck time
~ 107%*° seconds, space-time was folded up upon itself and so gravity was
very strong. If we wish to know anything about the origin of the universe

around us, we need to construct a quantum theory ol gravity.

In both these cases, classically, a singularity is present - a region of space with infinite

density. A complete theory ol quantum gravity will be able to tell us if this is the

case or 1I quantum effects inhibit the formation of true singularities.

What should quantum gravity tell us?

If we are to lind a complete theory of quantum gravity, what form would we like it

to take and what answers would we like 1t to provide? A full theory of quantum

eravity must:

1.

Describe nature at all scales:

lell us 1t the postulates upon which quantum field theory and general relativity

are built are true or whether they are 1in need of moditfication:

Describe what happens to the classical singularities which form in GR:

. Describe the link between quantum theory, gravity and statistical mechanics.

In particular, 1t must give us a derivation ol the black hole temperature and

entropy:

. Describe the end state of black hole evaporation: do they totally disappear.

leading to the loss of information; or does the evaporation lead to the leaking of
information back into the universe; or do we end up with a black hole remnant

which contains all the information trapped within 1t7

. Give us predictions for the scattering of gravitons, the quanta of the gravita-

tional interaction, with other quanta and themselves:

Describe how the classical theory of GR emerges trom the tull quantum theory.
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In addition to answering these, and more, questions, we would expect a full theory

of quantum gravity to:
e Be background independent in the same way as GR:
s (Quantize space-time:
e Provide us with experimental tests with which to falsify the theory.

In the remainder of this chapter, we shall briely review the current status of quantum
oravity. We shall begin by considering what happens when we construct a quantum
field theory on a curved space-time in order to highlight the ditliculties of quantizing
oravity.

2.2.1 QFT + GR

When we attempt to construct a quantum field theory on curved space-time, the
initial generalization is usually straight-forward. However, there are important issues
which need to be addressed. When we construct the mode solutions, how do we
choose which coordinates to use, for example, time 1s observer dependent. Also.
there 1s not always a time-like Killing vector, so how do we ensure the modes have
positive frequency? Although we may perform renormalization, we find that there are
still divergences in the vacuum expectation value of the stress-energy tensor. Iinally,
in QK1 on Hat space-times, we are only interested in differences of energy and the
problem that the vacuum has infinite energy is resolved by normal ordering. When
we move to curved space-times, since we are interested in the stress-energy tensor.
absolute values ol energy are important and this is infinite. I'he basic problems are.
therefore, the definition of a suitable vacuum and the choice of the time coordinate.
Although these 1ssues are sizeable, there has been a large amount ol progress in the
construction of QF'1' on curved space-times.

Two key triumphs of this approach are due to Unruh |232| and Hawking |152].
The first of these, the Unruh effect |232|, highlights the problem of which vacuum
to choose. In this case, a stationary observer can define a vacuum (in Minkowski
space, this is the same vacuum as in standard QFT) which, by definition is empty.
However, an accelerating observer who considers the same vacuum will detect par-
ticles. So, a stationary observer and an accelerating observer disagree on the choice

of vacuum. Experiments such as the ASTRA laser |9| are proposing to measure this
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effect. Recently, however, there has been some controversy over whether this i1s a
real effect which may be measured |128].

The second is the Hawking effect |152| which shows that, with respect to a sta-
tionary observer at infinity, black holes radiate thermally. 1his 1s a particulary
important result as, in principle, 1t violates unitarity, since pure quantum states
may evolve into mixed quantum states, a process we shall consider in chapter 4.

Although a large amount of progress has been made on constructing QI'I's on
curved space-times, these results remain semi-classical as we are applying quantum
theories on fixed, classical backgrounds. A true quantum theory of gravity would
describe quantum effects of space-time itselt. 1'here have been many attempts to
unify quantum mechanics and general relativity but, so far, none have succeeded.
These theories include twistor theory |204|, non-commutative geometry |96|, causal
sets |108], quantum geometry |51| and condensed matter inspired models |177,234].
Here, however, we shall describe the two theories which, at the moment, are consid-

ered to be most promising, namely string theory and loop quantum gravity.

2.2.2 String theory

As the name suggests, string theory |161,195,221| considers extended objects, strings.
to be fundamental rather than the point-like particles of the standard model. T'he
theory was first constructed to explain the strong force but with the development
of quantum chromodynamics, was discarded. However, the theory was resurrected
when 1t was discovered that the theory naturally contained a massless, spin 2 particle:
the graviton, and string theory as a theory of quantum gravity was born. In fact.
string theory can be thought as a ‘theory ol everything’ since, at least i principle.
it has the potential to describe all four interactions on quantum scales.

At present, there are five different string theories which exist naturally in 10 or
26 dimensions and 1 order for the theories to be tachyon free, all the theories are
supersymmetric [26]. T'he five theories may be classified by the form of the strings
contained within them, since theories exist in which the strings are open or closed, so
that they form loops. The five string theories |221| are known as type I, which con-
tains both open and closed strings and type ITA, type TIB, heterotic SO(32) and het-
erotic F/(8) X F/(8) which all contain closed strings only. There are some indications
that these five theories are related and, in fact, are 10-dimensional representations

of the final theory of quantum gravity, M-theory, which is 11 dimensional |240].
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All the string theories above are examples of critical string theory as they are only
mathematically consistent within critical number of dimensions, 10 or 26. Attempts
to formulate string theory within just the four dimensions we observe led to theories
known as non-critical string theories |102-104,107,123,189|. The violation of CP'I
symmetry, which we shall discuss in chapter 4, 1s allowed within these theories.

In order for any of the critical string theories to describe the universe we observe,
the extra dimensions must be hidden from our perception. lThere are two ways in
which these extra dimensions are hidden, firstly, one may compactity these dimen-
sions so they would only be observable on very small scales, of the order of the Planck
length, secondly, one may force the extra dimensions to be large, so that the four
space-time dimensions we see are embedded within this larger bulk |75,176]. T'he
standard model particles are conlined to the four dimensional brane with gravitons
allowed to propagate within the bulk. T'his leads to the quantum gravity scale being

reduced from the Planck scale to energies of order ~ 1'eV/ .

The successes of string theory

Some ol the successes ol string theory can be categorized as follows:

o Perhaps the main strength of string theory lies in the fact that it 1s a unified
theory, in that it can describe all four of the fundamental interactions on a
gquantum scale. 1hat we have a consistent theory that can do so 1s a great

achievement.

® '|'here are indications that string theory can describe the scattering of gravitons.
T'he perturbation theory governing these interactions have been shown to he
finite to the two loop level [105| and there are hints that the series is finite at
all orders |46].

e Due to the relationship between the different types of string theories |136].
the theory, in some cases, predicts a minimum length scale, hinting at the

quantization of space-time. However, 1n other cases, this 1s not seen.

= String theory may be able to give us a description of quantum black holes. By
considering near-extremal black holes, where the charge i1s approximately equal
to the mass, the calculation of quantum numbers near these black holes agree

exactly with semi-classical calculations |76].
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» String theory may be able to provide an answer to the information loss paradox
154,162, 185|. In all cases, the evolution of quantum states is shown to be

unitary.

= 5Sting theory has provided predictions which may be tested experimentally. If
large extra dimensions exist, then the scale at which quantum gravity eflects
become important may be ~ [T'eV, rather than the Planck scale. 1'his leads
to the predictions that black holes will be produced at the LHC |6| and their
subsequent evaporation will produce an experimentally observable signature

109.

Open questions in string theory

Although great steps have been made in string theory towards linding a consistent

theory which quantizes gravity, there still exist many open questions and issues:

e In string theory, the background is not dynamical. In fact, processes described
by string theory, such as graviton propagation, take place on a lixed background

in direct disagreement with the lessons we learned from GR.

o At present, there exist large numbers of string backgrounds and string theories
and we have no indication which one will describe the universe we see around
us. In addition, we have no way of knowing how to reduce the number of string

backgrounds.

s String theory seems to be incompatible with a positive cosmological constant

241,

It seems, therefore, that there i1s much work to do, although some ol the answers
to the above concerns may be close. If an 11-dimensional M-theory 1s constructed
which 1s consistent with the known string theories, then it may well be background
independent. However, the issue of which string vacuum to choose and how to do this
1s more difficnlt. T'hat some string theorists have begun to mention the anthropic

principle |87| is perhaps worrying.

2.2.3 Loop quantum gravity

In contrast to string theory, loop quantum gravity |219| does not attempt to unify

the four interactions, rather it is a program to quantize gravity. Due to this less
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Figure 2.3: The lett hand frame shows how volumes are represented in spin networks,
the volume of the cube in figure (a) is represented by a point in figure (b) with the
planes enclosing the volume represented by lines normal to the planes. 1'he numbers
represent the volume and areas in Planck units. Figure (d) shows the spin network
for the volume in part (c¢). T'he right hand frame shows a spin foam, the evolution
of a spin network in time (figures taken from |7]).

ambitious aim, loop quantum gravity is perhaps nearer completion than the string
theory program. Loop quantum gravity relies on nothing more than GR and Q.
In addition, 1t 1s assumed that the theory will be background independent as in GR.

As we might expect, since i1t is based on GR, the theory is geometric. Loop
quantum gravity has been constructed to describe space-time at the Planck scale and
it has been found that space-time may be represented by a spin foam |57| with space
being represented by a spin network |56|. A spin network simplifies the description
ol extended space by representing a volume with a node and the area which encloses
the volume as a line perpendicular to the areas’ face, as in the lett frame of figure 2.3.
The numbers in part (b) in the left hand frame of figure 2.3 represent the areas and
volume of the cube in part (a) in units of the Planck length. By connecting many
such volumes, we construct a spin network. 1The evolution 1n time of a spin network
1s known as a spin foam. 'I'hese may again be represented diagrammatically, with the
lines of the spin network becoming planes and the nodes representing the enclosed
volume becoming lines. T'he right frame of figure 2.3 shows a spin loam where three
volumes merge to become one. In this way, loop quantum gravity has made perhaps
1ts largest achievement; it has quantized space-time and kept it a dynamical entity

within the theory.
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The successes of loop quantum gravity

Loop quantum gravity has made significant progress towards its goal of providing a

quantum description of space-time. These achievements include:
o l'he fact that time and space are derived quantities rather than being defined.

e l'he quantization of space-time 1n terms of the Planck length. In actual fact.
1t turns out that the Planck length 1s less fundamental than areas and volumes
220|. Loop quantum gravity predicts that there is a fundamental limit to
size of areas and volumes, processes cannot take place on smaller scales since
smaller scales do not exist. Larger scales are built up from a number of these

space-time quanta.

o A detailed quantum description of general black holes |50|. The entropy of
black holes has been computed and found to agree with the semi-classical
result and a derivation of Hawking radiation has also been performed |61,174].
In short, loop quantum gravity can reproduce and explain the thermodynamic

properties of black holes.

e Predictions that may be tested experimentally, such as deviations from the
usual dispersion relation, which result in the speed of light having an energy
dependence, so higher energy photons travel faster than those with lower energy

29|. Similar modifications to dispersion relations are found for fermions |28,30].

It seems, therefore, that loop quantum gravity can claim to be a true quantum
theory of gravity in that it can quantize and retain the dynamical nature of space-
time. In addition, 1t provides concrete predictions which may be veritied or ruled

out by experiment.

Open questions in loop quantum gravity

Although the situation seems very promising for loop quantum gravity, there are still
1ssues that need to be resolved before 1t can be accepted as a viable picture tor the

quantum nature of space-time |219|:

e It has yet to be shown that the low energy limit of loop quantum gravity is

ogeneral relativity.
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Questions String theory | Loop quantum
gravity

1'heory describes nature at all scales H 3]

Postulates of QF'1l" and GR need modifying? A A

Problem of classical singularities resolved? H R
Explains link between quantum theory.

oravity and thermodynamics K A

Explains end product ot black-holes (. (.

(G1ves predictions of graviton scattering K .

Emergence of GR in low-energy limit A B

lable 2.1: Summary of the current status of quantum gravity theories. A = solved.,
B = some results, C = work 1n progress.

e |t remains to be seen if spin foam models of space-time have a suitable low

energy limit,
e '|'he inclusion of matter into loop quantum gravity is problematic.

Although this list of open questions i1s particularly short, the details are highly non-
trivial. 1t may be some time, therefore, belore a complete loop quantum gravity

approach 1s formulated which may be applied to the universe.

2.2.4 Summary

T'here has been an 1mpressive amount of progress i quantum gravity over the last
twenty vears and, though we are still some way {rom obtaining a consistent theory.
many theorists are confident that it 1s close. T'he present status of string theory and
loop quantum gravity, with respect to the questions posed in section 2.2, are shown
in tahle 2.1.

It 1s the view of many that the final theory will have elements of both the theories
above, for example, 1t may be that the final theory ol quantum gravity will describe
space-time 1n terms of quantum toam. However, one important aspect of these
theories still eludes us; talsifiable predictions. For many vears, experimental tests of
quantum gravity were thought to be out of reach. However, this view has changed
over the last five years. In the next section we describe why the original view was

taken and how this was overturned.
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Planck quantity | Constant content Value
Energy e 1.2 x 10" GeV
Length Ay 1.6 x 107" m

Time b 5.4 x 107 s
Mass JE 2.2 % 107 kg
l'emperature gf 1.4 x 10%* K

lable 2.2: Values of the Planck quantities and the combination of constants used to
construct them, where ¢ 1s the speed of light, i 1s Planck’s constant, (G 1s Newton’s
constant and & 1s Boltzmann’s constant.

2.3 Quantum gravity phenomenology

For many years, the pursuit for a theory of quantum gravity was thought to be a solely
theoretical one. 'I'his train of thought arose because the scales at which gravitational
effects become important are far removed from those we see 1n experiments. We can
estimate the relevant scales at which relativity, gravity and quantum physics merge
by taking constants from each theory: namely the speed of light, ¢, from relativity:
Newton’s constant, (¢, from gravity; and Planck’s constant, h, from quantum theory:
and combining them into quantities which have, for example, the dimensions of
energy, length and time. 1he combinations of these constants and resulting values
are shown in table 2.2, Consider the Planck energy, given by [, W ~
1.2 x 10' GGeV, this an incredibly large energy which is out of reach of any current
or planned terrestrial experiment. As a comparison, the LHC |125] which is currently
being built at CERN will collide particles with a center of mass energy in the range
of T000 (7eV'. Since quantum gravity eflects are expected to be suppressed by at
least one order of the Planck energy, then it was considered that experimental tests
ol quantum gravity would not be possible.

Recently, however, this view has changed. By considering elements of the quan-
tum gravity theories discussed 1 section 2.2, we can take these elements and ex-
amine the consequences they would have on experiments. Once again, there 1s a
large body of literature on this subject, for an in depth overview of quantum gravity
phenomenology, see, for example, |34, 36,38-40|. To date, work on quantum gravity

phenomenology has concentrated on two particular aspects of these theories.



Figure 2.4: An artist’s impression of space-time foam (taken from [7]).

2.3.1 Quantum decoherence

In 1974 |151,152|, Hawking showed that black-holes radiate thermally and, as we
have seen above, to a certain extent, both string theory and loop quantum gravity
have been able to reproduce this semi-classical result exactly. It we consider a pure
quantum state which collapses to tform a black-hole, then the pure state evolves into
a. mixed one since the tinal state i1s thermal. [This evolution from pure to mixed
states, known as quantum decoherence, 1s a process which 1s not allowed 1n standard
quantum mechanics, as it violates CPT invariance, since unitarity is violated |228|.

It has been suggested that space-time has a foamy nature due to quantum fluctu-
ations, figure 2.4 shows an artist’s impression of this space-time foam. If this is the
case, then particles travelling through space will interact with quantum fluctuations
ol the gravitational field, in the form of quantum singularities. 1'hese virtual black-
holes conserve mass, angular momentum, charge but violate quantum numbers such
as lepton or baryon number. I'hrough interactions with these black-holes, a particle
may ‘forget’ its mitial Hlavour. ['herefore, a particle of one Hlavour at early times
may be seen as a particle of different Havour at late times. 1'his interaction may
lead, for example, to proton decay, since one of the quarks in the proton may change
into a lepton. Although these effects are expected to be very small, they may be
cumulative and so particles travelling large distances may exhibit quantum gravity
related phenomena. We shall describe this process in more detail in chapter 4 and

examine how neutrinos will be able to used as probes to look for these effects in
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chapters 5 and 8.

2.3.2 The violation of Lorentz invariance

Both string theory and loop quantum gravity suggest the existence ol a fundamental
length scale. T'heoretically, this i1s expected to be the Planck length. It this is the
case, then this would suggest modifications to Lorentz invariance |35,173|.

If a fundamental length scale does exist, 1t throws up an immediate question; in
which reference frame i1s the length considered to be fundamental? If we were able
to perform an experiment to measure this length in one reference frame and then
considered a length in a different frame, we would naively expect the measurements
to differ due to lLorentz contraction. 1There are three options with which to resolve
this 1ssue, the first 1s that the Lorentz transtormations hold at the Planck scale
and so quantum gravity has no preferred frame. I'he second option 1s that Lorentz
transtformations do not hold at the Planck scale. as in the case of the standard
model extensions which extend the standard model of particle physics to include
all operators that break CPT |91| and Lorentz invariance [92|. The third case of
interest leads to the deformation of the Lorentz transtormation, as in doubly special
relativity |37]. In this case, the transformations contain the Planck length as an
invariant in much the same way that the speed of light 1s invariant. In the final two
cases, this leads to modifications of the standard dispersion relation, £* = p* + m?*.
Deviations from the norm may then be probed for. In chapter 6 we describe the
theory behind this in more detail and examine what neutrinos can tell us about the

violation of Lorentz imvariance in chapters 7 and 8.

2.4 Summary

In this chapter, we outlined the motivation for, and gave a brief status report on.

the subject of quantum gravity:

o We began the chapter by describing the two cornerstones of modern physics:
general relativity and quantum field theory. In both cases, we presented ex-
perimental evidence showing that the theories are able to describe nature to

very high precision (section 2.1).

o We then asked the question ‘why do we need a theory ol quantum gravity?’.
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atter all, we have not one shred of experimental evidence which indicates that
we need the theory. We described situations in which the theory would be ap-
plicable and outlined the questions which 1t should address. We then described
some ol the problems encountered when attempting to quantize gravity and
outlined the two leading approaches to quantum gravity, namely string theory

and loop quantum gravity (section 2.2)..

e l'inally, we described quantum gravity phenomenology. We considered why
this approach was not taken before and described some of the considerations
by which this reasoning was overturned. We focused on two particular modifi-
cations to standard physics, namely quantum decoherence and Lorentz invari-
ance violation, since these are the phenomena we shall concentrate on 1n the

remainder of this thesis (section 2.3).

At the present moment, we have no complete theory of quantum gravity and, al-
though there are two theories leading the way, there exist many other approaches
we haven not considered here. T'he question 1s, theretore, which theory, if any, is
taking the correct approach? Perhaps the theoretical approach is simply too difficult
without guidance from experiment. I'herefore, quantum gravity phenomenology can
provide an imvaluable guide towards the construction of the final theory.

However, since no theory ol quantum gravity has provided us with any concrete
experimental predictions, this makes looking for quantum gravitational effects very
difficult, after all, how do we even know what to look for! Therefore, in order to
perform quantum gravity phenomenology, we must use our physical intuition in order
to 1dentily any possible new quantum gravitational eflects.

T'his 1s precisely the methodology embraced within this thesis. We concentrate
on two particular modifications of standard physics which may arise due to quantum
gravity eflects, namely the violation of CP'l' invariance in form of quantum deco-
herence and the violation ot Lorentz invariance. We concentrate on the effects that
quantum decoherence could have on atmospheric neutrinos in chapters 4 and 5 and
consider the eftects Lorentz violation could have on the same system of neutrinos in
chapters 6 and 7. We consider the effects of both of these modifications on neutrinos

which originate in astrophysical objects in chapter 8.
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Chapter 3

Simulations of atmospheric

neutrino oscillations and

ANTARES

In this chapter, we present the numerical methods we use to place upper bounds on
possible quantum gravity eftfects in chapters 5 and 7. We present a brief description
of the OSCHI'T" neutrino oscillation sottware package and show how we modified
the package to include quantum gravity eflects. We present plots for the case of
standard neutrino oscillations to outline the kind of output we expect tfrom the

software package and for comparison with our results in later chapters.

3.1 The OSCFIT package

In order to examine the eflects quantum gravity may have on the atmospheric neu-
trino Hux and to enable us to place bounds on the quantum gravity model param-
eters, we turn to numerical methods. Here, we outline the basic 1deas behind these

numerical methods and sketch an outline of the OSCFHII" package.

3.1.1 Overview

The OSCFIT package |80-82| was originally written to show that the ANTARES
detector would be able to measure the standard oscillation parameters from the
detection ol atmospheric neutrinos. 'he package reads i simulated ‘data’ and bins

this data so we are able to extract spectra: number of events as a tunction of zenith
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angle and neutrino energy. Once these simulated spectra have been constructed.
they are then compared to theoretical expectations to construct both sensitivity
and measurement contours. Due to the speculative nature of the quantum gravity
effects we are considering in this thesis. we shall concentrate just on sensitivity
contours which show the region ol parameter space in which the model parameters
are consistent with the data compared to the situation of no oscillations. In this
section, we expand on these points and explain how we modified the package to

include quantum gravity effects.

Event generation

Until the ANTARES detector is completed and taking data, the only thing we can
do 1s simulate the type of events which will be seen. I'he OSCII'l" package comes
complete with a data file containing such events called in/3dall.dat. The events were
generated assuming a spectrum of ® ~ F7* for interacting neutrinos. If we assume
a different spectrum, the results presented here may be altered. I'he simulations
were performed for neutrinos lying in the energy range 10 GeV < E, < 1 1'eV.
By measuring neutrinos in this energy range, we can be sure that the neutrinos are
atmospheric 1in origin as we would expect neutrinos from astrophysical sources to be
of much higher energies. Event weights are used to to adapt the Monte Carlo to a real
atmospheric neutrino flux and we used the Bartol theoretical flux |133] although we
do not anticipate the results of the simulations altering significantly if an alternative
theoretical flux 1s used. 1The flux 1s also normalized, with the total normalization
being left as a free parameter. OQur sensitivity results, presented in chapters 5 and 7.
are, therefore, independent of this normalization. I'he input file contains a total of
94411 events which corresponds to 25 years of data taking, meaning that error from
Monte Carlo statistics can be safely ignored. All data in the file 1s assumed to have

been ‘detected’ by the detector consisting of 14 strings and 1260 PM'l's.

Spectra production

Once the ‘data’ file has been read, the data 1s then binned depending upon which
observable we wish to examine (see below). By entering various values of the oscil-
lation parameters in the code, we are able to produce plots of the spectra expected
for those values of the parameters. T'hese spectra are simply the number ot events in

cach bin as a function of the observable. I'he oscillation parameters alter the number
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of events 1n each bin and we are able to examine the expected number of events and

the shape of the spectrum for particular values of the oscillation parameters.

Oscillation analysis

In order to construct sensitivity contours, we use a v* analysis, where we consider an
observable z which depends upon the oscillation parameters. We fit these parameters

by minimizing a y* which we construct by varying the oscillation parameters with

= X[%—T*Pi]z/af- (3.1)

7

Here, z, mtroduced above, 1s the measured number of events, affected by oscilla-
tions, contained within bin ¢, the quantity F is the number of events expected trom
Monte Carlo simulations (which is dependent upon the neutrino oscillation survival
probability), with r a normalization and ¢ representing the errors of the measured
values. In order to include quantum gravity effects into the OSCHEFI'T package, we
need to modify the y* analysis. We present this modification in section 3.2.

1'he errors in the measured number of events are considered to be (zaussian. We

may also add a systematic error 1t we wish, so

O = /T + 0Z. (3.2)

T'hroughout this thesis, we shall assume no systematic errors, so o4, = 0.

‘Real’ data

The quantity = in equation (3.1) 1s supposed to represent real data. However, since
the detector is not yvet built, we must simulate this as well. To do this, we calculate
the expected number of events per bin and then smear this number assuming a
(vaussian distribution. 1he errors bars on the data points are then given by the

equation (3.2) with g, = 0.

Confidence levels

Throughout this thesis, we present sensitivity contours at the 90% and 99% confi-
dence levels. For a more detailed explanation, see section 3.2. We obtain output as a

function of sin? 20, where 0 is the neutrino mixing angle. However, the code simply
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finds the point of best it for a given parameter and this may may include unphysical
values of sin® 20, that is, we find values of sin® 20 not contained in the region [0, 1].

All the plots we we present, however, do respect these physical bounds.

Observables

T'he oscillation probability depends upon the path length and the neutrino energy.
In addition, an oscillation pattern has been observed in the atmospheric neutrino
spectrum 1n the zenith angle distribution and the quantity E/L in the Super-
Kamiokande [49]|, KamLAND |48 and K2K 31| experiments and so we consider
two observables, the first being the zenith angle.

T'he path length, L 1s dependent upon the zenith angle:

L= \/R2 — (R —h)*sin®*d + (R — h) cos ¥, (3.3)

where K = 6378 km 1s the Earth’s radius, with A = 10 — 20 km, the height above
the Earth’s surtface at which the neutrino is created, and ¢ 1s the zenith angle, where
v = 0 corresponds to a neutrino travelling vertically upwards. As we pointed out
in chapter 1, neutrino telescopes point downwards to minimize the background from
cosmic rays, so 1I we limit the zenith angle to upward going neutrinos only and make

the assumption B >> h, then equation (3.3) becomes
1.~ 2R cos 1. (3.4)

So, up to a factor of 2R, the path length is equivalent to the cosine of the zenith
angle. When we come to present the spectra of events, we shall therefore show them
as functions of the neutrino energy and the cosine ol the zenith angle rather than
the path length.

The second observable we consider is E/L. As we saw above, the path length is
directly related to the zenith angle and so, rather than take £ /L to be our observable.
we shall take F/ cos 1.

It 1s also possible to construct spectra with the neutrino energy, £, as the ob-
servable. However, ANTARLES 1s much more sensitive to the zenith angle than the

neutrino energy and so we do not consider this observable turther.
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directory details
ST 4 main oscexce.f - produces sensitivity contours
prograins: oscfir.f - produce measurement contours
oscfloat.f
oscthree.f
subroutines:  inite.f - fills ‘real” arrays
readevents.f - reads and processes ‘data’
stepx.f - fills MC arrays for specific parameters
finections delchi.f - provides Ay? for desired CL
thin.f - finds bin for value of observable
ne thin.inc - iinds bin for value of obhservable
zfit.inc - stores data trom readevents.f
n Sdall.dat - data from Monte Carlo

lTable 3.1: The file structure of the neutrino oscillation software package OSCFIT.
Of the four main programs, oscexc.f produces sensitivity contours with the other
three producing measurement contours.

3.1.2 Simulation methodology

Above, we presented some of the basics of the software package OSCFIT. Here, we

outline the file structure of the package and describe the simulation methodology.

File structure

1T'he OSCFIT package contains four files, runexc, runfix, runthree and runfloat, all
ol which compile and execute a program to create sensitivity and measurement con-
tours. lhe first lile generates sensitivity contours whilst the other three generate
measurement contours for various normalizations, r (see equation (3.1)). Since we
will only be interested 1n generating sensitivity contours, we shall only concern our-
selves with the files called by runexe. The main file in runexc is sre/oscexce.f and is
located in a subdirectory along with utility files and functions. l'able 3.1 shows the

file structure in more detail.

Input/Output

In order to generate sensitivity contours, the program src/oscexc.f reads in Monte
Carlo generated neutrino data which is located in in/3dall.dat. Here, each line refers
to one event and contains both the ‘real” and reconstructed neutrino energy and

zenith angle. The data is read and processed by the subroutine src/readevents.f, and

H)



stored 1n the common file zfif.inc. If we wish to change the observable, we do so in
sre/readevents.f. In addition to this necessary input, an optional random seed may
also be included 1n order to calculate the fluctuations in the ‘real’” data to produce
realistic data points. Further mput parameters are located in the main file which

include
s Confidence level.
e Number ol years of data taking,
o Range of parameter space.

As output, the code writes a single ASCII file containing a list of parameters. For
standard oscillations, we obtain a list of (log,o(Am?/eV?) ; sin 26), the coordinates
of a sensitivity contour. When we include quantum gravity ellects with one extra
parameter, we obtain a three rather than two dimension parameter space. In this
case, to obtain sensitivity contours, we project the three dimensional sensitivity vol-
ume onto the coordinate planes and take the extremal points to define the sensitivity

contour.

Simulation algorithm

Here, we describe the algorithm used within sre/oscexc.f to generate the sensitivity
contours. We shall describe the simple version for standard oscillations with no
quantum gravity effects. In order to define the sensitivity contours, we define a
region of parameter space in which we are interested for Am* and divide it up into a
number of discrete points. We define at the beginning of the code how many points
into which to divide this range. A y* minimization procedure, as we shall outline in
section 3.2, is then used to calculate a value of sin” 26 for each particular value of

Am*. In more detail, the procedure is:

1. We begin by defining a range of points for the parameter Am?, in which we
expect the parameter to lie, and also the density of points with which we scan
this parameter. If the parameter does not lie within the range specified, then
no meaningful results are obtained. When we include quantum gravity param-
eters, we also define ranges for these parameters. In addition, the conlidence

level, number of years ol data taking and systematic error is also defined.
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2. The subroutine sre/readevents.f is then called and the Monte Carlo generated

neutrino data is read, processed and stored.
3. We then loop over the number of parameter points:

o We divide up the range Am? into discrete points, dependent upon the

number of parameter points defined.

o The subroutine src/chired.f 1s then called, which first reads in the appro-
priate observable processed from sre¢/readevents.f and decides the appro-
priate bin number. This event is then added to both the non-oscillation
and oscillation distributions with a suitable event weighting. In this way.

we may extract spectra for the relevant observable.

» The quantity g, which is found using a y* minimization procedure (see

section 3.2), 1s then calculated and returned to the main program.

4. A value for the parameter sin® 20 is then found for this particular value of Am?

using the calculated value of y?.
5. The coordinates (log,,(Am?) , sin? 20) are then written to an ASCII file

For standard neutrino oscillations with 1200 points, the code takes around 30 seconds
to rin. When we include an additional parameter, the code takes around two and
a halt hours to run for 400 points on the Linux HEP cluster in the Department of
Physics and Astronomy at the University of Sheffield.

3.2 Oscillation analysis

In the previous section, we described the structure of the neutrino oscillation package
OSCEIT and gave an overview of the simulation algorithm. A critical step in the
algorithm is the calculation of the quantity 3, which is found from the non-oscillation
and oscillation distributions. Here, we show how we arrive at the expression for
Y7 in the code. In subsequent chapters we include quantum gravity effects which
significantly alter the neutrino oscillation probability and this alters the expression
for yvi. Here, we shall present our calculation of Y3 for the most general oscillation

probability which includes these new physical effects.



In order to construct sensitivity contours, the OSCFIT package minimizes y*

differences and tfests whether the condition
XZ > Xzont = Xf’ﬂ?ﬂ —|— AXZ: [35)

18 satisfied. T'he sensitivity contour is then constructed from all the points which
satisfy this condition. The quantity F;, in equation (3.1), is dependent upon the
neutrino survival probability. As we shall see in chapters 4 and 6, the general form

of the oscillation probability for two neutrinos takes the torm
1 )
Plv, — v, 5 {COS2 20 [1 — Mas(E, L)] +sin*20[1 — My (E, L)

—% Siﬂ49 [M13(E, L) ‘|‘ MSI(E7 L)]} : [36)

where 6 1s the mixing angle and the M’s, which are functions of the neutrino en-
ergy, 1, and path length, L. contain the standard oscillation and quantum gravity

parameters. Therefore, we may write the quantity P; in equation (3.1) as
1 2 ) .
P > o|1- 5{cos 20 [1 — Mas(E;, L)) +sin?20 [l — My, (E;, L;)
j]

—%sinll@ [(Mis(E;, L) + Moy (E, Lj)]}] wi(E, L), (3.7)

where we sum over j, the number of events in bin ¢, and the quantity w;(F, L) is the

statistical weight of the event. Defining
v Y,
i
fi %Z[l—MH(Ej,Lj)]wj(E,L),
j
o33 (B, L) — 1w (B, L)
1

1
L 5 [Mis( By L) + Moy (£, L) w;(E, L)
t sin” 20, (3.8)
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we may write equation (3.1) as

=Y ai—res +rt(fi 4+ gi) — rgi — V(1= t)hi)? (3.9)

7

In the same way, we also express our data sample, x;, in terms of oscillation and

non-oscillation parts:
vi = xo; — s(zi +yi) +yi + V/s(1 = s)g., (3.10)

where the expressions for ¢, ¥ and z are analogous to those in equation (3.8):
< _Z M{I EML )]wj(EaL):
i §Z[M§3(Emﬂj) — 1w (£, L),
1

1
tl; g[M{S(EJaLJ) + Mél(Eijj)]wj(E7L)
s sin” 26, (3.11)

but the primed quantities now contain the true oscillation and quantum gravity
parameters and s 1s equivalent to ¢ but has a dependence upon the true mixing angle.
/. We are interested in finding average sensitivity contours, which means that the
non-oscillation part ol the mput data 1s simply given by the statistical weight of
the data, this means that x,; = ¢; and, since we are dealing with simulations, the
minimum of v is found when the ‘real’ parameters are equal to the fitted parameters.

so we have yZ . = 0. Hence, y* for the non-oscillation hypothesis is

X(2) = X[ei —s(zity)+uyi+ Vsl —s)g — rei]Q/a?. (3.12)

1

Expanding this expression and delining the quantity

abt] =" aibi (3.13)

a;

i
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Table 3.2: Table showing the values of Ay for various confidence levels and number

Confidence level % | k=1 | k=2 | k=3 | k=4
7() 1.07 2.41 3.67 4 .88
90 2.71 4.61 6.25 7.78
95 3.84 5.9Y 7.81 9.4Y
49 6.63 Yy.21 11.34 | 1328
99.9 10.83 | 13.82 | 16.27 | 18.47

of parameters, k (taken from y* statistical tables).

gives

Minimizing this expressions with respect to r. which we consider to be a freely

Xe

2rsley] + 2rslez] + 25°[yz] + r¥[ee] + [yy] — 2s[yy] + s7[yy] + s°[==

—2r|ee| + 2|ey| + |ee| — 2r|ey| — 2s|yz| — 2s|ey| — 2s|ez
+/s(1 = 5) [2[eq] — 2slqz] — 2s[qy] + 2[qy] — 2r[eq

+/5(=5)lqdl |

Hoating parameter, we find

Substituting equation (3.15) into (3.14) with y¢ = Ax?, since we are finding average

L (s[ey] + slez] — [ey] -

lee]

sensitivity contours and y2 . = 0, we find

A82—|—BS—|—C\/53(1—S)—|—D\/S(1—S)—|—E:O,

with

1)
f

All the quantities in the brackets, |..|, can be calculated within the OSCFIT package

eql” —Tey]” —[ez]” + [eellyy] + [ee][22] — [eellqq] + 2[ee][yz] — 2ley][ez].

s(1— s)[qu) |

eellqq] — [eq]” + 2[ey]* + 2[ey][ez] — 2[ee]y=] — 2[ec][yy].
2|eylleq| + 2leq||ez| — 2|ecl|qz]| — 2|eel|qq|.

2|ee||qy| — 2|eql|ey].

P/

ee]lyy] — [ey]”* — [ee] Ax*.
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and the quantity Av? is found from standard y? statistical tables, for the appropriate
confidence level. I'hese values are shown in table 3.2. I'heretore, in order to calculate
s = sin“ 20, with 0 the true mixing angle, for one set of oscillation and quantum
gravity parameters, we must solve equation (3.16). For the most general case, we
employ a simple root solver method: the bisector method |211|. However, more
commonly, the quantities M3 and M3; in (3.7) are zero. In this case, we are able to

find an analytic solution of (3.16):

A+ /BAZFC

s = ol : (3.18)
where
A’ yylleel + [yzllee] — [eyl” — [eylez].
B z2][eel” + [yyllee]” + 2[yz][ec]” — 2[eyl[ez][ee] — [ey]*[ee] — [e2]*[ee].
o z2|[eelley]® — [zz][ee] [yl + [y=]*[ee]” — 2[ey][ez][y=][ee] + [ez]*[yylee].
' zz][ee] + [yyllee] + 2[yz]lee] — [ez]” — 2[ey][ez] — [ey]” (3.19)

If we loop over the fitted oscillation and quantum gravity parameters, then s deter-

mines the sensitivity curve.

3.3 Standard oscillation results

In order to compare the results we obtain when we include quantum gravity etfects
in chapters 4 and 6, we present the results for standard oscillations here. Figure 3.1
shows the spectra for standard oscillations. T'he histograms on the lett of figure 3.1
show the number of neutrino events. 1'he black line shows the expected spectrum
for no oscillations, with the coloured lines showing the expected spectra for neutrino
oscillations for varions values of Am? The ‘data’ points are those obtained by
smearing the ‘data’ as outlined above for Am?* = 2.6 x 1072 ¢V [140]. The frames
on the right of figure 3.1 show the ratio of the expected spectra compared to the
no oscillation scenario. The top frames show the spectra as functions of £/ cosv
whilst the bottom Irames show the spectra as functions ol the zenith angle only.
1'he top right frame shows a distinct oscillation minimum between 10 and 100 GeV'.

At high values of cos®, the difference between the curves in the bottom right frame
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Figure 3.1: The spectra obtained for standard neutrino oscillations. I'he frames
on the lett show the number ol events whilst those on the right show the ratio of
the number of events expected when we include oscillations compared to the non-
oscillation case. In all cases, the black lines show the non-oscillation spectra.
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Figure 3.2: Sensitivity contours for standard oscillations at 90 and 99% confidence
levels. T'he region compatible with the standard oscillations scenario lies within the
contours, as highlighted in yellow, for the 90% confidence level.

is distinct and should enable ns to measnre Am?“. 1The sensitivity region obtained
from the OSCFI1" package i1s shown in figure 3.2. ['he region which 1s compatible
with neutrino oscillations at 90% confidence level lies inside the black contour, as
highlighted 1n yellow, whilst the region compatible with neutrino oscillations at the
99% confidence level lies within the blue contour. Any points outside these regions

are incompatible with the oscillation hypothesis.

3.4 Summary

In this chapter, we described in detail the OSCFI1" software package which was orig-

inally written to study standard neutrino oscillations within atmospheric neutrinos.

o We began by giving an overview of the software package OSCH/I'l. We described
the difterent types of output we are interested 1n, namely the spectra of events
and sensitivity contours, and how they are generated. We also gave a detailed
description of the file structure of the OSCH/I'l" package and the basic algorithm

for generating sensitivity contours (section 3.1).

o We showed how 1t 1s possible to modity the analysis utilized within the O5-
CH!1ll package to generate sensitivity contours for a more general oscillation

probability than that for simply standard neutrino oscillations. We considered

ha



a form of the oscillation probability which will be useful for us to examine
quantum gravity effects within the system of atmospheric neutrinos (section

3.2).

o lI'inally, we showed an example of results generated from the OSCHIT pack-
age for the case of standard neutrino oscillations. We presented the spectra of
events as functions ot two different observables and showed how these spectra
may be used to distinguish between the non-oscillation and oscillation scenar-
10s. We also presented a plot showing the sensitivity contour for standard

oscillations (section 3.3).

We shall utilize the methods and techniques described here when we examine how
possible quantum gravity ellfects may manifest themselves within the atmospheric
neutrino system. In chapter 5 we consider the case of quantum decoherence and the

case of Lorentz invariance violation in chapter 7.

hY



Chapter 4

Quantum decoherence - theory

In this chapter, we present the theory underlying the possible phenomenon of CP'I
invariance violation which arises due to quantum decoherence. We begin by describ-
ing the CP'l' theorem and how this theorem may be evaded. We then show how
quantum decoherence effects may manifest themselves within the neutrino sector.
at least for a two neutrino system, which we will use to place bounds on quantum
decoherence parameters when we consider atmospheric neutrinos in the next chap-
ter. We consider how these effects manitest themselves in a three neutrino system in

chapter 8.

4.1 The CPT Theorem

1'he CPl' theorem 1s a fundamental ingredient of quantum field theory in Hat space-
times |228|. The theorem ensures that the quantities appearing within these theories,
such as the Hamiltonian and Lagrangian density, are invariant under the combined
operations of charge conjugation (C), parity reflection (P), and time reversal (T).

The CPT theorem holds in flat space-times provided the theory obeys |228
o |ocality.
e unitarity.
s |.orentz imvariance.
Deviation from any one of these requirements leads to CP'l' invariance violation

(CPTV). It has been shown recently that CPTV also leads to the violation of Lorentz

6()



invariance (LV) |143]|. We shall consider the violation of Lorentz invariance in more

detail in chapter 6.

4.1.1 Violations of CPT

T'he breaking of CP'I' symmetry, which we consider in this chapter, arises from the
loss of unitarity leading to a phenomenon known as quantum decoherence. I'his loss
of unitarity may arise due to the possible discrete nature of space-time or non-trivial
topological ellects. 1'herefore, we consider quantum decoherence as a phenomenon
which violates the CP'l' theorem due to particles mnteracting with an environment
with gravitational degrees of freedom. Since we, as observers, detect low energy
degrees of freedom through scattering experiments, this may lead to an apparent loss
of information from our point of view. In order to describe this non-unitary evolution.
Hawking suggested a quantum gravitational modification to quantum mechanics
153|, which is based on the density matrix formalism. Density matrices are used
to describe the statistical state of a quantum system. For a mixed state, where the
probability of the quantum system being in the state |¥;), is p;, the density matrix
1s given by

p=> pilU)T,l (4.1)

1'his modification of quantum mechanics, suggested by Hawking, considers an initial
quantum state which is described by a density matrix p;,. T'his state is then allowed

to evolve into a linal state p,,:. 1hese two density matrices are related:

Pout — $pm [42)

with the operator $ being the super-scattering operator. In standard quantum me-

chanics, this operator can be tactorized as
5 =881 (4.3)

where § 1s the usual S-matrix. In the case where the super-scattering operator is
factorizable, this ensures pure states remain pure. However, in the case of quantum
oravity, the super-scattering operator cannot be factorized, leading to the evolution
ot pure to mixed states.

lo see why CP'l' is violated, at least in its strong form where we are unable to
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define a CP'l' operator, by the non-factorizahility of the super-scattering operator.
we consider a proof due to Wald |235]|. Suppose that a system is invariant under the

CPT operator, @, and that equation (4.2) holds. By CPT invariance.
Pin = Opo (4.4)
for some out state, p’ ,. Thus.
Pout = 5O, (4.5)

Acting on both sides with the CP'l' operator, ©:

Opout = ®$®p:m.f: (1.6)
50, USINg
Opowt = piin: [47)
gives

Since the Hilbert spaces of the primed and unprimed operators are the same, then
equation (4.2) holds for both cases, thus

which implies that there exists an inverse of the super-scattering operator, $. How-
ever, this contradicts the proposal that the super-scattering operator 1s non-invertible
and so the system 1s not CP'l' invariant. 'I'his 1s not the only possible situation, how-
ever. I'he CP'l' theorem may also be violated in 1ts weak from by the existence of
the super-scattering operator $. In this case, although we may not be able to define
a CP'l' operator, ©, we may be able to define asymptotic in and out states.

1'he question remains, however, how does the existence ol a quantum gravity en-
vironment lead to CP’l' violation and quantum decoherence? 'I'he topological nature
of this environment may lead to the vacuum creation of quantum black-holes with
event horizons having radii of order the Planck length, 107*° m. T'his continnous
creation and evaporation, through Hawking radiation, ol these quantum singular-

ities, results 1n space-time having a foamy nature. When particles pass by these
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Iigure 4.1: Schematic diagram of evolution from pure to mixed states (modified

from |191]).

quantum black-holes, some of the particles” quantum numbers may be captured by
these quantum singularities. With the evaporation ot the black-holes, the captured
information would be lost to the vacuum, inaccessible to low energy experiments.
1'his loss of information results in initially pure quantum states evolving into mixed
quantum states; a process forbidden within standard quantum mechanics. Figure
4.1 shows this process schematically. 1'he pure state on the left of the figure travels
through space and interacts with the environment. I'he environment absorbs some
ol the degrees of {reedom, the blue arrows, resulting in the state being mixed on the
right of figure 4.1.

Although, in principle, 1t 1s possible to use the super-scattering operator to exam-
ine the etfects of quantum decoherence, we shall use an alternative; we shall, instead
consider modifications to the time evolution of the density matrix. 1'his method
assumes only that pure states evolve into mixed states and so is independent of the

source of quantum decoherence.

4.1.2 Modifications of quantum mechanics

Within standard quantum mechanics, the unitary evolution of the density matrix is

governed by the equation

p = —ilM, pl. (4.10)
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where p 1s the density matrix, the quantity £ 1s the Hamiltonian of the system and
the dot denotes differentiation with respect to time. It we allow pure states to evolve

in to mixed states, then this equation may become |120
p = —i[ll, p| + S fp. (4.11)

In this case, the extra term S represents the most general linear operator which
maps Hermitian matrices to Hermitian matrices. It may be that a full theory of
quantum gravity predicts more complicated forms for this extra term, such as a
polynomial in §# or e Here, however, we consider the simplest modification of
quantum mechanics. In order that this extension is physically meaningtul, we impose

various restrictions upon this extra term [120], namely

Itp = 1. (4.12)
so that probability is conserved and

Trp® =1, (4.13)

s0 the entropy i1s always real.

From the discussion above, we now have an equation (4.11) which describes the
time dependence of the density matrix when we allow pure states to evolve into mixed
states. The obvious question to ask, therefore. is what form does the quantity 6
take? One particularly mathematically important form of this term is the Lindblad
form |179|, which ensures that the density matrix has complete positivity [141|. This
ensures the density matrix 1s positive when coupled to a finite dimensional system. If
complete positivity does not hold, then it may be that probabilities lose their physical
meaning since they may not be positive delinite in some regions of parameter space.
However, in the case when complete positivity does hold, the term in (4.11) takes

the form

Stp="" ({,0, DiD;} - QDJ-Dj) (4.14)

Y
where the operators D; and D_;r represent the system interacting with an environment
and {...} represents an anti-commutator. kFrom a physical point of view, we may
require that energy i1s conserved, on average, and that the von-Neumann entropy

increases monotonically. In this case, we find that the ) operators must be self-
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adjoint and that they commute with the Hamiltonian. We therefore find

$Hp =105, [D;. 0] (4.15)

1

From a quantum gravity perspective, we would expect the operators, D), to be pro-
portional to the inverse of the Planck mass and thus §#p oc M 2. In many of the
models considered in this thesis, complete positivity [141| does not hold and so the

extra term in equation (4.11) does not take the Lindblad form.

4.1.3 The theoretical status of quantum decoherence

We have seen that there 1s physical motivation for the violation of CP'l' and quantum

decoherence. Here, we review the theoretical status of quantum decoherence.

Quantum decoherence in string theory

1'he evolution of mixed states into pure states, as described above, results in problems
with defining an S matrix. Since string theory relies on the defining of S matrices.
quantum decoherence is generally not expected within string theory. However, one
class of string theories, namely non-critical string theories |102-104, 107, 123, 189].
may allow decoherence. In this case, we find an analogous expression for the time

evolution of the string matter density matrix as with equation (4.15) [191].

Quantum decoherence i1n loop quantum gravity

Whilst loop quantum gravity implies that space-time is discrete, there is no a priort
reason to expect quantum decoherence. However, there have been proposals |134
suggesting that the discreteness ol space-time may induce decoherence having the
Lindblad form outlined above. However, it seems that there is still much work needed

in order to clarity this.

Cosmological decoherence

In addition to quantum decoherence induced by space-time foam effects, 1t may be
that decoherence arises from cosmological considerations. It 1s now established that
the universe has entered a period of acceleration |205,218| driven by some exotic

dark energy. If this expansion continues, the universe will evolve into a de Sitter
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universe, expanding at an exponential rate. 1This would mmply the existence of a
(future) cosmological horizon. This situation can be considered in the same way
as that of the space-time foam except we, as the observers, now mmhabit the space
within the horizon instead of outside. T'he existence of this horizon would again lead
to the inability to define S matrices, leading to decoherence. It has been argued
in non-critical string theory, that this cosmological decoherence may be intimately
linked with quantum gravity [190|. Considering a two level neutrino system, the

cosmological decoherence parameter, Veosmo, 18 related to the cosmological constant,

A, by [191
Agi(Am*)*

CcOSTnoO ~ 4.16
ot TEIT (4.16)

where g, is the weak string coupling, the quantity Am? is the difference of the squares
of the mass eigenstates, with [/, the energy of the neutrino, and M, the string mass

scale.

4.2 Quantum decoherence in the atmospheric neu-

trino sector

In the last section, we saw how quantum decoherence, which may arise due to quan-
tum gravity effects, alters the time evolution of quantum states. Here we consider
how these effects manifest themselves within the atmospheric neutrino sector and so
need only consider a system of two neutrinos, consisting of muon and tau Havours.
We shall consider all three flavours of neutrinos when we examine quantum deco-
herence eftects in astrophysical neutrinos in chapter 8 ['he mathematical outline
presented here is not dissimilar to that applied to the neutral kaon system |120,121
and ultra cold neutrons |66|. Throughout the following discussion we set ¢ and /i = 1
and assume the neutrinos are travelling relativistically in order to identily ¢, the
time, with L, the distance the neutrino travels.

In order to model the system of atmospheric neutrinos, we must implement equa-
tion (4.11). Whilst the equation looks non-relativistic, it can, in fact, be found from
the dirac equation (see, for example, |98]) and so we are able to apply it to relativis-
tic particles, such as neutrinos. lo do this, we represent the quantities in equation
(4.11) in a particular basis. We choose the basis which comprises the standard Pauli

matrices. In terms of the Pauli matrices, the density matrix, Hamiltonian and §
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may be written as

1 1

P = §Puau: =

1
= §hy0'l/: 5H = 5]120'}9: (417)

where the Greek indices run from 0 to 3 and a summation over repeated indices i1s

understood. Using equation (4.11) we find
Pu = (hu +R,,)p0, (4.18)

where we have decomposed the time derivative of the density matrix in the same
way as in (4.17):

.1

P = 5,0“(7”- (419)
Here, p, 1s the time derivative of the quantities p, in (4.17). Standard neutrino
oscillations are represented by h in equation (4.18) with the quantum decoherence

effects being represented by h'. Using equations (4.12) and (4.13), we find the most
general form of &’ to be |120

W= —2 (4.20)

o S o S o B
o O o0 <
S o R O

where a, b, d, «, 3 and ¢ are real quantities parameterizing the quantum decoherence
effects. Incorporating this matrix with that for standard neutrino oscillations, the

time evolution of the density matrix becomes

p = —2Hp. (4.21)
where P — (p07p17p29p3)l‘ and
0 0 0 0
0 b—w d
H=—2 ! “ (4.22)
0 b+w o 3
0 d JC )
where w = Af,f and Am? is the difference in the square of the neutrino mass eigen-
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states, with £/ being the neutrino energy. If we insist on conserving energy within
the neutrino system, then d = 8 =6 = 0.
Substituting (4.22) into (4.21), we find that the time evolution of the components

ol the density matrix obeys the following coupled differential equations:

Pu U:

p1 —2apy — 2(b—w)p2 — 2dpa:

2 =2(b+w)p1 — 20p3 — 20ps:

P3 —2dpy — 28py — 20ps. (4.23)

In order to derive the neutrino oscillation probability, suppose that we, initially, have
a muon neutrino and so at ¢ = 0, the components of the density matrix take the

valies

po = 1: p1 = sin 20: py = 0 p3 = cos 20: (4.24)

where ¢ is the neutrino mixing angle. We then integrate (4.23) with these initial

conditions. T'he neutrino probability 1s found trom
Plvy = v:| = Tr(p(t)p-(0)). (4.25)
with

in® 0 —1sin20
po(0) = ( sin 5 sin ): (4.26)

—% sin 20 cos? 6

being the initial density matrix for a tau neutrino.

In general, the neutrino oscillation probability is given by |67

1 }
Plv, — v, 5 {cos? 20[1 — Mas(F, L)] + sin® 20[1 — My (E, L)

—%SiH4H[M13(E7L) + MSI(EaL)]} (4.27)

where the quantities My (F, L), Mss3(E, L), Mi3(FE, L) and M3 (F, L) are functions
ol the neutrino energy, ££ and the path length, the distance the neutrino travels, L.

1'he quantities M are defined as the elements of the matrix

M(E.,L) = exp|-2H(E)L|, (4.28)
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where

a b—w d
H=]| b+w o 8 |. (4.29)
d 3 4

In general, however, there exists no simple closed form solution to the ditferential
equations in (4.23) and so in the next section, we shall consider a variety of special
cases. In each case, we consider three possible forms of the quantum decoherence
parameters which involve various dependences upon the neutrino energy (in models
which have more than one quantum decoherence parameter, we assume that they

have the same energy dependence):

1. The simplest model we consider 1s that when the quantum decoherence param-
eters have no dependence upon the neutrino energy. In this case, the quantum

decoherence parameters have the torm

1
&= Yo (4.30)

with similar expressions for the other quantum decoherence parameters.

2. We also consider the case in which the quantum decoherence parameters are

inversely proportional to the neutrino energy:

Mo
AR

a4

(4.31)

T'his energy dependence has received the most attention in the literature to
date |127,180| and results in the neutrino oscillation probabilities being Lorentz
invariant. However, as we discuss in chapter 6, Lorentz symmetry may not hold

at Planck scales.

3. T'he third model we consider 1s proportional to the square of the neutrino
energy:

o = %KQE% (4.32)
where x, 1s a constant. This model was suggested in |120 and also arises
In some semi-classical considerations of quantum decoherence involving black-
holes 124 and D-branes 122|. This energy dependence also arises due to

discrete quantum gravity |134| and so, from a quantum gravity point of view.
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this model 1s of most interest. From a dimensional point of view, the quan-
tum decoherence parameter is proportional to the inverse of the Planck mass.
1'his 1s somewhat unexpected as 1t corresponds to the existence of a non-
renormalizable operator of dimension 5 |202|. From a natural point of view, we
expect Newton’s constant to appear 1n the action, therefore, we would expect

parameters proportional to the inverse of the Planck mass squared.

It has also been suggested that quantum decoherence parameters may be propor-

tional to |18,188,190,191
(Am*)*
_ 4.33
but we have found that neutrino telescopes will have no appreciable sensitivity to
quantum decoherence parameters which have this this energy dependence, as noted

i |[188].

4.2.1 Specific models of quantum decoherence

As we mentioned 1n the previous section, a simple closed solution of the differen-
tial equations in (4.23) does not exist in general. Therefore, we consider models
which include quantum decoherence but in which we assume some parameters to be
zero. In order to study different eflects brought about as a consequence ol quantum
decoherence, we study difterent combinations of these parameters.

In the first class of models we consider, we set d and 3 to zero. 1'his corre-
sponds to the parameters M3(F, L) and Ms(FE, L) in (4.27) vanishing. The form
of the quantities My, (L, L) and Mss(E, L) are then found by solving the differential
equations (4.23) directly. Solving the equations (4.23) with the assumption that the

neutrino 1s mnitially a muon neutrino gives the components of the density matrix as

ro 1:
0 e~ (0t L i 90 [cos(QQL) + a

20

aammmﬂ;

(o —a)

e (et gin 20 [cos(ZQL) + a4 sin(QQL)]

P2 2(b — w) 20
Q) —
+ (b—w) et gin 99 lsin(QQL) — ozzga COS(ZQL)] :
3 e™ b cos 20 (4.34)
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where

o lwz_(a—a)ub?r

. (4.35)

Using equations (4.25) and (4.26), we find the oscillation probability has the form
(4.27) with

e~1scos Iy if a = a:
M, T r, . .
g "= (COSFQ—I—ﬁsmFg) if b=0;
M3z 20k (4.36)
where
L (a+a)L
I'g (o —a)L:
[/ Am2LN? ?
Iy - 2 — b L7
() e
[ FAmILN? 1 :
Iy — 2 ( 1 ) — Z(Q — a)2L2] . (4.37)
1'hese equations contain two limits of interest. 1'he first occurs when we set all

the quantum decoherence parameters to zero, in this case, we recover the standard
neutrino oscillation probability (1.7) when we replace ¢ and i, The second limit
of interest occurs if we set the standard neutrino oscillation parameter, Am* = 0.
In this case, then atmospheric neutrino oscillations would be a purely quantum
decoherence phenomena. Although 1t seems unlikely that this i1s the case given
the widespread acceptance ol the standard oscillation picture, analysis of existing
data [127,180], found that this scenario was unfavoured but could not be completely
rifled ont. If we consider this scenario and set Am* = 0 in (4.37), then it is clear
that we must reduce the number ot non-zero quantum decoherence parameters as
we can only obtain a sensible oscillation probability it 1y and I are real. This
requires ¢ = o and b = 0. If we do not insist on these quantities being real, then
the probability contains only damping terms and, given the success ol the oscillation
picture, we do not consider this possibility further in this thesis.

T'he second class of models we consider involves setting all the quantum deco-
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herence parameters to zero except d and (. 'T'his violates energy conservation in the
neutrino sector as the resulting form of § f does not commute with the Hamiltonian.
In this case, however, we cannot solve the differential equations (4.23) directly and
we therefore utilize an alternative method.

The formal solution of equation (4.21) is
p(t) = ¢p(0), (4.38)

where M = —2H and H is given by (4.29). It we find the eigenvalues of M, call

them A;, where : = 1...3, then we may construct a diagonal matrix M’ where
MI = diag()\h )\27 )\3) = U_lMU: (439)

where the matrix {/ i1s a transformation matrix which transforms from the non-
diagonal basis to the diagonal basis. 1'he columns of the matrix {/ consist of the

corresponding eigenvectors of M. Using the inverse transtformation:
eM = MUt (4.40)
we find the components of the density matrix are given by
pilt) = V' Uy Uzl pi(0). (4.41)

The oscillation probability is then found using (4.25), (4.26) and (4.41).

In the case at hand, we have

0 —w d
M=-2| « 0 23 (4.42)
d /0
which has eigenvalues
Al 0.
Ag 218 54.
An —21()34. (4.43)
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where 55 = v/w? — 32 — d?. The corresponding eigenvectors of M are

(b d >’1I
Y, _7__71 :
w w

(wﬁ—idﬂgd —wd — 18 1)’1'

=2 2 _|_52 ? 2 _|_52
. . T

v, wﬁ -+ Zdﬂgdj —wd + ZﬁQij | . (444)
d? + B2 d? + B2 '

and so the matrix which diagonalizes M 1s

Jo; —w,b’—’bd,&lﬁd —wﬁ+id&l/gd

D
U= % wd;f@?ﬂd wdtf,ﬁ?ﬂd ’ (4.45)
1 1 1
having inverse
2Pw —2wd 200?
U~ = 502 —wﬁ + idﬂgd wd + iﬁﬂ@d —(d2 + 62) : (446)
Bd

—wﬁ — idﬂ@d wd — iﬂﬂ@d —(d2 + 62)
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Using equations (4.41), (4.43)-(4.46), we find

o l:

w ‘o w? — d*
01 _Q—f cos(20) — 5_2 sin(260) + (972)
Bd Bd Bd
w3 d .
+—— cos(260) cos(2Q41) — — cos(20) sin(2Q 341 ):
254 Q4

sin(20) cos(2034t)

d d d
pa —2/)) sin(26) + —;j cos(28) — ﬁ—z sin(26) cos(2Qs4t)
Qﬁd Qﬁd QBd
d
_w_2 cos(20) cos(20s4t) — Bl sin(20) sin(2Q 41
Vs Q4

_B cos(26) sin(2Q3,41):
sy

2
03 ;;—2 cos(20) + g—;d sin(20) — ;;—26 sin(20) cos(2034t)
B8d B8d 5d
d* : d
_E+5) cos(20) cos(20541) — — sin(20) sin(2Qp41).  (4.47)
Q4 Qs4

The oscillation probability therefore takes the general form of (4.27) with

(w‘ . dZ) 52
My, cos(2Qp4L) — ——
2 2%
wZ (dz _|_ 61)
MR.’% — COS(QQBC{L);
Wa O
2d
M13 + M31 —_— SIH(QQﬁdL). (448)
Q54

This is the only model of quantum decoherence in which the quantities Mi3(FE, L)
and Msi(F. L) are non-zero and, although both d and its square appear in this
probability, since sin4# ~ 0 for atmospheric neutrinos, only d* can be measured

directly with atmospheric neutrinos.
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4.2.2 The physical content of quantum decoherence

In the last section, we showed how quantum decoherence effects, which may be a
consequence ol quantum gravity, could alter the atmospheric neutrino oscillation
probability. Although we do not measure probabilities directly (we simply measure
the number of neutrino events), examining the neutrino oscillation probability is
useful as 1t can provide us with some physical insight into how these novel phenomena

would attect the atmospheric neutrino system.

Standard neutrino oscillations

We begin by considering the oscillation probability for standard neutrino oscillations

as a comparison. Restoring ¢ and fi, the probability (1.7) becomes
1 L L
Plv, = v:] = 5 1 —cos | 6.604 x 10 ik (4.49)

with the neutrino energy, I/, measured in Gel and the path length, L, measured in

km. Here, we have taken Am? and sin” 20 to have their best fit values [140
Am* = 2.6 x 1077 eV sin“20 = 1. (4.50)

Figure 4.2 shows this probability as a function of path length for fixed energy with
E =1 GeV and 200 GelV whilst figure 4.3 shows the probability as a function of
the neutrino energy for L = 10* km.  Neutrino telescopes are sensitive to energies
above 10 GGeV and so the plot in which we are particularly interested in has energies
above this value. However, since atmospheric neutrino experiments have focused on
energies lower than this, as the peak in the atmospheric neutrino spectrum is around

Il GGeV, we have included lower values of the energy for comparison.

Quantum decoherence parameters with no dependence on the neutrino

elergy

Consider now the form of the neutrino oscillation probability when we include quan-
tum decoherence effects. In order to illustrate these eftects, we take values ot the
decoherence parameters from table 5.1 1n chapter 5 except that weset d = 5 =0 =0
since these parameters have negligible effect on the neutrino probability.

We first consider the case when the quantum decoherence parameters have no
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Figure 4.2: Standard atmospheric neutrino probability (4.49) as a function of the
path length, L, for fixed values of the neutrino energy. I'he left frame fixes K =

I GeV with the right frame having £ = 200 Gel/ .
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Figure 4.3: Standard atmospheric neutrino probability (4.49) as a function of the
neutrino energy, F, for fixed path length, L = 10* km.
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dependence upon the neutrino energy. In this case, replacing the constants ¢ and A.

the oscillation probability takes the form

Plv, — v,

1 » 1.09 x 1073 :
> [1 L AT o (QL {% ~ 2723 x 10—12} )] (451

Figure 4.4 shows the oscillation probability (4.51) in this case, when we fix the
neutrino energy and should be compared with the plots in figure 4.2. Here, the etlects
ol quantum decoherence can be clearly seen. At low energies, the oscillations are
damped by quantum decoherence until the oscillation probability converges to one
hall at a path length which is of the same order as the diameter of the earth. At high
energies, however, there 1s a marked dillerence in the oscillation probabilities. For
the standard oscillation case, almost no oscillations take place over all the considered
path lengths. However, quantum decoherence causes the probability to go to a half
alter the neutrinos have travelled large distances. 1his 1s a large diflerence from
the standard case and would provide us with an excellent opportunity for observing
such effects. Figure 4.5 shows the neutrino oscillation probability as a function of
the neutrino energy for L = 10* km. In the standard case, the probability very
quickly tends to zero. T'he inclusion of quantum decoherence alters this significantly,
since the damping factor in the probability causes the probability to tend towards a

limiting value at large energies.

Quantum decoherence parameters inversely proportional to the neutrino

elergy

If we consider the case in which the decoherence parameters are inversely propor-

tional to the neutrino energy, then the probability takes the form

1 L
Plv, — v.] = 5 [1 — e 047F cos (6.604 X 10_3@)] , (4.52)
where we have set the quantum decoherence parameter i = 1 x 107% eV* in order to
keep the argument of the cosine term real. We find the deviation tfrom the standard
case 1s particularly marked. This is due to the fact that the value we find for the
quantum decoherence parameters, for this model, in the next chapter are fairly weak.

IFigures 4.6 and 4.7 show the oscillation probability, again as function of the path
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Figure 4.4: Atmospheric neutrino probability (4.51) including quantum decoherence
parameters with no energy dependence, as a function of the path length, L, for fixed
values of the neutrino energy. T'he lett frame fixes £/ =1 GeV with the right frame
having £ = 200 GGeV'. Note the ditferent scale on the right plot compared to that in
higure 4.2.
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Figure 4.5: Atmospheric neutrino probability (4.51) including quantum decoherence

parameters with no energy dependence as a function of the neutrino energy, £, for
fixed path length, L = 10* km. Note the different scale compared with figure 4.3.
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Figure 4.6: Atmospheric neutrino probability (4.52) including quantum decoherence
parameters mversely proportional to the neutrino energy as a function ol the path
length, L, for fixed values of the neutrino energy. I'he lett frame fixes K =1 GGeV
with the right frame having £ = 200 GeV/.
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Figure 4.7: Atmospheric neutrino probability (4.52) including quantum decoherence
parameters inversely proportional to the neutrino energy as a function ol the neutrino
energy, F, for fixed path length, L = 10* km.
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length and neutrino energy respectively. In figure 4.6, the first obvious feature is
that, even at low energies, the oscillation signature 1s completely damped out. At
low energies, the probability, as a function ol path length, simply rises up to a hall.
At higher energies, the probability has the same form as that in the case when the
quantum decoherence parameters have no dependence upon the neutrino energy, but
the threshold at which the ellfects become important occurs at smaller path lengths.
It we consider the probability as a function of energy as in figure 4.7, then we see this
1s completely different to that of the standard oscillation case. Here, the probability
starts off at a imiting value and then at very high energies begins to drop off. Note
we have extended the energy range to emphasise the falling probability. Overall, this
shows the drastic eflects that could occur if quantum decoherence ellects were large.
1'hat oscillation minima have been observed in experimental data tells us that, for
this model, if quantum decoherence etfects occur then the parameters must be much

smaller than those we have chosen here.

Quantum decoherence parameters proportional to the neutrino energy

squared

If we now consider the case in which the quantum decoherence parameters are pro-
portional to the neutrino energy squared, then, replacing ¢ and h, the oscillation

probability takes the torm

Plv, — v,
1 —1172 1.09 x 107° g
L T HORAOTEEL (g (QL {% — 2.831 x 10‘32E4} )] (4.53)

In fact, the bounds we find for this model in the next chapter turn out to be very
strong and so, as we would expect, figures 4.8 and 4.9 show only small modifications
to the standard oscillation picture rather than drastic modifications.  IFigure 4.8
shows the oscillation probability as a function of the path length for low (F ~ 1 GeV)
and high energy (IJ ~ 200 GeV') neutrinos. In the low energy case on the left of
figure 4.8, we note that this model 1s indistinguishable {rom the case ol standard
neutrino oscillations. 1t i1s not until we consider higher energy neutrinos that we see
a marked difference in the two models. T'his 1s bourne out when we consider the plot
shown in figure 4.9, which shows the neutrino oscillation probability as a function

ol the neutrino energy. At low energies, the probability mirrors that for standard
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Figure 4.8: Atmospheric neutrino probability (4.53) including quantum decoherence
parameters proportional to the neutrino energy squared as a function of the path
length, L, for fixed values of the neutrino energy. I'he lett frame fixes K =1 GGeV

with the right frame having £ = 200 GeV/.
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Figure 4.9: Atmospheric neutrino probability (4.53) including quantum decoherence
parameters proportional to the neutrino energy squared as a function ol the neutrino
energy, F, for fixed path length, L = 10* km.
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oscillations but, rather than tending towards zero at higher energies, the probability
instead tends towards a limiting value. 1'herefore, for this model, experiments which
detect high energy neutrinos have a much greater advantage in detecting quantum

decoherence than those which see only low energy neutrinos.

Quantum decoherence and the LSIND anomaly

As we saw 1n chapter 1, the LSND result cannot be reconciled with the remainder
of the neutrino oscillation data. One way to resolve this situation 1s to break CP'l
invariance and allow quantum decoherence in the anti-neutrino sector but not the
neutrino sector |60|. If this is the case, then the oscillation probability for anti-
neutrinos 1s modified as discussed above, whilst the probability of oscillation for
neutrinos remains that shown in equation (1.7). Since quantum decoherence param-
eters appear along side the standard oscillation parameter, Am*, in the oscillation
probability, this could lead to anti-neutrinos having a diflerent elfective mass dif-
ference from neutrinos. It 1s therefore possible to reconcile the LSND results with
other existing oscillation data. Unfortunately, however, the model considered by
the authors in [60| fails to fit the spectral distortions observed in the KamLAND
experiment [48|. Having said that, the authors of reference |60| chose only one set
of quantum decoherence parameters and so there 1s still much scope for further in-

vestigation.

4.3 Summary

In this section, we have shown how the CP'l' theorem may be evaded when we
consider space-times which are not flat. We showed that one particular phenomena.
namely quantum decoherence, the evolution of pure to mixed quantum states, which
violates CP'I', may modify quantum mechanics and thus the oscillation probability

of a two neutrino system.

o We began by describing the CP'l' theorem and the three conditions upon which
1t depends, namely, unitarity, locality and Lorentz invariance. Violation of any
one of these would cause CP'l' to be violated. We then outlined the motivation
for quantum decoherence, a phenomenon which violates the CP'l' theorem as

the time evolution of quantum states 1s no longer unitary. FFurthermore, we



saw that we are able to model this phenomenon and examined how 1t modifies

quantum mechanics (section 4.1).

o Using the model outlined in section 4.1, we then showed how quantum deco-
herence may be included into the phenomena of neutrino oscillations and saw
that the probability which describes how one neutrino oscillates into another 1s
altered. We parameterized quantum decoherence ettects and considered three
forms ot the quantum decoherence parameters which depended upon the neu-

trino energy. We consider parameters which are proportional to

— no power ol the neutrino energy:
— the inverse of the neutrino energy:

— the square of the neutrino energy.

We then showed how these effects would alter the oscillation probability and.
whilst we do not measure probabilities, we were able to get a handle on the

physical content of these models (section 4.2).

Whilst the CP’l' theorem may be evaded by violating unitarity, locality or Lorentz
invariance, we have only considered the case when unitarity no longer holds. In
subsequent chapters, (chapters 6 and 7), we shall concern ourselves with the violation
of Lorentz invariance.

In the next chapter, we take the formalism presented here and use the OSCFIl
software package described in chapter 3 to examine how ANTARES will be able to

look for quantum decoherence phenomena in atmospheric neutrinos.
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Chapter 5

Quantum decoherence -

simulations

In this chapter, we describe the results of simulations, using the OSCFI1" package
described in chapter 3, of atmospheric neutrinos and show how neutrino telescopes
will be able to place upper bounds upon model parameters. We begin by describing
the models considered and show how the expected spectra ot events 1s moditied in
the presence of quantum decoherence ettects. We then present the results of our
analysis and sensitivity regions for each model. We finish by presenting the upper
bounds on the model parameters from our simulations and a discussion of how they

compare with existing bounds.

5.1 Quantum decoherence models

In the last chapter, we showed how quantum decoherence eftects modity the proba-
bility that one type of neutrino will oscillate into another, for a two neutrino system.
For practical reasons, as we described in chapter 3, it is only possible to include a
maximum of two parameters in addition to the parameter sin®2 and so we begin
by presenting the models which include quantum decoherence eflects which we shall

consider 1n the remainder of this chapter.

5.1.1 Specific quantum decoherence models

Before we present the specific neutrino oscillation probabilities, we remind the reader

that, for each model, the quantum decoherence parameters may have one ot three
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energy dependences:

e 'he parameters may be independent of the neutrino energy:
e 'he parameters may be inversely proportional to the neutrino energy:

e '|'he parameters may be proportional to the square of the neutrino energy.

Below, we present nine models which contain a variety of combinations of the quan-
tum decoherence parameters and so, along with the three diflerent energy depen-
dences, we have a total of twenty seven models to present. Before we present our
results for all these models, we describe the form of the probabilities considered. In

all cases, c =1 = 1.

Model QD1

1'he first model we consider is the simplest extension to the standard neutrino oscil-
lation picture which includes quantum decoherence ettects. In this case, we consider
the decoherence parameters ¢ = « in equation (4.20) to be non-zero and all the
other quantum decoherence parameters to vanish. From equations (4.27), (4.36) and
(4.37),the oscillation probability takes the form

1 Am?
Plv, = v, = 5 sin” 20 [1 — e cos ( 272 L)] . (5.1)
As will be the case i all the models presented here, it we set a 0, then we

recover the standard neutrino oscillation probability (1.7). In some of the models we
consider, it will be possible to set Am* = 0 and consider the case where atmospheric
neutrino oscillations arise purely from quantum decoherence eftects. This 1s one

particular model in which that 1s allowed and 1n this case, the probability reduces to
1 - 2 —2al
Plv, —v.] = 5 sin 20 [1 —e™*%]. (5.2)

It 1s worth noting that model QD1 1s the only model we consider which obeys the

condition of complete positivity [141].

Model QD2

T'he second model we consider 1s a generalization of model QD1. In this case.

we agaln consider the parameters a and «. with all other quantum decoherence
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parameters zero, but we consider ¢ and a to be imdependent. T'his leads to an

oscillation probability of the form:

1 I
Plv, — v = 5 sin”(20) {1 — e [cos Iy + F_d sin F2] } : (5.3)

2

where

1y 2

Am2IN? 1 5 2%
( Vo ) —Z(a—a) L] . (5.4)

In this case, oscillations cannot be accounted for by quantum decoherence ettects

alone since setting Am?* = 0 renders I'y imaginary and hence we lose the oscilla-
tory nature. In this case, the probability takes on a damping term rather than the
standard oscillation term. Therefore, in our simulations, we only consider quantum

decoherence modifications to the standard nentrino oscillation scenario.

Model QD3

In our third model, we consider only a non-zero b in (4.20) and set all other quantum

decoherence parameters to zero. I'he probability then becomes
|
Plv, —v,] = 5 sin (20)[1 — cos I'3]. (5.5)

where

Am2L\ > 225
(21 ] s

As with the previous model, we cannot account tfor oscillations solely by quantum

F3:2

decoherence and we must include a non-zero Am? in this probability. In the liter-
ature, 1t 1s often assumed that the parameter b will be much smaller than a or «.
which would rule this model ont. However, we include it here in order to examine

the eftfect that this parameter can have on the neutrino system.
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Model QD4

1'he fourth model we consider is, in effect, a combination of models QD1 and QD3.
We set @ = o and b to be non-zero and have all other quantum decoherence param-

eters vanishing. We find the oscillation probability in this case to be
1. 2 —2al
Plv, — v = 5 sin (20) [1 —e cos ['y] (5.7)

where

Am?L\* 225
(4E)6L] . (5.8)

Once again, oscillations arising from quantum decoherence effects alone are prohib-

F4:2

ited and so we must have Am? # (0. Whilst it would be more illustrative to combine
models QD2 and QD3. so « # «. in practice, this is not practical due to the

excessive running time of the simulations (see chapter 3).

Model QD5

1'he fitth model we consider i1s somewhat ditferent to the ones already discussed
as we now introduce the quantum decoherence parameter, ¢, as the non-vanishing
parameter with all other quantum decoherence parameters zero. In this case, energy

1s not conserved within the neutrino system. 1'he oscillation probability 1n this case

18

1 Am*L
Plv, — v = 5 {c052(29) = 6_25['} + sin?(26) [1 — COS ( 57 )] } . (5.9)
1'he key feature ot this model, and those that follow, 1s the presence of terms which
multiply the cos* 20 term, signifying the non-conservation of energy within the neu-
trino sector. In this case, we are not prohibited from setting Am?* = 0 and so we
may consider the case of oscillations induced by quantum decoherence only. Setting

Am* =0 in (5.9) reduces the oscillation probability to
1
Plv, — v = 5 cos’(260) [1 — e_%L] . (5.10)

The form of this equation is similar to that in (5.2) but the here we have the cosine

of the mixing angle in contrast to the sine of the mixing angle in (5.2).
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Model QD6

1'his model combines the previous model with model QD1. Combining these models

leads to an oscillation probability:

Plv,—uv]= % {COSQ(QQ) [1— e %] +sin®(20) [1 — e cos (AgLH } ,
(5.11)

and, for this model, we may consider the case ol quantum decoherence oscillations

only. Setting Am?* = 0 leads to the oscillation probability given by
1 s . on
Py — vi] =5 {cos®(20) [1 — ™" +sin®(20) [1 — e "]} (5.12)

T'his model differs slightly from most considered in that the model may preserve

complete positivity provided § < 2« |67].

Model QD7

This is the final model which arises from equations (4.27), (4.36) and (4.37). Here,
we consider the case where ¢ = a = 0 with 0 and ¢ being non-zero. T'he oscillation

probability i1s theretfore

1
Plv, —v.] = 5 {cos?(20) [1 — 6‘_25L] +sin*(20) [1 — cos I'7] } (5.13)
where )
AmiL\’ 59 g
[y =2 ( - ) 2| (5.14)

In this case, we observe that we may not set Am? = 0 and preserve an oscillatory
nature within the probability, and so we only consider quantum decoherence effects as
modifications to the standard oscillation picture. Once again, we find that complete

positivity may not be satistied with this model.

Model QDS

The final two models we consider within this thesis are special cases of equation (4.27)
when the quantities My (F, L), Mss(F, L), Mys(F, L) and M3 (FE, L) are given by

equation (4.48). In this model, we consider all quantum decoherence parameters to

83



be zero apart from 5. In this case, the oscillation probability takes the torm

Plv, — 1{ 229[1 2 (2051)
v vy — 4 oS — — + — cos(2825
. 2 Qz  QF
2 2
+sin?20 [1 + é—% — g_é cos(QQgL)] } , (5.15)

where Q13 = /w? — 0% and w = Am as before. We are unable to examine the case

45

ot oscillations which arise from purely quantum decoherence ettects in this model as
the argument of the cosine terms would become imaginary. Complete positivity is

not satisfied 1m this model.

Model QD9

Our final model which includes quantum decoherence etfects in the atmospheric
neutrino system sets all quantum decoherence parameters to zero except d in (4.20).

In this case, we tind the oscillation probability has the torm

Plv, — W eosz20 [1 = 4 & oso0,1)
vy = Vs 5 ) o8 oz Tz cos(2Qy
d* w?
+sin”* 20 [1 + Ry cos(202, L) — 0 COS(QQdL)]
d d
d
+ sin 44 [Q— sin(?QdL)] } : (5.16)
d

where Q; = Vw? — d?. This 1s the only model in which the oscillation probability
contains a term proportional to sin4f. Again, we are unable to set Am* = 0 and
have the probability retain an oscillatory nature. In a similar manner to the previous

model, this case does not satisty complete positivity.

5.1.2 Review of literature

Various models have been considered to date in the literature |67,88,169, 181, 183].
However, the only work we know of which involves analysis of experimental data is
in [127,180|. The models which have received the most attention are those in which

the parameters a, o and b are non-zero with d, 8 and ¢ zero |67, 88, 183| and also
models with «, 8 and § non-zero with « = b= d = 0 |67,88,169, 181|. The authors
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of reference |67| consider a very general model with all six quantum decoherence
parameters non-zero but then specialize their models with d = 5 = 0 and also ¢ = 0.
They also impose the further constraint of complete positivity [141|. Secondly, they
consider a general model with all parameters non-zero, and perform a second order
perturbation approximation. All the models we have presented above are special
cases of those considered in |67].

Liu and collaborators |181| considered a model with ¢« = b = d = 0 and found
that the oscillation probability can only be calculated numerically. In our models.
we have ¢ and « non-zero or both parameters zero. 1'herefore, the probabilities we
presented in the previous section do not correspond to theirs.

The authors of |88] consider the same model as [181] but also set 7 = 0. Again.
this does not tally with any of the models we have considered here. I'hey also consider
how the standard oscillation probability is altered by leading order corrections when
a, b and o are non-zero with the other parameters vanishing.

Ma and collaborators |183] worked with an analytical oscillation probability hav-
Ing a, b and « non-zero. 1This model tallies with various combinations ol parameters
in models QD2-QD5.

Finally, the authors of reference |169| consider a model in which o and ¢ are the

only non-zero quantum decoherence parameters.

5.2 ANTARES sensitivity to quantum decoher-

ence in atmospheric neutrinos

In the previous section, we introduced nine models of quantum decoherence, each
with three different types of energy dependence. In this section, we present the
upper bounds we have been able to place on the quantum decoherence parameters
and also the forms of the parameter space which ANTARES will be able to probe
using atmospheric neutrinos. Before, we do this, however, we shall consider the
spectra, the number of events expected in each case, as a function of path length

and energy.

9()



5.2.1 Spectra

1'he spectra of events, the shape of the graph of the number of events as a function
of energy and path length, is important in neutrino physics. I'he Super-Kamiokande
experiment has reported an oscillatory signature in the E/L spectrum of events |49
with similar spectral results found in the KamLAND |48] and K2K |31| experiments.
In addition to their use in our sensitivity analysis, the spectra also provide us with
an alternative method of searching for quantum decoherence ellects by observing
modifications to the shape of the spectra. All of the spectra we present here utilize
the probability of model QD1, so we may outline the types of eftects we would
see 1n the spectra were quantum decoherence eflects present. We only consider the
oscillation probability from model QD1 since we expect the parameters b and 5 to
be smaller than those in this model and the remaining parameters are multiplied by
small functions of the mixing angle. 1'herefore, we do not consider the shape of the
spectra presented here to be dramatically altered by the inclusion of more quantum

decoherence parameters.

Spectra for quantum decoherence parameters with no dependence on the

neutrino energy

Figures 5.1 and 5.2 show the spectra when the quantum decoherence parameters have
no dependence upon the neutrino energy. We plot the expected number of events
for quantum decoherence eftects only and standard oscillations plus decoherence
respectively. Here, I/ 1s the neutrino energy and ¢ 1s the zenith angle. We begin
by examining the spectra for quantum decoherence effects only in figure 5.1. The
left frames of figure 5.1 show the number of events whilst the right frames show the
ratio of the number of events compared to no oscillations. In each graph, the black
line represents MC simulation of standard oscillations without decoherence whilst
the coloured line represents MC simulation of quantum decoherence only. The data
points correspond to three years of data taking assuming standard oscillations only.
The first thing to notice 1s that for larger values ol the decoherence parameter, we
expect a suppression in the number of observed events when we compare this to the
spectra for standard oscillations in figure 3.1. I, however, we consider the case when
the quantum decoherence parameter takes small values, then the difference between
standard oscillations and quantum decoherence 1s not so obvious. If we consider the

frames on the right of figure 5.1, then we note that there are features which would
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Figure 5.1: Spectrum of events when the quantum decoherence parameters have no
dependence on the neutrino energy. I'he black line represents the MC simulation
ol standard oscillations with the coloured lines showing the spectra for oscillations
from quantum decoherence.
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Figure 5.2: As figure 5.1 but the coloured lines show the spectra for standard oscil-
lations plus decoherence.
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allow us to distinguish between the two scenarios. In the top right frame, the curves
are much flatter for decoherence than for standard oscillations in which we see an
oscillation minimum. At higher energies, the diflerence 1s not so marked, particularly
for small values of the decoherence parameters. It is also easy to distinguish between
quantum decoherence effects and standard oscillations when we consider the plot in
the bottom right of figure 5.1. For large values of the decoherence parameter, the
difference is easily seen. However, in this case, we are able to distinguish between
the two scenarios, even for small values of the quantum decoherence parameters, at
high values of cosv.

Secondly, we consider the case of standard oscillations plus quantum decoherence.
Figure 5.2 shows the spectra and the ratio of number of events compared to no
oscillations. Again, we see that large values of the decoherence parameters leads
to a significant suppression of the number of events. When we consider the ratio
of events as a function of F/cos?, again, it easy to distinguish the two cases for
large values of the quantum decoherence parameters, particularly at low energies.
1'he situation 1s more tricky for smaller values of the decoherence parameters as we
still see an oscillation minimum at low energies and, at high energies, the curves
are indistinguishable. Considering the ratio of events as a function of the zenith
angle only, we see, again, that the two scenarios are easily distinguishable for large
values of the decoherence parameters. At higher values of cos v/, the situation again

becomes more ditficult, especially for small values of the decoherence parameters.

Spectra for quantum decoherence parameters inversely proportional to

the neutrino energy

We now consider the spectra when the decoherence parameters are inversely pro-
portional to the neutrino energy. IFigure 5.3 shows the spectra and the ratios of the
number of events to those expected if there were no oscillations, for the case when
oscillations occur due to decoherence effects alone (Am* = 0). For large values of
the decoherence parameters, we see 1n the lett hand frames that, as in the previous
case, the number of events would be significantly suppressed. I'he difference in the
two scenarios 1s seen 1n the plots on the right. In the top right plot, we see that
the curves iitially rise and then fall, which 1s 1n complete contrast to the curve
for standard oscillations (the solid curve). At higher energies, these curves start to

oscillate. When we consider the ratio of events as a function of the zenith angle, it
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Figure 5.3: Spectrum of events when the quantum decoherence parameters are in-
versely proportional to the neutrino energy. T'he black line represents the MC simu-
lation of standard oscillations with the coloured lines showing the spectra for oscil-
lations from quantum decoherence.
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should be simple to rule out the larger values of the decoherence parameters for this
model.

Figure 5.4 shows the spectra we expect when quantum decoherence moditfies stan-
dard neutrino oscillations. Again, the lelt hand plots show that decoherence ellects
would suppress the number of events observed. In this case, however, looking at
the shape of the ratio curves in the top right plot, we see that although the curves
rise for large values of the decoherence parameters, they also exhibit an oscillation
minima and so distinguishing these eflects from standard oscillations would be difli-
cult. If we consider small values of the parameter, then the two curves are essentially
indistinguishable. At higher energy, curves which arise from the larger values of the
decoherence parameters oscillate but, to rule these values out, would take many vears

ol data taking to reduce the size of the error bars on the data points.

Spectra for quantum decoherence parameters proportional to the neutrino

energy squared

Figure 5.5 shows the spectra when the decoherence parameters are proportional to
the neutrino energy squared for quantum decoherence eflects only. We find the same
general features for this energy dependence as for the other two. For large values of
the decoherence parameters, there 1s a large suppression in the number ol expected
events. If we consider the ratio of events as a function of F/ cos® (the top right plot).
then, for all values of the quantum decoherence parameters, we see that there 1s no
longer an oscillation minimum, in fact for some values of the quantum decoherence
parameter, we see an increase in this ratio. Similarly, when the ratio i1s a tunction
ol just the zenith angle, we see that, even though the shape of the curve is the same
as that tor standard oscillations, the number of events 1s reduced to such a level, we
should be able to rule out these values ot the decoherence parameters.

1'he spectra obtained from our simulations when we consider standard neutrino
oscillations modified by quantum decoherence effects is shown in figure 5.6. Again, for
large values of the decoherence parameters, we would expect a significant suppression
in the number of observed events. 1'his i1s reflected in the curves showing the ratio of
the number of events on the right hand side of this figure. 'I'he top right plot shows
the ratio of events as a function of £/ cos ). For the largest value of the decoherence
parameter, the curve at low energies 1s very flat and no oscillation mimimum s

seen. For smaller values of the parameter, the curves take on the same shape as the
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Figure 5.5: Spectrum of events when the quantum decoherence parameters are pro-
portional to the neutrino energy squared. I'he black line represents the MC simula-
tion of standard oscillations with the coloured lines showing the spectra for oscilla-
tions from quantum decoherence.
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standard neutrino oscillation case. At high energies, even the curve corresponding to
the smallest value ot the decoherence parameter considered here oscillates. However.
1t would take many years of data to be able to observe these oscillations. 1'he bottom
right plot shows the ratio of the number of events as a function of the zenith angle.
Again, there 1s a distinct difference between the curves relating to the suppression
of the number of events. T'he shape of the curves 1s the same in both scenarios.
however.

1'he main thing to notice about this model 1s the value of the parameters we
have chosen to illustrate the effects. 1The values we have chosen are significantly
smaller than the current experimental bounds (see section 5.3), therefore, neutrino
telescopes, such as ANTARES and lceCUBLE, will be able to significantly improve
the bounds on the quantum decoherence parameters for this model, the model which

has the only theoretical link with quantum gravity.

We are now in a position to examine the sensitivity regions for the quantum
decoherence parameters from our numerical simulations. Whilst we are interested
in the regions of parameter space that ANTARLES can probe, we are particularly
interested 1n the upper bounds we can place on the quantum decoherence model

parameters. We discuss each model in turn.

5.2.2 Model QD1

1'his model 1nvolves two non-zero quantum decoherence parameters, ¢ and e, but

we set @ = . The oscillation probability is therefore given by (5.17).

Decoherence parameters with no dependence on the neutrino energy

Replacing the constants, ¢ and A in model QD1, when the quantum decoherence
parameters have no dependence upon the neutrino energy, gives the oscillation prob-

ability as

1 9 2.54Am?
Plv, — ;] = 5 sin?(26) |1 — e X107l cog (Tm[,>] : (5.17)

where o is measured in eV/; the mass squared difference, Am?, is measured in eV
the energy, f/, is measured in GeV'; and the path length, L, is measured in km. In

the cases discussed below, for all energy dependences and models, Am*. F and [,
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Figure 5.7: Sensitivity contours for model QD1 at 90 and 99 percent confidence level
for quantum decoherence eflects only with the parameter ~,, with no dependence
on the neutrino energy. In this case, there are no existing bounds from data for
comparison.

will be measured 1n these units unless stated otherwise. 'lo arrive at this probability.
we set ¢« = a = 1,

As we mentioned above, for this model, there are two cases of interest. Firstly.
if we set v, = 0, then we retain the standard oscillation probability (1.7) and hence
the sensitivity curve is that shown in figure 3.2.

The second limit of interest occurs when we set Am? = 0 and so oscillations are

purely a result of quantum decoherence effects. Restoring ¢ and h, the probability
(5.2) becomes

1 .
Pl — 1] = 5 sin®(20) [1 X100l (5.18)

Figure 5.7 shows the sensitivity region in this case. For this model, there are no
bounds from the literature to which we may compare our results. I'he region in which
the parameters are consistent with the data lies inside the curves and 1s highlighted
in vellow at the 90% confidence level. We see that we are able to place an upper
bound on this parameter of around 107! eV,

If we now consider the more general case, with the oscillation probability taking
the form (5.17), then, since we have three parameters, we obtain a three dimensional
parameter space. '1'his is shown in figure 5.8 with the sensitivity region lying above
the surface. In order to make the comparison with existing results easier, we
project this volume onto the relevant coordinate planes to obtain three plots of

sensitivity contours. l'hese contours are shown in figure 5.9.  Again, the regions
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Figure 5.8: Sensitivity volume for model QD1 at 90 percent confidence level includ-
ing standard oscillations plus quantum decoherence eflects with no dependence on
the neutrino energy..
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Figure 5.9: Sensitivity contours for model QD1 at 90 and 99 percent confidence level
including standard oscillations and quantum decoherence eflects with no dependence
on the neutrino energy. 1'he triangle denotes the experimental point of best fit for
Am? and sin® 260 [127], and the line denotes the current upper bound on , from [180].
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which are statistically allowed are shown in vellow at the 90% confidence level. The
top lett frame shows two standard oscillation parameters plotted against each other
with the triangle denoting the point of best fit from the Super-Kamiokande data
127|. We note that this value lies within our sensitivity region. In addition, when
sin? 20 = 1, the value Am? = 0 is also allowed in this model and so backs up the first
result presented above, that we cannot rule out neutrino oscillations which occur
as a result of quantum decoherence alone. ['he top right {frame shows the quantum
decoherence parameter, ~v,, as a function of the mixing angle, #, with the allowed
region, highlighted in yellow, lying inside the contours. T'he line here shows the
current upper bound. We note that our simulations are entirely consistent with the
results presented in reference [180]. The third frame shows Am* against ~, with the

yvellow region identilying the area ol parameter space allowed statistically.

Decoherence parameters inversely proportional to the neutrino energy

In this case, we set « = a = % The oscillation probability is
1 2.5442 2.54Am*
Plv, — 1] = 5 sin”(26) [1 —e B Teos (Tml)>] : (5.19)

where p? is measured in eV*. Again, we are able to model the situation in which
neutrino oscillations arise from quantum decoherence eftects only. 1'he oscillation

probability in this case 1s

2,542

Plv, — v,] = %sinQ(Zﬂ) [1 — e—T”] . (5.20)

T'he sensitivity contours for this case are shown in figure 5.10. Here, the allowed
values of the parameter lie inside the contours and the sensitivity region at the 90%
conlidence level 1s highlighted 1n yellow. T'he circle denotes the current point of best
fit for the parameter p? 127| and we are able to place a weak bound of around
107! eV# on the quantum decoherence parameter.

When we include a non-zero Am?, the probability is that in equation (5.19).
T'he resulting sensitivity surface in the three dimensional parameter space 1s shown
in figure 5.11, with the corresponding sensitivity contours in figure 5.12. The
surface within the parameter space i1s very similar to that in the case when the

quantum decoherence parameters have no dependence upon the neutrino energy and
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Figure 5.10: Sensitivity contours for model QD1 at 90 and 99 percent conlidence
level for quantum decoherence effects only where the parameter ;? is inversely pro-
portional to the neutrino energy. T'he circle denotes the experimental point of best

fit from [127].

Figure 5.11: Sensitivity volume for model QD1 at 90 percent confidence level includ-
ing standard oscillations plus quantum decoherence eflects inversely proportional to

the neutrino energy.
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Iigure 5.13: Sensitivity contours for model QD1 at 90 and 99 percent confidence
level for quantum decoherence ettects only with the parameter s, proportional to
the neutrino energy squared.

therefore, the sensitivity contours are also similar. T'he first plot in figure 5.12 shows
Am? against sin? 20 with the sensitivity region lying to the right of the contours.
highlighted in yellow at the 90% confidence level. The triangle, which is included
within this region, denotes the current experimental point of best fit. T'he top right
frame shows the quantum decoherence parameter as a function of the mixing angle.
Again, the region ol interest lies within the contours and the broken line shows the
current upper bound. From our simulations, we are able to place a weak bound of

pl <107 eVe

~

Decoherence parameters proportional to the neutrino energy squared

faF?
2

We now set ¢« = a = , so the oscillation probability takes the form

1 2.54Am*
Plv, — v = gsin2(2¢9) [1 — e TBEXI0T R BPL o (Tml)>] . (5.21)

We are again able to consider the case when Am* = 0. In this case the oscillation

probability takes the torm
1 2 2
Pl — v] = 5 sin®(20) [1 B 010 R L] (5.22)

The sensitivity contour for the simplified probability (5.22) is presented in figure 5.13.
Here, the allowed region lies inside the contours, highlighted in yellow at the 90%
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confidence level. We are able to place a very stringent bound on k., of approximately
107%° e/ 7L

When we include a non-zero Am?, we obtain the sensitivity surface and contours
in figures 5.14 and 5.15 respectively. Again, the sensitivity surface in the three
dimensional parameter space has a very similar shape to the previous models but
here, the surface is split into two distinct parts. From figure 5.15, we see that the
experimental point of best fit for Am* lies within our sensitivity region and that

we are able to place an upper bound on the quantum decoherence parameter ot
Ko S 10790 VL

Summary of Model QD1

1'his 1s the simplest model which extends neutrino oscillations to include quantum
decoherence effects and contains two quantum decoherence parameters which we
assume to be equal, ¢ = a. In all cases, we are able to lind sensitivity regions for
neutrino oscillations which occur due to quantum decoherence ettects only. We are
also able to construct three dimensional sensitivity surfaces in the more general case

when quantum decoherence ettects modify standard oscillations.

5.2.3 Model QD2

T'his model generalizes the model QD1 since we have two non-zero quantum deco-
herence parameters, a and « but, in this case, we leave them independent. In the
limit ¢ = «, we regain Model QD1. Since we are able to only simulate two param-
eters in addition to sin® 26, we fix Am? = 2.6 x 107% e¢V'% [140]. In this model, we
cannot consider the case of quantum decoherence ettects and no standard oscillations

as the quantity T's in equation (5.4) becomes imaginary.

108



Figure 5.14: Sensitivity volume for model QD1 at 90 percent conlidence level in-
cluding standard oscillations plus quantum decoherence eflects proportional to the
neutrino energy squared.
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Iigure 5.15: Sensitivity contours for model QD1 at 90 and 99 percent confidence

level including standard oscillations and quantum decoherence eflects proportional
to the neutrino energy squared.
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Decoherence parameters with no dependence on the neutrino energy
Here, we set @ = &+ and a = *&. The oscillation probability therefore takes the form

(5.3) with

I — 2.5 x 10°%(ya + va) L
I'q 2.5 x 10°(vs — va) L:

Am2IN® 1
L' 2[(1.27 = ) —1[2.5><109(%—%)L]2

=

E

Here, v, and v, are measured in eV

1'he sensitivity surface in the three dimensional parameter space 1s shown in
figure 5.16 with the resulting sensitivity contours shown in figure 5.17. I'he surface
in figure 5.16 1s somewhat unexpected as it collapses to a line at high values of the
quantum decoherence parameters. 1'his line 1s the cause of the spike in the lower
plot in figure 5.17. For smaller values of these parameters, we obtain a genuine
surface, above which lies the sensitivity volume. 1'he sensitivity contours for v,
and 7, are very similar, as we might expect, and we are able to place an upper
bound of approximately 107 ¢V on both these parameters, the relevant sensitivity
regions lying to the right of the contours with the 90% confidence level region being
highlighted 1n yellow. For both quantum decoherence parameters, zero i1s an allowed
value at sin® 20 = 1 indicating the possibility of neutrino oscillations arising with no
quantum decoherence etfects. I'he lower plot of figure 5.17 shows the two quantum
decoherence parameters plotted against each other and we are unable to distinguish

between the 90 and 99% confidence levels.

Decoherence parameters inversely proportional to the neutrino energy

Here, we set a = Z—% and a = f—g and so the oscillation probability (5.3) contains the
quantities
L
Lo 127y + ) 5
E
L
La o 127(p5 = o) 7

—_

[\l

[}
o=

‘ 2.54 1L 9\ 2 2
v 2 = L
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Figure 5.16: Sensitivity volume for model QD2 at 90 percent confidence level for
standard oscillations plus quantum decoherence eftfects with no dependence on the
neutrino energy.
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Figure 5.17: Sensitivity contours for model QI 2 at 90 and 99 percent confidence level
including standard oscillations and quantum decoherence eflects with no dependence

on the neutrino energy.
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Figure 5.18: Sensitivity volume for model QD2 at 90 percent confidence level for
standard oscillations plus quantum decoherence effects inversely proportional to the
neutrino energy.
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Figure 5.19: Sensitivity contours for model QD2 at 90 and 99 percent confidence

level including standard oscillations and quantum decoherence ellects inversely pro-
portional to the neutrino energy.
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T'he sensitivity surface is shown in figure 5.18 with the corresponding sensitivity
contours in figure 5.19. 1'he surface shown in figure 5.18 shares some of the
characteristics of that shown in figure 5.16 such as an almost collapsing spike at
high values of the decoherence parameters. For smaller values ol these parameters.
however, the surface 1s not flat as in the previous case. Interpreting the sensitivity
contours 1s, therefore, not trivial. 1'he sensitivity volume lies above the surface shown
in figure 5.19 and includes the region containing sin® 20 = 1. The sensitivity regions
in figure 5.19 are shown, at the 90% confidence level, in yellow for clarity. In both
the upper plots of this figure, the region lies inside the outer contours and contains
zero corresponding to no quantum decoherence elfects. It 1s interesting to note that
the figures are not as symmetric as 1n the first case ol this model we considered.
From figure 5.19, we are able to place a weak upper bound on hoth decoherence
parameters of 0.5 eV*. The lower frame of figure 5.19 shows the two quantum
decoherence parameters plotted against each other with the sensitivity region being
contained within the spike. We are only just able to distinguish between the two

confidence levels.

Decoherence parameters proportional to the neutrino energy squared

2 2
%and@:%.

In this case, we set a = The oscillation probability (5.3) now

contains

I, 2.53 x 10%7 (kg + Ko ) E*L:
L' 2.53 x 10°" (ko — k) E* L

O |—=

2
I, 2 [(1.27A”5L) - A% [2.53 x 107 (ko — a) E*L]
where k., and k, are measured in eV ™',

T'he sensitivity surface and sensitivity contours are shown 1n figures 5.20 and 5.21
respectively. T'he sensitivity surface shown in figure 5.20 is very similar to that
in figure 5.16 with the collapse of the surface to a line and the sensitivity region
lying above the surface at small values of the quantum decoherence parameters.
1'he contours for both k, and &, plotted against the mixing angle in figure 5.21
enable us to place upper bonds on these parameters of approximately 107 el 71,

the sensitivity regions lying to the right of the contours. T'his upper bound 1s more

116



siri (26)

Figure 5.20: Sensitivity volume for model QD2 at 90 percent confidence level for
standard oscillations plus quantum decoherence effects proportional to the neutrino
energy squared.
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IFigure 5.21: Sensitivity contours for model QD2 at 90 and 99 percent confidence
level including standard oscillations and quantum decoherence eflects proportional
to the neutrino energy squared.
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stringent than that in model QD1, perhaps due to the collapse of the surface. The
lower frame of figure 5.21 shows k, against k,. Here, we the sensitivity region lies
inside the spike and we are unable to tell the difference between the two contidence

levels.

Summary of Model QD2

T'his model 1s a generalization of the first model we considered as 1t contains two
quantum decoherence parameters, a and a which, in this model, we consider to be
independent. In all three cases, the surfaces which bound the sensitivity volume
collapse down to a spike near a = « for larger values ol these parameters. We also
note that there 1s a symmetry between these two parameters in the first and third
cases we considered but found that this symmetry was broken when we considered

the parameters to be inversely proportional to the neutrino energy.

5.2.4 Model QD3

1'his model contains just one quantum decoherence parameter, b. and so we do
not fix Am?* Since b lies in the argument of the cosine term in the oscillation
probability (5.5) we are not able to set Am* = 0 to examine oscillations which arise
as a consequence ol quantum decoherence alone, as otherwise, this argument would

become imaginary. The general oscillation probability 1s given in equations (5.5) and

(5.6).

Decoherence parameters with no dependence on the neutrino energy

Setting b = % and replacing the constants ¢ and h, the oscillation probability is that

2
in equation (5.5) with

A 2L 2 2
F32[(1.27 ”; ) (2.5><109%L)2] . (5.23)

Figures 5.22 and 5.23 show the sensitivity volume and contours, respectively, in this
case.  l'he sensitivity region in figure 5.22 lies above the surface and it is simple to
relate this surface to the contours shown in figure 5.23. T'he first plot in figure 5.23
shows Am? as a function of the mixing angle, #, with the sensitivity region lying

inside the contours (highlighted in yvellow at the 90% confidence level). The triangle
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Figure 5.22: Sensitivity volume for model QD3 at 90 percent confidence level for
standard oscillations plus quantum decoherence eftfects with no dependence on the
neutrino energy.
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Figure 5.23: Sensitivity contours for model QI3 at 90 and 99 percent confidence level
including standard oscillations and quantum decoherence eflects with no dependence
on the neutrino energy.
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denotes the point of best fit from Super-Kamiokande and K2K data. The top right
frame of figure 5.23 shows 7, against sin? 20, the sensitivity region again lying to the
right of the contours. We are able to place an upper bound on this parameter of

1071 eV. The lower plot of figure 5.23 shows Am* against ;.

Decoherence parameters inversely proportional to the neutrino energy

The oscillation probability takes the form in (5.5) where

2.54L 2 3
Ly = =2 [(am?)* = (u)?] (5.24)
and we have replaced ¢ and h, and set b = f—g, so i is measured in eV?,

Figure 5.24 shows the sensitivity volume for this case. We note that 1t 1s almost
the same as that in figure 5.22 except at high values of the decoherence parameter
where the surface turns over. T'he corresponding sensitivity contours are shown in
figure 5.25.  T'he turning over of the surface leads to dillerent contours from those
in the first case. The first frame in figure 5.25 shows Am? against sin” 20 with the
triangle denoting the experimental point of best fit. I'he contour is fairly complicated
but the sensitivity region, at the 90% confidence limit, is highlighted in yellow for
clarity. 1'he point of best fit from experiment lies within this region. T'he second
frame of figure 5.25 shows p? as a function of sin®20 with the sensitivity region
lying to the right of the contours. From this plot, we are able to place a very weak
upper bound of 1 eV# on this parameter and we note that py = 0 is also an allowed
point 1mplying that this model 1s compatible with standard neutrino oscillations.
The lower frame of figure 5.25 shows the relationship between Am* and pf with the
sensitivity region lying within the contours, as highlighted in yellow (at least for the
90% confidence limit).

Decoherence parameters proportional to the neutrino energy squared

For this energy dependence, we set b = ”bQEZ, so, replacing ¢ and h, the oscillation
probability is that in (5.5) with
A 2L 2 %
[y =2 [(1.27 ”]; ) —[2.53 x 107k, B*L)*| | (5.25)
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Figure 5.24: Sensitivity volume for model QD3 at 90 percent confidence level for
standard oscillations plus quantum decoherence effects inversely proportional to the
neutrino energy.
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and x; 1s measured in eV 1!,

T'he sensitivity volume for this model 1s shown in ligure 5.26 with the corre-
sponding sensitivity contours shown in figure 5.27. 1'he surface in figure 5.26 is
qualitatively the same as that in the case when the decoherence parameters had no
dependence upon the neutrino energy, resulting in very similar sensitivity contours.
The first frame in figure 5.27 shows Am? as a function of the mixing angle with
the sensitivity region, highlighted in vellow, lying inside the contours. We note that
the experimental point of best fit for Am?, denoted by the triangle, lies within this
region. The top right frame of the same figure shows &, against sin®260 where the
sensitivity region lies beneath the curve, including the value zero for this parameter.
We are able to place an upper bound on the parameter s, of 107 eV =1, The lower
frame of figure 5.27 plots Am? against x, with the sensitivity region lying inside the

curve.

Summary ot Model QD3

1'his model contains one quantum decoherence parameter, b. Since we had just one
extra parameter, we were able to let Am* vary and, in each case, our simulated
sensitivity regions included the experimental point of best fit. We were able to place
upper bounds on the quantum decoherence parameters contained within this model
and found they were significantly smaller than in the previous two models in the
cases when the decoherence parameters had no dependence on the neutrino energy

or were proportional to the square of the neutrino energy.

5.2.5 Model QD4

1'his model combines models QD1 and QD3 discussed above. We now have three

non-zero decoherence parameters, ¢ = a and b and, therefore, we fix Am? to have
the value Am* = 2.6 x 107° eV“. The general form of the oscillation probability for
this model is given by equations (5.7) and (5.8).
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Figure 5.26: Sensitivity volume for model QD3 at 90 percent confidence level for
standard oscillations plus quantum decoherence effects proportional to the neutrino
energy squared.
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Decoherence parameters with no dependence on the neutrino energy

For this energy dependence, we set a = a = %% and 6 = . The oscillation proba-

bility, therefore, has the form in equation (5.7) with

2 2 2
Iy =2 [(1.27Am L) —[2.5 x 109%L]2] : (5.26)

FE

and 2a — 5 x 1074,. Here, we have replaced ¢ and & and both quantum decoherence
parameters are measured i eV,

T'he sensitivity volume and contours are shown in figures 5.28 and 5.29 respec-
tively. 1'he sensitivity volume lies above the surface in figure 5.28, which corre-
sponds to the regions on the right ol the contours in the top two frames of ligure
5.29 and to the left of the lower figure. From the first frame ot figure 5.29, which
shows v, against sin? 20, we are able to place an upper bound on the quantum deco-
herence parameter of 1072 ¢V'. The top right frame show =, as a function of sin? 24
and we see that there 1s a sharp cut-ofl in this parameter enabling us to place a
bound of v, < 107!¢ ¢V on ~;. The bottom plot shows the relationship between the
two decoherence parameters, v, and ~;. Here, the two confidence levels are barely

distinguishable.

Decoherence parameters inversely proportional to the neutrino energy

For this energy dependence, we set a = o = Z—% and b = % Replacing the constants.
¢ and h, the oscillation probability takes the form of (5.7) where
2.54L 3
Ly= == [(am?)” = ()] (5.27)

and 2a — 2.54%. Here, both quantum decoherence parameters are measured 1n
eV2.

1'he sensitivity volume for this model is shown in figure 5.30 with the correspond-
ing sensitivity contours in figure 5.31. T'he sensitivity region in figure 5.30 lies
above the surface shown. Examining figure 5.30, 1t 1s clear how the projection of the
volume onto the p? — sin® 20 plane, shown in the top left frame of figure 5.31, arises.
For each confidence level, we have two curves, which correspond to the front and

back edges ol the surface. 'I'he sensitivity region, therefore, lies inside these curves.
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Figure 5.28: Sensitivity volume for model QD4 at 90 percent confidence level for
standard oscillations plus quantum decoherence eftfects with no dependence on the
neutrino energy.
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highlighted in yellow at the 90% confidence level. We are able to place a weak bound
of 1 eV* on pZ. The top right frame in figure 5.31 shows the projection of the surface
onto the p? — sin® 20 plane. Again, we note that there is a sharp cutoff in the quan-
tum decoherence parameter corresponding to the value at which I'y in (5.27) becomes
imaginary. The upper bound for =, is therefore of the order 107* eV*“. T'he lower
frame of figure 5.31 shows the relationship between the two quantum decoherence

parameters with the sensitivity region lying inside the contours.

Decoherence parameters proportional to the neutrino energy squared

In this case, we set ¢ = a = % with 6 = # The oscillation probability (5.7)

takes the form
L. 2 —5.06x10%7x E2L
Plv, = v,] = 5 sin (20) {1 — e ** " cos Rl} : (5.28)

where (cf. (5.8)):

M=

Am?L\’
F42[(1.27 TZ ) — [2.53 x 10*" Ky B2 L)? (5.29)

and x; and &, are measured in eV ™! and we have replaced the constants ¢ and .
Figures 5.32 and 5.33 show the sensitivity volume and contours respectively for
this energy dependence.  1'he surface shown in figure 5.32 is qualitatively the same
as that i the case in which the quantum decoherence parameters have no energy
dependence. T'he resulting sensitivity contours are therefore similar. T'he first frame
of figure 5.33 shows «, as a function of the mixing angle, ¢, with the sensitivity region
lying to the right of the contours. We can place an upper bound of 107°% ¢V ~! on «,.
1'he top right frame of the same figure shows the quantum decoherence parameter «;
against sin®20. Again, there is a sharp cut-off in the parameter involving b and we
find an upper bound of £, < 107* ¢V ~1. The bottom frame shows the relationship
between the two quantum decoherence parameters, where the relevant region lies

inside the contours and includes the point at which both parameters vanish.

Summary for Model QD4

1'his model involves three quantum decoherence parameters, a = « and b. 1'he sur-

faces which bound the sensitivity regions, broadly speaking, are the similar for each
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Figure 5.32: Sensitivity volume for model QD4 at 90 percent confidence level for
standard oscillations plus quantum decoherence effects proportional to the neutrino
energy squared.
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dependence on the parameters of the neutrino energy. 1'he main difference occurs
in the surface where the quantum decoherence parameters are inversely proportional
to the neutrino energy. In all three cases, we are able to place upper bounds on
the quantum decoherence parameters and find that the bound on the b parameter 1s

much smaller than that on the ¢ = « parameter 1n each case.

5.2.6 Model QD5

1'his model differs from those we have considered so tar as it introduces the quantum
decoherence parameter ¢, which allows for the non-conservation of energy within the
neutrino sector. In this model, we consider all quantum decoherence parameters to

be zero, except &, which enables us to leave Am? as a {ree parameter.

Decoherence parameters with no dependence on the neutrino energy

We first consider the case when the quantum decoherence parameters have no de-
pendence upon the neutrino energy and so set 0 = %*. Restoring the constants ¢ and

h, the oscillation probability (5.9) takes the form

1 2.54Am*
Ply, = v.] =3 {COSQ(QH) {1 _ e‘5x109”ﬂ +sin?(20) [1 _ cos (TmL)] } ;
(5.30)
where ~v; 1s measured 1n eV,
In this model, we are able to consider the case when Am?* = 0. T'he oscillation

probability in (5.10) therefore takes the form
1 9
Plv, = v, = §c082(29) {1 — e PX10 k) (5.31)

1'he resulting sensitivity contour is shown in figure 5.34. 1The sensitivity region lies
within the contours, as highlighted in vellow, and the parameter vs covers the region
1071 — 107" eV at small values of sin”*20. However, experimental results from
the Super-Kamiokande [49] and K2K [31] experiments indicate that sin®20 ~ 1. It
seems, therefore, that we can rule out this model.

We now consider the case when Am? is non-zero. Figure 5.35 shows the sensitivity
volume in this case with the sensitivity contours presented in figure 5.36. I'he surface
shown in figure 5.35 in this case 1s very complicated and difficult to interpret. I'he

sensitivity volume lies above the parabolic surface which goes from the front to the
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Figure 5.35: Sensitivity volume for model QD5 at 90 percent confidence level for

standard oscillations plus quantum decoherence eftfects with no dependence on the
neutrino energy.
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back of the diagram (centered around Am?* = 107% eV* roughly) and also below
the parabolic surface which runs across the plot, parallel to the Am* axis. The
lower part of this diagram corresponds to the sensitivity contours seen when we set
Am* = 0 as above. The sensitivity regions after we have projected the surface onto
the coordinate planes are highlighted in yellow at the 90% confidence level, in figure
5.36. We note that the experimental point of best fit for Am? is included in the
sensitivity region in the top left frame but that we are unable to place an upper
bound on ~s since all values of this parameter are allowed for sin” 20 in the top right

frame. The lower frame shows the relationship between Am? and ~s.

Decoherence parameters inversely proportional to the neutrino energy

Setting ¢ = f—é and restoring ¢ and h, the oscillation probability (5.9) takes the form

1 “3 2.54Am?
Plv, —v.] = B {COS2(29) [1 — 6_2'54%] + sin?(26) [1 — cos (ML)] } :

L
(5.32)
where p# is measured in eV?,
Letting Am* = 0, the oscillation probability (5.10) which describes oscillations

as a purely quantum decoherence eftect 1s
1 2 254230
Plv, = v = 5 C08 (20) |1 —e¢ iy (5.33)

1'he sensitivity contour in this case 1s shown in figure 5.37. As with the previous
energy dependence, the sensitivity region lies within the contours at small values of
the mixing angle, in contrast to experimental data.
In the case when we have a non-zero Am?*, the sensitivity volume is shown in
figure 5.38. T'he resulting sensitivity regions and contours are shown in figure 5.39.
Since the sensitivity volume is qualitatively similar to that in figure 5.35, then
the sensitivity contours are also similar to those in which the quantum decoherence
parameters have no energy dependence. We again note that the experimental point
of best fit for Am?, as denoted by the triangle, lies within our sensitivity region and

that we are not able to place an upper bound on u? at sin’26 = 1.
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Figure 5.38: Sensitivity volume for model QD5 at 90 percent confidence level for
standard oscillations plus quantum decoherence effects inversely proportional to the
neutrino energy.

1440



100 o 102

2 —— 90% N —— 90%

o~ — 99% S 10 — 99%
S 1o e
10 4

-3
\ 10 4
109 104 |
105 4
104 . . . . 100 : : : :
0.o 0.2 0.4 06 0.8 10 0.0 0.2 0.4 0B 0B 1.0

L2
Sin 28 sin278

o 1
=
[sb]
g 10
107
&
10°
9%
— 99%
104

0% 104 0+ 0% 0 10t 100 10t 10#

M /ey’

Iigure 5.39: Sensitivity contours for model QD5 at 90 and 99 percent confidence
level including standard oscillations and quantum decoherence ellects inversely pro-
portional to the neutrino energy.

141



1034

— 80%
— 99%

Kg oy

1 D-35 i

10% |

1097 |

1 0-33 i

1 D-39

00 02 04 13 08 10
5in?28

Iigure 5.40: Sensitivity contours for model QD5 at 90 and 99 percent confidence
level for quantum decoherence eftects only for the parameter x5, proportional to the
neutrino energy squared.

Decoherence parameters proportional to the neutrino energy squared

Restoring the constants ¢ and 7, and setting ¢ = “fzj the oscillation probability
(5.9) has the form
1 2 27
Plv, = vr 5 {6082(29) [1 _ e B06X10% R 2L
2.54Am*
R S [

where k5 is measured in eV !,

Setting Am?* = 0, so oscillations are entirely due to quantum decoherence effects,
leads the probability (5.10) to take the form

1 2 2
Plv, = v,] = 5 cos”(20) {1 — e BO6XI0% s AL (5.35)

T'he sensitivity contours for this model are shown in figure 5.40. As in the previous
two subsections, the sensitivity regions lie inside the contours and so 1s not compatible
with the current experimental data.

The sensitivity volume when we allow Am? to take non-zero values is shown in
figure 5.41, with the sensitivity regions shown in figure 5.42. For this energy
dependence, the surface bounding the three dimensional sensitivity volume is very

complicated. It has many similar features to the previous two surfaces for this model.
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Figure 5.41: Sensitivity volume for model QD5 at 90 percent confidence level for
standard oscillations plus quantum decoherence effects proportional to the neutrino
energy squared.
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however, this surface folds back on itself in a way that the surfaces in tigures 5.35 and
5.38 did not. The sensitivity contours, correspondingly, are more complicated than
those in figures 5.36 and 5.39, and are highlighted in yellow for clarity at the 90%
confidence level. The experimental point of best fit for Am? is contained within the
region of interest in the top left frame of figure 5.42. As expected from our previous
discussions, we are not able to place an upper bound on the quantum decoherence

parameter, 5.

Summary of Model QD5

The model discussed in this section contains a single decoherence parameter, ¢, which
multiplies the cos? 20 term in the oscillation probability (5.9). Considering that the
current experimental data favours cos® 20 ~ 0, then, as we have shown, it is likely
that precise measurements of this parameter will not be possible with atmospheric
nentrinos.

We considered the case where neutrino oscillations arise due purely to quantum
decoherence effects but found that the sensitivity regions covered only small values
of sin“ 26 and so will be able to be ruled out.

When Am? # 0, we found that the three dimensional parameter space is bounded
by a very complicated surtace and that, as we mentioned above, we are unable to

say anything meaningtul about the quantum decoherence parameter 1n this model.

5.2.7 Model QD6

1'his model combines the previous model with model QD1, so we have three quantum
decoherence parameters, ¢ = « and ¢. Since we have effectively have two quantum

decoherence parameters, we fix Am*. We consider both the cases where Am* = (
and Am* = 2.6 x 107° eV~

Decoherence parameters with no dependence on the neutrino energy

Here, we set @ = a = & and ¢ = 4} where 4, and 75 are measured in e¢V'. The

oscillation probability (5.11), with ¢ and & restored, is

1 -
Plv, = v, 5 {6032(29) [1 — 75107l
2.54Am*
+sin?(26) [1 — 10l g (%L}] } . (5.36)
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Firstly, we take the limit in which Am? is equal to zero. In this case, the neutrinos
oscillate purely due to quantum decoherence effects and the probability (5.12) has

the form
1 9 9
Ply, = v, = 5 {COSZ(QQ) [1 — ¢ox1o WL] + sin?(20) [1 — 7PXI0 %‘L} } . (5.37)

T'he sensitivity volume is shown in figure 5.43 with the corresponding sensitivity
contours shown in figure 5.44. T'he surface 1s very similar to that of figure 5.35.
The sensitivity contours are similar to those in figure 5.36 with the role of Am? being
played by v, 1n this case. We are able to place an upper bound on 7, ol around
10~'* eV but, as in the previous case, we are unable to do the same for ~s.

Setting Am?* = 2.6 x 107° eV*, we find the sensitivity volume shown in figure
5.45 and sensitivity regions in figure 5.46. T'he sensitivity regions are marked in
vellow for clarity. For values of sin?(26) close to 1, all values of s are included in the
sensitivity region, as in the case with no standard oscillations. However, the range
of values of v, 1in the sensitivity region 1s now much larger than in the absence of

standard oscillations, and includes the value zero.

Decoherence parameters inversely proportional to the neutrino energy

Here, we set a = a = Z,ﬁi and 0 = —;; The oscillation probability (5.11), with ¢ and
h restored, now has the form
1 piL
Plv, — v, 3 {COSQ(QQ) [1 — 6_2'54T]
BAL 2.54Am?
+sin*(26) [1 e o (Tml)] } : (5.38)

where 5 and p? are measured in eV,
Setting Am?* = 0, the neutrinos oscillate entirely due to quantum decoherence
effects and the oscillation probability (5.12) takes the form

Py, — 1] = %{0082(29) [1 _ et ] + sin?(20) [1 - e—2~54”%] } (5.39)

T'he sensitivity volume and regions are shown in figures 5.47 and 5.48 respectively
and are very similar to those in the last subsection (see also figure 5.36). It we

now reset Am?* = 2.6 x 1077 eV'“, then we obtain the sensitivity volume in figure
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Figure 5.43: Sensitivity volume for model QD6 at 90 percent confidence level for
quantum decoherence ellects only with no dependence on the neutrino energy.
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Figure 5.45: Sensitivity volume for model QD6 at 90 percent confidence level for
standard oscillations and quantum decoherence eftfects with no dependence on the
neutrino energy.
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Figure 5.47: Sensitivity volume for model QD6 at 90 percent confidence level for
quantum decoherence ellects only, inversely proportional to the neutrino energy.
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5.49 and sensitivity regions shown in figure 5.50.  Again, the sensitivity regions are
similar to those in the last subsection with all values of the parameter p3 included

at sin®(20) = 1, and a large range of values of 12, including zero.

Decoherence parameters proportional to the neutrino energy squared

In this case, we set @« = a = @ and ¢ = @. The oscillation probability (5.11),

with ¢ and f restored, has the torm

1 2 27"
Plv, — v, 5 cos”(20) {1 _ e mB06X10%T R B L
1 2.54Am*
—|—§ sin”(26) [1 — e7B06X10Ta BEL (7E m L)] . (5.40)

where k5 and k., are measured in eV !,

Allowing neutrinos to oscillate due to quantum decoherence effects only by setting
Am?* = 0 means the probability (5.12) has the form

Plv, — 1] = % {0082(29) {1 _ 6—5.06x102755E2L} 4 sin2(2¢9) {1 B 6—5.06X1027HQE2L:| } .

(5.41)
T'he sensitivity volume and contours are shown in figures 5.51 and 5.52 respectively
and are qualitatively the same as those in the previous subsections related to this
model.

When we set Am? = 2.6 x 1072 eV*, then the situation is somewhat different
to those above. 1'he sensitivity volume in this case 1s shown in figure 5.53 and the
resulting sensitivity regions presented in figure 5.54. 1'he surface in figure 5.53
has two distinct parts with the sensitivity volumes lying above the top surface and
below the bottom surface. This leads to the sensitivity regions in the top two frames
of figure 5.54. T'he left hand regions of the top two frames correspond to the lower
volume and are not relevant for sin“260 close to unity. As in previous sections, we
find that all values of x5 are contained in the region for sin*26 ~ 1 and the region

for x, includes zero, up to an upper bound of 107%° eV 71,

Summary for Model QD6

This model contains three quantum decoherence parameters, firstly ¢ which multi-

plies the cos* 260 term in the oscillation probability (5.11), and a = «. Since this
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Figure 5.51: Sensitivity volume for model QD6 at 90 percent confidence level for
quantum decoherence ellects only proportional to the neutrino energy squared.
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Figure 5.53: Sensitivity volume for model QD6 at 90 percent confidence level for
standard oscillations plus quantum decoherence effects proportional to the neutrino
energy squared.
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model contains parameters in addition to ¢, then this model cannot be ruled out at

present.

5.2.8 Model QD7

T'his model incorporates the quantum decoherence parameter, 6, with the energy non-
conservation parameter, 0. Since we have two quantum decoherence parameters, we
fix Am* = 2.6 x 1072 eV*“. Unlike the last model, we cannot set this parameter to
zero and examine oscillations which arise solely due to quantum decoherence effects.

as the oscillation probability (5.13) loses its oscillation characteristics.

Decoherence parameters with no dependence on the neutrino energy

We begin by setting b = 2 and ¢ = & Replacing ¢ and £, the oscillation probability
has the form in equation (5.13) with

B | =

Am2L\’
F7_2[<1.27 ”]; ) —[2.5><109%L]2] , (5.42)

and 26 — 5 x 10%~;5. Here, vs5 and ~, are measured in eV,

Figure 5.55 shows the sensitivity volume with the sensitivity regions shown in
figure 5.56. T'he sensitivity regions are very much as we would expect from our
discussions above. All values of ;5 are contained in the sensitivity region for sin* 24
close to unity. We also note that there is a cut-off in the parameter ~;, with all values

of this parameter contained in the sensitivity region below this point, including zero.

Decoherence parameters inversely proportional to the neutrino energy

N

b

and § = “ So, replacing ¢ and h, the oscillation

In this case, we set b = TR

4
probability takes the form (

kS

5.13) with 26 = 2.54%2 and (5.14) taking the form
2.54L :

and pf and pj are measured in eV
Figure 5.57 shows the sensitivity volume for this model. In figure 5.58, we plot
the sensitivity regions, highlighting the 90% confidence level sensitivity contours in

yellow. As in the previous subsection, all values of pj are contained in the
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Sensitivity volume for model QD7 at 90 percent confidence level for

Figure 5.55:

and quantum decoherence effects with no dependence on the

standard oscillations

neutrino energy.
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Figure 5.57: Sensitivity volume for model QD7 at 90 percent confidence level for
standard oscillations plus quantum decoherence effects inversely proportional to the
neutrino energy.
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sensitivity region when sin” 20 is close to unity and there is a cut-off in the parameter

17 due to I'; (5.43) becoming imaginary.

Decoherence parameters proportional to the neutrino energy squared

Here, we set b = % and 6 = ”552, which, on replacing ¢ and F, gives the oscillation

probability (5.13) with 26 = 5 x 10*" ks E* and (5.14) given by

=

Am?L\’
F7_2[<1.27 ”; ) —[2.53 x 10k, E*L)?| . (5.44)

Here, k3 and ks are measured in eV 1.

Figure 5.59 shows the boundary of the sensitivity volume in this case. IT'he
sensitivity regions are shown in figure 5.60.  In this case, the sensitivity volume is
split into two distinct parts with the sensitivity volume lying above the top surtface:
and below and inside the lower surface. 1'he sensitivity regions in figure 5.60 are
as expected, all values of ks are contained within the sensitivity regions close to

sin“ 20 = 1 and there is a sharp cut-off in the parameter k.

Summary of Model QD7

This model contains two quantum decoherence parameters, b and ¢, and combines
the properties of models QD3 and QD5. '1'he results are as we might have expected.
Although the sensitivity regions have diflerent shapes, dependent upon the energy
dependence of the parameters, they share the same properties: all values of the
parameter ¢ are contained in the sensitivity regions close to sin“26 = 1: and we

observe a cut-ofl in the parameter b.

5.2.9 Model QDS

Our penultimate model has one quantum decoherence parameter, 5, which allows
the non-conservation of energy in the neutrino system. Since we only have one extra

parameter, we keep Am? free also.
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30

Figure 5.59: Sensitivity volume for model QD7 at 90 percent confidence level for
standard oscillations plus quantum decoherence effects proportional to the neutrino
energy squared.
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Decoherence parameters with no dependence on the neutrino energy

In this case, we set # = 2 and so the oscillation probability (5.15) contains the
quantities
L
W= 1.27Am2F, B =2.5x10"~5L. (5.45)

where we have replaced the constants ¢ and A.

1'he sensitivity volume is shown in figure 5.61, with the sensitivity contours shown
in figure 5.62. The top left frame of figure 5.62 shows Am?* as a function of the
mixing angle, #. 1'he triangle, which denotes the experimental point of best fit.
clearly lies within this region. 1'he second {rame of this figure shows the quantum
decoherence parameter, v, against sin® 26, with the sensitivity region lying inside the
contours as highlighted in yellow (at least for the 90% confidence level). This region
contains zero and we are able to place a bound on this parameter of v5 < 107'° V.

The lower plot shows the relationship between Am* and 3.

Decoherence parameters inversely proportional to the neutrino energy

In this case, we set 3 = 2. Replacing the constants ¢ and &, the oscillation proba-
Yo g

bility 1s given by (5.15) with

L L
Ly — 2 _ 2
w=1.27TAm = B = 1.27uB—E, (5.46)

4

where ;i is measured in eV

1'he three dimensional sensitivity volume is shown in figure 5.63 with the sensi-
tivity contours shown in figure 5.64. In contrast to the surface in the last subsection,
the surface bounding the sensitivity volume in figure 5.63 1s rather complicated, mak-
ing interpretation of the sensitivity regions in figure 5.64 non-trivial. For clarity, the
90% confidence level is highlighted.  The sensitivity volume lies above the surface
in figure 5.63, including the value sin? 20 = 1. For very small values of the quantum
decoherence parameter, the volume has the same shape as the surface in the last
subsection, leading to the inclusion of the top right hand corner of the first frame in
figure 5.64. However, at high values of p%, the surface turns over and all values of

Am* and ,ué are included. For this reason, we are unable to place an upper bound

on 5.
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Figure 5.61: Sensitivity volume for model QD8 at 90 percent confidence level for
standard oscillations and quantum decoherence eftfects with no dependence on the
neutrino energy.
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Figure 5.63: Sensitivity volume for model QD8 at 90 percent confidence level for
standard oscillations plus quantum decoherence effects inversely proportional to the
neutrino energy.
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Decoherence parameters proportional to the neutrino energy squared

ﬁﬁEZ
2

probability is given by (5.15) with

In this case, we set 8 = Restoring the constants, ¢ and h, the oscillation

L { {
W= 1.27Am2F, B =253 x 10" ks * L. (5.47)

Here, x5 is measured in eV 71,

1'he three dimensional sensitivity volume and two dimensional sensitivity regions
are shown 1n figures 5.65 and 5.66 respectively.  Inspection of the surface in figure
5.65 shows that i1t is quantitatively the same as the surface in figure 5.61 and, hence,
the sensitivity regions in figure 5.66 are qualitatively similar to those in figure 5.62.
The first plot of figure 5.66 shows Am? against sin? 20 with the triangle denoting the
current experimental point of best fit. 1'his point clearly lies within the sensitivity
region. l'he top right frame of the same figure shows the quantum decoherence
parameter, ks, plotted as a function of the mixing angle. 'I'he sensitivity region lies
within the contours and includes the value k5 = (0. In this case, we are able to place
an upper bound of k5 < 107" ¢V ~! on the parameter. The final frame in figure 5.66

shows the relationship between Am? and xp.

Summary of Model QD8

1'he model contains a single quantum decoherence parameter, 5. As we have only
one extra parameter, we were able to let Am* vary and in all cases, we found that
the current experimental point ol best it 1s contained within the sensitivity regions
generated 1n our simulations. For two of the three energy dependences, we were able
to place an upper bound of the quantum decoherence parameter but were not able
to do so when the parameter was inversely proportional to the neutrino energy. 1he

upper bounds we found are directly comparable to the parameter, 6, in models QD3.

QD4 and QDT.

5.2.10 Model QD9

Our final model contains the parameter d. This model is somewhat different to
those we previously considered as the oscillation probability (5.16) now contains a

contribution from the sin 46 term. In this model, we set all parameters to zero except
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Figure 5.65: Sensitivity volume for model QD8 at 90 percent confidence level for
standard oscillations plus quantum decoherence effects proportional to the neutrino
energy squared.
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d and Am?.

Decoherence parameters with no dependence on the neutrino energy

Firstly, we set d = %*. Restoring the constants ¢ and h, the oscillation probability

(5.16) contains

L
W= 1.27Am2f, d = 2.5 x 10%y,L, (5.48)

where 4 1s measured i eV,

1'he sensitivity volume and sensitivity regions are shown in figures 5.67 and 5.68
respectively.  We note that both the sensitivity volume and contours in igures 5.67
and 5.68 are similar to those for the last model with the same energy dependence.
The experimental point of best fit for Am?*, denoted by the triangle in the first
frame of figure 5.68, lies within the sensitivity region. 1'he second plot of the same
figure shows v, plotted against sin®20. Again, the sensitivity region lies within the
contours and includes v; = 0. We are able to place an upper bound on this parameter

of 74 < 107t eV, The lower frame of this figure shows a plot of Am* against ..

Decoherence parameters inversely proportional to the neutrino energy

7]

In this case, we set d = £

and, replacing the constants ¢ and ki, the oscillation

probability (5.16) contains the quantities

L L
W= 1.27Am2ﬁ, d = 1.27ﬂ§ﬁ. (5.49)

Here, ;15 is measured in eV

Figure 5.69 shows the sensitivity volume for this energy dependence with the
related sensitivity regions shown in figure 5.70, 1'he sensitivity regions in this
case difler from those for the previous energy dependence. T'he top left frame shows
Am? against sin”20. The large region on the right of this plot is the standard region
which includes the experimental point of best fit denoted by the triangle. However,
we also find regions of parameter space allowed at small values of sin‘ 20 and these
are a direct consequence of the sin46é term in the oscillation probability (5.16). The
top right plot shows p? against sin®26. The sensitivity region lies to the right of
the large curves on the right hand side of the plot and also 1n the smaller regions
close to sin®28 = (. Since experimentally, sin® 20 I, we are able to place an

upper bound on p3 of around 107! ¢V* and we also note that g3 = 0 is contained
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Figure 5.67: Sensitivity volume for model QD9 at 90 percent confidence level for
standard oscillations and quantum decoherence eftfects with no dependence on the
neutrino energy.
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Figure 5.69: Sensitivity volume for model QD9 at 90 percent confidence level for
standard oscillations plus quantum decoherence effects inversely proportional to the
neutrino energy.
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within the sensitivity region. 1he final diagram of figure 5.70 shows the standard
oscillation parameter, Am?*, against the quantum decoherence parameter, p%, with

the sensitivity region lying inside the contours.

Decoherence parameters proportional to the neutrino energy squared

Finally, we set d = “dQEZ. Replacing the constants ¢ and fi, the oscillation probability
1s given in (5.16) with

L { {
W= 1.27Am2F, d =253 x 10k L. (5.50)

where £, is measured in eV ',

1'he sensitivity volume and contours are shown in figures 5.71 and 5.72 respec-
tively. The first plot of figure 5.72 shows Am? against sin? 20 with the sensitivity
region lying inside the curves. lhe experimental point of best fit, denoted by a
triangle, 1s clearly within the sensitivity region. ['he top right frame of figure 5.72
plots k4 against sin®20. Again, the sensitivity region lies within the contours. This
model 1s consistent with k; — 0 and we are able to place an upper bound on this
parameter of 107 ¢V ='. The lower frame of 5.72 shows Am?* against x4 with the

sensitivity region lying within the contours.

Summary of Model QD9

Model QD9 contains one non-zero quantum decoherence parameter, d. 'he sensi-
tivity regions, when the decoherence parameters have no energy dependence and a
dependence on the neutrino energy squared, are qualitatively the same as those in
Model QD8. However, there are difterences when the quantum decoherence param-
eter 1s inversely proportional to the neutrino energy. In this case, contributions from
the sin4f term in (5.16) can clearly be seen. In all cases, the experimental point
ot best fit for the standard neutrino parameters are contained within the sensitivity
regions and we have been able to place upper bounds on the quantum decoherence

parameters.
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Figure 5.71: Sensitivity volume for model QD9 at 90 percent confidence level for
standard oscillations plus quantum decoherence effects proportional to the neutrino
energy squared.
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model ( h ol (y I5;

v(GeV) 0x 1077 | 7Tx 107 | Tx 107 | 9 x 1074 | T x 107
P (GeVE) [ 2x 107 | 6 x 107 | 6 x 1071 | 2 x 1077 -
R(GeVTH) 1 4x 1074 | 7 x 1077 | 7x 107 | 4 x 1074 | 7 x 107

lable 5.1: Table showing the upper bounds of the quantum decoherence parameters
for different dependences on the neutrino energy.

5.3 Comparing bounds on the decoherence pa-

rameters

In section 5.1, we modelled a two neutrino system which is affected by quantum

decoherence, altering the standard model of neutrino oscillations by adding an extra
matrix (4.20):

0 0 0 0
0 b d
h = —2 (5.51)
0 a [
0 d 3 ¢

where a, b, d, o, 3 and ¢ are quantum decoherence parameters. We have examined
three different models which have varying energy dependences and are related to

these quantum decoherence parameters by

20 = 7y
12
20 = —=, 5.H2
T =S (5.52)
and
2r = K, I* (5.53)

where * = a, b, d a, § or §. lable 5.1 gives the upper bounds on the sensitivity
regions for the various model parameters. We have been unable to put an upper
bound on the parameter ¢ at sin® 20 = 1.

Upper bounds have been placed experimentally on the decoherence parameters
by examining data from the Super-Kamiokande experiment [180|. It was found that

the parameters had upper bounds ot

v=35x%x 107%eV, pt=244x107"eV? k=9x107VeVT (5.54)
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Here, we see that our results are entirely comparable with those in |180| when the
quantum decoherence parameters have no dependence upon the neutrino energy.
When the parameters have an inverse dependence on the neutrino energy, our bounds
are not as good as those from the Super-Kamiokande experiment. ['his is because
neutrino telescopes detect higher energy neutrinos than those detected by Super-
Kamiokande. Since this is the case, the bounds we lind here are many orders of
magnitude better than those from |180] when the quantum decoherence parameters
are proportional to the square ol the neutrino energy. We find. therefore, that
low energy experiments, such as Super-Kamiokande, are better at bounding the p?
parameters whilst high energy neutrino telescopes are much better at bounding the
effects proportional to the neutrino energy squared.

1'he neutrino system 1s not the only system which may be aftected by interac-
tions with the space-time foam and, assuming that quantum decoherence atfects all
particles in the same way, we may compare the results found here for neutrinos with
those discussed below for different systems. Experiments such as CPLEAR |45| have
examined this problem with neutral kaons, as kaons may oscillate into their anti-
particle and it has been suggested that this oscillation may be modified by quantum
decoherence. Considering this system, upper bounds on the quantum decoherence

parameters were found |17,121]:
a<4x1077GeV. Bl <23 x Y GeV. §<3.7x 107 eV, (5.55)

We are not able to directly compare the values 1 table 5.1 with these from the
neutral kaon system due to the energy dependence ol some of our models. However,
using equations (5.52) and (5.53) with the values from table 5.1, we find that the
upper bounds for the quantum decoherence parameters which appear in the matrix

in equation (5.51) are
a=a=475x107*GeV, b=d=/=3.3x10"*"GeV, (5.56)

for the model in which the quantum decoherence parameters have no dependence on

the neutrino energy.
¢a=a=18yx10""GeV. b=d=p3=06.38 x 107*'GeV, (5.57)
for the model 1n which the quantum decoherence parameters are iversely propor-
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tional to the neutrino energy and
a=a="796x107*GeV, b=d=p3=1.32x10"*GeV, (5.58)

for the model 1n which the quantum decoherence parameters are proportional to the
neutrino energy squared. In order to calculate these values, we took f = 24.3 GeV
for the u* model and £ = 631 GeV for the x model. These energies correspond to
the minimum and maximum energies 1n our simulations, respectively, and give us the
most conservative bounds on a, b, d, o and . We note that our most conservative
bounds on the parameters a and J in equations (5.56)-(5.58) are much better than
those from references 17 and 121]. A second analysis of this experiment took
place in reference |65 with all six quantum decoherence parameters appearing in
the additional matrix h’. The authors of reference |65| were able to put bounds all
the parameters 1n this matrix and they found upper bounds of a, b and a to be ot
order 10717 —1071® GGeV. Therefore, it seems that the ANTARES experiment will be
able to improve the upper bounds of these parameters with respect to the CPLEAR
experiment.

This problem has also been explored using neutron interferometry [164,213,223
experiments where a slow neutron beam 1s separated 1nto two parts, which then travel
along different paths and are recombined. 1This results in an interference pattern.
The authors of reference |66| were able to put upper bounds on the parameters a

and « using data from a neutron interferometry experiment and found
a <1x107*GeV and o <7.4x107*GeV. (5.59)

In this case, we see that our most conservative results are entirely consistent with

these bonnds.

5.4 Summary

In this chapter, we presented the results of our numerical simulations to show how
ANTARES will be able to look for quantum decoherence effects and place bounds
on the size of these etfects. Our results will be equally applicable to other neutrino

telescopes.

o We began by presenting the nine models which we considered in our numerical
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simulations. For each model, we described the parameter content and whether
simulations of neutrino oscillations arising purely from quantum decoherence

was possible (section 5.1).

e We then presented the results of our simulations. We first showed how we were
able to produce spectra describing the number of expected events and saw that
quantum decoherence ettects would reduce this number in each case, and that
the shape of the spectra would also be altered. We then presented the regions
ol parameter space which ANTARLES will be able to probe for each model. In
most cases, we were able to use these simulations to place upper bounds on

the model parameters (section 5.2).

e l'inally, we showed how our results compare to those in the literature. We found
that for models which depended inversely on the neutrino energy, the existing
bounds in the literature are better than those found here. For the model which
has no dependence upon the neutrino energy, our bounds are consistent with
those 1n the literature but the main result 1s that quantum decoherence pa-
rameters which are proportional to the energy squared will be probed to much

greater precision than before with high energy neutrino telescopes (section 5.3).

So, the main result of this chapter is that the one model with a theoretical link
to quantum gravity, the model in which the quantum decoherence parameters are
proportional to the neutrino energy squared, will be probed to precisions many orders
of magnitudes lower than has been possible betfore.

In chapter 8, we examine how quantum decoherence will be probed with astro-
physical neutrinos, detected by neutrino telescopes, and, as we shall see, the bounds
on quantum decoherence expected from those sources will surpass even those found

in this chapter.
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Chapter 6

Lorentz invariance violation-

theory

In this chapter, we present the theory underlying the possible phenomena of CP'I
invariance violation which arises due to the violation ol lLorentz invariance. We
describe how Lorentz invariance may be violated in theories of quantum gravity and
then show how these ettects may manifest themselves within the neutrino sector.
at least tor a two neutrino system. We consider how these effects would manifest

themselves in a three neutrino system in chapter 8.

6.1 The violation of Lorentz invariance

As we saw 1n chapter 4, any violations of Lorentz invariance also lead to the violation
of CP'I'. Here, we consider why some theories of quantum gravity predict the violation

of Lorentz invariance (LV).

6.1.1 LV in quantum gravity

As we discussed in chapter 2, some theories of quantum gravity predict the existence
of a fundamental length scale. [T'his, in itself, may be enough to bring about LV.
lmagine if we were able to somehow measure this fundamental length scale. We
would measure 1t 1n our lab frame and probably find that 1t was of order the Planck
length, 107%° m. If we now repeated the experiment in a different inertial frame, we
would expect the length to be shorter, as predicted by the Lorentz transformation.

However, we are considering a fundamental length scale and, therelore, we would
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expect to measure the same length i all inertial frames. 1There is, therefore, an
error 1n our naive thought experiment or Lorentz symmetry, at least at the Planck
scale, 1s broken.

1'heretore, there exist three possibilities for the tfate of Lorentz invariance within

theories ol quantum gravity:

e It may be that our naive thought experiment is wrong, or that a fundamental
length scale does not exist, and so Lorentz invariance remains intact at Planck

scales:

e It may be that, at the Planck scale, Lorentz invariance is broken and physics

takes on a preferred frame:

e |t may be that Lorentz invariance as we know 1t 1s deformed, so, for example.
the Lorentz transformations mvolves a second quantity which 1s not observer

dependent. So, perhaps the Planck length 1s invariant in an identical way to
the speed of light.

In the second and third option, this may mean that quantities we think of as being
Lorentz invariant, such as the standard dispersion relation, £* = p* +m?*, may have

to be modified to take into account this new phenomenon.

6.1.2 The theoretical status of LV

We have seen that if a fundamental length scale exists, then this may lead to LV.

Here, we review the theoretical status of Lorentz invariance violation.

Lorentz invariance violation in string theory

String theory approaches the quantum gravity problem from a particle physics per-
spective. Although string theory does not discretize space-time, since it describes
the background space-time entirely classically, the 1ssues related to this are still far
from being resolved. At this moment in time, since the background is classical, there
are no indications that Lorentz invariance 1s broken within string theory. Of course.
if 1t 1s found that the background space-time needs to be discretized, then this could
lead to Lorentz invariance violating string theories. Having said that, two particular
theories which are considered to be low energy limits of string theory, namely flat non-
commutative space-times |184] and the Standard Model Extensions (SMEs) |[171].
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indicate the presence of LV. T'he non-commutative space-time approach assumes
that space-time coordinates do not commute, leading to the breaking of Lorentz
symmetry and various forms of the dispersion relation [187,194|. The SMEs extend
the Standard Model Lagrangian to include all LV [92| and CPT violating |91] op-
erators which are of dimension 4 or less, in order to be renormalizable. Again, this

phenomenological model modifies the dispersion relation.

Lorentz invariance violation in loop quantum gravity

In contrast to string theory, loop quantum gravity approaches the quantum gravity
problem from a general relativity perspective. T'he theory 1s fully background inde-
pendent, as 1s general relativity, which leads to the prediction ol discrete space-times
220|. Initially, it was thought that loop quantum gravity would preserve Lorentz
symmetry, however it 1s now thought that this theory could break [28-30, 135,231
or deform |38,129| Lorentz symmetry, thus leading to modified dispersion relations.
1'he 1ssue of whether Lorentz symmetry 1s preserved, broken or deformed 1s still

unresolved in loop quantum gravity.

Doubly special relativity

On particular theory which has received much attention in the literature is that
of doubly special relativity |37|. Here, special relativity is modified to include two
observer independent quantities; the speed of light, ¢ and the Planck length, [,. T'his
leads to modihied dispersion relations of the form discussed in the next section.

In addition to the phenomenology arising from these modilied dispersion rela-
tions, the theory leads to the possible resolution of two outstanding problems, namely
the observation of T'eV photons and of cosmic ray events above the GZK cutoff |40].
In the first case, photons created above energies of ~ 10 1'eV should interact with
CIRB photons, leading to electron-positron pair production and the disappearance
of these high energy photons. However, the HEGRA telescope |13] has detected high
energy photons up to 24 T'eV |21|. In the second case, ultra high energy cosmic rays
interact with CMB photons and produce pions. T'he cosmic rays lose energy through
this process until they pass below the GZK [144,243] cutoff ~ 10* eV. However,
there is evidence that the cosmic ray spectrum extends beyond this energy |229|. In
both these cases, by moditying special relativity, doubly special relativity alters the
threshold energy at which the cutolt occur. T'he effects of LV may, theretore, already
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have been obhserved.

6.2 Modified dispersion relations

Irom the discussions above, if we allow LV then this may lead to the modifications

of the dispersion relation:
B =p* 4+ m*+ f(p, E, E,), (6.1)

where [/ 1s the energy of the neutrino, p the neutrino momentum, m 1s the mass
eigenstate of the neutrino and /£, is the Planck energy. T'he function f contains all
the novel 1.V effects. For our analysis here, we find 1t usetul to parameterize this

function so the dispersion relation (6.1) becomes

E X
E? = p* +m?® +np? (—) : (6.2)
L,
where 1 and « are parameters of the Lorentz invariance violating theory.
Using (6.2) and assuming the parameter 1 has a dependence upon the mass
eigenstate, then we find that the Hamiltonian in the mass basis, for a two neutrino

system, may be written, approximately, as

mi mEet!
mi | mBH 0
H— ( o ) | (6.3)

2 1
my na Lot
O 2K —I_ 2

1'he probability that a neutrino of flavour « oscillates to one of flavour b 1s then given
by

5 2
Plv, = ] = | Uge U5 (6.4)
=1
where the U’s are components of the neutrino mixing matrix:
cosf sinf
U = _ . (6.5)
—sinf cos#
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n Ann (eVl‘”)

2.3 x 1074
2| 2.3 x 107
31 2.3x107%

lable 6.1: Table showing the values ot An for various energy dependences of the LV
parameters.

1'he probability 1s therefore given by

(6.6)

Am*L  AnE*tL
Plv, — 1] = sin® 20 sin” [ m d ] :

4K i 4B
Replacing ¢ and i and absorbing the Planck energy into the parameter An gives

Am?L

Plv, — 1] = sin® 20 sin? [1.27 +1.27 x 109(”+1)A77E”L] , (6.7)
where we have set n = o+ 1. I we set Anp = 0, then we recover the standard
oscillation probability (1.7). Furthermore, we assumed that the LV parameter n had
a dependence upon the mass eigenstate. If this is not the case and the parameter n is
universal to all mass eigenstates, then, even if the theory violates Lorentz invariance,
the neutrino oscillation probability is invariant. Figures 6.1 and 6.2 show how these
LV effects modify the neutrino oscillation probability. lo construct these plots, we
used the upper bounds found in the next chapter and shown in table 7.1 Comparing
figures 6.1 and 6.2 with those for standard oscillations in figures 4.2 and 4.3, we see
that for low energy neutrinos, the eflects are negligible. However, for higher energy
neutrinos, this is not the case. 1II we compare the plots of probability against path
length for high energy neutrinos, we see that for standard oscillations, almost no
oscillations occur, however, 1if we include the LV elfects, the oscillation probability
becomes significant at much shorter path lengths.

In the next chapter, we will model these effects numerically in the atmospheric
neutrino system in order to place upper bounds on the model parameters. It would
be useful therefore to have a guide to the approximate values ol these parameters.
In order to do this, we note from (6.7) that the LV effects become significant when

2
|97 2

~ 1.27 x 10°+HD Ay ET (6.8)

192



1.0
N 1.0 o
0.8 - 0.8 4
06 06
04 1 04 4
0.2 0.2 4
0.0 . : . | 0.0 - : -
100 1071 108 1R 104 0o 10 10° 10° 104
L km L/km
1.0
o
na
06
04
02
ood . .
0 100 200 300 400 200

E/GeV

I'igure 6.1: Neutrino oscillation probabilities for n = 2 (e = 1). The top left plot
shows the oscillation probability as a function of path length for low energy neutrinos.
with /£ = 1 GeV, for comparison. 1'he top right plot shows the oscillation probability
versus path length for neutrinos with an energy of 200 GelV' whilst the lower plot
shows the oscillation probability as a function of energy for L = 10* km.
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IMigure 6.2: As figure 6.1 but with n = 3 (o = 2).
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T'hus, the LV parameter 1s given approximately by

Am?

—~ —-9(n+1)
An a1 x 10 .

(6.9)

Using the value of Am? from table 1.2 and £/ =1 GeV, the peak in the atmospheric
neutrino flux, we are able to place bounds on this parameter. lTable 6.1 shows the

value of the LV parameter for various energy dependences (values of n).

6.3 LV models with off-diagonal elements in the

Hamiltonian

As we outlined in section 6.1, the standard model extensions (SMEs) can be con-
sidered as a low energy phenomenological model of quantum gravity which includes
LV and CP'I' violating operators. 'l'he eftective SME Hamiltonian describing flavour

neutrino propagation, to first order, is [172
e | ,
Haéf = |7 [das + 517 |[m2 + 2(ayp, — (en)" pupu)]as (6.10)

where m 1s related to the standard neutrino mass, the indices, o and 8 denote the
flavour and ay,, ¢y, are the LV parameters. One of the main differences between this
model and the LV effects described in section 6.2 is that, in this case, the Hamiltonian
need not be diagonal. In reference |172|, various assumptions are made to simplify
the model but here, we shall adopt a general ofl diagonal formalism.

Firstly, we shall assume that the Hamiltonian 1in the mass basis takes the torm

Heff - ( :®E " ;;aa ) : (6.11)

a1 + 1ay BY5)

where a; and ay are real LV parameters. In order to calculate the oscillation proba-
bility, we shall adopt the density matrix approach introduced in chapter 4 although.
since we are dealing with standard quantum mechanics, the probability may also be

derived in the standard way. Writing the Hamiltonian (6.11) in terms of the Pauli
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matrices gives

hij=-2| 222 0 4 |. (6.12)
as —aq 0

where we have omitted the zeroth row and column tor simplicity as all these compo-
nents are identically zero. The matrix (6.12) has eigenvalues, A;, given by {+:£2, 0}

and 1s diagonalized by the unitary matrix

| way — iaxf)  way + 1ax$)  —ag/2a? + a?
[ = \Wﬂ waz + 141 way —ia ) —az/2a? + a3 | . (6.13)
@t e al + a3 ai + a? wa/2a% + a3

where,  — /w? +a? 4 a} with w = Am?/4E. The components of the density

matrix are then given by

pi(L) = Uye U3 pi(0). (6.14)

1.k

where U;; are the components of the matrix in (6.13) and p(0) is the density matrix
initially. Assuming we have a muon neutrino which oscillates into a tau neutrino.

the probability of oscillation i1s
P =Trlp.(L)p-(0), (6.15)

where p,(0) and p,(0) are given in equations (4.24) and (4.26) respectively. Thus,
the oscillation probability is

L] W' af®
Plv, = v, : [COS 20 (1 o oz cos(20Q1L)
2 2 2
+sin® 20 ( — % — (wg;;z?) cos(ZQL))
1 . dway .
—|—§ sm4(9( oz Sin (QL))] : (6.16)

with @ = a; 4+ 1a5. In an analogous way to the diagonal case, the LV parameter may
have an explicit dependence upon the neutrino energy and so we let a; — «; /" where
n 1s an extra parameter of the theory. I'he SMEs expect n = 0,1, since the theory

only allows operators of dimension 4 or less in order to be renormalizable |202|. We
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shall not make this assumption, instead, we shall assume that any LV eftects, whether
they appear in the diagonal or off-diagonal elements of the Hamiltonian, result in
dispersion relations similar to that in equation (6.2) and so we shall consider the
cases n = 1, 2 and 3, thus considering cases where the operators of the theory have
dimension 4, 5 and 6.

If we consider atmospheric neutrinos, then the mixing is maximal (sin®26 = 1)
and so, in the high energy limit, the probability of oscillation tends towards zero.
T'hus, we would expect the ratio of electron to muon neutrinos to take on an energy
dependence if LV effects are present.

1'he second case we consider is that where the LV effects are flavour based, so we

assume the Hamiltonian in the flavour basis to have the form

2 2
flav me. mg
H = ( co e ) (6.17)

Mep My

lransforming back to the mass basis, we lind the form of the Hamiltonian to be

H:}‘}SS _ op — @1 sin'ZH LEQCOS 20 — 1y | (6.18)
aycos 20 +iay  F + apsin20

The probability of oscillation is therefore given by (6.16) with

w = W+ apsin 24,
w; — ajcos 2.

g —  Uo. (6.19)

If we take the high energy limit in this case and assume maximal mixing as in the
case ol atmospheric neutrinos, then the oscillation probability goes to unity. 1Thus.
for extremely high energy atmospheric neutrinos, we would expect to see a significant
deficit in the muon neutrino flux.

It 1s also interesting to note that il we let

mi — mi+ Acos0,
ms — mi—+ Asin®0,
A
u — sin # cos #.
(s 0. (6.20)
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then we recover the Lorentz invariant matter etfects probability as described in chap-

ter 1.

6.4 Summary

In this chapter, we have considered how standard neutrino oscillation phenomenology

may be modified by the presence of Lorentz invariance violating effects.

o We began by reviewing the link between theories of quantum gravity and the

violation of Lorentz invariance (section 6.1).

o We then considered modilied dispersion relations and how they lead to LV
effects being present in the neutrino Hamiltonian. In this case, the Hamiltonian
in the mass basis remained diagonal. We were able to derive the neutrino
oscillation probability analytically for the two neutrino system and we will

utilize our findings in the next chapter (section 6.2).

e l'inally, we considered off-diagonal LV entries in the Hamiltonian, in both the
mass and Havour bases. We again found that we are able to derive an oscillation

probability when we consider just two neutrinos (section 6.3).

In the next chapter, we use the results derived here to numerically model how LV
effects, which are simplest in the mass basis, would modify the atmospheric neutrino

system. We consider the three neutrino system and LV effects in chapter 8.
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Chapter 7

Lorentz invariance violation-

simulations

In this chapter we present the results of our numerical simulations of Lorentz invari-
ance violation (LV) in atmospheric neutrinos using the package OSCFIT. We show
how the expected number of events 1s altered by the presence of LV effects and how
neutrino telescopes will be able to place upper bounds on model parameters. We
consider the models for two neutrinos introduced in chapter 6, where the LV effects
appear firstly in the diagonal terms of the Hamiltonian and also those models which

allow for off-diagonal entries.

7.1 LV models with a diagonal Hamiltonian

We firstly consider those models which result in the Hamiltonian in the mass basis
being diagonal. As described in the chapter 6, these effects may lead to atmospheric
neutrino oscillation probabilities of the form (6.7)

Am?*L

Plv, — v,] = sin? 20sin? |1.27 + 1.27 x 10°C*OAgE L] . (7.1)

where we have replaced the constants ¢ and . We begin by considering how these

effects may alter the observed spectra ot atmospheric neutrinos.
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7.1.1 Spectra including diagonal LV effects

As in chapter 5, we are able to examine how these novel eftects alter the spectra in
both E/cos¥ and L. We consider three models with differing energy dependences,

namely
o Model LV1 - with n = 1:
o Model LV2 - with n = 2:

e Model LV3 - with n = 3:

the first value being motivated by the SME’s with the other two values arising from

directly considering modifications to the dispersion relation of the form (6.1).

Model LV1

We begin by examining the spectra obtained when we consider the possibility that
neutrino oscillations occur as a consequence of LV only (Am?* = 0) when the LV
parameters are proportional to the neutrino energy. Iigure 7.1 show the expected
spectra of events as a function of F/cos®d and cos¢. Again, F is the reconstructed
neutrino energy whilst ¥ 1s the zenith angle, where cos corresponds to the path
length, L. In each case, the solid line corresponds to the Monte Carlo simulation with
standard oscillations whereas the dotted and dashed lines are the MO simulations tor
L.V only induced oscillations. T'he plot in the top left shows the spectra as a function
of F/cos whilst the bottom left shows the spectra as a function of cosv. We have
also plotted the ratio of the number of events compared to no oscillations. 'hese
plots are shown on the right of figure 7.1. 'I'he first thing we notice about the plots
on the left of figure 7.1 1s that, for the larger values of the LV parameter, there is a
definite suppression in the number of observed events by a factor of approximately
two. If, however, we consider the case that the LV parameter takes the smaller
value, 1t 1s more difficult to distinguish oscillations that arise as a consequence of
LV effects from those arising in the standard oscillation picture. If we consider the
frames on the right of this figure, we note that there are some features which would
allow us to dillerentiate between the two phenomenologies. In the top left frame.
we note that at low energies, the LV model does not result in an oscillation minima
whereas the standard oscillation model does. Secondly, although the difference is

small, the bottom right frame shows a deviation {rom the standard picture at high
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values of the zenith angle corresponding to large path lengths. It may be possible.
therefore to distinguish between the standard oscillation picture and this LV model
by considering the spectra in £/ cos and cos .

Secondly, we consider the case of standard oscillations plus Lorentz violation.
Figure 7.2 shows the spectra and ratio of number of events compared to no oscillations
as functions of F/cos? and cost?. Again, we note that large values of the LV
parameters results in a large suppression of the number of expected events. Also.
for very large values of the LV parameter, we see a considerable Hlattening in the
ratio of the number of events compared with no oscillations. 1'he situation is much
trickier, however, for very small values of the LV parameter. In this case, the number
of events expected 1s not suppressed and we also see an oscillation minimum in the
top right frame of figure 7.2. Therefore, this makes it very difficult to distinguish
between standard oscillations and those which are modified to include LV effects, it

the LV parameter is of the order of 107%° or smaller.

Model ILV2

We now consider the spectra when the LV parameters are proportional to the square
of the neutrino energy. Figure 7.3 shows the spectra and ratios of number of events
to those expected 1if there were no oscillations for the case in which we consider
oscillations as an effect of LV only. For large values of the LV parameters, we note
that the spectra are very difterent from standard neutrino oscillations. Firstly, as in
the case before, the number of events 1s signilicantly suppressed for very large values
of the LV parameter. Secondly, the shape of the spectra in the lower right frame is
much flatter than the case with no LV effects. For smaller values of the LV parameter.
the number of events and the shape of the spectrum 1s not significantly different from
the case with no LV effects. However, perhaps the most outstanding feature of the
LV model appears in the ratio of the number events to the number expected with no
oscillations, presented in the top right frame. For standard neutrino oscillations, we
observe an oscillation minimum, however, for large values of the LV parameter, the
ratio increases and so we see a peak. Kven for smaller values of the LV parameter.
the ratio 1s tlat and so by considering the spectra i1t should be possible to distinguish
between these two models.

It we consider the case where the LV eflects modily standard oscillations, then.

as in the case before, it becomes much more difficult to untangle any LV effects from
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Figure 7.4: As figure 7.3 but the coloured lines show the spectra for standard oscil-
lations plus LV.

205



those of standard oscillations. Figure 7.4 shows the spectra in this case. For large
values of the LV parameter, the only distinguishing feature is that the number of
events we expect to see 1s somewhat reduced and that the spectrum of events as a
function of cos ¢/ 1s much flatter. II we consider the ratios ol events, for large values
of the LV parameter, the curve in the top left frame 1s much flatter than we would
expect from standard oscillations. However, for smaller values of the LV parameter.
1t 18 extremely diflicult to distinguish between the case of standard oscillations and

that of standard oscillations which are modified by LV effects.

Model T.V3

We end our discussion of the spectra of expected events by considering the model
in which the LV parameters are proportional to the neutrino energy cubed. We
first consider the case in which neutrino oscillations arise as a consequence of LV
effects only. Figure 7.5 shows the spectra in this case. Again, we note that for large
values of the LV parameter, we would expect a suppression in the number of events
observed. If we consider the spectra as a function of the zenith angle only, as shown
in the lower right {rame of figure 7.5, then we would expect a much flatter spectrum
than that for standard neutrino oscillations. If we consider the same frame hut for
smaller values of the LV parameter, at small values of the zenith angle, it 1s very
difficult to untangle the case of LV eflects only from standard oscillations. However,
for larger values of the LV parameter, we would expect an increase in the number of
events observed, thus giving us a potential method to disentangle these two models.
since neutrino telescopes have very good angular resolution. If we consider the plots
ot the ratio of expected events to those with no neutrino oscillations, we see that
for large values of the LV parameter, there i1s a significant difference in the ratio
of the number of events. In addition, the shape of the curves differ from those of
standard oscillations. In the top frame, we observe the oscillation minimum tor the
standard oscillation case but not for the LV case. In fact, for small values of the LV
parameter, we note there 1s no difference between the LV model and the case of no

neutrino oscillations. I'his 1s repeated in the lower right frame.

7.1.2 Sensitivity regions

In the previous section, we saw how LV eflects can modily the number of events

seen 1n the detector and how they would modify the shape of the spectra. We now
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Figure 7.6: As figure 7.5 but the coloured lines show the spectra for standard oscil-
lations plus LV.

208



10%

—— 90%
— 99%

A,

10% 1

10-25 7 <

10%

102

0.0 02 0.4 0B 0.8 1.0

sin’28

Figure 7.7: Sensitivity contours at 90 and 99% confidence levels for LV effects only
(no standard oscillations) for model LV1.

turn to the discussion of the ANTARES sensitivity regions found from our numerical
simulations. As in the case of quantum decoherence, we are particularly interested

in finding upper bounds for the LV parameters.

Model TV

We firstly consider the case in which Am?* 0. so that there are no standard
oscillations, only those which arise as a consequence ot the LV effects. ligure 7.7
shows the sensitivity curves in this case. As before, 1t 1s clear that the smallest
values of the LV parameter may be probed when sin® 20 is close to one; the region
of parameter space in which we are most interested. We are able to place an upper
bound on Amn; of 8.2 x 107,

We also considered the case of non-zero Am? Figures 7.8 and 7.9 show the
obtained sensitivity volume in parameter space and the sensitivity contours when
they are projected onto the relevant coordinate plane, respectively. 1'he region of
interest lies above the surface in ligure 7.8, As we see from the projections of this
surface in figure 7.9, the experimental point of best fit of Am?* [140], denoted by the
triangle, lies within the sensitivity region. However, the region extends down to very
small values of Am? and so we find that our results allow the previous case where
neutrino oscillations arise as a consequence of LV effects only. I'he top right frame in
figure 7.9 shows the sensitivity contour for the Any as a function of the mixing angle.

. Again, zero 1s an allowed value for this parameter and so standard oscillations
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Figure 7.8: Sensitivity volume for model LV1 at 90 percent conlidence level for
standard oscillations plus diagonal LV effects proportional to the neutrino energy.
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(no standard oscillations) for model LV 2.

with no LV effects are also allowed. We are able to place an upper bound on Amn
of An; < 2.9 x 107%*. The third frame in this figure shows the remaining sensitivity

contours.

Model TV?2

1'he sensitivity contour for the case of LV eftects only with n = 2 is shown 1n figure
7.10. We are able to place an upper bound on the parameter Any of 1 x 107 eV 71,

The sensitivity volume and contours for this model when Am? is non-zero are
shown 1n figures 7.11 and 7.12 respectively. We lind that these ligures are similar to
those for model LV1. Once again, the region of parameter space that the ANTARES
neutrino telescope is sensitive to lies above the surface in figure 7.11. We find that
the experimental point of best fit, shown as a triangle in the top left frame of ligure
7.12, lies inside the sensitivity contours and that Am* = 0 is a consistent value, thus
indicating that in this model, oscillations due to LV eflects only are allowed. T'he top
left frame of ligure 7.12 shows the parameter Any as a function of the mixing angle.
We are able to place an upper bound on this parameter of 3 x 1072 ¢V =1 The
lower frame of figure 7.12 shows the standard oscillation parameter, Am?, against

the parameter, Ans.
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Figure 7.11: Sensitivity volume for model LV2 at 90 percent conlidence level for
standard oscillations plus diagonal LV effects proportional to the neutrino energy
squared.
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n An (eVl‘”) An(evl‘”]
(Am?* =10) | (Am* #£0)
1| 8.2x107% | 2.9 x 10—+
21 1.0 x 1073 | 2.9 x 1079
‘ X 6.9 x 1071

lable 7.1: lable showing the upper bounds on An, the LV parameter in diagonal
entries ot the Hamiltonian, for various values of n. I'he X indicates that we were
unable to place a bound on this parameter.

Model T.V3

The final model we consider has n = 3. If we set Am?* = 0, then we find that we are

unable to derive any meaningful results for this model.

However, if we have a non-zero Am?, we find we can obtain meaningful results.
1'he sensitivity volume and the sensitivity contours are presented in figures 7.13 and
7.14 respectively. In this case, the sensitivity volume shown in figure 7.13 is very
simple, being parabolic in shape with the region of interest lying above this surface.
1'he projections of this surtace, the sensitivity contours, are also much simpler than
the previous two cases. The top left plot of figure 7.14 shows Am* as a function
ol the mixing angle and we note that it 1s very similar to that obtained when we
consider only standard neutrino oscillations. Again the experimental point of best fit
is included in the sensitivity region but in this case, Am? = 0 is not included, so this
model does not seem to allow the possibility that neutrino oscillations arise as a solely
LV eftect. T'his 1s in direct agreement with the first part of our analysis as we were
unable to find any meaningtul results for this model when we considered LV eflects
only. T'he top right frame of figure 7.14 shows the LV parameter as a function of the
mixing angle. We note that zero is an allowed value for this parameter indicating
that standard neutrino oscillations are still allowed 1n this case. We are able to place
an upper bound on this parameter of 6.9 x 107% ¢V 7. The lower frame of figure
7.14 shows the relationship between the standard oscillation parameter Am* and the

LV parameter.

7.1.3 Summary

In this section, we have shown ANTARES will be able to place stringent bounds

on LV parameters which appear in the diagonal entries of the Hamiltonian. Table
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Figure 7.13: Sensitivity volume for model LV3 at 90 percent conlidence level for

standard oscillations plus diagonal LV effects proportional to the neutrino energy
cubed.
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7.1 shows the upper bounds for this model for various energy dependences. We
found that if the LV effects had a dependence on either the neutrino energy or the
neutrino energy squared, then oscillations may be induced from these eflects with
no contributions from standard oscillations. However, for the case of n = 3, then we
cannot measure the effects of LV only in atmospheric neutrinos. From a naturalness
perspective, we would expect Anp ~ 107201 for n > 2. We note that for the
case n = 2, the bounds obtained from our simulations surpass the expected value ot
the LV parameter by seven orders ol magnitude and so ANTARES may be able to
observe these eftects or rule out this model. For the case n = 3, however, the bound
from our simulations is ten orders of magnitude larger than that expected and so we
cannot rule out this model using atmospheric neutrinos. 'I'he situation is somewhat
more complicated if n = 1 as this corresponds to a = 0 in (6.2) and so we have no

indication as to the value of An except to say that it should be small.

7.2 LV models with off-diagonal entries in the

Hamiltonian

In the last section we saw how LV parameters in the diagonal entries of the Hamilto-
nian in the mass basis could alter neutrino oscillation phenomenology. In this section.
we examine the possibility that the LV parameters are present in the off-diagonal
entries of the Hamiltonian in the mass basis. Allowing this modification means the

neutrino oscillation probability takes the form (6.16)

1 2 2
Plv, — v, 2 [COS2 26 (1 — % — E—L COS(ZQL))
2 2 2
+sin? 26 ( — % — (wg;?a?) cos(ZQL))
1 4
—3 sin 46 (— C;-;;ll siHQ(QL))] : (7.2)

where, replacing ¢ and h, we use the notation w = Am?/4E and a; = 1 x 10°0+t) Erg,
with 2+ = 1 or 2. Since the mixing angle 1s large for atmospheric neutrinos, then we
expect that the cos®20 and sin 46 terms are small and so the spectra in this case
will be very similar to that for the diagonal LV case. We go, theretore, directly to

discussing the sensitivity regions.
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From equation (7.2), we note that we have four parameters, the mixing angle.
0. the standard neutrino oscillation parameter, Am? and two LV parameters, a; =
Re(a), the real part of the LV parameter and a; = Im(a), the imaginary part of
the LV parameter. From the discussion in chapter 3, we can realistically only model
three of these parameters simultaneously. We consider, therelore, four models with

various combinations of parameters:

e Model I.VA: T'he hirst model we consider is where nentrino oscillations arise as

a consequence of LV effects only, so we set Am* = 0 and fit for the parameters

Re(a), Im(a) and #:

o Model LVB: In this model, we consider the case where standard oscillations
are modified by LV effects but where the LV parameter is purely real, thus

reducing the number of parameters to three, namely, Am*, Re(a) and 8,

e Model LVC: In this case, we again consider how LV effects may modity stan-
dard neutrino oscillations but, in contrast to model LV B, we consider the case
where the LV parameter 1s purely imaginary. 'I'he three parameters we have in

this case are Am?*, Im(a) and 0.

o Model LVD: The final model we consider 1s the more general case of models

LVB and LVC. In this case we fit for the parameters Re(a), Im(a) and ¢ and
fix Am? = 2.6 x 107° eV* [140].

Betore we present our results, we have just one more comment to make. Since the
form of the neutrino oscillation probability is more complicated than any considered
betore, the sensitivity contours obtained by projecting the sensitivity volume onto
the relevant coordinate planes are not as ‘clean’ as those presented 1n the previous
chapters. We often find spurious points which do not form easily interpreted sen-
sitivity regions. 1'heretore, when we present the results of our simulations in the
following sections, we shall present the sensitivity volume and the projections at a
90% confidence level only. Although this is the case, we shall see that our sensitivity
regions still contain the experimental point of best fit for Am? and also that we are

still able to place upper bounds on the LV parameters.
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7.2.1 Model LVA

In this case, we consider neutrino oscillations which arise due to LV effects only. We
have three parameters, two LV parameters, Re(a), Im(a), and the standard neutrino

mixing angle, 0.

Model LVA with parameters proportional to the neutrino energy

We begin our discussion of the sensitivity regions for this model by considering the
case when the LV effects are proportional to the neutrino energy. IFigure 7.15 shows
the sensitivity volume in this case. I'he sensitivity region lies below the parabolic
curve but we also notice that there 1s a collection of points at larger values of Im(a).
T'he resulting projections of this volume are presented in figure 7.16. I'he top frame
in figure 7.16 shows the parameter Re(a) as a function of the mixing angle. We are
able to see the parabolic curve, as shown in figure 7.15, for small values of the mixing
angle but the contours are obscured by those points discussed above. However, we
are still able to place an upper bound on this parameter of 2.9 x 107*°. The top
lett frame in figure 7.16 shows the imaginary part of the LV parameter as a function
ol the mixing angle. Here, we see that the projection is much cleaner and that we
are able to accurately define sensitivity contours. We are, therefore, able to place an
upper bound on the parameter of 6.5 x 107%°, The final frame in figure 7.16 shows
the two LV parameters plotted against each other. Again we see that we are able to

accurately define sensitivity contours.

Model LVA with parameters proportional to the neutrino energy squared

We now turn to examining the sensitivity regions when n 2. T'he sensitivity
volume in this case 1s shown in figure 7.17.  T'he sensitivity volume lies below the
parabolic shaped surface. We again note that we have a collection of points at large
values of the imaginary part of the LV parameter. I'he sensitivity contours obtained
when this volume 1s projected onto the corresponding coordinate planes are shown
in figure 7.18. lThe figures in this case are very similar to the case when the LV
effects are proportional to a single power of the neutrino energy. T'he top left frame
shows the real part of the LV parameter as a function of the mixing angle, /. As in
the case we considered above, the sensitivity region lies within the parabolic curve
at low values of sin” 20 but we also have a collection of allowable points outside this

contour with which we cannot easily define a sensitivity contour. However, we note
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Figure 7.15: Sensitivity volume for model LVA at 90 percent confidence level for
off-diagonal LV effects proportional to the neutrino energy.
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that the parameter experiences a cutott and so we are able to place an upper bound
when sin“20 = 1 of 3.1 x 107%¢ ¢V ~!. The top right frame in figure 7.18 shows the
imaginary part of the LV parameter. We are again able to define a clean sensitivity
contour 1n this case and thus able to place an upper bound on this parameter of
8.2 x 107%¢ ¢V~  The lower frame shows the relationship between the two LV

parameters.

Model LVA with parameters proportional to the neutrino energy cubed

Finally, we consider model LVA when n = 3. For this model, with the LV param-
eters proportional to the neutrino energy cubed, we find that we cannot derive any
meaningful results from our numerical simulations. 1'his fits with the results we
found when we considered simple LV effects in the last section as, for this energy

dependence, we find that we cannot probe these etfects.

7.2.2 Model LVB

We now turn our attention to the second model outhned above. In this case we con-
sider modifications of standard oscillations where our LV parameters are considered

to be purely real.

Model LVB with parameters proportional to the neutrino energy

It we assume that the LV effects are dependent upon a single power of the neutrino
energy. then the sensitivity volume we obtain i1s shown in figure 7.19. T'he
sensitivity region in this case, lies above the scoop shaped surface but we note that
there is a collection of points at high Am* and Re(a) which do not seem to form a
surface. T'he projections of this volume are shown in figure 7.20. I'he top left frame
shows the standard neutrino oscillation parameter Am* as a function of the mixing
angle, . We first note that we have been able to construct a sensitivity contour,
this region being contained within the curve. However, as in the first model, we
also obtain regions ol points from which 1t 1s not possible to construct sensitivity
contours. However, the important features to note are that the experimental point
ol best fit from table 1.2, as denoted by the triangle is contained with the sensitivity
region and that this model allows the case whereby oscillations come about due to

LV effects only since Am* = 0 is included. The top right frame of figure 7.20 shows
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Figure 7.19: Sensitivity volume for model LVB at 90 percent confidence level for
standard oscillations and real off-diagonal LV effects proportional to the neutrino
energy.
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the LV parameter Re(a) as a function of the mixing angle. In this case, we are able
to construct a sensitivity region which includes the point Re(a) = 0 allowing the case
ol standard oscillations only. We also obtain points from which we are not able to
construct meaningful sensitivity contours. However, these points experience a cutoll
and so we are able to place an upper bound on this parameter of 3.1 x 107%%. I'he
bottom frame of figure 7.20 shows the two parameters plotted against each other. We
are, again, able to construct sensitivity contours in this case, the region of interest

lying within the contours.

Model LVB with parameters proportional to the neutrino energy squared

T'he sensitivity volume for model LVB when n = 2 i1s shown in figure 7.21.  T'he
volume 1s very similar to the case for n = 1, with the sensitivity region lying above
the scoop shaped surface. We also obtain a region ol points which do not seem
to easily form a surtace. 1'he similarity between the previous case and this case is
bourne out when we examine the sensitivity contours for this case, shown in figure
7.22. The top left frame shows Am* as a function of the mixing angle 8. We again
note that we are able to construct a sensitivity contour but that we also have a
large number ol spurious points from which we are not able to construct sensitivity
contours. However, we note that the experimental point of best fit denoted by the
triangle lies within the sensitivity region and that this model does allow oscillations
which arise as a result of LV effects only since Am? = 0 is contained within the
sensitivity region. L'he top right frame shows the LV parameter as a function of the
mixing angle. In the lower part of this plot, we are able to construct a sensitivity
contour but there is a large region ol allowed points above this contour. However.
there 1s again a cut-oll in these points and so we are able to place an upper bound
on this parameter of 6.1 x 107%° ¢V =1, The lower frame of figure 7.22 shows the two
parameters plotted against each other and in this case we are able to construct a
sensitivity contour. We note that the experimental point of best fit for Am* again

lies within the sensitivity region.

Model LVB with parameters proportional to the neutrino energy cubed

We conclude our examination of model LVB by considering the case when the LV
effects have a cubic dependence upon the neutrino energy cubed. In contrast to

model LVA, we are able to find meaningful results. T'he sensitivity volume for this
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Figure 7.21: Sensitivity volume for model LVB at 90 percent confidence level for
standard oscillations and real off-diagonal LV effects proportional to the neutrino
energy squared.
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Figure 7.23: Sensitivity volume for model LVB at 90 percent confidence level for
standard oscillations and real off-diagonal LV effects proportional to the neutrino
energy cubed.
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case 18 shown in figure 7.23.  T'he first thing to note is that the sensitivity volume
1s much simpler than the cases with n = 1 and 2, with the sensitivity volume in this
case lying above the parabolic shaped surface. However, we again obtain allowed
points outside this region at larger values of the LV parameter. 1'he projections of
this volume onto the coordinate planes are shown in figure 7.24. T'he top lett frame
shows the standard neutrino oscillation parameter, Am?, plotted as a function of the
mixing angle. We are able to construct a sensitivity contour which takes the same
shape as that when we consider just standard neutrino oscillations. We also note
that the experimental point of best fit, denoted by the triangle lies within this region.
However, we also note that we have some spurious allowed points not included within
this region. T'he top right plot shows the LV parameter as a function of the mixing
angle. We are able to construct a meaningtul sensitivity contour with the sensitivity
region lying below this contour. This contour contains Re(«) = 0 and so we see that
this model is consistent with standard oscillations only. 1'his frame also contains
spurlous points which experience a cut-ofl, enabling us to place an upper bound on
the LV parameter of 9.7 x 107** ¢VV7%. The lower frame of figure 7.24 shows the
standard oscillation parameter against the LV parameter. We are able to construct
a sensitivity contour, the sensitivity region being enclosed within the square shaped
contour. l'here are also points which lie outside this region, forming the diagonal

line.

7.2.3 Model LVC

1'his model contains both standard oscillations and an LV parameter which i1s purely

Imaginary.

Model LVC with parameters proportional to the neutrino energy

In this case, with n = 1, we are able to construct a sensitivity volume, shown in
figure 7.25. The region to which the ANTARLES neutrino telescope will be sensitive
lies above the parabolic shaped surtace. However, we also obtain a less well defined
sensitivity region at larger values of the LV parameter. 'I'he projections of this volume
are shown in figure 7.26. The top left frame in figure 7.26 shows Am?* as a function
of the mixing angle, . Here, we are not able to construct meaningtul sensitivity
contour as the points in the less well delined region wash out those forming the

normal parabolic shaped contour. However, we note that the current experimental
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Figure 7.25: Sensitivity volume for model LVC at 90 percent confidence level for
standard oscillations and imaginary off-diagonal LV effects proportional to the neu-
trino energy.

234



»
hhhdd LI Y WMoty

et ssens
" e
W08 00 4 o0

00 02 04 06 08 10 1 ' ' ' '
s 00 02 04 06 08 10
5in“28
NERTI
= fj
i)
E 1D-1 q
102
Fs
10
wed 2
1D-3D 10-29 10-28 10-2? 10-25 10-25 10-24 10-23 10-22 10-21 ‘]D-ZD

Imia)

Iigure 7.26: Sensitivity contours for model LVC at 90 percent confidence level
for standard oscillations and imaginary off-diagonal LV effects proportional to the
neutrino energy.
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point ol best fit 1s contained within the sensitivity region. In this case, it 1s very
difficult to tell 1t this model is consistent with oscillations which arise from LV effects
only, as we cannot be sure il the region extends down the parameter space to include
Am* = 0. However, if we examine the three dimensional sensitivity volume in figure
7.25, it seems as if Am* = 0 is not included within the sensitivity region and so.
therefore, we cannot measure neutrino oscillations which arise as a consequence of
LV etfects only. The top right frame shows the imaginary LV parameter Im(a) as
a Tunction of the mixing angle and we see that we are able to define a meaningful
sensitivity contour. 1'he sensitivity region is contained within the two curves. For
sin? 20 = 1, we are able to place an upper bound on the LV parameter of 3.2 x 10734,
The final, lower frame of figure 7.26 shows Am? against Im(a). We are able to
construct a sensitivity contour, the allowed region lying within the contours. T'he
triangle, denoting the experimental point of best fit for Am?, is contained within

this region.

Model LVC with parameters proportional to the neutrino energy squared

We now move on to examine the case when the LV parameters are proportional to
the neutrino energy squared, so n = 2. 1'he sensitivity volume we obtain 1s shown
in figure 7.27.  T'he sensitivity region is very similar to that for the case n = 1. In
this case, the sensitivity region lies above the well delined parabolic surface but we
again find a less well defined region, forming an inverted parabolic region, at higher
values of the LV parameter. I'he projections of this volume are shown in figure 7.28.
1'he top lett frame shows the relationship between the standard oscillation parameter
and the mixing angle. Again, we are not able to construct a well defined sensitivity
contour but we note that the experimental point of best fit 1s included within the
ill defined allowed region. 1'he top right frame of figure 7.28 shows the 1maginary
LV parameter as a function of the mixing angle. In this case, we are able to define
sensible sensitivity contours, the allowed region lying below the top curve. 'I'he point
with sin®26 = 1 and Im(a) = 0 is contained within this region and so we can probe
standard neutrino oscillations only. We are able to place an upper bound on the LV
parameter of 3.4 x 107%° eV ~!. The lower plot of figure 7.28 shows the standard
oscillation parameter, Am?, as a function of the LV parameter, Im(a). We are able
to construct a sensitivity contour in this case, the allowed region lying within the

two outer curves but excluding the central regions. We note that the experimental
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Figure 7.27: Sensitivity volume for model LVC at 90 percent confidence level for
standard oscillations and imaginary off-diagonal LV effects proportional to the neu-
trino energy squared.
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Figure 7.28: Sensitivity contours for model LVC at 90 percent confidence level
for standard oscillations and imaginary off-diagonal LV effects proportional to the
neutrino energy squared.
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point of best fit for Am? is contained within this region.

Model LVC with parameters proportional to the neutrino energy cubed

We conclude our discussion of model LVC by considering the case when the LV
effects are proportional to the neutrino energy cubed. Iigure 7.29 shows the
sensitivity volume in this case. The region of interest lies above the parabolic shaped
surface and also includes the collection ol points located at the larger values of the
LV parameter. I'he projections of this volume are shown in figure 7.30. In this case.
we are able to construct meaningful sensitivity contours for all three projections.
The top left frame, showing Am* against the mixing angle, is a modification of the
contour we would expect 1t we just considered standard oscillations. 1'he sensitivity
region lies within the curves. When we include LV effects, we obtain an additional
region located for larger values of Am? and low values of sin®20. We note that
Am? = 0 is not contained within the sensitivity contours and so we could not probe
oscillations that arise due to LV eflects only in this case. I'he experimental point of
best fit, denoted by the triangle, 1s, however, contained within this region. I'he top
right frame of figure 7.30 shows the LV parameter, Im(a), as a function of the mixing
angle. In this case, the sensitivity region 1s below the upper curve and we are able to
place an upper bound on this parameter at sin® 20 = 1 of Im(a) < 6.9 x 10716 ¢V 2,
The lower frame of this figure shows the parameters Am?* and Im(a) plotted against
each other. The sensitivity region lies between the curves with the experimental

point of best fit for Am* denoted by the triangle lying inside this region.

7.2.4 Model LVD

1'he final model we consider is a combination of the previous three. We include
standard neutrino oscillations but fix Am?* = 2.6 x 107 eV* [140] and fit for the

parameters Re(a), Im(a) and 6.

Model LVD with parameters proportional to the neutrino energy

As 1n the models above, we begin our discussion by considering the case when n = 1.
the LV effects being proportional to the neutrino energy. T'he sensitivity volume in
this case 1s shown if figure 7.31.  T'he sensitivity region lies above the surface at the

top left of this figure and we again obtain allowed points which are not contained
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Figure 7.29: Sensitivity volume for model LVC at 90 percent confidence level for
standard oscillations and imaginary off-diagonal LV effects proportional to the neu-
trino energy cubed.
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Figure 7.31: Sensitivity volume for model LVD at 90 percent confidence level for
standard oscillations and both real and imaginary off-diagonal LV eftects proportional
to the neutrino energy.
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within this region, particularly at larger values of the LV parameters. 1'he three
projections of this volume are shown in figure 7.32. ['he top lett frame shows the
real part of the LV parameter as a function of the mixing angle but we are unable to
construct any simple sensitivity contours. However, we are able to place an upper
bound on this parameter for this model of 7.3 x 107#*. The top right frame shows
the 1maginary part ol the LV parameter as a function of the mixing angle. In this
case, we are able to define a sensitivity contour for the region with large sin® 20 and
small Im(a) but we still have some points outside this region from which we cannot
easily construct a sensitivity contour. Since this parameter experiences a cut-off,
we are able to place an upper bound of 2.1 x 107**. The lower frame of figure 7.32
shows the two LV parameters plotted against each other. In this case, we are able
to construct sensitivity contours. 1'he allowed regions here are contained within the
large block at very small values of both parameters and also within the thin region

which goes from around 107! on one axis to 107** on the other axis.

Model LVD with parameters proportional to the neutrino energy squared

We now turn to examine the case when the LV eflects are proportional to the neutrino
energy squared. |'he sensitivity volume in this case is shown in figure 7.33. The
sensitivity volume 1s particularly ditficult to interpret. lhere i1s a surface at high
sin 20 and small values of the LV parameters above which there is a sensitivity region
but we also obtain many points which do not form easily interpretable surtaces. The
projections of this volume are shown in figure 7.34. 1he top right figure shows the
real part of the LV parameter as a function of the mixing angle. We are able to
construct a sensitivity contour, the allowed region lying below this curve. However,
we still obtain a few points outside of this region. We are able, in this case, to
place an upper bound of 9.7 x 1077 eV~ on Re(a). The top right plot shows the
imaginary part of the LV parameter against the mixing angle. Here, we cannot
construct any meaninglul sensitivity contours but are still able to place an upper
bound of 2.9 x 107%¢ eV ~! on Im(a). The bottom frame of figure 7.34 shows the two
LV parameters plotted against each other. 1'he sensitivity regions in this case have

been highlighted in yellow.

Model LVD with parameters proportional to the neutrino energy cubed

Finally, we finish by considering the case when n = 3. 1'he interpretation of our
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Figure 7.33: Sensitivity volume for model LVD at 90 percent confidence level for
standard oscillations and both real and imaginary off-diagonal LV eftects proportional
to the neutrino energy squared.
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Figure 7.35: Sensitivity volume for model LVD at 90 percent confidence level for
standard oscillations and both real and imaginary off-diagonal LV eftects proportional
to the neutrino energy cubed.
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results 1n this case 1s particularly ditficult. 1'he three dimensional parameter space
1s shown in figure 7.35. lor this energy dependence, we obtain a completely Hat
surface and there 1s no indication as to which side 1s contained 1n the sensitivity
region. However, if we consider the volume obtained at the 99% confidence level.
we note that surface lies at higher values of sin®20. Since we expect the sensitivity
region at the 99% confidence level to be smaller than that for the 90% confidence
level, we expect the sensitivity region to lie above the Hlat surface in figure 7.35. The
projections of this volume are shown in figure 7.36. As we would expect, the plots
of the real part of the LV parameter and imaginary part of the LV parameter as
functions of the mixing angle are simply vertical lines. From the discussion above.
we expect the sensitivity regions lie to the right of this line and therefore we are
able to place an upper bound of 6.9 x 107% eV =% on both of these parameters. The
bottom frame in figure 7.36 shows the real part of the LV parameter plotted against

the imaginary part. L'he sensitivity region lies within the square contour.

7.2.5 Summary

In this section, we presented our simulations for the ANTARES telescope when we
consider LV parameters which appear in the off-diagonal entries of the neutrino
Hamiltonman. We considered four models with various combinations of parameters
and showed how we may place upper bounds on these parameters. Furthermore, we
considered LV effects which were proportional to the neutrino energy, £, and also £*
and £°. Table 7.2 shows a summary of the upper bounds found from the sensitivity
contours. Assuming that, the off-diagonal LV eflects can be parameterized in the
same way as the extra term in (6.2), then we are able to examine how stringent
our bounds are in the same way as we did for the case when the LV eftects were
contained 1n the diagonal entries of the Hamiltonian. For the case n = 2, we would
expect from a naturalness point of view the parameter n ~ 1. Therelore, the term
would be suppressed by one power of the Planck energy. 1'his would indicate the
LV parameter should be of the order of 107%® eV =1, From table 7.2, we see that
the largest bound for this parameter i1s five orders of magnitude smaller and the
smallest upper bound we have from our simulations are eight orders of magnitude
below what we would expect. Therefore, ANTARES should be able to observe these
effects or rule this model out. 'I'he case tor n = 3 1s somewhat ditterent as we would

expect the LV parameters to be suppressed by the Planck energy squared and so be
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model | parameter n =1 n=>: n=13
(eV™1) (eV™4)
1 Re(a) 2.9 x107% | 3.1 x 1077¢ X
Im(a) 6.5 x 1074 | 8.2 x 1077 X
2 Re(a) 3.1 x 107%* | 6.1 x 107%¢ | 9.7 x 10~
Im(a) - - -
3 Re(a) - - -
Im(a) 3.2 x 10741 | 3.4 x 107% | 6.9 x 1071¢
4 Re(a) 7.3 x 107 | 9.7 x 10779 | 6.9 x 107
Im(a) 2.1 x107%1 | 2.9 x 1077 | 6.9 x 1071¢

Table 7.2: lable showing the upper bounds on the ofl-diagonal LV parameters, for
varions values of n. The X indicates that we were unable to place a bound on this

parameter whilst the dashes denote that this parameter 1s not considered in this
model.

of order 107°% eV 7%, The smallest value of the LV parameter we have in this case is
10 orders of magnitude larger than the expected value and our biggest upper bound
1s 12 orders of magnitude away. However, without a full theory ol quantum gravity
which allows these LV effects, our order of magnitude arguments may be naive and

the LV parameters may be larger than we expect.

7.3 Summary

In this chapter, we have described how the ANTARLES neutrino telescope will be able
to place upper bounds on Lorentz violating parameters when we consider atmospheric

neutrino oscillations. For simplicity, we considered a system of two neutrinos.

o We first considered the case when the LV parameters are contained within the

diagonal entries of the neutrino Hamiltonian. We showed how these effects
would modity the spectra of the number of observed events. We showed how
the ANTARLES experiment would be able to probe the parameter space of

interest and place upper bounds on the diagonal LV effects (section 7.1).

s Secondly, we considered the case when the LV effects are present in the off-
diagonal entries of the neutrino Hamiltonian. Again, we saw that the ANTARES
experiment will be able to examine the relevant regions ol parameter space and

place upper bounds on these parameters(section 7.2).
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Although these simulations are specific to the ANTARES experiment, we would
expect other neutrino telescopes, such as AMANDA and lceCUBLE, to obtain similar
results.

Specifically, we saw that including LV elfects modified the spectra of observed
events in both E/cosd¢ and cos?¥. When we consider atmospheric neutrino oscilla-
tions which arise due to LV eflects only, the spectra is significantly altered which
would enable us to distinguish between this model and standard oscillations. We
also saw that il LV eflects modily standard oscillations, then, for large values of
LV parameters, the cases of standard oscillations and standard oscillations plus LV
effects could be distinguished due to the large differences in the expected number of
events. In this case, however, separating the two models by the shape of the spectra
alone 1s much more dithcult.

We then considered how the ANTARES experiment will be able to place upper
bounds on the LV eflects when they are present in either the diagonal or off-diagonal
terms of the neutrino Hamiltonian. In both cases, we were able to fit the experimental
data to the oscillation probabilities to construct sensitivity regions within a three
dimensional parameter space. Using these sensitivity volumes, we constructed two
dimensional sensitivity contours which enabled us to find the upper bounds for these
parameters. In the diagonal case, the interpretation ol our results was relatively
straightforward. However, when the LV parameters are contained within the oft-
diagonal entries of the neutrino Hamiltonian the interpretation of the sensitivity
volumes 1s more dithcult.

Finally, we considered, in each case, how the upper bounds we obtained for the
LV parameters compared with the values we would expect from a naturalness point
of view. We saw that if the LV ellects are dependent upon the square of the neutrino
energy, then the bounds appear to be particularly stringent, being several orders
of magnitude smaller than those expected. For the case when the LV effects were
proportional to the cube of the neutrino energy, then the situation was very ditferent.
In this case, the bounds on the LV eflects were several orders of magnitude larger
than those expected. 1'he imterpretation of the case when the case when the LV
effects are proportional to the neutrino energy is also very difficult as we have no
indication as to the natural value of this parameter {rom a quantum gravity point of

view.
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Chapter 8

Quantum decoherence and Lorentz
invariance violating effects on

astrophysical neutrinos

In this chapter, we show how quantum decoherence and Lorentz invariance violating
effects may manifest themselves in the neutrino system, when the neutrinos originate
from astrophysical sources. We begin by reviewing what we would expect to observe
in the absence of new physics. We then show how the effects ot both quantum

decoherence and the violation of Lorentz invariance would attect this neutrino system.

8.1 Astrophysical neutrinos and standard oscilla-

tions

Throughout this chapter, the importance of neutrino flavour ratios will be paramount.
As we discussed in chapter 1, there are two mechanisms for the creation of neutrinos

around cosmic accelerators; pion decay, which produces neutrinos in the ratio
R, R, :R, =1/3:2/3:0, (8.1)
and neutron decay which produces neutrinos with the Havour ratio

H, ' K

e L

R, =1:0:0. (8.2)
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1'heretore, we may consider that we know the flavour content at the source of these
neutrinos. We can, therefore, calculate the relative number of different types ot
neutrino we would expect to see at our detector due to neutrino oscillations.

The standard neutrino oscillation probability is given by (cf. (1.5)):
(8.3)

P(I/a — 1/5) 50[5 — 42: UajUﬁijUm 51n2[Am§Z(L/4E)

1>

where Am?, = m? — m{, the U,’s are components of the unitary leptonic mixing
matrix (1.6), with F the energy of the neutrino and L is the path length. Here, we
have assumed for sumplicity that the mixing matrix is real and so we do not consider
effects due to CP violation. Since we are considering neutrinos which have travelled
vast distances, we are able to simplify (8.3) further as the phase of the sine term will
be averaged out. We therefore let sin?[Am?(L/4F)] — § and so the probability is

2

P(vo = v5) — Sap—2% UsiUsiUsiUs:. (8.4)

>t

Using the most up to date mixing angles |[142|, from 2005, in table 1.2 with the

mixing matrix in (1.6), we find the standard oscillation probabilities are

Plv. — v, 0.564.
Plve — v, — 0.264.
Plv, — v, 0.180.
Plv, = v, — 0.365,
Plv, — v, — 0.367.
Plv, — v, 0.449. (8.5)

Using these probabilities, it is possible to find the expressions describing the Hux
ol astrophysical neutrinos expected at the detector. Assuming that only electron
and muon type neutrinos are created, an assumption justified in chapter 1, we may

parameterize the nitial Hux of neutrinos at the source as

(DE 5'(Al)tot-.

e, (1 — &)@, (8.6)
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I'igure 8.1: The astrophysical neutrino Hlux at the detector as a tunction of the
parameter ¢ which embodies the ratio of flavours at the source, for standard neutrino
oscillations (see |79]).

where ¢ € |0, 1| and ®,,, is the total flux. In terms of the neutrino probabilities (8.5).

the neutrino Havour composition at the detector is

K, (Plve = ve|®,, + Plv, = v|®,, + Pl = 1| @y, )/ Pror
Fow (Pl = 0,0, + Pl = 000, + Plos = 1,]0,,)/ @y
K, (Plve = v-|®,, + Plv, = v:|®,, + Plv, = v, )/ ot (8.7)

and so we find

R, 0.264 + 0.300¢.

R, 0.365 — 0.101¢,

R, 0.367 — 0.187=. (8.8)
1The flavour ratios are shown diagrammatically in figure 8.1. T'he observed ratios

expected at the detector from a pion decay source is found by setting ¢ = 1/3 in
(8.8) and gives
R, : K

e Y

C R, = 0.364 : 0.331 : 0.305, (8.9)

whilst the ratios for a source of neutrinos from neutrino decay 1s found by setting
n =1 giving
R, : K

e Yo

: R, = 0.564 : 0.264 : 0.18. (8.10)
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Since we know the expected flux of astrophysical neutrinos we would see at the
detector in the absence of any new physics, we are now in a position to examine
how quantum decoherence and the violation of Lorentz imvariance would affect the

astrophysical neutrino system.

8.2 Quantum decoherence

We saw in chapter 4 how quantum decoherence effects would manitest themselves in
the atmospheric neutrino system and there, we considered a system containing just
two nentrinos. In the case of neutrinos which originate in astrophysical neutrinos.
they travel large distances and so all three flavours of neutrino have time to mix.

We need, therefore, to extend the analysis in chapter 4 from two to three neutrinos.

8.2.1 Quantum decoherence in a three neutrino system

lo model quantum decoherence 1n a three neutrino system, we continue in an anal-
ogous way to the method in chapter 4, so we need to represent H and p in (4.11)
in terms of a specitic basis. We choose for this basis, the generators of SU(3), L,.
where 1 = 1...8 and g, the identity matrix. I'herefore, we write the Hamiltonian.

the density matrix and the additional term, §H, in terms of these basis matrices as

1 1 1
P = 5!0#[’#7 H = §hUL1,: 5H = §h;[/ﬁ (811)

where the (GGreek indices run from 0 to 8. If we decompose the time derivative in
terms of the same basis, then we find (cf. (4.18))

F.)u - (h;w + h;w) Pu. (812)

where both i and &’ are now 9 x 9 matrices. We may 1n principle, therefore, introduce

28 decoherence parameters but this is impractical. To continue, we therefore adopt a

255



block diagonal form, in order that we may solve the resulting dillerential equations:

(

W= 2

o OO O O O O O o O

0
A
B
0
0
0
0
0
0

\

Uuouuuo\
B 0O 0D00D0O0 0
A 0O 0DDOD
0 U 0000 0
0 0 =z y 0 0 0 (8.13)
0 0 vy =z 0 0 0
0 0 00 a b 0
0 0 005b aol
000000 §)

This form of the matrix, /', was considered in reference |191] with a simple diagonal

matrix being considered in |132|. It is perhaps somewhat surprising that, although we

have three neutrinos, only two of the parameters, ¥ and o, violate the conservation

ol energy within the neutrino sector. If we include standard oscillations, then the

time evolution of the density matrix becomes

where p = (pg, p1...ps)! and

[0 0 0 0

0 A B+wy 0

0 B —wy A 0

0 0 0 .

H=1 0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

\ 0 0 00

p=—2Hp. (8.14)
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
x Y+ way 0 0 0
Y — wai z 0 0 0
0 a b4 wsys 0
0 b — wsg o 0
0 0 0 5

(8.15)

Here, the quantities w;; are the standard neutrino oscillation parameters and are

. Am? . . . . .
given by w;; = 2. where the indices ¢ and j represent the mass eigenstate. Sub-

4F

stituting (8.15) into (8.14), we obtain nine differential equations for the components
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of the density matrix:

o U:

p1 — —2Apy — (B +wa)pa:

P2 —2(B —way)p1 — 2Apy:

P3 —2Wp3:

Pa —2xps — 2(y + ws1)ps:

P3 —2(y — ws1)pa — 225!

Z —2aps — 2(b + waz)pr:

pr — —2(b—ws3)ps — 2apr:

Ps —2dps. (8.16)

Assuming the neutrino 1s initially of Havour a, then the components of the density

matrix at £ = () are

2
Po — §(U§1 + sz + Uj‘:;)?

1 2Ua1Ua21
. 0:

P3 Usy — Uly:
4 2U,1Uq3:
Ps 0:

pe  — 2U4U,3:
7 0:
1

g \/?;(Ujl + Uzy = 2U3%); (8.17)

where the quantities U,; are elements of the standard mixing matrix (1.6) and we
have assumed that these components are real. Integrating (8.16) with the initial
conditions given in (8.17) enables us to find the density matrix in terms of £. The

probability of oscillation 1s given by

Plve = 1] = Tr(p(t)ps(0)) (8.18)

257



where p,(0) 1s the density matrix for a neutrino of flavour b # a:

Ui UnUp UnlUp
pp(0) = Upi Uy Ub22 UpaUss : (8.19)
UnUpa Unln U

The probability of oscillation from v, — 14 with a # b is therefore given by

1 _
Plvw = vy §+(%fwm%—%kwl (8.20)
1 _
‘|'_(U31 + sz - 2U§3)(U§1 + Ub22 - QUbZS)e 2k
+2Ua1Ua2UblU52€_(A+A)L [COS(QQQlL) —|— ( — ) sin(QﬂglL)]
21
—(z+2)L (Z T SIC) .
12U U, 53U Upse cos(2Qs L) + 50 sin(2€5, L)
31
—(ata)L (a T Cl) .
12U 5 U, 53Uy Usse cos(2Q32L) + sin(2Q32 L) | .
32
where
A 2 2 T %
Oy = ( 4”;21) A = AP
A 2 2 T %
Slg] = ( 477;31) — [Z — 33]2
A 2 2 %
Oy = ( 4”;32) “Ja— a]2] . (8.21)

Note that complete positivity is not satisfied for this model. If we again consider
neutrinos travelling large distances from astrophysical sources, then we may average
the sine and cosine terms in (8.20). Assuming for simplicity ® = ¢, the probability

then reduces to

1 1
Plv, — 1 3 + EG_QSL [B(Ujl - Ua,22)(U621 - U622)
HUZ + Uz, = 2U7)(Ugy + Uy = 2U35) |

2H%



We can now derive equations describing the flavor composition at the detector. Using
the up to date mixing angles from table 1.2, parameterizing the initial flux as in (8.6)

and using equation (8.7), the flavour composition at the detector is

1
R, il e~ 110,287 — 0.065),
1
K, - e~ 2L[0.096c — 0.03],
1
R, i e~ 110,189 — 0.034]. (8.22)

T'herefore, as L — oo, the signature ol quantum decoherence in astrophysical neu-

trinos 1s an equal number of each flavour of neutrino.

8.2.2 Detecting quantum decoherence in astrophysical neu-

trinos

In the last section, we saw that the inclusion of quantum decoherence into the three
neutrino astrophysical picture would lead to an equal number of each flavour ot neu-
trinos being detected. Unlortunately, as we saw 1n section 8.1, sources which produce
neutrinos through pion decay generate almost this ratio after oscillations. I'herefore,
neutrinos which originate from these sources are not very helpful in probing these
effects. However, since neutrinos from neutron decay oscillate to flavour ratios very
much different from R, : R,, : R, = 1/3 :1/3 : 1/3, they provide a useful probe

with which to look for quantum decoherence etfects.

Y

Decoherence parameters with no energy dependence

In this case, the main signature of quantum decoherence would be an observation of
equal number of all three flavours of neutrinos. The flavour ratios in (8.22) approach
their asymptotic values of 1/3 for path lengths L >> §~!'. If we assume a source
ol electron neutrinos at a distance of 10 kiloparsecs, then we can probe values of
6 ~ 10741 m~1, or equivalently, § ~ 10777 GleV. As we saw in chapter 5, the current

bounds for the quantum decoherence parameter with no dependence on the neutrino
energy, from Super-Kamiokande and K2K data is of the order 107%* GeV [180].
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Iigure 8.2: T'he flavour ratios at the detector as a function of energy including
decoherence ellects proportional to the mverse of the neutrino energy. In the frame
on the left, the initial ratios are those values found from pion decay (R, @ K.,
R, =1/3:2/3:0) whilst those on the right are from neutron decay (R,. : R
R, =1:0:0). In both cases, we considered a model with 26 = (E/10 TeV')%.

[T

Decoherence parameters inversely proportional to the neutrino energy

It we consider the case when the quantum decoherence parameters are proportional
to the inverse of the neutrino energy, then for a 10 kiloparsec source of 1'e}’ neutrinos,
we could probe p* ~ 107t m™! T'eV, where u* = § /. T'herefore, we find an upper
bound on this parameter of ¢ < 107%* GeV* at GeV energies.

In addition, the flavour ratios in (8.22) take on an energy dependence due to the
decoherence parameter. ‘|'herefore, direct observation of quantum decoherence may
be possible and trom the value of the energy at the threshold of these eftects, we may
be able to place an accurate bound on the size of the model parameters. Figure 8.2
shows this diagrammatically with the threshold set so 20L =1 at I = 10 T'eV. The
lett frame shows the case when the initial lux of neutrinos 1s from pion decay, here
quantum decoherence has very little eftect on the Havour ratios. I'he frame on the
right shows the case when neutrinos originate {rom neutron decay. Here, quantum

decoherence makes a marked difference in the ratios observed.

Decoherence parameters proportional to the neutrino energy squared

Considering the case when the quantum decoherence parameters are proportional
to the neutrino energy squared, then for a source of I'eV electron neutrinos at a

distance of 10 kiloparsecs, we could test « < 107*' m~™! T'eV ™%, where v = &/ E*.
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Figure 8.3: As figure 8.2 but for quantum decoherence parameters proportional to
the neutrino energy squared.

In this case, therefore, we would be able to place a bound of kK < 107%* GeV ™%, at
(eV energies, on the quantum decoherence parameter. I'his is thirty-three orders of
magnitude better than the current upper bound from Super-Kamiokande and K2K
data |180].

Since the quantum decoherence parameter is dependent on the neutrino energy.
the flavour ratios also take on an energy dependence. lFigure 8.3 shows the flavour
ratios as a function of energy in this case when we have set 20L = 1 at I = 10 T'eV.
1'he situation 1s similar to that in the last subsection, since, for neutrinos which
originate from pion decay, very little difference is seen with quantum decoherence
effects whilst for neutrinos which come from neutron decay, a large diflerence in the
observed tlavour ratios 1s expected. However, the shape of the curves 1s somewhat

different.

8.2.3 Summary

Using neutrinos which originate in astrophysical objects, we will be able to place very
stringent bounds on quantum decoherence parameters. In fact, we saw that, even
for the model in which the quantum decoherence parameter is inversely proportional
to the neutrino energy, then we will be able to surpass the existing bounds by many
orders ol magnitude. In addition, for two of the models, the Havour ratios take on

an energy dependence which may be observed.
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8.3 Violation of Lorentz imvariance

In chapters 6 and 7, we saw how the violations ol Lorentz invariance could affect the
neutrino system and how atmospheric neutrinos could be used to place bounds on the

Lorentz invariance violating parameters. Here, we consider astrophysical neutrinos.

8.3.1 Three neutrino LV models with a diagonal

Hamiltonian

In an analogous way to that in chapter 6, we may find oscillation probabilities which
mvolve Lorentz imvariance violation for three nentrinos where we consider the Hamil-
tonian of the system to be diagonal. In this case, the probability of oscillation is
given by equation (1.5) with

Am?. Am

2,
5 — F}m + Aijn, [823)

where the subscripts ¢ and j denote the mass eigenstates. I'he LV parameters.
therefore, are found within the sine and cosine terms ot the oscillation probability.
As we discussed above, when the neutrinos travel over large distances, the phase
information contained within these arguments 1s lost. I'herefore, when the LV pa-
rameters lie within the diagonal entries of the Hamiltonian, we are unable to glean
any 1nformation about them from astrophysical neutrinos.

An alternative to the method we consider here was considered in reference |89|.
Rather than consider how LV may alter flavour ratios, the author of |89] considered
how modifications to the dispersion relation would alter the neutrino oscillation
length. By considering neutrinos {from astrophysical sources detected by neutrino
telescopes, the author of reference |89| was able to show that neutrinos could probe

effects suppressed by up to seven powers of the Planck energy.

8.3.2 Three neutrino LV models with an off-diagonal

Hamiltonian

In order to potentially observe LV effects within the astrophysical neutrino system.
we turn to Hamiltonians with off-diagonal LV entries. lo do this, we would like to

continue in an analogous way to that in chapter 6, however, the situation becomes
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very diflicult as, in general, we have three mixing angles, three mass diflerences and

three LV parameters. I'herefore, we take three approaches to solving this problem:

o We begin by examining the how the LV effects alter the flavour ratios at thresh-
old, that 1s, when the LV elflects just start to be observable.

e We also consider how LV ellects alter the flavour ratios in the high energy limit.
e l'inally, we examine the intermediate energy range numerically.

We first do this when the Hamiltonian has its simplest form in the mass basis.

8.3.3 LV parameters in the mass basis

In order to examine how the LV effects manifest themselves, we begin by considering
a first order approximation to the LV parameters when we consider the Hamiltonian

to take the form

wonh
H=| h 22 » (8.24)
hohoT

where h 1s an LV parameter.

Flavour ratios at threshold

In the standard oscillation case, the time evolution of the density matrix is given by

dp
=By (8.25)

where B is the matrix representing the Hamiltonian in the SU(3) basis. Perturbing

the density matrix and the matrix B:

g = po+op
B — B+6C, (8.26)

where the quantities pg and B are the unperturbed density matrix and Hamiltonian
matrix in the SU(3) basis and the quantities multiplied by ¢, namely p; and .

contain the LV effects. Here, ¢ 1s a small quantity, representing the perturbation.
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Substituting (8.26) into (8.25) and equating coeflicients gives
p1 = Bpy 4+ Cpy. (8.27)
Defining the vectors X, y as
po = Ux. p1=Wy. (8.28)

where the components of the p vectors are the components of the unperturbed den-
sity matrix (pg) and perturbed density matrix (py) and W is the unitary matrix

diagonalizing B, we may rewrite equation (8.27) as
y—WT'BWy =W'CWx. (8.29)

Since we know W, B, (' and can evaluate x, then solving this equation will give
us the perturbation to the density matrix from which we may calculate oscillation
probabilities. In reality, this calculation still results in complicated expressions for
the probabilities. However, the expressions are greatly simplified if we assume very
long path lengths. 'I'his 1s entirely reasonable since we need only consider the three
neutrino system when considering neutrinos tfrom astrophysical sources. Using the
most up to date values ol the mixing parameters Irom table 1.2, assuming a nor-
mal mass hierarchy and that the LV parameter, a, 1s real, we find the oscillation

probabilities to be

Plv. — v, 0.549 — 9.124 x 107" g £,

Plv. = v, 0.269 + 3.142 x 10"+ 2q £,

Plv. = v, — 0.18245.982 x 10"t qE"H,

Plv, = v, 0.364 — 2.549 x 107"t ¢ E™H1,

Plv, = v, 0.368 — 2.887 x 107"t 2q Fmt!,

Plv, = v, 0.450 — 3.095 x 10”2 gt (8.30)
aly

where we set h = 22~ have written out in full the explicit dependence of the LV
parameter on the neutrino energy and replaced ¢ and h. Using these probabilities.
1t 1s possible to lind expressions describing the flux of neutrinos originating in astro-

physical sources. If we assume that only electron and muon neutrinos are created.
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we parameterize the initial flux as in (8.6), and so are able to find the flavour com-
position at the detector in terms of the neutrino oscillation probabilities, as in (8.7).

We therefore find the flavour ratios to bhe

K, 0.269 + 0.280c — a E"+'[0.123 — 0.314] x 107114,
g, 0.364 — 0.095¢ + aE"'[0.340¢ — 0.025] x 10711,
K, 0.368 — 0.186c + a E"'[0.887= — 0.289] x 107", (8.31)

Lt

-

Again, 1t 1s 1important to note that these expressions are valid only at the threshold

where the LV effects begin to modity standard neutrino physics.

Flavour ratios in the high energy limit

In addition to examining threshold effects, 1t is also possible to examine the flavour
ratios 1n the high energy limit. Since standard neutrino oscillations are inversely
proportional to the neutrino energy, at high energies these eflects may be neglected.

In this case, we assume the Hamiltonian has the form

Hpigng = (8.32)

- S O
> O
o >~

where h 1s a LV parameter. When represented in the basis with the generators of

SU(3) as the basis matrices, equation (8.32) takes the form

[0 0 0 0 A 0 h 0 )
0 0 -2 —-h 0 h 0 0
0 2 0 0 A 0 —h 0
s 0O h 0 0 0 0 —h 0
Hyigis = 5 ~h 0 —h 0 0 h 0 —3h (8.33)
0 A 0 0 —h 0 0 0
—h R0 0 0 —V3h
\ 0 0 0 0 V3o V3B 0 )
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In order to find the components of the density matrix and hence the probability, we

must solve the eight differential equations given by
D=1l VLR (8.34)
where the components of the vectors D and R are given by

dpr
D; = o R = pi(1). (8.35)

Using the initial conditions in equations (4.24) and (4.26), and averaging out the
sine and cosine terms, we find the probability that a neutrino ot Havour a oscillates

imto one of Havour b is

Plvg — v %[3 + U Una (14U Uyy + 2U3 Uy + 2UsUys — 2U2 — 2U2, + 4UR)
| F U1 Uz (200 Uy + 1403 Uy + 209Uy — 20U, + 405, — 2U%)
U Unp (20U Uy + 20y Ups + 14U Ups + 4UE, — 2U2 — 2UE)
+UL (=200 Upy — 2Un U + AU Usg + 205 — Uy — Up)
FUL (20U, Upy + AUy Uys — 20Uy Upy — U+ 2U%, — UR)
FU2(4U Uy — 2Us Ups — 22U Uys — UL — UE + 2U%4)], (8.36)

where U;; are the components of the standard mixing matrix (1.6). Using the up to
date mixing angles from table 1.2, the high energy limit of the neutrino oscillation

probabilities are

Plv. - v. — 0.697.
Plv. = v, 0.273,
Plv. — v, 0.030.
Plv, = v, 0.721.
Plv, — v, 0.006,
Plv, — v, 0.964. (8.37)
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1'he flavour ratios in the high energy lumit are

R, 0.273 + 0.424¢.
I, — 0.721 —0.448¢.
K, 0.006 + 0.024e. (8.38)

where, as previously, ¢ denotes the flavour composition at the source. T'hus, at very

high energies, we would expect a large suppression of tau neutrinos.

Intermediate flavour ratios

We have found how the LV ellects manifest themselves at threshold and at very high
energies. However, comparing the flavour ratios of (8.31) with (8.38) we see that,
for example, the electron neutrino component is initially reduced by the LV effects
whereas at high energies 1t has increased above the standard values. In order to
examine the behaviour ol the neutrino flux between the threshold energy and the
high energy limit, we turn to numerical calculations. If the LV eflects originate in the
mass basis, then assuming the LV parameters are all equal, the Hamiltonian takes
the form in (8.24). lransforming to the flavour basis, using the most recent values
for the mass ditlerences and mixing angles from table 1.2 and replacing ¢ and h, the

Hamiltonian takes the form
Hnum — Hstand + HLV-. (839)

where the standard neutrino oscillation part 1s

7.29 x 107° 4.94 x 107" 4.30 x 10~*
4.94 x 107 1.36 x 1072 1.40 x 1072 | . (8.40)
4.30 x 107 1.40 x 107% 1.38 x 1072

Hstand - E

and the Hamiltonian containing the LV parameters is

0.183 0.141 0.047
Hry = hE™ x 10°¥D | 0141 0.063 0.021 | . (8.41)
0.047 0.021 0.120
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Figure 8.4: 'I'he estimated effects on the ratio of Havours observed after propagation
when the LV ellects originate in the mass basis. 1'he top frames correspond to
neutrinos produced by pion decay at the source whilst the lower plots correspond
to (anti)-neutrinos produced from the decay of neutrons. 1he lett and right plots
correspond to models in which the LV parameters are proportional to £* and £~
respectively.
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Assuming a particular model of Lorentz invariance by picking a value for n and a
value for the parameter A, we reduce H,,,,, to a function ot the neutrino energy only.
If we loop over values of the energy, then for each case we may find the eigenvectors
ot H,..» and hence the probability. In this way, we are able to numerically find the
Havour ratios of astrophysical neutrinos at an Karth based detector including LV
effects. Iigure 8.4 shows these flavour ratios for n = 2. 3 where we have assumed
the parameter h takes the value E"7'. These numerical calculations show that the
transition from standard neutrino oscillation phenomenology to the phenomenology
of large LV effects takes place very suddenly. If modifications to the neutrino flavour
ratios were ohserved which were similar to figure 8.4, then we would be able to
place a bound on the LV parameter by measuring the threshold energy at which the

transition between standard and LV phenomenology took place.

8.3.4 LV parameters in the flavour basis

In an analogous way to the approach taken above, we may also consider the situation
when the Hamiltonian takes the form in equation (8.24) in the flavour basis rather
than the mass basis. In this case, the situation 1s much more complicated as we first
transtorm from the flavour basis to the mass basis and then apply the perturbation
methodology we used 1n the previous section. However, we find that the expressions
for the oscillation probabilities and flavour ratios are identical to those when the LV
effects manifest themselves in the mass basis. That is, the oscillation probabilities
are given by (8.30) with the flavour ratios being given in (8.31). In this case, however,

the high energy limits do difler from the first case and are given by

Plv. - v. — 0.556.
Plv. —» v, 0.222,
Plv. — v, 0.222,
Plu, = v, — 0.389.
Plv, — v, 0.389,
Plv, — v, 0.389, (8.42)
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Figure 8.5: I'he estimated effects on the ratio of Havours observed after propagation
when the LV eflects originate 1 the flavour basis. 1The top frames correspond to
neutrinos produced by pion decay at the source whilst the lower plots correspond
to (anti)-neutrinos produced from the decay of neutrons. 1he lett and right plots
correspond to models in which the LV parameters are proportional to £* and £~
respectively.
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leading to Havour ratios in the high energy limit of the form

K. 0.222 + 0.333e.
R, — 0.389 —0.167¢.
R, 0.389 + 0.167¢. (8.43)

Iigure 8.5 shows the results ol numerical simulations of the Hlavour ratios for this
model. 1t 1s interesting to note that the curves have approximately the same form as
those presented in figure 8.4 with the exception of the high energy limiting behaviour.
Whilst the model in which the IV effects manifest themselves in the mass basis is
easily distinguishable from the standard case via the suppression of tau neutrinos.
in this model, this is not the case and as such it i1s extremely dificult to observe the

new physics.

8.4 Summary

In this chapter, we showed how neutrinos which originate in astrophysical objects
may be utilized to examine both quantum decoherence and the violation of Lorentz

Invariance.

o We began by showing how we may calculate the flavour ratios expected at
the defector when we take into account standard oscillations. We considered
two particular cases; neutrinos which originate from pion decay and neutrinos

which are created from the decay of neutrons (section 8.1).

e We then considered how the addition of quantum decoherence to standard os-
cillations would alter the expected flavour ratios. We tound that neutrinos from
pion decay cannot be used as probes of quantum decoherence as 1t 1s almost 1m-
possible to distinguish between quantum decoherence induced oscillations and
standard oscillations. However, we found that by considering neutrinos from
neutron decay, the two scenarios were distinguishable and we were able to place
order of magnitude estimates onto the upper bounds we place on the quantum
decoherence parameters. By considering a source of T'el” (anti)-electron neu-
trinos at a distance of 10 kiloparsecs from the Earth, we found upper bounds
of
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— § < 107%7 eV for the model with no dependence on the neutrino energy:

— & < 107% GeV*? for the model inversely proportional to the neutrino

energy.

— & < 107" GeV™! for the model proportional to the neutrino energy

squared (section 8.2).

e Finally, we considered how astrophysical neutrinos may be used to probe vi-
olations of lLorentz invariance. We found that the situation was difficult to
model and approached 1t i three different ways. We considered LV effects
at threshold and also the effect LV has on neutrino flavour ratios in the high
energy limit. We also utilized numerical methods to extrapolate between these

two regions (section 8.3).

Overall, 1t seems that astrophysical neutrinos will be able to probe for new physics
to very high precision. 1'his high precision i1s a result of the long path lengths the

neutrinos have to travel and also the very high energies they have.
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Conclusions

1'he search for a theory which describes gravity at quantum scales goes on. I'he
traditional way to tackle this problem is to take a theoretical approach and many
advances have been made in the last twenty years. Until recently, however, taking
an experiumental approach to quantum gravity was not considered as any eflects were
believed to be too small to be observed. 'I'his view point has changed.

In this thesis we have considered how two possible quantum gravity etfects, quan-
tum decoherence and the violation of Lorentz invariance, would alter the oscillation
probability for neutrinos. We specifically consider those high energy neutrinos cre-
ated within the Earth’s atmosphere and in astrophysical objects. such as active
galactic nuclei, which would be observed by neutrino telescopes such as ANTARLES
and lceCUBE.

In chapter 4, we saw how quantum decoherence could be a result of neutrinos
interacting with a quantum gravitational environment and saw how this aflected the
system ol atmospheric neutrinos. We used these results in chapter 5 to simulate
the regions of parameter space the ANTARES neutrino telescope would be able to
probe and also to place upper bounds on the quantum decoherence model param-
eters. We followed the same methodology in chapters 6 and 7 when we considered
quantum gravity induced violations of Lorentz invariance. In both these cases, we
saw that high energy neutrinos, observed by neutrino telescopes, would be able to
place stringent bounds on the size of these novel effects.

In chapter 8, we extended our analysis to include all three flavours of neutrinos as
we considered those neutrinos which originate in cosmic accelerators. We found that.
because of the very high energies these neutrinos may have and because they travel
vast distances, neutrino telescopes, such as lceCUBLE, will, in the case of quantum
decoherence, surpass existing bounds on model parameters by as much as 33 orders
of magnitude. In the case of Lorentz invariance violation, we tound the analysis

was very involved and, therefore, could not place any bounds on the size of these
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effects. We were, however, able to show how these effects would alter the number of
neutrinos we would expect to see, providing us with the prospect of observing these
eftects, it they exist.

Overall, we found that neutrino telescopes have great potential to observe, or
rule out, these ellects and so, upon their completion, we will enter a very exciting

time 1 quantum gravity phenomenology.
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