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Abstract 

The electroweak standard model (Salam-Weinberg) i s w e l l 
known t o be a s a t i s f a c t o r y and c o n s i s t e n t t h e o r e t i c a l 
d e s c r i p t i o n of a l l the experimental data we have obtained so 
f a r . I n t h i s t h e s i s , we discuss p o s s i b l e phenomenology which 
goes beyond the standard model, w i t h p a r t i c u l a r emphasis on 
the n e u t r a l c u r r e n t e f f e c t s . F i r s t o f a l l , the l e f t - r i g h t 
symmetric extension o f the standard model i s discussed and we 
f i n d l i m i t s on i t s parameters. We show t h a t t h i s model 
cannot e x p l a i n c e r t a i n newly r e p o r t e d and h i g h l y 
s p e c u l a t i v e events a t t h e CERN c o l l i d e r [ 3 ] , which i n 
p r i n c i p l e could be caused by t h e decay i n t o two W's of a new 
heavy Z. We then discuss composite models where th e r e i s a 
strong e x p e c t a t i o n t h a t t h e r e should be two n e u t r a l Z's of 
s i m i l a r mass. We study the e f f e c t s o f these on n e u t r a l 
c u r r e n t phenomenology and show t h a t i n general t h e e x t r a Z 
would be very hard t o de t e c t . A comparison o f our model w i t h 
a p a r t i c u l a r s u p e r s t r i n g model [ 6 ] i s als o made. 
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INTRODUCTION 

I t i s by now w e l l e s t a b l i s h e d t h a t t he "standard model", 
based on the group SU(3)xSU(2)xU(l) i s compatible w i t h a l l , 
confirmed, experimental data. I n p a r t i c u l a r , t h e Salam-
Weinberg sector, i n which the Higgs mechanism i s used t o 
break the SU(2)xU(l), agrees w i t h a l l weak arid electromagnetic 
phenomenology. Thus Chapter 1 i s s p e c i a l l y d esigned t o 
review and discuss the h i s t o r y and success o f the standard 
model i n a l l p o s s i b l e n e u t r a l c u r r e n t s dynamics. There i t 
w i l l be e x p l i c i t l y seen t h a t the electroweak component o f the 
standard model i s f a i r l y able t o e x p l a i n a l l t h e , so f a r , 
obtained and confirmed experimental data. However, t h i s 
success does not n e c e s s a r i l y mean t h a t the model i s c o r r e c t 
a t t h e fundamental l e v e l ; i t c o u l d i n s t e a d be an 
a p p r o x i m a t i o n t o something v e r y d i f f e r e n t , w i t h t h e 
experimental e r r o r s concealing higher order c o r r e c t i o n terms. 

One obvious a l t e r n a t i v e model, which has been s t u d i e d 
p r e v i o u s l y , i s the l e f t - r i g h t symmetric model based on the 
group S U ( 2 ) L x S U ( 2 ) R x U ( l ) [ 1 , 2 ] f o r t h e e l e c t r o w e a k 
i n t e r a c t i o n s . This model c l e a r l y r e q u i r e s a modified Higgs 
mechanism which gives a mass t o the gauge bosons associated 
w i t h both SU(2) f a c t o r s . Provided the mass of the r i g h t -
handed boson i s much gre a t e r than t h a t o f the left-handed 
boson, t h i s model gives s i m i l a r "low energy" r e s u l t s t o the 
standard model. Therefore, Chapter 2 i s mainly aimed t o 
review the c u r r e n t s i t u a t i o n o f the L-R symmetric model i n 
d e t a i l . There i t w i l l be seen t h a t p r e s e n t a v a i l a b l e 
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experimental data r e q u i r e s M w > 400 GeV. 
R 

Although, as noted above, t h e r e i s no confirmed evidence 
f o r e f f e c t s o u t s i d e t h e s t a n d a r d model, t h e r e are some 
unconfirmed " e v e n t s " which m i g h t be r e l e v a n t t o our 
discussion. I n p a r t i c u l a r t h e r e are two r e p o r t e d events[3] 
which might be caused by a heavy Z' decaying i n t o two W's. I n 
Chapter 3 we s h a l l study whether these events, i f r e a l , might 
be explained i n terms of L-R symmetric model. 

A much more basic a l t e r n a t i v e t o the standard model i s 
t o assume t h a t the quarks, leptons and gauge bosons of the 
weak i n t e r a c t i o n s (W± and Z°) are composite o b j e c t s , i n which 
the fundamental p a r t i c l e s (preons) are bound by some new, 
presumably gauge, i n t e r a c t i o n . This i n t e r a c t i o n i s o f t e n 
r e f e r r e d t o as quantum h y p e r c o l o u r dynamics (QHCD). By 
analogy w i t h what happens i n QCD the preons and the QHCD 
gauge bosons are assumed t o be c o n f i n e d , so t h a t o n l y 
h y p e r c o l o u r s i n g l e t s are seen. The observed weak 
i n t e r a c t i o n s are r e s i d u a l (Van der Waal type) forces which 
a r i s e i n a s i m i l a r way t o the way i n which nuclear forces 
a r i s e from QCD. A c t u a l l y , the o r i g i n a l a p p l i c a t i o n o f the 
Higgs mechanism, by Weinberg, was t o nuclear forces and the p 
and U) were assumed t o be gauge bosons. This idea was, o f 
course, k i l l e d w i t h the development of QCD, when i t was 
r e a l i s e d t h a t the p and CO were composite, and nuclear forces 
were not fundamental. What i s being suggested here i s t h a t 
something s i m i l a r might happen i n the case o f Salam-Weinberg 
model. The phenomenological success of t h i s model would then 
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be understood as b e i n g due t o t h e f a c t t h a t even an 
" e f f e c t i v e " , low-energy, Lagrangian would be renormalisable, 
so t h a t i t would have t o look l i k e a Higgs broken gauge 
theory, a t l e a s t up t o the energy where composite e f f e c t s 
become i m p o r t a n t . T h e r e f o r e , Chapter 4 d i s c u s s e s t h e 
composite models i n d e t a i l s . 

There i s , however, one possi b l e d i f f e r e n c e between t h i s 
type of theory and the Salam-Weinberg model. Since the 
photon i s a massless p a r t i c l e , i t seems n a t u r a l t o assume 
t h a t i t r e a l l y i s a genuine gauge boson. (The b a s i c 
i n t e r a c t i o n s could then be a l l unbroken gauge t h e o r i e s : QHCD, 
QCD, and electromagnetism.) This almost c e r t a i n l y means t h a t 
the e f f e c t i v e theory w i l l c o n t a i n two U ( l ) f a c t o r s , because 
we expect the composite s t a t e t o include an i s o t r i p l e t (W and 
one n e u t r a l ) and an i s o s i n g l e t ( c f . the P and CO). Thus the 
theory w i l l have 3 n e u t r a l v e c t o r bosons, or 4 i f we consider 
the L-R symmetric v e r s i o n . 

Chapters 5 and 6 deal w i t h t h i s model. Since t h e r e i s 
no obvious o r i g i n o f p a r i t y v i o l a t i o n i n composite models, we 
study the L-R symmetric case i n general. However, i n Chapter 
5 we r e s t r i c t our discussion t o the case where M w i s very 
heavy so t h a t the right-handed SU(2) i s i r r e l e v a n t . 

Some other fashionable models, which r e q u i r e e x t r a gauge 
bosons, are the s u p e r s t r i n g - i n s p i r e d models. I n these models 
t h e c u r r e n t e x p e r i m e n t a l l i m i t s on t h e mass o f t h e new 
n e u t r a l gauge bosons from low-energy n e u t r a l c u r r e n t 
experiments and from the pp CERN c o l l i d e r are r a t h e r weak 
[ 4 , 5 ] . We compare these r e s u l t s w i t h t h e extended 
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electroweak theory i n Chapter 7. There we e q u a l l y n o t i c e 
t h a t our a n a l y s i s reasonably agree w i t h the a n a l y s i s made i n 
s u p e r s t r i n g models [ 6 ] . 

F i n a l l y , Chapter 8 i s simply devoted t o a summary of the 
major r e s u l t s presented i n t h i s t h e s i s . 

4 



CHAPTER 1 

The standard Model 

1.1 I n t r o d u c t i o n 

The h i s t o r y o f a t t e m p t s t o u n i f y t h e weak and 
electromagnetic i n t e r a c t i o n i s very long and probably can be 
regarded as beginning w i t h the work o f E. Fermi [ 7 ] i n 1934. 
The standard SU(2)xU(l) model , proposed and e s t a b l i s h e d by 
Salam-Weinberg t o u n i f y t h e e l e c t r o m a g n e t i c and weak 
i n t e r a c t i o n c o r r e c t l y p r e d i c t e d weak n e u t r a l c u r r e n t s as w e l l 
as the existence and p r o p e r t i e s o f W-, z bosons. This model, 
t h e o r e t i c a l l y , was suggested f i r s t by S. Glashow [ 8 ] i n 1961 
and i n more d e t a i l by S. Weinberg [ 9 ] i n 1967 and f i n a l l y , by 
A. Salam [10] i n 1968 i n a v a r i e t y of s i t u a t i o n s but s t i l l 
remained experimentally unconfirmed. I n 1973 [11] i t s f i r s t 
p r e d i c t i o n was confirmed when people obtained experimental 
n e u t r a l c u r r e n t d a t a which p r e c i s e l y matched w i t h t h e 
t h e o r e t i c a l p r e d i c t i o n made by Salam and Weinberg e a r l i e r . 
Later, i n 1983, the W- and Z bosons were seen a t the CERN 
[12,13,14,15]. Before going i n t o the d e t a i l e d study o f the 
Salam-Weinberg model, we s h a l l b r i e f l y discuss i n a general 
way, gauge t h e o r i e s and the Higgs mechanism. 
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1.2 Gauge theories 

Nature has p r o v i d e d us w i t h two k i n d s o f symmetry 
p r i n c i p l e s , i . e . l o c a l symmetry p r i n c i p l e s and g l o b a l 
symmetry p r i n c i p l e s . T h e o r i e s which are based on l o c a l 
symmetry p r i n c i p l e s are c a l l e d gauge t h e o r i e s . E i n s t e i n also 
made use of these symmetry p r i n c i p l e s and by con s i d e r i n g the 
symmetry under general co-ordinates t r a n s f o r m a t i o n s he was 
l e d t o the general theory o f r e l a t i v i t y , i . e . the theory of 
t h e g r a v i t a t i o n a l i n t e r a c t i o n . Since t h e g r a v i t a t i o n a l 
i n t e r a c t i o n i s not r e l e v a n t t o our research work, we need not 
t o d i s c u s s i t i n t h e f o l l o w i n g s e c t i o n s , b u t i t i s 
u n i v e r s a l l y agreed t h a t t h e t h e o r y o f g r a v i t a t i o n a l 
i n t e r a c t i o n i s a theory o f exchange o f massless g r a v i t o n s . 
Thus the present b e l i e f i s t h a t a l l p a r t i c l e i n t e r a c t i o n s , 
c u r r e n t l y known and regarded as fundamental, may be described 
by gauge t h e o r i e s . I n the next s e c t i o n we describe the 
simplest such theory. 

1.3 Local gauge 8 Y m B " > f r y i n QED. 

Here we begin our disc u s s i o n by w r i t i n g down t h e f r e e 
Lagrangian f o r a Dirac p a r t i c l e 

L = ? ( i Y y 3 y -m) * (1.3.1) 

where "m" i s the mass of the Dirac p a r t i c l e and i// i s the 
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f i e l d associated w i t h i t . We use the n o t a t i o n 

(1.3.2) 

Now we c o n s i d e r t r a n s f o r m i n g t h e complex f i e l d , 
d e s c r i b i n g an e l e c t r o n i n space and time, according t o : 

Lagrangian t h a t remains i n v a r i a n t under t h e above phase 
t r a n s f o r m a t i o n i s s a i d t o possess a l o c a l gauge symmetry. I t 
i s easy t o see t h a t the second term appearing i n equation 
(1.3.1) i s unchanged by the l o c a l phase t r a n s f o r m a t i o n as 
given i n equation (1.3.2). However the f i r s t term changes 
according t o : 

"ty'XV = +iM3ru(x) (1.3.4) 

The e x t r a term i n equation (1.3.3) breaks l o c a l gauge 
inva r i a n c e . Note t h a t i f a ( x ) i s constant t h i s term i s zero 
i m p l y i n g t h a t equation (1.3.1) i s i n v a r i a n t under g l o b a l 
phase t r a n s f o r m a t i o n . I f we demand t h a t t h e L a g r a n g i a n 
s h o u l d be i n v a r i a n t under t h e above l o c a l phase 
t r a n s f o r m a t i o n , then we n a t u r a l l y must look f o r a modified 
Lagrangian so t h a t we can g e t r i d o f t h e second t e r m 
a p p e a r i n g i n e q u a t i o n ( 1 . 3 . 3 ) . I n o r d e r t o f i n d t h i s 
m o d i f i c a t i o n we need t o introduce a v e c t o r f i e l d A,, w i t h some 

<Mx) - r (x) = e a< x> 4>(x) (1.3.3) 

where a (x) i s r e a l and depends upon space and time. A 
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t r a n s f o r m a t i o n p r o p e r t i e s such t h a t the Lagrangian becomes 
a u t o m a t i c a l l y i n v a r i a n t . For t h i s purpose t h e c o v a r i a n t form 
o f the d e r i v a t i v e , D̂ , i s constructed [ 1 6 ] : 

3 y D y = 3 y ~ i e A ^ (1.3.5) 

where the ve c t o r f i e l d A transforms as 

A -»• A +— 9 a (1.3.6) 
y y e y x ' 

Then the t r a n s f o r m a t i o n (1.3.5) i s used t o o b t a i n the 
symmetry o f t h e Lagrangian under t h e l o c a l gauge 
t r a n s f o r m a t i o n . The i n v a r i a n t Lagrangian i s 

L = ? ( i Y^D^ - m) * 

= * ( i YM3 y-m)'/' + elpy^A^ • (1-3.7) 

Thus equation (1.3.7) shows t h a t i n order t o demand the 
in v a r i a n c e of t h e L under l o c a l gauge t r a n s f o r m a t i o n s , we are 
n a t u r a l l y forced t o introduce a v e c t o r f i e l d A^ t h a t couples 
t o t he Dirac p a r t i c l e i n p r e c i s e l y the same way as t h e photon 
f i e l d . Now i f t h i s newly introduced v e c t o r f i e l d ; A^, i s 
considered t o be the p h y s i c a l photon f i e l d then we need t o 
add i t s K.E term i n the Lagrangian (1.3.7). 

The in v a r i a n c e o f L r e q u i r e s t h a t t h e K.E term i s als o 
i n v a r i a n t under (1.3.6). I n t h i s regard, the K.E term only 
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the ant i -
could i n v o l v e ̂ symmetric f i e l d t e n s o r F d e f i n e d by 

F = d A -d A (1.3.8) 
yv y v v y x ' 

Thus the complete i n v a r i a n t Lagrangian under the l o c a l 

phase transformation f o r QED a t t a i n s the f i n a l form a s : 

F F M V 

L = H i y M 3 ,-m) iH-ei^Y^A, - (1.3.9) 

I t i s very important to note t h a t a mass term of the form 

m2 ^ A y f o r the newly introduced v e c t o r f i e l d A^ i s not 

compatible with the gauge i n v a r i a n c e and hence i s not allowed 

i n the Lagrangian (1.3.9). Hence the l o c a l gauge symmetry 

r e q u i r e s the photon to be m a s s l e s s . Now i t i s q u i t e c l e a r 

t h a t the phase d i f f e r e n c e w i l l always be c r e a t e d whenever the 

phase i s changed l o c a l l y and t h i s phase d i f f e r e n c e could 
for 

e a s i l y be detected u n l e s s otherwise i t i s compensated/in some 

way. The i n t e r e s t i n g r e s u l t i s t h a t i t seems as i f the 

photon f i e l d was simply introduced j u s t t o c a n c e l the phase 

d i f f e r e n c e t h a t was d e v e l o p e d due t o t h e l o c a l gauge 

transformation and then subsequently t o p r e s e r v e the l o c a l 

gauge symmetry. 

1.4 L o c a l gauge S Y * 1 1 1 1 ^ ^ i n OCD 

Quarks are fermions which c a r r y a colour l a b e l 
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q^, i = 1,2,3. Thus the Lagrangian f o r a f r e e quark i s 

3 

L = £ q j ( i Y y 9 u " mjq-j (1.4.1) 
j = l 

where f o r s i m p l i c i t y we c o n s i d e r only one f l a v o u r of 

quark. Now we c o n s i d e r the e f f e c t on L i f the quark f i e l d i s 

transformed under the most general l o c a l gauge tr a n s f o r m a t i o n 

which mixes the quarks 

q(x) - Uq(x) - e* a a ( x ) T a q ( x ) 

CL (1 + i a a ( x ) T a ) q ( x ) (1.4.2) 

where U i s a s p e c i a l u n i t a r y 3 x 3 matrix, i . e . detU = 1 

and °ta(x) are the group parameters. T a with a = 1,2, 8 

are the generators and they s a t i s f y the a l g e b r a 

[ T a , T b ] = i f a b c T c (1.4.3) 

where the f a b C a r e c a l l e d the s t r u c t u r e .constants of the 

group SU(3). 

I n the l a s t l i n e of equation (1.4.2) we have expanded 

us i n g the assumption t h a t the a a ( x ) a r e v e r y s m a l l . The 

d e r i v a t i v e of equation (1.4.2) g i v e s 

^ q ' ( x ) = ( l + i a a ( x ) T a ) ^ q ( x ) + t T f lq (x) 3 ^ * (x) 

(1.4.4) 
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which shows t h a t the second term appearing on the r i g h t 

hand s i d e of equation (1.4.4) d e s t r o y s the i n v a r i a n c e of the 

Lagrangian ( 1 . 4 . 1 ) . So we need then t o introduce l i g h t gauge 

f i e l d G a t o obtain a c o v a r i a n t d e r i v a t i v e such t h a t the 

i n v a r i a n c e of L i s preserved a u t o m a t i c a l l y . By making the 

replacement 

3 -*- D = 9 +igT„G a (1.4.5) 

where every gauge f i e l d G^transforms as 

G a - G a - - 9 a a ( x ) (1.4.6) 

the equation (1.4.1) becomes: 

L = q(t Y y 9 y - n»)q - g(qY PT aq)GjJ (1.4.7) 

T h i s equation (1.4.7) i s the QCD analogue of QED (1 . 3 . 6 ) . 

Because the generators T a do not commute (equation (1.4.3)) 

t h i s i s an example of a n o n - A b e l i a n gauge t h e o r y . To 

pr e s e r v e i n v a r i a n c e of L we r e q u i r e t h a t the gauge f i e l d s G^ 

be transformed according t o : 

I f G* are regarded as the p h y s i c a l coloured gauge f i e l d s 

then the i n v a r i a n t K.E. terms corresponding* t o th e s e f i e l d s 
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a r e n a t u r a l l y r e q u i r e d t o be added i n the Lagrangian (1.4.7). 

Therefore the complete gauge i n v a r i a n t QCD Lagrangian f o r 

i n t e r a c t i n g coloured quarks q and v e c t o r gluons G^ with 

coupling g i s then achieved as 

L = q ( i Y y 9 M - m ) q - g(qY* JT aq)G^ -\ G^G^ V (1.4.9) 

where the f i e l d s t r ength tensor i s defined by 

G U v = 8 u G v - 3 v G u - 9 G £ G v f a b c (1.4.10) 

Thus our a r b i t r a r i n e s s i n mixing the t h r e e quark c o l o u r 

f i e l d s , l o c a l l y , r e q u i r e s e i g h t v e c t o r gluon f i e l d s t o be 

i n t r o d u c e d i n o r d e r t o compensate a l l t h e p o s s i b l e 

t r a n s f o r m a t i o n s . Because an e x t r a term appears i n the f i e l d 

s t r e n g t h t e n s o r defined i n equation (1.4.10), the K.E. term 

i n equation (1.4.9) now i n c l u d e s the k i n e t i c p a r t and an 

induced s e l f - i n t e r a c t i o n between the t h r e e and four c o l o u r 

v e c t o r gluons . F i n a l l y , i f we look a t the i n v a r i a n t 

Lagrangian (1.4.9), we see t h a t the mass terms jft?_G.* G^, as 

f o r the photon i n Q.E.D, are forbidden, implying t h a t the 

gluons a r e a l s o m a s s l e s s . 

1.5 Hiqqs mechanism 

The important message of the l a s t s e c t i o n i s t h a t i n 
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gauge t h e o r i e s the f o r c e s a r e v e c t o r - l i k e and of i n f i n i t e 

range, i . e . they correspond to exchange of m a s s l e s s , spin-one 

p a r t i c l e s . I t i s easy t o see t h a t i f we added a mass term 

f o r t h e v e c t o r bosons then t h e gauge i n v a r i a n c e of t h e 

Lagrangian would be l o s t . 

There i s t h e r e f o r e a s e r i o u s d i f f i c u l t y i n applying these 

i d e a s t o weak i n t e r a c t i o n s which appear to be mediated by 

massive v e c t o r bosons. (Indeed t h e s e v e c t o r p a r t i c l e s a r e so 

massive t h a t a t present e n e r g i e s the i n t e r a c t i o n appears as a 

p o i n t - l i k e fermion i n t e r a c t i o n , although i t i s known t h a t 

t h i s cannot be t h e t r u e i n t e r a c t i o n b e c a u s e i t i s not 

r e n o r m a l i z a b l e ) . 

The s o l u t i o n to t h i s problem l i e s i n the f a c t t h a t i t i s 

p o s s i b l e to break the gauge i n v a r i a n c e through spontaneous 

symmetry breaking i n such a way t h a t the r e n o r m a l i z a b i l i t y 

property remains t r u e . I n such a broken symmetry the gauge 

bosons i n general a c q u i r e mass. To e x p l a i n how t h i s happens 

we c o n s i d e r t h e c h a r g e d meson which i s a s s o c i a t e d w i t h 

complex s c a l a r f i e l d <J> d e s c r i b e d by the Lagrangian 

2 * . 
L - J s ^ )*(3U<i>) J (<M*) 2 (1.5.1) 

1 a 
under <f> + 4> e transformation, L has a U ( l ) g l o b a l gauge 

symmetry. Now suppose n 2<0 and A>o then the p o t e n t i a l 

2 
V(4>) - <j>.<t>* + |(<t>.<J>*)2 (1.5.2) 

13 



has a minimum a t 

<}>.(}>* = v 2 (1.5.3) 

and t h i s minimum p o t e n t i a l corresponds to the ground s t a t e or 

vacuum ( i . e . no p a r t i c l e s ) . 

|<<|>>|2 = - = V 2?t0 (1.5.4) 
A 

S i n c e , however, e q u a t i o n (1.5.3) o n l y d e t e r m i n e s t h e 

magnitude of | <f> | the vacuum i s degenerate. When we choose 

a p a r t i c u l a r < <t> > s a t i s f y i n g e q u a t i o n (1.5.4) we 

au t o m a t i c a l l y break the symmetry. We t r a n s l a t e the f i e l d <J> 

to a t r u e ground s t a t e i n terms of new n , C by r e p l a c i n g 

<|>(x) = — (v + n(x) + i£(x)) i n equation (1.5.1) and we 
2 

get 

L = ^ ( 9 F ) 2 + H ( 9 n ) 2 _ u
2
n
2 _ M 2 V 2 + c u b i c and q u a r t i c 

M M 2 
terms i n n,£ (1.5.5) 

The f i r s t term of equation (1.5.5) i s the K.E. p a r t f o r 

the E, f i e l d and i s seen t o be ma s s l e s s . The t h i r d term of 

t h i s equation i s a mass term f o r n - f i e l d . Thus the theory 

now d e s c r i b e s two s c a l a r p a r t i c l e s ; one i s mas s l e s s and the 
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other having a mass. The appearance of a m a s s l e s s p a r t i c l e 

when a g l o b a l symmetry i s broken i s a v e r y g e n e r a l phenomena 

- such p a r t i c l e s a r e c a l l e d "Goldstone bosons'*. At f i r s t 

s i g h t t he a d d i t i o n of o t h e r unobserved m a s s l e s s s t a t e s 

suggests t h a t t h i s mechanism of symmetry breaking causes 

f u r t h e r problems with gauge t h e o r i e s . However, when we apply 

the method to a theory p o s s e s s i n g a l o c a l symmetry i t t u r n s 

out t h a t the massless s c a l a r s a r e not p h y s i c a l s t a t e s (they 

can be e l i m i n a t e d by s u i t a b l e c h o i c e of gauge) and t h e i r 

degrees of freedom provide the e x t r a degrees of freedom f o r 

the gauge bosons which become massive. 

I n s t e a d of 3 we use D defined by 

D y = 3 p - t e A y (1.3.4) 

where the gauge f i e l d transforms as 

\ * A y + i v 3 y e U * 5 * 6 ) 

and 

A ( v + h ( x ) ) e l 6 < x ) / v (1.5.7) 

The gauge i n v a r i a n t l agrangian can then be w r i t t e n as: 
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( 3 P +1 e A p) d>*( 8 t e A Hi" y d ) * * X(4 *) 
2 

4 yv (1.5.8) 

A 

where F ^ v F term i s p u r e l y K.E p a r t f o r the gauge f i e l d 

We take y 2 < 0 s i n c e we a r e i n t e r e s t e d t o generate the 

masses by spontaneously symmetry breaking 

hi 3 h ) A v h + Jse v A Avh Ah 

4 yv (1.5.9) 

T h i s L a g r a n g i a n c o n t a i n s two i n t e r a c t i n g m a s s i v e 

p a r t i c l e s , a v e c t o r gauge boson A^ and a massive s c a l a r h, 

which i s c a l l e d a "Higgs p a r t i c l e " . Here the v e c t o r boson A^ 

has eaten up the unwanted "Goldstone boson" and hence becomes 

m a s s i v e . T h i s k i n d of mechanism i s c a l l e d t h e "Higgs 

mechanism" and i s the r e s u l t of a spontaneously broken l o c a l 

symmetry. 

1.6 S a l am-Weinberg IT! odel 

We have seen i n the previous s e c t i o n t h a t the Higgs 

mechanism i s r e s p o n s i b l e f o r generating the masses of the 

v e c t o r bosons which mediate the weak i n t e r a c t i o n . I n the 

electroweak SU(2) x U ( l ) model, t h e r e w i l l be four v e c t o r 

bosons, t h r e e (W-, Z°) a s s o c i a t e d w i t h the weak i n t e r a c t i o n 
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and one (the photon) with the electromagnetic i n t e r a c t i o n . 

Therefore i n t h i s s e c t i o n we w i l l make use of the Higgs 

mechanism i n such a way t h a t the W—, Z bosons become massive 

but the photon remains massless. I n order t o do t h i s , we 

f i r s t c o n s t r u c t t h e L a g r a n g i a n f o r SU(2) l o c a l gauge 

i n v a r i a n c e . 

We begin with the s i m p l e s t form of such a Lagrangian 

L = ( - V(<j>) (1.6.1) 

where I i s a complex s c a l a r doublet of an SU(2) group and 

can be w r i t t e n 

(j>1 + i <j>2 

• 3 + * * 4 

(1.6.2) 

where <$> l f e t c . a r e r e a l s c a l a r f i e l d s . 

The s e l f - i n t e r a c t i o n p o t e n t i a l i s given by 

V(<f>) = M
2 ( ( . + (j) + A(4> + <|))2 (1.6.3) 

S i n c e i n the weak i n t e r a c t i o n t h e r e a r e * t h r e e generators 

corresponding to the SU(2) group, we w i l l r e q u i r e t h r e e gauge 

f i e l d s to a s s o c i a t e with these generators. Thus we r e p l a c e 

3 by the c o v a r i a n t d e r i v a t i v e a s : 
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d - D - 3 +i g^f- W a (1.6.4) 
y y U 2 y 

where a = 1,2,3. 

Under (j)'(x) = (l+a(x) .T/2)C(I (x) gauge transformation, the t h r e e 

gauge f i e l d s , corresponding t o an SU(2) group, transform as 

W y W y ~ " 9 y a " a x W y (1.6.5) 

and the gauge i n v a r i a n t Lagrangian (1.6.1) a t t a i n s the 

form given below 

L = (3y(|)+ig|r.W^<(,) + (3MTr+igT.W1J (t,)-iw y v.W y v. (1.6.6) 

The l a s t term i n equation (1.6.6) r e p r e s e n t s the K.E. and 

s e l f - c o u p l i n g of the gauge f i e l d s and i s given by 

W = 3 W - 3 W - g W x W . (1.6.7) 
I I I I 1 1 
K.E. Term s e l f - c o u p l i n g term. 

2 

As we are i n t e r e s t e d i n the case y < 0 and \ > 0 so the 

p o t e n t i a l (1.6.3) becomes 
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V(<l>) = a2 ($\ + $\+$\+$\)^($\+$\+$\+<k\)2 (1.6.8) 
2 

Making use of a p a r t i c u l a r c hoice, say, a t = <f>2 = 

<j> 4 = 0, the minimum p o t e n t i a l then, becomes a t 

4>3
2 = = V 2 (1.6.9) 

X 

Therefore the complex s c a l a r doublet <p, a t t h i s minimum 

p o t e n t i a l , a t t a i n s the form: 

4>o = 1 (?) (1.6.10) 
° /2 

When we extend the range of gauge symmetry from SU(2) t o 

SU(2) x U ( l ) then the gauge i n v a r i a n t Lagrangian can be 

w r i t t e n a s : 

L l = (° M*) - V(«) (1.6.11) 

with Dy4> = (9 y - i 9 l . W M - i 9 Y B y ) ( J . (1.6.12) 

where Y and a r e the weak hypercharge operator and the 

U ( l ) gauge v e c t o r f i e l d r e s p e c t i v e l y . Making use of the 

expe c t a t i o n v a l u e <t>Q from equation (1.6.10) for<}>(x) w i t h Y=l, 

the Lagrangian becomes 
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(1.6.13) 

The r e l e v a n t mass term from equation (1.6.12) f o r the 

gauge bosons i s given by 

gW , + g'B 

g(W 1 + t W 2 ) 

g(W 1 - i W 2 ) 
y u 

-g w J + gB 

2 
? - [g2W+W"+ IgW 3 - g'B I 2 + olg'W 3 + gB I 2 (1.6.14) 

where we have s u b s t i t u t e d 

w 1 = w 1 + i w 2 (1.6.15) 

•2 
When we compare the f i r s t term of equation (1.6.13) w i t h 

the K.E. of the charged v e c t o r bosons (35M2W+W~), we f i n d t h a t 

M w = h gv (1.6.16) 

Hence t h e terms i n s i d e t h e s m a l l b r a c k e t s o f e q u a t i o n 

(1.6.14) a r e the p h y s i c a l f i e l d s and a r e orthogonal t o each 

other. Now when we compare these terms w i t h M2 Z 2 and M A
2 A 2 

T~ 2~ 
and f i n d t h a t , a f t e r n o r m a l i s a t i o n of the f i e l d s , : 
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i — g' W + g B , with M» — O 
(1 u n A 

2 2 ^ 
(g + g' ) 

(1.6.17) 

ZU = 9 W y "9V W i t h MZ = I ( ( g 2 + q ' 2 ) H 

- 2 . i~2\ *5 
(g + g' ) 

Where w- are two massive charged gauge bosons, i s the 

photon and Z a n e u t r a l massive gauge boson. Now i f we define 

g'/g = tan e w then an a l t e r n a t i v e form of these p h y s i c a l 

f i e l d s becomes as / 

A =cos9 w B. + s i n 9 U W w (1.6.19) 

Z = - s i n 9 W B., + cos 9 U w w (1.6.20) 

where 8 W i s the Weinberg mixing angle. Using equation 

(1.6.16) and (1.6.18) we can more e a s i l y obtain the w e l l 

known Weinberg mass r e l a t i o n s h i p : 

Mm2 — Mi W (1.6.21) 

1 - s i n 2 ejj 

To c a l c u l a t e the i n t e r a c t i o n s of the fermions we use the 

c o v a r i a n t d e r i v a t i v e (1.6.4) i n the k i n e t i c energy term 

(1.3.1) and hence obtain 

-* ( i Y P (g T Wa + g | B ) ) * 

for the left-handed fermions doublets r v 

- 5 R < ^ 9 I B u ) E R 

(1.6.22) 

e t c . , and 

(1.6.23) 

f o r the r i g h t - h a n d e d s i n g l e t . Then u s i n g ( 1 . 6 . 1 7 ) , (1.6.18) 
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and (1.6.22) , and * = and Y = -1, we obtain the 

following couplings "to W*, Z and y 

-7=- e T yv e T W~ + i g s i n 6„ e T yv e T A /2 L L y 3 W L ' L p 

jg cos 2 6 w _ 
e T y e T Z (1.6.24) cos 0 W L 1 L \i 

S i m i l a r l y the right-handed fermions s i n g l e t s (e.g. e l e c t r o n 

e R ) couplings to y and Z are found to be 

ig s i n 6 W i R Y
W e R A p + tg tan 6 W i R Y

W e R Z^ . 

(1.6.25) 

Note t h a t the coupling of the right-handed e l e c t r o n to the 

photon i s the same as for left-handed thereby g i v i n g the 

r e q u i r e d c o n s e r v a t i o n of p a r i t y i n electromagnetic i n t e r ­

a c t i o n s . On the other hand the right-handed e l e c t r o n couples 

to Z d i f f e r e n t l y to the left-handed e l e c t r o n . 

By p u t t i n g together two of the v e r t i c e s i n (1.6.24) we can 

c a l c u l a t e the e f f e c t i v e four-fermion weak coupling constant due 

to the exchange of the W meson (see 1.7 below). 

1.7 T e s t of the Salam-Weinberg model 

A f t e r having e s t a b l i s h e d the s t r u c t u r e of the standard 

model (S-W) we f i n d t h a t there are parameters which d i r e c t l y 
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e f f e c t the phenomenology of weak and electromagnetic e f f e c t s . 

These are two coupling constants (g,g') and a mass term. The 

constants g and g' r e p r e s e n t the coupling s t r e n g t h of the 

v e c t o r bosons to the weak i s o s p i n and hypercharge c u r r e n t s 

r e s p e c t i v e l y and t h e fundamental i n t e r a c t i o n s f o r s u c h 

couplings are shown i n F i g u r e ( 1 ) . One constant i s given (to 

a very high accuracy) by e, so e f f e c t i v e l y we have two 

constants M w (the mass of the charged v e c t o r bosons) and 6 W 

(the mixing a n g l e ) . These are r e l a t e d by: 

G _ f l f 

F = ,/ ŵ2 . 2n (the Fermi weak i n t e r a c t i o n coupling 
* V2M wsin 6 W . 

constant) (1.7.1) 

where a = e£. ( f i n e S t r u c t u r e Constant) (1.7.2) 
4ir 

We s h a l l now see how i t i s p o s s i b l e t o f i t a l l the data 

with these two parameters. H i s t o r i c a l l y n e u t r a l c u r r e n t 

measurements (see below) were used t o o b t a i n a v a l u e of s i n 2 8 ^ 

and equation (1.7.1) was then used t o p r e d i c t M w and Mz 

through the r e l a t i o n 

M Z 2 = Mw 2 (1.6.21) 
~ 7~T7 
l - S i n 9y 

These p r e d i c t i o n s were c o n f i r m e d a t CERN i n 198 3 

[12,13,14,15]. The c u r r e n t v a l u e s f o r the W and Z masses 

determined by UA1 and UA2, as reported by Di L e i l a [ 1 7 ] a r e : 
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M w = 83.1+1.3(stat)±3(Syst.) GeV UA1 

Mz • 93.0+1.6(stat)±3(syst.) GeV UA1 

M M = 81.2±l.l(stat)+1.3(syst.) GeV UA2 

Mz = 92.5+1.3(stat.)±1.5(syst.) GeV UA2 

(1.7.3) 

I t i s important to note t h a t t o c a l c u l a t e S i n 2 6 w , u s i n g 

equation (1.6.21), from the above data we have ignored, f o r 

s i m p l i c i t y , the s y s t e m a t i c e r r o r . By doing t h i s the Weinberg 

angle i s p r e d i c t e d t o be 

S i n 2 e w = 0.21 ± 0.07 (1.7.4) 

as shown i n Figure ( 4 ) . 

Using the numerical v a l u e of G y =1.6638 x 10" 5 GeV" 2, 

which has been r e p o r t e d r e c e n t l y from t h e y - d e c a y 

p r o c e s s [ 1 8 ] , and the masses of the W l i s t e d i n equation 

(1.7.3), the equation (1.7.1) r i g h t l y determines the v a l u e s 

f o r S i n 2 0 w as f o l l o w s : 

S i n 2 9 w = 0.206 ± 0.011 (1.7.5) 

T h i s i s a l s o p l o t t e d i n Fig u r e ( 4 ) . 

We now t u r n t o the n e u t r a l c u r r e n t data t o see how w e l l 
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they agree w i t h these values of S i n ^ S w given i n 
equations (1.7.4) and (1.7.5). 

I Neutral current effe c t s i n e +e~ | i \ J L 

I n t h i s regard the high energy e +e~ beam c o l l i d e r s 
provide a useful t e s t i n g ground f o r electroweak interference 
e f f e c t s . The e + e = annihilations could be obtained e i t h e r 
through electromagnetic ( y ) or weak n e u t r a l c u r r e n t (Z) 
interactions as pictured, e.g. i n Figure (2). But i n our 
c u r r e n t discussion we assume t h a t the n e u t r a l c u r r e n t 
i n t e r a c t i o n occurs by exchange of a Z-boson and a Y -boson 
with t h e i r standard couplings given i n r e f . [16]. By making 
use of the Feynman rules, the amplitudes f o r Y and Z 
corresponding to the diagrams i n Figure (2) are: 

M = - ef (yy vn) (ey e) (1.7.6) 
' 2 

g -k k /M7 
MZ = [ i T y V ( c ^ y 5 ) , ] ^° V ° 1 (1.7.7, 

4 c o s 2 6 w k2-Hj 
r - 0 , e e 5 v , [ey ( c w - c a y )e] 

where l \ i s the four-momentum which i s carried by Y or Z 
and k* = S ( i . e . the c. of m-energy). 

. e n By assuming electron-muon u n i v e r s a l i t y i . e . c i = c i = 

c^, we f i n d t h a t the d i f f e r e n t i a l cross-section f o r e +e" •* 
process i s given by [19] 
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% = ̂  [R^^<i + cos 2e ) + B cose ] (1.7.8) 

where 

= 1+ 2 c v X + X2 ( c 2 + c 2 ) 2 (1.7.9) 

and 

B = 4 c A
2X + 8 c v

2 c A
2 X 2 (1.7.10) 

The c v and c A are the vector and a x i a l vector weak 
charges of the electron and muon. They are expressed i n the 
standard model as: 

;V = - 2 S i n 2 e w (1.7.11) 

c « - 1/2 (1.7.12) A 

By ignoring the width of the Z when compared t o i t s 
mass, X i s expressed e n t i r e l y i n terms of electroweak mixing 
gauge and the z-boson mass as 
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X = S/(4sin 2e wcos 2e w (S-M2)) (1.7.13) 

Now the integrated forward-backward asymmetry i s given 
by [20] 

A y y 8 c A 2 c / ( 3 + C2) (1.7.14) 

Here we have neglected a l l the terms which are very much 
smaller than u n i t y . Now by s u b s t i t u t i n g the exactly known 
values f o r a and Gp [18] and the values f o r S i n 2 9 w [20] i n 
equations (1.7.1) and (1.6.21), we f i n d Mz = 90.4 GeV. The 
mass of the Z i s increased t o 93.8 + 2.4 GeV i f the currently 
best known values of the parameters are used [21,22]. I t i s 
however, clear that the mass of Z i s sensitive t o @w and Mw 

free parameters. 
The minimum and maximum forward-backward charge 

asymmetries i n the standard model at S = 1798 GeV2 are 
predicted A = -26.1% and A = -14.2% corresponding t o S i n 2 9 w = 
0.103 and S i n 2 e w = 0.217 r e s p e c t i v e l y . Therefore the 
predicted asymmetries, using Mz = 93.8 GeV are i n good 
agreement w i t h the c u r r e n t l y obtained data [ 2 0 ] . The 
consistency between the Weinberg angle obtained from t h i s 
process and the others i s pictured i n Figure (4). 

I I Electron-neutrino (antineutrino) e l a s t i c scattering 

I f electron-neutrino e l a s t i c scattering proceeds v i a the 
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Z exchange then the invariant amplitude f o r t h i s neutral 
current can be w r i t t e n as 

M N C( ve - ve) = ^( VY U(1=Y5)v)(iy ( c v - c A Y 5 ) e ) (1.7.16) 
/2 Y 

I t may, however, be noted that i n equation (1.7.11) we 
have used the fact that the four momentum tran s f e r q i s such 
that q 2 « Mz

2. By using the electron-muon u n i v e r s a l i t y 
assumption and the procedure outlined i n r e f . [ 1 6 ] , the t o t a l 
cross sections f o r v^e -»• v^e and v^e ->• v^S reactions are 
obtained given below: 

2 A 

o(v) = ^ | [ c ^ + CvCA + C A
2] (1.7.17) 

2 " 
a(v) = G_|[oJ - C v c A + c A

2 ] (1.7.18) 

Therefore, the r a t i o R of the cross sections f o r muon-
neutrino and muon-antinuetrino scattering on electrons i s 
absolutely described by a single electroweak mixing angle w 

parameter 

a ( v ) (1-4 S i n 2 9 w +(16/3) S i n 2 9 w ) (1.7.19) 
o(v) (1-4 S i n 2 9 w + 16 S i n 4 6 w ) 
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The l a t e s t experimental r e s u l t ofRef [23] i s i n good 
agreement with the prediction of the standard model f o r 

S i n 2 6 w = 0.209 + 0.029 ± 0.013 (1.7.20) 

which i s shown i n Figure (4). 

I l l Neutrino-nucleon Scattering 

When the Z (weak neutral p a r t i c l e ) i s exchanged i n a 
guasielastic scattering of the neutrino (antineutrino) from 
the nucleon then the inclusive d i f f e r e n t i a l cross section f o r 
such a process, phenomenologically shown i n Figure (3), i s 
w r i t t e n as 

2 2~ 
dfdy ( V N "* v x ) = f i r [ s u 2 + gdj) Q< x> + t*dl + 9uL> Q( x) d-y) 

+ (gu 2 + gd 2) Q(x) ( 1 - y ) 2 + (gu 2 + gd 2) Q(x)] 

(1.7.21) 

where 

g£ = h - | Sin 2 e w , % = - % + ^ s i n 2 e w , 

g u = - -f S i n 2 9 w and g* = ± S i n 2 0 w (1.7.22) 
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Integrating equation (1.7.21) over x, y and defining 

Q= xQ(x)dx = x[u(x) + d ( x ) ] d x (1.7.23) 
and 

Q = xQ(x)dx = x[u(x) + d(x)]dx (1.7.24) 

we get 

G2S av(NC) = — [(guf + gdf)Q + — — Q + 
2TI U U 3 3 

+ (gu 2 + gd 2)Q] (1.7.25) 

. G2S -2 -2 - (9 uR + ^ D R 2 ) (9Up + gdp)Q ov(NC) = ^ [ ( g U
2 + gd 2)Q + 5_ Q + 5 R_ 

2TT L L 3 3 
2 2 (1.7.26) + (gu£ + gd£)Q] . 

But for charge currents we have 

2" 

ov(cc) = ^ (Q + % (1.7.27) 

2 " 
ov(cc) = — (Q + % (1.7.28) 

2TT J 
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So an isoscalar target with equal number of u and d 
quarks yi e l d s : 

R = -(NC. = g u 2 t g d 2 + R c c ( g u 2 + g d 2 , 
ov(cc) 

(1.7.29) 

where o v(cc) 
ov(cc) 

(1.7.30) 

and P _ aWNC) 2 1 , 2 ^ 1 , 2 , ,2. /- i 7 -»n \ R - = gu T + gd T + (gu D + gd„) (1.7.31) 
av(cc) R cc 

Thus from equations (1.7.29) and (1.7.31) we obtain 

R-RR 2 

2 2 cc gu; + gd^ = — 2 — 
cc 

h - s i n V I S i n 4 e w 

and 

(1.7.32) 

? 2 R-RR c ii d cc 5 . 4 
9R + 9R = ~2 = ~ Sin 4e K R -1 9 cc 

W (1.7.33) 

The values f o r R, R and R c c have been experimentally 
determined and they are [24] 
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R = 0.320 ± 0.010 (1.7.34) 

R - 0.277 ± 0.020 (1.7.35) 

and 

R c c = 0.498 ± 0.019 (1.7.36) 

Using the above resu l t s i n the context of the standard 
model, the electroweak mixing angle can easily be obtained 

Sin 26 w = 0.23 ± 0.023 (1.7.37) 

This i s shown i n Figure (4). 

In summary we can safely say tha t the agreement between 
f i v e d i f f e r e n t ways of determining S i n 2 8 w shown c l e a r l y i n 
the Figure (4), gives strong support t o the v a l i d i t y of the 
Salam-Weinberg model. I f such a model i s the low-energy 
l i m i t of a d i f f e r e n t model (e.g. a L-R symmetric model) then 
the corrections r e s u l t i n g from the extra terms must be small, 
at least i n the experiments discussed above. S i m i l a r l y other 
models must e x p l a i n the above agreement - i t i s ha r d l y 
s a t i s f a c t o r y t o regard i t as "accidental". 
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CHAPTER 2 

Left-righ*- «Ymm«*tric Extension of the B-W Model 

2.1 Introduction 

We have studied i n the previous chapter the simplest 
renormalisable theory of weak i n t e r a c t i o n i n which the 
coupling between the weak currents i s mediated by massive 
intermediate vector bosons, since a f o u r - f e r m i o n p o i n t 
i n t e r a c t i o n i s not-allowed. I n t h i s chapter we discuss a 
l e f t - r i g h t symmetric extension of t h i s theory based on the 
group SU(2) L(x) S U ( 2 ) R x U ( l ) . Here the basic Lagrangian 
preserves p a r i t y and the observed breakdown of p a r i t y In weak 
interactions comes from the spontaneous symmetry breakdown, 
i. e . from the same mechanism tha t gives mass to the W and Z. 

I n order t o have one-to-one correspondence i n the 
SU(2) Lx SU(2) RxU(l) gauge theory, there must be the doubled 

+ + 
number of charged gauge bosons (W£ and WR) as compared to the 
standard theory (W—) and also the doubled number of massive 
neutral gauge bosons ( i . e . two against one i n the standard 
t h e o r y ) . I n other words, there e x i s t s two kinds of 
intermediate vector bosons; one associated with (V-A) current 
i s called the left-handed vector boson (WL) and the other 
associated with (V + A) current i s termed as the right-handed 
vector boson (W R). 
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I n the mid seventies, Pa t i , Salam and Mohapatra [1,2] 
discussed a completely l e f t - r i g h t symmetric theory i n which 
both left-handed and right-handed fermions p a r t i c i p a t e i n (i 
decay. The (V-A) character of the observed i n t e r a c t i o n was a 
natural consequence of the suppression .of right-handed (V+A) 
gauge currents which i n t u r n was due to the r i g h t -handed 
charged vector boson WR being heavier than WL. 

In a u n i f i e d gauge theory of weak and electromagnetic 
i n t e r a c t i o n , the left-handed (V-A) currents and the r i g h t -
handed (V+A) currents together produce a s i t u a t i o n i n which 
the p a r i t y i s conserved i n electromagnetic interactions and 
i s v i o l a t e d i n weak interactions i n good agreement with the 
experimental r e s u l t . I t i s e x p l i c i t l y shown by Sanjanovic 
[25] t h a t the prediction of both the minimal l e f t - r i g h t and 
the standard gauge theories are indistinguishable even with 
f i n i t e Mw both i n the realm of charged and neutral currents 
at s u f f i c i e n t l y low-energies. These gauge t h e o r i e s 
phenomenologically would d e f i n i t e l y be d i f f e r e n t at higher 
energies. 

2.2 Mass matrix and eigenvalues for charged vector 
bosons 

The l e f t - r i g h t symmetric gauge theory based on the group 
SU(2) LxSU(2) RxU(l) has three sets of vectors, T L, T R and Y 
corresponding t o the three sub-groups. The e l e c t r i c charge 
operator i n t h i s theory i s defined as: 
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Q = T3L + T3R + 1 (2.2.1) 

L e f t - r i g h t symmetry of the Lagrangian r e q u i r e s the 
equality of the SU(2) L and SU(2) R coupling constants, i . e . 
g L = g R = g. The l e f t (right)-handed fermions are assigned 
t o doublets under T L ( T R ) . I n order t o produce fermionic 
masses we w i l l need the following Higgs m u l t i p l e t s 

$ = 
<f>° 

(2.2.2) 

with SU(2) LxSU(2) RxU(l) quantum numbers 

$ = (hi h, o) 
(2.2.3) 

i. e . $ i s a doublet under both SU(2) groups and has zero 
hypercharge. Bosons w i l l acquire mass when the symmetry i s 
broken spontaneously by giving non-zero expectation value to 
the Higgs f i e l d s . The most general expectation value of 
con s i s t e n t w i t h preserving the electromagnetic gauge 
invariance i s of the form: 

<$> = -

0 
(2.2.4) 

A f t e r t h i s f i r s t step, the symmetry i s broken down to 
U ( l ) x U ( l ) , i . e . there are now two massless neutral vector 
bosons. I n order t o have only one massless neutral vector 
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boson, the photon, i n the theory we are required t o break 
down the symmetry further down t o U ( l ) . For t h i s purpose, we 
would obviously need more Higgs m u l t i p l e t s . The simplest 
choice i s j u s t t o introduce two Higgs doublets: 

x T X R (2.2.5) 

which are assigned the following quantum numbers 
X L = (h,o,l), X R = [o,h,l) (2.2.6) 

Therefore, the t o t a l Lagrangian f o r the X L, X R and <j> 
Higgs scalar f i e l d s can be w r i t t e n as 

L = (D XT ) (D̂X.,. ) + (D X e) (D X_)+tr (D $)' D 3>-V (2.2.7) 
(1 Li L I U K K- H 

( x L , x R , f ) 
where the general form of the Higgs p o t e n t i a l V(XL,XR,<j>) i n 
the l e f t - r i g h t symmetry i s then given by: 

V = 2^ - ^ t r $ 4>+X1(tr<I> *) +A 2tr$ <t><i> f+^A-j (tr<i> $+tr$ <t>) 

+^ ^+ 2 , . . +^X4 ( t r $ 4>-tr* <t>) + X 5 t r * 4"I> 4>+H^6 [tr4> 4><t> *+h.c. ] 

'A. ( < X L ; + X R V + p l [ ( X £ X L > 2 + ( X R X R > 2 ] + P 2 < X L X R X R 

+a 1tr<l) +$ ( x £ x L + X R X R ) +a 2 (x£** +X L+X R" <D+<I>XR) 

+a^{X^$ XL+XR<I> *X R) . (2.2.8) 
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where $ i s defined by: 

(2.2.9) 

Sanjanovic has e x p l i c i t l y shown [3] that one of the 
p a r t i c u l a r solutions f o r the minimum of t h i s p o t e n t i a l has 
the expectation values f o r the l e f t - r i g h t handed Higgs scalar 
doublets, provided the gauge symmetry i s broken, as under: 

<xL> (2.2.10) 

<$> = -1 
/2 

k 
0 

0 
k' 

(2.2.4) 

We s h a l l choose v > k, k', thus ensuring t h a t the mass 
of the right-handed charged vector boson i s greater than the 
mass of the left-handed charged v e c t o r bosons, which 
suppresses the right-handed charged current interactions at 
low-energies. However, under the p a r i t y operation the Higgs 
f i e l d s transform as: 

X L XD, $ <j>+ and 3 §+ (2.2.11) 

Therefore the K.E. part of the Lagrangian defined i n 
(2.2.8) f o r the scalar f i e l d s XL, X R and <t> can then easily be 
w r i t t e n : 
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L = (D X T) +D l AX T + (D XJ ^ D ^ + t r (D„ 4>)+D̂ <I>, (2.2.12) 
|1 L Li H K K (i 

where 

D XT = 8 XT - Jsigx . WTXT , 

VR = VR " **9 T ' WRXR' 
D * = 9 <t> - % i g ( x . W * - <J>x . w R) 

(2.2.13) 

and the x's are the Pauli Spin matrices 

0 

1 

0 

i 
l 

o 

I 
0 

-i 
o 

0 

-1 

(2.2.14) 

Now the relevant mass term of D XD i s found: 

<VR> = I s 
2 

R l R 2 (2.2.15) 
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where we used the fa c t : 

w: /2 R l +
 R2 

(2.2.16) 

Thus 

<VR) + ( D V = x f ^ (WRWR> (2.2.17) 

S i m i l a r l y considering the mass term of D $ f o r charged 
vector bosons we f i n d 

(D ( A$) t(D%)=3_ 

SO 

K2WLWL " KK'WLWR ~ KK'WRWL 
+ k ' 2 w X 

k,2W~W^-kk'W~W^ 

-kk,W^W^+k2W^W^ 

tr((D t i^>) + (Dti§)=^-
k 2w£w~-kk • w£w~-kk • W*W~+k' 2Ŵ W~ 

+k' 2W~W*-kk'w'w^-kk 1W Rw£+k 2W~W* 

(2.2.18) 

+ u 
By replacing the values of (D pX R) 1(D X R) and 

t r ( D ^ f ) + ( D M | ) from equations (2.2.17) and (2.2.18) 
respectively i n equaiton (2.2.12) the gauge p a r t i c l e s of the 
theory are then conveniently represented by the matrix: 
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< 
2 WL Z 

-q 2kk 
M = 2 

WR 
-g 2kk' 
2 £ + A 

where A = 
2 2 

^ and 
2 

* = f - (k 
2 2 ^ + k* ) 

(2.2.19) 

(2.2.20) 

To make WR > WL, we choose v » k; , k' . I n t h i s l i m i t 
the eigenstates of equation (2.2.19) are then immediately 
found (using the c h a r a c t e r i s t i c equation i . e . det (M-Al) = o) 

as follows 

2 
M£ = £_ ( k

2 + k . 2 ) (2.2.21) L 4 
2 

= 3- { k

2 + k - 2 + v
2 ) (2.2.22) 

R 

2.3 Borne experimental evidences of Mff 

R 

I n the preceding section we have assumed tha t the r i g h t -
handed charged vector boson i s heavier than the left-handed 
charged v e c t o r boson, i n order t o preserve the w e l l , 
established (V-A) character of the observed weak i n t e r a c t i o n 
at low-energies. The obvious question t h a t arises i s how 
small, Mw can be without v i o l a t i n g the experimental data. 

R 
This lower l i m i t has been increased as the now h i g h l y 
s e n s i t i v e and w e l l designed machines are being used f o r 
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measurements. The e f f e c t i v e c u r r e n t - c u r r e n t L a g r a n g i a n f o r 

t h e weak i n t e r a c t i o n s a t s u f f i c i e n t l y l o w t r a n s f e r o f 

momentum i s [ 2 6 ] g i v e n by 

T = f l T T ( V - A ) * . G 2 _ T ( V + A ) * 
W /T (V-A) /2 J ( V + A ) J (2.3.1) 

where Ĝ^ and G 2 a r e t h e l e f t - h a n d e d and r i g h t - h a n d e d 

Fermi c o u p l i n g c o n s t a n t s r e s p e c t i v e l y and a r e d e f i n e d as 

f o l l o w s : 

G, 4 i r g 2 G, 4 i r g 2 

and J < V " A ) and j ( v + A ) a r e t h e l e f t - h a n d e d and r i g h t - h a n d e d 

charge c u r r e n t s r e s p e c t i v e l y . I t i s i m p o r t a n t t o n o t e t h a t 

t h e i n t e r f e r e n c e e f f e c t s o f t h e (V=A) and (V+A) c u r r e n t s a r e 

n o t a p p e a r i n g i n e q u a t i o n ( 2 . 3 . 1 ) , because a t h i g h e r e n e r g i e s 

t h e s e two c u r r e n t s behave a l m o s t i n d e p e n d e n t l y . By knowing 

t h e r e l a t i o n s h i p between and G 2 e x p e r i m e n t a l l y one can 

e a s i l y d e t e r m i n e t h e mass o f t h e r i g h t - h a n d e d charged v e c t o r 

boson. The i n t e g r a l p r o b a b i l i t y o f t h e n e g a t i v e muon-decay 

i n t o one e l e c t r o n and two n e u t r i n o s (when b o t h t h e (V+A) and 

(V-A) c u r r e n t s a r e c o n s i d e r e d t o be i n v o l v e d i n t o g e t h e r ) 

y i e l d s [ 2 6 ] : 

M 5G 2 

W = - i L 
^ 3 [ 1 + a l ( V , + a 2 ( 5 e T , , + a 3 ( V , U e n , + a 4 I ( W - ( V ) 

U e n ) J ] (2.3.3) 

w i t h 
G 2 r 2 

G = (G< + G^P, a1 = - i (1 - 2 - | - ) , a 2 = -( 1 - 2 -|) 



a, - ± , a 4 a 4 ^ (2.3.4) 
J J * 3G 

Here a-L i s t h e e l e c t r o n asymmetry c o - e f f i c i e n t , a 2 i s 

t h e l o n g i t u d i n a l p o l a r i s a t i o n c o e f f i c i e n t , t h e c o e f f i c i e n t a 3 

g i v e s t h e c o r r e l a t i o n o f l o n g i t u d i n a l p o l a r i s a t i o n and 

asymmetry, a 4 i s t h e c o - e f f i c i e n t o f T- and P- even 

t r a n s v e r s e e l e c t r o n p o l a r i s a t i o n i n a p l a n e d e t e r m i n e d by C y 

and n • u s i n g t h e e x p e r i m e n t a l v a l u e [ 2 7 ] d e t e r m i n e d f o r t h e 

e l e c t r o n asymmetry c o e f f i c i e n t a 1 # t h e e q u a t i o n ( 2 . 3 . 4 ) 

c l e a r l y g i v e s t h e f o l l o w i n g r e l a t i o n : 

G 2 < 0.121 G1 (2.3.5) 

From e q u a t i o n s (2.3.2) and (2.3.5) we o b t a i n : 

8M 2
 ( 2 . 3 > 6 ) 

K XJ 

The c u r r e n t l y b e s t known v a l u e s f o r t h e mass o f t h e 

l i s t e d i n e q u a t i o n (1.7.3) i m m e d i a t e l y y i e l d s t h e mass o f t h e 

M u as f o l l o w s 

235 Gev. (2.3.7) 
R 

The f i r s t c o m p r e h e n s i v e s t u d y o f t h e e x p e r i m e n t a l 

c o n s t r a i n t s on l e f t - r i g h t symmetric t h e o r i e s , f r o m t h e low 

energy c h a r g e d - c u r r e n t s e c t o r , was made by Beg e t a l [ 2 8 ] . 

There t h e y concluded f r o m t h e i r a n a l y s i s t h a t M M £ 220 GeV 
R 

a p p r o x i m a t e l y i n agreement w i t h e q u a t i o n ( 2 . 3 . 7 ) . l a t e r some 
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improved c o n s t r a i n t s on t h e mass s c a l e o f t h e r i g h t - h a n d e d 

c u r r e n t s , d e t e r m i n e d e x p e r i m e n t a l l y i n n +-decay were r e p o r t e d 

by C a r r e t a l . [ 2 9 ] where t h e y p r e d i c t e d f r o m t h e i r 

e x p e r i m e n t a l a n a l y s i s t h a t M w 380 GeV a t 90% c o n f i d e n c e 
R 

l e v e l . The l a t e s t c o n s t r a i n t on t h e mass o f t h e r i g h t - h a n d e d 

c u r r e n t s has been p l a c e d by S t o k e r e t a l . [ 3 0 ] by making use 

o f m u o n - s p i n - r o t a t i o n t e c h n i q u e i n n + - d e c a y e x p e r i m e n t . I n 

t h i s e x p e r i m e n t a l s t u d y t h e y c o n c lude and s e t a l o w e r l i m i t 
on M u > 400 GeV. 

W R 
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CHAPTER 3 

The P o s s i b l e Heavy 2' — > W~W+ Events a t the CERW C o l l i d e r 

3.1 I n t r o d u c t i o n 

I n t h e f i r s t c h a p t e r we have e x p l i c i t l y d i s c u s s e d and 

an a l y s e d t h e s t a n d a r d Glashow-Weinberg-Salam (GWS) model o f 

e l e c t r o w e a k i n t e r a c t i o n s , b a s e d on t h e gauge g r o u p 

SU(2) L x U ( l ) y . There, we have seen t h a t t h i s model has 

a c h i e v e d g r e a t s u c c e s s e s i n d e s c r i b i n g a l l t h e n e u t r a l 

c u r r e n t processes and i n c o r r e c t l y p r e d i c t i n g t h e masses o f 

t h e W- and Z- v e c t o r bosons. T h i s s t a n d a r d model does n o t , 

a t t h e p r e s e n t t i m e , c o n f l i c t w i t h any c o n f i r m e d 

e x p e r i m e n t a l d a t a . 

I n t h i s c h a p t e r we s h a l l d i s c u s s two p o s s i b l e e v e n t s 

observed a t t h e CERN PP c o l l i d e r w h i c h appear t o be h a r d t o 

e x p l a i n w i t h i n t h e s t a n d a r d models and wh i c h m i g h t t h e r e f o r e 

i n d i c a t e "new" p h y s i c s . We s h a l l see w h e t h e r t h e LxR 

s y m m e t r i c model o f t h e s e c o n d c h a p t e r o f f e r s a way o f 

e x p l a i n i n g t h e s e e v e n t s ( s h o u l d t h e y be c o n f i r m e d ) . 

The u n u s u a l e v e n t s were seen by t h e UAI gro u p [ 3 ] . 

B a s i c a l l y , what t h e y observed was a h i g h t r a n s v e r s e momentum 

d i s t r i b u t i o n f o r ( W — > ev and—»uv) e v e n t s i n PP" c o l l i d e r 

e x p e r i m e n t shown i n F i g u r e ( 5 ) . I t i s q u i t e o b v i o u s f r o m 

t h e f i g u r e t h a t t h e r e i s a c o n t i n u o u s e v e n t p o p u l a t i o n up t o 
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p t
w ~ 40 GeV/c. There a r e a l s o two e v e n t s w h i c h a r e 

a b s o l u t e l y i s o l a t e d from t h e r e s t a t much h i g h e r v a l u e s o f 

p t
w . The s o l i d c u r v e i n t h i s f i g u r e g i v e s t h e ex p e c t e d p t

w 

d i s t r i b u t i o n f o r W's p r o d u c e d d i r e c t l y f r o m t h e QCD 

c a l c u l a t i o n s o f Ref. [ 3 1 ] w i t h s t r u c t u r e f u n c t i o n s m o d i f i e d 

t o t a k e i n t o account s e l e c t i o n b i a s e s and d e t e c t o r smearing 

e f f e c t s . These two e v e n t s were a c t u a l l y seen, one a t 

~ 66 GeV/c and t h e o t h e r a t p t
w ~ 89 GeV/c. I n each o f t h e 

W •> ev and W samples t h e e v e n t w i t h t h e l a r g e s t W 

t r a n s v e r s e momentum c o n t a i n s two j e t s and, f u r t h e r , t h a t t h e 

j e t - j e t mass i s o f o r d e r Mw. For b o t h e v e n t s , t h e o v e r a l l 

i n v a r i a n t mass o f t h e W - j e t - j e t system i s i n t h e 245 -* 270 

GeV/c 2 range. These e v e n t s a r e t h e r e f o r e k i n e m a t i c a l l y 

c o n s i s t e n t w i t h an a p p a r e n t WW p a i r p r o d u c t i o n . The 

exp e c t e d WW p a i r p r o d u c t i o n from t h e e l e c t r o w e a k p r o c e s s i s 

a f a c t o r ~ 10 below t h e p r e s e n t e x p e r i m e n t a l r e s u l t s [ 3 2 ] . 

T h i s new e x p e r i m e n t a l d a t a r e q u i r e > 240 GeV. I n 

summary, t h e s e e v e n t s a r e i n t e r e s t i n g because t h e y appear t o 

be j u s t o u t s i d e t h e e x p e c t a t i o n o f t h e s t a n d a r d model. A t 

p r e s e n t , however, t h e r e i s no c l e a r u n d e r s t a n d i n g o f what 

t h e y r e p r e s e n t . V a r i o u s a u t h o r s have d i f f e r e n t s p e c u l a t i o n s 

about t h e s e newly seen e v e n t s . For example, S t i r l i n g and 

K l e i s s [ 3 3 ] c o n s i d e r t h e p o s s i b i l i t y t h a t t h e W+W" p a i r a r e 

produced i n t h e decay o f a heavy " z / N w i t h mass i n t h e range 

o f 250 -»- 300 GeV/c 2. The UA1 group [ 3 ] have a l s o p u t a 

l o w e r mass l i m i t ( 90% c l ) o f 166 GeV/c 2 on a h y p o t h e t i c a l 

heavy M z ' M w i t h a s t a n d a r d (3%) b r a n c h i n g r a t i o i n t o e +e~. 
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We s h a l l now c o n s i d e r t h e p o s s i b i l i t y t h a t t h e s e e v e n t s 

a r e a c t u a l l y t h e p r o d u c t i o n o f t h e heavy "Z' n ( a s s o c i a t e d 

w i t h t h e S U ( 2 ) R ) and i t s subsequent decay i n t o two W's. 

3.2 N e u t r a l c u r r e n t s i n the l e f t - r i g h t , symmetric model 

From e q u a t i o n s ( 2 . 2 . 4 ) , (2.2.12) and (2.2.13) we o b t a i n 

t h e mass m a t r i x f o r t h e n e u t r a l gauge bosons ( i n t h e m i n i m a l 

low energy e f f e c t i v e t h e o r y ) as f o l l o w s : 

< i | M | j > = 

E -E 
- E E+A 
0 -aA 

-aA 

a 2A 

(3.2.1) 

where. a = g l / g (3.2.2) 

The e i g e n v a l u e s o f t h i s m a t r i x a r e s i m p l y d e t e r m i n e d by 

making use o f t h e c h a r a c t e r i s t i c e q u a t i o n i . e . d e t . (M-Al) = 

0, where t h e A's a r e t h r e e ( m a s s ) 2 e i g e n v a l u e s a s s o c i a t e d 

w i t h t h e p h o t o n ( y ) , t h e l i g h t massive observed v e c t o r boson 

(Z) and a heavy v e c t o r boson ( Z ' ) . Thus t h e e i g e n v a l u e 

spectrum becomes 

X, = 0 

E (l+2ct ) 
1+a 2 

= A(1+a ) + 

i 
A 

£ 2 1+a 

( l+2a*) 
d + a 2 ) 3 

(3.2.3) 
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where we have i g n o r e d terms 0 ) i n X 2 and X 3 . I n o r d e r t o 

d i a g o n a l i z e t h e m a t r i x (3.2.1) we i n t r o d u c e t h e s t a t e s I n> 

|n> = 

where 

n> = 

s i n 9 W 

Sine W 

£ | i x i | n > 
i 

(3.2.4) 

3/. 
cosG W 

I (Cos29 w) 

c o s 3e 

-Sin 29„ I (Cos29..) 2 

2n ' 4 ( 1 -

W 

( C o s 2 9 w ) ! s E S i n 2 e w C o s 2 9 w i 

Cos9 W A s i n 9 wCos 9 W Cos9 w- ACos 46 

, (Cos29 w) 

w 

Z (Cos29 w) 
( C o s 2 9 M P -tan9 M(Cos2 9 — - ) -tan9 ( 1 -

W W W A C o s 4 9 w A Cos'9 w 

w i t h s i n 2 6 , , = W 
a 

l+2a' 

(3.2.5) 

(3.2.6) 

I n t h e b a s i s |n> we f i n d : 
2 2 

<n|M|m> = E <n|i><i|M| j X j |m> 
i» j 

Cose 

- T2 .Cos26t7. 2 j 2 ^ ( W) 
w A ( C o s 9 w ) 6 

Z C o s 2 9W + A C o s \ 
(Cos9 w) Cos29 W 

46 (3.2.7) 



Now t o c a l c u l a t e t h e c o u p l i n g s o f t h e s e s t a t e s t o t h e 

f e r m i o n s we s i m p l y r e q u i r e 

< i l = I ! < i | n X n 
n 

(3.2.8) 

where t h e s t a t e s <n j , c o r r e s p o n d t o t h e p h o t o n < y \ , t h e 

s t a n d a r d n e u t r a l v e c t o r boson <z| and a v e r y heavy n e u t r a l 

v e c t o r boson <z'| , w h i l e t h e s t a t e s < i | a r e a s s o c i a t e d t o 

t h e l e f t - h a n d e d charged v e c t o r boson <WL| , t h e r i g h t - h a n d e d 

charged v e c t o r boson <WR| and an h y p e r c h a r g e s t a t e <B| . 

r 

T h e r e f o r e 

SinG, W CosG, W 
- Sin 9 

SinS. W 
W lUl ( C ° S 2 V y 

cose 
w 

A c o s A e w s i n 2 e w 

(Cosa.6.,)2 -tane„(Cosi6tt)z(H~-
i co S J.e w 

w w A Cosx6, w 

3/2 

_ ̂  (Cosze w) 
A ( c o s e w ) 3 

1 2 (Cosxe t T) z _ Sin eiTCos20„ W_ (1_ L W W) 
Cose, 

w 
A (Cos6 w) 

"tane ( 1 - ^ \ ) 
A (Cose r 

Z' 

Sin 

Sin6 tY w 

+ Cos 

s i n 2 e w E ( c o s x e w ) 2 

( i — — - A — — ) z 
Cos 6 w 

A C o s 4 6 v ^ i n ^ w 

i , £ Cosae 
( C o s i e w ) * Y - t a n e w ( C o s i e w ) ! (1+ _ 

A Cos e 
w 

3/, 
j. ( C osie w) 

A ( c o s e w ) 3 

Z' 

i 2 (CosS.0 ) z
 r Sin 6 Cosae„ 

+ - (1+=- —, -)Z' 
cose, 

w 
A (Cos6 w) 

i (Cosie T T) 
)Z - tan6„ ( 1 - -

w ) z' 
w A (Cose ) w 

(3.2.9) 
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S i n c e t h e c o u p l i n g s i n g e n e r a l a r e d e f i n e d by t h e 

r e l a t i o n : 

Y l 
: g T 3 L WL + g T 3 R WR + g ^ f-

(3.2.10) 

Thus t h e expected p h o t o n c o u p l i n g becomes: 

g s i n e w q 

where Q i s d e f i n e d i n ( 2 . 2 . 1 ) . 

The Z c o u p l i n g t h e r e f o r e a t t a i n s t h e form: 

: 3 — ( T 3 L - S i n 2 9 w Q) + 0 (|) (3.2.11) 
Cos 9yj 

and s i m i l a r l y t h e Z' c o u p l i n g i s found t o be: 

: _Z3. ( c _ c Y 5 ) + o (|) (3.2.12) 
2 Cos9 w ( C o s a e w ) ^ A 

where c y = T 3 ~ 2 S i n 2 6 w Q 

and c A / = - T 3 Cos6 w (3.2.13) 

V 
We n o t e t h a t , t o t h e z e r o o r d e r o f t n e z n a s 

e x a c t l y t h e same c o u p l i n g as i n t h e s t a n d a r d model. We 
y 

s h a l l c o n s i d e r t h e ( p c o r r e c t i o n f u r t h e r i n Chapter 6. 

S i n c e we a r e p a r t i c u l a r l y c o n c e r n e d t o compute t h e 

p r o d u c t i o n c r o s s - s e c t i o n o f t h e heavy Z' and i t s subsequent 
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decay i n t o two WL's, we a l s o need t o c a l c u l a t e t h e c o u p l i n g s 

o f t h e Z' t o t h e l e f t - h a n d e d l i g h t massive charged v e c t o r 

bosons whichare due t o t h e gauge c o u p l i n g between 3WL 

p a r t i c l e s and t h e f a c t t h a t Z c o n t a i n s an a d m i x t u r e o f w£. 

T h i s c o u p l i n g i s ( f r o m e q u a t i o n 3.2.5 ) g i v e n , by: 

: " K ^ Cos6 w (3.2.14) 

where t h e s u p p r e s s i o n f a c t o r K i s g i v e n by 

3/ 
(Cos26 w) z 

K = (Cose w)4 A (3.2.15) 

and "g cos 0 W" i s t h e s t a n d a r d model c o u p l i n g o f t h e Z t o 

t h e l e f t - h a n d e d massive charged v e c t o r bosons. 

3.3 Production c r o s s - s e c t i o n of "Z'" i n PP c o l l i d e r 

The p r o d u c t i o n o f weak i n t e r m e d i a t e v e c t o r bosons o f 

v e r y l a r g e masses a t t h e CERN PP c o l l i d e r [ 1 2 , 1 3 , 1 4 ] 

p r o v i d e s a d i r e c t t e s t o f t h e D r e l l - y a n mechanism [ 3 4 ] 

assuming o f c o u r s e t h a t t h e c o u p l i n g s a r e as g i v e n by t h e 

s t a n d a r d model. I n t h i s s e c t i o n we s h a l l b r i e f l y d i s c u s s 

t h e k i n e m a t i c s o f t h e D r e l l - y a n p r o c e s s and t h e n f i n d t h e 

p r o d u c t i o n c r o s s - s e c t i o n o f t h e heavy "Z"' boson. 

C o n s i d e r a p r o t o n and a n t i p r o t o n w i t h f o u r momenta P± 

and P 2 r e s p e c t i v e l y , w h i c h c o l l i d e a t t o t a l c e n t r e - o f - m a s s 

energy squared "S" t o produce a v e c t o r boson o f momentum, 
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"q". The diagram f o r a " z / H boson produced by PP c o l l i s i o n 

i s shown i n F i g u r e (6) . For t h e h i g h e n e r g i e s we a r e 

c o n s i d e r i n g t h e Handelstam v a r i a b l e "S" becomes: 

S = ( P x + P 2 ) 2 

= 2P 1.P 2 (3.3.1) 

A c c o r d i n g t o t h e p a r t o n model, t h e p r o d u c t i o n o f t h e 

boson proceeds v i a t h e i n t e r a c t i o n o f a p a r t o n o f momentum 

p-j^ i n p r o t o n w i t h a p a r t o n o f momentum p 2 i n a n t i p r o t o n . 

F u r t h e r i f x± i s t h e f r a c t i o n o f momentum c a r r i e d by p a r t o n 

i n p r o t o n and x 2 i s t h e f r a c t i o n o f momentum c a r r i e d by 

p a r t o n i n a n t i p r o t o n t h e n : 

P i = x l p l (3.3.2) 

p 2 = x 2 P 2 (3.3.3) 

and 

q 2 = M z / = ( P i + P 2> 
= (X-.P., + x 2 P 2 ) L l r l 
~ * - x 1 x 2 s (3.3.4) 

U s i n g t h e "Z"' c o u p l i n g t o f e r m i o n s d e t e r m i n e d ( n e g l e c t i n g 

t h e e f f e c t o f 0 ( j)) i n s e c t i o n ( 3 . 2 ) , t h e i n v a r i a n t 
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p r o d u c t i o n c r o s s - s e c t i o n o f n z f n i n PP r e a c t i o n a t t a i n s t h e 

f o r m [ 3 5 ] : 

K 2Tr 2a 1 — A J 

S i n e wCos e w 3 q 0 ^ ^ 

(3.3.5) 

where 

K = j - (3.3.6) 
( C o s 2 9 w P 

i s t h e s u p p r e s s i o n f a c t o r w h i c h comes due t o t h e "Z"' 

c o u p l i n g . 
+ 

Moreover f ^ ^ x ) a r e t h e s t r u c t u r e f u n c t i o n s o f t h e p r o t o n 
P" 

and a n t i p r o t o n r e s p e c t i v e l y and t h e y r e p r e s e n t t h e 

d i s t r i b u t i o n s o f quarks ( a n t i - q u a r k s ) i n t h e p a r e n t hadrons. 

The f a c t o r -| accounts f o r t h e f a c t t h a t a l l t h r e e c o l o u r s o f 

q and q o c c u r w i t h e q u a l p r o b a b i l i t y b u t o n l y a q and q o f 

t h e same c o l o u r can a n n i h i l a t e t o f o r m a c o l o u r l e s s boson. 

We n o t e t h a t ( 3 . 3 . 5 ) d i f f e r s f r o m t h e c o r r e s p o n d i n g 

e x p r e s s i o n f o r Z p r o d u c t i o n because o f t h e f a c t o r K± and 

a l s o because o f t h e mass dependence w h i c h o c c u r s i n t h e 6 -

f u n c t i o n . 

The n u m e r i c a l v a l u e s o f t h e c r o s s - s e c t i o n f o r t h e Z' 

p r o d u c t i o n i n PP mechanism, a t i t s v a r i o u s masses, have been 

c a l c u l a t e d from e q u a t i o n (3.3.5) and a r e drawn i n F i g u r e 
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( 8 ) . These c a l c u l a t i o n s use t h e s t r u c t u r e f u n c t i o n s f ( x ) 

g i v e n by E. E i c h t e n e t a l . [ 3 7 ] and we a r e i n d e b t e d t o Janes 

S t i r l i n g who has p e r f o r m e d t h e necessary c o m p u t a t i o n s . 

F i g u r e (8) c l e a r l y i n d i c a t e s t h a t t h e t o t a l c r o s s -

s e c t i o n decreases by i n c r e a s i n g t h e mass o f t h e heavy Z'. 

We have a l s o d e t e r m i n e d t h e r a t i o o f t h e c r o s s - s e c t i o n o f 

t h e heavy Z' and t h e c o n v e n t i o n a l Z, w h i c h i s w e l l shown i n 

F i g u r e (9) as a f u n c t i o n o f M2/. 

3.4 The decay of "Z»" 

S i n c e , i n o u r L-R symmetric e x t e n s i o n o f t h e s t a n d a r d 

model, t h e h e a v i e r n e u t r a l " Z / M p a r t i c l e i s a s p i n one gauge 

boson, t h e r e must be t h r e e h e l i c i t y s t a t e s a s s o c i a t e d w i t h 

i t , + 1, 0. We e s t i m a t e t h e decay o f M Z ' M i n t o two WL's by 

t a k i n g a frame o f r e f e r e n c e i n w h i c h "Z' M i s a t r e s t . I n 

t h i s frame t h e p o l a r i s a t i o n v e c t o r (p) f o r t h e gauge 

bosons shown i n F i g u r e (7) a r e g i v e n by: 

A 
W 
e. ( P J 

W 
£ (P->) ' e|T(P3> 

0 1 (P,0,0,E) 1 (-P,0,0,E) (0,0,0,1) 

+ 1 " - ( o , i , i ,o) 
/2 

"- (o , i , i ,o) 
/T 

"±(0,l,i,0) 
/I 

- 1 i ( 0 , l , - i,o) 
/I 

- ( 0 , 1 , - t ,0) 
/2 

1 (0,1,-1,0) 
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where A's a r e t h e h e l i c i t y s t a t e s and P's r e p r e s e n t t h e 

momenta o f t h e v e c t o r bosons. Now u s i n g t h e "Z"' c o u p l i n g s 

t o t h e v e c t o r bosons d e t e r m i n e d i n S e c t i o n (3.2) and w o r k i n g 

i n t h e f r a m e m e n t i o n e d above we i m m e d i a t e l y f i n d t h e 

i n v a r i a n t a m p l i t u d e , f o r t h e p r o c e s s p i c t u r e d i n t h e F i g u r e 

( 7 ) , [ 3 6 ] as 

N = K g Cos9 w e* ( P ^ e J (P 2) [ g v A ( P ^ ) ^ - g ^ ( P 3 + P 2 ) v + 

V ( P 3 + P 1 ^ 1 E , ( P 3 > ( 3 ' 4 ' 2 ) 

The s u p p r e s s i o n f a c t o r K o b v i o u s l y g i v e s t h e d i f f e r e n c e 

between t h e heavy " Z / H and t h e u s u a l l i g h t Z ( f o r w h i c h K = 

1 ) . Then a f t e r some s t r a i g h t f o r w a r d and t e d i o u s 

m a t h e m a t i c a l c a l c u l a t i o n s , t h e decay w i d t h o f "Z'" i n t o WLw£ 
becomes [ 3 3 ] as f o l l o w s : 

acot*e„ , „ 3 / 2 
Hz' - W7W^)= K 2 M 7, ( X ) ' 3 ( X 2 - 4 ) (X 4+20X 2+12) 

48 
(3.4.3) 

where we have used X = j:— (3.4.4) X 
S i m i l a r l y t h e decay w i d t h o f heavy "Z"' i n t o f f a t t a i n s 

t h e s i m p l e s t f o r m g i v e n below 

2 2 
K,g M„' f 9 f j 

Rz' - f f ) = — % (c*)Z + (cf0 ] (3.4.5) 
1 4 8 i r C o s Z 6 w 

where K l f c v and c A ' a r e a l r e a d y w e l l d e f i n e d i n S e c t i o n s 
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(3.2) and ( 3 . 3 ) . The n o t a t i o n s f and f r e p r e s e n t f e r m i o n 

and a n t i f e r m i o n r e s p e c t i v e l y . 

3.5 Branching r a t i o 

The e x p e r i m e n t a l r e s u l t s w i t h w h i c h we w i s h t o compare 

ou r p r e d i c t i o n s a r e concerned w i t h p o s s i b l e e v e n t s l e a d i n g 

t o p a i r s WLWL. I n o r d e r t o f i n d how many o f t h e s e p a i r s o u r 

model p r e d i c t s w i l l be seen we need t o know how o f t e n t h e Z' 

decays i n t o t h i s mode. T h i s i s g i v e n by t h e b r a n c h i n g r a t i o 

w h i c h i s t h e r a t i o o f t h e decay w i d t h o f t h e Z' i n t o a 

p a r t i c u l a r c hannel and t h e t o t a l w i d t h o f t h e Z' i n t o a l l 

p o s s i b l e channel i n c l u d i n g t h e Z' -> mode. Thus 

Then making use o f t h e e q u a t i o n s (3.4.4) and ( 3 . 4 . 6 ) , 

t h e b r a n c h i n g r a t i o s o f t h e f e r m i o n s and WL bosons have been 

d e t e r m i n e d and f i n a l l y graphed i n F i g u r e ( 1 0 ) . T h i s F i g u r e 

c l e a r l y i n d i c a t e s t h a t i n c r e a s i n g t h e mass o f t h e Z' does 

n o t n o t i c e a b l y e f f e c t t h e b r a n c h i n g r a t i o s o f t h e f e r m i o n s 

l i k e t h e s t a n d a r d model, whereas t h e b r a n c h i n g r a t i o s o f t h e 

WL bosons i n c r e a s e r e a s o n a b l y . The reason i s * v e r y s i m p l e and 

ob v i o u s f r o m t h e f a c t t h a t t h e c o u p l i n g s t r e n g t h o f t h e Z' 

t o WL boson i s e f f e c t i v e l y suppressed by a f a c t o r K t h a t 

m a i n l y depends on t h e M w . 

n z 1 -> WT WJ ) 
B.R Z wTw:) I 

E f f + w"w:) I 

a l l (3.5.1) 
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Now t o f i n d t h e number o f Z' t o be decayed i n t o w£w£ 
p a i r s , we r e a l l y r e q u i r e t o c a l c u l a t e t h e number o f t h e 

s t a n d a r d Z's produced. These a r e w e l l computed i n Chapter 5 

w h i c h a r e a p p r o x i m a t e l y 975 e v e n t s . Then t h e number o f Z' 

decayed i n t o w£w£ e v e n t s can be e a s i l y f o u nd by t h e r e l a t i o n 

z' 
N z' = No. o f Z (produced) x R a t i o o f (jj-) c r o s s - s e c t i o n 

Rz- + wTw+) 
x
 u u 

(7 Z • •+ £ f f + W~wt) (3.5.2) 
a l l L L 

Z' 
Since t h e r a t i o o f (%-) c r o s s - s e c t i o n (see F i g u r e 9) i s 

0.022 a t MZ/ = 200 GeV, and t h e b r a n c h i n g r a t i o o f w£w£ 
p a i r s ( s e e F i g u r e 10) a g a i n a t M Z/ = 200 GeV becomes 

a p p r o x i m a t e l y 0.002. 

Thus o u r c u r r e n t model p r e d i c t s 

N z, = 975 X 0.0922 X 0.002 

~ 0.043 e v e n t s (3.5.3) 

w h i c h a r e , c e r t a i n l y , much s m a l l e r as compared t o t h e 

e x p e r i m e n t a l d a t a [ 3 ] . A l s o n o t i c e t h a t t h e number o f Z' 

ev e n t s t o be seen can be f u r t h e r i n c r e a s e d by l o w e r i n g t h e 

mass o f t h e r i g h t - h a n d e d v e c t o r boson (W R) f r o m 300 GeV t o a 

r e a s o n a b l y a c c e p t a b l e v a l u e . 
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CHAPTER 4 

Composite Models 

4.1 Motivation 

The whole p h y s i c a l w o r l d around us i s f u l l o f o b j e c t s 

composed o f so c a l l e d " m a t t e r " . I n t h e i r s i z e s , appearances 

and p r o p e r t i e s t h e y a r e v e r y d i f f e r e n t . To f i n d a s i m p l e and 

e l e g a n t way o f u n d e r s t a n d i n g and e x p l a i n i n g t h i s amazing 

v a r i e t y o f o b j e c t s as b e i n g made from some b a s i c c o n s t i t u e n t s 

has l o n g been an aim o f t h i n k i n g man. The c o l l e c t i v e e f f o r t s 

o f v a r i o u s s c i e n t i s t s , a t d i f f e r e n t ages, t o e x p l o r e t h e 

s t r u c t u r e o f m a t t e r have r e v e a l e d a sequence o f l a y e r s ; 

m o l e c u l e , atom, n u c l e u s , n u c l e o n and q u a r k , each o f wh i c h has 

e v e n t u a l l y t u r n e d o u t t o be composite, i . e . t o c o n c e a l some 

f u r t h e r s u b s t r u c t u r e . A t t h e p r e s e n t s t a g e o f o u r 

u n d e r s t a n d i n g we have r e a c h e d t h e l e v e l o f q u a r k s and 

l e p t o n s . Should we go f u r t h e r ? 

E a r l y s u g g e s t i o n s t h a t quarks and l e p t o n s m i g h t have 

c o m p o s i t e s t r u c t u r e were made by Chang [ 3 8 ] , Massam and 

Z i c h i c h i [ 3 9 ] . A t p r e s e n t t h e r e a r e n o t v e r y c o m p e l l i n g 

r e a s o n s f o r b e l i e v i n g i n any s u b s t r u c t u r e o f q u a r k s and 

l e p t o n s , b u t t h e p r o b a b l e d i s c o v e r y o f s i x t y p e s o f q u a r k s , 

each a p p e a r i n g i n t h r e e c o l o u r s , and t h e e x i s t e n c e o f s i x 

t y p e s o f l e p t o n s n a t u r a l l y r a i s e s t h e p o s s i b i l i t y t h a t t h e s e 

p a r t i c l e s a r e n o t t h e p o i n t - l i k e b u i l d i n g b l o c k s o f m a t t e r 

b u t a r e c o n s t r u c t e d f r o m a s i m p l e r s e t . M o r e o v e r t h e 
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observed s i m i l a r i t y between t h e p r o p e r t i e s o f q u a r k s and 

l e p t o n s s u g g e s t s t h a t b o t h k i n d s o f p a r t i c l e s s h o u l d be 

c o n s t r u c t e d f r o m t h e same f u n d a m e n t a l o b j e c t s . The 

h y p o t h e t i c a l new p a r t i c l e s , t h e b u i l d i n g b l o c k s o f q u a r k s and 

l e p t o n s , a r e u s u a l l y r e f e r r e d t o by t h e g e n e r i c name 

"preons". 

The S U ( 3 ) c x S U ( 2 ) w x U ( l ) y s t a n d a r d model p r o v i d e s a good 

d e s c r i p t i o n o f t h e e x p e r i m e n t a l w o r l d a t t h e c u r r e n t l e v e l o f 

a c c u r a c y , b u t s t i l l i t has n a i v e l y f a i l e d t o e x p l a i n why 

q uarks and l e p t o n s a r e so i d e n t i c a l i n t h e i r weak i n t e r a c t i o n 

p r o p e r t i e s , b o t h o c c u r r i n g i n S U ( 2 ) L weak i s o s p i n d o u b l e t s . 

A l s o i t does n o t e x p l a i n why t h e sum o f e l e c t r i c charges o f 

q u a r k s and l e p t o n s i n each " g e n e r a t i o n " v a n i s h e s ( e . g . u,d, 

v , e) i . e . 

3 ( Q U
 + Qd> + Qe + Q v e = 3<T4>e - e + 0 = 0 (4.1) 

The l a r g e number o f p a r t i c l e s a p p e a r i n g i n t h e 

S U ( 3 ) c x S U ( 2 ) w x U ( l ) Y s t a n d a r d model, t h e Higgs mechanism and 

t h r e e g e n e r a t i o n s o f f e r m i o n s , each c o n t a i n i n g two l e p t o n s 

and two f l a v o u r s o f t h r e e c o l o u r e d q u a r k s , i s a p r o b l e m o f 

s u b s t a n t i a l d i f f i c u l t y and has n o t as y e t b een c l e a r l y 

u n d e r s t o o d i f a l l o f them a r e r e a l l y f undamental p a r t i c l e s . 

The f i n a l m o t i v a t i o n i s much more s p e c u l a t i v e . The 

masses o f t h r e e g e n e r a t i o n s , t h e Higgs p a r t i c l e mass, t h e 

m i x i n g o f quarks and l e p t o n s , and t h e gauge c o u p l i n g s i n c l u d e 

a c t u a l l y a l a r g e number o f a r b i t r a r y p arameters w h i c h a r e n o t 

a l l p r e d i c t e d by t h e s t a n d a r d model. The v a l u e o f any new 
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model s h o u l d l i e i n p r e d i c t i n g most o r a l l o f t h e s e 

parameters. I t i s , however, e x p e c t e d t h a t t h e s e d i f f i c u l t i e s 

and problems m i g h t be r e s o l v e d i f quarks and l e p t o n s a r e 

composed o u t o f a common s e t o f some fundamental p a r t i c l e s . 

The s h o r t range f o r c e ( i n t e r m e d i a t e v e c t o r bosons exchange) 

i n t h e s t a n d a r d model c o u l d t h e n be c o n s i d e r e d as a r e s i d u a l 

e f f e c t o f some new unbroken gauge t h e o r y . 

T h e r e a r e v a r i o u s a r g u m e n t s w h i c h s u g g e s t t h a t any 

l i k e l y s u b s t r u c t u r e may be observed o n l y a t e x t r e m e l y s h o r t 

d i s t a n c e s and c o r r e s p o n d i n g l a r g e e n e r g i e s . The well-known 

evidence f o r t h e " p o i n t - l i k e " s t a t u s o f l e p t o n s and q u a r k s 

c l e a r l y shows t h a t such a s u b s t r u c t u r e must c o r r e s p o n d t o 

d i s t a n c e s w e l l below 10~ 1 8cm. The p r e s e n t l i m i t on t h e 

p r o t o n ' s l i f e t i m e r e q u i r e s , f o r a s i m p l e c l a s s o f models, 

d i s t a n c e s b e l o w 1 0 ~ 2 9 c m o r momenta somewhere above 

1 0 1 5 G e V . [ 4 0 ] . T h i s t i g h t e r l i m i t i s , h owever, model 

dependent. 

4.2 The r i s h o n model 

U s i n g t h e above r e a s o n i n g mentioned i n S e c t i o n ( 4 . 1 ) , 

v a r i o u s models have been proposed a l l s u g g e s t i n g t h a t q u a r k s 

and l e p t o n s a r e composite p a r t i c l e s . I n t h i s s e c t i o n we 

w i s h t o e x p l i c i t l y d i s c u s s t h e r i s h o n model. The model i s 

c l e a r l y s i m p l e and e x t r e m e l y economic. I n t h e r i s h o n model, 

i t i s p o s t u l a t e d [41,42] t h a t quarks and l e p t o n s as w e l l as 

gauge bosons a r e composite p a r t i c l e s . T h i s model i n f a c t 

c o n s i s t s o f o n l y two fundamental massless s p i n 1/2 b u i l d i n g 
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b l o c k s , c a l l e d T - r i s h o n and V - r i s h o n w i t h charges o f -̂ e and 0 

r e s p e c t i v e l y , and w i t h SU(3) h y p e r c o l o u r and SU(3) c o l o u r 

assignments l i s t e d i n t a b l e ( 1 ) . The s i m p l e s t composite 

f e r m i o n s c a n be c o n s t r u c t e d f r o m t h r e e r i s h o n s o r t h r e e 

a n t i r i s h o n s w h i c h a r e h y p e r c o l o u r c o n f i n e d and cannot be 

d i r e c t l y observed e x p e r i m e n t a l l y . The h y p e r c o l o u r s c a l e A H 

i s s u b s t a n t i a l l y l a r g e r t h a n t h e o r d i n a r y c o l o u r s c a l e , i . e . 

A H > > A ^ . A l l composite o b j e c t s a r e h y p e r c o l o u r s i n g l e t s and 

a r e t h e r e f o r e " o b s e r v a b l e " below t h e h y p e r c o l o u r s c a l e A J J . 

The l i g h t h y p e r c o l o u r s i n g l e t c o m b i n a t i o n s a r e 

e + = (TTT) , u = (TTV), d = ( T W ) , v = (VW) (4.2) 

t o g e t h e r w i t h t h e i r a n t i p a r t i c l e s 

e = (TTT), u = (TTV) , d = (TVV) , v = (VW) (4.3) 

Thus we can a c h i e v e a l l g e n e r a t i o n s o f q u a r k s and 

l e p t o n s h a v i n g t h e c o r r e c t charge and c o l o u r p r o p e r t i e s so 

f a r we have seen. The m a j o r advantage o f t h i s model i s t h a t 

t h e n e u t r a l i t y o f m a t t e r i s s a t i s f i e d a u t o m a t i c a l l y s i n c e , 

f o r i n s t a n c e , 

Hydrogen atom = ep = euud = (TTT)(TTV)(TTV)(TVV) (4.4) 

has no n e t charge as t h e t o t a l number o f T - r i s h o n s and 

V - r i s h o n s v a n i s h . I t i s a l s o v e r y c l e a r f r o m t h e above 

e q u a t i o n (4.4) t h a t t h e r i s h o n model d e s c r i b e s t h e U n i v e r s e 
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as t h e p a r t i c l e - a n t i p a r t i c l e symmetric o b j e c t . S i n c e t h e 

h y p e r c o l o u r e d r i s h o n s a r e n o t f r e e f e r m i o n s and a r e r a t h e r 

c o n f i n e d i n l e p t o n s i n s i d e a r a d i u s o f o r d e r A J J 1 , t h e two 

h y p e r c o l o u r l e s s l e p t o n s w i l l i n t e r a c t w i t h each o t h e r by 

s h o r t range r e s i d u a l h y p e r c o l o u r f o r c e s * These a r e analogous 

e x a c t l y t o t h e h a d r o n i c f o r c e s among two c o l o u r l e s s hadrons 

c o n t a i n i n g c o l o u r e d q u a r k s . I f we c o n s i d e r t h e h y p e r g l u o n 

massless p a r t i c l e w h i c h i s r e s p o n s i b l e f o r t h e b i n d i n g o f t h e 

f u n d a m e n t a l r i s h o n s , t h e c o m p l e t e l i s t o f f u n d a m e n t a l 

p a r t i c l e s i n c l u d e s r i s h o n s , a n t i r i s h o n s , h y p e r g l u o n s , g l u o n s 

and photons w h i c h a r e , o f c o u r s e , n o t t o o many when compared 

t o t h e p a r t i c l e s a p p e a r i n g i n t h e S U ( 3 ) c x S U ( 2 ) w x U ( l ) y 

s t a n d a r d m o d e l . F u r t h e r m o r e ^ , a l l t h e s e p a r t i c l e s a r e 

massless so mass parameters and fundamental s c a l a r p a r t i c l e s , 

l i k e Higgs s c a l a r , do n o t e x i s t a t a l l . T h e r e f o r e , t h e 

r i s h o n model has r e a l l y r e d u c e d t h e number o f b o t h t h e 

fundamental p a r t i c l e s and t h e parameters t o a r e a s o n a b l y 

a c c e p t a b l e l e v e l . 

U n t i l now we have n o t d i s c u s s e d t h e weak i n t e r a c t i o n s i n 

t h e c o n t e n t o f t h e r i s h o n model. Since t h e f u n d a m e n t a l u n i t 

o f e l e c t r i c charge i s e/3 so t h e W— cannot a c t between s i n g l e 

r i s h o n s t a t e s . I n f a c t , t h e s i m p l e s t boson w i t h t h e quantum 

numbers o f W~(Q = - 1 , B-L = 0) can be c a r r i e d by m u l t i r i s h o n 

exchanges as shown i n F i g u r e (n) and c o r r e s p o n d t o a s t a t e o f 

t h e f o r m : 

W" = (TTTVW) (4.5) 
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S i m i l a r l y 

w + = (TTTVW) (4.6) 

When W" s i n g l e t s t a t e a c t s on a f e r m i o n t h a t c o n s i s t s o f 

t h r e e r i s h o n s ^ i t p r o d u c e s a s t a t e o f t h r e e a n t i r i s h o n s , f o r 

example, 

W~|TTT > = | WV > = \ \ ) e >, W~|VTT > - |TW > = |d > 

(4.7) 

Thus W~ h y p e r c o l o u r s i n g l e t changes e + v e , u d, 

d -»• u and v e -> e as d e s i r e d * S i m i l a r l y t h e W+ boson can 

e a s i l y t r a n s f o r m t h e h y p e r c o l o u r s i n g l e t s v e •+ e + , d -»• u, 

u •+ d and e ->• v e . The n e u t r a l h y p e r c o l o u r s i n g l e t 

m e d i a t e d i n weak i n t e r a c t i o n s i s e x p r e s s e d i n t e r m s o f 

charged T - r i s h o n s and n e u t r a l V - r i s h o n as f o l l o w s : 

W° = - (TTTTTT - W W W ) (4.8) 

Since i t must c o u p l e s y m m e t r i c a l l y t o T's and V s . The 

reason f o r t h e s e v e c t o r mesons ( h y p e r c o l o u r s i n g l e t s ) t o be 

l i g h t e r t h a n any o f t h e o t h e r mesons c o n s t r u c t e d f r o m t h e s e 

c o m b i n a t i o n s o f r i s h o n s i s s t i l l v e r y much u n c l e a r . Note 

a l s o t h a t t h e t h e o r y s t a r t s o u t as l e f t - r i g h t symmetric 

so i t i s necessary t h a t t h e c o u p l i n g t o composite Higgs 

f i e l d s must b r e a k t h e n t h i s symmetry. How and why t h i s 
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happens i s a problem f o r composite models. 

E q u a t i o n (4.8) suggests a new and i m p o r t a n t f e a t u r e o f 

composite models. I n a d d i t i o n t o t h e weak SU(2), s p i n 1 

v e c t o r p a r t i c l e [W-, W°] t h e r e ought a l s o t o be a weak SU(2), 

s p i n 0 v e c t o r p a r t i c l e . 

B° = ^ [TTTTTT + WVVVV] (4.9) 

Compare t h e p and CO o f t h e quark model: 

We e x p e c t t h a t , a t l e a s t i n some a p p r o x i m a t i o n t h e s e 

s t a t e s w i l l be degenerate i n mass ( a g a i n as w i t h t h e P 

and CO). Thus composite models m i g h t be e x p e c t e d t o g i v e an 

a d d i t i o n a l n e u t r a l v e c t o r boson. The e f f e c t o f t h i s w i l l be 

d i s c u s s e d i n t h e n e x t few c h a p t e r s . 

4.3 Problems 

I n t h e p r e c e d i n g s e c t i o n we have e x p l i c i t l y d i s c u s s e d 

t h e r i s h o n model ( t h e most economic model) as t h e m i n i m a l 

p o s s i b l e scheme. I n t h i s model i t i s s i m p l y assumed t h a t a l l 

q u a r k s , l e p t o n s and massive v e c t o r bosons as w e l l as a l l 

s c a l a r p a r t i c l e s a r e c o m p o s i t e o f a s m a l l s e t o f new 

•2 
[uu - dd] (4.10 

CO - -±[uu + dd] 
/2 

(4.11) 
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fundamental b u i l d i n g b l o c k s . A l l p r o p e r t i e s o f f e r m i o n s and 

bosons a r e assumed t o be consequence o f t h e p r o p e r t i e s o f t h e 

same s e t o f e l e m e n t a r y c o n s t i t u e n t s ; i n p a r t i c u l a r , t h e 

s t a n d a r d model i s e x p e c t e d t o be d e r i v e d as l o w — e n e r g y 

phenomenology. I n o t h e r words, a t e n e r g i e s w e l l below A H , 

t h e L a g r a n g i a n must possess a l l i n g r e d i e n t s o f a l o c a l gauge 

t h e o r y . D e s p i t e t h e s u c c e s s o f t h e r i s h o n model i n 

r e p r o d u c i n g and g e n e r a t i n g t h e c o r r e c t spectrum o f qua r k s and 

l e p t o n s as w e l l as v e c t o r b o s o n s , i t s t i l l r e m a i n s 

u n e x p l a i n e d , why we observe o n l y composite s t a t e s l i k e r r r 

o r r r r b u t n o t , f o r example, r r r ? The second m a j o r problem 

o f t h e r i s h o n model ( d i s c u s s e d i n t h e p r e v i o u s s e c t i o n ) i s 

t h e r e q u i r e m e n t f o r l i g h t c o m p o s i t e v e c t o r b o s o n s t h a t 

c o r r e s p o n d t o an approximate gauge symmetry o f t h e energy 

w e l l below A H L a g r a n g i a n . T h i s problem i n f a c t seems t o be 

an e x t r e m e l y i n t e r e s t i n g c u r r e n t i s s u e d i s r e g a r d i n g t h e 

model. I n QCD, a l l composite f e r m i o n s a c q u i r e d masses o f 

o r d e r A C ( o r more) a t t h e expense o f t h e s p o n t a n e o u s l y b r o k e n 

c h i r a l symmetry. On t h e o t h e r hand, t h e r i s h o n s composite 

model o f f e r m i o n s w h i c h i s b a s i c a l l y based on hyperdynamics, 

suggests some degree o f unbroken c h i r a l symmetry, and t h i s 

o b v i o u s l y g e n e r a t e s massless quarks and l e p t o n s w e l l below 

A H . T h i s m i g h t l e a d t o some fundamental d i f f e r e n c e between 

t h e c h i r a l symmetry b r e a k i n g i n QCD and t h e composite model. 

U n f o r t u n a t e l y , t h e r e a s o n f o r t h i s d i f f e r e n c e i s n o t 

s a t i s f a c t o r i l y u n d e r s t o o d y e t . F i n a l l y , t h e u n u s u a l 

assumption r e g a r d i n g t h e e x i s t e n c e o f a l a r g e v.e.v. f o r r r r r 

( o r r r r r r r ) s t a t e s w i t h s m a l l ( o r ze r o ) v.e.v f o r r f s t a t e s 
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i s n a t u r a l l y u n j u s t i f i e d and i s c o n s i d e r e d t o be an i m p o r t a n t 

problem o f t h e r i s h o n composite model p r e s e n t l y . D e s p i t e t h e 

v a r i o u s d i f f i c u l t i e s o f t h e r i s h o n model, i t s t i l l may remain 

a r e a l i s t i c c a n d i d a t e f o r t h e c o r r e c t t h e o r y p r o v i d e d t h e 

problem o f c h i r a l symmetry i s p r o v e d e n t i r e l y d i f f e r e n t f rom 

t h a t o f o r d i n a r y QCD. 
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CHAPTER S 

The Simple Two Z's Model 

5.1 Mass matrix and d i a a o n a l i a a t i o n formula 

I n t h i s c h a p t e r we s h a l l f o l l o w t h e i d e a s o f t h e 

p r e v i o u s c h a p t e r s and assume t h a t t h e o b s e r v e d weak 

i n t e r a c t i o n s a r e r e s i d u a l e f f e c t s o f an unbroken h y p e r c o l o u r 

gauge i n t e r a c t i o n . The e f f e c t i v e L a g r a n g i a n , w h i c h d e s c r i b e s 

t h e i n t e r m e d i a t e v e c t o r b o s o n s m e d i a t i n g t h e weak 

i n t e r a c t i o n , w i l l be r e n o r m a l i z a b l e so i t must have t h e 

s t r u c t u r e o f a H iggs-broken gauge t h e o r y . I n o r d e r t o agree 

w i t h e x p e r i m e n t we have t o assume t h e e x i s t e n c e o f t h e 

a p p r o p r i a t e s e t o f l i g h t ( i . e . compared t o t h e h y p e r c o l o u r 

s c a l e ) v e c t o r p a r t i c l e s . As we have n o t e d i t i s n a t u r a l t h a t 

i n a d d i t i o n t o t h e z e r o c h a r g e members o f t h e SU(2) 

m u l t i p l e t s t h e r e s h o u l d be a composite U ( l ) v e c t o r boson. 

Thus t h e e f f e c t i v e L a g r a n g i a n w i l l be i n v a r i a n t under a l o c a l 

g roup: 

G = S U ( 2 ) L X S U ( 2 ) R X U ( l ) X U ( l ) (5.1.1) 

where t h e o t h e r U ( l ) f a c t o r r e f e r s t o an " e l e m e n t a r y " v e c t o r 

f i e l d . F o l l o w i n g t h e d i s c u s s i o n o f t h e second Chapter, we 

assume t h a t t h e c o u p l i n g s a s s o c i a t e d w i t h t h e gauge groups 

S U ( 2 ) L and S U ( 2 ) R a r e e q u a l . Hence t h e m odel u n d e r 

d i s c u s s i o n has c o u p l i n g c o n s t a n t s g, g, g x , g 2 c o r r e s p o n d i n g 
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t o each f a c t o r i n e q u a t i o n ( 5 . 1 . 1 ) . For t h e e l e c t r o m a g n e t i c 

charge o p e r a t o r we can t a k e 

Q = T 3L + T 3R (5.1.2) 

where and Y 2 a r e t h e hypercharge a s s o c i a t e d w i t h t h e two 

U ( l ) f a c t o r s . Note t h a t t h e r e i s no l o s s o f g e n e r a l i t y i n 

p u t t i n g j u s t Y1 i n e q u a t i o n ( 5 . 1 . 2 ) . The m i n i m a l s e t o f 

Higgs s c a l a r s r e q u i r e d t o break L-R symmetric model down t o 

U ( l ) o f e l e c t r o m a g n e t ism, and t o g i v e masses t o t h e qua r k s 

and l e p t o n s , has been e x p l i c i t l y d i s c u s s e d by Mohapatra and 

S a n j a n o v i c [ 4 3 ] . But i n our model, because o f t h e e x t r a 

U ( l ) , we need an a d d i t i o n a l Higgs s c a l a r w h i c h i s b a s i c a l l y 

o b t a i n e d by assuming t h a t t h e r e a r e two Higgs t r i p l e t s w i t h 

d i f f e r e n t c o u p l i n g s . The f o l l o w i n g s e t o f Higgs s c a l a r s has 

been used i n o u r subsequent work: 

$ = ( i , \, 0, 0) 

= ( 1 , 0, 2, 2) 

( 1 , 0, 2, -2) (5.1.3) 

R ( 0 , 1, 2, 2) 

(0 , 1, 2, -2) 
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Up t o t h i s p o i n t we c e r t a i n l y have a c o m p l e t e l y L-R symmetric 

t h e o r y . T h i s L-R symmetric t h e o r y i s b r o k e n by assuming t h a t 

o n l y t h e r i g h t - h a n d e d X s t a t e s possess a vacuum e x p e c t a t i o n 

v a l u e . Thus c o n s i d e r i n g e q u a t i o n (5.1.2) as an e x a c t quantum 

number, we can c o n v e n i e n t l y w r i t e : 

< $ > = 

<X R> 

1 ( k 0 ) 

1 

/2 

0 
0 
v <X R> 1 

SI 
(5.1.4) 

< x L > = < x L > = 0 

Then by making use o f t h e e q u a t i o n s ( 2 . 2 . 1 2 ) , (2.2.13) and 

( 5 . 1 . 4 ) , t h e f o l l o w i n g mass m a t r i c e s b o t h f o r t h e charged and 

n e u t r a l gauge bosons i n v o l v e d i n t h e t h e o r y a r e o b t a i n e d : 

< i | M + | j > = 

< i | M | j > -

- J j g 2 k ' k 

- E 

0 

o 

- I 

E+A 

-aA 

-B(A-A) 

- h g 2 k ' k 

Z + A 

(5.1.5) 

-aA 

a 2 A 

a3( A-A) 

-B(A-A) 

aB(A-A) 

3 2A 

(5.1.6) 
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where t h e s t a t e s | i > a r e |W3L>, | W
3 R > , |B1> and 

|B2>, and where 

E = ( k 2 + k ' 2 ) = M, 

A - £ ( v 2 + 2 ( " " 2 

H2 2 

WL 

A = q w f a = £l , 3 = 
w ) ~ MW R 

L 
i 

g 

(5.1.7) 
^2 
g 

I n t h i s c h a p t e r we s h a l l t a k e A v e r y l a r g e so t h a t t h e r i g h t -

handed SU(2) has no e f f e c t . To d i a g o n a l i z e t h e n e u t r a l mass 

m a t r i x we j u s t d i a g o n a l i z e t h a t p a r t o f i t w h i c h remains when 

we i g n o r e E: 

A -aA - P ' A 
2 

< i | M | j > = -otA a 2A a&' A (5.1.8) 

VA a3' A 6 2 A 

Here we have d e f i n e d : 

3' = 3(A-A) 
A 

(5.1.9) 

The c h a r a c t e r i s t i c e q u a t i o n y i e l d s t h e f o l l o w i n g e i g e n v a l u e 

spectrum (XA) f o r t h e mass m a t r i x i n e q u a t i o n ( 5 . 1 . 8 ) . Where 

X = 0, 
2 . n2 

Xj = 1 + a + g -h [ ( 1 + a 2 + 3 2 ) 2 - 4( 3 2-3' 2) ( 1 + a 2 ) ] * * 
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and 
2 2 

A 2 = 1 + o t
2

+ e +h [ ( l + a 2 + B 2 ) 2 " 4( ̂ - B ' ^ t l + c x 2 ) ] h 

(5.1.10) 

Now we r e c a l l t h a t we w i s h t o t a k e A v e r y l a r g e - i n 

f a c t we s h a l l c o n s i d e r t h e l i m i t A -* °° . However, we want 

our model t o have 3 n e u t r a l v e c t o r p a r t i c l e s o f f i n i t e mass 

( t h e p h o t o n , t h e s t a n d a r d Z^and a new Z 2) • Thus one o f t h e 

above e i g e n v a l u e s , say X^A, must remain f i n i t e as A -*- 0 0 

T h i s c l e a r l y r e q u i r e s : 

3
2 - e' 2 a, 1 (5.1.11) 

Hence we can expand e q u a t i o n (5.1.10) and w r i t e 

* = 0 
0 U 

x = ( 3 2 - 3 2 ) ( 1 + a 2 ) (5.1.12) 
1 ( l + a 2 + B 2 ) 

x
2 = ( 1 + a 2 + e 2 ) 

The d i a g o n a l i z a t i o n o f t h e m a t r i x g i v e n i n e q u a t i o n 

(5.1.8) can be completed j u s t by i n t r o d u c i n g t h e s t a t e s l n > : 

n> = I I i > < i | n > (5.1.13) 
i 

where 
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<i n> = 

1 0 0 0 

0 s CS CC 

0 c -sS -SC 

0 0 c - s 

(5.1.14) 

w i t h 

2 _ a' s = 

,2 _ 3 

1+a 
• 2 

2' 

2 2' 
1+a + 3 Z 

c 2 = 
1+a' 

2 _ C = 2 2 l+a^+3 

(5.1%15) 

( i n t h e A •> 0 0 a p p r o x i m a t i o n ) . 

I n t h e In> b a s i s , t h e f u l l mass m a t r i x (5.1.6) i s o b t a i n e d as 

f o l l o w s 

<n|M2|m> = I < n | i x i | M 2 | j > j |m> 
i f j 

-si -cSE -cCZ 

- s i 

- c S l 

-cCE 

s2l 

S C S E 

scCl 

scSZ 

2 2 
C S E + A. 

c 2SCz 

scCl 

c2CSl 
(5.1,16) 

c 2C 2Z+A 2A 
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As expe c t e d t h i s m a t r i x i s d i a g o n a l p r o v i d e d Z = 0. 

Since ( ̂ 2A) becomes i n f i n i t e as A goes t o i n f i n i t y we 

can i g n o r e t h e o f f - d i a g o n a l terms o f t h e f o u r t h row and 

column and j u s t d i a g o n a l i z e t h e t o p l e f t 3 x 3 mass m a t r i x o f 

e q u a t i o n ( 5 . 1 . 1 6 ) : 

(5.1.17) 

where 

V . ( e 2 - e ^ u + a
2 > A _ K 

E (l+oi +3 ) Z 

The e i g e n v a l u e s p e c t r u m o f mass m a t r i x ( 5 . 1 . 1 7 ) i s t h e n 

d e t e r m i n e d , by making use o f t h e c h a r a c t e r i s t i c e q u a t i o n , t o 

be 

<n IB lm> = 
Z 

1 

-s 

-CS 

-s 

s 2 

SCS 

-CS 

scS 

C 2S 2+K 

x o = o 

* 1,2 = Z (^ ( l + s 2 + K + c 2 S 2 ) -h [ ( l + s 2 + K + C 2 S 2 ) 2 - 4 K ( l + s 2 ) ] 

(5.1.19) 

where t h e A's a r e t h r e e mass squared e i g e n v a l u e s a s s o c i a t e d 

w i t h t h e p h o t o n and t h e two massive n e u t r a l v e c t o r bosons M z. 

F u r t h e r K, S and s a r e t h e o n l y f r e e p a r a m e t e r s . Now i f we 

d e f i n e 

2 2 
= and I , - (5.1.20) 
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t h e n we have 

X 1 2 =l±B_tK+£_S_ ? ^ [ ( K _ ( 1 + S 2 ) + C 2 S 2 ) 2 + 4 C 2 S 2 ( 1 + S 2 ) ] h 

(5.1.21) 

5.2 The couplings of the v e c t o r bosons 

I n o r d e r t o c a l c u l a t e t h e c o u p l i n g s o f t h e v e c t o r 

bosons we need e l g e n s t a t e s w h i c h d i a g o n a l i z e t h e mass m a t r i x 

( 5 . 1 . 1 7 ) , i . e . 

<n|r> = 
sinew 
c o s 8 w 

0 

COSQtyS' COSewC' 

- s i n 6 w S ' - s i n e w C ' 

-S' 

(5.2.1) 

where t h e Weinberg a n g l e i s d e f i n e d by 

s i n ' 
2 

* 1 
2^„ 2 g + 2 g x 

(5.2.2) 

The c o n s t a n t s C and S' a p p e a r i n g i n e q u a t i o n (5.2.1) a r e 

expressed i n te r m s o f known ( A 1 , X 2 ) parameters by u s i n g t h e 

e i g e n v a l u e e q u a t i o n i . e . 

<n|M|m>< m |r> = X <n r > 
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-s 

-s 

-cS 

scS 

-cS scS c 2S 2+K 

s i n 9 w cos0 wS* cos8 wc' 

c o s 9 w - s i n 0 w s ' - sin9 wC 

-S 

s i n 9 w cos9 ws' cos9 wC* 

c o s 9 w - s i n 9 w S -sin9 wC 

-S 

s i n 9 w ~ s c o s 9 w 

- s s i n 9 w + s c o s 9 w 

cos9 wS+ssin9 wS-cSC 

' 2 ' ' •scos9 wS-s sin9 wS+csSC 

- c S s i n 9 w + s c S c o s 9 w -cSScos9 w~scSSsin9 w 

' 2 2 +C(c S +K) 

i i » 
cos9 wC+ssin9 wC+cCS 

i 2 ' ' -scos9 wC-s sin9 wC-scSS 

• i 
-cSCcos9 w-scSCsin9 w 

' 2 2 -S(c S +K) 

// 

T h i s e q u a t i o n (5.2.3) t h e n y i e l d s 

T ' 2 = 4 1 ) 2 = 
C ( c o s 9 w ( l - A 1 ) + s s i n 9 w ) 2 

2 ' 2 e2 c c S 
• 2- 2 

(1-c Z \ 1 ) Z 

(5.2.4) 

where c ' 2 = l / ( l + s 2 ) (5.2.5) 

To f i n d t h e v a l u e o f " S 2 m i n terms o f \1, 12> w e b e g i n w i t h 
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e q u a t i o n (5.1.21) as f o l l o w s 

\ + A2 = l + S 2 + K + C 2S 2 

1 + S 2 + ~- C 2S Z (5.2.6) 
t-t 

and \ • X 2 = K ( l + s 2 ) 

A X 
2 = K 

l + s z 

X.A? X.A 
^ - f = -~ (5.2.7) 
1+s L 

Thus e q u a t i o n s (5.2.6) and (5.2.7) s i m u l t a n e o u s l y g i v e 

( X l C - 1) (1 - c n 2 ) 
S 2 = 2 , 2 (5.2.8) 

c c 

S u b s t i t u t i n g t h i s i n t o e q u a t i o n (5.2.4) t h e n g i v e s : 

(X c ' 2 - l ) 
T t - r j ; (5.2.9) 

(1-c Z X 2 ) 

Then by u s i n g t h e r e l a t i o n s' 2 + c' 2 = 1, we i m m e d i a t e l y f i n d 

t h a t 

'2 1 2-
s' 2 = - — , 7 = ( C A 2 " 1 ) (5.2.10) 

1+T t 2 _ _ 

and 

c' 2 = i — r = 1 - c ' 2 ^ (5.2.11) 
1+T * ' 2 , t . 

c ( X 2 - X 1 ) 

A f t e r h a v i n g d e t e r m i n e d t h e c o n s t a n t s i n v o l v e d i n e q u a t i o n 
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(5.2.1) i n terms o f known pa r a m e t e r s , we s h a l l now c a l c u l a t e 

t h e c o u p l i n g s o f t h e n e u t r a l gauge v e c t o r bosons. For t h i s 

purpose we f i n d f i r s t : 

< i |r> = I 
i 

1 0 0 0 

0 s cS cC 

0 c -sS -sC 

0 0 C -S 

sxn' W 
cos 9, W 
0 

0 

cos e ws• 
- s i n k s ' 

c 

0 

cos e wc• 

- s i n e w c 

-S' 

0 

0 

0 

0 

1 

s m e w 

s s i n e w 

c o s e w s 

-ssin6 wS+cSC 

cos9 wC 

-ssin9 wC-cSS cC 

ccose w -csine wS-sSC i i 
-csin9 wC+sSS -sC 

i 
CC -SC -s 

(5.2.12) 

The e i g e n s t a t e s < i | c o r r e s p o n d i n g t o t h e o r d e r o f f a c t o r s i n 
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e q u a t i o n (5.1.1) a r e g i v e n by: 

< i | = I < i |r> ><r r 

s i n 6 w 

SCOS0 

ccos9 

W 

W 

c o s 9 w S 

> i 
- s s i n 6 w S + cSC 

i i 
- c s i n 9 w S - sSC 

CC 

s i n 0 w y + cos9 wS Ẑ  

cos9 wC 

- s s i n 9 w C - cSS cC 

- c s i n 9 w C + sSS -sC 

-SC 

+cos9 wCZ 2 

-S 

+ 0 Z. 

SCOS6 wY + ( - s s i n 9 w S + c S C ) Z 1 + ( - s s i n 9 w C - c S S ) Z 2 + cCZ 3 

i i i < 
CCOS6 wY + ( - c s i n 9 w S - s S C ) Z 1 + ( - c s i n 9 w C + s S S ) Z 2 - sCZ 3 

O.Y + CCZ. -SCZ. - S Z. 

(5.2.13) J 

Then making use o f t h e g e n e r a l d e f i n i t i o n o f t h e c o u p l i n g s 

g i v e n i n e q u a t i o n ( 3 . 2 . 1 2 ) , we f i n d t h a t t h e p h o t o n c o u p l i n g 

becomes: 

Y • 9 ( T 3 L + T 3 R + 2 ) s i n e w 

: g s i n e w Q (5.2.14) 

[Here we have used cg^^ = sg and Q = T 3 L + T 3 R + — ^ ] 

As e x p e c t e d f o r t h e e l e c t r o m a g n e t i c i n t e r a c t i o n s . 

The Z± c o u p l i n g i s t h e n o b t a i n e d as f o l l o w s 
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' Y Y 
V c f s ^ t T 3 L - s i n 2 e w , Q ] + 9 CCS [ T 3 R - a 2 ^ + d + a 2 ) / ] 

(5.2.15) 

and f i n a l l y t h e Z 2 c o u p l i n g has t h e f o r m : 

' Y Y 
Z 2: S£ [ T 3 L - s i n 2 e w Q ] - g c S S ' [ T 3 R - a 2 ^ (1+a 2) - | ] 

C O s 6W (5.2.16) 

5.3 Both Z's w i t h i n e x p e r i m e n t a l peak 

The composite model o f S e c t i o n (4.2) c l e a r l y s u ggests 

t h a t t h e r e a r e two Z p a r t i c l e s o f a p p r o x i m a t e l y e q u a l mass. 

S i n c e t h e r e i s no e v i d e n c e f o r t w o Z's i n t h e mass 

d i s t r i b u t i o n o f Z e v e n t s , i t i s n a t u r a l t o assume t h a t b o t h 

Z's appear i n t h e same e x p e r i m e n t a l peak i . e . t h a t t h e mass 

d i f f e r e n c e |MZ - M z | i s l e s s t h a n t h e e x p e r i m e n t a l 
2 1 

u n c e r t a i n t y , w h i c h i s about 2.6 Gev [ 4 4 ] . I n t h i s s e c t i o n we 
s h a l l e x p l o r e t h e consequences o f t h i s a ssumption. For t h i s 

2 2 
purpose we s t a r t w i t h t h e e x p e r i m e n t a l l y known v a l u e s o f Mw/Mz 

and s i n 2 9 w w h i c h are g i v e n by [ 3 , 4 5 ] , V 2 
-Y~ = 0.777 ± 0.02, s i n 2 9 w = 0.23 ± 0.007 (5.3.1) 
M Z 

S u b s t i t u t i n g K = B + 1 + s 2 i n t o e q u a t i o n (5.1.21) t h e n 

c l e a r l y g i v e s 

2 
X 

B+c 2S 
1 2 = 1+S 2+ 2 + h[ ( B + C 2 S 2 ) 2 + 4 C 2 S 2 ( 1 + S 2 ) p (5.3.2) 
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We r e c a l l , f r o m s e c t i o n ( 5 . 1 ) , t h a t B and S a r e g i v e n i n 

terms o f t h e o r i g i n a l parameters by 

B - < g 2 - / 2 ) A . ( W ) ( 5 < 3 s 3 ) 

(l+a +3 )E l+o 

8 - - " ' ( l + a 2 + 3 2 ) J s 

C l e a r l y we can r e g a r d B and S as o u r new i n d e p e n d e n t 

parameters. Since we have 

2 2 
M Z " M Z = ( MZ + M Z )< MZ ~ MZ ) 

2 1 2 1 2 1 
^ 200 Gev 2 

2 2 
L2 L \ 200 . 1 

•iS T n n n r» ^ 
M 2 * 10000 * 50 

So [ ( B + C 2 S 2 ) 2 + 4 C 2 S 2 ( 1 + S 2 ) £ -J 50 

wh i c h i m p l i e s t h a t : 

B 2 + 2 c 2 S 2 B + c 4 S 4 + 4 c 2 S 2 ( l + S 2 ) -j^QQ 

(5.3.4) 

Thus b o t h B 2 and S 2 a r e s m a l l ^ 1/2500, so we can i g n o r e BS 2 

and S 4 terms i n t h e square r o o t . Then w o r k i n g o n l y t o f i r s t 

o r d e r i n B and S we g e t : 

X 1 2 = 1 + S 2 + | + * s [ B 2 + 4 C 2 S 2 ( l + S 2 ) ]* (5.3.5) 

Now i f E-, and E 0 a r e c o n s i d e r e d as t h e minimum and maximum 
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2 2 

v a l u e s o f — | and — - w h i c h can, o f c o u r s e , be n u m e r i c a l l y 
MW 2 M W

2 

d e t e r m i n e d f r o m t h e e q u a t i o n ( 5 . 3 . 1 ) , t h e n e q u a t i o n (5.3.5) 

i m m e d i a t e l y g i v e s : 

S 2 = — - i - [ ( E 2 - ( l + s 2 ) ) 2 = B ( E 2 = ( 1 + S 2 ) ) ] (5.3.6) 
c (1+s^) 

and 

S 2 - 1 [ ( ( l + s 2 ) ^ ) 2 + B ( ( l + s 2 ) - E 1 ) ] 
c (1+s ) 

(5.3.7) 

U s i n g s i n 2 ^ = 0.23 c l e a r l y produces 

1+ s 2 = 1.299, E x • 1.255 and E 2 - 1.321 (5.3.8) 

The r e l a t i o n s h i p between B and S, f r o m e q u a t i o n s (5.3.6) and 

(5.3.7) a r e shown i n F i g u r e ( 1 2 a ) . The shaded a r e a i n t h i s 

f i g u r e i n d i c a t e s t h e p o s s i b l e a l l o w e d r e g i o n o f t h e two Z's 

c o n t r i b u t i o n . The s t a n d a r d model, o f c o u r s e , i s i n c l u d e d i n 

t h i s r e g i o n a t , f o r i n s t a n c e , S = 0, B 4 0. Our p r i m e 

concern h e r e i s t o e x p l o r e t h e area where b o t h Z's a r e 

c o n t r i b u t i n g . I n t h i s r e g a r d t h e maximum c o n t r i b u t i o n i s 

most l i k e l y t o be shared by t h e two massive n e u t r a l gauge 

bosons a t t h e p o i n t s where t h e two d i f f e r e n t l i n e s a r i s i n g 

f rom t h e e q u a t i o n s (5.3.6) and (5.3.7) i n t e r s e c t each o t h e r . 

I t i s p r o b a b l y w o r t h n o t i c i n g t h a t d i f f e r e n t v a l u e s o f s i n 2 e w 
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g i v e d i f f e r e n t i n t e r s e c t i n g p o s i t i o n s as shown i n F i g u r e s 

( 1 2 b , c ) . But, f r o m F i g u r e ( 1 2 a ) , we choose 

B = - 0.022, S = + 0.033 

and s i n 2 9 w = 0.23 (5.3.9) 

Then by u s i n g t h e s e v a l u e s we g e t 

I x = 1.28, I 2 = 1.34 (5.3.10) 

wh i c h s u b s e q u e n t l y y i e l d 

S'2 « 0.669, C'2 = 0.331 (5.3.11) 

We s h a l l now t e s t t h e consequences o f t h e two Z's i n t h e 

n e u t r i n o - e l e c t r o n e l a s t i c s c a t t e r i n g p r o c e s s ( F i g u r e ( 1 3 ) ) 

w h i c h i s b e l i e v e d t o be a s e n s i t i v e and a c c u r a t e probe o f t h e 

f undamental f e a t u r e s o f t h e s t a n d a r d e l e c t r o w e a k t h e o r y . The 

c o u p l i n g s o f t h e s e two massive n e u t r a l v e c t o r bosons t o t h e 

f e r m i o n s i n t h e r e g i o n S - B ^ 0 can be r e w r i t t e n as f o l l o w s 

Z,: ̂  [c - c Y 5 ] + ^ [c - c ' Y 5 J 
1 2 c o s 9 w

 V A 2 c o s 9 w
 v 

(5.3.12) 

Here we have i g n o r e d t h e (unknown) Y 2 t e r m and have used 
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Y l _ 
2 Q " T 3 L ~ T3R 
C v = T 3 - 2 sin 29wQ/ CA = T 3 f 5 , 3 

i 
C K ~ ~ T 3 c o s 2 9 w » A ~ C S 1 

( c o s 2 6 w ) 

A l t e r n a t i v e l y e q u a t i o n (5.3.12) i s w r i t t e n by: 

Z x: — 3 [(S* c L+Ac ') ( l - y 5 ) + ( S c R + Ac^) ( 1 + Y 5 ) ] ( 5 . 3 

2 c o s 8 w 

where we have f u r t h e r d e f i n e d : 

_ _ C V + C A _ _ CV~ CA 
C L 2 — ' R 2 — 

c ' = v A / = V A C L o ' CR ? — 

S i m i l a r l y , t h e Z 2 c o u p l i n g has t h e form : 

Z 2 : — 2 t <Cc L-Hc L' ) (1-Y5) + (CC R-HC i')(1 + Y5) ] 
2cos 

w i t h 

ss' 

(5.3 

(5.3, 

H = .\ (5.3 ( c o s 2 6 w P * 

Now t h e a m p l i t u d e due t o t h e two Z's exchange i n ve 

r e a c t i o n can t h e n i m m e d i a t e l y be w r i t t e n by: 
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+ H'v(k') y (1-y5) vMe(p')yii(l+v5)e(p)] 

2 
M(v) = — 3 _ — 2 [ A ' v t k ' W ( l - Y 5 ) v ( k ) e ( p ' ) Y U ( l - Y 5 ) e ( p ) 
Z 1 + Z 2 Bcos^e^M^ 

( 5 . 3 . 1 8 ) 

where 

M Z 2 
A' = ( S + A s i n 2 9 W) (Sc L+Ac£) + (Cc L-Hc£) ( C - H s i n 2 e w ) j p | 

z, and ^5.3.19) 

H' = (S + A s i n 6 W ) (Sc^ A c ^ J + tCc^Hc^) ( C - H s i n ^ S w ) _ _ l 
M„2 

M z 2 

Z 2 
Here we have assumed t h a t t h e n e u t r i n o s i n t h e e x p e r i m e n t a r e 

p u r e l y l e f t - h a n d e d . Thus t h e d i f f e r e n t i a l c r o s s - s e c t i o n i n 

t h e n e u t r a l c u r r e n t ve + ve pr o c e s s becomes: 

$2±>L = [ A ' 2 + ( l - y 2 ) H ' 2 ] (5.3.20) 
dy 3 2 T T C O S 4 9 w M Z

4 

where S i s c a l l e d t h e c. o f m. squared-energy. 

I n t e g r a t i o n o v e r y f r o m 0 + 1 o b v i o u s l y produces t h e t o t a l 

c r o s s - s e c t i o n as f o l l o w s 

4 " 
a( v ) _ g S

 F A , 2 H j l . (5.3.21) 
Z,+Z„ " 77 4T"„ 4 L A 3 J 

'1 "2 32TTCOS 6 ^ 
Z l 

On s u b s t i t u t i n g t h e v a l u e s o f A' and H' fro m t h e e q u a t i o n 

(5.3.19) i n t o e q u a t i o n (5.3.21) and a l s o making use o f t h e 

expansions 

2 2 
± - Y [ l - 2 ( M z l f 2 " " * ) ] (5.3.22) 
M z l f 2

 Mz L Mz J 
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we g e t 

a( v ) _ G^Sf , 2 s i n 2 e w Q ' s 2 - 2(M„ 2-M 2 ). , 2 s i n 2 e s V 
Z,+Z " IT L P • ^ Z Z l I P » 5 1 ) 

c o s 2 e w M^2 c o s 2 6 w 

1 1 

h ( P s i n 2 e w + Q ' ) ) J 
M z c o s 2 8 w ( c o s 2 e w ) 

, (5.3.23) 

where 

P' = c 2 + CR _ C V 2 + C A 2 + C V C A 1 6 s i n 4 e w - 1 2 s i n 2 e w + 3 L — — 
3 3 1 2 

, ^ CR CR 2 C V 2 + C V C A + C A C V + 2 CA CA' 
C L C L + — : — = 

= 2 8 s i n 4 e w - 1 7 s i n 2 9 w - c o s 2 e w ( 3 - 4 s i n 2 e w ) + 3 

24 

(5.3.24) 

and G i s t h e u s u a l weak i n t e r a c t i o n Fermi c o u p l i n g c o n s t a n t . 

A l s o n o t e t h a t we have i g n o r e d t h e terms w h i c h come f r o m t h e 

h i g h e r o r d e r o f S . R e p l a c i n g (M z - M z ) and (M z - M z ) i n 
1 2 1 

terms o f known B and S t h e n g i v e s t h e t o t a l c r o s s - s e c t i o n as 

f o l l o w s : 
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rri \ rri ,\ 2 s i n 2 0 M S 2 M „ „ 4cos26.,S 2) * Q v 
0 ( v ) = 0 ( v ) [ i + * 2 c o s 2 e w ( ( B 2 + j J ! — " B > x 

Z 1+Z 2 s.m c o s 2 6 w cos 8 W 

. 2 s i n 2 6 I T S 2 M v 0 2 Q , n2 . 4 c o s 2 0 M 0 % „ (1 + W ) - 2 cos 9 w (B + W g 2 j * x 
c o s 2 0 w c o s 4 0 w 

2 2 2 
< C' + S i n V _ M S C S ( s i " 9W + M )

} ] (5.3.25) 
c o s 2 0 w ( c o s 2 0 w ) J s 

where we have d e f i n e d 

2 * i • 
a ( v ) = G S P M = Q

 / K , 
' and —p (5.3.26) s.m „ p 

Thus s u b s t i t u t i n g t h e v a l u e s o f S', C, S and B computed 

e a r l i e r y i e l d s t h e t o t a l c r o s s - s e c t i o n n u m e r i c a l l y t o be: 

o( v ) = o ( v ) f l _ 0 > 1 0 3 ] (5.2.27) 
1 2 s , m 

T h i s c l e a r l y shows t h a t t h e c o n t r i b u t i o n s o f t h e two Z's do 

n o t c o n t r a d i c t t h e s t a n d a r d model p r e d i c t i o n [ 4 6 ] p r o v i d e d 

t h a t t h e s e t w o Z's a r e c o n s t r a i n e d t o be w i t h i n t h e 

e x p e r i m e n t a l l y observed peak. 

F i n a l l y / i t i s o f i n t e r e s t t o use o u r r e s u l t s t o f i n d t h e 

r e l a t i o n s h i p between t h e o r i g i n a l parameters $ and 3', and t o 

t h i s end we mer e l y make use o f t h e e q u a t i o n ( 5 . 3 . 3 ) . The 

v a l u e s o f t h e parameters B and S g i v e n i n e q u a t i o n (5.3.9) 

can e a s i l y be shown t o l e a d t o 

3 2 ^ 100 3* 2 (5.2.28) 
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5.4 Two adjac e n t 2 peaks 

Our composite model seems t o p r e d i c t t h e e x i s t e n c e o f 

two Z's c l o s e t o g e t h e r i n mass. I n t h e p r e v i o u s s e c t i o n we 

c o n s i d e r e d t h e p o s s i b i l i t y t h a t t h e y a r e so c l o s e t h a t t h e y 

b o t h l i e i n t h e same peak, and have n o t been seen as two 

peaks because o f t h e i r w i d t h and t h e e x p e r i m e n t a l r e s o l u t i o n . 

T h i s r e q u i r e d 4M Z £ 1 Gev. I n t h i s s e c t i o n we w i l l c o n s i d e r 

t h e p o s s i b i l i t y t h a t t h e observed peak i s due t o t h e lowest 

Z ( t h e Z-̂ ) and t h a t t h e o t h e r l i e s a s m a l l d i s t a n c e above, 

b u t i s t o o s m a l l t o have been observed. As we s h a l l see t h e 

r e q u i r e d s m a l l c o u p l i n g i s p r e d i c t e d by t h e t h e o r y . We b e g i n 

w i t h e q u a t i o n (5.3.2) 

2 
% 2 " MZ 2 + [ B ? ( B 2 + 4 c 2 ( l + S2)S2)H] (5.4.1) 

where 

2 2 1*2 = Z ( 1 + S 2) = 2 (5.4.2) 
cos e w 

S i n c e e x p e r i m e n t a l l y | M z - M z 1 1 « 2.6 Gev and we w i s h |MZ2 -

M z | t o be much g r e a t e r t h a n t h i s , we must have B 2 > 4 c 2 ( 1 + 

s 2 ) S 2 . Hence we can expand t h e square r o o t and o b t a i n : 

Z l Z 2 2 B 
, ^ c 2 ( l + s 2 ) S 2 < 5- 4' 3> 
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and s i m i l a r l y 

M M M 2 + M^B + 
M ^ c 2 ( l + s 2 ) S 2 

(5.4.4) B 

Adding e q u a t i o n s (5.4.3) and (5.4.4) t h e n y i e l d s 

M2 + M, 
B = ( Z l 

2 M 
(5.4.5) 

and 

(M2 - M2 ) (M 2 + M, 2 M I 

2 2 4 (l+S Z)MjJ 
(5.4.6) 

Thus t h e parameters a r i s i n g i n t h e e q u a t i o n (5.2.1) a t t a i n 

t h e s i m p l e f o r m g i v e n below 

e x p e c t e d t o be observed u s i n g t h e c o u p l i n g l i s t e d i n e q u a t i o n 

( 5 . 2 . 1 6 ) . For t h i s purpose we m e r e l y make use o f t h e l e a d i n g 

t e r m s o f t h e c o u p l i n g s o f t h e two Z's and i g n o r e t h e r e s t as 

t h e y a r e n o t v e r y much i m p o r t a n t a t t h i s s t a g e . Under t h i s 

a p p r o x i m a t i o n t h e r a t i o o f t h e ( c o u p l i n g s ) 2 o f t h e s e Z's i s 

d e t e r m i n e d as 

M M 

M M 

M M 

M M 
(5.4.8) 

(5.4.7) 

Our n e x t s t e p i s a c t u a l l y t o compute t h e number o f Z 2 e v e n t s 
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But t h e number o f Z 2 and e v e n t s a r e r e l a t e d by: 

N Z 2 P r o d u c t i o n r a t e o f Z 2 

N Z l P r o d u c t i o n r a t e o f 

= R.R' • (5.4.10) 

where R' i s t h e r a t i o o f t h e k i n e m a t i c f a c t o r s o f t h e two 

Z's. Since t h e Z1 and Z 2 masses a r e r o u g h l y e q u a l t h e 

k i n e m a t i c f a c t o r s r a t i o can be t a k e n t o be 1 (see n e x t 

s e c t i o n ) . On s u b s t i t u t i n g t h e v a l u e s o f C and S' f r o m 

e q u a t i o n s ( 5 . 4 . 7 ) and ( 5 . 4 . 8 ) i n t o e q u a t i o n ( 5 . 4 . 1 0 ) we 

f i n a l l y f i n d : 

2 2 
MZ " M Z i 

NZ - NZ l-i 9 > (5.4.11) 
2 1 M z 2 - Mz 

As we have assumed t h a t Z 2 l i e s o u t s i d e t h e observed peak and 

2 M, > M z w h i l e M z ^ Mz. T h e r e f o r e t h e number o f Z 2 e v e n t s 
1 

a r e suppressed by t h e number w h i c h r e a l l y depends upon t h e M z 

2 

U s i n g t h e e x p e r i m e n t a l p o s s i b l e v a l u e s f o r M z [ 4 4 ] , t h e 

number o f Z 2 e v e n t s a g a i n s t i t s v a r i o u s masses a r e c a l c u l a t e d 

and graphed i n F i g u r e ( 1 4 a ) . 

S i n c e e x p e r i m e n t a l l y ^ 50 Z j / s have been seen and no 

Z 2's. We r e q u i r e t h i s r a t i o t o be < 5%. Hence t h e model 

a l l o w s 

M z > 110 Gev. 
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i f we take | M Z - M Z 1 I - 1 Gev. I f J M Z - M Z < J | i s less than 
t h i s , then even smaller values of Mz are allowed (see 
Figures (14b,c)). We can also calculate the contribution of 
Z 2 t o neutral current processes. For example the process v + 

e -»• v + e a t t a i n s the form of the cross section, i n terms of 
masses of the Z's under discussion, as follows 

a ( v ) a ( v ) f 2sin 29 WS 2A (M2 - M̂, 
Z l + Z 2 " " L c o s 2 3 w ~ M2 

_ 4 <MZ - M z i s i n 2 9 W s 2 A _ 2 C,2 t M Z 2 - < > 
MZ C O s 2 6W M Z

2 

(M2 - M2 ) sin 29 S2M 2(M 2 - M2 )S• , 2 

- 2 —12 ?-L_ W + Z2 ?J_ S C(Sin 2 e , 
Mjcos20 w Mj(cos29 w) S 5 

(5.4.12) 

Note tha t i n deriving equation (5.4.12) we have used the 
couplings of the two Z's which are given i n equations 
(5.2.15) and (5.2.16). Then by f i x i n g , from the experimental 
data [ 2 ] , 

Mz = 91.1 Gev., Mz = 92.1 Gev., 
Mz = 110 Gev., Mw = 80.1 Gev and sin 2 e w = 0.23 

(5.4.13) 
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we obtain 

o ( v ) = a ( v ) n _ o 27 l 
Z 1 +Z 2 s.m [ 1 °« 2 7J (5.4.14) 

which c l e a r l y indicates that although the Z 2 c o n t r i b u t i o n i s 
higher as compared t o the p r e v i o u s l y c a l c u l a t e d cross-
s e c t i o n , i t i s s t i l l l e ss than the error i n the 
experimental values [ 4 6 ] . This i s because of i t s weak 
coupling t o the fermions, and so i t i s not seen 
experimentally. 

We now again f i n d the status of the o r i g i n a l parameters 3 
and 3'. This time, as i s clear from the equations (5.4.5) 
and (5.4.6), the parameters B and S are M Z 1 2 dependent. 
Using the values given above, i n equation (5.4.13), the 
following approximate relationship between 3' and 3 i s found 

6 2 = 83* 2 (5.4.15) . 

5.5 Can the second Z explain the CERH W+2Jet events? 

I n the previous section we have assumed tha t the second 
Z has a mass close t o the f i r s t and we have seen t h a t 
whether i t l i e s w i t h i n the experimental Z-peak or j u s t 
outside i t , there i s no c o n f l i c t with experiment since the 
departures from the standard model phenomenology are small. 
In t h i s section we s h a l l again take seriously the W+2Jet 
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events (discussed e a r l i e r i n Chapter 3) which appear t o l i e 
outside the standard model and see whether they might be 
caused by the second Z. Clearly t h i s requires t h a t we take 
MZ2~ 200-300 Gev. I t i s apparent from equation (5.4.7) th a t 

C = 0.06, 0.04 (5.5.1) 

which i s very small. Hence the second part of the expression 
f o r the coupling i n (5.2.5) and s i m i l a r l y the f i r s t part of 
(5.2.16) can be ignored. Then the Z's couplings become 

Z1 : 9 S (c - c Ay5) (5.5.2) 
2cos6 w 

Z 2 : 9 S S (cos29 w)" J 5) (CV-CA'Y5) (5.5.3) 
2cos w 

where c v, c A and c A' have the same d e f i n i t i o n as given i n 
(5.3.13). Thus by choosing 

s i n ^ 0 w = .23, Mz = 92.1 Gev 

Mz =91.5 Gev and Mz - 200-300 Gev (5.5.4) 

equation (5.4.6) gives 

S = 0.31, 0.49 (5.5.5) 

Now i f we j u s t consider the l e f t - r i g h t handed u and d valance 
quarks and t h e i r anti-quarks confined i n s i d e the proton 
(anti-proton), the r a t i o of the couplings squared of the two 
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Z exchange i n PP i n e l a s t i c process i s given by 

_ 4 [ ( u R u R ) 2 + ( u L u L ) 2 ) 2 ] + ( d R d R ) 2 + ( d L d L ) 2 l z 2 
4 t ( u R u R ) 2 + ( ( u L 5 L ) 2 ] + ( d R d R ) 2 ) + ( d L d L ) 2 I 

'2|(5.5.6) 

Using the values of S determined i n equation (5.5.5) and the 
couplings of the two Z given i n equations (5.5.2) and (5.5.3) 
at s i n 2 e w = o.23f t h i s r a t i o i s computed as follows: 

R = 0.01, 0.05 (5.5.7) 

i . e . due t o the couplings given i n equations (5.5.2) and 
(5.5.3) the Z 2 events are suppressed by factors^, 1/100, 1/20 
at Mz = 200-300 Gev respectively. 

2 
There i s i n addition a kinematic e f f e c t due t o the 

difference i n the masses (see chapter 3 ) . This obviously 
gives an extra suppression factor (R') of about 0.04, 0.002 
f o r Mz = 200-300 Gev at c. of m. energy /s*= 630 Gev. 

We know that the number of Z± produced i n PP i n e l a s t i c 
phenomenology are related by the expression: 

[~z t o t ' N 7 , (produced) = N 7 , (seen) . _ 1 (5.5.8) 
* l * l p(Z!^e+e-,u+u-) 

Since only ^ 5 0 Z^'s have been experimentally observed and 
the t o t a l width of Z x i s ̂ 3.1 Gev [3,44]. Then the width of 
Z-j -*• e+e,M + y " p a i r s i s estimated t o be ̂  0.18 Gev. Therefore 
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the t o t a l number of Z 1 produced become: 

N z (produced) = 975 events- (5.5.9) 

Thus we have the prediction 

N 7 (produced) 
2 = R R' 

N z (produced) 
0.004, 0.0001 (5.5.10) 

at Mz = 200-300 Gev respectively. 
Hence N z (produced) = 0.4, 0.1 events- (5.5.11) 

Surely, even i f they a l l are decayed i n to Ŵ Ŵ  (which they 
would n o t ) , t h i s cannot explain the events seen at the CERN. 
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CHAPTER 6 

The Three Z's Model 

6. l Mass matrix, d i a q o n a l i z a t i o n formula and the new 
couplings of the vector bosons 

I n the previous chapter we have discussed the possible 
e f f e c t s of a second Z° due t o compositeness. The 
calculations have been made under the assumption t h a t there 
are no ef f e c t s due t o the right-handed SU(2) couplings, i . e . 

+ 

we have taken WR t o have i n f i n i t e mass. 
However, as we saw i n Chapter 2, the phenomenology of 

the charged current sector allows a Wp with a mass greater 
than about 400 Gev. I n t h i s chapter we s h a l l therefore 
combine the effec t s of an extra Z° and the eff e c t s due t o a 
large, but f i n i t e , value f o r Mw ^ 400 Gev. 

R 
Using the r e s u l t of equation (5.1.16), the neutral mass-

matrix i n the basis of the states |r> defined by 
|r> = |nxn|r> 

f o r n,r = 1,2,3 (6.1.1) 

and f o r |r = 4> = |n = 4> 

where <n|r> i s defined by equation (5.2.1), becomes 

<r |M2 \l> = I <r |nxn |M2 |mxm | £> 
n,m 
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s i n 9 w cos9 w 0 

cos9wS -sin9 wS C O 

cos 8WC - s i n 6 w c -S' 0 

0 

- Es Es 

- Es -IcS 

2 EscS 

- zcC 

SCCE 

EcS ZscS E(C 2S 2+A 1|-) C2CSE 

- EcC EscC EC CS I (c 2C 2
 + A 2A ) 

0 

0 

0 

-cc(l+s 2)SC 
2 ' 

+c SCC 

s i n 1 W 

O 

cos ews 

w cose w - s i n 
0 i 

C 
0 0 

cos 6WC 
-si n 6 w c 
-s' 

O 

0 
0 
0 

-cc(l+s )CC 
2 ' 

-c SCS 

-cc(1+s2)SC+c2SCC 

-cc(l+s 2)CC-c 2SCs' 

C2 C2 + X 2 A 

(6.1.2) 
Previously we were able t o neglect the off-diagonal terms 
because they were n e g l i g i b l e compared t o the d i f f e r e n c e 
between A 2 and A 2 - • Now we s h a l l include the e f f e c t of 
these terms by lowest order i n perturbation theory. Since, 
according t o the equations (5.2.8), (5.2.10) and (5.2.11), S 
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i s ~ (A 2 - I j ^ ) which i s small so we can put S = 0 and C = 1 
i n the off-diagonal terms of equation (6.1.2). Thus by 
considering the eigenvalue equation 

<r |M2 \l >< l |p> = X p <r |p> 
where p = 0, 1,2,3 , (6.1.3) 

the following eigenvalue spectrum i s obtained: 

= . i ( c ' 2 - s ' 2 ) S 2 Z 
1 ~ 1 ~ 4 2 1 1 c,4(X2A-M^ ) 

I T i o t k 
= ~ 1 (c -s ^)C 2 E 
X 2 " X 2 " C " 4 { X A _ M

2
2 , 

X3 s X 2| 

(6.1.4) 

S i m i l a r l y , the corrected eigenstates , by perturbation theory 
[47], are given by 

J | r M r E - E0 (6.1.5) 
corrected r I 

So the photon's new state i s given by 

|Y> = I l ' > = I1> (6.1.6) 

Therefore, the photon's new coupling remains unchanged and i s 
given by: 
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Y : g sinOflQ (5.2.14) 

The new Z1 state Is also determined as: 

| Z > = |2> = \2> + |4> (-cc <1+S2)S E) (6.1.7) 
( MZ! " A 2 A > 

Thus the new coupling becomes: 
i y y 

Zx : g - [T 3 L-sin 20 wQ]+gcCS[T 3 R-a 2^ + (1+a2) 
cosG w 

Y Y 9 i w 9 1 7 7 +qc CSE [A3R-0l 2^-3 y ] 
cos8» 

W < * 2
A " M ? x > 

(6.1.8) 

Si m i l a r l y the Z 2 state i s given by 

(-cc' ( l + s 2 ) c ' z ) 
|Z2> = |3<> = |3> + |4> ( M2 _ A ) (6.1.9) 

Z2 * 
and t h i s c l e a r l y gives the new Z 2 coupling as: 

Y Y 
Z2 : gc' [ T 3 L - sin 29 wQ] -gcS ' S [T^-a 2-^-(l+<* J j - ] 

cos6 
Y Y 

+ qc2CC S [T3R-ct2 ~ a 2 ^ ] COS6W (X2A - M2^ 

(6.1.10) 

F i n a l l y the Z 3 state has the form given below 
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|Z3 > = |4'> = |4> + |2> < -cc' (l+s 2)SE ) (6.1.11) 
( A 2 A - M̂ ) 

Hence the new Z 3 coupling becomes: 

Z 3 : gcC [ T 3 R - a 2 I f -0 2 ^ ] - gcs' 2 [ T 3 L - sin 29 wQ] I 
cos2'9w (X2A - M2 ) 

Y Y 1 2 ' i 2 1 2 2 - gc SCS [ T 3 R - <* -± + (1+a ) -| ] Z 
cose w (X2A - M2 ) 

1 (6.1.12) 

6.2 Two Z's within the experimental peak 

I n Section (5.3) we have seen the ef f e c t s of the extra Z 
which has approximately the same mass as the standard Z. 
Here we basically intend t o f i n d the consequences of the 
extra Z when the additional term which appears due t o the 
presence of the right-handed vector boson, i s also taken i n t o 
account. Using the equation (6.1.4), we have 

=x = ( 1 + s2> + B h ( B 2 + 4 c 2 s 2 ( 1 + s 2 ) 3 5 _ <c' 2-s' 2)S 2E 
1 2 « 4U2A-M2

I) 
(6.2.1) 

and 
% = ( l + s 2 ) + | + % < B 2

+ 4 c 2 S 2 < l + . 2 > * - ( % - \ ) C 2 2 1 

2(6.2.2) 

Now making use of 

S ' 2 = (c' 2X 2-D = h r B ^ B ^ c V d + s 2 ) ] ^ ] 
c , 2 ( L - l j [B 2+4c 2S 2(l+s 2) ) h 

(6.2.3) 
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c ' 2 = ( l - c ' 2 I 1 ) = H [(B2+4c2S2(l+s2)l^-B] 
c , 2 ( x 2 - ^ i ) [BWS 2(I +S 2)]^ 

(6.2.4) 

and A2 s (1+a 2) = 1 / c 2 (6.2.5) 

we f i n a l l y f i n d t h a t 

\ = (1+S 2) + B/2-Q/2-M/2 (B/Q + 1) (6.2.6) 

and 

A2 = (1+s 2) + B/2 + Q/2 - M / 2 ( l " B/Q) (6.2.7) 

where 

' 2 ' 2 2 
U = {°,f~S—l-0 and Q = [ B 2 + ( 4 c 2 S 2 ( 1 + s 2 ) ] h 

c b ( A - c X ) 
L\ (6.2.8) 

Equations (6.2.6) and (6.2.7) simultaneously y i e l d the 
following constraints: 

( i ) ( 2 ( l + s 2 ) - 2A,-n)Q-Q2 

B 4 i 
(n - Q) , u > Q 

( 2 ( l + s 2 ) - 2X1-u)Q-Q2
 ( 6 > 2 > 9 ) 

( n - Q ) , u < Q 
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and 

( i i ) (2X2 - 2(l+s 2)+n)Q - Q2 

( Q + H ) 
(6.2.10) 

and 

( i i i ) |B| < Q (6.2.11) 

He now c a l c u l a t e the range of values which are 
consistent with the experimental l i m i t s [45]: 

These are shown on the various graphs which give allowed 
values of B and Q at d i f f e r e n t values of y which of course 
depends upon the mass of the right-handed vector gauge boson. 

The shaded area i n each Figure (15a, 16a, 17a) , 
represents the required region which s a t i s f i e s a l l the three 
conditions mentioned above. The sharp changes occur when 

-2 \ + 2(1 + s 2 ) - y = 2X2-2(1 + s 2) +y 

1.126 < X-, < X0 < 1.32 (6.2.12) 

A 

M = 2(1 + S 2 ) - ( \ + \ ) (6.2.13) 

and also when 
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-2 A x + 2 (1 + s 2) - y = p 
y = ( i + s 2) - i x (6.2.14) 

I t i s i n t e r e s t i n g t o note th a t increasing the value of 
the n tends t o decrease the volume of the enclosed shaded 

A 

region, i . e . gives a smaller range of allowed values of the Q 
and B parameters (see Figures 16a, 17a) . Note tha t large p. 
corresponds t o small mass of the right-handed gauge boson Mw • 

R 
From equation (6.2.8) i . e . 

S2 = (52 - B 2) ( 6 > 2 b 8 ) 

4c (l+s^) 

i t i s obvious th a t the higher value of "Q" yields the higher 
value of "S" while keeping the Weinberg angle '6 w ' t o be 
fix e d from the experimental data. The t y p i c a l value of y 
that gives the highest value of $ and reasonably small value 
of B, i s 0.04 which resu l t s at M W » 300 Gev and s i n 2 9 w -
0.23. Thus, the t r a n s l a t i o n of the maximally enclosed region 
i n B and Q plane i n t o the S and B plane (see Figure 17b) , 
gives 

S = + 0.026, B = 0.018 (6.2.15) 

and 

S'2 - 0.673, C / 2 = 0.327 (5.3.16) 

which are c l e a r l y not very much d i f f e r e n t as compared t o the 
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values found e a r l i e r i n Section (5.3) i . e . 

S = + 0.033; B = 0.022 (5.3.9) 

and S'2 = 0.669; C'2 = 0.331 (5.3.11) 

Thus, provided t h a t the right-handed vector bosons are 
reasonably heavy, the calculations of t h i s section do not 
suggest any s i g n i f i c a n t changes i n the neutral current data 
provided two Z's remain w i t h i n the experimentally observed 
peak. 

Now i n order t o see the effect s of the.additional terms 
appearing i n the expressions (6.1.8) and (6.1.10), we simply 
t r y t o f i n d the formula f o r the t o t a l cross-section i n the 
neutral current (ve •* ve) process. Before doing t h a t , we 
f i r s t rewrite the equations (6.1.8) and (6.1.10) as follows 

Z1: cjS [( c v - c A Y 5 ) ] + gA [c v-c^Y5] 
2cos9 W 2cos8 W 

2cos9 
[(S cL+A c£) (1-Y5) +(S cR+A c R')(l+Y5)] 

W 
(6.2.17) 

where 

A = SC 
(cos29 ) (1+H), H = c CSE cos9r,(A-Mf c )CS W (6.2.18) 
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S i m i l a r l y 

Z2 : 3£ (c v-c AY5] - (c v-c,Y5) 
2cos9 w

 V 2cos0 w
 V 

! 3 t(C c -H c«) (1-Y5) + (C cR-H c R) (1+Y5)1 
2cos0 w (6.2.19) 

where 

- _ SS(l4) = _ c3CCZ n - i i \l -
( 0 0 8 2 0 ^ ' cos0w(A-M2

2C2)SS (6.2.20) 

Thus the t o t a l amplitude due t o the exchange of two Z's with 
new coupling strengths given i n equations (6.2.17) and 
(6.2.19) becomes: 

M =g* [Av(k)Y ud-Y5) v(k)e(p)Y u ( l - 7 5 )e(p) 
( Z 1 + Z 2 ) 8008 2 0 ^ = , , 

w z l +Hv(k)Y ud-Y5)v(k)e(p)Y w d+Y5)e(p)] 
(6.2.21) 

where 

A = (S'+A s i n 2 0 w ) (S'c L+Ac L/) + (C /c L - HcL,)(C'-H s i n ^ ) 
M 2 (6.2.22) 

Z l 
MZ 

2 

and 
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H = (S'+A s i n 2 6 w ) (s'c R+Ac R,) + (C'c R - 5c R,)(C'~H s i n 2 9 w ) 
M2 (6.2.23) 

Z l 

and also where k(k') and p(p') represent the four vector 
momenta of the Incoming (outgoing) p a r t i c l e s (see Figure 13). 
Thus the t o t a l cross-section obtains the form 

° < V ) = a ! ! r f 2 H 2 

(Z,+Z0) „ 4fl „4 3J 
1 2' 32iTcos 6^ 

1 (6.2.24) 

Therefore, on s u b s t i t u t i n g the values of A and H from the 
equations (6.2.22) and (6.2.2 3) and also making use of the 
expansion given i n equation (5.3.22), we f i n a l l y get: 
o(v) = ° ( V )L 2 sin 29 wM 2 SC(TL+!i)M SCsin 26 w(t+u)M (Z..+Z„) s.m [l+ + r* =7-5 

s 2 

cos29 w (cos29 w)^ (cos29 w) 

. 2„ , , . 2 2 SCsin 6 w(u+u) 4sin 9 S , i < 2 A 
+ + — ( p,C +jiS (C -S )) M 

(cos29 w)^ cos29 w 

0 

2 (M2 -M2 ) ( 9 s i n ^ J l S 2 SCS (sin 26 w+M) _ Z2 Z l [ C2 + 1_ . ^ _ 
M 2

Z cos29 w (cos29 w) ) s 

» « — ' 2 ' 2 ' 2i 2 » + — , [H(2Cr+S^) + C n] [ s i n 6 + M] 
(cos29 w)^ 

4 1 1 2 
+ s i n 9 w C S S

 fJ1='2 '2- 2 '2s, (cos29 w) 
[4|iS +S |i-2ilC +C n]M 

2 
— [2jiC Z-2jiS z :(3C^+Sr]J 

cos29 w 
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-2 (M 2 - M 2 ) 2 s i n 2 G w S 2 M SC(w+S)M S C S 2 s i n 4 9 w (t+lt) M 
j ^ t i + " • - • 2 + 2 

\ c o s 2 9 w ( c o s 2 6 w ) J 5 ( c o s 2 6 w ) 3 / 2 

4 s i n 2 9 w S 
[jiC +JiS (C -S ) ] M 

(cos26 w) 1 ] 

(6.2.25) 

where 

t = US = ( c o s 2 9 w ) 3 / 2 M ^ SC 
2 2 (6.2.26) 

(MT7 - c o s 2 9 M v 4 Q ' 
R Z l J W 

cos e w 

and 

I = = (cos29 ) 3 / 2 

_ JCCJ 
4 . M 2 M 2 cos20 T. . S 

cos e ^ ^ - M ^ __W ) (6.2.27) 
cos 9 W 

Now a f t e r making use o f t h e computed v a l u e s o f t h e parameters 

i n v o l v e d i n t h e f o r m u l a ( 6 . 2 . 2 5 ) , t h e n u m e r i c a l v a l u e o f t h e 

t o t a l c r o s s - s e c t i o n i s a p p r o x i m a t e l y e s t i m a t e d as f o l l o w s : 

£; ̂  2 U • ill 

T h i s seems t o be about 4 p e r c e n t d i f f e r e n t f r o m t h e e a r l i e r 
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c a l c u l a t i o n done i n Chapter (5) i . e . 

(5.3.27) 

M o r e o v e r , t h i s c a l c u l a t i o n a l s o i n d i c a t e s t h a t t h e 

c o n t r i b u t i o n s o f t w o Z's s t i l l l i e w e l l w i t h i n t h e 

e x p e r i m e n t a l l y observed e r r o r s . 

6.3 Two a d j a c e n t Z peaks 

From t h e d i s c u s s i o n and c a l c u l a t i o n s o f t h e l a s t s e c t i o n 

we have c o n c l u d e d t h a t even t h e presence o f t h e r e a s o n a b l y 

heavy charged M w ( t h e r i g h t - h a n d e d v e c t o r boson) does n o t 

impose any p a r t i c u l a r r e s t r i c t i o n p r o v i d e d t h a t t h e two Z's 

a r e c o n s i d e r e d t o be w i t h i n t h e observed peak. I n t h i s 

s e c t i o n we a r e g o i n g t o d i s c u s s t h e p o s s i b i l i t y t h a t t h e 

s t i l l remains w i t h i n t h e peak w h i l e t h e second Z l i e s o u t s i d e 

t h e observed peak. We w i s h t o see what t h e model p r e d i c t s 

about whether t h i s second Z i s l i k e l y t o have been seen, o r 

w h e t h e r , as i n S e c t i o n ( 5 . 4 ) , i t s c o u p l i n g i s a l w a y s 

s u f f i c i e n t l y weak f o r i t n o t t o have been seen. We b e g i n w i t h 

t h e e q u a t i o n s 

\ = ( 1 + S 2) + B/2 - fc/2 - y ( 1 + B / f c ) / 2 (6.2.6) 

and 
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A 2 = ( 1 + s 2 ) + B/2 + Q/2 - y ( l - B/Q)/2 (6.2.7) 

I f we d e f i n e 

d l / 2 = + s 2 ) - * l (6.3.1) 

and &2/2 = ~ f 1 + s 2 ) (6.3.2) 

t h e n we have 

d x = Q - B +pB/Q + \i (6.3.3) 

and d 2 = Q + B +MB/Q - M (6.3.4) 

We n o t e t h a t ^ and d 2 a r e t h e d e v i a t i o n s f r o m t h e Salam-

Weinberg v a l u e s 2 a n d , s i f i c e Q > B 

d x > 0 (6.3.5) 

F i r s t , we s h a l l suppose t h a t Z 2, t h e h e a v i e s t o f t h e p a i r o f 

Z p a r t i c l e s , i s t h e one whic h l i e s o u t s i d e t h e observed peak. 

Thus 

d 2 > d x (6.3.6) 

S u b t r a c t i o n s and a d d i t i o n s o f t h e e q u a t i o n s ( 6 . 3 . 3 ) and 
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(6.3.4) y i e l d 

B = ( d 2 - d x ) / 2 + y (6.3.7) 

and Q 2 - ( d 2 + d x)Q/2 + = 0 (6.3.8) 

r e s p e c t i v e l y . The e q u a t i o n (6.3.8) g i v e s t h e r o o t s : 

( d 0 + d , ) 2 h Q = ( d 2 + d x ) / 4 ± [ _ 2 1 _ (6.3.9) 
16 

I t i s o b v i o u s from t h i s e q u a t i o n t h a t Q o n l y e x i s t s i f 

( d 2 + dx)2 

1 6 — > " B 

o r 
2 ( d 2 + d x ) 2 

16 > u +U ( d 2 - d 1 ) / 2 
(6.3.10) 

Roots a r e 

» • - < V « 1 > , , [ ' V x ' 2 , ( 6 . , . l l } 

4 ~ 4 4 

Sin c e d 2 > d l f so Q e x i s t s p r o v i d e d 

It < 1/4 ( 2 d 2 + 2d£) 2 - 1/4 ( d 2 - d x ) (6.3.12) 

[ I t i s i m p o r t a n t t o n o t e t h a t t h e c o n d i t i o n mentioned 

(6.3.6) g i v e s B > 0 ( u s i n g e q u a t i o n ( 6 . 3 . 7 ) ) ] . 
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Then t h e c o n d i t i o n B < Q c e r t a i n l y i m p l i e s t h a t 

( d 2 + d 1 ) ' H 
1/4 ( d 2 + d x ) ± [ _ > h ( d 2 - d 1 ) + n 

o r 

( d . + d , ) ' h 
± [ — HB] > d 2 / 4 - 3d x/4 + u 

16 (6.3.13) 

Suppose t h a t t h e r i g h t - h a n d s i d e o f (6.3.13) i s +ve i . e . i f 

d2/4 ~ 3 d l / 4 + v- > 0 (6.3.14) 

Then we d e f i n i t e l y need t h e +ve r o o t , so we need 

_£ ± nB > (1/4 d 2 - 3 d 1 / 4 + \i) (6.3.15) 
16 

o r [ u s i n g e q u a t i o n ( 6 . 3 . 7 ) ] 

16 n( J 5 ( d 2 - d 1 ) + n) < ( d 2 + d±)2 - ( d 2 - 3 d x + 4u) 

H < d l / 2 (6.3.16) 

We c o u l d a l s o t a k e t h e +ve r o o t even i f (6.3.14) i s n o t 

s a t i s f i e d , i . e . i f 

u < 3 d 1 / 4 - d 2 / 4 
(6.3.17) 
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N o r m a l l y (6.3.16) w i l l i m p l y ( 6 . 3 . 1 7 ) . 

I f we t a k e t h e =ve r o o t t h e n we must have 

U < 3d-jy 4 - d 2/4 (6.3.18 

and a l s o ( f r o m 6.3.12) 

1/16 ( d 2 + d x ) 2 - (iB < ( 3 d 1 / 4 - d 2 / 4 - u)2 (6.3.19) 

w h i c h i m p l i e s ( a g a i n f r o m e q u a t i o n ( 6 . 3 . 7 ) ) t h a t 

1/16 ( d 2 + d±)2 - ( 3 d 1 / 4 - d 2 / 4 - u)2 < u ( d 2 - d1 + n) 

u > d 1/2 (6.3.20) 

But (6.3.17) and (6.3.18) a r e o n l y c o m p a t i b l e i f 

3 d l / 4 " d2/4 > d l / 2 i * e * i f 

d x > d 2 (6.3.21) 

w h i c h we have a l r e a d y e x c l u d e d , so t h e -ve r o o t i s i r r e l e v a n t 

h e r e . Thus (6.3.16) i s t h e o n l y r e q u i r e d c o n d i t i o n . Then t h e 

e x p r e s s i o n s ( 6 . 3 . 7 ) , (6.3.8) and (6.3.16) can be w r i t t e n i n 

terms o f t h e o r i g i n a l parameters i n e q u a t i o n s (6.2.6) and 

(6.2.8) as f o l l o w s 

B = \ + \ ~ 2 ( 1 + s 2 ) + U (6.3.22) 

1 = = 2 h 

Q = ( A 2 - A 1 ) / 2 + ± / 2 B X 2 - X 1 ) -4»iB] (6.3.23) 
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and 

U < ( 1 + s 2 ) - \ 

o r 

\ < ( 1 + s 2 ) - M (6.3.24) 

I f Q = B 
Then \ m a x = ( 1 + s 2 ) - y (6.3.25) 

The Weinberg a n g l e s i n 2 6w ^ s known f r o m t h e n e u t r a l 

c u r r e n t d a t a [ 4 4 ] , and i s g i v e n by 

s i n 2 6 w = 0.232 ± 0.007 (6.3.26) 

so ( 1 + s 2 ) can be c a l c u l a t e d f r o m t h e r e l a t i o n s ( 3 . 2 . 2 ) , 

(5.1.16) and ( 5 . 2 . 2 ) : 

( 1 + s 2 ) = 1 / ( 1 - s i n 2 0 w ) (6.3.27) 

Thus a f t e r f i x i n g t h e n u m e r i c a l v a l u e o f t h e parameter ( 1 + 

s 2 ) t o be 1.322, t h e r e l a t i o n s h i p between 1 ± m a x and p i s 

shown i n F i g u r e ( 1 8 ) , w h i c h c l e a r l y i n d i c a t e s t h a t i n c r e a s i n g 

t h e v a l u e o f M t e n d s t o decrease t h e s i z e o f t h e a l l o w e d 

r e g i o n f o r X^. 

Our n e x t main concern i s a c t u a l l y t o f i n d t h e c o n n e c t i o n 

between t h e mass o f t h e Z 2 and t h e number o f Z 2 e v e n t s . I n 

o r d e r t o compute t h e number o f Z 2 e v e n t s e x p e c t e d t o be 
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observed, we m e r e l y t a k e t h e l e a d i n g terms a p p e a r i n g i n t h e 

e q u a t i o n s (6.1.8) and ( 6 . 1 . 1 0 ) . So t h e number o f Z 2 e v e n t s 

a r e s i m p l y r e l a t e d by t h e e x p r e s s i o n g i v e n below: 

N Z = N Z ( | ) 2 (6.3.28) 
2 1 

S u b s t i t u t i n g t h e v a l u e s o f C* and S / Z f r o m t h e e q u a t i o n s 

(6.2.3) and (6.2.4) t h e n y i e l d s 

5 * 2 = <fet>"*l ( 6 - 3 - 2 9 ' 

a r e d e t e r m i n e d f r o m t h e e q u a t i o n s (6.3.21) and (6.3.22) a t 

t h e p a r t i c u l a r v a l u e s o f M z and ii. Since u i s r e s t r i c t e d 
2 

n o t t o go beyond i t s l i m i t i n g v a l u e s , i . e . 0.045, so t h e 

r e l a t i o n s h i p between t h e Z 2 e v e n t s and i t s mass i s graphed i n 

F i g u r e (19) under t h e c o n s t r a i n t t h a t Q > B a t t h e v a r i o u s 

p o s s i b l e v a l u e s o f i x . I t i s o b v i o u s and i n t e r e s t i n g t o n o t e , 

f r o m t h e F i g u r e ( 19), t h a t i n c r e a s i n g t h e v a l u e s o f b o t h n 

and M Z z suppress t h e number o f Z 2 e v e n t s t o be seen. S i n c e 

i t has been mentioned e a r l i e r i n t h i s s e c t i o n t h a t i n c r e a s i n g 

t h e v a l u e o f ^ t e n d s t o decrease t h e range o f t h e a l l o w e d 

r e g i o n . Thus by f i x i n g A 2 = 1.262 wh i c h a g a i n f i x e s Mz^ = 

90.0 Gev, t h e maximum v a l u e o f t h e p e r m i t t e d range o f y 

becomes 0.06. A f t e r h a v i n g done t h i s , t h e p l o t between M z 

and t h e number o f Z 2 e v e n t s , a t a l l p o s s i b l e v a l u e s o f n , i s 

A f t e r f i x i n g t h e A , = —5— = 1.277 ( f r o m t h e g r a p h ( 1 8 ) ) 

which n a t u r a l l y f i x e s M z = 90.5 Gev., t h e v a l u e s o f B and Q 

M 

111 



s k e t c h e d (see F i g u r e ( 2 0 ) ) under t h e c o n d i t i o n t h a t Q > B. 

I t i s v e r y much c l e a r f r o m t h e F i g u r e s ( 1 9 , 2 0 ) t h a t 

i n c r e a s i n g t h e v a l u e o f M z a l s o causes t o decrease t h e 

number o f Z 2 e v e n t s . 

F i g u r e (20) a l s o shows t h a t t h e p r o b a b i l i t y o f s e e i n g 
2 2 

t h e s e c o n d peak d e c r e a s e s w i t h M z and M w ( w h i c h i s 
2 R 

i n v e r s e l y p r o p o r t i o n a l t o n ) . For t h e l a r g e s t p e r m i t t e d 
v a l u e o f ix(0.04 c o r r e s p o n d i n g t o M w = 300 Gev) t h e number o f 

R 
Z 2's i s 5% o f t h e number o f Z-̂ 's p r o v i d e d M z > 105 Gev. 

I n t h e p r e v i o u s c h a p t e r , where we o n l y c o n s i d e r e d n = 0 

( s e e S e c t i o n 5.4) we have e x p l i c i t l y s een t h a t t h e 

p r o b a b i l i t y o f t h e number o f Z 2 e v e n t s b e i n g l e s s t h a n 5% o f 

t h e number o f e v e n t s r e q u i r e s M z^ £ 110 Gev p r o v i d e d t h a t 

'MZ ~ Kz ^ = 1 G e v ' b u t i f I M z - Mjr^l = 2 . 1 Gev ( l e s s t h a n 

t h e e x p e r i m e n t a l l y observed u n c e r t a i n t y ) t h e n i t o c c u r s a t M z 

> 126 Gev (see F i g u r e ( 2 0 ) ) . 

Thus fr o m t h e d i s c u s s i o n o f t h i s s e c t i o n we c o u l d e a s i l y 

c o n c l u d e t h a t , i n t h e presence o f t h e r e a s o n a b l y heavy r i g h t -

handed charged v e c t o r boson, t h e range o f t h e p e r m i t t e d Z 2 

masses s t a r t s j u s t o u t s i d e t h e observed peak, b u t i n t h e 

absence o f t h e i n t e r m e d i a t e r i g h t - h a n d e d charged v e c t o r boson 

t h i s range b e g i n s c o n s i d e r a b l y h i g h e r beyond t h e peak. 

We now t r y t o see t h e e f f e c t o f t h e Z 2 c o n t r i b u t i o n t o 

t h e n e u t r a l c u r r e n t p rocess (ve \>e) by f i x i n g 

M Z l = 90.0 Gev, M z - 92.1 Gev 

M Z 2 = 105.0 Gev, M W l= 80.1 Gev (6.3.30) 

n = 0 . 0 4 and s i n 2 e w = 0.23 
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S u b s t i t u t i n g t h e s e v a l u e s i n t h e e q u a t i o n (6.2.24) g i v e s 

a (v) = a(v) [ 1 - 0.343] (6.3.31) 
Z l + Z 2 s.m. 

which i s s t i l l l e s s t h a n t h e e x p e r i m e n t a l u n c e r t a i n t y [ 4 6 ] . 

A l t h o u g h t h e c r o s s - s e c t i o n computed i n e q u a t i o n (6.3.31) does 

n o t appear t o go beyond t h e e x p e r i m e n t a l v a l u e , b u t i t seems 

t o be improved by about 6% as compared t o t h e c r o s s s e c t i o n 

a t ji = 0.0 (see S e c t i o n 5.4). 

We now c o n s i d e r t h e o p p o s i t e assumption, namely t h a t t h e 

observed peak corresponds t o t h e h i g h e r mass Z. Thus t h e Z± 

l i e s o u t o f t h e peak and t h e Z 2 i s i n s i d e t h e peak. I n t h i s 

case i f we t a k e d x > d 2 and d 2 > 0 t h e n t h e -ve r o o t o f 

e q u a t i o n ( 6 . 3 . 8 ) , w h i c h r e q u i r e s 

p > d 1 / 2 (6.3.20) 

o r 

M > ( 1 + S 2) - \ (6.3.32) 

cannot be r u l e d o u t . F i x i n g M z = 88 Gev and M z 2 = 93 Gev 

t h e n y i e l d u = 0.12 a t B < Q, whi c h a f t e r s u b s t i t u t i n g i n 

e q u a t i o n s (6.3.21) and (6.3.22) g i v e s B = 0.04 and Q - 0.06. 

T h e r e f o r e , t h e number o f N z , d e f i n e d by t h e r e l a t i o n 

• 2 
N Z - (§.) 

= (jj±§) (6.3.33) 
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a r e computed t o be ~ 250 e v e n t s . Thus c o n t r a r y t o o u r 

assumption, more Z± t h a n Z 2 a r e produced. N z 2 r e p r e s e n t s t h e 

number o f e x p e r i m e n t a l l y observed e v e n t s . 

I f we now assume t h a t M z , w h i c h l i e s i n s i d e t h e peak, 

i s l e s s t h a n t h e s t a n d a r d M z i . e . M z < M z, t h e n c l e a r l y d^ > 

0 and d 2 < 0. Thus 

B > 0 (6.3.34) 

r e q u i r e s 

1/2 ( d 2 - d x ) + U > 0 (6.3.35) 

o r 

U > 2 ( 1 + s 2 ) - (\ - A j ) (6.3.36) 

Then by f i x i n g M z = 9 1 . 0 Gev and M z <= 88 Gev we have 

U = 0.15 (6.3.37) 

and B <Q w h i c h s u b s e q u e n t l y g i v e s B = 0.01 and Q = 0.03. 

N o t i c e t h a t t h e v a l u e o f \i g i v e n i n (6.3.37) produces ( f r o m 

( 6 . 2 . 8 ) ) M w s 180 Gev. Thus e q u a t i o n (6.3.33) g i v e s 
R 

N 7 = 100 e v e n t s (6.3.38) 
* 1 
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w h i c h a r e s t i l l t o o many. 

6.4 Can the higher Z be the new CERN events? 

I n t h e s i m p l e two Z's model (see Chapter 5) we saw t h a t 

a l s o i g n o r e d t h e e x t r a c o r r e c t i o n t e r m a r i s i n g f r o m t h e 

presence o f t h e r i g h t - h a n d e d v e c t o r bosons. I n t h i s s e c t i o n 

we s h a l l t r y t o s t u d y t h e p o s s i b i l i t y t h a t t h e r e a r e two Z's 

w i t h i n t h e e x p e r i m e n t a l peak and t h a t t h e h i g h e r Z (200-300 

Gev) i s r e s p o n s i b l e f o r t h e new e v e n t s , p o s s i b l y seen a t t h e 

CERN PP c o l l i d e r [ 3 ] , We a l s o n o t i c e t h a t t h e two Z's have 

t h e same masses and n e a r l y e q u a l i n magnitude t o t h e mass o f 

t h e s t a n d a r d Z, b u t t h e i r c o u p l i n g s t r e n g t h i s o b v i o u s l y 

d i f f e r e n t f rom each o t h e r as w e l l as t h e s t a n d a r d model's Z. 

Si n c e we have seen i n s e c t i o n (6.2) t h a t t h e n u m e r i c a l v a l u e 

o f "S" i s v e r y s m a l l so t h e c o u p l i n g s o f t h e s e Z's t o t h e 

f e r m i o n s f i n a l l y become (see S e c t i o n ( 6 . 1 ) ) 

because o f t h e s m a l l number o f Z 2 produced, we were u n a b l e t o 

see t h e p a r t i a l decay w i d t h o f Z 2 i n t o Ŵ Ŵ  e v e n t s . There we 

Z1: gS 
2cos0 W 

( C V " C ^ 5 ) + 

2 c o s J 9 w ( A - M ^ 

cos20 W (c„-c'Y5 V A 
2 cos2e W 

cos 0 W (6.4.1) 
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<c v-c AY5) + & Z c o s 2 6 w (cy-c^YS) 
2 c o s 0 w 2COS 50 w(A-M2 C O S 2 6 W ) < 6 ' 4 ' 2 > 

cos ew 

and 

g ( c v - c ^ Y 5 ) g S 2 Z ( c o s 2 9 w ) 3 / 2 ( c v - c A r 5 ) 

2 c o s 6 w ( c o s 2 8 w ) J 5 2 c o s 5 9 W ( A - M 2 C O S 2 9W ) 
1 c o s 2 e w 

(6.4.3) 

where we have used M 7 - M 7 . 
Z 2 Z l 

Assuming t h a t t h e dominant c o n t r i b u t i o n s come f r o m t h e 

v a l e n c e quarks i n s i d e t h e p r o t o n and a n t i - p r o t o n t h e n t h e 

r a t i o o f t h e p r o d u c t i o n c r o s s - s e c t i o n f o r t h e two Z's i n PP 

i n e l a s t i c c o l l i s i o n i s g i v e n by t h e e x p r e s s i o n 

4 [ ( u R u R ) 2 + ( u L u L ) 2 ] + ( d R d R ) 2
+ ( d L d L ) 2 | 

Z 3 R = (6.4.4) 

4 I U \ R
 + U \ L J + d 2 a R + d ' a L 

where we have d e f i n e d 

uaR = ( " R ^ Z ^ ( U R G R ) Z 2 

u a L " ( UL°L)Z , + < UL UL> Z , 
2 2 
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daR = ( dR dR>Z + < dR dR>Z 

d a L = < dL dL>Z + < d L d L ) z 2 

(6.4.5) 

S u b s t i t u t i n g t h e v a l u e s o f S'2 and C'2 f r o m (6.2) and M w 

R 
= 300 Gev, M z = 9 2 . 0 Gev M M = 80.1 Gev and s i n 2 6 w = 0.23 

i n t o t h e e q u a t i o n s ( 6 . 4 . 1 ) , (6.4.2) and ( 6 . 4 . 3 ) , t h i s r a t i o i s 

d e t e r m i n e d t o be 

R a 0.82 (6.4.6) 

Because o f t h e d i f f e r e n c e i n t h e masses o f t h e two Z's, t h e 

k i n e m a t i c e f f e c t g i v e s a s u p p r e s s i o n f a c t o r (R') o f about 

0.04 and 0.002 f o r M z = 200 - 300 Gev r e s p e c t i v e l y (see 
2 

Chapter 3 ) . Thus t h e number o f Z 3 produced a r e e s t i m a t e d as 

f o l l o w s : 

N z = (R.R') 

= 975 (0.82) (0.04) (M z = 200 Gev) . 
2 

= 32 ev e n t s (6.4.7) 

O b v i o u s l y n o t a l l o f t h e s e decay i n t o Ŵ Ŵ  p a i r s . Thus we 

need t o c a l c u l a t e t h e b r a n c h i n g r a t i o f o r t h i s decay, w h i c h 

r e q u i r e s t h e c o u p l i n g s t r e n g t h o f t h e Z 3 t o t h e l e f t - h a n d e d 

W's . Thus t h e second p a r t o f t h e e x p r e s s i o n (6.4.3) i s t h e 

o n l y t e r m w h i c h mixes t h e l e f t - r i g h t handed and hy p e r c h a r g e 
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v e c t o r bosons. From t h i s t e r m t h e f o l l o w i n g c o u p l i n g o f t h e 

Z 3 t o t h e l i g h t W has been o b t a i n e d 

:K g cos 9 W (6.4.8) 
3/2 

(c o s 2 6 w ) E 
where K = j : 5 (6.4.9) 

«• VA-»i 1 c o s 2 e w ) 
cos 29w + W i t h t h i s c o u p l i n g t h e decay r a t e o f t h e Z 3 i n t o WLWL i s 

computed as [ 3 3 ] 

v2 ^2a M 3/2 _ K a c o t 8 ̂ 1 -3 2 1 4 2 r(Z 3-»W LW£) - W ^3 X J ( X -4' (X*+20X Z + 12) 
48 (6.4.10) 

where 

X = —1 (6.4.11) 
X 

Thus, a f t e r making use o f t h e a l r e a d y d e s c r i b e d v a l u e s o f t h e 

q u a n t i t i e s i n v o l v e d i n e q u a t i o n ( 6 . 4 . 1 0 ) , t h e p a r t i a l decay 

w i d t h o f Z 3 i s n u m e r i c a l l y e s t i m a t e d t o be 0.01 Gev a t = 

200 Gev. T h i s w i d t h can be f u r t h e r i n c r e a s e d t o 0.054 Gev by 

r e p l a c i n g M z = 300 Gev. 

F o l l o w i n g t h e c o u p l i n g o f t h e Z 3 t o t h e f e r m i o n s 

c a l c u l a t e d i n C h a p t e r 3, t h e b r a n c h i n g r a t i o i n t o w£wj~, 

d e f i n e d by t h e e x p r e s s i o n 

Rz, » wjw:) 
B.R = — J h^L. (6.4.12) 

H„ a l l . . 
I ( z 3 — > Z f . f . + w>:) 1 
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i s t h u s d e t e r m i n e d t o be - 0.002 a t M 7 = 200 Gev and M, 

300 Gev. Then t h e number o f Z 3 

become. 

W R 
> W L W L O D S e r v e d e v e n t s 

N z (observed) = N z (produced) . B.R(Z3-*WW) 

- 0.1 ev e n t s . (6.4.13) 

Since e x p e r i m e n t a l l y two eve n t s have been observed [ 4 4 ] and 

our p r e d i c t e d r a t e s do n o t seem t o have much e f f e c t . The 

main reason f o r such a s m a l l e f f e c t i s due t o t h e weaker 

c o u p l i n g s t r e n g t h o f t h e Z 3 i n t o w£w^ decay and t h i s can be 

re a s o n a b l y improved by d e c r e a s i n g t h e mass o f t h e r i g h t -

handed charged v e c t o r boson f r o m 300 Gev t o 200 Gev. 
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CHAPTER 7 

The Superstrinq Models 

7.1 I n t r o d u c t i o n 

There has r e c e n t l y been much a c t i v i t y a s s o c i a t e d with 

the suggestion t h a t ' p a r t i c l e s ' are not p o i n t - l i k e o b j e c t s 

but i n s t e a d a r e one-dimensional, extended o b j e c t s , " s t r i n g s " 

[48,49]. One of the s t r o n g e s t reasons f o r b e l i e v i n g t h i s 

idea i s t h a t the u l t r a - v i o l e t d i vergent i n f i n i t i e s of point 

f i e l d - t h e o r y a r e removed, so with s t r i n g s i t n a t u r a l l y seems 

to be p o s s i b l e to c o n s t r u c t a f i n i t e theory of g r a v i t y . 

Point f i e l d t h e o r i e s however, a r e i n c o n s i s t e n t w i t h g r a v i t y 

s i n c e the quantum theory of g r a v i t y i s not re n o r m a l i z a b l e . 

Various s t r i n g t h e o r i e s which seem t o be reasonably 

promising candidates are being much s t u d i e d and d i s c u s s e d . 

The most s a t i s f a c t o r y and c o n s i s t e n t s t r i n g theory i s the so 

c a l l e d ' h e t e r o t i c ' s u p e r s t r i n g [ 5 0 ] . T h i s i s a c l o s e d s t r i n g 

a s s o c i a t e d w i t h the gauge group E QX Eg - such a group i s 

s e l e c t e d from t h e e s s e n t i a l r e q u i r e m e n t o f anomaly 

c a n c e l l a t i o n . The h e t e r o t i c s t r i n g i s i n i t i a l l y d efined i n a 

s p a c e - t i m e of t e n - d i m e n s i o n s and one of t h e c u r r e n t b i g 

problems of s t r i n g theory i s t o understand how s i x of thes e 

dimensions 'compactify' to l e a v e f o u r - p h y s i c a l space-time 

dimensions. 

The low-energy e f f e c t i v e theory i n four-dimensions i s 

the massless s e c t o r c o n t a i n i n g the ground s t a t e of the s t r i n g 
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and t h e l o w e s t ( m a s s l e s s ) modes o f t h e compact s i x -

dimensional manifold. Other e x c i t e d s t a t e s a r e expected t o 

have mass 0 (Mpiancfc) and t o be i r r e l e v a n t t o " p h y s i c s " . The 

theory i s n e c e s s a r i l y r e q u i r e d t o have N = 1 supersymmetry 

down t o energ i e s - 1 Tev and i t can be shown t h a t t h i s 

r e q u i r e s the manifold to have SU(3) holonomy with the s p i n 

connection i d e n t i f i e d w ith a c e r t a i n subset of the gauge 

connection. T h i s r e q u i r e s embedding the SU(3) holonomy 

group w i t h i n a SU(3) subgroup of one of the E Q f a c t o r s . The 

symmetry i s thus a u t o m a t i c a l l y broken t o E 6 X E 8 gauge group. 

We assume t h a t the p h y s i c a l s t a t e s a r e s i n g l e t s of the 

E 8 f a c t o r and a r e i n the a d j o i n t r e p r e s e n t a t i o n of the Eg. 

The problem then a r i s e s as to hg>w t h i s Eg can be broken down 

to the standard model (or something s i m i l a r ) . I t i s known 

from general c o n s i d e r a t i o n of Grand U n i f i e d T h e o r i e s (GUT) 

t h a t such a breaking must occur a t an energy M 10 1 5Gev or a 

l i t t l e l e s s than the planck mass ( ~ 1 0 1 9 G e v ) . Thus i t i s 

n a t u r a l to suppose t h a t i t occurs a t the c o m p a c t i f i c a t i o n 

s c a l e . 

7.2 Why the s t r i n g theory has an extra U ( l ) 

As we saw i n the previous s e c t i o n the most n a t u r a l 

c o m p a c t i f i c a t i o n scheme f o r the h e t e r o t i c s t r i n g breaks the 

o r i g i n a l E 8 X E 8 group down t o E 6 X E 8 . Although the E 6 f a c t o r 

i s s a t i s f a c t o r y as a Grand-Unified Group i t has t o be broken 

a t a high energy, i . e . around the c o m p a c t i f i c a t i o n s c a l e . 

The question then a r i s e s as t o how we can arrange f o r the 
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c o m p a c t i f i c a t i o n t o y i e l d a s u i t a b l e subgroup ( e . g . t h e 

standard model) of E 6 r a t h e r than E 6 i t s e l f . 

One p o s s i b i l i t y o c c u r s i f t h e 6 - d i m e n s i o n a l compact 

manifold, K, i s not simply connected. T h i s can always be 

arranged, s t a r t i n g from a simply connected manifold, by 

i d e n t i f y i n g p o i n t s which are r e l a t e d by a s u i t a b l e group 

operations. As a simple example i f we s t a r t with a f l a t two-

dimensional E u c l i d e a n space, d e s c r i b e d by co-ordinates x and 

y, which i s simply connected, and i d e n t i f y p o i n t s 

x and x + 1 

y and y + 1 

Then we c o n s t r u c t a t o r u s which i s not simply connected 

(see F i g u r e 2 1 ) . The l i n e AB i n F i g u r e (21b) i s a c l o s e d -

loop which cannot be reduced t o a p o i n t , thereby showing t h a t 

the t o r u s i s not simply connected. 

I n g e n e r a l the method i n v o l v e s f i n d i n g some d i s c r e t e 

symmetry group F and i d e n t i f y i n g p o i n t s on the manifold 

x and f x 

where f i s any element of F. I n order not t o destroy the 

smooth p r o p e r t i e s of the manifold i t i s important t h a t F a c t s 

" f r e e l y " , i . e . x i s never the same p o i n t as f x . 

The i d e a of u s i n g t h i s method t o break the symmetry i s 

t h a t , i n s t e a d of r e q u i r i n g of any p h y s i c a l f i e l d , 
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tfr(fx) - <A(x) (7.2.1) 

we p o s t u l a t e 

iA(fx) = U f ( x ) (7.2.2) 

where U f i s an element of Eg, i . e . we r e q u i r e t h a t on going 

round any n o n - c o n t r a c t i b l e loop the f i e l d does not change 

a p a r t from a s p e c i f i c gauge transformation. 

We now make the s u c c e s s i v e use of equation (7.2.2) to 

show t h a t , f o r any f , f t h a t a r e the elements of the d i s c r e t e 

symmetry group F, „ 

U fU fV(x) = U f ^ f ' x ) 

= ^ ( f f ' x ) 

= U f f / i//(x) (7.2.3) 

or 

U f f = u f u f ' (7.2.4) 

I t f o l l o w s t h a t the s e t of U f's form a ( d i s c r e t e ) group 

and t h e r e f o r e t h a t we must embed the group F i n t o some 

d i s c r e t e subgroup of Eg. The gauge group Eg i s then broken 

i n t o t h e group t h a t commutes w i t h a l l e l e m e n t s of t h i s 

d i s c r e t e subgroup. 

An a l t e r n a t i v e way of d e s c r i b i n g t h i s method of symmetry 
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breaking i s through the idea of "Wilson loops". According t o 

t h i s technique, i f y i s any n o n - c o n t r a c t i b l e loop i n a 

manifold K (which i s not simply connected), s t a r t i n g and 

ending a t some po i n t x, then the "Wilson l i n e " given by 

U = P exp k A.dx (7.2.5) 
Y 

i s e s s e n t i a l l y a gauge c o v a r i a n t . Here both A and are 

a s s o c i a t e d with E 6-group and they r e p r e s e n t the gauge f i e l d 

and an element of the group r e s p e c t i v e l y . A l s o note t h a t P 

denotes the path ordering. 

Now i f we take two loops y and y', drawn i n F i g u r e 

( 2 1 c ) , the product loop YY' i s defined by 

U ^ y = P exp<£ A.dx = (P exp<£ A.dx) (P exp ̂  A.dx) 
YY Y Y (7.2.6) 

S i n c e E 6 i s an a b e l i a n group, thus the equation (7.2.6) 

reduces t o 

U / = U .U , (7.2.7) 
YY Y Y 

which i s analogous to (7.2.4) and d e s c r i b e s a homomorphism 

mapping the fundamental group i n t o Eg. As the Wilson l i n e s 

are taken to be not simply connected, the Eg gauge f i e l d 

s t r e n g t h F ^ j = 0 merely i n d i c a t e s t h a t we can s e t gauge f i e l d 

Ai t o zero by a non-single valued gauge transformation and 
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such kind of transformation i n f a c t w i l l introduce a " t w i s t " 

i n t h e boundary c o n d i t i o n s t h a t a r e obeyed by the charged 

f i e l d s . Thus symmetry breaking by Wilson l i n e s i s i n f a c t the 

same a s t h a t produced by (7 . 2 . 2 ) . 

We now t u r n t o the problem of determining the p o s s i b l e 

E 6 breaking t h a t can be obtained by t h i s mechanism. We f i r s t 

note t h a t E 6 c o n t a i n s a maximal subgroup SU(3)xSU(3)xSU(3). 

I t i s n a t u r a l to suppose t h a t one of these i s the c o l o u r 

group and t h a t the others r e p r e s e n t " w e a k - i n t e r a c t i o n s " on L, 

R f e r m i o n s , i . e . we can w r i t e t h e subgroup a s 

S U ( 3 ) c x S U ( 3 ) L S U ( 3 ) R . Thus we expect t h a t the elements U f 

w i l l commute with S U ( 3 ) C and break S U ( 3 ) L down to S U ( 2 ) L . 

Consider f o r s i m p l i c i t y th© c a s e where the group formed 

by the U f i s a c y c l i c group, generated by a s i n g l e element U 

which s a t i s f i e s U n = 1. Then, the above c o n d i t i o n means t h a t 

we can w r i t e U i n the form 

u = 
a 

a 

3 

,-2 
(7.2.8) 

where we have diagonal!zed the S U ( 3 ) R p a r t . S i n c e we r e q u i r e 

U t o belong t o S U ( 3 ) c x S U ( 3 ) L x S U ( 3 ) R we r e q u i r e o? = y&e 

1. A l s o the c o n d i t i o n U n = 1 r e q u i r e s t h a t a, 3, Y, <S, e 

are a l l nth r o o t s of u n i t y . For gener a l v a l u e s of the 

parameters t h a t s a t i s f y these c o n d i t i o n s the subgroup of E 6 

t h a t commutes w i t h t h e U i s S U ( 3 ) c x S U ( 2 ) L x U ( l ) x U ( l ) x U ( l ) 

where the t h r e e U ( l ) ' s a r e , a diagonal matrix of S U ( 2 ) L of 
a l 

the form a and the two diagonal elements of S U ( 3 ) R . 
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Thus we obtain the standard model p l u s 2 e x t r a U ( l ) f a c t o r s . 

Of course f o r s p e c i a l v a l u e s of the parameters we o b t a i n a 

l a r g e r unbroken group, e.g. i f Y - 6 we o b t a i n an unbroken 

S U ( 2 ) R so t h a t we have a LxR symmetric model. 

To obtain a s m a l l e r unbroken symmetry we c o n s i d e r the 

c a s e of t h e n o n - a b e l i a n f l u x b r e a k i n g of E 6 a t t h e 

compact i f i c a t i o n s c a l e , t h e n i t can be shown t h a t t h e 

s m a l l e s t subgroup becomes S U ( 3 ) c x S U ( 2 ) L x U ( l ) x U ( l ) which 

obviously has rank 5. T h i s i s the unique minimum p o s s i b l e 

e x t e n s i o n of t h e s t a n d a r d model a t l o w - e n e r g i e s i n t h e 

s u p e r s t r i n g . 

Thus, i t seems n a t u r a l t o propose t h a t i f Eg i s broken 

by Wilson loops, t h e r e must be a t l e a s t an a d d i t i o n a l U ( l ) 

gauge i n t e r a c t i o n i n the theory. T h i s i s a " p r e d i c t i o n " of 

t h i s c l a s s of s t r i n g modes, and i t i s one of v e r y few such 

p r e d i c t i o n s t h a t have been obtained from the s u p e r s t r i n g . 

( I t should be noted however, t h a t t h e r e have r e c e n t l y been 

obtained c o n s i s t e n t s t r i n g models which do not have i t ) . 

7.3 The comparison with the s t r i n g model predictions 

We have e x p l i c i t l y d i s c u s s e d i n the preceding s e c t i o n 

how the e x i s t e n c e of two Z's i n the s u p e r s t r i n g theory seems 

to be n a t u r a l provided the E 6 gauge group i s broken down to 

some subgroup by Wilson loops. The i n t e r e s t i n g q u e s t i o n of 

whether the s e two Z's are s i m i l a r t o those i n the composite, 

or s i g n i f i c a n t l y d i f f e r e n t , w i l l be c o n s i d e r e d i n t h i s 
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s e c t i o n . 

One immediate d i f f e r e n c e i s t h a t i n the s t r i n g theory 

t h e r e i s no reason why the two Z's should have [51] s i m i l a r 

masses, whereas, as we have seen, i n the composite model 

t h e r e i s a strong preference f o r t h i s e.g. i n the same way 

t h a t the p and CO have almost equal masses. We s h a l l indeed 

see below t h a t such e q u a l i t y seems to be i m p o s s i b l e i n the 

s t r i n g . 

We now t r y b r i e f l y t o compare the s t r u c t u r e of our 

composite model e x p l i c i t l y d e s c r i b e d i n Chapter 5 w i t h the 

s t r i n g theory. For the l a t t e r we use the c a r e f u l d i s c u s s i o n 

of Ref. [ 6 ] . I f we r e c a l l our equation (5.1.21) we can 

e a s i l y f i n d t h a t fr 

V L \ 1
 + M Z 2 = M Z + < X lI + ° 2 s 2 ) M w (7.3.1) 

M Z 1 * M Z 2
 = M Z A ]T ^ (7.3.2) 

S u b s t i t u t i n g X.JV = B + (1+s 2) i n t o the above equations 
1z 

immediately y i e l d s 

M Z X
 + MZ = M2 + M2 + (B + c2S2)M* (7.3.3) 

M2 .M2 = M 2(M 2+(B-te 2S 2)M 2) - M^c^M 2 (7.3.4) 
Z l Z 2 

I n order t o compare w i t h the n o t a t i o n s of the model 

being d i s c u s s e d i n Ref. [6] we w r i t e these equations as' 
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+ M M - M| + B (7.3.5) 

and 

M .M = M2B - C 
Z 

(7.3.6) 

where 

B — M2 + (B + c 2 S 2 ) M ^ (7.3.7) 

and 

A W 
C = (7.3.%) 

Equations (7.3.5) and (7.3.6) a r e i d e n t i c a l t o 5a and 5b of 

Ref. [6] except the q u a n t i t i e s B and C a r e denoted by B and C 

I n our model of course B and C a r e f r e e parameters, 

s u b j e c t only t o the r e s t r i c t i o n s a r i s i n g from the f a c t t h a t S 

and B a r e a l l non-zero and f u r t h e r Q £ B (see chapter 6) . 

However, i n the s t r i n g model as used i n Ref. [6] C seems t o 

be a t l e a s t p a r t i a l l y determined. 

The s t r i n g r e s t r i c t i o n on C means t h a t reasonable v a l u e s 

of Mz ( s M2) r e q u i r e t h a t (= M3) i s bounded below (see 

Fi g u r e ( 2 2 ) ) . For a given v a l u e of M2 F i g u r e (22) shows t h a t 

M3 can be p r e c i s e l y determined. A l s o note t h a t the s t r i n g 

does not even allow Mz a Mz . While our model seems t o be 

and Mz and Mz a r e denoted by M2 and M3. 

A 

128 



e n t i r e l y f r e e from such r e s t r i c t i o n s . We have more degree of 

freedom i n choosing the H z . I n our model when the mass of 

the second Z i s f i x e d from the experiment then the r a t e i s 

too s m a l l . 

The p r o b a b i l i t y of observing the decay of the e x t r a 

n e u t r a l gauge boson, which i s b e i n g p r e d i c t e d i n our 

composite model as w e l l as i n s t r i n g model, i n t o W~W+ v e c t o r 

bosons a l s o seems r e l e v a n t t o be n i c e l y compared. I n s t r i n g 

theory, the heavy new Z 3 couples t o W-pairs through i t s 

coupling with standard Z° and i s 5 i C w s 3 , where i s t n e 

standard Z° coupling and s 3 the Z°zjtnixing. There they have 

shown t h a t the present experiment l i m i t s r e q u i r e s 3 < 0.1 f o r 

M3 = 250 Gev. They have f u r t h e r shown t h a t the Z 3 coming from 

an E 6 - s u p e r s t r i n g - i n s p i r e d model i s u n a b l e t o y i e l d t h e 

p r e s e n t l y needed c r o s s - s e c t i o n . 

On the other hand, we have w e l l determined t h a t the 

coupling of the new Z 3 t o W-pairs has s i m i l a r p a t t e r n a s i n 

s t r i n g model and i s Kgcos6 w, where g c o s 8 w i s the standard Z 

coupling and K the ZZ 3 mixing given by 

3/2 
v _ (cos28 M) Z 

" " M2 ( 6 ' 4 ' 9 ) 

4 o Z, cos26.. cos e w ( A 1 _ W j 
cos 0 W 

However, the numerical v a l u e of the suppression f a c t o r K 

i s computed to be ~ 0.08 a t Mw^ = 250 Gev and can be f u r t h e r 

i n c r e a s e d by decreasing the mass of the right-handed v e c t o r 
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boson and v i c e - v e r s a . 

Thus, from the d i s c u s s i o n of t h i s s e c t i o n one could 

e a s i l y see t h a t our composite model much s t u d i e d i n Chapters 

5 and 6, and the s t r i n g model w e l l explained i n Ref. [6] seem 

to be f a i r l y c o n s i s t e n t and both a re, a t present, unable to 

e x p l a i n the c u r r e n t ( s p e c u l a t i v e ) experimental data d i s c u s s e d 

i n Ref. [ 3 ] . 

130 



CHAPTER 8 

The u n i f i c a t i o n of a l l n a t u r a l f o r c e s has long been the 

prime and u l t i m a t e aim of many s c i e n t i s t s . The p r o c e s s was 

begun by Maxwell, but i t was E i n s t e i n who f i r s t conceived the 

idea of a complete u n i f i c a t i o n . The v a r i o u s attempts to 

u n i f y the electromagnetic and weak i n t e r a c t i o n s s u c c e s s f u l l y 

l e d to the establishment of the so c a l l e d "Salam-Weinberg" 

electroweak standard model. We have e x p l i c i t l y seen how 

gauge t h e o r i e s and the Higgs mechanism p l a y t h e i r i n d i v i d u a l 

r o l e i n the development of the standard model. I n Chapter 1 

we have mainly reviewed the Salam-Weinberg model and have 

se e n how i t i s i n agreement w i t h a l l so f a r known 

phenomenology. However, t h i s c o n s i s t e n c y of the electroweak 

standard model does not n e c e s s a r i l y mean t h a t the model can 

be regarded as c o r r e c t a t a deeper, more fundamental, l e v e l . 

A d e t a i l e d review of the l e f t - r i g h t symmetric model, 

which i s the most n a t u r a l extension of the standard model, 

and i s based on t h e group S U ( 2 ) L x S U ( 2 ) R x U ( l ) f o r t h e 

electroweak i n t e r a c t i o n s has been c a r e f u l l y made i n Chapter 

2. There we have c l e a r l y observed t h a t the Higgs mechanism, 

which i n f a c t provides the masses to the intermediate v e c t o r 

bosons, has t o be modified. We have f u r t h e r seen t h a t i n 

order to p r e s e r v e the low-energy phenomenology, the r i g h t -

handed massive charged v e c t o r bosons (W R) a s s o c i a t e d w i t h 

S U ( 2 ) R f a c t o r must be much h e a v i e r than the e x p e r i m e n t a l l y 
9 
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confirmed left-handed l i g h t massive charged v e c t o r bosons 

(WL) . To g i v e a strong support t o t h i s assumption some 

experimental c o n s t r a i n t s on the mass of WR have been b r i e f l y 

presented and i t i s seen t h a t the l a t e s t a v a i l a b l e data 

r e q u i r e s M w £ 400 Gev. R 
Although the a n a l y s i s of Chapter 1 c l e a r l y shows t h a t 

t h e r e i s no confirmed experimental evidence t h a t l i e s beyond 

t h e Salam-Weinberg model, t h e r e have r e c e n t l y been some 

unconfirmed events [3] which have obviously spread v a r i o u s 

s p e c u l a t i o n s about t h e i r n a t u r e . We have e x p l i c i t l y 

d i s c u s s e d them i n the context of the extended l e f t - r i g h t 

s y mmetric v e r s i o n o f t h e e l e c t r o w e a k s t a n d a r d model i n 

Chapter 3. We have t r i e d t o e x p l a i n the events as being due 

to the decay of the a d d i t i o n a l h y p o t h e t i c a l n e u t r a l v e c t o r 

boson (Z') i n the LxR symmetric model, thereby roughly f i x i n g 

MZ/ ~ 200 Gev. I n order to do t h i s we have, f i r s t , d e r i v e d 

the mass matrix f o r v e c t o r bosons and then u s i n g t h a t mass 

matrix we have determined the corresponding mass eigenvalue 

spectrum and f i n a l l y the coupling of the expected new Z' t o 

the fermions. The coupling of the Z' to the WL's i s found to 

be dependent on Mw^. For reasonable v a l u e s , i t i s h i g h l y 

suppressed, by a f a c t o r we c a l l K, and the number of Z' 

decays p r e d i c t e d i s much l e s s than t h a t r e q u i r e d t o e x p l a i n 

the s p e c u l a t i v e experimental p r e d i c t i o n [ 3 ] . 

Another c l a s s o f models, which a l s o p r e d i c t t h e 

e x i s t e n c e of two n e u t r a l v e c t o r bosons, are the composite 

models. The s i m p l e s t and economic r i s h o n model has been 
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reviewed i n Chapter 4. An important f e a t u r e of t h i s model i s 

t h a t the two Z's a r e expected t o have c l o s e l y s i m i l a r masses. 

I n Chapter 5 we have e x p l i c i t l y computed the couplings of the 

v e c t o r bosons i n the framework of the composite model and 

have a l s o d i s c u s s e d (under the assumption t h a t the mass of 

the WR i s i n f i n i t e ) the v a r i o u s p o s s i b l e v a l u e s f o r the 

masses of the two Z's. Considering them both to be present 

w i t h i n the experimentally observed peak we have found a range 

of acceptable parameters and shown t h a t f o r t h i s range the 

u s u a l f i t s o f t h e s t a n d a r d model t o t h e c r o s s - s e c t i o n 

obtained i n ( v e — > y e ) n e u t r a l c u r r e n t data i s not a f f e c t e d . 

The p o s s i b i l i t y of one Z t o be w i t h i n the experimental peak 

and the other Z j u s t o u t s i d e the standard model, a l s o does 

not c o n f l i c t w ith the observed data because the weak coupling 

of the e x t r a Z, means t h a t i t would be u n l i k e l y t o have been 

seen. Then we c o n s i d e r the p o s s i b i l i t y of what happens i f 

one of the Z's i s the 'standard one' with Mz<) 0 Mz (the 

c e n t r a l v a l u e of the observed standard model p r e d i c t i o n ) and 

Mẑ  i s s u f f i c i e n t l y f a r away from the standard model, to 

a l l o w i t t o e x p l a i n the unconfirmed CERN events. However, we 

again f i n d t h a t the number of Z 2 ' s produced i s too s m a l l to 

e x p l a i n the data. 

Then, we e s s e n t i a l l y combine the two models by t a k i n g 

i n t o account the e f f e c t s which come from the presence of the 

heavy right-handed v e c t o r bosons with a l a r g e but f i n i t e 

mass. We have c a r e f u l l y r econsidered a l l the p o s s i b i l i t i e s 

regarding the masses and other dynamics of the Z's. Again we 

do not f i n d any obvious disagreements w i t h the experimental 
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p r e d i c t i o n s . with regard to e x p l a i n i n g the e x t r a events we 

f i n d t h a t the number of h y p o t h e t i c a l Z's produced i s l a r g e 

but t h e i r p r o b a b i l i t y of d e c a y i n g i n t o W - p airs h a s been 

estimated and i s - 1/20 times l e s s than t h a t r e q u i r e d to 

e x p l a i n the events. 

F i n a l l y , we have made a comparison o f our model 

p r e d i c t i o n s w i t h those of s u p e r s t r i n g (which i n some forms a t 

l e a s t a l s o , p r e d i c t s the e x t r a Z) . There we have w e l l seen 

t h a t both models have s i m i l a r s t r u c t u r e s and p r e d i c t i o n s . 

The c o n s t r a i n t s on the parameters given i h the p a r t i c u l a r 

s t r i n g model we study [6] a r e d i f f e r e n t from the expected i n 

the composite model, i n p a r t i c u l a r the s t r i n g does not have 

any n a t u r a l reason f o r r e q u i r i n g the two Z's to have s i m i l a r 

masses. 

The c o n c l u s i o n s of t h i s t h e s i s c a n be b r i e f l y 

summarized i n the f o l l o w i n g way: 

(1) P r e s e n t l y a v a i l a b l e e x p e r i m e n t a l methods do not 

d i s t i n g u i s h a 2Z model from the standard model provided 

e i t h e r t h a t the mass s e p a r a t i o n i s l e s s than the width of the 

Z peak, or, i f the s e p a r a t i o n i s somewhat l a r g e r , provided 

t h a t one of the Z's remains i n the peak. These r e s u l t s apply 

even when a L x R symmetrical model, w i t h an a c c e p t a b l e mass 

f o r WR, i s used. 

(2) A modest improvement (from about 50% e r r o r t o about 5%) 

i n the accuracy of v - e~ s c a t t e r i n g data would enable 

f u r t h e r r e s t r i c t i o n s to be placed on the parameters of our 

models and maybe even to r e v e a l evidence f o r the e x t r a Z. 
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(3) With any combination of parameters a two Z, L x R 

symmetrical model, p r e d i c t s a maximum "new Z > 2W" r a t e 

which i s a t l e a s t an order of magnitude too s m a l l t o e x p l a i n 

the unconfirmed "non-standard" CERN events. 

134A 



REFERENCES 

[ I ] J.C. Pati and A. Salam, Phys. Rev. p_lfi (1974) 275. 
[2] R.N. Mohapatra and J.C. Pa t i , Phys. Rev. D l l (1975) 

566, 2558. 
[3] D. Denegri et a l . (UA1 Collaboration), CERN-Saclay, 

preprint. DphpE 86-26 (1986). 
[4] J.L. Rosner, Comm. Nucl. Part. Phys. 14. (1985) 229 

and 15 (1986) 195; 
S.M. Barr, Phys. Rev. Lett . 55 (1985) 2778; 
V. Barger, N.G. Deshpande and K. Whisnant, Phys. Rev. Lett-
(1986) 30; 
L.S. Durkin and P. Langacker, Phys. Le t t . 166B (1986) 
436; 
D. London and J.L. Rosner, EFI Preprint 86-22 (1986) ; 
G. Costa, J . E l l i s , G.L. Fogli, D.V. Nanopoulos and F. 
Zwirner, CERN preprint, i n preparation. 

[5] F. del Aguila, G.A. B l a i r , M. Daniel and G.G. Ross, CERN 
preprint TH. 4376/86 (1986). 

[6] F. del Aguila, M. Quiros and F. Zwirner, CERN preprint 
TH. 4506/86 (1986). 

[7] E. Fermi, Z. Phys. 88, 161 (1934). 
[8] S.L. Glashow, Nucl. Phys. 22., 579 (1961). 
[9] S. Weinberg, Phys. Rev. Let t . 19,1264 (1967). 
[10] A. Salam, I n : Elementary P a r t i c l e Theory, Proceedings of 

8th Nobel Symps. (Almguist and Wiksell, Stockholm) 
p.369 (1968). 

[ I I ] F.J. Hasert et a l . , Phys. Lett. 461, 138 (1973). 
[12] UA1 Collaboration, G. Armison et a l . , Phys. L e t t . 122B. 

103 (1983). 
[13] UA2 Collaboration, M. Banner et a l . , Phys. L e t t . 122B. 

476 (1983). 
[14] UA1 Collaboration, G. Arnison et a l . , Phys. L e t t . 125B. 

398 (1983). 

135 



[15] UA1 Collaboration, G. Arnison et a l . , Phys. Lett. 129B. 
273 (1983). 

[16] F. Halzen and A.D. Martin, Quarks and Leptons: An 
Introductory Course i n Modern P a r t i c l e Physics (John 
Wiley and Sons, 1984). 

[17] L. Di L e i l a , Proceedings of the I n t e r n a t i o n a l Euro 
Physics Conference on High Energy- Physics, Bari, 1985. 

[18] A. S i r l i n , Phys. Rev. fi21, 89 (1984). 
[19] R. Budney, Phys. Lett. 5^B, 227 (1975). 
[20] W. Bartel et a l . , Z. Phys. C. 23., 507 (1985). 
[21] W.J. Marciano i n p.80: 1983 International Symps. on 

Leptons and Photons I n t e r a c t i o n s a t High Energies, 
Carnell University, ed. D.G. Cassel, D.L. Kreinick, 
1983. 

[22] R.W. Brown et a l . , Phys. Rev. Let t . 52, 1192 (1984). 
[23] L.A. Ahrens et a l . , Phys. Rev. L e t t . 54/ 18 (1985). 
[24] M. Jonker et a l . , Phys. Le t t . 99@, 265 (1981). 
[25] G. Sanjanovic, Nucl. Phys., 153B. 334 (1979). 
[26] E.M. Lipmanov, Sovt. J . Nucl. Phys. 6, 395 (1968). 
[27] I . I . Gurevich et a l . , Phys. Lett. H, 185 (1964). 
[28] M.A.B. Beg et a l . , Phys. Rev. Lett. 38_, 1252 (1977). 
[29] J . Carr et a l . , Phys. Rev. Lett. SI, 627 (1983). 
[30] D.P. Stoker et a l . , Phys. Rev. Let t . 54# 1887 (1985). 
[31] (a) G. A l t a r e l l i , R.K. E l l i s , M. Rreco and G. 

Ma r t i n e l l i , Nucl. Phys. B246 (1984) 12; 
(b) G. A l t a r e l l i , R.K. E l l i s and G. M a r t i n e l l i , Z. 

Phys. C , P a r t i c l e s and F i e l d s , £1 (1985) 617. 
[32] G. Arnisona et a l . , (UA1 Collaboration) Phys. Le t t . 

134B (1984) 469; 147B (1984) 241; 155B (1985) 
442. 

[33] R. K l e i s s and W.J. S t i r l i n g , CERN preprint TH-4490/86 
(1986). 

[34] S. D r e l l and T.M. Yan, Phys. Rev. Lett. 15 (1970) 
316; Ann. of Phys. 66 (1971) 578. 

136 



[35] P.D.B. C o l l i n s and A.D. Martin, Hadron Interactions 
(Adam Hilger, B r i s t o l , 1984). 

[36] I.J.R. A i t c h i s o n and A.J. Hey, Gauge Theories i n 
P a r t i c l e Physics (Adam Hilger, B r i s t o l , 1982). 

[37] E. Eichten et a l . , Rev. Mod. Phys. £6. (1984) 599. 
[38] C.K. Chang, Phys. Rev. £5_, 950 (1972). 
[39] T. Hassan and A. Z i c h i c h i , Nuovo Cim. 43, 227 

(1966). 
[40] H. Georgi, H.R. Quinn and S. Weinberg, Phys. Rev. 

Lett. 33, 451 (1974). 
[41] H. Harari, Phys. Lett. fi£g, 83 (1979). 
[42] M.A. Shupe, Phys. Lett. 86JB., 87 (1979). 
[43] R.N. Mohapatra and G. Senjanovic, Phys. Rev. Le t t . 44 

(1980) 912. 
[44] UA2 Collaboration, presented by S. Loucatos at the 6th 

topica l Workshop on Proton-antiproton C o l l i d e r Physics, 
Aachen, July 1986. 

[45] A.D. Martin, R.G. Roberts and W.J. S t i r l i n g , preprint 
RAL-87-002. 

[46] R.C. Allen et a l . , Phys. Rev. Lett. 55 (1985), 2401. 
[47] R.H. Dicke and J.P. Witke, Introduciton to Quantum 

Mechanics (Addison-Wesley, 1980). 
[48] J.H. Schwarz, Phys. Reports 89. (1982) 223. 
[49] M.B. Green and J.H. Schwarz, Phys. L e t t . 149B (1984) 

117. 
[50] D.J. Gross et a l . , Phys. Rev. Lett. M (1985) 502; 

Nucl. Phys. B256 (1985) 253, B267 (1986), 75. 
[51] E. Witten, Nucl. Phys. B258 (1985) 75. 

137 



F i g u r e c a p t i o n s 

(1) The vector boson couplings to the weak isospin and 
hypercharge currents. 

(2) Electromagnetic and weak contributions to e + e " > M-+H~ 
process. 

(3) Neutrino nuclear in c l u s i v e neutral current interaction. 
(4) The Weinberg mixing angle obtained from the various 

neutral current phenomenology. 
(5) Experimental W-transverse momentum d i s t r i b u t i o n for ev 

and nv . Events having at l e a s t one j e t are shown 
shaded. The s o l i d curve l i n e i s the QCD prediction 
[31], modified for selection and apparatus smearing 
e f f e c t s . 

(6) The Drell-Yan mechanism for Z' production. 
(7) The decyaing of the Z' into W+W~ pa i r s . 
(8) The cross-section of the Z' exchanged i n pP i n e l a s t i c 

c o l l i s i o n vs. i t s masses at the c. of m. energy J~S = 

546 and 630 GeV. 
(9) The r a t i o of the(z'/Z ) cross-sections vs. the masses of 

the Z' at the c. of m. energy \/s - 546 and 630 GeV. 
(10) The branching r a t i o of the Z' decays into various 

possible channels vs. i t s masses. 
(11) The weak process de + )uv i n the rishon model, 

mediated by W~ = TTTWV exchange. 
(12) Allowed region i n the (B,S) plane at various values of 

S i n 2 6 w . The shaded area i n each case represents the 
permitted range favoured by our model. 
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(13) Neutral current v e —> v e weak interaction. 
(14) The number of Z 2 events against i t s masses when 

(a) |MZ - Mz | = 1 GeV. 
(b) |MZ - Mz | = 0.6 GeV. 
(C) |MZ - Mz | = 0.4 GeV. 

(15) (a) The shaded region i s the required area i n the (B,Q) 
plane at B = Q and at H = 0.025. 

(b) The t r a n s l a t i o n of the above (B,Q) plane into the 
(B,S) plane at pi = 0.025. 

(16) (a) The shaded region i s the required area i n the 
(B,Q) plane r e s t r i c t e d at B = Q at M = 0.03. 

(b) The t r a n s l a t i o n of the above (B,Q) plane into 
the (B,S) plane at pi = 0.03. 

(17) (a) The shaded region i s the required area i n the 
(B,Q) plane at B =Q at u = 0.04. 

(b) The tr a n s l a t i o n of the above (B,Q) plane into 
the (B,S) plane at H = 0.04. 

(18) The r a t i o of the (Mz
2/Mw) vs. the various values of ̂  

i s drawn. Shaded area represents the allowed region 
favoured by our model. 

(19) The number of Z 2 events vs. i t s di f f e r e n t masses are 
depicted by f i x i n g = 90.5 GeV and Mz = 92.1 GeV. 
The l i n e s corresponding to \i = 0.0, 0.02 and 0.04 are showr 

(20) The number of Z 2 events against i t s various masses are 
depicted by f i x i n g Mẑ  =90.0 GeV and Mz 92.1 GeV The 
l i n e s corresponding to p, = 0.0, 0.02, 0.04 and 0.05 
are shown. 
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(21) (a) The construction of the two torus points A, B and 
C are regarded as the same points. 

(b) This i s an a l t e r n a t i v e way of looking at the 
Figure (21a). 

(c) Two non-contractible loops y and y' are 
multiplied and t h i s gives the m u l t i p l i c a t i v e law 
defined i n the fundamental group i n the manifold K. 

(22) Allowed region i n the (M 2 / M3) plane for the model (c) 
Ref. [ 6 ] . M z ° i s fixed by taking Mw • 81.8 GeV, while 
M2 i s varied according to the Figure (1) of Ref. [ 6 ] . 
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Table 1 

The Rishon Model 

Rishon Spinffi) Charge (e) Hypercolour Colour 

T \ 1 
2 3 3 

V 1 
2 0 3 3 
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