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Abstract
In this thesis we explore cosmological models of the early universe, in particular
alternatives to the theory of inflation.

In the first part of this thesis, we derive the evolution equations for two scalar
fields with non-canonical field space metric up to third order in perturbation theory,
employing the covariant formalism. These equations can be used to derive predictions
for local bi- and trispectra of multi-field cosmological models, e.g. in non-minimal
ekpyrotic models. In these models, nearly scale-invariant entropy perturbations are
generated first due to a non-minimal kinetic coupling between two scalar fields, and
subsequently converted into curvature perturbations. Remarkably, the entropy per-
turbations have vanishing bi- and trispectra during the ekpyrotic phase. However,
in order to obtain a large enough amplitude and small enough bispectrum of the
curvature perturbations, as seen in current measurements, the conversion process
must be very efficient, leading to a significant, negative trispectrum parameter.

As a second alternative to inflation, we construct a new kind of cosmological
model that conflates inflation and ekpyrosis in the framework of scalar-tensor the-
ories of gravity. During a phase of conflation, the universe undergoes accelerated
expansion, but with negative potential energy. A distinguishing feature of the model
is that it does not amplify adiabatic scalar and tensor fluctuations, and in particular
does not lead to eternal inflation and the associated infinities. We also show how
density fluctuations in accordance with current observations may be generated by
adding a second scalar field to the model and making use of the entropic mechanism.

The distinguishing observational feature of both models compared to single-field
slow-roll inflation is an absence of primordial gravitational waves, in agreement with
current data from the PLANCK satellite.
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Zusammenfassung
In dieser Arbeit untersuchen wir kosmologische Modelle des frühen Universums, ins-
besondere alternative Modelle zur Inflationstheorie.

Im ersten Teil leiten wir mithilfe des kovarianten Formalismus die Bewegun-
sgleichungen für zwei Skalarfelder mit nicht-kanonischem Feldraum bis zur dritten
Ordnung in der Störtheorie her. Diese Gleichungen können dazu verwendet wer-
den, Vorhersagen für die Bi- und Trispektren von Multi-Feldmodellen zu treffen,
z.B. nicht-minimale ekpyrotische Modelle. In diesen Modellen werden zuerst auf-
grund der nicht-minimalen kinetischen Kopplung zwischen den beiden Skalarfeldern
nahezu skaleninvariante Entropiefluktuationen erzeugt, die dann anschließend in
adiabatische Fluktuationen umgewandelt werden. Das Bi- sowie das Trispektrum
der Entropiefluktuationen ist genau null während der ekpyrotischen Phase. Damit
die Amplitude der adiabatischen Fluktuationen und das Bispektrum kompatibel mit
derzeitigen Messungen sind, muss der Umwandlungsprozess effizient sein, was zu
einem signifikanten, negativen Trispektrum-Parameter führt.

Als zweite Alternative zur Inflation konstruieren wir ein neues kosmologisches
Modell, das im Rahmen der Skalar-Tensor-Gravitationstheorien Elemente der In-
flation mit Elementen des ekpyrotischen Modells verbindet. Während einer Phase
der Konflation expandiert das Universum beschleunigt, jedoch mit negativer poten-
tieller Energie. Skalare und tensorielle Fluktuationen werden nicht verstärkt – die
ewige Inflation und die damit einhergehenden Unendlichkeiten werden vermieden.
Wir zeigen außerdem, wie Dichtefluktuationen in Übereinstimmung mit aktuellen
Beobachtungen erzeugt werden können, indem wir mithilfe eines zweiten Skalarfeldes
den entropischen Mechanismus einsetzen.

Beide Modelle unterscheiden sich von “slow-roll” Inflationstheorien basierend auf
einem Skalarfeld darin, dass keine primordialen Gravitationswellen produziert wer-
den, und sie folglich mit den aktuellen Daten des PLANCK-Satelliten überein-
stimmen.

Schlagwörter: Kosmologie, Alternativen zur Inflation, Störtheorie, Nicht-Gaussianität
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ture (Ṙ) for different durations of the conversion (N = 1/2, 2/3, 3/4, 1)
for the repulsive potential V2 with r = 1. The slope Ṙ is varied by
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Chapter 1

Introduction

When we look at the night sky we see an uncountable number of bright points –
planets, stars and galaxies. And yet, the sky is much darker during the night than
during the day. The overall relative darkness seems inconsistent with an infinite,
static and eternal universe, as pointed out by astronomer Heinrich Wilhelm Olbers
in the early 19th century: such a universe should be populated by an infinite number
of stars and hence any line of sight from Earth would end in a star leading to an
infinitely bright night sky. The resolution of the paradox is brought about by the
big bang theory. Not only is the universe of finite age, but it also expands causing
the energy of emitted starlight to be reduced via redshift.

Moreover, since the speed of light is finite as well, observing distant objects
allows us to study the universe when it was much younger. The oldest photons
we can detect originate from the time when, after the hot big bang, the expanding
universe had cooled enough for neutral atoms to form and light to not be scattered
anymore. This surface of last scattering is called the cosmic microwave background
(CMB) as the photons that arrive at earth today have been redshifted to microwave
wavelengths. Discovered by Arno A. Penzias and Robert W. Wilson [8] in 1965 as
isotropic radiation with a uniform temperature of about 2.7 K, recent observations
by the PLANCK satellite (see Fig. 1.1) [9, 4, 10] show tiny temperature fluctuations
with an amplitude of order one in 105. The statistics of these small anisotropies
constitutes the main source of information about the early universe. Hot spots
correspond to overdense regions representing the seeds of all the structure we observe
in the universe, like stars and galaxies.

Large-scale structure surveys, which observe the distribution of galaxies and
galaxy clusters as the universe evolves in time, might lead to valuable new insights.
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Figure 1.1: The cosmic microwave background as seen by the PLANCK satellite
[1]. At the time of last scattering the universe was about 380 000 years old. The
small temperature fluctuations correspond to regions of slightly different densities,
which form the seeds of all future structure.

In the future, they might be able to rival the precision of the CMB maps, as our
understanding of structure formation is continually improving [11]. While Einstein’s
theory of gravity has been probed to extremely high precision in our solar system
(see [12] for a review), it cannot account for the recently discovered acceleration of
the universe [13]. We either have to assume a new form of energy density called
dark energy that effectively acts as repulsive gravity, or gravity has to be modified
on cosmological scales such that it allows for self-accelerating solutions [14].

Similarly to this late-time acceleration in the expansion of the universe a phase
of inflation (see [3] for a review) during very early times has been postulated, yet at
a much higher energy scale. A subsequent period of reheating would have slowed the
expansion down while filling the universe with radiation and matter. Emerging from
the big bang with typical initial conditions some regions of space supposedly have
the properties required to undergo a period of inflation that smooths and flattens
the universe, accounting for the homogeneity and isotropy of the CMB at the back-
ground level. Moreover, inflation provides an explanation for the small temperature
anisotropies by stretching quantum fluctuations to cosmological distances. Simple
scalar-field models of inflation lead to rather clear predictions for these perturba-
tions: the so-called inflaton must roll down a very flat potential which implies that
it is approximately a free field. This in turn leads to a spectrum of density perturba-
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tions that is Gaussian to high accuracy, implying that both the bispectrum/3-point
correlation function and trispectrum/4-point function are expected to be very small.
More complicated models can however be designed, involving multiple fields and/or
higher-derivative kinetic terms, such that essentially all potential combinations of
observations can be matched. One may hope that this uncomfortable fact could be
circumvented if additional constraints on model building, arising from the combi-
nation with particle physics or eventually quantum gravity, become available. In
the meantime, it is interesting to observe that simple inflationary models also typi-
cally predict primordial gravitational waves at observable levels, so that the current
non-observation already starts to rule out a number of long-favoured models [4].
Experiments like the BICEP / KECK observatories at the south pole search for a
primordial gravitational wave signal in the B-mode polarisation of the CMB [15]. A
joint analysis with PLANCK showed that a significant contribution to the polarisa-
tion comes from galactic dust [16]. Measurements in the next few years operating at
increased sensitivity will further constrain the origin of the observed signal.

From a theoretical point of view, single-field models of inflation present impor-
tant challenges (see e.g. [17]): for one, inflation does not provide a complete history
of the universe, and one may ask what happened before inflation and how the in-
flationary phase started. In fact, the initial conditions need to be very special: the
scalar field has to start out at large potential energy with negligible initial velocity,
everywhere within a region of the universe that is a billion times larger than the
Planck scale. This requirement clashes somewhat with the motivation for inflation,
which is to explain the specialness of the early universe in a dynamical fashion. A
second complicating feature of (most) inflationary models is that they typically lead
to the runaway behaviour of eternal inflation: large quantum fluctuations can mo-
mentarily disrupt the inflationary dynamics and create an infinite number of causally
disconnected pocket universes containing all possible values for the amplitude, the
spectrum and the Gaussianity of the perturbations. In the absence of a measure
(which the theory does not provide) the theory then loses all its predictive power
and the naive predictions quoted above become questionable.

This situation suggests two possible approaches: the first is to try and under-
stand the above-mentioned challenges better and to resolve them. On the other
hand, we may look for alternative theories which might be able to explain the same
cosmological data without however presenting us with such conceptual conundrums.
Evidently it is interesting to pursue both approaches – here, we will be concerned
with the second approach.
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The thesis is organised as follows: In the next chapter we follow the progress that
has been made in describing the evolution of the universe, beginning with the old big
bang theory based on Einstein’s theory of general relativity and Hubble’s observation
that the universe expands. We show how inflation solves most of the puzzles con-
nected with the hot big bang theory, most notably the horizon and flatness problem.
Moreover, we add quantum perturbations, which become the temperature fluctua-
tions observed in the cosmic microwave background. Inflation contains problems of
its own though, which we outline and take as motivation to investigate alternative
theories such as the ekpyrotic / cyclic model. We then discuss how the big bang can
be replaced with a bounce linking a contracting phase to the currently expanding
phase in order to make these models viable.

Chapter 3 contains our main technical developments based on published work [18]
in collaboration with Jean-Luc Lehners. Employing the covariant formalism, we de-
rive the evolution equations for two scalar fields with a non-minimal kinetic coupling
up to third order in perturbation theory. Even though the scalar-field space is en-
dowed with a non-trivial metric, the model does not contain higher-derivative kinetic
terms. For this reason, only the non-Gaussianities of local form are relevant, and
these can be calculated from the classical evolution on large scales. This will extend
the existing treatment up to second order in perturbation theory by Renaux-Petel
and Tasinato [19], as well as the existing development of third-order perturbation
theory for trivial field space metrics [20]. These equations will be used to calculate
the non-Gaussian corrections to the primordial density fluctuations in terms of the
bispectrum and the trispectrum.

The results are applied to a new mechanism for generating ekpyrotic density per-
turbations in chapter 4. The model we are interested in, non-minimal ekpyrosis, was
first proposed by Qiu, Gao and Saridakis [21] and Li [22], and generalised in [23].
It contains two scalar fields, but only one has a steep negative potential, whereas
the potential of the other is negligible or even precisely zero. The first field domi-
nates the energy density and thus drives the ekpyrotic phase. In the non-minimally
coupled entropic mechanism, nearly scale-invariant entropy perturbations are then
generated by a field-dependent coupling between the two scalar field kinetic terms.
Subsequently, these entropy perturbations are converted into curvature perturba-
tions. We show that this model leads to vanishing bi- and trispectrum during the
ekpyrotic phase. Moreover, we investigate the effect of the conversion mechanism on
both the bispectrum and trispectrum in detail. We show that the conversion process
has a crucial impact on the final predictions for the bispectrum and trispectrum of
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the curvature perturbations. In particular, we find that the conversion process must
be very efficient in order for these models to be in agreement with current limits
on the bispectrum parameter fNL. Interestingly, such efficient conversions then lead
to a non-trivial prediction for the trispectrum non-linearity parameter gNL, which
is expected to be negative and of a magnitude of several hundred typically. The
spectrum and bispectrum during the ekpyrotic phase were calculated in collabora-
tion with Enno Mallwitz and Jean-Luc Lehners in [24], and the extension to the
trispectrum and detailed analysis of the conversion were carried out together with
Jean-Luc Lehners in [18].

Inflation and ekpyrosis share a number of features: they are the only dynamical
mechanisms known to smoothen the universe’s curvature (both the homogeneous
part and the anisotropies) [25, 26]. They can also amplify scalar quantum fluctu-
ations into classical curvature perturbations which may form the seeds for all the
large-scale structure in the universe today [27, 28]. Moreover, they can explain how
space and time became classical in the first place [29]. With a number of assump-
tions, in both frameworks models can be constructed that agree well with current
cosmological observations, see e.g. [30, 31]. But in other ways, the two models are
really quite different: inflation corresponds to accelerated expansion and requires a
significant negative pressure, while ekpyrosis corresponds to slow contraction in the
presence of a large positive pressure. Inflation typically leads to eternal inflation and
the associated ambiguities about its actual predictions [17], while ekpyrosis requires
a null energy violating (or a classically singular) bounce into the expanding phase of
the universe [32]. In chapter 5 we introduce the idea of conflation, which corresponds
to a phase of accelerated expansion in a scalar-tensor theory of gravity and which
combines elements from both inflation and ekpyrosis. In the conflationary model,
the universe is rendered smooth by a phase of accelerated expansion, like in inflation.
However, the potential is negative, and adiabatic scalar and tensor fluctuations are
not amplified, just as for ekpyrosis. Hence eternal inflation and the associated in-
finities are avoided. As we will show, one can obtain nearly scale-invariant curvature
perturbations by adding a second scalar field and employing an entropic mechanism
analogous to the one used in ekpyrotic models. This chapter is based on work [33]
done in collaboration with Enno Mallwitz and Jean-Luc Lehners.
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Chapter 2

The early universe

In this chapter we will set the scene for the following ones in terms of the structure of
the theories we study as well as notation. We describe the historical development of
early universe cosmology, including the hot big bang model as well as the inflationary
theory designed to resolve the puzzles that arose with the former. We then discuss
problems of inflation which motivate the investigation of alternative theories of the
early universe. We work in reduced Planck units, c = ~ = 1 and 8πG = M−2

Pl = 1,
which eliminates the factor 8πG from the Einstein field equations, unless stated
otherwise.

2.1 Friedmann-Lemaître-Robertson-Walker cosmology

The fact that the universe expands was probably the most important discovery in
cosmology in the last century. In 1917 Albert Einstein [34, 35] realised that according
to general relativity the universe had to either expand or contract. However, to match
the absence of observational evidence for any form of dynamical evolution of the
universe, he added a positive cosmological constant1, even though a static universe
is not a stable solution. Alexander A. Friedmann [36, 37] then found the full set of
solutions for models of the universe with positive, zero and negative curvature. In
1927 George Lemaître [38, 39] was the first to take the implications of an expanding
universe seriously. He concluded that the universe must have had an origin, which
he later called the “primeval atom”. In 1929 Edwin P. Hubble [40] discovered that

1In later years Einstein declared the introduction of the cosmological constant his “biggest blun-
der”. As a matter of fact, there is no a priori reason for the constant to vanish – the constant can
indeed be used to model dark energy. Einstein’s mistake consisted in overlooking the instability of
his solution.
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the further away a galaxy is from us, the more redshifted it is. This proportionality
between the recession speed of galaxies and their distance from us is called Hubble’s
law, and admits the interpretation that the universe does indeed expand. Moreover,
in the 1940s George Gamow [41, 42] laid the foundation for our present understanding
of hot big bang nucleosynthesis. He explained the observed relative abundance of
light elements like helium, deuterium and lithium by taking into account how the
temperature of the universe decreased due to its expansion after starting out in a
very hot and dense state. Lastly, in 1965 Arno A. Penzias and Robert W. Wilson
[8] discovered the cosmic microwave background, the afterglow of the big bang. The
isotropic black body radiation (today at about 2.73K) was emitted around 380,000
years after the big bang from the so-called “surface of last scattering” when the
universe had cooled enough to form neutral atoms and photons decoupled from
matter.

Over the last decades these observations have been confirmed, and more and more
detail of the CMB and large scale structure (LSS) has been obtained, establishing
the hot Big Bang as the preferred model of the universe2. However, there are certain
issues which make it unlikely that this is a complete model – they will be discussed
in section 2.2.

2.1.1 The Friedmann-Lemaître-Robertson-Walker metric

According to the Cosmological Principle (CP) the universe is homogeneous and
isotropic on large scales. Homogeneity means that, if the evolution of the universe is
represented as a time-ordered sequence of 3D space-like hypersurfaces, the physical
conditions are the same at each point of a given hypersurface. For a spacetime to be
isotropic, the physical conditions have to be identical in all directions when viewed
from a given point on the hypersurface, i.e. there are no preferred directions in space.
The CP is a generalisation of the Copernican Principle at the cosmological level. The
latter assumes that we do not occupy a privileged position in our universe. Since the
universe is isotropic around us, it should thus be isotropic everywhere, automatically
implying homogeneity3.

On scales smaller than about 100Mpc4, the CP is no longer valid. Clearly, the
2According to the current understanding of the evolution of our universe, there are two dark

components that have to be included: (cold) Dark Matter and Dark Energy, potentially in the form
of the cosmological constant Λ. The preferred model of the universe is thus referred to as ΛCDM
– see section 2.1.2.

3Note that isotropy at every spacetime point implies homogeneity but not vice versa.
4One parsec (pc), an abbreviation of the parallax of one arcsecond, is the distance at which one

7



centre of the sun or our galaxy is very different from interstellar or intergalactic
space, respectively. The largest known structures are galaxy filaments that consist
of gravitationally bound galaxies and form the boundaries between large voids in
the universe. Beyond those structures it has been confirmed by modern observations
that local variations in matter are averaged out, and we can assume that the CP
is applicable. Not only are radio galaxies randomly distributed across the entire
sky, the distribution of the observed redshift in the spectra of distant galaxies is
also isotropic, implying a uniform Hubble flow, i.e. expansion of the universe, in all
directions. In addition to observations from LSS, the most important source is the
CMB; temperature anisotropies at the time of last scattering are only of the order
of one part in 105 5, as shown for the first time by the COsmic Background Explorer
(COBE) satellite in 1992 [43].

In general relativity, the CP implies that we can foliate the 4D manifold of the
universe as R × Σ, where R represents the time direction and Σ is a maximally
symmetric 3-space – the universe is homogeneous and isotropic in space, but not in
time. The metric can thus be taken to be of the form

ds2 = −dt2 + a2(t)γij(x)dxidxj , (2.1)

where t is a time-like coordinate, labelling cosmological events in the 3-surface Σ(x),
and the metric γij is maximally symmetric in Σ. The scale factor a(t) represents the
relative size of spatial sections of Σ at time t. Note that g0i = 0 due to the isotropy
requirement, as it would otherwise introduce a preferred direction.

Isotropy further implies that the maximally symmetric spatial metric d`2 =

γij(x)dxidxj has to be spherically symmetric, and can therefore be written as

d`2 = e2β(r)dr2 + r2
(
dθ2 + sin2θdφ2

)
, (2.2)

where the form of the function grr(r) = e2β(r) has been chosen for convenience. The

astronomical unit (the average distance between the Earth and the sun, 150 million kilometres)
subtends an angle of one arcsecond. 100Mpc equals about 3.26 ·108 light-years, or about 3.08 ·1021

km in length.
5Actually, due to the peculiar motion of the Earth w.r.t. the cosmological rest frame of the CMB

(around the sun, around the galactic centre, within the motion of our galaxy cluster), there is a
dipole anisotropy of δT/T ∼ 10−3, which has to be subtracted off.
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components of the Ricci tensor for this metric are

(3)Rrr =
2

r
∂rβ

(3)Rθθ = e−2β (r∂rβ − 1) + 1

(3)Rφφ =
[
e−2β (r∂rβ − 1) + 1

]
sin2θ

(2.3)

Moreover, maximally symmetric metrics obey

(3)Rikjl = k (γijγkl − γilγkj) , (2.4)

where k is a constant due to homogeneity. The Ricci tensor is then given by

(3)Rij = 2kγij . (2.5)

Equating the two expressions for the Ricci tensor, (2.3) with (2.5), we can solve for
β(r), obtaining

β = −1

2
ln
(
1− kr2

)
. (2.6)

Thus, the spacetime metric becomes

ds2 = −dt2 + a2(t)

[
dr2

1− kr2
+ r2

(
dθ2 + sin2 θdφ2

)]
, (2.7)

which is the famous Friedmann-Lemaître-Robertson-Walker metric (FLRW). Note
that this metric is invariant under the redefinition

k → k

|k| , r → r
√
|k|, a→ a√

|k|
, (2.8)

so that the only relevant parameter is k/|k|. There are three cases of interest: a
closed universe, with constant positive curvature, k = +1; a flat universe of vanishing
spatial curvature, k = 0; and an open universe, with constant negative curvature,
k = −1 (see Fig. 2.1).

2.1.2 The Einstein equations

As outlined in the beginning of the section, modern cosmology began as a quan-
titative science with the advent of Einstein’s general relativity. He showed that
gravitation is a distortion of the structure of spacetime by matter, affecting the
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Figure 2.1: The three possible shapes of the FLRW universe; a spherical or closed
universe with k = +1, a hyperbolic or open universe with k = −1, or a flat universe
with k = 0. Reproduced from [2].

inertial motion of other matter. The Einstein field equations relate the spacetime
geometry, given in terms of the Einstein tensor Gµν , to the energy density in terms
of the stress-energy tensor Tµν ,

Gµν ≡ Rµν −
1

2
gµνR = 8πGTµν , (2.9)

where we have temporarily reinserted the factor 8πG.
In addition to the FLRW metric from the last section, which determines the

left-hand side, we need to model the matter and energy in the universe. The most
general matter fluid consistent with the CP is a perfect fluid, where an observer
comoving with the fluid would see the universe around it as spatially isotropic. The
energy-momentum tensor associated with a perfect fluid can be written as

Tµν = pgµν + (p+ ρ)uµuν , (2.10)

where p(t) and ρ(t) are the pressure and energy density of the fluid, respectively, and
uµ is the comoving four-velocity, satisfying uµuµ = −1. With the four-velocity for a
fluid at rest in comoving coordinates given by uµ = (1, 0, 0, 0), the energy-momentum
tensor becomes

Tµν = diag (−ρ(t), p(t), p(t), p(t)) . (2.11)

The µ= ν = 0 component of the Einstein equations (2.9) and its combination with
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the µ=ν= i component then lead to the so-called Friedmann equations

3

(
ȧ

a

)2

= ρ− 3k

a2
, (2.12)

3
ä

a
= −ρ+ 3p

2
. (2.13)

In order to find explicit solutions, it is necessary to choose an equation of state,
a relationship between energy density and pressure. The most relevant fluids in
cosmology obey the simple equation of state

p = wρ, (2.14)

where w is a constant.
The ν = 0 component of the covariant conservation of the energy-momentum

tensor, Tµν;µ = 0, gives

Tµ0;µ = 0 = −ρ̇− 3
ȧ

a
(ρ+ p) . (2.15)

Substituting the expression for the equation of state parameter w from (2.14), we
obtain the continuity equation

ρ̇

ρ
= −3

ȧ

a
(1 + w) , (2.16)

which can be integrated to give

ρ ∝ a−3(1+w). (2.17)

There are several fluids which are of particular interest in cosmology: Dust is colli-
sionless, nonrelativistic matter, whose equation of state obeys wm = 0. Hence from
(2.17), the energy density in matter, which is proportional to the number density of
particles, falls off as ρ(matter)∝a−3 with the expansion of the universe. Examples
include ordinary stars and galaxies as well as dark matter, for which the pressure is
negligible in comparison with the energy density.

Radiation has an equation of state given by wr = 1/3, and is associated with rel-
ativistic degrees of freedom, i.e. not only photons, but also nearly massless particles
like for example neutrinos. In an expanding universe the energy density of radia-
tion decays as ρ(radiation) ∝ a−4: in addition to the decrease in number density,
individual photons also lose energy in proportion to a−1 as they redshift.
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Einstein’s cosmological constant can be given in terms of the energy-momentum
tensor as T vac

µν = −Λgµν , and is perhaps associated with the energy of the vacuum
itself 6. The vacuum energy density has an equation of state wΛ = −1, and remains
constant with the expansion of the universe, providing a possible explanation for the
observed late time accelerated expansion of the universe due to dark energy.

The energy density of anisotropies in the curvature of the universe can be shown
to scale as ρ(anisotropies) ∝ a−6 [5]: We consider a metric of the Kasner type (a
special case of the Bianchi I metric) with negligible initial curvature,

ds2 = −dt2 + a(t)2
∑
i

e2βi(t)dxidxi with
∑
i

βi = 0. (2.18)

The Friedmann equations become

H2 =
1

3
ρ+

1

6

∑
i

β̇2
i , (2.19)

Ḣ = −1

2
(ρ+ p)− 1

2

∑
i

β̇2
i , (2.20)

where we have introduced the Hubble parameter, H(t) = ȧ
a . Together with the

condition on the Kasner exponents in (2.18) they imply

β̈i + 3Hβ̇i = 0, (2.21)

which has the growing mode solution β̇i ∝ a−3. Hence the energy density in the
anisotropies scales as 1

2

∑
i β̇

2
i ∝ a−6, where we will denote the constant of propor-

tionality by σ2.
The first Friedmann equation (2.12) can then be rewritten in the following form

3H2 = Λ− 3k

a2
+
ρm
a3

+
ρr
a4

+
σ2

a6
+ · · ·+ ρφ

a3(1+wφ)
, (2.22)

where we have added the scaling for a scalar field φ, which will become important
later. We can infer the energy density content of the universe by combining mea-
surements of the CMB, LSS and Type Ia supernovae. In terms of the fraction of
the total energy density, Ωi,0 ≡ ρi,0/3H

2, it consists of radiation (Ωr,0 ≈ O(10−5)),
baryonic and dark matter (Ωm,0 ≈ 0.31), and dark energy (ΩΛ,0 ≈ 0.69), which can

6A naive estimate of the contribution of the energy associated with quantum vacuum fluctuations
over-estimates the vacuum energy relative to the observational constraint by more than ∼ 120 orders
of magnitude [44].
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be modelled by Λ if it is constant. Nearly all the energy density today is contained in
the latter two, such that this parametrisation of the standard big bang cosmology is
called the ΛCDM (Lambda cold dark matter) model. The Friedmann equation then
shows how the different components scale with the expansion of the universe due
to their dependence on a. Radiation dominated during early times, before matter
and finally dark energy took over. The first two imply decelerated expansion of the
universe, with the scale factor going like t1/2 and t2/3, respectively, whereas dark
energy domination implies accelerated expansion.

2.2 Puzzles

Due to its successes in describing our universe the ΛCDM model is also referred to
as the standard model of cosmology. It not only predicts the existence of the cosmic
microwave background, but also the observed abundances of hydrogen, helium and
lithium in interstellar gas produced during primordial nucleosynthesis. Moreover,
the cosmological parameters (including dark energy) are such that the age of the
universe comes out larger than the age of the oldest objects we can observe, like
stars in globular clusters. Dark matter plays a key role in structure formation since
it begins to collapse into a complex network of dark matter halos well before ordinary
matter, which is impeded by radiation pressure. Without dark matter, the epoch of
galaxy formation would occur substantially later in the universe than is observed.

Despite these achievements, there are some aspects of the model which require
further consideration. From precise measurements of the CMB we know that the
early universe was extraordinarily simple: not only approximately flat, homogeneous
and isotropic, but also containing nearly scale-invariant and Gaussian density fluc-
tuations. A major goal of cosmology is to find a convincing explanation for this
initial state. For the standard model of cosmology to provide a consistent theory to
explain the state of the observable universe, we have to assume very particular initial
conditions whose origin is not explained. Instead of putting them in by hand, we
want to explain dynamically why the universe looks the way it does. The specialness
of the initial state can be quantified in terms of the horizon problem and the flatness
problem, which we discuss in more detail in sections 2.2.1 and 2.2.2, respectively.

Another problem is related to the very high temperatures in the early universe.
Grand unified theories (GUTs) propose that at high temperatures (above TGUT ∼
1015GeV) the electromagnetic, the weak and the strong interactions are not actually
fundamental forces but arise due to spontaneous symmetry breaking (SSB) from
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a single gauge theory. As the temperature drops through the GUT threshold, a
phase transition associated with SSB occurs. Depending on the properties of the
symmetry breaking, the phase transition can produce topological defects such as
magnetic monopoles, strings, domain walls or textures via the Kibble mechanism
[45, 46]. Different regions of the universe fall into different minima in the set of
possible states. Topological defects are then precisely the “boundaries” between these
regions with different choices of minima. Their formation is an inevitable consequence
of the fact that different regions cannot agree on their choices since the correlation
length cannot be larger than causality would allow, i.e. it must be at least as big
as the horizon size. Accordingly, in the case of the GUT phase transition, at least
one magnetic monopole should be produced per horizon volume (determined at the
time when the symmetry breaking took place) [47, 48]. They should have persisted
until the present day, to such an extent that the resulting monopole number density
would be some ten orders of magnitude bigger than the critical density of the universe
[49, 50]. Not only is that not the case, but all searches of them have failed, placing
tight limits on the density of relic magnetic monopoles in the universe [51].

The observation of the expansion of the universe brought about another puzzle,
namely the big bang singularity. Extrapolating backwards in time, the density and
temperature of matter as well as the spacetime curvature diverge and general rela-
tivity predicts its own breakdown. According to the singularity theorems of Hawking
and Penrose [52] such a singularity, at which time and space are supposed to begin, is
unavoidable. The theorems are based on certain assumptions that translate into the
condition that the null energy condition has to be satisfied in a flat FLRW universe –
the known matter and energy density content of the universe including dark energy
fulfil this condition. A full theory of quantum gravity, which remains to be found,
is generally expected to resolve the singularity and provide a physical description of
the big bang event.

2.2.1 Horizon problem

In this subsection we will show that the fact that the universe is homogeneous and
isotropic on large scales constitutes a problem. When we evolve the universe back in
time using GR, the finiteness of the speed of light implies that there are regions in
the CMB that have never been in causal contact since the big bang. Yet, they have
nearly the same temperature. It is basically a strong initial conditions problem: the
big bang must have occurred simultaneously in at least 105 adjacent regions – it did

14



not originate from a single point.
The problem can be studied in some more detail by looking at the FLRW metric

(2.7) for radial propagation of light in a flat universe, with k = dθ = dφ = 0, which
simplifies to

ds2 = −dt2 + a(t)2dr2 = a(τ)2
[
−dτ2 + dr2

]
, (2.23)

where we have introduced the conformal time τ via the relation

dτ =
dt

a(t)
. (2.24)

For null geodesics the line element vanishes: ds2 = 0. We can thus integrate (2.23)
to give the maximal distance a photon can travel between an initial time ti and a
later time t > ti

∆r = ∆τ = τ − τi =

∫ t

ti

dt

a(t)
, (2.25)

which is equal to the amount of conformal time elapsed during the interval ∆t =

t− ti. The so-called comoving particle horizon, ∆rmax, is then defined as the greatest
comoving distance from which an observer at time t will be able to receive signals
travelling at the speed of light since the big bang started, defined formally by the
initial singularity at ai=a(ti=0)=0. In other words, causal influences have to come
from within this region.

The integral (2.25) can be rewritten in terms of the comoving Hubble radius
(aH)−1 as

∆r =

∫
dt

a(t)
=

∫
(aH)−1d ln a. (2.26)

For a universe dominated by a perfect fluid with p = wρ, as described in the previous
subsection, the scale factor goes like

a ∼ t
2

3(1+w) , (2.27)

which can be obtained from integrating the Friedmann equation (2.12) together with
the continuity equation (2.17). Thus, the comoving Hubble radius evolves as

(aH)−1 ∼ a 1
2

(1+3w). (2.28)
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Performing the integral in (2.26), we obtain

τ ∼ 2

(1 + 3w)
a

1
2

(1+3w). (2.29)

All familiar matter sources satisfy the strong energy condition (SEC), 1 + 3w > 0.
The comoving horizon (2.25) is thus finite as τi=τ(ai= 0)=0:

∆rmax = τ − 0 ∼ a(t)
1
2

(1+3w), for w > −1

3
. (2.30)

We can show that this implies that most spots in the CMB have non-overlapping
past light-cones and hence never were in causal contact by calculating the angle
subtended by a causal patch in the CMB. The horizon length at recombination
corresponds to an angular size on the sky of

θhor, rec =
∆rmax(zrec)

dA(zrec)
, (2.31)

which is the ratio of the comoving particle horizon at recombination and the comoving
angular diameter distance from us (at redshift z0 =0) to recombination (zrec≈1100).7

The cosmological redshift z of a source observed from Earth (at a0 = 1) is defined
via

a = (1 + z)−1 . (2.32)

Thus, the comoving particle horizon (2.26) at the time of last scattering becomes

∆rmax(zrec) =

∫ arec

ai=0

da

a2H

MD≈
∫ (1+zrec)−1

0

da

a1/2H0
=

2

H0
(1 + zrec)

−1/2 , (2.33)

where the main contribution to the integral comes from times in which pressureless
matter dominates (MD) the Hubble expansion rate H MD

= 2
3t = H0 a

−3/2 since a ∼
t2/3, which can be inferred from the Friedmann equation (2.22).

The comoving angular diameter distance is defined as the ratio of the assumed
comoving size of an object, D, and the measured angular diameter, ∆θ, and can be
determined from the angular part of the metric (2.7) with dt=dr=dφ=0 and hence
aD = ar∆θ, such that

dA =
D

∆θ
= r, (2.34)

7Notice that the definition of the subtended angle does not change if instead we used the proper
particle horizon and proper angular diameter distance, as the factors of a would cancel each other.
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Figure 2.2: Conformal diagram for the standard FLRW cosmology illustrating the
horizon problem, based on [3]. The region of space which was in causal contact before
recombination has a much smaller radius than the separation between two regions
from which we receive CMB photons.

where we have to integrate from the scale factor at recombination, a(zrec), to the
one today, a0. Hence,

dA(zrec)
MD≈

∫ a0=1

(1+zrec)−1

da

a1/2H0
=

2

H0

[
1− (1 + zrec)

−1/2
]
zrec�1≈ 2

H0
, (2.35)

where we have again assumed matter domination.
We finally obtain the angular size on the sky of the horizon length at recombi-

nation8:
θhor, rec =

∆rmax(zrec)

dA(zrec)
≈ (1 + zrec)

−1/2 ≈ 0.03 ≈ 1.7◦. (2.36)

We conclude that regions in the CMB separated by more than about two degrees
have never been in causal contact. Nevertheless, their temperature is the same up
to one part in ten thousand, giving rise to the horizon problem.

2.2.2 Flatness problem

From the scaling of the different energy density components with the scale factor
in the Friedmann equation (2.22), we can deduce that after a phase of radiation-

8The actual value is a bit smaller, θhor, rec ≈ 1.2◦, as the universe has not been matter-dominated
throughout its whole evolution.
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and matter-domination, the curvature should come to dominate in an expanding
universe. Dividing the Friedmann equation by the critical density ρcrit = 3H2, we
can define the density parameters Ωi as

Ωi ≡
ρi
ρcrit

, (2.37)

and thus Eq. (2.22) becomes

1 = ΩΛ + Ωk + Ωm + Ωr + Ωσ2 + . . . . (2.38)

However, from observations we know that our universe is very close to spatially flat
today, i.e. the energy density in curvature is in fact negligible, [9]

Ωk ≡
−k

(aH)2

t0= 0.000± 0.005 (2σ). (2.39)

In other words, the energy density in dark energy, baryonic and dark matter, radia-
tion and anisotropies – where the contribution from the latter two is also insignificant
– approximately adds up to unity,

1 ≈ ΩΛ + Ωm. (2.40)

Assuming that the expansion is dominated by some form of matter with equation
of state w, the change in the curvature density parameter is given by

Ω̇k = HΩk(1 + 3w) Ωk,N = ±Ωk(1 + 3w), (2.41)

where we have used (2.27), allowing both for the universe to expand (with H > 0)
and to contract (with H < 0). We have introduced the number of e-folds of evolution
of the universe, N , defined via

dN = d ln a = Hdt, (2.42)

where the dependence on the Hubble rate explains the appearance of the minus sign
in the second equation of (2.41). For matter satisfying the SEC, i.e. w > −1/3, the
solution Ωk = 0 is then an unstable point in an expanding universe – if Ωk > 0 at
some point, it keeps growing, whereas if Ωk < 0, it keeps decreasing. On the other
hand, any matter satisfying the SEC in a contracting universe will drive the universe
to spatial flatness Ωk → 0.
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Assuming we can simply extrapolate back to the Planck time, the curvature
density would go like

Ωk,Pl

Ωk,0
=

(aH)2
0

(aH)2
Pl
. (2.43)

For a rough estimate we can assume radiation-domination as most of the e-folds of
evolution of the universe occur during that phase. From the scaling of a with time
(2.27) and wr = 1/3, we have a ∝ t1/2 and hence (aH)2 ∝ t−1. Thus,

Ωk,Pl

Ωk,0
=
tPl
t0
∼ 10−60. (2.44)

Not only is the curvature observed today very close to zero (2.39), at the Planck
time, it must have been 60 orders of magnitude smaller still! Even though we might
not be able to trust the extrapolation all the way back to the Planck time, this simple
estimate shows that the universe must have been extremely flat at early times.

2.3 Inflation

In 1979 Robert H. Dicke and Phillip J. E. Peebles [53] were the first to draw real
attention to the puzzles described in the last section, in particular the flatness prob-
lem. In the same year, Robert Brout, Francois Englert and Edgard Gunzig proposed
a model in which the matter emerging from quantum fluctuations had a large neg-
ative pressure, giving rise to “an open universe that closely resembles a de Sitter
space” [54]. They were interested in this inflationary phase as a means to create
a universe out of nothing, however, and not as a way to solve the hot big bang
problems. By semi-classically incorporating quantum corrections to general relativ-
ity, Alexei A. Starobinsky [55, 56] found a class of cosmological solutions that begin
with a de Sitter phase, evolve through an oscillatory phase, and eventually make a
transition into the standard FLRW expanding solution. The backreaction generi-
cally leads to R2-corrections to the Einstein-Hilbert action. Moreover, he predicted
a large gravitational wave amplitude when compared to a radiation-dominated phase
– the amplitude is small compared to other, subsequent inflationary models. His ap-
proach required choosing a special state for the early universe, namely the maximally
symmetric de Sitter spacetime, rather than an arbitrary initial state. In that sense
Starobinsky’s original motivation was quite different from the goals of inflationary
cosmology.

In 1980, two papers were published that addressed the horizon problem: Kat-
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suhiko Sato [57] suggested that a phase of exponential expansion could increase the
region between domain walls to a size larger than the observable universe, making
them unobservable today. Furthermore, Demosthenes Kazanas [58] proposed that
during a phase transition in the early universe the expansion can be exponential,
potentially accounting for the observed isotropy of the universe if the phase lasts
long enough.

In his seminal paper [25], Alan H. Guth was very clear in his motivation to solve
the horizon and flatness problems, and finally coined the term inflation. He proposed
that the universe underwent a phase of accelerated expansion during a false vacuum
phase before decaying to the true vacuum via a bubble nucleation. The model, now
called “old inflation”, suffers from a graceful exit problem though. All the energy after
the nucleation of a bubble is transferred to its walls, and can only be thermalised
through many collisions with other bubble walls. However, if inflation lasts long
enough to solve the initial conditions problems, collisions between bubbles become
exceedingly rare. Thus, in any one causal patch too little reheating takes place,
leading to large inhomogeneities in contradiction with observations.

To overcome the graceful exit problem Andrei D. Linde [59] and independently
Andreas Albrecht and Paul J. Steinhardt [60] effectively replaced the first-order phase
transition with a second-order one – see Fig 2.3. Both models of the GUT phase
transition were based on a Coleman-Weinberg [61] effective potential for the Higgs
field.

Expressed in terms of a scalar field (called the inflaton) in a symmetry-breaking
potential below the critical temperature T < Tc, old inflation takes place while the
field sits in the local, metastable minimum at φ = 0 – the false vacuum – before
tunnelling through the barrier to the true vacuum at φ0. In “new inflation” the
crucial ultra-rapid expansion phase no longer takes place while the field sits at the
now unstable equilibrium at φ = 0, but during the time that it slowly rolls on
an extremely flat effective potential towards the symmetry-breaking minimum φ0.
Reheating takes place once the potential energy stored in the scalar field is converted
to radiation when the field starts rolling faster and eventually oscillates around the
minimum.

These models are also called small-field inflationary models as the inflaton is
displaced by less than a Planck mass, and they face several issues of their own. It
becomes necessary to severely fine-tune the shape of the Coleman-Weinberg type
potential such that there is a very flat plateau near φ = 0 in order to satisfy the
slow-roll conditions. A further problem for many slow-field models is that the slow-
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Figure 2.3: The shape of the effective potential depends on the temperature relative
to the critical temperature. For high T > Tc, there is only one minimum at φ = 0.
Once the temperature drops below the critical temperature, another minimum is
established at φ0. Left: Old inflation is based on a first-order phase transition. The
scalar field starts out at φ = 0, which becomes a false vacuum when T < Tc. This
phase of inflation lasts until the universe tunnels to the true vacuum at the global
minimum φ0. Right: The important phase in the new inflationary model happens
after a second-order phase transition: when T < Tc, the field slowly rolls from zero
to the minimum at φ0.

roll trajectory is not an attractor in phase space; the initial field velocity must be
constrained to be very small. Furthermore, in order to obtain a sufficiently small
amplitude of density perturbations, the inflaton field must have a very small coupling
constant. However, this implies that the inflaton could not be in thermal equilibrium
with other matter fields. In the absence of thermal equilibrium, the phase space of
initial conditions is much larger for large values of the field, i.e. it is unlikely that
the scalar field would begin rolling close to its symmetric point at φ = 0.

In 1983 Linde proposed the first large-field model, which he called “chaotic in-
flation” [62]. He abandoned the idea that the universe was in a state of thermal
equilibrium from the very beginning, but considered a universe that initially con-
sisted of many domains with a chaotically distributed scalar field. Different scalar
field potentials are then possible, where it is assumed that inflation takes place while
the scalar field slowly rolls towards the origin from large values of φ & MPl. Do-
mains in which the scalar field is too small never inflate, whereas those domains that
originally contained large field values in the slow-roll regime of the potential do and
hence make up the main contribution to the total volume of the universe.

If the inflationary phase lasts for long enough, it can solve the horizon, flatness
and magnetic monopole problems by smoothing out inhomogeneities, anisotropies
and the curvature of space, and diluting topological defects. However, in addition
to the background the CMB contains small temperature fluctuations – the seeds for
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all the structure in the universe. Including quantum fluctuations of the scalar field,
Viatcheslav F. Mukhanov and Gennady V. Chibisov [27] calculated the spectrum of
the resulting density perturbations after a phase of Starobinsky inflation in 1981. The
generation of density perturbations in the new inflationary model was addressed a
year later at the Nuffield Workshop on the Very Early Universe, held at the University
of Cambridge. Independently of the work of Mukhanov and Chibisov the fluctuations
were calculated by the following groups attending the workshop: Stephen Hawking
[63], Starobinsky [64], Guth and So-Young Pi [65], and Bardeen, Steinhardt and
Turner [66]. In section 2.3.2 we will show in detail how quantum fluctuations in a
quasi-de Sitter space produce a spectrum of perturbations that accurately matches
the observations.

2.3.1 Background dynamics

Both the flatness and the horizon problem arise because the comoving Hubble radius
(aH)−1 always (except for the recent dark energy dominated phase) grows during
the evolution of the universe in the standard big bang cosmology. Their solution
can thus be conjectured as a phase of decreasing Hubble radius in the early universe
called inflation,

d

dt
(aH)−1 < 0. (2.45)

If the comoving Hubble radius decreases so does |Ωk| ∝ (aH)−2, driving the universe
toward flatness. The unstable solution Ωk = 0 is turned into an attractor during such
a phase. In terms of the equation of state parameter w it becomes clear from (2.41)
that we require a violation of the SEC, or equivalently energy density with negative
pressure: for w = p/ρ < −1/3, we obtain the desired behaviour Ω̇k, Ωk,N < 0.
Moreover, the big bang singularity is now pushed to negative conformal time, see
Fig. 2.4. From (2.29) we have

τi ∝
2

(1 + 3w)
a

1
2

(1+3w)

i = −∞, for w < −1

3
. (2.46)

In the standard FLRW cosmology the integral determining the comoving particle
horizon (2.25) is dominated by late times – see (2.30). However, if (aH)−1 is large
in the past, then the integral is dominated by early times and offers a resolution to
the horizon problem: ∆rmax, the distance beyond which particles could never have
communicated with each other, is much larger than the Hubble radius (aH)−1 today.
Hence, particles that cannot communicate at present were in causal contact early on.
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Figure 2.4: Conformal diagram for the inflationary cosmology illustrating the so-
lution to the horizon problem, based on [3]. Causal contact between two regions
separated by more than about two degrees in the CMB is achieved by increasing the
amount of conformal time between the big bang, now at τi=−∞, and recombination
at τrec, such that their past light cones overlap in the shaded region. The time τ=0
becomes the time of reheating.

The phase of decreasing comoving Hubble horizon (2.45) can be rewritten in the
following way,

d

dt
(aH)−1 =

d

dt
(ȧ)−1 = − ä

ȧ2
< 0. (2.47)

Hence, a shrinking comoving Hubble radius (for positive coordinate time t) implies
accelerated expansion

ä > 0. (2.48)

We have already noted that for inflation to occur, we need w < −1
3 . Equivalently,

this condition can be expressed in terms of the slow-roll parameter ε,

ε ≡ − Ḣ

H2
= −d lnH

dN
=

3

2
(1 + w) < 1. (2.49)
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In other words, while the scale factor a grows rapidly, the Hubble parameter H is
approximately constant. Moreover, inflation has to last for a sufficiently long time
in order to solve the puzzles. A simple estimate shows that in order to solve the
flatness problem, the relative density in curvature has to decrease by 60 orders of
magnitude (2.44). For an approximately constant Hubble parameter we thus need

Ωk, infl-beg

Ωk, infl-end
≈ a2

infl-end
a2
infl-beg

= e−2N & 10−60, (2.50)

and hence inflation has to last for around 70 e-folds of evolution,

N & 70. (2.51)

Thus, the slow-roll parameter has to remain small for a sufficiently large number of
Hubble times. This translates into the following condition on the second slow-roll
parameter, η:

η ≡ d ln ε

dN
=

ε̇

Hε
, |η| < 1. (2.52)

In addition to inflation there is a second way to solve the horizon and flatness
problems dynamically. Instead of a phase of accelerated expansion, a phase of ultra-
slow contraction also accomplishes the task. During ekpyrosis a stays approximately
constant while H grows rapidly, as will be presented in detail in section 2.4.

The simplest way to model a matter component with the required equation of
state is to employ a scalar field φ, called the inflaton, with canonical kinetic energy
and with a very flat potential V (φ). The dynamics of such a scalar field minimally
coupled to gravity is then governed by the action

S = SEH + Sφ =

∫
d4x
√−g

[
1

2
R+

1

2
gµν∂µφ∂νφ− V (φ)

]
, (2.53)

which is the sum of the gravitational Einstein-Hilbert action SEH and the action of
a scalar field Sφ. The self-interaction of the scalar field is described by the potential
V (φ). The energy-momentum tensor for the scalar field is obtained by varying the
scalar field action w.r.t. the metric,

T (φ)
µν = − 2√−g

δSφ
δgµν

= ∂µφ∂νφ− gµν
(

1

2
∂ρφ∂

ρφ+ V (φ)

)
. (2.54)

In the case of the FLRW metric (2.7), and restricting to the case of a homogeneous
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field φ(t, x) = φ(t), the scalar energy-momentum tensor takes the form of a perfect
fluid (2.11) with

ρφ =
1

2
φ̇2 + V (φ), (2.55)

pφ =
1

2
φ̇2 − V (φ). (2.56)

The resulting equation of state is given by

wφ =
pφ
ρφ

=
1
2 φ̇

2 − V (φ)
1
2 φ̇

2 + V (φ)
, (2.57)

which is close to −1 if the potential is sufficiently flat such that the field rolls very
slowly, i.e.

1

2
φ̇2 � V (φ) ⇒ wφ ' −1. (2.58)

Hence, such a scalar field can lead to negative pressure (wφ < 0) and accelerated
expansion (wφ < −1/3). Notice that this implies a very small slow-roll parameter,

ε = − Ḣ

H2
=

1

2

(
φ̇

H

)2

≈ 3

2

φ̇2

V
� 1. (2.59)

Fig. 2.5 depicts a potential where inflation happens on a flat plateau before rolling
into a minimum.

�

V(�)

Figure 2.5: A simple inflationary model: on the plateau the potential is sufficiently
flat allowing the field to roll very slowly and inflation to occurs.
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Varying Sφ w.r.t. the scalar field leads to the following equation of motion,

δSφ
δφ

=
1√−g∂µ

(√−g∂µφ)+ V,φ = 0. (2.60)

The background dynamics of the scalar field in the FLRW geometry are then deter-
mined by

φ̈+ 3Hφ̇+ V,φ = 0, (2.61)

3H2 = ρφ =
1

2
φ̇2 + V (φ), (2.62)

Ḣ = −1

2
φ̇2, (2.63)

where the latter two equations, (2.62) and (2.63), are simply the Friedmann equations
for a scalar field. The equation of motion (2.61) matches the one for a particle rolling
down its potential, where the Hφ̇ term acts as friction. In order for slow-roll inflation
to persist, the acceleration of the scalar field has to be small, i.e. we require a small
dimensionless acceleration per Hubble time:

δ ≡ − φ̈

Hφ̇
� 1. (2.64)

Expressed in terms of the second slow-roll parameter we then have

η =
ε̇

Hε
= 2

φ̈

Hφ̇
− 2

Ḣ

H2
= 2 (ε− δ)� 1, (2.65)

where we have used the second expression for ε in (2.59) to rewrite ε̇.
By definition, inflation ends when w ceases to be close to −1, implying

ε ∼ η ∼ 1. (2.66)

More concretely, the field will stop rolling slowly when the Hubble parameter has
decreased, providing less friction, and the potential has become too steep to guarantee
that the kinetic energy is negligible with respect to the potential energy.

2.3.2 Scalar perturbations

As outlined in the beginning of this section, it was realised shortly after the formula-
tion of the theory of inflation that it could also source primordial perturbations. At
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that time, temperature variations in the CMB had not yet been observed, but the
fact that we observe galaxies today, and the fact that the density contrast of matter9

grows proportional to the scale factor in a matter-dominated universe implied that
some perturbations had to exist at the time of last scattering. During inflation the
scalar field evolution φ(t) governs the energy density of the early universe and hence
controls the end of inflation. However, due to the uncertainty principle the inflaton
has a quantum mechanical variance, i.e. spacetime-dependent perturbations

δφ(t,x) ≡ φ(t,x)− φ̄(t), (2.67)

where the over-bar denotes the homogeneous background value of the scalar field
which only depends on time. It follows that in some regions inflation ends later than
in others, such that different regions of space inflate by different amounts. These
differences in the local expansion history lead to differences in the local densities
after inflation and ultimately to the CMB temperature fluctuations. In addition
to the perturbation in the field, the metric is split into the background plus small
perturbations,

gµν(t,x) = ḡµν(t) + δgµν(t,x), (2.68)

as well. Since the perturbations are small, δφ
φ̄
,
δgµν
ḡµν
� 1, expanding the Einstein field

equations at linear order in perturbations approximates the full non-linear solution
to high accuracy,

δGµν = 8πGδTµν . (2.69)

In the following we calculate in detail the spectrum of fluctuations obtained from
single-field slow-roll models of inflation, and compare it with observations.

The fluctuations in the CMB are directly related to the scalar perturbations,
whereas tensor fluctuations give rise to primordial gravitational waves. Vector per-
turbations can be neglected as they decay in an expanding universe. For concreteness,
we will consider single-field slow-roll models of inflation with action (2.53). For the
scalar modes there is only one physical degrees of freedom. A priori, there are five
scalar modes: four metric perturbations (A,B,ψ,E),

ds2 = − (1 + 2A) dt2 + 2a(t)B,idx
idt+ a(t)2 [(1− 2ψ) δij − 2E,ij ] dxidxj , (2.70)

9The density contrast is defined as the ratio between the density difference of some region δρ
over the average background density ρ: ∆ ≡ δρ/ρ ∝ 1/

(
ρa2

)
. In a matter-dominated universe

ρ ∝ a−3 and hence ∆ ∝ a, whereas ∆ ∝ a2 in a radiation-dominated universe with ρ ∝ a−4.
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and one scalar field perturbation, δφ. However, two modes are removed by gauge
invariances associated with the invariance of the action (2.53) under scalar coordi-
nate transformations, xµ → xµ + ξµ, and another two by the Einstein constraint
equations. In order to derive the quadratic action for this mode we make use of the
Arnowitt-Deser-Misner (ADM) decomposition [67], where the metric fluctuations
become non-dynamical Lagrange multipliers. In the following, all perturbations are
first-order quantities and depend on both time and space. Spacetime is sliced into
three-dimensional hypersurfaces,

ds2 = −N2dt2 + γij
(
dxi +N idt

) (
dxj +N jdt

)
, (2.71)

where N and N i are the lapse function and shift vector respectively, and γij is the
spatial 3-metric. The action (2.53) becomes [68]

S =
1

2

∫
d4x
√
γ

[
N (3)R+N−1

(
EijE

ij − E2
)

+N−1
(
φ̇−N i∂iφ

)2

−Nγij∂iφ∂ijφ− 2NV

]
,

(2.72)

whereKij = N−1Eij is the extrinsic curvature of the three-dimensional spatial slices,
and

Eij ≡
1

2
(γ̇ij −∇iNj −∇jNi) , E = Eii . (2.73)

We choose to go to comoving gauge, defined by the vanishing of the momentum
density, δT0i = 0, implying

δφ = 0, γij = a2e2ζδij ≈ a2 (1 + 2ζ) δij , (2.74)

where ζ is the comoving curvature perturbation – the physical scalar degree of free-
dom. The ADM action (2.72) implies the momentum and Hamiltonian constraint
equations for the Lagrange multipliers N and N i:

∇i
[
N−1

(
Eij − δijE

)]
= 0, (2.75)

(3)R−N−2
(
EijE

ij − E2
)
−N−2φ̇2 − 2V = 0. (2.76)

To solve these constraint equations, we define the lapse function as

N ≡ 1 +A, (2.77)
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and split the shift vector into scalar (ψ) and vector (Ñi) parts

Ni ≡ ∂iψ + Ñi, where ∂iÑ
i = 0. (2.78)

The momentum constraint equation (2.75) admits the solution

A =
ζ̇

H
and ∂2Ñi = 0, (2.79)

where, together with an appropriate choice of boundary conditions, the second equa-
tion allows for Ñi ≡ 0. From the Hamiltonian constraint (2.76) we then have

ψ = − ζ

H
+
a2φ̇2

2H2
∂−2ζ̇, (2.80)

where the operator ∂−2 is the solution operator for the Laplacian, defined by ∂−2
(
∂2f

)
=

f . Substituting the first-order solutions for the lapse and shift back into (2.72), in-
tegrating by parts and using the background equations of motion, the second-order
action becomes

S(2) =
1

2

∫
d4x a3 φ̇

2

H2

[
ζ̇2 − a−2 (∂iζ)2

]
. (2.81)

We introduce the canonically normalised Mukhanov-Sasaki variable [69, 70]

v = zζ, (2.82)

where we have defined

z2 ≡ a2 φ̇
2

H2
= 2a2ε. (2.83)

In conformal time, the action (2.81) becomes

S(2) =
1

2

∫
dτd3x

[
v′2 − (∂iv)2 +

z′′

z
v2

]
, (2.84)

where a prime denotes a derivative w.r.t. conformal time. This is equivalent to the
action of a harmonic oscillator with a time-dependent mass m2

eff(τ) ≡ z′′

z , which
accounts for the interaction of the scalar field ζ with the gravitational background.

Expanding the fluctuation field v into Fourier modes, given by

vk(τ) ≡
∫

d3x e−ik·xv(τ,x), (2.85)
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we obtain the following equation of motion for the mode functions, called the Mukhanov-
Sasaki equation, by varying the action (2.84),

v′′k +

(
k2 − z′′

z

)
vk = 0. (2.86)

The general solution reads

vk ≡ akvk(τ) + a†kv
∗
−k(τ), (2.87)

where the mode functions vk(τ) and v∗−k(τ) depend only on the magnitude k = |k|
due to the assumed cosmological symmetries. With appropriate normalisation and
by making use of the fact that the fluctuation field v is real, the solution is then
given by

v(τ,x) =

∫
d3k

(2π)3

[
akvk(τ)eik·x + a†kv

∗
k(τ)e−ik·x

]
. (2.88)

We proceed to quantise the field by imposing the canonical commutation relations[
ak1 , a

†
k2

]
= (2π)3δ3(k1 − k2), [ak1 , ak2 ] =

[
a†k1

, a†k2

]
= 0. (2.89)

In the process, ak and a†k have been promoted to annihilation and creation operators,
respectively (where we have dropped the hats )̂, and the vacuum state |0〉 is defined
by

ak|0〉 = 0. (2.90)

In an exact de Sitter solution the Mukhanov-Sasaki equation (2.86) can be solved
as follows. The effective mass reduces to z′′

z = a′′

a as φ̇ and H are constant. Inte-
grating the relation for conformal time (2.24) with a ∝ eHt, we obtain a = − 1

Hτ and
hence

z′′

z
=
a′′

a
=

2

τ2
(de Sitter). (2.91)

The solution to the equation of motion (2.86) is then

vk(τ) = α
e−ikτ√

2k

(
1− i

kτ

)
+ β

eikτ√
2k

(
1 +

i

kτ

)
. (2.92)

In the far past |τ | is large, and hence the modes are not affected by gravity and
should asymptote to the Minkowski space free particle state. We have |kτ | � 1,
which physically means that the relevant modes have wavelengths much smaller
than the horizon. In terms of initial conditions, this corresponds to imposing the
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Bunch-Davies vacuum as the unique physical vacuum,

lim
kτ→−∞

vk(τ) =
e−ikτ√

2k
(subhorizon), (2.93)

which is an oscillatory solution. This fixes α = 1 and β = 0 in (2.92) and the solution
becomes

vk(τ) =
e−ikτ√

2k

(
1− i

kτ

)
. (2.94)

In the opposite limit, for modes with wavelengths much larger than the horizon,
|kτ | � 1, we then find the growing solution

lim
kτ→0−

vk(τ) = − i√
2k3τ

∝ τ−1 (superhorizon). (2.95)

From (2.82) we therefore have ζk ∝ z−1vk ∝ const, i.e. the comoving curvature
perturbation freezes on superhorizon scales. Fig. 2.6 shows how the fluctuations are
stretched during inflation such that they exit the horizon when k = |τ |−1 = aH.

horizon ⇠ 1

H

time

Figure 2.6: Perturbations exit the horizon during inflation: the horizon is almost
constant while the fluctuations are stretched to such an extent that they exit the
horizon when their wavelength becomes comparable to the horizon size.

We are now in a position to evaluate the power spectrum Pζ(k) of the perturba-
tions. It is defined as the Fourier transform of the 2-point correlation function,

〈ζk1ζk2〉 ≡ (2π)3Pζ(k1)δ3(k1 + k2), (2.96)

where isotropy dictates that Pζ only depends on k = |k|. Expressed in terms of the
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Mukhanov-Sasaki mode functions we have

〈vk1vk2〉 = 〈0|vk1vk2 |0〉 = (2π)3|vk1 |2δ3(k1 + k2), (2.97)

where we have used (2.87) and the commutation relations (2.89) to arrive at the last
equality. Thus, on superhorizon scales (2.95) the power spectrum approaches

Pv(k) = |vk|2 =
1

2k3τ2
(superhorizon), (2.98)

and hence

Pζ(k) = z−2Pv(k) =
H2

4k3ε
(superhorizon). (2.99)

Note that in the exact de Sitter limit the curvature fluctuations ζ = z−1v are ill-
defined since z2 = 2a2ε→ 0 as the slow-roll parameter vanishes. In fact, in this case
ζ is meaningless as inflation never ends. The deviation from perfect de Sitter in a
realistic scenario is described by the small but finite slow-roll parameter ε.

The variance of the curvature perturbations, ∆2
s(k), is related to the power spec-

trum via

∆2
s(k) ≡ k3

2π2
Pζ(k) =

H2

8π2ε
, (2.100)

which deviates slightly from a scale-invariant spectrum with ∆2
s ∼ k0 since H and ε

are functions of time. The deviation from scale-invariance can be quantified in terms
of the scalar spectral index ns, which is defined as

ns − 1 ≡ d ln ∆2
s

d ln k
. (2.101)

Using the fact that the comoving curvature perturbation freezes at horizon crossing
k = aH, we can then evaluate the spectral index to first order in the slow-roll
parameters ε (2.49) and η (2.52),

ns − 1 =
d ln ∆2

s

dN

dN

d ln k

∣∣∣∣
k=aH

= −2ε− η. (2.102)

In the de Sitter limit the spectrum is perfectly scale-invariant. While inflation takes
place for ε, |η| < 1, a nearly scale-invariant spectrum with a red tilt can be produced
under the additional assumption that the field slowly rolls which implies that ε, |η| �
1 and η is not too negative. Such a spectrum, which has slowly increasing power
at longer wavelengths, agrees with current observational limits from the PLANCK
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satellite on the scalar spectral index [9],

ns = 0.9667± 0.0040 (1σ). (2.103)

If we stop at linear order in perturbation theory, then the equations of motion can
be derived from the quadratic action S (2.81). Hence, the fluctuation modes obey
Gaussian statistics as the probability goes like eS . In this sense the higher-order
corrections provide a measure of non-Gaussianity in the distribution of cosmological
perturbations. Simple single-field inflationary models predict a small amount of non-
Gaussianity, due to the fact that the potential is very flat and self-interactions of
the inflaton are negligible. In contrast, as we will see in 2.4.2 and in more detail in
chapter 4, due to a steep potential giving rise to substantial self-interaction, ekpyrotic
models predict larger amounts of non-Gaussianity which ought to be observable in
the near future.

We have seen that linear (Gaussian) perturbations are related to observations of
the power spectrum, P (k), defined by the 2-point correlation function (2.97). We can
then expand the comoving curvature perturbation to higher orders in perturbation
theory,

ζ = ζ(1) + ζ(2) + ζ(3) + · · · . (2.104)

Quadratic and cubic corrections to these perturbations are related to observations
of the 3- and 4-point functions, respectively. For an exactly Gaussian probability
distribution all information is contained in the 2-point correlation function. In par-
ticular this implies that for odd n, all n-point functions are zero, while for even n the
n-point functions can be written as products of 2-point functions. The bispectrum,
i.e. the 3-point correlation function, is defined as

〈ζk1ζk2ζk3〉 = (2π)3B(k1, k2, k3)δ3 (k1 + k2 + k3) . (2.105)

The connected part of the 4-point function which is not already captured by the
product of two 2-point functions is given by the trispectrum,

〈ζk1ζk2ζk3ζk4〉 = (2π)3T (k1, k2, k3, k4)δ3 (k1 + k2 + k3 + k4) . (2.106)

The δ-functions result from momentum conservation, while B and T are shape func-
tions for a closed triangle and a quadrangle, respectively.
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In momentum space, B is then parametrised by the shape function fNL, via

B =
6

5
fNL [P (k1)P (k2) + 2 permutations] . (2.107)

T describes two different shape functions parametrised by τNL and gNL, see e.g. [71]
for additional details. These are defined by

T = τNL [P (k13)P (k3)P (k4) + 11 permut.s]+
54

25
gNL [P (k2)P (k3)P (k4) + 3 permut.s],

(2.108)
where kij = ki + kj.

For the local types of non-Gaussianity that are relevant for the models we consider
in this thesis, the parameters fNL and gNL can also be related to the (real space)
expansion of the curvature perturbation on uniform energy density surfaces in terms
of its Gaussian component ζL, via

ζ = ζL +
3

5
fNLζ

2
L +

9

25
gNLζ

3
L, (2.109)

which is related to the Bardeen space-space metric perturbation ΦH = ΦL+fNLΦ2
L+

gNLΦ3
L [72] through ζL = 5

3ΦL during the era of matter domination. For complete-
ness, for models in which the density perturbations originate from the dynamics of
a single field10, τNL is directly related to the square of fNL – explicitly we have

τNL =
36

25
f2
NL. (2.110)

For future reference, it is useful to rewrite Eq. (2.109) in terms of an integral of ζ ′

at the respective order in perturbation theory, which yields the local non-linearity
parameters directly:

fNL =
5

3

∫ tend
tbeg

ζ(2)′(∫ tend
tbeg

ζ(1)′
)2 , (2.111)

gNL =
25

9

∫ tend
tbeg

ζ(3)′(∫ tend
tbeg

ζ(1)′
)3 , (2.112)

where the integrals are evaluated until the time ζ has evolved to a constant value.
10This is also the case for the non-minimal ekpyrotic phase considered in chapter 4, where the

perturbations originate solely from the entropy field.
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As already mentioned, single-field models of inflation predict small non-Gaussianity
of order |fNL|, |gNL|, |τNL| ∼ O(1) due to the non-linear evolution after inflation
during reheating [68, 73, 71]. This compares to the observation of the local non-
Gaussianity parameters from the PLANCK data [10],

f localNL = 0.8± 5.0 (1σ), (2.113)

for the bispectrum parameter, and

glocalNL = (−9.0± 7.7)× 104 (1σ), (2.114)

for the trispectrum parameter. These observations are compatible with no significant
deviation from Gaussianity.

2.3.3 Gravitational waves

Tensor perturbations generated during inflation give rise to primordial gravitational
waves. We can apply the formalism just introduced for the scalar fluctuations to
compute the quantum generation of tensor perturbations and their resulting spec-
trum. There is only one tensor contribution in the perturbed ADM metric (2.71),
which is already gauge-invarient,

γij = a2 (δij + hij) , (2.115)

where the perturbation is traceless and transverse,

hii = 0, ∂ihij = 0. (2.116)

Expanding the Einstein-Hilbert action we obtain the second-order action for tensor
fluctuations,

S
(2)
t =

1

8

∫
dτd3x a2

[(
h′ij
)2 − (∂lhij)

2
]
. (2.117)

We then define the Fourier representation as follows

hij(τ,x) =

∫
d3k

(2π)3

∑
λ=+,×

ελij(k)hλk(τ)eik·x, (2.118)

where
εii = 0 and ελij(k)ελ

′
ij (k) = 2δλλ′ . (2.119)

35



The fields hλk describe the two polarization modes of the gravitational waves (+ and
×). In terms of the canonically-normalized fields,

fλk ≡
a

2
hλk, (2.120)

the action (2.117) becomes

S
(2)
t =

∑
λ

1

2

∫
dτd3x

[(
fλ
′

k

)2
−
(
k2 − a′′

a

)(
fλk

)2
]
. (2.121)

Essentially, this corresponds to two copies of the action for the scalar perturbations
(2.84) in the de Sitter limit

(
z′′

z = a′′

a

)
. Thus, we can infer the power spectrum for

the field fλk in the de Sitter limit on large scales directly from (2.98),

Pf (k) =
1

2k3τ2
=

1

2k3
(aH)2 (superhorizon). (2.122)

The tensor power spectrum, Pt, is given by the sum of the power spectra for each
polarization mode of hij ,

Pt(k) = 2
(a

2

)−2
Pf (k) =

4H2

k3
. (2.123)

In terms of the variance of the tensor perturbations we obtain

∆2
t (k) ≡ k3

2π2
Pt(k) =

2H2

π2

∣∣∣∣
k=aH

, (2.124)

evaluated at horizon crossing. Note that due to historical convention the tensor
spectral index is defined as

nt ≡
d ln ∆2

t

d ln k
, (2.125)

such that nt = 0 corresponds to scale-invariance.
Observations of the power in primordial gravitational waves are usually provided

as a ratio to the power in the scalar modes, defined as the tensor-to-scalar ratio

r ≡ ∆2
t (k)

∆2
s(k)

. (2.126)

For single-field slow-roll inflationary models we then get from (2.101) and (2.125),

r = 16ε. (2.127)
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As we have seen already, for slow-roll inflation to take place we require ε� 1. The
simplest estimate for the tensor-to-scalar ratio for these models is obtained by impos-
ing the condition ε� d ln ε

dN = η during most of the slow-roll period such that ε is not
only small but also nearly constant. From observations of the spectral tilt (2.103), the
first slow-roll parameter then takes the value ε ≈ 0.017, giving r ≈ 0.27± 0.03 (1σ).
Compared to the upper bound on the tensor-to-scalar ratio from the PLANCK satel-
lite [4],

r0.002 < 0.11 (2σ), (2.128)

this simple estimate demonstrates why some inflationary potentials are disfavoured,
as can be seen in Fig. 2.7.

16 Planck Collaboration: Constraints on inflation

Fig. 11. Marginalized joint 68 % and 95 % CL regions for (✏1 , ✏2 , ✏3) (top panels) and (✏V , ⌘V , ⇠
2
V ) (bottom panels) for Planck

TT+lowP (red contours), Planck TT,TE,EE+lowP (blue contours), and compared with the Planck 2013 results (grey contours).

Fig. 12. Marginalized joint 68 % and 95 % CL regions for ns and r0.002 from Planck in combination with other data sets, compared
to the theoretical predictions of selected inflationary models.Figure 2.7: Tensor-to-scalar ratio r0.002 versus scalar spectral index ns from
PLANCK in combination with other data sets, compared to the theoretical pre-
dictions of selected inflationary models [4].

2.3.4 Problems

In this subsection we will motivate the investigation of alternative models to inflation.
From a theoretical point of view, single-field plateau models of inflation present
important challenges (see e.g. [17]). For one, inflation does not provide a complete
history of the universe, and one may ask what happened before inflation and how the
inflationary phase started. In fact, the initial conditions need to be very special: the
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scalar field needs to start out at large potential values (e.g. on top of a high plateau)
with negligible initial velocity, everywhere within a region of the universe that is
a billion times larger than the Planck scale. This requirement clashes somewhat
with the motivation for inflation, which is to explain the specialness of the early
universe in a dynamical fashion. Several attempts have been made to quantify how
unlikely the initial conditions for inflation have to be. There is an entropy argument
by Roger Penrose [74] in which he considers the universe in terms of its entropy,
i.e. the number of different configurations with different properties. The entropy
of the universe today is much smaller than the maximum, and hence we live in a
special state. However, in terms of entropy the initial conditions required for inflation
are even less likely. Gary Gibbons and Neil Turok [75] have shown that although
inflation is an attractor, short durations for inflation are exponentially preferred such
that the horizon and flatness problems are not solved. The universe is supposed to
start out with potential energy dominance, that is the scalar field should sit high on
the potential nearly at rest. Since its kinetic energy scales as ∼ 1/a6, it becomes large
when going back in time as the scale factor approaches zero. However, the potential
energy remains essentially constant on the plateau, such that it is very unlikely to
find the field at rest anywhere. In fact, it is exponentially rarer than the conditions
we tried to explain in the first place. These arguments lead to the conclusion that
our universe is more likely to have achieved its current conditions without inflation
than with it.

Note that it might be possible to realise inflation in string theory based on certain
assumptions [76]. Typically, there are many contributions to the effective potential.
Parameters have to be fine-tuned quite carefully to find some region of the potential
that is just flat enough where inflation can then occur. Moreover, string theory seems
to prefer negative potentials and it is in fact hard to construct reliable standard
inflationary models with positive potentials [77].

Inflation is very sensitive to parameters: for example, there are enough pa-
rameters to tweak in the theory that one can match either the initial BICEP2
results claiming a detection of gravitational waves with a tensor-to-scalar ratio of
r = 0.20+0.07

−0.05 (1σ) [15], or the revised BICEP2 & PLANCK results with only an
upper bound r0.05 < 0.12 (2σ) [16] (resulting from taking the effects of dust in our
galaxy into account).

Another challenge is that most inflationary models lead to the runaway behaviour
of eternal inflation [78, 79]. Small quantum fluctuations are the origin of the temper-
ature fluctuations and the seeds for the large-scale structure. However, rare, large
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quantum fluctuations can momentarily disrupt the inflationary dynamics such that
in some regions inflation ends much later. These regions will blow up in volume lead-
ing to more rare fluctuations which lead to more inflation and so on. In this way an
infinite number of causally disconnected pocket universes is created, containing all
possible values for the amplitude, the spectrum and the Gaussianity of the pertur-
bations. To complete the theory of inflation, an additional measure is necessary to
regularise these infinities. In the absence of a measure the theory loses all its predic-
tive power and the naive predictions in section 2.3 become questionable. Applying
the volume measure as just outlined fails to explain why our universe looks the way
it does. Different measures are possible (see e.g. [80, 81]), however, the question
remains why one measure should be favoured over another.

Inflation does not solve the big bang singularity problem. A theorem by Borde,
Guth and Vilenkin [82] shows that ever-expanding cosmologies are past incomplete,
so that a classical universe – even if it includes a phase of inflation – must have started
out with an initial singularity. In the context of the inflationary framework this
problem has to be addressed since its predictions depend on the physical conditions
at the onset of the inflationary stage. It is not fully understood yet whether phases
preceding inflation, which ought to be governed by a full theory of quantum gravity,
do not decisively influence the physics on scales of observational relevance today.

This situation suggests two possible approaches: the first is to try and understand
the above-mentioned challenges better and to resolve them. A second approach is to
look for alternative theories which might be able to explain the same cosmological
data without however presenting us with such conceptual conundrums. Evidently it
is interesting to pursue both approaches. In this thesis we will be concerned with
the second approach. In particular, the kind of multiverse problem just described is
evaded in ekpyrosis. Regions with large quantum fluctuations continue to contract
slowly and do not compete in volume. Moreover, as we show in subsection 2.4.3 the
cyclic model is falsifiable by detection of primordial tensor perturbations.

2.4 Ekpyrosis and the cyclic model

The original proposal of the ekpyrotic11 and cyclic cosmology by Justin Khoury, Burt
A. Ovrut, Paul J. Steinhardt and Neil Turok [83] is based on the braneworld picture
of the universe, see Fig. 2.8. In addition to our (3 + 1)-dimensional brane there is a

11The term ekpyrosis is adopted from the Stoic model of cosmic evolution in which the universe
is consumed by and reconstituted out of a fire, called ekpyrosis, at regular intervals [83].
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second such boundary brane connected to ours via a 1-dimensional line segment, such
that spacetime is effectively 5-dimensional. In the heterotic M-theory embedding,
which motivated this scenario, there are 6 additional internal dimensions wrapped
in a Calabi-Yau manifold at each spacetime point. The cyclic model proposes that

bulk

spacetime

5th dimension

Figure 2.8: The braneworld picture of our universe, based on [5]. Gravity can
propagate in the whole spacetime while other forces and matter are localised on the
(3 + 1)-dimensional branes. There is an attractive force between the two branes
across the bulk spacetime that makes them collide at regular intervals. The collision
corresponds to the big bang as seen from the brane.

there is an attractive force between the branes, which causes them to approach each
other. If this ekpyrotic phase lasts long enough the branes are flattened to such a
degree that the horizon and flatness problems are solved. As seen from an observer
on the brane, the eventual collision of the two branes corresponds to the reversal
from contraction to expansion, identified with the big bang. It creates hot matter
and radiation and triggers an epoch of expansion, cooling and structure formation.
The seeds for the latter are due to quantum fluctuations during the ekpyrotic phase;
the branes become slightly rippled and hence some regions collide at slightly different
times leading to slightly different temperatures. While the branes are separated far
from each other the potential energy associated with the interbrane force responsible
for drawing the branes together again acts as dark energy. The cycle then starts to
repeat once the branes become closer again, initiating a new ekpyrotic phase and
eventually a new brane collision (big bang).
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It has to be pointed out that this higher-dimensional description relies on the
unproven reality of branes, extra dimensions and string theory. However, it is im-
portant to appreciate that the distinct phases of the colliding brane picture can also
be discussed purely in a 4-dimensional effective theory, and in fact could have a
different origin than the brane motion just described. In particular, the ekpyrotic
phase uses the same ingredients as inflationary models but with different details. For
a comprehensive review of the higher-dimensional and effective picture see [5]. In the
following we will focus on the 4-dimensional effective ekpyrotic phase and first show
how the background solution solves the puzzles described in 2.2, before going into
detail on how to produce nearly scale-invariant and Gaussian density perturbations
via the entropic mechanism. A main part of this thesis explores a variant of this
mechanism, to be introduced in chapter 4.

2.4.1 The ekpyrotic solution

Instead of an inflationary phase, the puzzles described in section 2.2 can also be
solved dynamically through a phase of ultra-slow contraction. For convenience we
reproduce the Friedmann equation (2.22) here,

3H2 = Λ− 3k

a2
+
ρm
a3

+
ρr
a4

+
σ2

a6
+ · · ·+ ρφ

a3(1+wφ)
, (2.129)

which relates the Hubble parameter to the total energy density in the universe. In a
contracting universe it becomes clear that the anisotropy term comes to dominate the
cosmic evolution, as it scales as a−6. For the scalar field φ to dominate the dynamics
instead implies an equation of state parameter wφ > 1. From the expression for
wφ in Eq. (2.57) we deduce that this bound can be achieved with a steep negative
potential such that the field rolls fast enough for the denominator to be positive. A
typical realisation is plotted in Fig. 2.9 where the ekpyrotic phase lasts while the
potential is a negative exponential which can be written as

V (φ) = −V0e
−cφ, (2.130)

where V0 and c are positive constants. In a flat FLRW universe, with metric (2.7)
and k = 0, the equation of motion for the field and the Friedmann equations are
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V(�)

Figure 2.9: A scalar field rolling down a steep, negative potential leads to an
ekpyrotic phase.

given by

φ̈+ 3Hφ̇+ V,φ = 0, (2.131)

3H2 = ρφ =
1

2
φ̇2 + V (φ), (2.132)

Ḣ = −1

2
(ρφ + pφ) = −1

2
φ̇2, (2.133)

which differ from the equations for inflation, (2.61) - (2.63), in the form of the
potential (2.130). The set of equations admits the scaling solution

a ∝ (−t)1/ε, φ =

√
2

ε
ln
[
−
√
εV0 t

]
, ε =

c2

2
, for c� 1, (2.134)

where t is negative and runs from large negative values to small negative values.
Hence, the universe contracts very slowly with equation of state (2.57)

wφ =
2ε

3
− 1� 1. (2.135)

In the ekpyrotic scenario ε is the fast-roll parameter and its definition is identical with
the slow-roll parameter in inflation. Thus, for a successful ekpyrotic phase where the
universe becomes flat and anisotropies are suppressed we need ε � 3 (i.e. c2 � 6).
Note that the scaling solution is such that in the Friedmann equation (2.132) each
term scales as 1/t2 and thus the relative importance of the various terms remains
unchanged over time.

In order to solve the flatness problem described in section 2.2.2 we know from
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(2.44) that the relative density in curvature has to decrease by 60 orders of magni-
tude. From the scaling solution (2.134) we see that the scale factor a is approximately
constant while the Hubble parameter decreases like H = 1

εt ∝ t−1 during ekpyrosis.
Since the energy density in curvature goes like (aH)−2, we have

Ωk, ek-beg

Ωk, ek-end
∝ (aH)2

ek-end
(aH)2

ek-beg
∝
t2ek-beg
t2ek-end

& 1060, (2.136)

and hence
|tek-beg| & 1030|tek-end| (2.137)

where ek-beg and ek-end refer to the beginning and end of the ekpyrotic phase,
respectively. This corresponds to about 70 e-folds of evolution (cf. the 70 e-folds
of inflation it takes to solve this puzzle in 2.51). In order to obtain the observed
amplitude of cosmological perturbations, we require the minimum of the potential
to be roughly at the grand unified scale, Vek-end ≈

(
10−2MPl

)4, given by Eq. (2.169)
in the next subsection. Plugging the scaling solution into the expression for the
potential, V = − 1

εt2
, we can determine the time ekpyrosis has to end,

tek-end ≈ −103M−1
Pl . (2.138)

Thus,
|tek-beg| & 1033M−1

Pl ≈ 10−10s, (2.139)

which is the minimum time the ekpyrotic phase has to last in order to solve the
flatness puzzle – a very short time in cosmological terms, demonstrating the effec-
tiveness of the ekpyrotic phase. We can also compare this time scale to the duration
of the ekpyrotic phase in the cyclic theory. There, the potential interpolates between
the dark energy scale at positive values on the right in Fig. 2.9 and the GUT scale
at the bottom of the potential. Since V ∝ t−2, we obtain [5]

|tek-beg| =
√
Vek-end
Vek-beg

|tek-end| ≈
√

10112103M−1
Pl ≈ 1016s, (2.140)

which corresponds to a duration on the order of billion years, and hence the ekpyrotic
phase easily resolves the flatness problem.

As we have already seen from the Friedmann equation, it is not the curvature
but the anisotropy term that would dictate the dynamics in a contracting universe.
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Belinsky, Khalatnikov and Lifshitz (BKL) showed in 1970 that if in a contracting
universe all the energy density components have an equation of state w < 1, chaos
ensues due to the instability of the universe w.r.t. small perturbations [84]. As
the overall volume shrinks, the metric becomes highly anisotropic, which causes the
universe to expand along one axis and contract along the others. This state can
be approximated by the anisotropic Kasner solution, given in (2.18), however, the
metric jumps from one Kasner form to another repeatedly, an effect known as BKL
oscillations or “chaotic mixmaster” behaviour [85, 86]. This loss of all predictability
in going towards the big crunch singularity can be avoided by the addition of the
ekpyrotic scalar field with wφ > 1. The relative importance of the energy density in
anisotropies scales as 1/(a6H2) from (2.22). Since to first approximation the scale
factor is constant, the anisotropies scale in the same way as the curvature term
and are hence exponentially suppressed, as seen from (2.137). Thus, at the end of
the ekpyrotic phase the chaotic behaviour is suppressed and the universe contracts
homogeneously and isotropically [26].

Before the bounce of the contracting universe to the expanding one we observe
today, the ekpyrotic potential has to turn off and become irrelevant. The universe
enters a kinetic-energy dominated phase, characterised by an equation of state w = 1.
The equations of motion (2.131) - (2.133) then simplify to

3H2 = −Ḣ =
1

2
φ̇2, φ̈+ 3Hφ̇ = 0. (2.141)

Integrating the first equation, we obtain a ∝ eφ/
√

6 and the solution

a = a0(−t) 1
3 , φ =

√
2

3
ln(−t) + φ0, (2.142)

where a0 and φ0 are constants. It is immediately clear that the energy density in
the scalar field, i.e. the kinetic energy, scales as φ̇2 ∝ a−6 – the same way as the
anisotropic term. Thus, the anisotropies do not regrow after the ekpyrosis is over,
as their relative importance remains constant during the kinetic phase.

Lastly, the horizon problem is automatically solved in ekpyrotic and cyclic mod-
els, as there is enough time before the big bang for different parts of the currently
observable universe to have been in causal contact with each other.
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2.4.2 The entropic mechanism

In this subsection, we show how a spectrum of adiabatic, nearly scale-invariant and
Gaussian scalar perturbations, that can account for the temperature anisotropy of the
CMB and seed large-scale structure formation, may arise during the ekpyrotic phase.
Quantum fluctuations added to the classical evolution just discussed are amplified
into classical density perturbations. Besides inflation, the only other way this can be
achieved dynamically is during ekpyrosis. Here, the horizon – the region of causal
contact – shrinks rapidly while the fluctuation modes themselves remain roughly
constant in size since the background approximates Minkowski with a ≈ const as
shown in Fig. 2.10.

horizon ⇠ 1

H

time

Figure 2.10: Perturbations exit the horizon during ekpyrosis: the fluctuations stay
almost constant while the horizon shrinks.

There is one subtlety: ekpyrotic models require two scalar fields in order to
produce a spectrum compatible with observations [87]. The so-called entropic mech-
anism is a two-stage process: first, as soon as there is more than one scalar field
present, nearly scale-invariant and Gaussian entropy (isocurvature) perturbations
are produced during the ekpyrotic phase. They are squeezed as they exit the horizon
and become a stochastic distribution of classical perturbations, while the adiabatic
perturbations stay quantum [88]. In a second step, the entropy fluctuations are then
converted into curvature perturbations facilitated by a bending in the field space
trajectory. Note that in the higher-dimensional theory two universal scalar fields
are always present; the radion field, which determines the distance between the two
branes, and the volume modulus of the internal manifold called the (Calabi-Yau)
dilaton. In the following we briefly review the standard entropic mechanism, which
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we then contrast with the new non-minimal version in chapter 4.

The 4-dimensional effective action for two scalar fields, φ and χ, minimally cou-
pled to gravity and in a potential reads

S =

∫
d4x
√−g

[
1

2
R+

1

2
gµν∂µφ∂νφ+

1

2
gµν∂µχ∂νχ− V (φ, χ)

]
, (2.143)

We assume an exponential potential for both fields during the ekpyrotic phase,

V (φ, χ) = −V1e
−c1φ − V2e

−c2χ, (2.144)

where V1,2 are positive constants and we allow c1 = c1(φ), c2 = c2(χ) to be field-
dependent. Via a rotation in field space we can decompose the new fields and their
perturbations into the adiabatic variable σ and the entropic direction s, pointing
along the background trajectory in field space and perpendicular to it, respectively
[89, 90]. They are depicted in Fig. 2.11 and defined via [6]

σ̇ ≡ cos θφ̇+ sin θχ̇ =

√
φ̇2 + χ̇2, ṡ ≡ cos θχ̇− sin θφ̇ = 0, (2.145)

with

cos θ =
φ̇

σ̇
, sin θ =

χ̇

σ̇
, (2.146)

where θ is the angle of the background trajectory with the φ-direction.

Background trajectory

Perturbation

✓
��

��
��

�s
�

�

Figure 2.11: The decomposition into the adiabatic direction, σ, and the transverse
direction, s, is shown. Perturbations along the direction of the background trajec-
tory are adiabatic/curvature perturbations, whereas perturbations orthogonal to the
trajectory represent entropy/isocurvature perturbations. Based on [6].
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The two-field scaling solution becomes

a ∝ (−t) 1
ε , σ = −

√
2

ε
ln
[
−
√
εV0t

]
, ṡ = 0, θ = const. (2.147)

Notice that it follows from s = const along the classical trajectory that entropy per-
turbations are automatically gauge-invariant [91]. The two-field ekpyrotic potential
can be re-expressed in terms of the new coordinate system [20],

V = −V0e
−
√

2εσ
[
1 + εs2 +

κ3

3!
ε3/2s3 +

κ4

4!
ε2s4 + . . .

]
, (2.148)

and is illustrated in Fig. 2.12. In terms of the parameters in the potential, κ3,4 are
given by

κ3 = 2
√

2
c2

1 − c2
2

|c1c2|
, κ4 = 4

c6
1 + c6

2

c2
1c

2
2

(
c2

1 + c2
2

) . (2.149)

As long as a microphysical derivation of the potential is not available, we use this
new, more general, parametrisation of the potential (2.148) and set κ3,4 ∼ O(1).
The scaling solution (2.147) describes motion along the ridge of the potential along

s�

Entropic direction

Adiabatic direction

V

Figure 2.12: After a rotation in field space, the two-field ekpyrotic potential decom-
poses into the adiabatic direction, σ, and the transverse tachyonic direction, s. The
ekpyrotic scaling solution corresponds to motion along the ridge of the potential.
Based on [7].

the adiabatic direction. Due to the tachyonic entropic direction the ekpyrotic back-
ground evolution is unstable to small perturbations [28, 92] – they are the entropy
perturbations which are later converted into curvature perturbations in the entropic
mechanism. However, this seems to imply that the initial conditions problem has

47



not been solved, as the trajectory must be localised extremely close to the ridge at
the beginning of the ekpyrotic phase [93]. The problem is resolved in the framework
of the cyclic picture where only the habitable regions make it through the ekpy-
rotic phase [94]. In this “phoenix universe”, regions whose trajectories depart too far
from the ridge become highly inhomogeneous remnants and black holes that stop
cycling and growing. If the dark-energy dominated phase we experience today lasts
long enough, regions sufficiently close to the ridge are vastly amplified and lead to
a smooth, flat, expanding space with nearly scale-invariant curvature perturbations,
as observed today.

We now show how in the first stage of the entropic mechanism nearly scale-
invariant entropy perturbations are produced. For two scalar fields, the adiabatic
and entropy perturbations are defined as

δσ ≡ φ̇δφ+ χ̇δχ

σ̇
and δs ≡ φ̇δχ− χ̇δφ

σ̇
, (2.150)

respectively. While the latter is gauge-invariant, the adiabatic perturbation is not.
The gauge-invariant and thus physical quantity important here is the comoving cur-
vature perturbation ζ introduced in (2.74). At the linearised level, the equation of
motion for the entropy perturbation reads

δ̈s+ 3Hδ̇s+

(
k2

a2
+ 3θ̇2 + V,ss

)
δs = 0. (2.151)

In terms of conformal time and with the rescaled entropy field δS = a(τ)δs, the
equation for a straight trajectory (θ̇ = 0) becomes

δS′′ +

(
k2 − a′′

a
+ a2V,ss

)
δS = 0. (2.152)

Allowing for the fast-roll parameter ε to vary slowly, we can derive the following
expressions, valid to sub-leading order in ε [28]

a′′

a
= a2H2 (2− ε) , (2.153)

V,ss = H2

(
−2ε2 + 6ε+

5

2
ε,N

)
, (2.154)

aH =
1 + 1/ε+ ε,N/ε

2

ετ
, (2.155)

where dN = d ln a, and N denotes the remaining number of e-folds of ekpyrosis.
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Thus, we arrive at a form for the equation of motion that can easily be solved in
terms of a Hankel function,

δS′′ +

k2 −
2
(

1− 3
2ε +

3ε,N
4ε2

)
τ2

 δS = 0. (2.156)

Together with the boundary condition of approaching the Minkowski vacuum state
in the far past, the solution is

δS =

√
−kτ
2

H(1)
ν (−kτ), with ν =

3

2

(
1− 2

3ε
+
ε,N
3ε2

)
, (2.157)

where we have neglected an irrelevant phase. At late times, −kτ � 1, the entropy
perturbation becomes

δS ≈ 1√
2(−τ)kν

, (2.158)

which can be rewritten in terms of the potential at the end of the ekpyrotic phase as

δsek-end ≈
√
|εVek-end|√

2kν
. (2.159)

Following the same steps as in the inflationary case in (2.3.2), we can calculate the
deviation from scale-invariance in the spectral index of the entropy perturbations
[28],

ns − 1 = 3− 2ν =
2

ε
− ε,N

ε2
. (2.160)

In order to obtain a red tilt in the spectrum the second term has to outweigh the
gravitational contribution in the first term. As illustrated in Fig. 2.9 the steepness of
the potential must decrease such that the ekpyrotic phase can come to an end. We
can estimate this effect on the spectral index by rewriting the expression in terms
of N , which measures the number of e-folds of modes which exit the horizon before
the end of the ekpyrotic phase, defined via dN = d ln (aH). Thus,

ns − 1 =
2

ε
− d ln ε

dN , (2.161)

where ε(N ) is directly related to the equation of state during the ekpyrotic phase
via (2.135), which decreases from a value much greater than one to order unity in
the last N e-folds. Parameterising ε ≈ Nα [95], the spectral tilt becomes red for
α > 1.14, whereas the observed ns ≈ 0.97 can be achieved with α ≈ 2 [7].
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In the second step the approximately scale-invariant entropy perturbations have
to be converted into curvature perturbations. The entropy perturbations of interest
have all left the horizon and hence we can focus on the large-scale limit, where
spatial gradients can be neglected. We now derive a particularly simple and useful
form of the evolution equation for the comoving curvature perturbation on large
scales [96, 97, 98]. We will work in comoving gauge and take the background to
be described by a flat FLRW metric. On large scales the perturbed metric can be
written as (cf. (2.74))

ds2 = −dt2 + a(t)2e2ζ(t,xi)dxidxi, (2.162)

where ζ denotes the comoving curvature perturbation and can be thought of as a local
perturbation in the scale factor. In a scalar field model the equation of continuity is
given by

ρ̇+ 3(H + ζ̇)(ρ+ p) = 0, (2.163)

with the background (denoted by over-bars) satisfying

˙̄ρ+ 3H̄(ρ̄+ p̄) = 0. (2.164)

On comoving hypersurfaces the energy density is uniform, ρ = ρ̄ (and hence also
H = H̄ because of the Friedmann equation). We then obtain

ζ̇ = −H̄ δp

ρ̄+ p̄+ δp
, (2.165)

where δp ≡ p(t, xi)− p̄(t). Since, by definition, δρ = 0 on these hypersurfaces, we can
immediately relate the pressure perturbation to a perturbation in the potential, δp =

−2δV |δρ=0. Plugging this relation into Eq. (2.165), we obtain a compact expression
for the evolution of the comoving curvature perturbation on large scales, writing
H̄ = H,

ζ̇ =
2HδV

˙̄σ2 − 2δV
, (2.166)

which is valid to all orders in perturbation theory.
The evolution equation for the comoving curvature perturbation at linear order

is then given by [6]

ζ̇ = −2H
˙̄σ

˙̄θδs =

√
2

ε
˙̄θδs. (2.167)

It follows immediately that curvature perturbations are sourced by the entropy per-
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turbations as soon as the background trajectory bends, θ̇ 6= 0. Several possible
conversion processes have been studied in the past in connection with the standard
entropic mechanism. The first is called ekpyrotic conversion; the trajectory can
stray sufficiently far from the ridge of the potential and thus turn and fall off the
potential as the ekpyrotic phase comes to an end [90, 99]. The second is that the
trajectory can undergo a bend during the kinetic phase that follows the ekpyrotic
phase [28], hence the name kinetic conversion. This latter setting is well-motivated
by the embedding of cyclic models into heterotic M-theory, where such a bending of
the trajectory automatically occurs in the approach to the bounce [100, 101]. For
these two possibilities, Eq. (2.167) allows us to estimate the order of magnitude of
the curvature perturbation: approximating ε and δs as constants over the time of
the conversion, and assuming a total bending angle of about 1 radian, ∆θ ≈ 1, we
obtain

ζfinal ≈ −
1√
εc
δsek−end, (2.168)

where δsek−end denotes the value of the entropy perturbation at the end of the
ekpyrotic phase and εc the value of the fast-roll parameter at the time of conversion.
During the kinetic phase, the entropy perturbation satisfies the simplified equation of
motion δ̈s+3Hδ̇s = 0 and thus grows logarithmically, so that to a first approximation
we can ignore this modest growth. Using (2.159) we obtain

〈ζ2
final〉 ≡

∫
dk

k
∆2
ζ ≈

∫
d3k

(2π)3εc
(δsek−end)

2 ≈
∫

dk

k

εVek−end
(2π)2

kns−1, (2.169)

where Vek−end = |V (tek−end)| denotes the magnitude of the potential at the end of
the ekpyrotic phase, i.e. it corresponds to the energy scale of the deepest point in
the potential. This implies that the potential has to reach the grand unified scale
Vek−end ≈ (10−2MPl)

4 in order for the curvature perturbations to have an amplitude
in agreement with the observed value of ∆2

ζ ≈ 2× 10−9 [9].
There is reason to assume that the curvature perturbations produced during

ekpyrotic or kinetic conversion pass through the bounce/big bang transition essen-
tially unchanged. It has been shown (for example in [102, 103]) that it is possible to
make predictions for density perturbations which are independent of the details of
the bouncing phase. In the next section 2.5 we discuss the bounce in more detail.

A final possibility, of a somewhat different character, is that conversion can occur
at the bounce itself via the process of modulated (p)reheating [104]. The idea here
is that at the bounce massive matter can be copiously produced, and can then
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subsequently decay into ordinary fermions. If the coupling h(δs) of the massive
matter fields to the fermions depends on the value of the entropy field, then the
decay rate will be modulated by the value of the entropy fluctuations, with the
result that the spectrum of entropy fluctuations will be imprinted directly onto the
produced matter. As shown in [104], the amplitude of the resulting perturbations is
proportional to h,s/h, and thus all predictions depend on being able to derive the
precise form of the coupling function h(δs) in a realistic setting. This conversion
model has the property that no bending of the trajectory needs to occur before the
bounce.

We summarise the results for the local non-Gaussianity in the curvature pertur-
bation produced during ekpyrotic and kinetic conversion here, and refer the reader to
chapter 4 for a detailed derivation of all relevant evolution equations, and in particu-
lar section 4.3 where we contrast the predictions of the non-minimal to the standard
entropic mechanism.

Assuming that the dominant amount of conversion occurs before the bounce, both
ekpyrotic and kinetic conversion result in a distinct observational imprint [20, 7]:
In terms of the parameter c1 in the potential (2.144) we obtain for the ekpyrotic
conversion,

fNL = − 5

12
c2

1 < 0, |fNL| ∼ O(10− 100) and (2.170)

gNL =
25

108
c4

1 > 0, |gNL| ∼ O(103 − 104). (2.171)

In order for the power spectrum of the perturbations to be in agreement with obser-
vations, we require c1 & 10, which implies fNL . −40 and gNL & 2500. Contrasting
these predictions with the current observational bounds on the bi- and trispectrum
parameters measured by PLANCK, (2.113) and (2.114), it becomes clear that this
type of conversion mechanism is basically ruled out by observations. Moreover, in
the light of the phoenix universe described in the beginning of this subsection, it
makes sense to focus on conversion that occurs only once the equation of state has
become small towards the end of the ekpyrotic phase, or in fact once the kinetic
phase is already underway. In the higher-dimensional brane picture it was shown
[105, 101] that an effective potential arises along the χ axis in the presence of matter
on the boundary branes, which causes the field space trajctory to bend in its vicinity.
In this case, kinetic conversion predicts the following fitting formulae and resulting
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order of magnitude estimates

fNL =
3

2
κ3

√
ε+ 5, |fNL| ∼ O(10) and (2.172)

gNL =

(
5

3
κ4 +

5

4
κ2

3 − 40

)
ε, |gNL| ∼ O(103), (2.173)

where the parametrisation is in terms of the ekpyrotic potential as written in (2.148).
For typical values such as κ3,4 ∼ O(1) and ε & 50, which we need in order for the
power spectrum to be in agreement with observations, the bispectrum parameter is
of order a few tens, with the sign being typically determined by the sign of κ3. To be
in agreement with current bounds, we need |κ3| . 1. Unless |κ4| is very large, gNL
is of order a few thousand and negative in sign, which is a rather robust prediction
of the kinetic conversion mechanism.

We can compare these to the predictions of simple single-field inflationary models
in 2.3.2, where both the bi- and trispectrum parameters approach O(1), which are
thus substantially different from typical values for ekpyrosis. Moreover, due to the
fact that only non-Gaussianity of the local form is produced distinguishes ekpyrotic
models from single-field inflationary models with non-canonical kinetic terms such
as DBI inflation, which produces equilateral-type non-Gaussianity [106, 107]. The
comparison with multi-field inflationary models on the other hand is more difficult to
analyse, as some of those models can allow for a wide range of fNL and gNL values.

2.4.3 (No) gravitational waves

A profound difference between the predictions from inflation and ekpyrosis concerns
the production of primordial gravitational waves. Tensor modes depend only on the
evolution of the scale factor, which grows rapidly during inflation but stays approxi-
mately constant during the ekpyrotic phase. Gravitational waves are hence produced
in the same manner as density perturbations during de Sitter-like expansion. Dur-
ing the ekpyrotic phase, on the other hand, the background spacetime is almost
Minkowski, such that no substantial gravitational waves are generated12 [109]. The
dominant contribution is at second order in perturbation theory and arises from the
backreaction of the scalar fluctuations onto the metric [110].

Following the prescription from inflation (2.3.3), we can calculate the gravita-
tional wave spectrum [83, 109]. The only tensor perturbation in the flat FLRW

12This also explains why the adiabatic perturbations produced during the ekpyrotic phase pick
up a blue spectrum [108] and are not amplified into classical fluctuations [88].
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metric is given by δgij = a2hij with hii = 0 and ∂ihij = 0, and it is automatically
gauge-invariant. The second-order action for the canonically normalised tensor fluc-
tuations, fk ≡ a

2hk (dropping the superscript λ for the polarisation states), is then
given by Eq. (2.121), and leads to the equation of motion,

f ′′k +

(
k2 − a′′

a

)
fk = 0. (2.174)

Imposing Bunch-Davies initial conditions in the far past,

lim
kτ→−∞

fk =
e−ikτ√

2k
, (2.175)

the solution can be shown to be a Hankel function of the first kind,

fk(τ) =

√−πτ
2

H(1)
ν (−kτ), ν =

ε− 3

2(ε− 1)
, (2.176)

where we have dropped a physically irrelevant phase. The tensor spectral index,
defined in (2.125), can be obtained by expanding the Hankel function for small
arguments, yielding

nt = 3− 2ν = 3− ε− 3

ε− 1
. (2.177)

For large ε the tensor spectrum in ekpyrotic models approximates nt ≈ 2, which is
tilted strongly to the blue.

Thus, ekpyrotic models are falsifiable w.r.t. primordial gravitational waves: while
detecting them with a nearly scale-invariant spectrum would constitute very strong
evidence in favour of inflation, it would rule out the ekpyrotic scenario. On the
other hand, the currently observed upper bound on the tensor-to-scalar ratio already
disfavours some inflationary models. Should primordial gravitational waves remain
unobserved even with upcoming CMB polarisation experiments of higher sensitivity,
other aspects, like non-Gaussianity, will play an important role in discriminating
between the two early universe cosmologies.

2.5 The bounce

In order to obtain a complete history from the ekpyrotic phase to the present one must
supplement these models with a description of the bounce, i.e. with a description of
the reversal from contraction to expansion which is identified with the big bang.

54



Since the Hubble rate is negative during the contracting phase, while it is positive
during the subsequent expanding phase, the bounce must allow the Hubble rate H to
increase. If we describe the dominant energy component in the universe as a perfect
fluid with energy density ρ and pressure p, then the second Friedmann equation for
a flat FLRW universe (2.133) implies

Ḣ = −1

2
(ρ+ p) > 0. (2.178)

There exist only two ways in which this inequality can be fulfilled: either the bounce
has to be classically singular with the Hubble rate instantaneously jumping from neg-
ative to positive values, or the bounce is non-singular but the null energy condition
(NEC) must be violated, i.e.

ρ+ p < 0. (2.179)

Considerable progress has been made in recent years in tackling the puzzle of the
initial big bang singularity by replacing it with a bounce. In this thesis, we fo-
cus on bouncing theories that have been developed in the context of ekpyrotic and
cyclic theories. For a comprehensive review of these and other classical bouncing
cosmologies see [111].

The dynamics of a contracting ekpyrotic phase were introduced in the previous
section 2.4 as part of a complete cyclic theory. In the original proposal and its
extensions like the phoenix universe, the bounce was modelled as the collision of two
branes. From the effective 4-dimensional point of view, at the moment of collision the
scale factor goes to zero corresponding to a singularity. However, in the 5-dimensional
setup, the scale factors on the branes are actually finite, while the bounce is singular
in that the extra dimension separating the two branes momentarily disappears (see
e.g. [32]). The bounce may thus have been a much milder, and potentially tractable,
event, where quantum and/or higher-dimensional effects are conjectured to resolve
the singularity, see e.g. [112, 100]. Other bouncing theories include [113], in which
a brief antigravity phase is proposed that allows the evolution of the universe to be
traced through a singular bounce unambiguously, and [114], which provides evidence
for a semiclassical description of the bounce where the fields might pass around the
cosmological singularity along complex classical paths.

During a non-singular bounce, the scale factor reaches a minimum at a non-zero
value at an energy scale significantly below the Planck scale so that the evolution
can be described classically throughout, see e.g. [99, 115, 32, 116, 117, 21]. How-
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ever, a generic consequence of violating the null energy condition is the appearance
of ghosts, fields with negative kinetic energy. This implies that the energy of the
theory is unbounded from below and that therefore the vacuum is unstable, i.e. the
vacuum will inevitably decay quantum mechanically. It is possible to overcome this
problem and produce an instability-free bounce by introducing new matter fields.
The most studied examples in the literature are provided by the ghost condensate,
in which the Lagrangian is taken to be an analytic function of the scalar field and
the kinetic term, L =

√−g P (φ,X) with X ≡ −1
2(∂φ)2 [118], and Galileons, which

contain specific higher-derivative terms like L =
√−g g(φ)X�φ [119]. Their defin-

ing feature is that even though the Lagrangian contains higher-derivative terms the
resulting equations of motion have at most two derivatives acting on each field. In
chapter 5 we study a non-singular bounce achieved via a ghost condensate in detail
as part of the theory of conflation. Recent developments indicate that a non-singular
bounce may be allowed: It was demonstrated in [120, 121] that long-wavelength per-
turbations generated during the contracting phase pass through such non-singular
bounces unharmed. It has recently been established that non-singular bounces are
viable in supergravity [122], which can be taken as an indication that cosmic bounces
are allowed by fundamental physics. Moreover, in [103] the existence of healthy de-
scriptions of non-singular bouncing cosmologies has been explicitly confirmed. The
temporary violation of the null energy condition in a spatially flat non–singular
bounce, achieved through a phase of ghost condensation, was shown to constitute a
sensible, trustworthy effective theory.
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Chapter 3

Covariant formalism and
perturbation theory up to third
order

The aim of this chapter is to develop a covariant formalism which allows us to study
perturbations in the so called non-minimal entropic mechanism. The model is a new
variant on the standard entropic mechanism that produces scale-invariant curvature
perturbations during an ekpyrotic phase (see section 2.4.2), and will be introduced
in chapter 4. We will start by reviewing the covariant formalism for cosmological
perturbation theory, up to second order in perturbations and for a theory comprising
two scalar fields with non-trivial field space metric. The goal is to derive the evolution
equations for the entropy as well as the curvature perturbation. New results at third
order will then be presented in section 3.3.2. Note that this chapter is entirely
general, and may be used for applications to any two-field cosmological models with
arbitrary field space metrics (i.e. to general two-field non-linear sigma models).

In the present work, we will adopt the 1 + 3 covariant formalism developed by
Langlois and Vernizzi [123, 124, 125, 126], which was inspired by earlier works of
Ellis and Bruni [127, 128] and Hawking [129]. This formalism builds on the insight
that in a purely time-dependent background metric (in particular in FLRW space-
times) spatial derivatives of scalar quantities are automatically gauge-invariant. The
formalism allows one to derive rather compact all-orders evolution equations for cos-
mological perturbations, which, with suitable care, may then be expanded up to the
desired order in perturbation theory.

We study the cosmological fluctuations of a system of two non-minimally coupled
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scalar fields, i.e. two scalar fields with a non-trivial field space metric (but minimally
coupled to gravity). The action of such systems is of the form

S =

∫
d4x
√−g

(
1

2
R− 1

2
GIJ(φK)∇aφI∇aφJ − V (φK)

)
, (3.1)

where the indices I, J,K = 1, 2 label the two scalar fields (in our later examples we
will also write φ1 = φ, φ2 = χ). The field space metric and its inverse can be used to
lower and raise field space indices, respectively, e.g. φI = GIJφ

J . Such actions were
studied by Renaux-Petel and Tasinato [19] up to second order in perturbation theory
and, for trivial field space metric GIJ = δIJ , the formalism was extended to third
order by Renaux-Petel and Lehners [20]. Considering theories with two scalars fields
is conceptually of importance, as two-scalar theories admit both adiabatic/curvature
and entropic/isocurvature perturbations. The extension to having more than two
fields is then straightforward, as the presence of additional fields simply augments
the number of independent entropic perturbations.

3.1 The covariant formalism

Let us consider a spacetime, with metric gab, where a congruence of cosmological ob-
servers is defined by an a priori arbitrary unit timelike vector ua = dxa/dτ (with uaua =

−1), where τ denotes the proper time. The spatial projection tensor orthogonal to
the four-velocity ua is then given by

hab ≡ gab + uaub, (habh
b
c = hac, h b

a ub = 0). (3.2)

To describe the time evolution, we make use of the Lie derivative w.r.t. ua, i.e. the
covariant definition of the time derivative. It is defined for a generic covector Ya by
(see e.g. [130])

Ẏa ≡ LuYa ≡ ub∇bYa + Yb∇aub, (3.3)

and will be denoted by a dot1, as is customary in works on the covariant formalism.
For scalar quantities, the covariant time derivative reduces to

ḟ = ub∇bf. (3.4)
1We use the convention to denote a Lie derivative by a dot and a coordinate time derivative by

a prime in this chapter only, whereas chapters 2, 4 and 5 employ the standard convention where a
dot stands for a coordinate time derivative and a prime for a conformal time derivative.
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To describe perturbations in the covariant approach, we project the covariant deriva-
tive orthogonally to the four-velocity ua; this spatial projection of the covariant
derivative will be denoted by Da. For a generic tensor, its definition is

DaT
c...
b... ≡ h d

a h
e
b . . . h

c
f . . .∇dT f...

e... . (3.5)

Again, for the case of a scalar, this simplifies,

Daf ≡ h b
a ∇bf = ∂af + uaḟ . (3.6)

The covariant derivative of any time-like unit vector field ua can be decomposed
uniquely as follows

∇bua = σab + ωab +
1

3
Θhab − aaub, (3.7)

with the (trace-free and symmetric) shear tensor σab and the (antisymmetric) vor-
ticity tensor ωab. The volume expansion, Θ, is defined by

Θ ≡ ∇aua, (3.8)

where the integrated volume expansion, α, along ua,

α ≡ 1

3

∫
dτ Θ (Θ = 3α̇), (3.9)

can be interpreted as the number of e-folds of evolution of the scale factor mea-
sured along the world-line of a cosmological observer with four-velocity ua since Θ/3

corresponds to the local Hubble parameter. The acceleration vector is given by

aa ≡ ub∇bua. (3.10)

Finally, it is always possible to decompose the total energy-momentum tensor as

Tab = (ρ+ p)uaub + qaub + uaqb + gabp+ πab, (3.11)

where ρ, p, qa and πab are the energy density, pressure, momentum and anisotropic
stress tensor, respectively, as measured in the frame defined by ua.
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3.2 Two scalar fields with non-trivial field space metric

The energy momentum tensor derived from the action (3.1) is then

Tab = GIJ∇aφI∇bφJ + gab(−
1

2
GIJ∇cφI∇cφJ − V ). (3.12)

Comparing to the decomposition in (3.11) one finds for the energy density, pressure,
momentum and anisotropic stress, respectively,

ρ ≡ Tabu
aub = T00u

0u0 = φ̇I φ̇I +
1

2
GIJ∇cφI∇cφJ + V, (3.13)

p ≡ 1

3
hacTabh

b
c =

1

3
GIJDaφ

IDaφJ − 1

2
GIJ∇cφI∇cφJ − V, (3.14)

qa ≡ −ubTbchca = −φ̇IDaφ
I ≈ −u0T0i, (3.15)

πab ≡ h caTcdh
d
b − p hab = GIJDaφ

IDbφ
J − hab

3
GIJDcφ

IDcφJ . (3.16)

The equation of motion for the scalar fields is obtained by varying the action w.r.t.
the fields themselves,

0 =GIJ∇a∇aφJ + ΓIJK∇aφK∇aφJ − V,I
=φ̈I + ΓIJK

(
φ̇J φ̇K −Daφ

JDaφK
)

+ Θφ̇I +GIJV,J −DaD
aφI − abDbφ

I ,
(3.17)

where ΓIJK = GILΓLJK = 1
2 (GIJ,K +GIK,J −GJK,I) and the second equality above

makes use of Eqs. (3.2, 3.5-3.10).
We introduce the following derivatives of field space vectors in curved coordinates

in order to simplify notation. The spacetime derivative, given by

DaAI ≡ ∇aAI + ΓIJK∇aφJAK , (3.18)

is used to define a time derivative in field space,

DuAI ≡ uaDaAI = ȦI + ΓIJK φ̇
JAK , (3.19)

and a spatially projected derivative in field space,

D⊥aT I c...b... ≡ hdaheb . . . hcf . . .DdT I f...e... . (3.20)
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We can then rewrite the evolution equation (3.17) in a more concise form as

Duφ̇I + Θφ̇I +GIJV,J −D⊥a
(
DaφI

)
− aaDaφ

I = 0. (3.21)

In the two-field case it is convenient to introduce a particular basis in field space
which consists of an adiabatic and an entropic unit vector. This decomposition was
first introduced in [6] for two fields in the linear theory, as presented in subsection
2.4.2. The generalisation to multiple fields is discussed in [131, 132] for the linear
case and in [133] for the nonlinear theory. The adiabatic unit vector, denoted by
eIσ, is defined in the direction of the velocity of the two fields, i.e. tangent to the
field space trajectory. The entropic unit vector, denoted by eIs, is defined along the
direction orthogonal to it (w.r.t. GIJ), namely

eIσ ≡
φ̇I

σ̇
, GIJe

I
se
J
s = 1, GIJe

I
se
J
σ = 0, (3.22)

with
σ̇ ≡

√
GIJ φ̇I φ̇J . (3.23)

Note that this is only a short-hand notation, i.e. σ̇ is generally not the derivative
along ua of a scalar field σ. Furthermore, we introduce the quantity θ̇ to express the
time evolution of the basis vectors,

DueIσ ≡ θ̇eIs, DueIs ≡ −θ̇eIσ, (3.24)

where DueIα = ėIα + ΓIJK σ̇e
J
σe
K
α , (α = σ, s) is given by the definition in (3.19). Again,

θ̇ is not the derivative along ua of an angle θ, although such an angle can be defined
for a trivial field space metric [126].

Making use of the basis (3.22), we can then introduce two linear combinations of
the scalar field gradients and thus define two covectors by analogy with the similar
definitions in the linear context [131]: the adiabatic and entropic covectors, denoted
by σa and sa, respectively, and given by

σa ≡ eσI∇aφI , (3.25)

sa ≡ esI∇aφI . (3.26)

By definition, the entropic covector sa is orthogonal to the four-velocity ua, i.e. uasa =

0. By contrast, the adiabatic covector σa contains a longitudinal component: uaσa =
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σ̇. At any location in spacetime, one may think of σi as describing perturbations in
the total energy density (and thus perturbations in the expansion/contraction history
of the universe), and of si as describing perturbations in the relative contributions
of the two scalar fields to the total energy density.

A covariant generalisation of the comoving energy density perturbation is given
by the covector

εa ≡ Daρ−
ρ̇

σ̇
σ⊥a , (3.27)

where σ⊥a ≡ eσIDaφ
I = σa + σ̇ua is the spatially projected version of (3.25). It has

been shown in [126] that if the shear is negligible on large scales, so is εa ≈ 0.
Then, in our two-field system, the (full, all-orders in perturbation theory) evo-

lution equation of the entropy covector sa can be expressed on large scales (i.e. to
leading order in spatial gradients) as [19]

s̈a + Θṡa +
(
V;ss + 3θ̇2 + σ̇2eIse

J
s e
K
σ e

L
σRIKJL

)
sa ≈ −2

θ̇

σ̇
εa, (3.28)

with

V,s = eIsV,I , V;ss = eIse
J
sDIDJV and DIDJV ≡ V,IJ − ΓKIJV,K , (3.29)

and where RIKLJ = ∂JΓIKL − ∂LΓIKJ + ΓIJPΓPKL − ΓILPΓPKJ is the Riemann tensor
associated with the metric GIJ . An equality valid only on large scales will be denoted
by ≈.

It is a well-known result that in cosmological models with a single scalar field the
curvature perturbation is conserved on large scales [134]. However, when a second
field is present, entropic perturbations may arise and these can source the curvature
perturbation on large scales [6]. In subsection 2.4.2 we derived a particularly simple
and useful form of the evolution equation for the comoving curvature perturbation
on large scales (2.166). It reads

ζ ′ =
2HδV

σ̄′2 − 2δV
, (3.30)

where a prime denotes a coordinate time derivative. It can be extended to the case
of having a non-trivial field space metric by taking the metric into account when
expressing δV in terms of the adiabatic and entropic fluctuations at the relevant
order.
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In the following subsection, we will introduce a coordinate system. The evo-
lution equations for the entropy perturbation (3.28) and the comoving curvature
perturbation (3.30) can then be straightforwardly translated into the linearised and
second-order perturbation equations, while we derive new results at third order in
the following section. For convenience, we have collected various background as well
as first- and second-order expressions that will be used in this thesis in appendix B.

3.3 Perturbation theory

We introduce coordinates xµ = (t, xi) to describe an almost-FLRW spacetime, in
order to relate the covariant formalism to the more familiar coordinate based ap-
proach. We will denote a partial derivative with respect to the cosmic time t by a
prime, i.e. ′ = ∂/∂t, since the dot is already reserved for the Lie derivative (3.3).
Fields are expanded without factorial factors:

X(t, xi) = X̄(t) + δX(1)(t, xi) + δX(2)(t, xi) + δX(3)(t, xi). (3.31)

Quantities with an over-bar like X̄ are evaluated on the background, first order quan-
tities like δX(1) solve the linearised equations of motion, second order quantities like
δX(2) the quadratic equations, and so on. In the following, we drop the superscript
(1) for perturbations at linear order when the meaning is unambiguous. For simplic-
ity we choose ua such that ui = 0. In appendix B we show how u0 is then determined
in terms of metric quantities.

The gauge transformation of a tensor T generated by a vector field ξa is given
by the exponential map [135]

T→ eLξT . (3.32)

With the perturbative expansion ξ =
∑

n
1
n! ξ(n), the first and second-order pertur-

bations of a tensor T are then found to transform as

δT(1) → δT(1) + Lξ(1)
T(0), δT(2) → δT(2) + Lξ(1)

δT(1) +

(
Lξ(2)

+
1

2
L2
ξ(1)

)
T(0).

(3.33)
At third order, the transformation is given by [136]

δT(3) → δT(3)+Lξ(1)
δT(2)+

(
Lξ(2)

+
1

2
L2
ξ(1)

)
δT(1)+

(
Lξ(3)

+ Lξ(1)
Lξ(2)

+
1

6
L3
ξ(1)

)
T(0).

(3.34)
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3.3.1 Perturbation theory up to second order

We start by presenting the definitions of the adiabatic and entropic perturbations up
to second order. By expanding Eqs. (3.25) and (3.26) up to second order, one finds,
for σi and si respectively,

δσi = ∂iδσ, δσ ≡ ēσIδφI , (3.35)

δsi = ∂iδs, δs ≡ ēsIδφI . (3.36)

at linear order and

δσ
(2)
i ≡ ∂iδσ

(2) +
θ̄′

σ̄′
δσ∂iδs−

1

σ̄′
Vi, (3.37)

δs
(2)
i ≡ ∂iδs

(2) +
δσ

σ̄′
∂iδs

′, (3.38)

at second order [19], with

δσ(2) ≡ ēσIδφ
I(2) +

1

2
ēσI Γ̄

I
KLē

K
α ē

L
β δσ

αδσβ +
1

2σ̄′
δsδs′, (3.39)

δs(2) ≡ ēsIδφ
I(2) +

1

2
ēsI Γ̄

I
KLē

K
α ē

L
β δσ

αδσβ − δσ

σ̄′

(
δs′ +

θ̄′

2
δσ

)
, (3.40)

where the inverse zweibeine are defined via δφI = e I
α δσ

α and α = (σ, s). The curved
nature of the field space metric manifests itself in the appearance of the terms with
Christoffel symbols in δσ(2) and δs(2). It is convenient to introduce the spatial vector

Vi ≡
1

2
(δs∂iδs

′ − δs′∂iδs), (3.41)

which vanishes when δs and δs′ have the same spatial dependence. Since relative
spatial gradients are heavily suppressed for super-Hubble modes both in inflationary
and in ekpyrotic models, δs′ and δs indeed obtain the same spatial dependence,
i.e. δs′ = g(t)δs, to high precision.

Using the gauge transformation relations (3.33), it can easily be verified that the
entropic perturbations δs(1),(2) are gauge-invariant.

The adiabatic perturbations, however, are not gauge-invariant, but they have
been defined such that setting them to zero is equivalent to going to comoving gauge,
on large scales. This can be seen by expanding the momentum density qi given by

64



(3.15), which should vanish in comoving gauge:

δqi = −∂i
(
σ̄′δσ

)
(3.42)

at linear order, and

δq
(2)
i = −∂i

[
σ̄′δσ(2) +

1

2

σ̄′′

σ̄′
δσ2 + θ̄′δσδs

]
− 1

σ̄′
δε∂iδσ + Vi, (3.43)

at second order. As already mentioned, Vi ≈ 0 on large scales for the models we are
interested in, and therefore setting the adiabatic perturbations to zero (as a gauge
choice) corresponds to adopting comoving gauge on super-Hubble scales.

The equations of motion of the scalar fields were presented in (3.17), which for
the background can be rewritten as

ḠIJ�φ̄
J + Γ̄IKL∂µφ̄

K∂µφ̄L − V̄,I = 0. (3.44)

Substituting φ̄J ′ = σ̄′ēJσ and using (3.24), they read

ēσI
(
σ̄′′ + 3Hσ̄′

)
+ ēsI σ̄

′θ̄′ + V̄,I = 0. (3.45)

Multiplying with ēIσ and ēIs, we obtain the background equations of motion for σ and
s, respectively:

σ̄′′ + 3Hσ̄′ + V,σ = 0, (3.46)

and
σ̄′θ̄′ + V,s = 0. (3.47)

Expanding the equation of motion for sa (3.28) to linear order gives

δs′′ + 3Hδs′ +
(
V̄;ss + 3θ̄′2 + σ̄′2ēIs ē

J
s ē
K
σ ē

L
σ R̄IKJL

)
δs = −2θ̄′

σ̄′
δε ≈ 0, (3.48)

where we have used
Θ̄ = 3H. (3.49)
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At second order, we get

δs(2)′′ + 3Hδs(2)′ +
(
V̄;ss + 3θ̄′2 + σ̄′2ēIs ē

J
s ē
K
σ ē

L
σ R̄IKJL

)
δs(2) ≈ − θ̄

′

σ̄′
δs′2

− 2

σ̄′

[
θ̄′′ +

V̄,σ θ̄
′

σ̄′
− 3

2
Hθ̄′

]
δsδs′ +

[
−1

2
V̄;sss +

5V̄;ssθ̄
′

σ̄′
+

9θ̄′3

σ̄′

+ ēIs ē
J
s ē
K
σ ē

L
σ

(
σ̄′θ̄′R̄IKJL −

1

2
σ̄′2ēNs DN R̄IKJL

)]
δs2 − 2θ̄′

σ̄′
δε(2),

(3.50)

where we have used Vi ≈ 0 on large scales in the second term on the RHS, and
δε(2) ≈ 0. The equation for the entropy perturbation forms a closed system; on large
scales, it evolves independently of the adiabatic component.

In comoving gauge, expanding the expression for the curvature perturbation
(3.30) up to second order, we have

ζ ′ =
2HδV

σ̄′2 − 2δV

δσ=0≈ 2H

σ̄′2

[
δV (1) + δV (2) +

2

σ̄′2

(
δV (1)

)2
]
, (3.51)

where the δσ = 0 statement above the ≈ sign indicates that the equations are valid
in comoving gauge. Using Eqs. (B.33)-(B.34), we obtain

ζ(1)′ δσ=0≈ −2Hθ̄′δs

σ̄′
(3.52)

at first order, and

ζ(2)′ δσ=0≈ 2H

σ̄′2

[
−σ̄′θ̄′δs(2) − V̄,σ

2σ̄′
δsδs′ +

(
1

2
V̄;ss + 2θ̄′2

)
δs2

]
(3.53)

at second order. It becomes clear that the curvature perturbation is sourced by the
entropy perturbation.

In the next section, we will derive the corresponding third-order equations, which
are needed for the study of the primordial trispectra of cosmological perturbations.

3.3.2 Perturbation theory at third order

We are now in a position to present our main technical developments: we use the
covariant formalism to derive the third-order evolution equations for the entropy
and the curvature perturbations for two scalar fields with a non-trivial field space
metric. These equations will then allow us to calculate and make predictions for the
trispectrum of current ekpyrotic models.
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The covariant formalism has the advantage of allowing one to derive simple all-
orders evolution equations for the adiabatic and entropic co-vectors. However, given
that the general all-orders definitions of the adiabatic and entropic convectors are
rather implicit and formal, using the covariant formalism to make actual predictions
involves the non-trivial step of identifying the proper definitions of adiabatic and
entropic fluctuations up to the desired order in perturbation theory. Once these
definitions are at hand, it becomes a straightforward exercise to expand the all-
orders equations up to the desired order. Thus our first and main task is to find
the appropriate definitions of adiabatic and entropic perturbations at third order.
Expanding Eq. (3.26) at third order using Eqs. (B.19) and (B.21), one obtains

δs
(3)
i = ∂iδs

(3) +
δσ

σ̄′
∂iδs

(2)′ +
δσ(2)

σ̄′
∂iδs

′ − σ̄′′

2σ̄′3
δσ2∂iδs

′ +
δσ2

2σ̄′2
∂iδs

′′

+
1

2σ̄′2
(
δs′ + 2θ̄′δσ

)
δs∂iδs

′ − ∂i
(

1

6σ̄′2
δsδs′2

)
+

1

6
ēIs ē

J
s ē
K
σ ē

L
σ R̄IKJL

(
δσ2∂iδs− δσδs∂iδσ

)
+

1

3
ēsI
[
−∂M Γ̄IKL + Γ̄IKP Γ̄PLM + Γ̄ILP Γ̄PKM

]
ēLs
(
ēMσ ē

K
s − ēKσ ēMs

)
∂i
(
δσδs2

)
(3.54)

where we have defined

δs(3) ≡ ēsIδφ(3)I − δσ(2)

σ̄′
(
δs′ + θ̄′δσ

)
− δσ

σ̄′
δs(2)′ − δσ2

2σ̄′2

(
θ̄′2δs+ δs′′ − σ̄′′

σ̄′
δs′
)

− δσ3

6σ̄′

(
θ̄′

σ̄′

)′
− θ̄′

2σ̄′2
δσδsδs′ +

1

6σ̄′2
δsδs′2

+ ēsI Γ̄
I
KL

(
ēLσδσ + ēLs δs

) [
ēKσ

(
δσ(2) − 1

2σ̄′
δsδs′

)
+ ēKs

(
δs(2) +

δσ

σ̄′

(
δs′ +

θ̄′

2
δσ

))]
− 1

6

(
−∂M Γ̄IKL + Γ̄IKP Γ̄PLM + Γ̄ILP Γ̄PKM

)
ēsI×

×
[(
ēMσ δσ + ēMs δs

) (
ēLσδσ + ēLs δs

) (
ēKσ δσ + ēKs δs

)
+ δσδs

(
ēLσδσ + 2ēLs δs

) (
ēMσ ē

K
s − ēKσ ēMs

)]
.

(3.55)
Using the transformation of the third-order perturbations of a tensor, given by (3.34),
one can show that the entropy perturbation as defined in (3.55) is gauge-invariant.
Note that, compared to the earlier work [20], we have added the gauge-invariant term

1
6σ̄′2 δsδs

′2 to the definition of δs(3) (and correspondingly subtracted its derivative
from δs

(3)
i ). This improved definition is motivated by our considerations of ekpyrotic

models in section 4.1, as we will further discuss there. Moreover, in appendix A we
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will present additional arguments that the term we are adding to the definition of the
entropic perturbation is the only sensible one2. Apart from this small modification,
the present definition now also includes terms due to the curvature of field space.

On large scales, our new definition leads to an extremely simple relationship
between the covector δs(3)

i and the entropic perturbation δs(3): in comoving gauge
we have

δs
(3)
i

δσ=0≈ ∂iδs
(3) +

1

2σ̄′2
δsδs′∂iδs

′ − 1

6σ̄′2
∂i
(
δsδs′2

)
= ∂iδs

(3) +
1

3σ̄′2
δs′Vi

≈ ∂iδs(3)

(3.56)

with

δs(3) δσ=0≡ ēsIδφ
(3)I +

1

6σ̄′2
δsδs′2 + ēsI Γ̄

I
KLē

L
s δs

[
ēKs δs

(2) − 1

2σ̄′
ēKσ δsδs

′
]

+
1

6
ēsI ē

J
s ē
K
s ē

L
s

[
∂J Γ̄IKL − 2Γ̄IJP Γ̄PKL

]
δs3,

(3.57)

where we have simplified the last term due to the symmetry in the vielbeine.

The adiabatic perturbation δσ is not a gauge-invariant variable, so there is more
freedom in choosing a definition. Expanding Eq. (3.25) using Eqs. (B.13) and (B.15),
we obtain

δσ
(3)
i = ∂iδσ

(3) − 1

σ̄′
V

(3)
i − θ̄′

3σ̄′2
δsVi +

θ̄′

σ̄′

(
δσ∂iδs

(2) + δσ(2)∂iδs
)

+
δσ

σ̄′2
(
δs′ + θ̄′δσ

)
∂iδs

′

+
1

2σ̄′2
(
δs′ + θ̄′δσ

)2
∂iδσ +

[(
θ̄′

σ̄′

)′
δσ

2
− 1

σ̄′2
(
V̄;ss + 2θ̄′2

)
δs+

V̄,σ
σ̄′2

δs′

]
δσ∂iδs

+
(
ēKσ ē

L
s + ēKs ē

L
σ

)
ēJσδσδs∂i

(
ēIσδσ + ēIsδs

) [1

2

(
ḠIP,J − ḠIJ,P

)
Γ̄PKL

− ḠJP,LΓ̄PIK +
1

4

(
ḠKL,IJ − ḠIK,LJ − ḠIL,KJ + 2ḠIJ,KL

)]
,

(3.58)
2This new definition does not change the results of [20], as our new definition differs from the

old one by a gauge-invariant term.
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with

δσ(3) ≡ ēσIδφ(3)I +
1

2σ̄′

(
δs′δs(2) + δsδs(2)′

)
+

θ̄′

6σ̄′2
δs2δs′

+ ēσI Γ̄
I
KL

(
ēLσδσ + ēLs δs

) [
ēKσ

(
δσ(2) − 1

2σ̄′
δsδs′

)
+ ēKs

(
δs(2) +

δσ

σ̄′

(
δs′ +

θ̄′

2
δσ

))]
+

1

2
ēIs ē

J
s ē
K
σ ē

L
σ R̄IKJLδσδs

2

+
1

6
ēσI
(
ēJσ ē

K
σ ē

L
σδσ

3 + ēJs ē
K
s ē

L
s δs

3
) [
∂J Γ̄IKL − 2Γ̄IJP Γ̄PKL

]
.

(3.59)

We have defined the natural generalisation of the third-order non-local term Vi as

V
(3)
i =

1

2

(
δs(2)∂iδs

′ + δs∂iδs
(2)′ − δs(2)′∂iδs− δs′∂iδs(2)

)
, (3.60)

which again vanishes when the total entropy perturbation δs = δs(1) + δs(2) fac-
torises into its time and spatial dependence, i.e. δs′ = g(t)δs. We can neglect it as
such differences in spatial gradients are heavily suppressed on large scales in both
inflationary and ekpyrotic models. For δσ = δσ(2) = 0 the adiabatic perturbation at
third order reduces to

δσ(3) δσ=0≈ ēσIδφ
(3)I +

1

2σ̄′

(
δs′δs(2) + δsδs(2)′

)
+

θ̄′

6σ̄′2
δs2δs′

+ ēσI Γ̄
I
KLē

L
s δs

[
ēKs δs

(2) − 1

2σ̄′
ēKσ δsδs

′
]

+
1

6
ēσI ē

J
s ē
K
s ē

L
s δs

3
[
∂J Γ̄IKL − 2Γ̄IJP Γ̄PKL

]
.

(3.61)

One may check that this is a useful definition of the adiabatic perturbation by ex-
panding the momentum density (3.15) to third order and verifying that it vanishes

on large scales, δq(3)
i

δσ=0≈ 0, in comoving gauge δσ = δσ(2) = δσ(3) = 0.

Now that we have the definitions of the adiabatic and entropic fluctuations, we
can obtain their equations of motion. To this end, we expand the equation of motion

69



for sa (3.28) to third order, with the result

0 ≈ δs(3)′′ + 3Hδs(3)′ +
(
V̄;ss + 3θ̄′2 + σ̄′2ēIs ē

J
s ē
K
σ ē

L
σ R̄IKJL

)
δs(3) + 2

θ̄′

σ̄′
δs′δs(2)′

+

(
2

σ̄′
θ̄′′ +

2

σ̄′2
V̄,σ θ̄

′ − 3

σ̄′
Hθ̄′

)(
δsδs(2)

)′
+

(
V̄;sss −

10

σ̄′
V̄;ssθ̄

′ − 18

σ̄′
θ̄′3 + ēIs ē

J
s ē
K
σ ē

L
σ

(
−2σ̄′θ̄′R̄IKJL + σ̄′2ēNs DN R̄IKJL

))
δsδs(2)

+
V̄,σ
3σ̄′3

δs′3 +
1

σ̄′2

[
2

3
V̄;σσ +

2V̄ 2
,σ

σ̄′2
+

1

σ̄′
HV̄,σ − V̄;ss −

8

3
θ̄′2 − σ̄′2ēIs ēJs ēKσ ēLσ R̄IKJL

]
δsδs′2

+

[
− 22

3σ̄′2
θ̄′θ̄′′ − 7

6σ̄′
V̄;ssσ −

11

3σ̄′3
V̄;ssV̄,σ −

13

3σ̄′3
V̄,σ θ̄

′2 − 1

σ̄′2
HV̄;ss +

18

σ̄′2
Hθ̄′2

− 4V̄,σ
3σ̄′

ēIs ē
J
s ē
K
σ ē

L
σ R̄IKJL −

σ̄′

6
ēIs ē

J
s ē
K
σ ē

L
σ ē

M
σ DM R̄IKJL

]
δs2δs′

+

[
1

6
V̄;ssss −

7

3σ̄′
V̄;sssθ̄

′ +
5

3σ̄′2
V̄ 2

;ss +
19

σ̄′2
V̄;ssθ̄

′2 +
24

σ̄′2
θ̄′4

+
1

3
ēIs ē

J
s ē
K
σ ē

L
σ

(
R̄IKJL

(
V̄;ss + θ̄′2

)
− 2σ̄′θ̄′ēNs DN R̄IKJL

+ σ̄′2ēNs ē
Q
s

(
1

2
DQDN R̄IKJL − R̄IKJP R̄PNLQ + R̄IKJLR̄

P
NPQ

))]
δs3,

(3.62)
where we have used Vi ≈ 0 and V (3)

i ≈ 0 on large scales. The equation of motion is
fully covariant, as it should be. Notice that upon the introduction of the extra term in
the definition of δs(3) in (3.55) compared to [20] the numerical factors of some of the
terms have changed – see appendix A for the equivalent equation of motion without
the extra term. Moreover, the non-trivial field space metric manifests itself in the
appearance of terms with Riemann tensors and their covariant derivatives. Just as
was the case at lower orders, the large-scale equation for the entropy perturbation is
closed at third order.

On large scales, the evolution of the curvature perturbation at third order is given
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by expanding (3.30) and using (B.33)-(B.35), leading to

ζ(3)′ δσ=0≈ 2H

σ̄′2

[
δV (3) +

4

σ̄′2
δV (1)δV (2) +

4

σ̄′4

(
δV (1)

)3
]

=
2H

σ̄′2

[
−σ̄′θ̄′δs(3) − V̄,σ

2σ̄′

(
δsδs(2)

)′
+
(
V̄;ss + 4θ̄′2

)
δsδs(2) +

θ̄′

6σ̄′
δsδs′2

+

(
11

6

θ̄′V̄,σ
σ̄′2
− 1

2σ̄′
V̄;sσ

)
δs2δs′ +

(
1

6
V̄;sss − 2

θ̄′V̄;ss

σ̄′
− 4

θ̄′3

σ̄′

)
δs3

]
.

(3.63)
It is the third-order counterpart of Eqs. (3.52) and (3.53) and shows how the adia-
batic/curvature perturbations are sourced by entropic perturbations. As is apparent
from the first line, once the potential V becomes irrelevant, ζ is conserved on large
scales. This is for instance the case in the approach to the bounce in ekpyrotic
models.
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Chapter 4

The non-minimally coupled
ekpyrotic model

The evolution equations derived in the previous section (3.3) can be applied to any
inflationary or ekpyrotic model described by two scalar fields with a non-trivial field
space metric and a potential. In this chapter we are interested in the “non-minimal
entropic mechanism”, which is a mechanism for generating ekpyrotic density pertur-
bations. It was first proposed by Qiu, Gao and Saridakis [21] as well as by Li [22], and
further developed and generalised in [24, 23]. The model contains two scalar fields: φ
is assumed to have an ordinary kinetic term and a steep negative potential – thus φ
drives the ekpyrotic contracting phase. A second scalar, χ, is non-minimally coupled
to φ such that in the ekpyrotic background it obtains nearly scale-invariant perturba-
tions. Compared to the standard entropic mechanism described in subsection 2.4.2,
the model has the advantage that it does not require an unstable potential to gener-
ate nearly scale-invariant perturbations. In fact, in this model the potential, depicted
in Fig. 4.1, need not depend on the second scalar χ at all during the ekpyrotic phase.
The entropic mechanism consists of a two-stage process: first nearly scale-invariant,
Gaussian entropy perturbations are produced during the ekpyrotic phase, which are
then converted into curvature perturbations in the subsequent kinetic phase by a
bending in the field space trajectory. We will assume that the conversion process
also occurs during the contracting phase of the universe. To complete the model, one
may then consider both a prescription for initial conditions [137, 138, 29, 139] and a
non-singular bounce into the current expanding phase of the universe as outlined in
section 2.5.

As just described, we will consider the case where the second scalar field χ is
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Entropic direction
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V

Figure 4.1: After a rotation in field space, the two-field ekpyrotic potential can
be viewed as composed of an ekpyrotic direction (σ) and a transverse direction (s).
The ekpyrotic scaling solution corresponds to motion along the adiabatic direction.
Perturbations along the direction of the trajectory are adiabatic/curvature pertur-
bations, while perturbations transverse to the trajectory are entropy/isocurvature
perturbations.

coupled to the first scalar φ by a function Ω(φ)2, i.e. the field space metric and its
inverse are given by

GIJ =

(
1 0

0 Ω(φ)2

)
, and GIJ =

(
1 0

0 Ω(φ)−2

)
. (4.1)

In an FLRW universe, the background equations of motion derived from the action
(3.1) are then

¨̄φ+ 3H ˙̄φ+ V̄,φ − ΩΩ,φ ˙̄χ2 = 0, (4.2)

¨̄χ+
(

3H + 2Ω−1Ω,φ
˙̄φ
)

˙̄χ+ Ω−2V̄,χ = 0, (4.3)

H2 =
1

6

(
˙̄φ2 + Ω2 ˙̄χ2 + 2V̄

)
, (4.4)

where, unlike in the previous chapter, a dot denotes a derivative w.r.t. physical time.

In order to obtain the spectrum as well as the non-Gaussianity parameters, we
solve for the entropy and curvature perturbations, first analytically during the ekpy-
rotic phase in the next section, and then numerically for the conversion phase in
section 4.2. Simplifications brought about by our choice of field space metric in (4.1)
are detailed in appendix C.
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4.1 The ekpyrotic phase

During the ekpyrotic phase we will consider potentials that are of exponential form,

V (φ) = −V0e
−cφ, (4.5)

where in the general analysis the parameter c is a constant, but in deriving the
spectrum of the perturbations in the following subsection we allow it to slowly vary
with time. Moreover, in this context we consider a specific example for the field-
dependent function in the field space metric, Ω, namely

Ω(φ)2 = e−bφ, (4.6)

where we take b to be constant. In the following, we solve the equations of motion
for the entropy and curvature perturbations order by order in perturbation theory.

4.1.1 The background solution

During the ekpyrotic phase, the potential is a function of φ alone, V = V (φ), and
hence V,χ = 0. From the background equation of motion for χ (4.3) it is immediately
clear that χ being constant is a solution. Coordinates can be chosen such that

χ = 0 (4.7)

corresponds to the background. The remaining background equations (4.2, 4.4) then
simply reduce to those for a single scalar in an ekpyrotic potential (4.5), and they
admit the scaling solution [83]

a(t) ∝ (−t)1/ε, φ =

√
2

ε
ln

[
−
(

V0ε
2

(ε− 3)

) 1
2

t

]
, ε =

c2

2
, (4.8)

where t is negative and runs from large negative towards small negative values.
The fast-roll parameter ε ≡ φ̇2/(2H2) is directly related to the equation of state
w = 2ε/3 − 1 and for a successful ekpyrotic phase where the universe becomes flat
and anisotropies are suppressed we require w > 1 or ε > 3 (i.e. c2 > 6). Com-
pared to the scaling solution for the standard ekpyrotic case given in Eq. (2.134), we
have not simplified the solution for large ε � 1, but left the solution exact. Note
that it was shown in [23] that for any ekpyrotic equation of state it is possible to
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choose the potential and the kinetic coupling such that nearly scale-invariant entropy
perturbations are produced.

The relative energy density in curvature scales as 1/(aH)2, and a standard anal-
ysis (cf. the flatness problem in 2.2.2) then shows that in order to solve the flatness
problem aH has to grow by about 70 or more e-folds in magnitude over the course
of the ekpyrotic phase. Thus we require

aH|ek−end
aH|ek−beg

≡ eN & e70 , (4.9)

where N denotes the number of e-folds of ekpyrosis. Using Eq. (4.2), we obtain√
ε

2

(
1− ε
ε

)
(φek−end − φek−beg) ≡

ε− 1√
2ε
4φ & 70, (4.10)

and therefore the flatness problem is solved if the ekpyrotic phase takes place over
a field range ∆φ & 70

√
2ε/(ε− 1). It is over this field range that the potential must

take the form expressed in Eq. (4.5). As is intuitively clear, the steeper the potential,
the shorter the required field range.

4.1.2 Linear perturbations

We want to calculate the spectrum produced by the linear entropy perturbations
during the ekpyrotic phase. The non-minimal coupling between the two scalar fields
φ and χ in the kinetic term for χ is given by (4.6). The idea is that when b ≈ c (where
c is the constant appearing in the exponent of the potential (4.5)), the ekpyrotic
scalar φ effectively provides a de Sitter-like background for the entropy field χ and
thus (nearly) scale-invariant entropy perturbations can be generated1, but crucially
without classical instabilities.

In terms of δs, we then obtain the simple evolution equation from (3.48) together
with the potential (4.5) and non-minimal coupling (4.6) (first derived in [143]):

δ̈s+ 3Hδ̇s+

[
k2

a2
− b2

4
˙̄φ2 − b

2
V̄,φ

]
δs = 0. (4.11)

We can solve this equation by switching to conformal time, defined via dt = adτ,

1This is reminiscent of the pseudo-conformal mechanism [140, 141] and of Galilean genesis [142].
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and defining the canonically normalized entropy perturbation vs ≡ aδs, leading to

v′′s +

[
k2 − a′′

a
− b2

4
φ′2 − b

2
a2V,φ

]
vs = 0, (4.12)

where a prime denotes a derivative w.r.t. conformal time. To proceed, we must
evaluate all the terms enclosed by the square brackets above. In the ekpyrotic scaling
solution the scale factor evolves as a(τ) ∝ (−τ)1/(ε−1), so that

a′′

a
= − (ε− 2)

(ε− 1)2τ2
. (4.13)

Using the definition of the fast-roll parameter ε, we also obtain

φ′ =
√

2εH =

√
2ε

(ε− 1)τ
, (4.14)

where H = a′/a, while the Friedmann equation in conformal time can be used to
calculate the potential

a2V = −a2V0e
−cφ = 3H2 − 1

2
φ′2 = − (ε− 3)

(ε− 1)2τ2
, (4.15)

and one can use this expression to evaluate a2V,φ = −
√

2εa2V. We now have all the
ingredients necessary to solve the entropy perturbation equation, which reduces to

v′′s +

[
k2 − 1

(ε− 1)2τ2

(
−ε+ 2 +

b

c
(ε2 − 3ε) +

b2

c2
ε2
)]

vs = 0, (4.16)

where ε = c2/2. In the above expression, we have intentionally written out factors of
c in two places – this is because it will be convenient to define a parameter ∆, which
quantifies the difference in the coefficients b and c and in terms of which the final
result is most easily expressed,

b

c
≡ 1 + ∆ . (4.17)

Then the equation above can be solved in terms of Hankel functions. Imposing the
usual boundary condition that in the far past (−kτ � 1) the mode function is that
of a fluctuation in Minkowski space,

lim
τ→−∞

vs =
1√
2k
e−ikτ , (4.18)
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we obtain (up to a phase that is irrelevant here)

vs =

√
π

4

√
−τH(1)

ν (−kτ), (4.19)

where H(1)
ν denotes a Hankel function of the first kind with index ν, where

ν2 =
9

4

(
1 +

2

3

∆ε

(ε− 1)

)2

→ ν =
3

2
+

∆ε

(ε− 1)
. (4.20)

Remarkably, the expression for ν2 combines into a perfect square and thus we can
write out the index of the Hankel function without having to make an approximation.
(Note that there also exists a second branch where one takes the negative root
ν = −3

2− ∆ε
(ε−1) . However, this branch turns out to correspond to an unstable solution,

and hence we will not consider it further.) At late times, the entropy perturbations
then have the following wavenumber and time dependence

vs ∝ k−ν(−τ)1/2−ν (|kτ | � 1). (4.21)

The spectral index of the entropy perturbations is found to be

ns = 4− 2ν = 1− 2∆
ε

(ε− 1)
. (4.22)

Note that when the two exponents b and c in the potential and non-minimal coupling
are equal, we obtain an exactly scale-invariant spectrum, ns = 1. However, when b
and c differ slightly, we obtain deviations from scale-invariance. Since we have ε > 3,

we can see that the deviation from scale-invariance is always between −3∆ and −2∆.

Thus, if b is larger than c by about two percent, we obtain the central value ns = 0.96

reported by the PLANCK team [9]. If we imagine that b and c start out being equal,
then it is in fact not implausible that c should decrease somewhat over time: in order
to have a successful model of the early universe, at some point the ekpyrotic phase
must come to an end, which is most easily achieved if c is diminished during the
ekpyrotic phase.

Motivated by these arguments, we are led to extend the above analysis to allow
for c to be a slowly-varying function of time. Up to this point, we have not made
any approximations. Here, however, we find that we can only obtain useful and
simple expressions in the limit that ε � 1. Expressing the change in c in terms of
scale-factor “time” N = ln a, with dN = Hdt, we can derive the relations (see also
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[28])

H ≈ (ετ)−1

(
1 +

1

ε
+
ε,N
ε2

)
, −a

′′

a
= H2(ε−2) ≈ τ−2

(
1

ε
− 4

ε3
+

2ε,N
ε3

)
, (4.23)

and

φ′ =
√

2εH ≈ τ−1

√
2

ε

(
1 +

1

ε
+
ε,N
ε2

)
, a2V,φ = τ−2 1√

2ε

(
2− 2

ε
+ 3

ε,N
ε2

)
.

(4.24)
Using these, and repeating the same steps as above, the spectral index can be ap-
proximated by

ns − 1 = −2∆− 7

3

ε,N
ε2

(ε� 1). (4.25)

Note that N decreases during the ekpyrotic phase since the universe is contracting,
and hence decreasing ε corresponds to ε,N > 0. Thus a decreasing ε or c, required in
order for the ekpyrotic phase to come to an end, leads to a red tilt in the spectrum
of the entropy perturbations.

4.1.3 Higher-order perturbations

We will now turn our attention to the higher-order perturbations, where we include
results at linear order for a general non-minimal coupling term Ω(φ)2 for complete-
ness. During the ekpyrotic phase, the curvature perturbations have a blue spectrum
[108] and moreover they are not amplified [144, 88], such that we do not need to
discuss them. The entropic perturbations are of more interest. In the constant χ
background the entropic direction in field space is precisely the χ direction.

The specification of comoving gauge, δσ(1) = δσ(2) = 0, translates directly to

δφ(1)|ekp = 0 (4.26)

at linear order from (3.35), and

δφ(2)|ekp =
1

2 ˙̄σ

(
δsδ̇s− Ω−1Ω,φ

˙̄φδs2
)

= −1

2
Ω2 ˙̄φ−1δχ ˙δχ (4.27)

at second order from (3.39). With the definitions of the entropy perturbation at
linear and quadratic order from Eqs. (3.36) and (3.40),

δs|ekp = −Ω(φ)δχ, (4.28)

78



and
δs(2)|ekp = −Ω(φ)δχ(2), (4.29)

the evolution equations for the entropy perturbation simplify significantly: at linear
order, starting from (3.48) we obtain

δ̈s+ 3Hδ̇s+
[
Ω−1Ω,φV̄,φ − Ω−1Ω,φφ

˙̄φ2
]
δs ≈ 0, (4.30)

which rewritten in terms of δχ and making use of the background equation for φ
(4.2) becomes

δ̈χ+
(

3H + 2Ω−1Ω,φ
˙̄φ
)

˙δχ ≈ 0. (4.31)

It is immediately clear that ˙δχ = 0 is a solution during the ekpyrotic phase2. This
further simplifies our definitions; the second-order perturbation in the first scalar
field (4.27) vanishes,

δφ(2)|ekp = 0. (4.32)

It is straightforward then to show that during the ekpyrotic phase the equation
of motion for the entropy perturbation at second order, given by (3.50), takes the
same form as the first-order one, namely

¨δs(2) + 3H ˙δs(2) +
[
Ω−1Ω,φV̄,φ − Ω−1Ω,φφ

˙̄φ2
]
δs(2) ≈ 0. (4.33)

No source term arises for the second-order entropy perturbation δs(2), and we have
the trivial solution

δs(2)|ekp = 0, (4.34)

generating no intrinsic non-Gaussianity for the entropy perturbations. By contrast,
the entropy perturbations develop significant local non-Gaussian corrections in the
standard entropic mechanism already during the ekpyrotic phase, due to the χ-
dependence of the potential [97, 145, 146, 147, 20, 98, 7].

Having solved for the entropy perturbation, we can use Eqs. (3.52) and (3.53) to
obtain the evolution equation for the curvature perturbation at linear and quadratic
order, respectively, as

˙ζ(1)|ekp ≈ 0, (4.35)

2The solution at linear order is non-zero (δχ(1) = constant) due to the quantization and associ-
ated amplification of the perturbations.
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noting that ˙̄θ|ekp = 0, and

˙ζ(2)|ekp ≈
HV̄,φ

˙̄σ2

[
˙̄σ−1δsδ̇s+ Ω−1Ω,φδs

2
]

= −HV̄,φ
˙̄φ3

Ω2δχ ˙δχ = 0, (4.36)

where the last equality follows from (4.31). Thus, during the ekpyrotic phase, no
second-order curvature perturbation is generated, fNL integrated = 0. This becomes
clear once one realises that the linearised solution, given by δχ = constant, behaves
analogously to the background.

For the explicit parametrisation of the potential in terms of c in (4.5) and the
non-minimal coupling in terms of b in (4.6), we argued that a natural extension is to
allow the equation of state (or fast-roll) parameter ε to be a slowly varying function
of time. In that case the time-dependence of the entropic mode functions is slightly
modified, leading to a small source term for the second-order curvature perturbation
during the ekpyrotic phase, with

ζ(2)′ = − H
σ̄′2

a2V̄,σδs
(1)

[
δs(1)′

σ̄′
− b

2
δs(1)

]

= − 1

12

v2
s

a2

1

(−τ)

ε,N
ε2
.

(4.37)

If we approximate the time dependence of the fluctuation modes vs/a ∝ 1/τ then
we can easily perform the integral, obtaining

ζ
(2)
ek = − 1

24
(δsek−end)

2 ε,N
ε2
. (4.38)

We can see that the coefficient of (δsek−end)
2 is tiny, of O(10−3) at most for real-

istic cases. Thus, the non-minimal entropic mechanism generates almost perfectly
Gaussian entropy perturbations over the course of the ekpyrotic phase.

We can now apply our new results from the previous chapter to extend this
discussion to third order. During the ekpyrotic phase and with the field space metric
given in (4.1), the equation of motion (3.62) at third order simplifies to

¨δs(3) + 3H ˙δs(3) +
[
Ω−1Ω,φV̄,φ − Ω−1Ω,φφ

˙̄φ2
]
δs(3) ≈ 0 (4.39)

allowing the solution
δs(3)|ekp = −Ωδχ(3) = 0. (4.40)
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As at second order, no intrinsic non-Gaussianity for the entropy perturbations is
generated at third order for this class of models. Note that if we had not added the
gauge-invariant term 1

6 ˙̄σ2 δsδ̇s
2
to the definition of the third-order entropy perturba-

tion in (3.55), then δs(3) would have been non-zero. This would not have changed
any results for physically measurable quantities, but it is clear that our present defi-
nition of the third-order entropy perturbation is preferable to the older definition of
[20], both on physical and aesthetic grounds.

The curvature perturbation at third order can be calculated by noting that during
the ekpyrotic phase, V̄,χ = ˙̄θ = 0, and hence

δV |ekp = V̄,φδφ+ V̄,φδφ
(2) +

1

2
V̄,φφδφ

2 + V̄,φδφ
(3) + V̄,φφδφδφ

(2) +
1

6
V̄,φφφδφ

3 +O(4),

(4.41)
which simplifies to

δV |ekp
δσ=0≈ V̄,φδφ

(3) +O(4), (4.42)

in comoving gauge. From Eq. (3.61), we have that during the ekpyrotic phase (in
comoving gauge on large scales)

δσ(3)|ekp
δσ=0≈ −δφ(3) = 0. (4.43)

Thus there is no source for the curvature perturbation during the ekpyrotic phase,

˙ζ(3)|ekp =
2H
˙̄σ2
δV (3) δσ=0≈ 2H

˙̄σ2
V̄,φδφ

(3) = 0, (4.44)

and at third order also the comoving curvature perturbation remains zero during the
ekpyrotic phase, i.e. we have gNL integrated = 0.

In summary, we find that the ekpyrotic phase produces no local non-Gaussianity
at all – at least up to third order in perturbation theory – neither for the entropy
nor the curvature fluctuations. As we will now see, the conversion process of entropy
into curvature fluctuations will change this result appreciably.

4.2 The conversion phase

What we observe in the cosmic background radiation are not entropy perturbations,
but rather the temperature fluctuations stemming directly from curvature perturba-
tions. Thus, if we want our model to be viable, we must ensure that the entropy
perturbations discussed so far can be converted into curvature fluctuations. It is im-
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portant to keep in mind that during the ekpyrotic phase and at the linearised level,
quantum curvature perturbations are not amplified into classical perturbations, un-
like the entropic modes discussed above [144, 88]. Hence, at the end of the ekpyrotic
phase, the entropy perturbations are the only classical perturbations there are. The
equation governing the evolution of the comoving curvature perturbation on large
scales is derived in subsection 2.4.2. At the linearised level, it is given by (2.167),

ζ̇ =
2HV̄,s

˙̄σ2
δs = −

√
2

ε
˙̄θδs. (4.45)

Note that in comoving gauge the perturbations in the first scalar field are gauged
away, δφ = −δσ = 0, and the curvature perturbation corresponds to a local re-
scaling of the scale factor – see Eq. (3.30). Thus ζ can be thought of as a perturbation
parallel to the background trajectory. As Eq. (4.45) shows, the entropy perturbations
δs act as a source for the curvature perturbations when V,s 6= 0, i.e. when there is a
transverse force on the background trajectory. This equation clearly illustrates that
whenever the background trajectory bends, curvature perturbations are generated.
Since there is no k-dependence in Eq. (4.45), the spectrum of the resulting curvature
perturbations will be identical to that of the entropy perturbations that source them,
and thus the spectral index of the curvature perturbations will be given by Eq. (4.22)
(or, when ε evolves and with ε� 1, by Eq. (4.25)).

Following the logic in subsection 2.4.2 we can estimate the amplitude of the
curvature perturbations produced during ekpyrotic or kinetic conversion. We obtain
a power spectrum

Pζ =
k3

(2π)2
〈ζ2
final〉 ≈

k3

(2π)2εc
(δsek−end)

2 ≈ (ε− 1)2

εc(ε− 3)

Vek−end
(2π)2

, (4.46)

where Vek−end = |V (tek−end)| again denotes the magnitude of the potential at the
end of the ekpyrotic phase, which corresponds to the energy scale of the deepest
point in the potential. Unless the fast-roll parameter ε during the ekpyrotic phase
is very close to 3, this implies that (just as for the standard entropic mechanism)
the potential has to reach the grand unified scale Vek−end ≈ (10−2MPl)

4 in order for
the curvature perturbations to have an amplitude in agreement with the observed
value of about 2×10−9 [9]. When ε is close to 3, which for the non-minimal entropic
mechanism becomes a real possibility since the departure from scale-invariance of the
spectral index is not related to the magnitude of ε, the energy scale of the potential
minimum can be lower.
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In the following, we will solve the equations of motion numerically, focussing on
the kinetic conversion process: After the ekpyrotic phase has come to an end, the
conversion from entropy to curvature perturbations during the subsequent kinetic
phase is achieved by a bending in the field space trajectory. This bending occurs
naturally in the heterotic M-theory embedding of the ekpyrotic/cyclic model [83, 100,
105, 101], though other origins of such a bending may of course also be envisaged.
The bending of the scalar field space trajectory can be modelled by having a repulsive
potential (given a specific realisation of the cyclic model in heterotic M-theory, this
repulsive potential can in principle be calculated [101]). Here, in order to be general,
we consider four different representative forms for the repulsive potential, namely

V1,2 = v
[
x−2 + r x−6

]
, v

[
(sinhx)−2 + r (sinhx)−4

]
, (4.47)

with r = 0, 1 and where the dependence of the potential on x = −φ
2 +

√
3χ
2 expresses

the fact that the repulsive potential forms an angle (here chosen to be π/6) with
respect to the background trajectory. The different potentials as well as a typical
reflected field space trajectory are shown in Fig. 4.2.

V1Hr=0L

V1Hr=1L

V2Hr=0L

V2Hr=1L x

0 1 2 3 4 5
0

1. ´ 10-9

2. ´ 10-9

3. ´ 10-9

4. ´ 10-9

5. ´ 10-9

V(φ,χ)

φ

χ

Figure 4.2: Left: The repulsive potentials (V1,2 with r = 0, 1) given in Eq. (4.47).
Right: The field space trajectory in the repulsive potential V1(r = 0).

One of the important parameters is the duration of the conversion process. We
measure it by the number of e-folds N of the evolution of |aH| during conversion.
That is, one e-fold of conversion corresponds to ȧ(tconv-end) = e · ȧ(tconv-beg). In our
numerical studies we determine N by determining the number of e-folds during which
90 percent of the total bending takes place, i.e. we require

∫ tconv-end
tconv-beg

˙̄θdt/
∫ tkin-end
tkin-beg

˙̄θdt =

0.9. Conversions lasting about one e-fold correspond to what we call smooth conver-
sions, while shorter conversions are sharper. We find that the results depend very
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significantly on the smoothness of conversion.
In the non-minimal entropic mechanism the local bispectrum produced during

the conversion process is small when the conversion is efficient (which corresponds to
the conversion being smooth [147]). However, it is rather non-trivial to obtain such
an efficient conversion process. This becomes clear when we analyse the equation
of motion for χ given in (4.3), where the potential is now the repulsive potential
modelling the conversion. Even small changes along the background trajectory (along
σ ∼ φ) lead to an enormous factor Ω−2 ∼ eφ multiplying the now non-zero χ-
derivative of the potential. This causes the background trajectory to be sharply
deflected, leading to an extremely inefficient conversion. So whenever the scalar
curvature, given by

R = −2
Ω,φφ

Ω
, (4.48)

is significant, the conversion is highly inefficient. This has the consequence of leading
to a small amplitude for the curvature perturbations, and large non-Gaussianities
in clear contradiction with observations. What this means is that the field space
metric, taken to be Ω = e−bφ/2 during the ekpyrotic phase, has to become flatter
again during the conversion process. Thus, in the same way as the potential turns
off after the end of the ekpyrotic phase, the field space metric must progressively
return to being trivial.

4.2.1 Linearly decaying field space metric

Motivated by the previous discussion, we want to analyse cases where the field space
metric returns to being trivial during the conversion process, after the end of the
ekpyrotic phase. We will first concentrate on the case where the Ricci scalar of the
field space decays linearly with time. This can be modelled by a kinetic coupling
function of the form

Ω = 1− b · I0(d · ecφ/2), (4.49)

where I0 is a modified Bessel function of the first kind. This has the nice property
that the scalar curvature (4.48) has a constant slope Ṙ and decays linearly, as seen
in the rightmost panel of Fig. 4.3. We have plotted Ω in in the central panel in the
region of the conversion, and the leftmost panel of the same figure shows the bending
of the trajectory for a typical smooth conversion lasting one e-fold.

Fig. 4.4 shows plots of the local non-linearity parameters fNL (parametrising the
local bispectrum) and gNL (parametrising the local trispectrum) for different dura-
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Figure 4.3: The evolution of the fields (left), the field space metric and the scalar
(Ricci) curvature (right) during one e-fold of conversion (from t = −275 to t =

−47), plotted for the specific case with V2 (r = 1) = v
[
(sinhx)−2 + (sinhx)−4

]
, and
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)
, giving fNL = −1.3 and gNL = −544.
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Figure 4.4: Non-Gaussianity plotted against different slopes of the scalar curvature
(Ṙ) for different durations of the conversion (N = 1/2, 2/3, 3/4, 1) for the repulsive
potential V2 with r = 1. The slope Ṙ is varied by choosing different values for
d = 1/10, 1/20, 1/50. Note that the magnitudes of fNL and gNL are significantly reduced
for smoother conversion processes.
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tions of conversion and as a function of the slope Ṙ. (The non-linearity parameters
of the comoving curvature perturbation are defined in Eqs. (2.111) and (2.112).)
There are two obvious trends: the smoother, and thus the longer and more efficient,
the conversion process is, the smaller the non-Gaussianity. And the closer the field
space metric is to trivial, again the smaller in magnitude are the non-linearity pa-
rameters fNL and gNL. Note that for smoother conversions, the dependence on the
slope Ṙ is much weaker, and hence, to some extent, the predictions converge for
smooth conversions. Referring back to our previous discussion, it is easy to see by
extrapolation that large and rapidly varying field space curvatures very quickly lead
to values of the non-Gaussianity parameters that are much larger than allowed for by
current observational bounds. On the other hand, for smooth conversions and small
and slowly changing field space curvatures the local bispectrum parameter fNL is
of magnitude |fNL| . 5 while the trispectrum parameter is always negative and of
magnitude |gNL| ∼ O(102) − O(103). These values are confirmed by an analysis of
the effect of changing the functional form of the repulsive potential (while special-
ising to smooth conversions lasting one e-fold), as shown in Fig. 4.5. Note that the
two potentials V1 and V2 with r = 0, colour coded in blue and green, respectively,
give nearly identical predictions.
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Figure 4.5: Non-Gaussianity plotted against different slopes of the scalar curvature
(Ṙ) for different potentials (V1,2 with r = 0, 1) for a conversion duration of one e-fold.
The two r = 0 lines happen to be virtually coincident. Note that the values for fNL
are clustered around zero, while the values for gNL are always appreciably negative.
This is a characteristic feature of current ekpyrotic models.

4.2.2 Asymptotically flat field space metric

In order to check the robustness of our results, we will now consider a different
functional form of the metric, namely we will consider the case where a trivial metric
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is approached exponentially fast (in field space),

Ω = 1− bedφ/2, (4.50)

where b and d are free parameters. We have plotted Ω in the central panel of
Fig. 4.6 in the region of the conversion. The corresponding field space trajectory and
curvature scalar are shown in the left and right panels, respectively.
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Figure 4.6: The evolution of the fields, the field space metric and the scalar cur-
vature during one e-fold of conversion (from t = −304 to t = −46), plotted for
the specific case with V2 (r = 1) = v

[
(sinhx)−2 + (sinhx)−4

]
, and Ω

(
b = d = 1

50

)
=

1− 1
50eφ/100, giving fNL = 1.0 and gNL = −235.

Once again, we can verify the importance of the efficiency of conversion – see
Fig. 4.7. We have plotted the results as a function of b = d: for b 6= d we found similar
results (though typically slightly less variation in the non-linearity parameters). As
the figure demonstrates, an efficient/smooth conversion is crucial, in the sense that in
this case the typical values of the bispectrum are of O(1). Note that for less efficient
conversions the spread in values is much larger, and hence no generic predictions can
be made. For the trispectrum, the situation is analogous, with efficient conversions
drastically reducing the range of possible values of gNL.

We can also determine the effect of changing the functional form of the repulsive
potential in scalar field space. The results are shown in Fig. 4.8, where for all cases
we have assumed one e-fold of conversion. As can be seen from the figure, for such
smooth conversions the expected values for the bispectrum are in the range |fNL| . 5,

while those for the trispectrum are |gNL| ∼ O(102) − O(103) and negative in sign,
exactly as for the case of a linearly changing scalar field curvature.
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Figure 4.7: Non-Gaussianity plotted against different field space metrics (Ω =
1 − bedφ/2 with b = d) for different durations of the conversion (N = 1/2, 2/3, 3/4, 1)
for the potential V2 with r = 0. Note that as in the case with a linearly decaying
field space curvature, the magnitudes of fNL and gNL are significantly reduced for
smoother conversion processes.
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Figure 4.8: Non-Gaussianity plotted against different field space metrics (Ω =
1 − bedφ/2 with b = d) for different potentials (V1,2 with r = 0, 1) for a conversion
duration of one e-fold.
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4.3 Comparison to the minimally coupled entropic mech-
anism

It may be interesting to compare these results to those obtained via the older, min-
imally coupled entropic mechanism [87, 148, 28, 89, 90] as introduced in subsection
2.4.2. In that case, the kinetic terms of the scalar fields are canonical, but one as-
sumes a potential that is unstable in the entropic direction. During the ekpyrotic
phase, the potential is usefully written as (2.148),

Vmin. entropic mech., ek = −V0e
−
√

2εσ
[
1 + εs2 +

κ3

3!
ε3/2s3 +

κ4

4!
ε2s4 + . . .

]
, (4.51)

where κ3 and κ4 are important for the bispectrum and trispectrum, respectively. In
these models, and in contrast to the non-minimal entropic mechanism, a substantial
part of the total non-Gaussianity can arise during the ekpyrotic phase. This can be
seen by solving the equation of motion (3.62) for the entropy perturbation during
the ekpyrotic phase. Expanding to leading order in 1/ε, for large ε, we have as the
initial conditions for the start of the conversion phase

δs = δsL +
κ3
√
ε

8
δs2
L + ε

(
κ4

60
+
κ2

3

80
− 19

60

)
δs3
L. (4.52)

Notice the different numerical factor in the term proportional to ε compared to [20]
due to the change in the definition of the third-order entropy perturbation. As is clear
from this expression, there is typically already a significant non-Gaussian component
to the entropy perturbation prior to the phase of conversion. What is more, some
of this conversion already occurs during the ekpyrotic phase, where the comoving
curvature obeys the evolution equation (with ζ = ζ(1) + ζ(2) + ζ(3))

ζ ′ =
2H

σ̄′2

[
− V̄,σ
σ̄′
δsδs′ + V̄;ssδs

2 +
1

3
V̄;sssδs

3

]
, (4.53)

Using Eqs. (2.111) and (2.112), this leads to

fNL integrated =
5

12

[δsL(tek-end)]2

|ζL(tconv-end)|2 , (4.54)

gNL integrated =
275

1296
κ3

√
ε

[δsL(tek-end)]3

|ζL(tconv-end)|3 . (4.55)
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In order to calculate the contribution from the additional conversion process due to
the subsequent bending of the scalar field trajectory, we have solved and integrated
the equations of motion (3.62) and (3.63) numerically, using the expression (4.52) as
the initial condition for the entropy perturbation.
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Figure 4.9: Non-Gaussianity plotted against different potentials (V1,2 with r = 0, 1)
for a conversion duration of one e-fold for the minimal entropic mechanism.

The minimal case was analysed in [20] in some detail. There it was shown that the
range of predicted values for the non-Gaussianity parameters narrows drastically as
the conversion process becomes smoother, just as we have found here. Specialising
to conversions lasting one e-fold, we have reproduced the results of [20]: Fig. 4.9
shows the expected values of fNL as a function of κ3 and those of gNL as a function
of κ4 (this time assuming κ3 = 0). As already discussed in [31], one can obtain a
bispectrum in agreement with observations by assuming that the potential is (nearly)
symmetric, which corresponds to |κ3| . 1. In this case, the trispectrum remains
negative and of O(103). Thus we see that if we restrict to symmetric potentials,
the minimally coupled entropic mechanism leads to similar predictions for the non-
Gaussianity parameters fNL and gNL as the non-minimally coupled model considered
in the present paper, though gNL is typically up to an order of magnitude larger in
the minimally coupled case due to the significant intrinsic contribution represented
by the very last (κ3,4-independent, but ε-dependent) term in (4.52).

4.4 Gravitational waves

Just as in the standard ekpyrotic phase, the universe contracts very slowly, a(t) ∝
(τ)1/ε with ε > 3. Thus, the background spacetime is to a first approximation similar
to Minkowski spacetime, and consequently gravitational waves are not amplified.
This provides a heuristic way to understand the result that no significant primordial
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gravitational waves are produced by an ekpyrotic phase [109].
In fact, the dominant contribution to the primordial gravitational wave back-

ground in ekpyrotic models tends to arise at second order in perturbation theory,
where the scalar curvature perturbations act as a source for the gravitational field.
However, as this is a second-order effect, it also leads to the conclusion that detect-
ing primordial gravitational waves stemming from ekpyrotic models is unlikely [110].
Hence, a detection of primordial gravitational waves of a significant amplitude would
falsify all current ekpyrotic models.
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Chapter 5

Conflation – a new type of
accelerated expansion

In this chapter we will present a new cosmological model that combines features of
both inflation and ekpyrosis. This is in the same spirit as the recently proposed
“anamorphic” universe of Ijjas and Steinhardt [149], the distinction being that we
are combining different elements of these models. We will work in the framework of
scalar-tensor theories of gravity. By making use of a field redefinition (more precisely
a conformal transformation of the metric), we transform an ekpyrotic contracting
model into a phase of accelerated expansion. Moreover, we are specifically interested
in the situation where matter degrees of freedom couple to the new (Jordan frame)
metric, so that observers made of this matter will measure the universe to be expand-
ing. Conflation is reminiscent of inflation in the sense that the background expands
in an accelerated fashion. This immediately implies that the homogeneous spatial
curvature and anisotropies are diluted, thus providing a solution to the flatness prob-
lem. However, other features of the model are inherited from the ekpyrotic starting
point of our construction: for instance, the model assumes a negative potential. This
might have implications for supergravity and string theory, where negative poten-
tials arise very naturally and where it is in fact hard to construct reliable standard
inflationary models with positive potentials [77]. Also, conflation does not amplify
adiabatic curvature perturbations (or tensor perturbations). Hence eternal inflation,
which relies on the amplification of large, but rare, quantum fluctuations, does not
occur. This has the important consequence that the multiverse problem is avoided.
As we will show, one can however obtain nearly scale-invariant curvature perturba-
tions by considering an entropic mechanism analogous to the one used in ekpyrotic
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models in the previous chapters. This allows the construction of specific examples
of a conflationary phase in agreement with current cosmological observations.

For related studies starting from an inflationary phase and transforming that
one into other frames, see [150, 151, 152, 153]. In the language of the anamorphic
universe [149], we are looking at the situation where Θm > 0 and ΘPl < 0, while
Ijjas and Steinhardt consider Θm < 0 and ΘPl > 0 (note that inflation corresponds
to Θm > 0 and ΘPl > 0 and ekpyrosis to Θm < 0 and ΘPl < 0).

5.1 Conflation

Our starting point is an ekpyrotic phase constructed in the standard Einstein frame
where the scalar field is minimally coupled to gravity. We refer the reader to sub-
section 2.4.1 for a detailed analysis of the background solution, and will only repeat
the most important results here for convenience.

We model the ekpyrotic phase with a scalar field in a steep and negative potential,
V (φ) = −V0e

−cφ, with action

S =

∫
d4x
√−g

[
R

2
− 1

2
gµν∂µφ∂νφ− V (φ)

]
. (5.1)

In a flat FLRW universe, the equation of motion for the scalar field admits the
(attractor) scaling solution (4.8), [83]

a(t) = a0

(
t

t0

)1/ε

, φ =

√
2

ε
ln

(
t

t0

)
, where t0 = −

√
ε− 3

V0ε2
and c =

√
2ε.

(5.2)
The coordinate time t is negative and runs from large negative values to small neg-
ative values, and for a successful ekpyrotic phase we need ε > 3 (w > 1).

In the following we perform a conformal transformation to the so-called Jordan
frame, where the scalar field is now non-minimally coupled to gravity.

5.1.1 Jordan frame action

A general transformation to Jordan frame is obtained by redefining the metric using
a positive field-dependent function F (φ), with

gµν = F (φ)gJµν . (5.3)
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The corresponding action is given by

SJ =

∫
d4x
√−gJ

[
F (Φ)

RJ
2
− 1

2
kgµνJ ∂µΦ∂νΦ− VJ(Φ) + Lm(ψ, gJµν)

]
, (5.4)

where we have included the possibility of the kinetic term being of the “wrong” sign
by keeping the prefactor k unspecified for now. Note that we have added a matter
Lagrangian to the model, where we assume that the matter couples to the Jordan
frame metric, with the consequence that the Jordan frame metric may be regarded
as the physical metric. The Jordan frame scalar field Φ is defined via

dΦ

dφ
=

√√√√F

k

(
1− 3

2

F 2
,φ

F 2

)
(5.5)

and the potential becomes
VJ(Φ) = F (φ)2V (φ). (5.6)

From the metric transformation (5.3), we can immediately deduce the transformation
of the scale factor,

a =
√
FaJ . (5.7)

The transformation of the 00-component of the metric is absorbed into the coordinate
time interval,

dt =
√
FdtJ , (5.8)

such that the line element transforms as ds2 = F (φ)ds2
J .Moreover, by differentiating

the scale factor w.r.t dt, we can determine the Hubble parameter

H ≡ a,t
a

=
1√
F

(
HJ +

F,tJ
2F

)
, (5.9)

where the Hubble parameter in Jordan frame is given by HJ ≡ aJ,tJ
aJ

.

5.1.2 A specific transformation

We will now specialise to the following ansatz

F (φ) = ξΦ2 = ecγφ, (5.10)

which is inspired by the dilaton coupling in string theory, see for example [154], and
has been used for instance in [152, 153]. This type of non-minimal coupling is also
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known as induced gravity [155]; see e.g. [156, 157, 158] for related studies. Plugging
in the solution for φ from (5.2), we can now integrate dt to find the relationship
between the times in the two frames, yielding

tJ
tJ,0

=

(
t

t0

)1−γ
, (5.11)

where
tJ,0 =

t0
1− γ . (5.12)

Using this result, we can calculate the scale factor in the Jordan frame from (5.7)

aJ = a0

(
t

t0

) 1−εγ
ε

= a0

(
tJ
tJ,0

) 1−εγ
ε(1−γ)

. (5.13)

In order to obtain accelerated expansion, the tJ -exponent has to be larger than 1,

1− εγ
ε(1− γ)

> 1. (5.14)

Moreover, an ekpyrotic phase in the Einstein frame has ε > 3. From (5.14), we see
that for γ < 1 the denominator is positive and hence we would need ε < 1, which
cannot be satisfied for our case. We conclude that to realise a phase of accelerated
expansion in Jordan frame (from an ekpyrotic phase in Einstein frame), we need

γ > 1 . (5.15)

Another constraint is obtained from the relationship between the fields, given by
the transformation in (5.5) and the ansatz we have chosen for F in (5.10). Substi-
tuting the latter into the first and integrating, we get

Φ =
1√
ξ
e
cγφ/2 , (5.16)

where the parameter ξ is now determined in terms of c =
√

2ε, γ and k and given by

ξ =
c2γ2k

4− 6c2γ2
, (5.17)

or alternatively,

ε =
2ξ

γ2 (6ξ + k)
. (5.18)
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The parameter ξ has to be positive for the gravity term in the Jordan frame action
to be positive. A negative ξ would lead to tensor ghosts. Thus we need

ξ > 0 ⇐⇒ k < 0 (5.19)

since γ > 1 and ε > 3. Hence we see that we need the kinetic term for the scalar
field to have the opposite of the usual sign, and we set

k = −1 . (5.20)

Note that this “wrong” sign does not lead to ghosts, as there are additional contribu-
tions from the scalar-tensor coupling to the fluctuations of Φ, and these additional
contributions render the total fluctuation positive (as we will show more explicitly
in section 5.2). With the above choice of k we then also obtain a bound on the
parameter ξ1,

ξ >
1

6
. (5.21)

The Jordan frame potential can be reexpressed in terms of Φ as

VJ(Φ) = F 2(φ)V (φ) = −V0e
(2γ−1)cφ = −VJ,0Φ4−2/γ , (5.22)

where we have defined VJ,0 ≡ V0ξ
2−1/γ . The negative exponential of the ekpyrotic

phase is transformed into a negative power-law potential. We thus see that it is
possible to obtain a phase of accelerated expansion in the presence of a negative
potential in Jordan frame, starting from ekpyrosis in Einstein frame together with
the conditions γ > 1, k = −1, and ξ > 1/6. We will refer to this new phase of
accelerated expansion as the conflationary phase.

5.1.3 Equations of motion in Jordan frame

Varying the action (5.4) w.r.t. the Jordan frame metric and scalar field, we obtain
the Friedmann equations and the equation of motion for the scalar field Φ:

3H2
JF + 3HJF,tJ =

1

2
kΦ2

,tJ
+ VJ , (5.23)

2FHJ,tJ + kΦ2
,tJ
−HJF,tJ + F,tJ tJ = 0, (5.24)

Φ,tJ tJ + 3HJΦ,tJ −
3F,Φ
k

(
HJ,tJ + 2H2

J

)
+
VJ,Φ
k

= 0. (5.25)

1In the language of Brans-Dicke scalar-tensor gravity, this condition translates to ωBD > −3/2.
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The first Friedmann equation (5.23) can be solved for the Hubble parameter,

HJ = −F,tJ
2F
±

√
F 2
,tJ

4F 2
+

k

6F
Φ2
,tJ

+
1

3F
VJ . (5.26)

HJ will give two positive solutions as the square root is always less than −F,tJ
2F > 0,

since k, VJ < 0. To determine the solution that corresponds to contraction in Einstein
frame, we note that the Hubble parameter in Einstein frame given in (5.9) has to be
negative. Hence, we have to pick out the solution for HJ which satisfies

HJ < −
F,tJ
2F

. (5.27)

This is exactly the first term in front of the square root in the expression for HJ in
(5.26). Hence, the square root has to be subtracted off the first term:

HJ = −F,tJ
2F
−

√
F 2
,tJ

4F 2
+

k

6F
Φ2
,tJ

+
1

3F
VJ . (5.28)

We can rewrite Φ as a function of Jordan frame time, tJ , using Eqs. (5.2) and
(5.11),

Φ(tJ) =
1√
ξ

(
tJ
tJ,0

) γ
1−γ

. (5.29)

We can then determine the quantity VJ/Φ2
,tJ

using Eq. (5.22), obtaining

VJ
Φ2
,tJ

=
ε− 3

ε (2− 6εγ2)
. (5.30)

This combination is (non-trivially) time-independent, and hence once it is satisfied for
the initial conditions of a particular solution it will hold at any time. This equation
will be useful in setting the initial conditions for specific numerical examples, as will
be done in the next section.

5.1.4 Initial conditions and evolution with a shifted potential

In this subsection we verify that our construction does indeed lead to accelerated
expansion in Jordan frame. We choose the parameters ε = 10 and γ = 2, leading to
a negative Φ3 potential in Jordan frame – see Fig. 5.1. For an initial field value of
Φ(tbeg) = 10 and VJ,0 = 10−10, we require an initial field velocity (using Eqs. (5.22)
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and (5.30)) of |Φ,tJ | ≈ 5.83 · 10−3. Furthermore we set aJ(tbeg) = 1. Numerical
solutions for the scale factor and scalar field are shown in Fig. 5.2, where the blue
curves indeed reproduce the conflationary transform of the ekpyrotic scaling solution.
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Figure 5.1: Left: The original Jordan frame potential VJ is shown in blue, the
shifted potential UJ in dashed red. Right: The equation of state in Jordan frame,
for the shifted potential.

Note that it follows from Eqs. (5.13) and (5.29) – similarly to inflationary models
– that there is a spacetime singularity at tJ = 0, aJ = 0, Φ = ∞, which should
be resolved in a more complete theory. Either the effective description might break
down at that time, or we might never reach such times in a more complete (cyclic)
embedding of the theory. We leave such considerations for future work.

Eventually, the conflationary phase has to come to an end. As a first attempt at
a graceful exit we shift the potential in Jordan frame by a small amount V1 (it will
turn out that this simple modification is too naive and we will improve on it in the
next subsection),

UJ(Φ) = VJ(Φ) + V1 . (5.31)

The shifted potential, with V1 =
VJ,0
10 , is plotted in Fig. 5.1. The corresponding

evolution of the scalar field Φ and the scale factor in Jordan frame are now shown
as the red dashed curves in Fig. 5.2, while the equation of state is plotted in the
right-hand panel of Fig. 5.1. The conflationary phase lasts until tJ ≈ 10000 when
the equation of state grows larger than wJ = −1/3, and accelerated expansion ends.
The scalar field continues on to about Φ ≈ 0.4 and then rolls back down the potential.
Meanwhile, the scale factor reaches a maximum value and starts re-contracting. This
re-contraction in Jordan frame is unavoidable: from Eq. (5.28), bearing in mind that
F,tJ < 0, it becomes clear that whenever ρJ = k

2 Φ2
,tJ

+ VJ = 0 we have HJ = 0

resulting in a re-contraction in Jordan frame. Given that we start out with both
a negative kinetic term (k = −1) and a negative potential, but then want to reach
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Figure 5.2: Scalar field and scale factor in Jordan frame: the blue curves show the
transformed ekpyrotic scaling solution and the red dashed curves correspond to the
field evolutions in the shifted potential.

positive potential values, means that we will necessarily pass through ρJ = 0 as
the scalar field slows down. It is clear that a shift in the Jordan frame potential
is not sufficient for a graceful exit – more elaborate dynamics are needed to avoid
collapse. One might imagine that the scalar field could stabilise at a positive value
of the potential. It could then either stay there and act as dark energy, or decay
such that reheating would take place. Once the scalar field stabilises, the Einstein
and Jordan frame descriptions become essentially equivalent2. However, this means
that the scale factor will only revert to expansion if a bounce also occurs in Einstein
frame. This motivates us to extend the present model by including dynamics that
can cause a smooth bounce to occur after the ekpyrotic phase.

5.1.5 Transforming an Einstein frame bounce

In ekpyrotic models, after the ekpyrotic contracting phase has come to an end the
universe must bounce into an expanding hot big bang phase. Many ideas for bounces
have been put forward, see e.g. [99, 115, 159, 116, 117, 160, 112, 113] – here we will

2When the scalar field is constant, the two frames are equivalent. However, when the scalar field
is perturbed, then fluctuations in the Jordan frame will still feel the direct coupling to gravity.
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Figure 5.3: The Einstein frame scalar potential used in the bounce model (5.32).

focus on a non-singular bounce achieved via a ghost condensate [122, 139]. This
model has the advantage of being technically fairly simple, and, importantly, it is
part of a class of models for which it has been demonstrated that long-wavelength
perturbations are conserved through the bounce [120, 121]. Moreover, it was shown
in [103] (where the scale at which quantum corrections occur was calculated) that
such models constitute healthy effective field theories. The action we will consider
takes the form

S =

∫
d4x
√−g

[
R

2
+ P (X,φ)

]
, (5.32)

with
P (X,φ) = K(φ)X +Q(φ)X2 − V (φ), (5.33)

and where X ≡ −1
2g
µν∂µφ∂νφ denotes the ordinary kinetic term. The shape of the

functions K(φ) and Q(φ) can be chosen in various ways. The important feature is
that at a certain time (here at φ = −4) the higher derivative term is briefly turned
on while the sign of the kinetic term changes. Moreover, we add a local minimum to
the potential, as shown in Fig. 5.3: after the bounce the scalar field rolls into a dip
in the potential where it stabilises and reheating can occur. For specificity we will
use the functions [139]

K(φ) = 1− 2(
1 + 1

2(φ+ 4)2
)2 , (5.34)

Q(φ) =
V0(

1 + 1
2(φ+ 4)2

)2 , (5.35)

V (φ) = − 1

e3φ + e−4(φ+5)
+ 100

[
(1− tanh(φ+ 4))

(
1− 0.95e−2(φ+6)2

)]
,(5.36)
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where compared to [139] the theory has been rescaled via gµν → V
1/2

0 gµν which
implies K → K, Q → V0Q and V → V −1

0 V . The equations of motion obtained by
varying the action (5.32) read

∇µ (P,X∇µφ)− P,φ = 0, (5.37)

3H2 = ρ, (5.38)

Ḣ = −1

2
(ρ+ p), (5.39)

where the pressure and energy density are given by p = P and ρ = 2XP,X−P . Note
that Ḣ = −XP,X , which shows that the Hubble rate can increase (as is necessary
for a bounce) when the ordinary kinetic term switches sign. The purpose of the
X2 term in the action is twofold: it allows the coefficient of the ordinary kinetic
term to pass through zero, and it contributes to the fluctuations around the bounce
solution in such a way as to avoid ghosts. The Einstein frame bounce solution is
shown in Fig. 5.4, where we have chosen the initial conditions φ0 = 0, φ̇0 = −2.4555,
a0 = 100 and have set V0 = 10−6 and c = 3. The scalar field first rolls down the
potential during the ekpyrotic phase. A bounce then occurs near φ = −4 due to
the sign change of the kinetic term. After this, the universe starts expanding, the
potential becomes positive and the scalar field rolls into the dip where it oscillates
with decaying amplitude – see Fig. 5.4.
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Figure 5.4: Left: Scalar field and scale factor for the bounce solution in Einstein
frame. Right: Parametric plot of the scalar field and scale factor in Einstein frame.
This plot nicely illustrates the smoothness of the bounce.
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In the following we want to transform this bouncing solution into Jordan frame,
in order to see how such a bounce translates into a graceful exit for the conflationary
phase. The Ricci scalar transforms under our conformal transformation (5.3) as [130]

R =
1

F

(
RJ − 6�J ln

√
F − 6gµνJ ∂µ

(
ln
√
F
)
∂ν

(
ln
√
F
))

, (5.40)

where the second term contributes as a total derivative in the action. Note that the
kinetic term transforms as

X ≡ −1

2
gµν∂µφ∂νφ = − 1

2F
gµνJ ∂µφ∂νφ = − 1

2F

(
∂φ

∂Φ

)2

gµνJ ∂µΦ∂νΦ ≡ 1

F

(
∂φ

∂Φ

)2

XJ .

(5.41)
Plugging everything into Eq. (5.32) yields the action in Jordan frame

SJ =

∫
d4x
√−gJ

[
F (Φ)

RJ
2

+ PJ(XJ ,Φ)

]
, (5.42)

where we have defined the new functions in Jordan frame as

PJ ≡ KJXJ +QJX
2
J − VJ , (5.43)

KJ ≡ F

(
K − 3

2

F 2
,φ

F 2

)(
∂φ

∂Φ

)2

= 4ξ

(
K

c2γ2
− 3

2

)
, (5.44)

QJ ≡ Q

(
∂φ

∂Φ

)4

=
16

c4γ4Φ4
Q, (5.45)

VJ ≡ F 2V = ξ2Φ2V, (5.46)

and we have used
∂φ

∂Φ
=

2

cγΦ
and F (Φ) = ξΦ2. (5.47)

Thus the equations of motions in Jordan frame are given by

∇µ (PJ,X∇µΦ) = PJ,Φ +
1

2
RJF,Φ, (5.48)

3FH2
J + 3HJF,tJ = ρJ , (5.49)

ρJ + pJ + 2FHJ,tJ −HJF,tJ + F,tJ tJ = 0, (5.50)

with the effective energy density ρJ = 2XJPJ,X −PJ and effective pressure pJ = PJ .
The conflationary solution is shown in Fig. 5.5. The scalar field Φ rolls up the

approximately −Φ3 potential with decreasing velocity. It starts out at Φ0 = 2.4267
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Figure 5.5: Full evolution of the scale factor for the transformed solution in Jordan
frame. The conflationary phase lasts while the scalar field rolls up the potential
towards Φ ∼ 10−9. During this period the scale factor increases by many orders of
magnitude. During the exit of the conflationary phase the scale factor and scalar
field undergo non-trivial evolution which is hard to see in the present figure and is
shown in detail in Fig. 5.6
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and very quickly decreases to a field value Φ ∼ 10−9 where it stays for a long time.
By this time, the bounce in Einstein frame has already taken place, but interestingly
it leads to nothing dramatic in Jordan frame: the universe simply keeps expanding
and the scalar field keeps decreasing. The more interesting dynamics in Jordan frame
occur later, see Fig. 5.6. As we have already discussed, the universe re-contracts for
ρJ = 0. The potential energy increases to positive values (in this model accelerated
expansion ends as the potential becomes positive!) and the kinetic term decreases
leading to a re-contraction at tJ ≈ 4.05 · 109. The re-contraction HJ < 0 leads to an
increased scalar field velocity, allowing the scalar field to roll over the potential barrier
and into the dip, where it starts oscillating around the minimum, eventually settling
at the bottom. The Hubble rate HJ changes sign each time the energy density passes
through zero, so that the scale factor oscillates together with the scalar field. Once
the scalar field is settled, continuous expansion occurs. Note that these oscillations
of the scale factor do not correspond to a violation of the null energy condition –
they are simply due to the coupling between the scalar field and gravity in Jordan
frame. It would be interesting to see whether reheating might speed up the settling
down of the scalar field – we leave such an analysis for future work.

5.2 Perturbations

It is known that under a conformal transformation of the metric perturbations are
unaffected. Thus we know what kind of cosmological perturbations our model leads
to: during the ekpyrotic phase, both adiabatic scalar fluctuations and tensor pertur-
bations have a blue spectrum and are not amplified. However, with the inclusion of
a second scalar field, nearly scale-invariant entropy perturbations can be generated
first, which can then be converted into adiabatic scalar curvature fluctuations at
the end of the ekpyrotic phase. Translated into the conflationary framework of the
Jordan frame, these results are nevertheless surprising: they imply that we have a
phase of accelerated expansion during which adiabatic perturbations as well as ten-
sor fluctuations have a spectrum very far from scale-invariance, and moreover they
are not amplified. It is thus instructive to calculate these perturbations explicitly
in this frame, which is what we will do next. In the following subsection, we will
also describe the entropic mechanism from the point of view of the Jordan frame.
Throughout this section, we will use the notation that a prime denotes a derivative
w.r.t. conformal time τ, which is equal in both frames as dt/a = dtJ/aJ .
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5.2.1 Perturbations for a single field

As was calculated for instance in [152], the quadratic action for the comoving curva-
ture perturbation ζJ in Jordan frame is given by

S
(2)
J =

1

2

∫
d4x

a2
JΦ′2(

HJ + Φ′

Φ

)2 (6ξ − 1)
(
ζ ′2J − (∂iζJ)2

)
, (5.51)

where we have assumed F (Φ) = ξΦ2. The absence of ghost fluctuations can thus be
seen to translate into the requirement

ξ >
1

6
, (5.52)

which is the same condition on ξ that we discovered before in Eq. (5.21). We can
define

z2
J =

a2
JΦ′2(

HJ + Φ′

Φ

)2 (6ξ − 1) , (5.53)

so that for the canonically normalised Mukhanov-Sasaki variable vJ = zJζJ we obtain
the mode equation in standard form, namely

v′′Jk +

(
k2 − z′′J

zJ

)
vJk = 0 . (5.54)

Note however that zJ does not have the usual form ∼ aJΦ′/HJ , but has an extra
contribution from the scalar field in the denominator. This contribution is crucial,
as it implies that the usual intuition gained from studying inflationary models in
Einstein frame is not applicable here. For the conflationary transform of the ekpyrotic
scaling solution we have

aJ(tJ) = a0

(
tJ
tJ,0

) 1−εγ
ε(1−γ)

, Φ(tJ) =
1√
ξ

(
tJ
tJ,0

) γ
1−γ

, (5.55)

while the relationship between physical time and conformal time is given by

tJ ∼ (−τ)
ε(1−γ)
ε−1 . (5.56)

These relations imply that zJ(τ) ∼ (−τ)1/(ε−1), which leads to

z′′J
zJ

=
2− ε

(ε− 1)2

1

τ2
. (5.57)
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Imposing Bunch-Davies boundary conditions in the far past selects the solution
(given here up to a phase)

vJk =

√
−π

4
τH(1)

ν (−kτ) , (5.58)

where H(1)
ν is a Hankel function of the first kind with index ν = 1

2 − 1
ε−1 . This leads

to a scalar spectral index

nζ − 1 ≡ 3− 2ν = 3−
∣∣∣∣ε− 3

ε− 1

∣∣∣∣ , (5.59)

where ε corresponds to the Einstein frame slow-roll/fast-roll parameter. Here ε > 3

and thus the (blue) spectrum is always between 3 < nζ < 4, i.e. the spectrum is
identical to that of the adiabatic perturbation during an ekpyrotic phase, as expected
[108].

The calculation of the (transverse, traceless) tensor perturbations γJij proceeds
in an analogous fashion. Their quadratic action is given by

SJ = −1

8

∫
d4xF (Φ)

√
gJg

µν
J ∂µγJij∂νγJij . (5.60)

Writing the canonically normalised perturbations as h εij ≡ zTγJij , where εij is a
polarisation tensor and z2

T = F (Φ)a2
J , the mode equation in Fourier space again

takes the usual form
h′′k +

(
k2 − z′′T

zT

)
hk = 0 , (5.61)

except that here zT is not just given by the scale factor but involves the scalar field
too. In fact zT ∝ ΦaJ ∝ (−τ)1/(ε−1) and thus zT ∝ zJ . The spectral index comes
out as

nT ≡ 3−
∣∣∣∣ε− 3

ε− 1

∣∣∣∣ , (5.62)

which is the same blue spectrum as that obtained during an ekpyrotic phase, as
expected.

These simple calculations have an important consequence. In the limit where
|kτ | � 1, which corresponds to the late-time/large-scale limit, the adiabatic scalar
and tensor mode functions behave as [144, 88]

vJk , hk ∝
π

22νΓ(ν)Γ(ν + 1)
(−kτ)1− 1

ε−1 − i(−kτ)
1
ε−1 . (5.63)
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Given that ε > 3, this implies that as (−kτ) → 0 neither the scalar nor the tensor
perturbations are amplified. In other words, the perturbations remain quantum and
do not become squeezed in contrast with standard models of inflation where ε < 1

and the second term on the right hand side in Eq. (5.63) is massively amplified. Thus
we have found an example of a model in which the spacetime is rendered smooth via
accelerated expansion, but without the amplification of perturbations and thus also
without the possibility for the run-away behaviour of eternal inflation. Note that
eternal inflation happens because rare, but large quantum fluctuations change the
background evolution by prolonging the smoothing phase in certain regions, with
these regions becoming dominant due to the high expansion rate. In the absence of
these amplified quantum fluctuations, the background evolution will be essentially
unaffected and will proceed as in the purely classical theory. This property certainly
deserves further consideration in the future.

5.2.2 Non-minimal entropic mechanism in Jordan frame

In order to obtain a nearly scale-invariant spectrum for the scalar perturbations, a
second field has to be introduced. There are two possibilities that have been studied
extensively in the ekpyrotic literature and which have been discussed in this thesis:
either one introduces an unstable direction in the potential (see subsection 2.4.2)
[87, 148, 28, 89], or one allows for a non-minimal kinetic coupling between the two
scalars (as introduced in chapter 4) [22, 21, 24, 23, 161]. In both cases nearly scale-
invariant entropy perturbations can be generated during the ekpyrotic phase, and
these can then be converted to adiabatic curvature perturbations subsequently. Here
we will discuss the case of non-minimal coupling, and show that it carries over into
the context of conflation.

In Einstein frame, one starts with an action of the form [22, 21]

S =

∫
d4x
√−g

[
1

2
R− 1

2
gµν∂µφ∂νφ−

1

2
gµνe−bφ∂µχ∂νχ+ V0e

−cφ
]
. (5.64)

In the ekpyrotic background, the second scalar χ is constant. One can then see
from the scaling solution (5.2) that when b = c the non-minimal coupling mimics an
exact de Sitter background e−bφ ∝ 1/t2 for the fluctuations δχ (which correspond
to gauge-invariant entropy perturbations), which are then amplified and acquire a
scale-invariant spectrum. When b and c differ slightly, a small tilt of the spectrum
can be generated.
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Transforming the action (5.64) to Jordan frame, we obtain

SJ =

∫
d4x
√−gJ

[
ξΦ2RJ

2
+

1

2
gµνJ ∂µΦ∂νΦ− 1

2
gµνJ ξ

γc−b
γc Φ

2γc−2b
γc ∂µχ∂νχ+ VJ,0Φ

4− 2
γ

]
.

(5.65)
The background equations of motion read

�Φ +
γc− b
γc

ξ
γc−b
γc Φ

γc−2b
γc gµνJ ∂µχ∂νχ−

1

2
F (Φ),ΦRJ + V (φ)J,Φ = 0, (5.66)

�χ− 2γc− 2b

γc

Φ′

Φ
χ′ − 2a2

Jξ
b−γc
γc Φ

2b−2γc
γc V (Φ)J,χ = 0. (5.67)

Since the potential is again independent of χ, we still have the background solution
χ = constant. To first order, the equation of motion for the (gauge-invariant) entropy
perturbation δχ is given by

δχ′′ +

(
2
a′J
aJ

+ n
Φ′

Φ

)
δχ′ + k2δχ = 0 , (5.68)

with n = 2γc−2b
γc . We introduce the canonically normalised variable vJs,

vJs = aJΦ
n
2 δχ , (5.69)

whose Fourier modes (dropping the subscript k) satisfy the mode equation

v′′Js +

[
k2 +

n

2

Φ′2

Φ2
− n2

4

Φ′2

Φ2
+
a′′J
aJ

(3nξ − 1)− a2
J

n

2

VJ,Φ
Φ

]
vJs = 0 . (5.70)

Here we have made use of the background equation for Φ. Plugging in our confla-
tionary background, and using the notation ∆ = b

c − 1 so that n = 2γ−∆−1
γ , we

obtain

v′′Js +

(
k2 − 1

(ε− 1)2τ2

[
2− (4 + 3∆)ε+ (2 + 3∆ + ∆2)ε2

])
vJs = 0 (5.71)

This equation can be solved as usual by
√−τ multiplied by a Hankel function of the

first kind with index
ν =

3

2
+

∆ε

ε− 1
, (5.72)
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which translates into a spectral index

ns − 1 = 3− 2ν = −2∆
ε

(ε− 1)
. (5.73)

The spectrum is independent of γ, and in fact it coincides precisely with the spectral
index obtained in Einstein frame (4.22). Thus, even for this two-field extension, the
predictions for perturbations are unchanged by the field redefinition from Einstein
to Jordan frame. As discussed in the previous chapter, for models of this type there
is no need for an unstable potential, as considered in earlier ekpyrotic models. Also,
given that the action does not contain terms in χ of order higher than quadratic,
the ekpyrotic phase does not produce non-Gaussianities. However, the subsequent
process of converting the entropy fluctuations into curvature fluctuations (which we
assume to occur via a turn in the scalar field trajectory after the end of the confla-
tionary phase) induces a small contribution |f localNL | . 5, and potentially observable
negative |glocalNL | ≈ O(102) − O(103), as long as the non-minimal field space metric
progressively returns to trivial, in agreement with observational bounds (see (6.1))
[9, 10]. It would be interesting to study this and perhaps new conversion mechanisms
in more detail from the point of view of the Jordan frame.
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Chapter 6

Conclusions

In this thesis, we have studied two alternatives to the theory of inflation: non-minimal
ekpyrosis and conflation. The standard ΛCDM model of cosmology describes the
universe extremely well, starting from a time shortly after the big bang, when the
universe consisted of a hot and dense quark-gluon plasma, to the present day. Yet, it
cannot dynamically explain the initial conditions emerging from the big bang. The
early universe revealed by the precise data from the PLANCK satellite is surprisingly
simple: at the background level the universe is approximately flat, homogeneous and
isotropic, supplemented with small nearly scale-invariant and Gaussian density per-
turbations. Extrapolating backwards in time, the background properties imply that
the big bang cannot have simply occurred at a single point, but several causally
disconnected regions must have started out with the same initial conditions inde-
pendently. Moreover, their spatial flatness must have been very close to zero to lead
to the nearly flat universe we observe today. The goal of any theory of the early
universe should be to explain these special initial conditions dynamically.

In section 2.3 we introduced the theory of inflation describing a phase of acceler-
ated expansion, which can solve the horizon and flatness problem by smoothing out
inhomogeneities, anisotropies and the curvature of space. Furthermore, by stretching
quantum perturbations they become squeezed into a stochastic distribution of clas-
sical density perturbations as they exit the horizon. In this way, inflation provides a
paradigm for the generation of primordial density fluctuations seeding the structure
of our universe. A range of different inflationary models has been constructed, some
of which fit the observational data well, whereas other models that were theoretically
favoured have had to be, or are on the verge of being, abandoned. The plateau-like
single-field inflationary models, that seem to be the best fit to the data, come at
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the price of several conceptual challenges. Two of the most important ones are the
issue of initial conditions and the measure problem arising from the eternal nature
of these inflationary models.

The non-minimal entropic mechanism that we discussed in chapter 4 is techni-
cally more involved than these single-field plateau models of inflation, as it requires
two scalar fields, with a specific coupling between the scalars. Moreover, it becomes
necessary to include a description of a bounce phase that links the ekpyrotic phase
to the currently expanding phase of our universe. Due to the non-trivial nature of
the field space metric, we have adopted the covariant formalism to derive exact evo-
lution equations for non-linear perturbations in chapter 3. We then expanded the
equations of motion for the entropy fluctuation (3.62) and the comoving curvature
perturbation (3.63) up to third order in perturbation theory, from which the non-
linearity parameters for the observed density perturbations can be deduced. In these
ekpyrotic models, the primordial curvature perturbations are generated via the non-
minimal entropic mechanism in a two-stage process: nearly scale-invariant entropy
perturbations are first generated due to the non-minimal kinetic coupling between
two scalar fields. Subsequently, these perturbations are converted into curvature
perturbations by a bending in the field space trajectory. Solving the equations of
motion analytically during the ekpyrotic phase we find vanishing bi- and trispectra
for the entropy perturbations. However, this property is significantly modified during
the conversion process to curvature perturbations. We find that the efficiency of the
conversion process is crucial: inefficient conversions would lead to curvature pertur-
bations with a small amplitude and very large and wildly varying non-Gaussianities.
On the other hand, for efficient conversions the results converge and lead to the
following predictions (which we compare to the current observational bounds [10]):

Non-minimal entropic mechanism Observational bounds

|f localNL | . 5 f localNL = 0.8± 5.0 (1σ) (6.1)

glocalNL ∼ O(−102) or O(−103) glocalNL = ( 9.0± 7.7)×104 (1σ) (6.2)

αs ∼ O(−10−3) αs = 0.003± 0.007 (1σ) (6.3)

Here, for completeness, we have added the prediction for the running of the spectral
index αs ≡ dns

d ln k that is expected in these models [162]. Note the highly interesting
prediction that all three observables should actually be observable in the near fu-
ture. Also, an important feature is that fNL may be small, but gNL is typically not
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simultaneously close to zero as well, and in fact there is a clear correlation between
all observables, as both the running and the trispectrum parameter are expected to
be negative and significant. As in all currently known ekpyrotic models, no large-
amplitude primordial gravitational waves are produced [109, 110]. Detecting these
would in fact be the best way to falsify the model. Thus the present model has the
potential to be refuted or supported by observations with significant levels of confi-
dence. Moreover, one of the main benefits compared to single-field slow-roll models
of inflation is that the measure problem is essentially absent, since the smoothing
phase proceeds almost entirely at a very small Hubble rate [163, 164].

Contrasting with the standard entropic mechanism, in which the entropy pertur-
bations are produced due to an instability in the potential instead of a non-trivial
field space metric, we note that:

• The initial conditions problem is markedly improved in the non-minimal ekpy-
rotic model, since the potential is stable everywhere.

• Nearly scale-invariant curvature perturbations with the observed amplitude
and spectral index can naturally be produced. Moreover, the spectrum does
not depend on the value of the equation of state parameter ε – thus even low
values ε & 3 are allowed. (This is the equivalent to having an inflationary
model where ε can be almost 1.)

• The entropy perturbations generated during the ekpyrotic phase have an ex-
actly vanishing bi- and trispectrum.

In this thesis we have focused on the production of perturbations during the
ekpyrotic phase. Moreover, a subsequent conversion phase is necessary in order
to obtain density perturbations matching those observed in the CMB. The main
questions for future research concern the embedding of these phases into a more
complete, potentially cyclic model.

It would be interesting to investigate how the conversion process may best fit
together with the bounce dynamics. In particular, considering the issue of model
building, we learned that the kinetic coupling between the two scalar fields has to
return to the trivial case after the ekpyrotic phase, in much the same way as the
potential has to turn off. One may wonder whether such a feature could arise in
a plausible manner from the point of view of a more fundamental theory. A more
complete answer to this question will of course have to await further developments
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in fundamental physics, and especially in quantum gravity, but we would like to ex-
hibit one example where such a feature is indeed seen. This comes from considering
supergravity coupled to scalar fields with higher-derivative kinetic terms [165, 166].
In this class of models, the higher-derivative terms add corrections to both the ordi-
nary kinetic terms and the potential of the theory, even when the higher-derivative
terms are not significant dynamically. More precisely, in these theories the dominant
contribution is of the form

(∂A)2(∂A?)2 − 2 eK/3FF ? ∂A · ∂A? + e2K/3(FF ?)2, (6.4)

where A is a complex scalar field (or may be thought of as two real scalars, just as in
ekpyrotic theories), while F is a complex auxiliary field andK is the Käher potential,
which is just a function of A and A?. The value of the auxiliary field depends on the
superpotential – crucially, F is small when the superpotential is small. Now keeping
in mind that the expression above is a correction term to the usual kinetic terms, we
see that when the superpotential becomes unimportant, the potential in the theory
turns off but so does the correction to the kinetic term FF ? ∂A ·∂A?. This is exactly
what would be required for the conversion process in the class of models we have
analysed in the present work. It would certainly be interesting to see whether a more
complete embedding in supergravity could be realised.

Moreover, the efficiency of the conversion process is crucial. On the one hand, as
the conversions become smoother, the predicted range of values for the non-linearity
parameters narrows considerably, which allows us to make rather definite predictions.
On the other hand, the question remains whether the effective conversion potential
can be shown to lead to an efficient conversion process due to some more fundamental
physical principle.

In the phoenix universe, the unstable potential produces entropy perturbations
transverse to the background trajectory. When the fluctuations become too large,
the field is kicked off the sides of the potential, implying that large portions of the
universe are converted into inhomogeneous remnants and black holes, which are not
able to pass through the cycles. In this way, regions of the universe are selected
that follow the classical trajectory for long enough to pass through the bounce.
Most importantly, the amplitude of primordial density fluctuations for these regions
must satisfy Qζ . 10−4.5 [167]. However appealing this result might be, the model
produces large amounts of non-Gaussianities that stem from the entropic mechanism.
In the non-minimal version, the resulting bispectrum for an efficient conversion is
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much closer to the observed bound. Due to the stable ekpyrotic potential, naively, a
phoenix type universe seems impossible. It would be interesting to investigate how a
non-minimal ekpyrotic phase could be embedded into a full cyclic theory. One could
also study a more general setting, in which an unstable potential is combined with
a non-trivial field space metric.

In chapter 5 we have introduced the idea of conflation, which corresponds to a
phase of accelerated expansion in a scalar-tensor theory of gravity. This new type of
cosmology is closely related to anamorphic cosmology [149], in that it also combines
elements from inflation and ekpyrosis – in fact, our model may be seen as being
complementary to anamorphic models. In the conflationary model, the universe is
rendered smooth by a phase of accelerated expansion, like in inflation. However, the
potential is negative, and adiabatic scalar and tensor fluctuations are not amplified,
just as for ekpyrosis.

Several features deserve more discussion and further study in the future: the
first is that, as just mentioned, the conflationary phase described here does not
amplify adiabatic fluctuations and consequently does not lead to eternal inflation
and a multiverse. This remains true in the presence of a second scalar field, which
generates cosmological perturbations via an entropic mechanism, since the entropy
perturbations that are generated have no impact on the background dynamics. In
other words, even a large entropy perturbation is harmless, as it does not cause the
conflationary phase to last longer, or proceed at a higher Hubble rate, in that region.
This provides a new way of avoiding a multiverse and the associated problems with
predictivity, and may be viewed as the most important insight of chapter 5. The
second point is that it would be interesting to study the question of initial conditions
required for this type of cosmological model, and contrast it with the requirements
for standard, positive potential, inflationary models. A third avenue for further study
would be to see how cyclic models in Einstein frame are transformed. Finally, it will
be very interesting to see if a conflationary model can arise in supergravity or string
theory, with for instance the dilaton playing the role of the scalar field being coupled
non-minimally to gravity. Being able to use negative potentials while obtaining a
background with accelerated expansion opens up new possibilities not considered so
far in early universe cosmology.

As discussed in the introduction, the surface of last scattering prohibits direct
access to the very early universe. On the other hand, the precisely measured prop-
erties and statistics of the tiny fluctuations imprinted on the CMB put remarkably
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tight constraints on early universe model-building. This thesis represents important
steps in understanding the early universe and in particular alternatives to inflation,
making use of this information. In the near future, it might become possible to detect
primordial gravitational waves via a B-mode polarisation signal in the CMB. The
detection (or absence) of primordial gravitational waves will help in discriminating
between different early universe theories. In this light, it remains as important as
ever to understand the predictions of cosmological models of the early universe.
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Appendix A

A new definition of the entropy
perturbation δs(3)

In this appendix, we show how we are led to defining δs(3) as given in Eq. (3.55) in
chapter 3. Expanding the equation of motion for sa (3.28) to third order without
the extra term, i.e. with δs(3)|old = δs(3) − 1

6σ̄′2 δsδs
′2, we obtain

0 ≈ δs(3)|′′old + 3Hδs(3)|′old +
(
V̄;ss + 3θ̄′2 + σ̄′2ēIs ē

J
s ē
K
σ ē

L
σ R̄IKJL

)
δs(3)|old + 2
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σ̄′
δs′δs(2)′
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2

σ̄′
θ̄′′ +

2

σ̄′2
V̄,σ θ̄

′ − 3

σ̄′
Hθ̄′

)(
δsδs(2)

)′
+

(
V̄;sss −

10

σ̄′
V̄;ssθ̄

′ − 18

σ̄′
θ̄′3 + ēIs ē
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L
σ ē
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(A.1)
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where we have used Vi ≈ 0 and V (3)
i ≈ 0 on large scales. Note that a prime denotes

a derivative w.r.t. coordinate time. This equation reduces to the one derived in [20]
for a trivial field space metric. During the non-minimally coupled ekpyrotic phase
the equation of motion for δs(3) simplifies to

0 ≈ δs(3)|′′old + 3Hδs(3)|′old +
[
Ω−1Ω,φV̄,φ − Ω−1Ω,φφφ̄

′2] δs(3)|old

+ φ̄′2
[

2

3
Ω−3Ω2

,φΩ,φφ +
2

3
Ω−2Ω2

,φφ +
1

3
Ω−2Ω,φΩ,φφφ −

1

3φ̄′2
Ω−2Ω,φΩ,φφV̄,φ

]
δs3,

(A.2)
where we used δs(2) = 0 as well as δs′ = −σ̄′Ω−1Ω,φδs. However, the third-order
entropy perturbation, given by

δs(3)|old,ekp = −Ωδχ(3) − 1

6
Ω−2Ω2

,φδs
3, (A.3)

contains a δs3-term acting as a source in the equation of motion, while δχ(3) = 0

trivially solves the equation of motion (A.2). It is certainly more natural to define the
entropic perturbation in such a way that during the non-minimal ekpyrotic phase the
solution is given by δs(3) = δχ(3) = 0. This motivates us to add a gauge-invariant
term to the definition of δs(3) that reduces to +1

6Ω−2Ω2
,φδs

3 during the ekpyrotic
phase. The choice is not unique however, and the terms that can be added are

T = Aδs′3 +Bδsδs′2 + Cδs2δs′ +Dδs3, (A.4)

where we leave A,B,C,D arbitrary for now. During the ekpyrotic phase, δs′ =

−σ̄′Ω−1Ω,φδs, and hence we need

T =
1

6
Ω−2Ω2

,φδs
3 =

[
−Aσ̄′3Ω−3Ω3

,φ +Bσ̄′2Ω−2Ω2
,φ − Cσ̄′Ω−1Ω,φ +D

]
δs3. (A.5)

It is immediately clear that we can set A = 0. The derivative of the term T added
to the definition of δs(3) has to be subtracted from δs

(3)
i , giving the following contri-
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bution to the entropic equation of motion at third order:

−
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L
σ R̄IKJL

)
− 3HD′ + C

[
σ̄′V̄;ssσ − 6Hθ̄′2 − 4

θ̄′2

σ̄′
V̄,σ + 8θ̄′θ̄′′

− 2σ̄′
(
3Hσ̄′ + V̄,σ

)
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(A.6)
In order to satisfy Eq. (A.5) during the ekpyrotic phase C would have to contain one
Christoffel symbol, and D the product of two Γ̄’s. As can be seen from the previous
equation, this is problematic as the terms that would be added to the equation of
motion are not covariant. Take the simple example of C ∼ Γ̄: there are no terms in
the equation of motion that can be combined with the new term ∼ Γ̄δs′3 to make it
covariant. Similarly for D 6= 0. We are forced to choose B = 1

6σ̄′2 with C = D = 0.
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Appendix B

Useful formulae for the covariant
formalism

Metric: On large scales where spatial gradients can be neglected, the metric can be
written as

ds2 = − (1 + 2A) dt2 + a(t)2 (1− 2ψ) δijdxidxi, (B.1)

where A = A(1) +A(2) +A(3), and ψ = ψ(1) + ψ(2) + ψ(3) up to third order.
Thus, the 00-component of the inverse metric is given by

g00 = −1+2A(1) +2A(2)−4
(
A(1)

)2
+2A(3)−8A(1)A(2) +8

(
A(1)

)3
= −u0u0, (B.2)

from which we can deduce

u0 = 1−A(1) −A(2) +
3

2

(
A(1)

)2
−A(3) + 3A(1)A(2) − 5

2

(
A(1)

)3
. (B.3)

Moreover, for simplicity we choose ua such that ui = 0, and on large scales we can
show that ui ≈ 0.

Scalar field perturbations: Rewriting the perturbation in the scalar fields in
terms of adiabatic and entropic fields we have

δφJ = ēJσδσ + ēJs δs, (B.4)

δφJ
′

= ēJσδσ
′ + ēJs δs

′ + θ̄′
(
ēJs δσ − ēJσδs

)
− σ̄′Γ̄JLK ēLσ

(
ēKσ δσ + ēKs δs

)
, (B.5)
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at linear order and
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(B.6)
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) [
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at second order. The perturbation in the scalar field at third order in comoving gauge
is given by1
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ēKs δs

(2) − ēKσ
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(B.8)

Field space metric: Explicitely, we have (using Eqs. (B.4) and (B.6))

δGIJ = ḠIJ,K
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)
(B.9)

at linear order, and
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1This includes the term T = 1
6σ̄′2 δsδs

′2 from the new defintion of δs(3).
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at second order.

Riemann tensor: The Riemann tensor with all indices downstairs is given by

R̄IKJL = ḠIM R̄
M
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(B.11)
where the Christoffel symbol with all indices downstairs is defined as
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Vielbeine: Expanding the σ-vielbein, eJσ ≡ φ̇J

σ̇ , up to second order, we obtain at
linear order
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ēJs − Γ̄JKLē
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and with field space index lowered
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At second order we have
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) (
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In order to obtain the s-vielbeine we note that
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)
eIs. (B.17)

Expanding and rearranging the definitions
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up to second order, we obtain
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at linear order. Lowering the field space index gives
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At second order we have
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ēKσ

(
δσ(2) − 1

2σ̄′
δsδs′

)
+ ēKs
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Lowering the field space index gives
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+ ēMs ē

K
σ

(
1

2
ēsI ē

N
s ē

L
σδσ

2 + ēσI ē
N
σ ē

L
s δσδs

)
R̄MKNL + Γ̄LIK ē

L
s

[
ēKσ

(
δσ(2) − 1

2σ̄′
δsδs′

)
+ ēKs

(
δs(2) +

δσ

σ̄′

(
δs′ +

θ̄′

2
δσ

))]
− σ̄′−1Γ̄LIK

(
ēKσ δσ + ēKs δs

)
ēLσ
(
δs′ + θ̄′δσ

)
+ ēMs

(
ēKσ δσ + ēKs δs

) (
ēLσδσ + ēLs δs

) [1

2

(
ḠIP,M − ḠIM,P

)
Γ̄PKL

− Γ̄PIK Γ̄PML +
1

4

(
ḠKL,IM − ḠIK,LM − ḠIL,KM + 2ḠIM,KL

)]
.

(B.22)

Lie derivative expansions: Expanding the Lie derivative up to second order, we
have for the fields

φ̇I = u0∂0φ
I = φ̄I

′
+δφI

′− φ̄I′A(1) +δφ(2)I′−δφI′A(1)− φ̄I′A(2) +
3

2
φ̄I
′
A(1)2. (B.23)
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Similarly, expanding σ̇2:

σ̇2 ≡ GIJ φ̇I φ̇J = σ̄′2 + 2σ̄′
(
δσ′ − θ̄′δs− σ̄′A(1)

)
+ σ̄′2

(
4A(1)2 − 2A(2)

)
− 4σ̄′A(1)

(
δσ′ − θ̄′δs

)
+
(
δσ′ − θ̄′δs

)2
+
(
δs′ + θ̄′δσ

)2
+ 2σ̄′

[
δσ(2) − 1

2σ̄′
δsδs′

]′
− 2σ̄′θ̄′

[
δs(2) +

δσ

σ̄′

(
δs′ +

θ̄′

2
δσ

)]
− σ̄′2ēIs ēJs ēKσ ēLσ R̄IKJLδs2

δσ=0≈ σ̄′2 + 2σ̄′θ̄′δs+ 2σ̄′θ̄′δs(2) − V̄;ssδs
2 +

V̄,σ
σ̄′
δsδs′,

(B.24)
where the last expression is valid on large scales and in comoving gauge and where we
have used the expressions for A(1) and A(2) given in (B.31) and (B.32), respectively.

We can then compute the perturbation expansion in σ̇ = σ̇(0)+δσ̇(1)+δσ̇(2)+. . . :

σ̇(0) =

√
(σ̇2)(0) =

√
ḠIJ φ̄I

′ φ̄J ′ ≡ σ̄′ (B.25)

at zeroth order,

δσ̇(1) =
δ
(
σ̇2
)(1)

2σ̇(0)
= δσ′ − θ̄′δs− σ̄′A(1) δσ=0≈ θ̄′δs (B.26)

at linear order, and

δσ̇(2) =
δ
(
σ̇2
)(2) −

(
δσ̇(1)

)2
2σ̇(0)

=

[
δσ(2) − 1

2σ̄′
δsδs′

]′
− θ̄′

[
δs(2) +

δσ

σ̄′

(
δs′ +

θ̄′

2
δσ

)]
+

1

2
σ̄′−1

(
δs′ + θ̄′δσ

)2
−
(
δσ′ − θ̄′δs

)
A(1) − σ̄′A(2) +

3

2
σ̄′A(1)2 − 1

2
σ̄′2ēIs ē

J
s ē
K
σ ē

L
σ R̄IKJLδs

2

δσ=0≈ θ̄′δs(2) +
V̄,σ
2σ̄′2

δsδs′ − 1

2σ̄′
(
V̄;ss + θ̄′2

)
δs2

(B.27)
at quadratic order.

Metric perturbations A(1) and A(2): To determine A(1) and A(2) we make use
of the fact that on large scales the comoving energy density perturbation is zero,
δε ≈ 0. Moreover, in comoving gauge, it simplifies to δρ:

δε ≡ δρ− ρ̄′

σ̄′
δσ

δσ=0
= δρ ≈ 0 (B.28)
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at first order, and

δε(2) ≡ δρ(2) − ρ̄′

σ̄′
δσ(2) − δσ

σ̄′

[
δε′ +

1

2

(
ρ̄′

σ̄′

)′
δσ +

ρ̄′

σ̄′
θ̄′δs

]
δσ=0
= δρ(2) ≈ 0 (B.29)

at second order.
The comoving energy density is given by (3.13), and can be expanded up to

second order:

ρ =
1

2
GIJ φ̇

I φ̇J +
1

2
GIJg

ij∇iφI∇jφJ + V ≈ 1

2
σ̇2 + V

∴ ρ̄ ≈ 1

2
σ̄′2 + V̄

∴ δρ ≈ − 2σ̄′θ̄′δs− σ̄′2A(1)

∴ δρ(2) ≈ − 2σ̄′θ̄′δs(2) − σ̄′2A(2) − V̄,σ
σ̄′
δsδs′ +

(
V̄;ss + 2θ̄′2

)
δs2 + 2σ̄′A(1)

(
θ̄′δs+ σ̄′A(1)

)
,

(B.30)
where we have neglected spatial gradients.

At linear order, we thus have

A(1) ≈ −2
θ̄′

σ̄′
δs, (B.31)

and at second order

A(2) ≈− 2
θ̄′

σ̄′
δs(2) +

1

σ̄′2
(
V̄;ss + 2θ̄′2

)
δs2 − V̄,σ

σ̄′3
δsδs′ + 2A(1)

(
θ̄′

σ̄′
δs+A(1)

)
≈− 2

θ̄′

σ̄′
δs(2) +

1

σ̄′2
(
V̄;ss + 6θ̄′2

)
δs2 − V̄,σ

σ̄′3
δsδs′.

(B.32)

Perturbations of other important quantities:

δV (1) = V̄,σδσ − σ̄′θ̄′δs
δσ=0≈ −σ̄′θ̄′δs (B.33)

δV (2) = V̄,σ

[
δσ(2) − 1

2σ̄′
δsδs′

]
− σ̄′θ̄′

[
δs(2) +

δσ

σ̄′

(
δs′ +

θ̄′

2
δσ

)]
+

1

2
V̄;σσδσ

2 + V̄;sσδσδs+
1

2
V̄;ssδs

2

δσ=0≈ −σ̄′θ̄′δs(2) − V̄,σ
2σ̄′

δsδs′ +
1

2
V̄;ssδs

2

(B.34)
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δV (3) δσ=0≈ −σ̄′θ̄′
[
δs(3) − 1

6σ̄′2
δsδs′2

]
− V̄,σ

[
1

2σ̄′

(
δsδs(2)

)′
+

θ̄′

6σ̄′2
δs2δs′

]
+

1

6
V̄;sssδs

3 + V̄;ssδsδs
(2) − 1

2σ̄′
V̄;sσδs

2δs′
(B.35)

δV;ss = V̄;sssδs− 2
V̄;sσ

σ̄′
δs′, (B.36)

with V̄;sss = ēIs ē
J
s ē
K
s V̄;IJK .

δV (2)
;ss ≈ V̄;sssδs

(2) +
1

2
V̄;ssssδs

2 − 5

2σ̄′
V̄;ssσδsδs

′ +
V̄;σσ − V̄;ss

σ̄′2
δs′2

− 2

σ̄′
V̄;sσ

(
δs(2)′ +

θ̄′

2σ̄′
δsδs′

)
− 2V̄,σ

σ̄′
ēIs ē

J
s ē
K
σ ē

L
σ R̄IKJLδsδs

′,

(B.37)

with V̄;ssss = ēIs ē
J
s ē
K
s ē

L
s V̄;IJKL.

δθ̇ ≈ − V̄;ss

σ̄′
δs+

V̄,σ
σ̄′2

δs′ − θ̄′2

σ̄′
δs. (B.38)

δθ̇(2) ≈ V̄,σ
σ̄′2

δs(2)′ − 1

σ̄′
(
V̄;ss + θ̄′2

)
δs(2) − θ̄′

2σ̄′2
δs′2 +

1

2σ̄′2

(
4
θ̄′V̄,σ
σ̄′
− 3θ̄′′ + 9Hθ̄′

)
δsδs′

+
1

2σ̄′2
(
−σ̄′V̄;sss + 3V̄;ssθ̄

′ + θ̄′3
)
δs2.

(B.39)

δ
[
σ̇2eIse

J
s e
K
σ e

L
σRIKJL

]
≈ ēIs ēJs ēKσ ēLσ

[
2σ̄′θ̄′R̄IKJL + σ̄′2ēNs DN R̄IKJL

]
δs (B.40)

δ
[
σ̇2eIse

J
s e
K
σ e

L
σRIKJL

](2) ≈ ēIs ēJs ēKσ ēLσ
[
R̄IKJL

(
2σ̄′θ̄′δs(2) +

V̄,σ
σ̄′
δsδs′ − V̄;ssδs

2

)
+DN R̄IKJL

(
σ̄′2ēNs δs

(2) − σ̄′

2
ēNσ δsδs

′ + 2σ̄′θ̄′ēNs δs
2

)
+ σ̄′2ēNs ē

Q
s

(
1

2
DQDN R̄IKJL − R̄IKJP R̄PNLQ

+ R̄IKJLR̄
P
NPQ

)
δs2

]
(B.41)

Useful derivatives:

θ̄′′ = −V̄;sσ + 3Hθ̄′ + 2
θ̄′V̄,σ
σ̄′

(B.42)
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V̄ ′,σ = σ̄′
(
V̄;σσ − θ̄′2

)
(B.43)

V̄ ′;ss = σ̄′V̄;ssσ − 2θ̄′V̄;sσ (B.44)

ēJ
′
s = −θ̄′ēJσ − Γ̄JKLσ̄

′ēKs ē
L
σ (B.45)[

ēIs ē
J
s ē
K
σ ē

L
σ R̄IKJL

]′
= ēIs ē

J
s ē
K
σ ē

L
σ σ̄
′ēMσ DM R̄IKJL (B.46)
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Appendix C

Simplifications for our specific
non-minimal model

In our specific model, the metric and its inverse are given by

GIJ =

(
1 0

0 Ω(φ)2

)
, and GIJ =

(
1 0

0 Ω(φ)−2

)
. (C.1)

The non-trivial connections derived from this metric are then

Γ̄φχχ =− ΩΩ,φ (C.2)

and
Γ̄χφχ =+Ω−1Ω,φ, (C.3)

while the only non-trivial component (up to those related by symmetry) of the Rie-
mann tensor is

R̄φχφχ = −ΩΩ,φφ. (C.4)

The covariant derivatives of the Riemann tensor in our model are

DχR̄φχφχ = 0, (C.5)

DφR̄φχφχ = Ω,φΩ,φφ − ΩΩ,φφφ, (C.6)

DφDφR̄φχφχ = −ΩΩ,φφφφ + 2Ω,φΩ,φφφ + Ω2
,φφ − 2Ω−1Ω2

,φΩ,φφ, (C.7)

DχDχR̄φχφχ = −Ω2Ω,φΩ,φφφ + ΩΩ2
,φΩ,φφ, (C.8)

128



DφDχR̄φχφχ = DχDφR̄φχφχ = 0. (C.9)

We can define the zweibeine, via eIσ ≡ φ̇J

σ̇ , such that

ēφσ =
φ̄′

σ̄′
, ēχσ =

χ̄′

σ̄′
, (C.10)

ēφs = −Ω
χ̄′

σ̄′
, ēχs = Ω−1 φ̄

′

σ̄′
, (C.11)

ēσφ =
φ̄′

σ̄′
, ēσχ = Ω2 χ̄

′

σ̄′
, (C.12)

ēsφ = −Ω
χ̄′

σ̄′
, ēsχ = Ω

φ̄′

σ̄′
, (C.13)

where a dot denotes a Lie derivative and a prime a derivative w.r.t. coordinate time
t. Note that within this setup we must take ēφσ = −1 during the ekpyrotic phase;
this is because σ is defined to increase along the background trajectory [19] and thus
σ̄′ = −φ̄′ is the velocity on the background trajectory in the constant χ backgrounds
that we are interested in.

Simplifications during the ekpyrotic phase:

δs|ekp = −Ωδχ, (C.14)

δs′|ekp = −φ̄′Ω,φδχ = −σ̄′Ω−1Ω,φδs ∵ δχ′|ekp = 0, (C.15)

δs(2)|ekp = 0, (C.16)

V̄,σ|ekp = −V̄,φ, (C.17)

V̄,s|ekp = θ̄′ = 0, (C.18)

V̄;σσ|ekp = V̄,φφ, (C.19)

V̄;sσ|ekp = 0, (C.20)

V̄;ss|ekp = Ω−1Ω,φV̄,φ, (C.21)

V̄;ssσ|ekp =
(
−Ω−1Ω,φφ + Ω−2Ω2

,φ

)
V̄,φ − Ω−1Ω,φV̄,φφ, (C.22)

V̄;sss|ekp = 0, (C.23)

V̄;ssss|ekp = −3Ω−3Ω3
,φV̄,φ + 3Ω−2Ω2

,φV̄,φφ + Ω−2Ω,φΩ,φφV̄,φ, (C.24)
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DχR̄χφχφ|ekp = 0, (C.25)

DφR̄χφχφ|ekp = Ω,φΩ,φφ − ΩΩ,φφφ, (C.26)

DχDχR̄χφχφ|ekp = ΩΩ,φ (Ω,φΩ,φφ − ΩΩ,φφφ) , (C.27)

A(1)|ekp = A(2)|ekp = 0, (C.28)

δσ̇2|ekp = δ
(
σ̇2
)(2) |ekp = 0, (C.29)

Θ̄ = 3H, δΘ|ekp = δΘ(2)|ekp = 0, (C.30)

δV;ss|ekp = δV (2)
;ss |ekp = 0, (C.31)

δθ̇|ekp = δθ̇(2)|ekp = 0, (C.32)

δ
[
σ̇2eIse

J
s e
K
σ e

L
σRIKJL

]
|ekp = δ

[
σ̇2eIse

J
s e
K
σ e

L
σRIKJL

](2) |ekp = 0, (C.33)

δs
(2)
i |ekp = ∂iδs

(2)|ekp = 0, (C.34)

δs
(3)
i |ekp = ˙δsi

(3)|ekp = ¨δsi
(3)|ekp = 0, (C.35)

δeφσ|ekp = δeσφ|ekp = 0, (C.36)

δeχσ |ekp = δeσχ|ekp = 0, (C.37)

δeφs |ekp = δesφ|ekp = 0, (C.38)

δeχs |ekp = δesχ|ekp = 0, (C.39)

δeφ(2)
σ |ekp = δe

(2)
σφ |ekp = 0, (C.40)

δeχ(2)
σ |ekp =

θ̄′

2σ̄′
Ω−2Ω,φδs

2, δe (2)
σχ |ekp =

θ̄′

2σ̄′
Ω,φδs

2, (C.41)

δeφ(2)
s |ekp = δe

(2)
sφ |ekp = − θ̄′

2σ̄′
Ω−1Ω,φδs

2, (C.42)

δeχ(2)
s |ekp = δe (2)

sχ |ekp = 0. (C.43)

δGIJ |ekp = 0, (C.44)

δG
(2)
IJ |ekp = 0. (C.45)
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