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An N-tangle can be defined for the finite dimensional Hilbert space H = C2N
, with N = 3 or N

even. We give an orthonormal basis which is fully entangled with respect to this measure. We provide
a spin Hamilton operator which has this entangled basis as normalized eigenvectors if N is even. From
these normalized entangled states a Bell matrix is constructed and the cosine–sine decomposition is
calculated. If N is odd the normalized eigenvectors can be entangled or unentangled depending on
the parameters.
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Two level and higher level quantum systems and their
physical realization have been studied by many authors
(see [1] and references therein). We consider a spin
Hamilton operator acting in the finite-dimensional
Hilbert spaceH= C2N

and the normalized states

|ψ〉=
1

∑
j1, j2,..., jN=0

c j1, j2,..., jN | j1〉⊗| j2〉⊗· · ·⊗| jN〉

in this Hilbert space. Here |0〉, |1〉 denotes the standard
basis. Let ε jk ( j,k = 0,1) be defined by ε00 = ε11 = 0,
ε01 = 1, ε10 =−1.

Let σx, σy, σz be the Pauli spin matrices. We con-
sider entanglement for the eigenvectors of the hierar-
chy of spin Hamilton operators

ĤN = h̄ω(
N-factors︷ ︸︸ ︷

σz⊗σz⊗·· ·⊗σz )+∆1(
N-factors︷ ︸︸ ︷

σx⊗σx⊗·· ·⊗σx )

+∆2(
N-factors︷ ︸︸ ︷

σy⊗σy⊗·· ·⊗σy )

with N ≥ 2. Here ⊗ denotes the Kronecker prod-
uct [2 – 4], ω > 0, ∆1,∆2 ≥ 0, and σx⊗·· ·⊗σx, σy⊗
·· ·⊗σy, σz⊗·· ·⊗σz are elements of the Pauli group
PN . The N-qubit Pauli group [5] is defined by

PN := { I2,σx,σy,σz}⊗N⊗{±1,±i},

where I2 is the 2×2 identity matrix. The N-qubit Clif-
ford group CN is the normalizer of the Pauli group –
a unitary matrix U acting on N-qubits is contained in
CN if

UMU−1 ∈ PN for each M ∈ PN .

Thus the Hamilton operator ĤN acts in the finite-
dimensional Hilbert space H = C2N

. The eigenvalue
problem for the case with ∆2 = 0 has been studied by
Steeb and Hardy [6, 7].

Many authors developed methods for the detec-
tion and classification of entangled states in finite di-
mensional Hilbert spaces for mixed states and pure
N-qubit states [8 – 23]. A pure N-partite state is sep-
arable if and only if all the reduced density matri-
ces of the elementary subsystems describe pure states.
In a bipartite case, separability can be determined by
calculating the Schmidt decomposition of the state.
The concept of the Schmidt decomposition cannot be
straightforwardly generalized to the case of N separate
subsystems [12]. Besides these two well-known meth-
ods, a separability condition based on comparing the
amplitudes and phases of the components of the state
has been presented. There are some other approaches
to detect the separability of pure states [10, 11]. Here
we select the entanglement measure given by Wong
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and Christensen [18]. The tangle of Wong and Chris-
tensen [18] can only be used to detect entanglement,
since there are entangled states on which it vanishes.
We note that the W state

|W 〉=
1√
3
(|0〉⊗ |0〉⊗ |1〉+ |0〉⊗ |1〉⊗ |0〉+ |1〉⊗ |0〉⊗ |0〉)

has vanishing Wong–Christensen tangle and yet is not
separable. Dür et al. [19] showed that three qubits can
be entangled in two inequivalent ways. Acı́n et al. [20]
described the classification of mixed three-qubit states.
Verstraete et al. [21] showed that four qubits can be
entangled in nine different ways. Osterloh and Sie-
wert [22] constructed N-qubit entanglement from an-
tilinear operators. Entanglement witness in spin mod-
els has been studied by Tóth [23]. A symbolic C++
program to calculate the tangle of Wong and Chris-
tensen [18] has been given by Steeb and Hardy [24].

Let N be even or N = 3. Wong and Christensen [18]
introduced an N-tangle by

τ1...N = 2

∣∣∣∣∣ 1

∑
α1,...,αN=0

...
δ1,...,δN=0

cα1...αN cβ1...βN
cγ1...γN cδ1...δN

× εα1β1
εα2β2

· · ·εαN−1βN−1
εγ1δ1

εγ2δ2
· · ·

εγN−1δN−1
εαN γN εβN δN

∣∣∣∣∣ .
This includes the definition for the 3-tangle [8]. Let
N = 4. Consider the two states with c0000 = 1/

√
2,

c1111 = 1/
√

2 (all other coefficients are 0), and c0000 =
1/
√

2, c1111 = −1/
√

2 (all other coefficients are 0).
Using this measure of entanglement, we find for both
cases that the states are fully entangled, i.e. τ1234 = 1.
Fourteen more states can be constructed with

c j1 j2 j3 j4 = 1/
√

2, c j̄1 j̄2 j̄3 j̄4 =±1/
√

2 ,

where j̄ denotes the NOT-operation, i.e. 0̄ = 1 and 1̄ =
0. These sixteen states form an orthonormal basis in
the Hilbert space C16.

This result can be extended for N ≥ 4 and N even.
The orthonormal basis would be given by

|φ j1... jN 〉=
1√
2
(| j1〉⊗ | j2〉⊗ · · ·⊗ | jN〉± | j̄1〉⊗ | j̄2〉⊗ · · ·⊗ | j̄N〉).

These states are also fully entangled using the measure
given above. These states are also related to a Hamilton
operator described below.

Let us now find the spectrum of ĤN and the unitary
matrix UN(t) = exp(−iĤNt/h̄). Since trĤN = 0 for all
N, we obtain

2N

∑
j=1

E j = 0,

where E j are the eigenvalues of ĤN . Consider the her-
mitian and unitary operators

Σz,N := σz⊗σz⊗·· ·⊗σz, Σx,N := σx⊗σx⊗·· ·⊗σx,

Σy,N := σy⊗σy⊗·· ·⊗σy .

We have to distinguish between the case N even and the
case N odd. If N is even then the commutators vanish,
i.e.

[Σx,N ,Σy,N ] = 0, [Σy,N ,Σz,N ] = 0, [Σz,N ,Σx,N ] = 0 .

If N is odd then the anti-commutators vanish, i.e.

[Σz,N ,Σx,N ]+ = 0, [Σz,N ,Σx,N ]+ = 0, [Σz,N ,Σx,N ]+ = 0 .

Note that Σx,N , Σy,N , and Σz,N are elements of the Pauli
group PN described above.

Thus setting ĤN = ĤN0 + ĤN1 + ĤN2 with

ĤN0 = h̄ω(σz⊗σz⊗·· ·⊗σz),
ĤN1 = ∆1(σx⊗σx⊗·· ·⊗σx),
ĤN2 = ∆2(σy⊗σy⊗·· ·⊗σy),

we find that for N even, owing to the result given
above,

[ĤN0, ĤN1] = 0, [ĤN1, ĤN2] = 0, [ĤN0, ĤN2] = 0 .

Then the unitary operator UN(t) = exp(−iĤNt/h̄) for
N even can easily be calculated since

UN(t) = exp(−iĤN0t/h̄)exp(−iĤN1t/h̄)
· exp(−iĤN2t/h̄) .

If N is odd, owing to the result given above, we have

[ĤN0, ĤN1]+ = 0, [ĤN1, ĤN2]+ = 0, [ĤN0, ĤN2]+ = 0 .

Here too the time evolution UN(t) = exp(−iĤNt/h̄)
can easily be calculated. We use the abbreviation

E :=
√

h̄2
ω2 +∆2

1 +∆2
2 .
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Consider now the general cases. If N is odd the Hamil-
ton operator has only two eigenvalues, namely E and
−E. Both are 2N−1 times degenerate. The unnormal-
ized eigenvectors for +E are given by

E + h̄ω

0
0
...
0
0

∆1− (−i)N∆2


,



0
E− h̄ω

0
...
0

∆1 +(−i)N∆2
0


, . . . ,



0
...
0

E + h̄ω

∆1− (−i)N∆2
0
...
0


.

The unnormalized eigenvectors for −E are given by

E− h̄ω

0
0
...
0
0

−(∆1− (−i)N∆2)


,



0
E− h̄ω

0
...
0

−(∆1− (−i)N∆2)
0


, . . .



0
...
0

E− h̄ω

−(∆1− (−i)N∆2)
0
...
0


.

The normalization factors are

1√
(E + h̄ω)2 +∆2

1 +∆2
2

,
1√

(E− h̄ω)2 +∆2
1 +∆2

2

,

respectively. For N odd the time evolution is given by

UN(t) = e−iωtΣz,N−i∆1tΣx,N/h̄−i∆2tΣy,N/h̄

= I2N cos(Et/h̄)

− i
h̄ωΣz,N +∆1Σx,N +∆2Σy,N

E
· sin(Et/h̄).

For N even the four eigenvalues are given by

E1 = h̄ω +∆1−∆2, E2 =−h̄ω−∆1 +∆2,

E3 =−h̄ω +∆1 +∆2, E4 = h̄ω−∆1−∆2 .

The eigenvalues are 2N−2 times degenerate. The cor-
responding 2N normalized eigenvectors for the case N
even are

1√
2



1
0
0
...
0
0
±1


,

1√
2



0
1
0
...
0
±1
0


, . . . ,

1√
2



0
...
0
1
±1
0
...
0


.

They do not depend on ∆ and h̄ω . The first vector is the
Greenberger–Horne–Zeilinger (GHZ)-state. It is well-
known that these 2N eigenvectors form an orthonormal
basis in the Hilbert space C2N

. As described above we
apply the entanglement measure given by Wong and
Christensen. It follows that these states are fully en-
tangled. These states can also be generated from the
GHZ-state by applying the unitary matrix

I2⊗·· ·⊗ I2⊗σx⊗ I2⊗·· ·⊗ I2,

where σx is at the jth position ( j = 1, . . .,N). Since
these are local unitaries all states have the same entan-
glement as the GHZ-state. Since for N even we have

e−iωtΣz,N/h̄ = I2N cos(ωt)− iΣz,N sin(ωt),

e−i∆1tΣx,N h̄ = I2N cos(∆1t/h̄)− iΣx,N sin(∆1t/h̄),

e−i∆2tΣy,N/h̄ = I2N cos(∆2t/h̄)− iΣy,N sin(∆2t/h̄),

it follows that for N even the unitary operator UN(t) for
the time evolution is given by

e−iĤN t/h̄

= e−iωtΣz,N e−i∆1tΣx,N/h̄ e−i∆2tΣy,N/h̄

= I2N cos(ωt)cos(∆1t/h̄)cos(∆2t/h̄)
− iΣz,N sin(ωt)cos(∆1t/h̄)cos(∆2t/h̄)
− iΣx,N cos(ωt)sin(∆1t/h̄)cos(∆2t/h̄)
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− iΣy,N cos(ωt)cos(∆1t/h̄)sin(∆2t/h̄)
−Σz,NΣx,N sin(ωt)sin(∆1t/h̄)cos(∆2t/h̄)
−Σz,NΣy,N sin(ωt)cos(∆1t/h̄)sin(∆2t/h̄)
−Σx,NΣy,N cos(ωt)sin(∆1t/h̄)sin(∆2t/h̄)
+ iΣz,NΣx,NΣy,N sin(ωt)sin(∆1t/h̄)sin(∆2t/h̄).

For this basis we can form the 2N×2N (N even) unitary
matrix

B =
1√
2



1 0 0 . . . 0 0 . . . 0 0 1
0 1 0 . . . 0 0 . . . 0 1 0
0 0 1 . . . 0 0 . . . 1 0 0
...

...
...

0 0 0 0 0 0 0 0
0 0 0 1 1 0 0 0
0 0 0 1 −1 0 0 0
0 0 0 0 0 0 0 0
...

...
...

0 0 1 . . . 0 0 −1 0 0
0 1 0 0 0 0 −1 0
1 0 0 0 0 0 0 −1



.

For implementations of B as quantum gates the cosine–
sine decomposition [2, 4] is useful. This matrix has the
cosine–sine decomposition

B =
(

U1 0
0 U2

)(
C S
−S C

)(
U3 0
0 U4

)
,

where the unitary matrices U1, U2, U3, U4 are given by

U2 = I2N−1 , U4 = I2N−1 ,

U1 =U3 =
(

0 1
1 0

)
⊗
(

0 1
1 0

)
⊗·· ·⊗

(
0 1
1 0

)
,

and the invertible matrices C and S are the 2N−1×2N−1

matrices

C = S =
1√
2

I2N−1 .

Thus the unitary matrices U1 and U3 are Kronecker
products of the NOT-gate.

If N is odd then the eigenvectors are entangled if
h̄ω = 0. If h̄ω → ∞ the eigenvectors become unentan-
gled, i.e. can be written as product states.

We have provided a spin Hamilton operator acting
in the finite dimensional Hilbert space H = C2N

that
provides a fully entangled basis if N is even. If N is odd
we vary the parameters h̄ω , ∆1, ∆2 such that we can
vary between entangled and unentangled states. Such
Hamilton operators could also be investigated applying
Riemannian geometry [25].
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