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An N-tangle can be defined for the finite dimensional Hilbert space H = (CZN, with N =3 or N
even. We give an orthonormal basis which is fully entangled with respect to this measure. We provide
a spin Hamilton operator which has this entangled basis as normalized eigenvectors if N is even. From
these normalized entangled states a Bell matrix is constructed and the cosine—sine decomposition is
calculated. If N is odd the normalized eigenvectors can be entangled or unentangled depending on

the parameters.
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Two level and higher level quantum systems and their
physical realization have been studied by many authors
(see [1] and references therein). We consider a spin
Hamilton operator acting in the finite-dimensional
Hilbert space H = €2" and the normalized states

1

vy =

in this Hilbert space. Here |0), |1) denotes the standard
basis. Let €j; (j,k =0, 1) be defined by gy = &1 =0,
&1 =1,&0=-1.

Let oy, 0y, 0; be the Pauli spin matrices. We con-
sider entanglement for the eigenvectors of the hierar-
chy of spin Hamilton operators
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with N > 2. Here ® denotes the Kronecker prod-
uct [2-4], @ >0, Aj,A; >0, and 6, ® - ® Oy, 0, ®
<+ ® 0y, 0;® -+ ® 0y are elements of the Pauli group
‘Pn. The N-qubit Pauli group [5] is defined by

Py = {h,0y,0y,0.}*N @ {£1,+i},

where I, is the 2 x 2 identity matrix. The N-qubit Clif-
ford group Cy is the normalizer of the Pauli group —
a unitary matrix U acting on N-qubits is contained in
Cy if

UMU™" € Py foreach M € Py.

Thus the Hamilton operator Hy acts in the finite-
dimensional Hilbert space H = C2". The eigenvalue
problem for the case with A, = 0 has been studied by
Steeb and Hardy [6, 7].

Many authors developed methods for the detec-
tion and classification of entangled states in finite di-
mensional Hilbert spaces for mixed states and pure
N-qubit states [§—23]. A pure N-partite state is sep-
arable if and only if all the reduced density matri-
ces of the elementary subsystems describe pure states.
In a bipartite case, separability can be determined by
calculating the Schmidt decomposition of the state.
The concept of the Schmidt decomposition cannot be
straightforwardly generalized to the case of N separate
subsystems [12]. Besides these two well-known meth-
ods, a separability condition based on comparing the
amplitudes and phases of the components of the state
has been presented. There are some other approaches
to detect the separability of pure states [10, 11]. Here
we select the entanglement measure given by Wong
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and Christensen [18]. The tangle of Wong and Chris-
tensen [18] can only be used to detect entanglement,
since there are entangled states on which it vanishes.
We note that the W state

W) =

%OO) ®[0)®[1)+10)©|1) ©|0) +[1) ®[0) ©|0))
3
has vanishing Wong—Christensen tangle and yet is not
separable. Diir et al. [19] showed that three qubits can
be entangled in two inequivalent ways. Acin et al. [20]
described the classification of mixed three-qubit states.
Verstraete et al. [21] showed that four qubits can be
entangled in nine different ways. Osterloh and Sie-
wert [22] constructed N-qubit entanglement from an-
tilinear operators. Entanglement witness in spin mod-
els has been studied by Téth [23]. A symbolic C++
program to calculate the tangle of Wong and Chris-
tensen [18] has been given by Steeb and Hardy [24].

Let N be even or N = 3. Wong and Christensen [18]
introduced an N-tangle by

1

T..N = 2 z Cal...(XNCBI...ﬁNCﬂ...’)/NCBI...SN
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This includes the definition for the 3-tangle [8]. Let
N = 4. Consider the two states with copoo = 1/ V2,
ciinn=1/ V2 (all other coefficients are 0), and cgpog =
1/V/2, ci111 = —1/V/2 (all other coefficients are 0).
Using this measure of entanglement, we find for both
cases that the states are fully entangled, i.e. 71234 = 1.
Fourteen more states can be constructed with
Ciriinis = UV2,  ¢jipng, =E1/V2,

where j denotes the NOT-operation, i.e. 0 = 1 and 1 =
0. These sixteen states form an orthonormal basis in
the Hilbert space C'S.

This result can be extended for N > 4 and N even.
The orthonormal basis would be given by

|¢j1-~-j1v> =

\%(|jl>®|j2>®“'®|jN>i\f1>®|f2>®"'®|fN>)-
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These states are also fully entangled using the measure
given above. These states are also related to a Hamilton
operator described below.

Let us now find the spectrum of Hy and the unitary
matrix Uy (t) = exp(—iHyt /). Since trHy = 0 for all
N, we obtain

N
Y E;j=0,
j=1

where E; are the eigenvalues of Hy. Consider the her-
mitian and unitary operators

ZZ-N = O-Z®GZ®...®O-Z; ZxJ\I = o-x®6x®"'®o-x,
LN =0y,R0,8 - Q0.

We have to distinguish between the case N even and the
case N odd. If N is even then the commutators vanish,
ie.

Zen, Zyn] =0, [Zn, 2N =0, [Z v, Zn]=0.
If N is odd then the anti-commutators vanish, i.e.
XN Zen)+ =0, [Zon, Zon]+ =0, [N, 2N+ =0.

Note that X, y, X n, and X, y are elements of the Pauli
group Py described above.
Thus setting Hy = Hyo + Hy1 + Hy2 with

Ayo = ho(0,20,® - ® 0;),
Hyi =A1(0x RO R ® Oy),
Hy: =M (0,00, @+ ®0y),

we find that for N even, owing to the result given
above,

[Ano,Hn1] =0, [Hy1,Hy2] =0, [Hyo, Hy2] =0.

Then the unitary operator Uy(t) = exp(—iHyt/h) for
N even can easily be calculated since

Un(t) = exp(—iHyot /1) exp(—iHyit /1)
-exp(—iHpat /h).
If N is odd, owing to the result given above, we have
[Hyo,Hy1]+ =0, [Hy1,Hyz]+ =0, [Hyo,Hya2)+ =0.

Here too the time evolution Uy(t) = exp(—iHyt /h)
can easily be calculated. We use the abbreviation

E:=\/RPo?+ A +A3.
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Consider now the general cases. If N is odd the Hamil- ~ Uy/(r) = e 1@%en 811y /A-ifot Dy /i

ton operator has only two eigenvalues, namely £ and = Ly cos(Et /1)
- E. Both are 2V times degjcnerate. The unnormal- HOZ N+ Ay +MZy
ized eigenvectors for +E are given by —i ’ Pl — -sin(Et/h).
E+ho 0 For N even the four eigenvalues are given by
X B e B =ho+A —&y, Ey=—ho—Aj+2,
Eys=—-ho+A1+AN, Es=ho—A1—A;.
0 0 The eigenvalues are 2¥~2 times degenerate. The cor-
0 Ar+ (=N A responding 2" normalized eigenvectors for the case N
Al _ (7l')NA2 0 even are
0
0 1 0
: 0 1
i 0
. Oh 1 1| 1|1
+hw S [~ : ) - +1
Ay — (—i)NAy V2 0 V2 0 V2 0
0 0 +1 .
: +1 0 :
: 0
0

The unnormalized eigenvectors for —E are given by

They do not depend on A and Zi®. The first vector is the
Greenberger—Horne—Zeilinger (GHZ)-state. It is well-
known that these 2V eigenvectors form an orthonormal

E—nho 0 basis in the Hilbert space C2". As described above we
0 E—ho apply the entanglement measure given by Wong and
0 0 Christensen. It follows that these states are fully en-
: , : , tangled. These states can also be generated from the
0 GHZ-state by applying the unitary matrix
o —(A1 = (—1)VA) L® - ®heo,OhL® - ®h,
—(Ar = (=1)"A9) 0 : . L ,
where o, is at the jth position (j = 1,...,N). Since
0 these are local unitaries all states have the same entan-
: glement as the GHZ-state. Since for N even we have
0 e 1OZN/ — [y cos(t) —iZ, y sin(wt),
(A E _< h(f;NA ) e AN — [y cos(Art/h) —iZ, v sin(Art /1),
—(A1—(—1)7 A2 .
0 e MBI — [y cos(Aat /) —iZy n sin(Aat [R),
: it follows that for N even the unitary operator Uy (¢) for
0 the time evolution is given by
e—iHNt/h
The normalization factors are
— efithZ‘N efiAll‘Zx,N/h efiAQtE)-‘N/h

1 1
VE+I02+8+83 \J(E—ho)+83+A3

respectively. For N odd the time evolution is given by

Ly cos(ot)cos(At/h) cos(Aqt /1)
—1X, ysin(@t) cos(Az/h) cos(Aaxt /1)
—1i%, ycos(wt)sin(Az/h) cos(Aqt /)
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—iXy ycos(mt)cos(Ar/R)sin(Ast /1)

— X, nZy nsin(or) sin(At /i) cos(Aat /Tt)

— X vXynsin(wt)cos(At /) sin(Aqt /)

— X nZyycos(wr)sin(Agt /h) sin(Aat /1)
+iZ, N2, vy v sin(ot ) sin(Ayz /1) sin(Ast /7).

For this basis we can form the 2V x 2V (N even) unitary
matrix

100...0 0 ..0 0 1
010..0 0 0 1
001..0 0 10
000 0 0 0 0

s L]ooo 11 0 0 0

JAlooo 1 -1 0o o0 o
000 0 0 0 0 0
001..0 0 10 0
010 0 0 0 -1 0
100 0 0 0 0 -1

For implementations of B as quantum gates the cosine—
sine decomposition [2, 4] is useful. This matrix has the
cosine—sine decomposition
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