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Abstract

This thesis is a compilation of the author’s study on continuous gravitational waves (GWs)
which are long-duration, nearly periodic gravitational waves from a compact star. A
rapidly spinning neutron star is believed to be the most interesting emitter of a detectable
continuous GW by second generation ground-based interferometric GW detectors. Detec-
tions of continuous GWs would give clues to GW generation mechanisms and equations
of state of neutron stars that are yet unclear.

First, we focus on a torsion-bar antenna (TOBA) that is a low-frequency terrestrial GW
antenna. A unique feature of a TOBA is the ability to explore a low-frequency region
inaccessible by the current large-scale interferometric detectors due to seismic noise. We
give an overview on a newly proposed multi-output TOBA. Subsequently, we perform a
first all-sky search for low-frequency continuous GWs in the frequency range from 6 Hz
to 7 Hz using data from a phase-II TOBA that is a prototype of the multi-output TOBA.

Next, we turn to the first Japanese km-scale interferometric GW detector, KAGRA
that is now under construction at Kamioka Mine in Gifu Prefecture, Japan. Unlike the
currently existing other interferometers, KAGRA will operate in underground and in a
cryogenic temperature, which would reduce seismic noise and thermal noise, and thus
would provide quiet and stable environment for GW observations. We perform a targeted
search for known isolated pulsars with data from the initial KAGRA test run. The main
purposes of this study are to validate the search pipeline, to find program-related problems
at the early stage, and to prepare for the full configuration operation of KAGRA. And
then, we report the results of the end-to-end test for the targeted search and summarize
future prospects for continuous GW search using KAGRA.

Finally, we propose a new veto method for continuous GW search for electromagneti-
cally undiscovered sources. Our veto method aims to exclude sharp spectral noise lines
that frequently hampers detection sensitivity to continuous GW signals. The main feature
of our veto method is the applicability to a single-detector search and coincident lines in
a multi-detector network. We conduct performance tests of our veto method using an
actual data set from the initial LIGO. We show that the new veto method excludes line

noise effectively and improve detection efficiency in noisy data.
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CHAPTER ]_

Introduction

Gravitational-wave astronomy

One hundred years after Einstein predicted the existence of gravitational waves (GWs),
the first direct detection of GW was accomplished by the advanced Laser Interferometer
Gravitational-wave Observatory (LIGO) during its first observing run [1]. The observed
GW signal, GW150914, was emitted from two merging black holes (BHs) with masses
of 36 M, and 29M,, located at a distance of about 410 Mpc [2, 3]. Subsequently to the
discovery of GW150914, the LIGO and Virgo collaborations announced the second GW
observation, GW151226, that originated from a binary BH system composed of 14.2M,
and 7.5M BHs [4].

GW astronomy is expected to provide information much different from and complemen-
tary to conventional electromagnetic (EM) one. Since EM waves cannot penetrate dense
matter, EM observations enable us to obtain information only on the surface of observed
objects. Also, EM waves are vulnerable to absorption and scattering by gas and dust in
the interstellar medium during the propagation. In contrast, thanks to weakness of the
interaction, GWs can help us explore astronomical phenomena masked by dense matter
such as the interior of a supernova explosion, the center of a nebula surrounded by disks
of gas and dust, and the inside of a neutron star (NS). Thus, GW astronomy is often

referred to as a new window to the Universe [5].

Detectors

The first attempt to directly detect GWs was made by Joseph Weber from the early
1960s [6, 7]. He devised and developed a resonant-bar GW detector composed of a
cylinder-shaped aluminum bar with a radius of 1 m, which is called the Weber bar an-
tenna. The fundamental vibrational mode of the resonant bar is excited by an incident
GW at or near the resonance frequency of the bar. The GW signals are read out by
converting the vibrations of the bar into electric signals with a transducer as shown in
the left panel of Fig. 1.1.

After the pioneering work of Weber, concept of a laser interferometric GW detector
was devised and developed [8, 9]. GW signals are read out by measuring tiny distance

variations between a central beam splitter (BS) and two end test mass mirrors by means



1 Introduction

of optical interference effects. As shown in the right panel of Fig. 1.1, an input laser beam
is split into two orthogonal beams by the BS, and after bouncing at the end mirrors the
two beams are recombined at the BS. Temporal change of difference in the arm lengths
due to the passage of a GW is measured by a photo-detector (PD) placed in the direction
away from the laser. A laser interferometer is a wide-frequency-band detector for GW
and is sensitive to GW at frequencies from tens to hundreds Hz as opposed to a resonant
bar antenna. At the present time, several large-scale laser interferometric GW detectors
have been constructed or are being constructed around the world, including the advanced
LIGO [10], advanced Virgo [11], KAGRA [12], and LIGO-India [13].

Suspension wire Vacuum chamber —— Mirror
N
1
]’i\ ansducer
Laser 7 I:|
= = BS Mirror
4 V PD

Figure 1.1: The layout of a Weber bar and a simple Michelson interferometer.

Continuous waves

Continuous waves (CWs) are long-lived nearly periodic GWs and are considered to
be one of the most interesting detectable targets for GW observations. Such CWs are
potentially produced from steadily rotating systems. A rapidly spinning NS is believed
to radiate a CW due to some non-axisymmetry around its spin-axis that is detectable
by the aforementioned advanced ground-based GW detectors. Also, orbiting binary sys-
tems composed of compact stars such as NSs and BHs long before coalescence produce
low-frequency CWs although they are inaccessible by the advanced ground-based GW
detectors due to seismic noise in low-frequency region.

CW search is generally divided into two classes: a targeted search and a wide-parameter-
space search. A targeted search aims to detect CW signals emitted from pulsars that have
been already discovered by EM observations. In advance of CW search, pulsar parameters
such as the sky position, the spin frequency, and the spin-down rates are already measured
electromagnetically. In this case, there are no search parameters and we can perform the
most optimal search method. For the Crab and Vela pulsars, previous searches conducted
by the initial LIGO and Virgo have surpassed the upper limits on GW strain amplitudes
inferred from energy conservation law, so-called the spin-down limits [14]. The advanced
GW detectors are expected to beat the spin-down limits for several tens more known

pulsars.



1 Introduction

In contrast, a wide-parameter-space search aims to detect CW sources undiscovered
in previous EM searches. So far, about 2,500 radio pulsars have been discovered by
EM observations within our galaxy even though these are only a tiny fraction of all the
expected pulsars [15]. In fact, the number of electromagnetically undiscovered pulsars
within 5 kpc is estimated to be of the order of 105~7 inferred from the birth rate, part
of which are expected to have spin-frequencies within the sensitive frequency band of the
current GW detectors [16]. Since source parameters are not known completely, exploring
a wide-parameter-space in a brute-force manner is required to extract unknown weak
CW signals buried in noisy data, which results in a computationally intractable number
of signal templates. Hence, we have to perform sub-optimal search method at the cost
of reduced sensitivity. In addition to heavy computational cost, a wide-parameter-space
search entails another problem. Sharp spectral noise lines often appear in detector noise
and mimic CW signals. Lines would bring about a high-false alarm rate and degrade
detection sensitivity. Vetoing unpredictable lines is also one of the central problems in

unknown CW search.

Outline of this thesis

This thesis is organized as follows. Chapter 2 briefly reviews CW sources and data
analysis methods to extract CW signals submerged in detector noise that will be employed
in the next three chapters. In Chapter 3, we focus on a torsion-bar antenna (TOBA) that
is a recently proposed terrestrial low-frequency detector. TOBA enables us to explore low-
frequency GWs inaccessible by the ground-based laser interferometers because of seismic
noise. We give an overview of our paper [17] regarding a multi-output TOBA including
short updates. Subsequently, we report the results of all-sky search for low-frequency CWs
with a newly developed TOBA based on [18]. In Chapter 4, we turn to the first Japanese
km-scale interferometric GW detector, KAGRA. We carry out a targeted CW search
using data from iKAGRA test run and validate the search pipeline we have developed. In
Chapter 5, we propose a new veto method for a wide-parameter-space search to deal with
line noise problems based on [19]. The main feature of our veto method is applicability to a
single-detector case and multiple lines appearing in two or more segments. We investigate
performance of our veto method using an actual data set from the initial LIGO. Finally,

Chapter 6 is devoted to conclusion.



CHAPTER 2

Basics of CW search method

2.1 CW sources

2.1.1 Pulsar

CW is GW whose amplitude and frequency are nearly constant during observations. A
CW is expected to be one of the most detectable interesting targets for GW detections.
For ground-based GW detectors sensitive to frequencies between 10 Hz and 2,000 Hz, a
main source of CW is a rapidly rotating NS that produces GW due to its non-axisymmetry
around its spin axis. There exist various generation mechanisms of CWs: the non-
axisymmetric crust of a NS, the non-axisymmetric instabilities inside the NS such as
r-mode instability, and the free precession of the NS itself. Because the relation between
a spin frequency and a GW frequency depends on its generation mechanism, an origin of
a CW from a NS that is already discovered by EM observations can be identified.

A pulsar is considered to be a rotating NS born from a core collapse supernova explosion
after the gravitational collapse of a massive star. A typical radius and mass of a NS
are 10 km and 1.4M, respectively, so that its mass density is roughly estimated to
be 6.7 x 101 g/ cm® assuming uniform density profile, which is comparable to normal
nuclear density. Pulsars produce radio emissions at the expense of their rotational kinetic
energies. As a result, in addition to the observed spin frequencies, time evolutions of the
spin frequencies, namely spin-down rates, are also observed. Figure 2.1 depicts about 2,500
currently known pulsars on a f-f diagram that gives plenty information about the pulsar’s
properties such as magnetic field strengths and pulsar ages. Roughly speaking, pulsars
reside in two islands on this diagram. Pulsars occupying the region around f = 2 Hz
are often referred to as normal pulsars, whereas pulsars around f = 200 Hz are called
millisecond pulsars. Assuming that all the loss of the rotational energy is due to the
magnetic dipole radiations, the strength of B-field and pulsar age can be inferred from
B x \/ﬁ and 7 < P/ P, respectively'. These indicate that normal pulsars have weaker
B-field and older ages than millisecond pulsars do. An additional important difference

between normal and millisecond pulsars is whether or not they form binaries. While

! The pulsar age and the strength of the dipole magnetic field at the pole on the NS surface are
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normal pulsars are likely to be solitary, most millisecond pulsars form binary systems as

shown in Fig. 2.1.

(a) Pulsar population (b) Frequency distribution
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Figure 2.1: Left: f-f diagram for pulsars. The red dots represent isolated pulsars and
the blue ones represent pulsars in binary systems. Pulsars populate at around f = 2 Hz
are classed as normal pulsars, whereas pulsars at around f = 200 Hz are classed as
millisecond pulsars. Right: Histograms for the numbers of all pulsars and isolated pulsars
as a function of frequency. Pulsars with lower spin frequencies are likely to be solitary.
These data are taken from the Australia Telescope National Facility (ATNF) catalogue
[15].

2.1.2 CW sources

Let us consider a rapidly rotating NS to be modeled as a rotating triaxial ellipsoid of a
rigid body. If the NS has axisymmetry around its spin axis, no GWs are emitted from it.
In contrast, if there exists some non-axisymmetry, this leads to the production of GWs. It
mainly originates from non-axisymmetric distortions on the NS surface, non-axisymmetric
instabilities inside the NS such as r-mode instability, and free precession of the NS itself.
Generally, a non-axisymmetry of the NS around its spin axis is characterized by a single

parameter € called ellipticity, which is related to the NS’s principal moment of inertia by

I, — 1
ge="2_"W, (2.3)
IZZ
estimated to be [20]
P P P
.\ 1/2 1/2 . 1/2
3IPP 12 P P

respectively, where we assume that the NS’s spin-down is caused by the dipole radiation and the spin
period at the birth is much shorter than the present value. The radius and the moment are assumed to
be R = 10 km and I = 103® kg m?, respectively.
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where the z-axis is assumed to align with the spin axis. The parameter ¢ has information
on to what extent NS is distorted around its spin axis. The case of I, = I,, = I..
corresponds to a spherically symmetric NS. In the case of I, # I,,, namely a non-
axisymmetric NS, GWs are generated from the NS. In the following, we give a brief

review of bumpy NSs, freely precessing NSs, and accreting NSs.

Bumpy NS

A NS is considered to be born as a result of a catastrophic supernova explosion, which
would bring some deformation to the NS. Although such a deformation relaxes gradually
over time, the NS’s crust can sustain the non-axisymmetric deformation at a critical level
Upreak, Which is called the breaking strain. Owing to the high density of the NS, the outer
crust is considered to form a body-centered cubic Coulomb lattice composed of iron *°Fe
nucleus [21]. Non-axisymmetric distortions can be supported by the electrostatic force,

or the Coulomb force. The maximum value of ellipticity is roughly estimated to be [22]

AR R \®/14M.\?
max ~ b rea. ~ ]' _6 ( Ubreak > @ 2 . 4
¢ e N S WA YA M) (2:4)

where M, R, and AR denote the NS’s mass, the NS’s radius, and the thickness of the
crust, respectively. Roughly speaking, the rigidity parameter b is the ratio of the crustal

electrostatic binding energy F¢ to the gravitational binding energy Eg%. Because Eg ~
Werust ~ 4muR?*AR and Eg ~ GM?/R, the rigidity parameter b scales as in Eq. (2.4),
where Vi, is the volume of the crust, and p is called the mean shear modulus whose
typical value is 10* J/m3. Thus, the smallness of b ~ 107 is due to the fact that the
electromagnetic energy stored in the crust is much smaller than the gravitational one in the
NS [25]. Whereas the rigidity parameter is relatively well-understood, the breaking strain
Upreak 18 highly uncertain, beyond which the crust will crack. The maximum possible
value of uppea in the NS curst is estimated to be around 0.1 by molecular dynamics
simulations in [26]. It is widely believed that NSs are composed of a solid crust and a
fluid core. On the other hand, some exotic alternatives to conventional NSs that contain

solid cores have been proposed. If this is the case, allowable maximum deformation could

2 This is because the shape of a NS is determined such that the total energy of the NS is minimized.
According to [23, 24], NS’s total energy is written as a function of e:

J2

— 1 A2+ B(e— 2 2.
210(1+€)+ e“+B(e—¢0), (2.5)

E(e)=Ey+
where Ej, Iy are the energy and the moment of inertia in a non-rotating spherical case and J is the total
angular momentum. The last two terms are related to the gravitational binding energy and the strain
energy stored in the crust, respectively. Setting OF () /O¢e to be zero leads to € = g + beg, where e =
J?/[4(A+ B)Iy) ~ I,Q?/4A is a deformation caused by centrifugal force and b = A/ (A+ B) ~ A/B
denotes the rigidity parameter.
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be much larger than indicated by Eq. (2.4) (e.g. €max ~ 4 X 107* (tprear/1072) for solid
strange-quark stars [27] and epax ~ 1072 (Upreak/1072) for NSs with crystalline color-
superconducting core [28]). Hence, the maximum possible value of ellipticity depends on
the crustal structure and the core equation-of-state. Future prospects for what upcoming
GW detectors will tell us about NS’s equations-of-state from known pulsar searches are
discussed in [29].

Also, strong magnetic field that is misaligned with the spin-axis can sustain the NS’s
deformation and distorts the NS in a non-axisymmetric manner. When a NS is modeled as
a uniform-density star composed only of non-superconducting component, the magnitude

of a magnetic distortion can be roughly estimated by a back-of-the-envelope formula [30]:

Ep ( B \’[/14M.\*/ R \*
~— ~ 1 2.
=g, "o (1012 G M 10 km ) (26)

where Eg ~ GM?/R is the gravitational binding energy and Ep ~ B2R? is the magnetic

energy stored within the NS. Figure 2.1 indicates the estimated magnetic field strength
ranges between 10° and 102 Gauss under the assumption that NS’s spin-down is at-
tributed to magnetic dipole radiation. So, magnetic distortion is not large enough to
produce detectable GW signals as is evident from Eq. (2.6). On the other hand, if a
NS consists of a type-I superconducting core, the strength of GW signals is estimated
to be much stronger [31]. Since magnetic field lines cannot penetrate through the type-I
superconducting core, the magnetic field is confined to the crustal region composed of the
normal component (see Fig. 5 in [31]), in which case the internal magnetic fields would be
much larger than the external magnetic fields. The resulting magnetic ellipticity would
be much larger than indicated by Eq. (2.6). Because the internal structure of a NS has
yet to be well-understood and also because magnetic deformation depends on the interior
magnetic field structure and the core equation-of-state, to what extent the magnetic field
distorts the NS is yet unclear. Hence, observation of a GW signal would give a hint to
the NS physics.

Freely precessing NS

CW observations usually assume a pulsar model whose spin axis aligns with its principal
axis, in which case a CW is monochromatic at twice the spin frequency. However, if there
exists the misalignment between both axes, the NS is expected to freely precess and emit
GWs at once and twice the spin frequencies [32]?. Cutler and Jones [33] considered the
effect of GW back-reaction on NS’s precessing motion and showed that a damping time

of the wobble angle due to GW radiation is much longer than previously thought [34].

3 Strictly speaking, frequencies of a CW from a precessing NS are frot + forec and 2 fior, where frop
and fprec denote the spin frequency and the precession frequency, respectively.

8
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However, the subsequent work proved that freely precessing NSs are not appropriate CW
sources [35]. When a NS is more realistically modeled as a thin elastic crust containing
a superfluid core in place of a rigid body [36], internal dissipation arising from a mutual
friction between the crust and the superfluid core tends to damp the wobble angle much
more rapidly compared with the GW back-reaction. On the other hand, observational
evidence for freely precessing NSs was reported in the studies of PSR B1828-11 [37] and
PSR B1642-03 [38]*. Cutler [39] examined wobbling motion of a NS caused by internal
strong toroidal magnetic fields. Because the toroidal B fields act on the NS like a rubber
belt and tighten the NS’s waist, the NS would be distorted into a prolate shape. Since
such a NS would be unstable, the wobble angle is expected to grow up until the angular
momentum axis becomes orthogonal to the magnetic axis. Recently, phase modulations in
pulsations of the Magnetars 1E 1547.0 0 5408 and 4U 0142461 in the Suzaku X-ray data
were reported by Makishima et al. [40, 41]. They interpreted that the phase modulations
can be traced to free precessions of the magnetars caused by strong toroidal B fields. Jones
[42] proposed the possibility that a NS containing a pinned superfluid core would emit
GWs at once and twice the spin frequency even if there is no electromagnetic signature
of free precession. Motivated by these observations and the theoretical proposal, Ono,
Eda, and Ttoh [43, 44] investigated the possibility of estimating the mass of an isolated
NS using two-component CWs. They estimated the measurement accuracy of NS mass
using Monte Carlo simulations and found that the mass of the NS with its spin frequency
500 Hz and its ellipticity 107% at 1 kpc is typically measurable with an accuracy of 20%
using the Einstein Telescope. Although a two-component model for a CW signal is still
controversial as discussed above, a detection of a CW from a known pulsar would elucidate

the existence of a freely precessing NS or a NS containing a pinned superfluid core.

Low mass X-ray binaries

Low mass X-ray binary (LMXB) composed of a NS and a low-mass companion being on
the main sequence is considered to be one of the most attractive targets for CW search.
In this system, gas and dust are stripped from the companion star and accrete on the NS
surface. The gravitational potential energy of the accreted matter on the surface of the
NS is converted into the energy source of the X-ray emission of the LMXB. The resulting
X-ray flux observed at the Earth is roughly estimated to be Fx ~ GMM /AT Rd?, where
the accretion rate, the distance to the NS, and the radius of the NS are denoted by M,
d, and R, respectively. Meanwhile, the NS would rotate more rapidly by gaining torque
exerted by the matter accretion, Ny ~ MVGMR. Such a NS’s spin-up is expected

to last until the spin frequency reaches a break-up frequency of the order of 1.5 kHz

4 The wobble angles are estimated to be § ~ 3 degrees for PSR B1828-11 and 6 ~ 0.8 degrees for
PSR B1642-03 [37, 38].
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beyond which the NS would be broken by the centrifugal force. However, the maximum
spin frequency estimated by EM observations falls much below the break-up frequency
contrary to the naive expectation [45]. These observational results indicate the existence
of a suppression mechanism that prevents a NS from spin-ups. Bildsten [46] suggested
the mechanism stems from gravitational-radiation loss. If this is the case, the angular
momentum carried by mass accretion is expected to be in a state of equilibrium with
gravitational-radiation loss®. Consequently, the GW amplitude hy can be related to the

observed X-ray flux Fx by

L (BExGRN\Y
o 3 Mfrot

0 (B Y2/ R 1.4 Mo \'"* /300 Hz\ /2 29)
’ F_g 10 km M frot ’ .

where F g = 1078 erg em™2 s7! [47]. As Eq. (2.9) indicates, Sco X-1 [48] that is the
brightest stellar X-ray source in the sky is considered to potentially emit strong CW.
So far, GW from Sco-X1 has been investigated by the initial LIGO data [49, 50]. Data
analysis methods focusing on Sco X-1 were investigated by several authors including
Sideband method [47], TwoSpect method [51], Cross-Correlation method [52], and Stacked

F-statistic method based on Einstein@Home [53]. These search methods were compared

with each other via a mock-data challenge in [54].

2.2 CW signal model

2.2.1 General form of CW waveform

CW waveform
Generally, CW waveform from a rapidly rotating NS can be characterized by the two

independent polarization modes of h,, as

hy (1) =A;cos® (1), hy(1)=Assin® (1), (2.10)

5 The torque exerted by the gravitational-radiation loss can be expressed by

32G (el..)? w?,
T (2.7)

The GW amplitude hy is related to the GW torque Ny, by

Naw =

5G

= Q32,2 lew
8c3dwi

hi (2.8)

10
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where ® (7) is the GW phase observed at the Solar-system barycenter (SSB). The ampli-

tudes A, » correspond to the two polarization modes and are defined as

1

Ay = §hg (1 + cos? /,) , Ay =hgcost, (2.11a)
4G 9

ho = WEIZZ aw) (211b)

where hy and ¢ denote the overall amplitude and the inclination angle that is defined as
the angle between the line-of-sight and the spin axis of the NS, respectively [55]. The
parameters ¢, d, G and f4, represent the speed of light, the distance to the source, the
gravitational constant, and the GW frequency, respectively. Equation (2.11b) indicates
that a more rapidly rotating NS with larger € produces a stronger CW signal.

CW signal

CW signals are written as a linear sum of h, and hy,
s(AX) = Y Faha
=F, (t;n,¢) Ay cos @ (5 A) + Fy (t;n,¢) A sin® (6 A), (2.12)

where the coefficients F'; , are called the antenna pattern functions that depends on both
the position and direction of the detector with respect to the source. The parameters
A and A are the collections of the amplitude parameters A = {A,, Ay, ¥, po} and the
Doppler parameters A = {n, f, £ }, respectively. The sky position of the source is
specified by the unit vector n = (cosd cos a, cos d sin o, sin d), where « and ¢ are called
the right ascension and the declination, respectively. The antenna pattern functions F

represent the response of the detector to incident GWs and are expressed by

) =sin( [a (t; 1) cos 29 + b (t; 1) sin 2¢] (2.13a)
) =sin( [b(t; 1) cos2¢ — a (t;n) sin 2] , (2.13b)

where ( is the angle between two arms of the detector, v is the polarization angle, and two
time-dependent functions a (¢) and b (t) are often referred to as the modulation amplitudes.
The concrete expressions for the modulation amplitudes are given in Appendix C. The
definitions of n and 1 are illustrated in Fig. 2.2. As shown in Egs. (2.12), (2.13a), and
(2.13b), the CW signal strength is proportional to sin (. This factor implies that compared
with a 90°-interferometer, a signal-to-noise ratio (SNR) is reduced by a factor of v/3/2 in
the case of a 60°-interferometer such as the Laser Interferometer Space Antenna (LISA)

and the Einstein Telescope because the SNR scales as the CW amplitude as will be

11



2 Basics of CW search method

discussed later. In what follows, ¢ is assumed to be /2.

A

’I" A
z ) o .
North pold n ) L
1S Source
I é direction

............. \ N
v Equatorial plane P A
Earth Py 3

Figure 2.2: Definition of n and ¢. The unit vector n is defined as the unit vector pointing
toward the source from the detector. It is convenient to introduce an orthogonal bases
{—n, 3 n} and {—n,u,v}. The polarization phase v is defined as the angle from £ to .
Concrete expressions for these orthonomal bases are shown in the footnote”.

GW phase

Instantaneous signal frequency received at the SSB is defined as 27 f (1) = d® (1) /dr.
Assuming that the SSB and the source are at rest with respect to each other, the sig-
nal frequency varies slowly due to NS’s spin-down or spin-up. Thus, the phase can be

expanded in a Taylor series about the reference time 7.o¢ as

D (1) = ¢+ ¢ (1), (2.16a)
S F) (1
¢(r)=2m ) ]E/cT(Sf!)ATkH’ (2.16b)

where ¢g = @ (Tef) and AT = 7 — Tyr. The parameter 7 is the time that the wavefront

arrives at the SSB. The time ¢ at which the same wavefront is observed at the detector is

" In the equatorial coordinate system, an orthogonal basis {—, é’ , M} is expressed as

7 = (cos d cos a, cos d sin a, sin §) | (2.14a)
£= ‘Z i ; = (sina, — cos 0, 0) , (2.14b)
=& xn=(—sindcosa,—sindsina,cosd), (2.14c¢)

where the unit vector 2 = (0,0, 1) is assumed to align with the North pole of the Earth. The unit vectors
4 and v are

@ =_Ecosty+ Asiny, ©=—Esiny + 7 cosy, (2.15)

where the polarizaton phase is defined as sint) = 4 - 1) and cosy) = @ - é

12



2 Basics of CW search method

related to the SSB time 7 by

r(t)-n d

—( ) - E + Arel@a (217)
where 7 - n/c is the Romer time delay®, d/c is the propagation time from the source to
the SSB, and A,y is the relativistic time delay caused by the Shapiro time delay® and
the Einstein time delay'?. Since d/c is treated as a constant in the case of isolated NSs,
this term are neglected in the following for simplicity. In practice, the phase part can be

modeled as
¢ (1) =2mAT {f (Tret) + %f’ (Tret) AT} . (2.21)

Taking the time derivative of ¢ (7), the instantaneous signal frequency received at the

SSB is expressed up to the second order of the spin-down effects as

Fo=fo (142, (2.220)
F @)~ f (Tret) + f (Tret) (£ = Tret) (2.22b)

where f (t) denotes the intrinsic frequency that varies with time only due to the NS’s spin-
up and spin-down effects. When performing a CW search, the relativistic corrections and

the higher order derivatives of the spin-frequency are taken into account in this thesis!!.

8 The detector motion is decomposed into the orbital motion around the Sun and the rotational motion
around its spin axis as r (t) = oy, (t) + Tspin (£). So, the Rémer time delay is estimated by

c Cc

t)- or t) - sint'
r(t) "’< [Toro (8) 72| | |Pspin (1) - 7| <fes L Be g0 102 sec, (2.18)
C C C

where Rggs and Rg denote the distance from the Earth and the Sun and the Earth radius, respectively.

9 The Shapiro time delay originates from the curvature created by the gravitational potential of the
Solar system. A GW takes a slightly longer time to reach a detector than it would in the flat space. The
maximum value of the Shapiro time delay is roughly estimated to be

Age < ~ 1.2 x 107 sec, (2.19)

2GMg . 1+ cosbs
In
3 1+ cosb;

where 01 =1 —¢£,02 = &, and £ = arctan (Rg /Rgg).
10 The Einstein time delay is the effect of the gravitational redshift caused by the Solar system and is
approximately evaluated by

dt 2

dApo 1 [Gzy@ N ;vé} (2.20)

11 Tf some effect contributes to the accumulation of the GW phase over the total observation time less
than 1/4 of a cycle, neglecting this effect leads to a reduction of SNR by not more than 10%. This is
known as 1/4 of a cycle criterion (see Appendix A in [56] for more details).

13
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2.2.2 JKS factorization

Combining Eqgs. (2.12), (2.13a), (2.13b), and (2.16a), CW signal measured at a detector

is factorized as

s (t; A, ) ZA“h (), (2.23)

where A*s are often referred to as amplitude parameters [57]. They represent the strength
of the CW signal and are defined as

Al = A cos ¢y cos 2 — A, sin ¢ sin 21, (2.24a)
A% = A cos ¢gsin 2 + A, sin ¢y cos 21, (2.24b)
A3 = — A, sin ¢ cos 21) — A, cos ¢ sin 21, (2.24¢)
A = — A, sin ¢ sin 2) + A, cos ¢ cos 2. (2.24d)

The four time-dependent parts h,s in Eq. (2.23) characterize the shape of the CW signal
and depend on the modulation amplitudes a (¢) and b (¢). These four basis waveforms h,,s

are expressed as

hi(t;A) =a(t;n)cosd (t;N),  ha (6;N)
hs (t;XN) =a(t;n)sing (t; X)), hy(t;N)

b(t;m)cos o (t;N), (2.25a)
b(t;n)sing (t;N) . (2.25Db)

It should be noted that dependencies on the amplitude parameters and the Doppler

parameters are completely separated from each other in Eq. (2.23).

2.3 F-statistic

2.3.1 CW signal buried in detector noise

Let us consider GW observation by a network of Ny detectors. The collection of multi-
detector output data is denoted by  (t) = (2! (¢),---,2" (t)), where = (¢) stands for
the output of the X-th detector. The output data can be written as the linear sum of
detector noise and a CW signal with parameters A and A by

x(t)=n(t)+s(t; AN, (2.26a)
s(t; A,A) = A"h, (B A, (2.26D)

14



2 Basics of CW search method

where the Einstein summation rule is adopted in Eq. (2.26b). Assuming stationarities of
detector noises in a detector network, an autocorrelation function kXY between n* and
nY is related to the one-sided power spectral density S*Y (f) by virtue of the Wiener-

Khinchin theorem,

KXY (1) = (n* (t+71)nY (1)), (2.27a)
SXY(f) = /_ KXY (1) e 2T, (2.27b)

In Fourier space, these equations can be reduced to an ensemble average between the

different Fourier components of noises as

(A (1) = 560~ 1) (). (229)

It is convenient to introduce noise-weighted inner product between two time-dependent

functions « (t) and y (t) as
(aly) = 4Re [ 35 (1) S35 (D (2.29)

where Sy represents the inverse matrix and satisfies Sy3.SY% = dx 5.

2.3.2 F-statistic

Definition of the F-statistic

When the detector noise is stationary and Gaussian, its probability distribution function
(PDF) obeys p(n) x exp|[— (n|n) /2] as is verified in Appendix A. From a standpoint
of the Frequentist, the most optimal detection statistic to discriminate whether or not a
CW signal exists in observation data @ is achieved by a likelihood ratio A (x; s) according

to the Neyman-Pearson lemma'?, which is defined as

P (x|s)
P (x|0)

— (@]s) — = (s]s). (2.30)

InA(x;s) =In 5

Substituting Eq. (2.26b) into Eq. (2.30) gives rise to

InA(xz; A, A) = Az, — %A“MWA”, (2.31a)
T (A) = (zlhy), M (A) = (hulh,). (2.31b)

12 Optimal strategy for sinusoidal signals buried in noisy data is discussed by the use of the Neyman-
Pearson criteria in [58].
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The F-statistic'® is defined as the maximization of In A (x; A, \) over the amplitude pa-

rameters A*,
2F (x; A) = max 2InA(z; A N)] = 2,M"z,, (2.32)

4 where M" denotes the inverse matrix of M,,, namely M* = {M~}". In this
process, the amplitude parameters are projected out and only the Doppler parameters A

are to be searched over.

Concrete expression for the F-statistic

In an actual data set, detector noises in a detector network are not stationary and
different from each other. To handle the non-stationarities, time series data are broken
up into shorter time segments called SF'T segments. The time baseline of SF'Ts, Tspr, is
chosen such that the noise level in the a-th SFT and the X-th detector, S (f), can be

regarded as stationary. It is convenient to introduce the following notations.

1 Tspr/2
=g [ (2.34a)
SFT J—Tgpr/2
1 X
w = o O, 2.34b
(@0 = oy S wxal@) (2:340)
-1
_ X
Wxa = 57 (2.34c¢)

where S71 = >, S;(}a. By definition, ), , wx. = Ngpr is satisfied. The symbols
(-+ )t (- )w, and wx o denote the time average over a single SF'T, the total noise-weighted
average, and the noise weights. Assuming each detector noise is independent of each other,

Syy = Sy 0xy is satisfies. The noise weighted inner product shown in Eq. (2.29) can be

13 The F-statistic was first introduced by Jaranowski, Krélak, and Schutz in [57] (well known as
JKS98). The F-statistic is generalized to the case of multi-detector network and multiple pulsars by
Cutler and Schutz in [59]. Jaranowski and Krélak proposed the G-statistic in [60]. They considered the
case where there are two unknown parameters, over-all amplitude and initial phase, whereas polarization
phase and inclination are already measured by X-ray observations as in the case of the Vela pulsar. The
G-statistic is derived from the maximum-likelihood method in a similar way to the F-statistic.

14 Completing the square of the log-likelihood ratio is

2InA (x; A N) = — (A —z , MPPY M, (A — M7 25) + 2, MP 2y, (2.33)

So, In A takes the maximum value at Al = MMz, that are called the maximum likelihood estimators.
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approximated as'®

(ely) = =2 (ay). (2.30)

where a narrow-band approximation around f = fy = f (7wt) is used because a spin
frequency is regarded as a nearly constant during an observation. Using Eq. (2.36), M,

in Eq. (2.31b) is expressed as'®

AC 0 0 B —-C 0 0
1l ¢ B o o 2| —c A4 0o o
M, ~ = MM~ 2 : 92.38
210 0 A C D 0O 0 B -C (2.38)
0 0 C B

o o0 —-C A

where A, B, C, D are defined as
A= (ala), B=(blb), C=(alp), D=AB-C> (2.39)

Combining Egs. (2.32), (2.38), and (2.39) brings the F-statistic to the following form:

B A
F=— (21423 += (23 +27) —

C
D D (%11@ +—$3$4). (2.40)

2
D

15 Using the narrow-band approximation and the independence of the detector noise, (z|y) is approx-
imated as

oo Tobs/2
GMy>::§j4sglcm>Re/" iX(f)@X*cﬂc#::§j2sgluby/ X (1) ¥ () dt
X 0 X —Tobs/2
Tspr/2

=Yoo () [ N @yt )= Y 2Ren S Ny,

X, —Tsrr/2 X,

1 2T obs

= 2NgprTsprS ™ ; NSFTwX7a<xX’ayX’a> = Tb<$y>w7 (2.35)

where Tohs = Nsprlspr was used. In the first line, the Parseval’s theorem was employed to convert the
integration in the frequency domain to the time domain. In the second line, %% (t) = 2% (tx o +t) is
used, where tx o denotes the centering time of the a-th SFT in the X-th detector.

16 Temporal changes in modulation amplitudes are caused by the Earth’s motion. So, a (t) and b (t)
varies much more slowly with time than the phase ¢ (¢) varying on the time scale of 1/ fy. This fact leads
to the following approximations.

(h1lhs) ~ (hi|hs) ~ (h2|h3) ~ (he|hy) ~ 0, (2.37a)
(hh1) ~ (hs|hs) ~ %(a|a) - %A (2.37h)
(holfs) = (alhs) ~ 3 (blb) = 3 B, (2.37¢)
(hlh2) = (halhy) ~ %(a|b) _ %C’, (2.37d)

where the observation time Tips is assumed to be much longer than 1/ fj.

17



2 Basics of CW search method

PDF of F-statistic

Completing the square of the F-statistic in Eq. (2.40) leads to the form of the sum of the
squares of four Gaussian random variables. In fact, there exists a linear transformation
L such that!”

T; = ,Ciij, (242&)
2F =28 + 25+ 25 + 23, (2.42b)

Since z; can be obtained by the linear transformation of z; obeying the Gaussian distri-
bution, new variables z; also obey the Gaussian distribution. Therefore, 2F is distributed
according to a non-central chi-squared distribution with four degrees of freedom (see Ap-

pendix B for more details).

2.4 Targeted search

A targeted search aims to search for a CW signal from an already discovered pulsar .
The pulsar parameters such as the sky position, the spin frequency, and the spin-down
rates are measured by EM observations. In other words, the Doppler parameters A\ are
known whereas the amplitude parameters A are unknown. As shown in Eq. (2.40), an
F-statistic value is a function only of the Doppler parameters A because the amplitude
parameters A are projected out in the process of the maximization of the log-likelihood

ratio. Thus, in a targeted search, there is no need to explore a wide-parameter-space.

2.4.1 Theoretically expected upper limits

Average SNR?

The output data x projected on the basis waveforms h,, is expressed by

y (AXN) =n, + 5, (A AN), (2.43a)
r, = (zlh,), n,=(nlh,), s,=(slh,). (2.43D)

Assuming that detector noise obeys Gaussian distribution, the ensemble average of n,

17 The concrete expression for £ is

<Jg ff) N = Wﬂ/gc \/A 5 : (2.41)

L=

N | =

where A, B, and C are defined by Eq. (2.39).
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and n,n, are expressed as (n,) = 0 and (n,n,) = M, where ((n|h,) (n|h,)) = (h,|h,)
is used. Using these relations, the ensemble averages of z, and x,z, are computed as
(x,) = s, and (z,z,) = s,5, + M,,. Thus, the expection value of the F-statistic for

perfectly matched signals can be expressed by

(2F) =4+ p*(0), (2.44a)
p?(0) = (s|s), (2.44D)

where p (0) denotes the optimal SNR'®. The argument of p(0) stands for the fact that
there is no signal-template mismatch, namely AX = 0. Combining Eqs. (2.24a)—(2.24d),
and (2.38), the optimal SNR in Eq. (2.44Db) is computed as

P2 (0) = A" M., A

1
=3 [(AT + A3) A+ (A3 + A7) B+ 2 (A1A: + A Ay) O

1
= ]’L(QJ (OélA + O{QB + 20[30)

T2

Tobs
= h?
S

[ (a®) + aa(b*)r + 203(ab)r] | (2.46)

where the coefficients aq, as, and a3 are defined by

1

a =g (1 + cos? L)2 cos? 21 + cos® 1sin? 2, (2.47a)
1

a2 = 7 (1 + cos® L)2 sin® 21 + cos? ¢ cos® 21, (2.47b)
1

a3 = (1 — cos® L)2 sin 21 cos 2. (2.47¢)

As is shown in Eq. (2.46), the SNR depends on hg,cose, ¥, «,d, fo, f,- -+, but is inde-
pendent of the initial phase ¢y. In order to evaluate average SNR?, it is convenient to
introduce

Tda (' d(cosd) [ d(cost) [*Tdy
<Q>a,6,oom,w —/0 %/_1 B /_1 5 /0 % (a,(S, COS ¢, Q/J), (248)

where (Q) a5 .c0s.,» denotes the quantity ) averaged over the angular parameters {«, 0, cos ¢, 1 }.

To put it another way, (Q)a.s.cos.,0 1S the average of () assuming isotropically distributed

18 The ensemble average of 2 is computed in the following way:

2F) = (zuM* ) = M* (x,2,) = MM (5,5, + M) = 0, + s, M*s,
=4+ A MaMP Mg AP =4+ A" M A° =4+ (s]s) = 4+ p*(0), (2.45)

where s = A%h,, and MWM’”‘ = 5,1)‘ were used.

19



2 Basics of CW search method

pulsars over the sky with isotropically distributed orientations. Using Eqs. (2.46) and
(2.48), the root-mean-square (RMS) SNR is derived as'?

2 Tobs
2 —
\/(P (0)>a,6,cost,w = 5h0 S (249)

The RMS SNR is characterized by hg+/Tons/S, which is called the statistical factor.

It should be noted that /(p? (0))a,scos.y Scales as Tolb/f in the case of coherent search,

whereas a SNR in incoherent search scales as Tolb/: stgl,«/ *. If the sensitivities of the detectors

take the same value S,, at the frequency fy, S = S5,,/Nget holds. Therefore, since the RMS
1/2

SNR is proportional to S™/=, the sensitivity of a multi-detector network is better than a

single detector by a factor of Nif :

Expected upper limits

As is discussed in the previous section, 2F in the absence of a CW signal follows a
chi-squared distribution with four degrees of freedom. The PDF of 2F with p?> = 0
is p(2F|p* =0) = Fe= /2. In the presence of a CW signal, 2F obeys a non-central
chi-squared distribution displayed by Egs. (3.30), (3.31a), and (3.31c). Setting F* to
be a threshold for detection, the false-alarm rate ppa (2F*) and the false-dismissal rate

prp (2F*, p*) can be expressed as

pra (2F%) = /:o p(2F|p* =0)d(2F) =1+ F)e ", (2.50a)
2F*
prp (2F%,p°) = /0 p (2F|p?) d (2F), (2.50b)

where ppa (2F*) can be calculated analytically, whereas prp (2F*, p?) requires the numer-
ical integration (see Fig. 2.3). If a false-alarm rate is taken to be 1%, a detection threshold
is 2F* ~ 13.3 via Eq. (2.50a). Setting a false-dismissal rate to be 10%, Eq. (2.50b) leads
to p >~ 4.5. Assuming an isotropically distributed orientation of a pulsar, upper limits on

ho in a targeted search is theoretically expected to be

(ho)PPP=10% ~ 17 4 S

— 2:51)

where 90°-interferometers are assumed?’.

19 We made used of (((a®)1 + (b*)1))a,s = 2/5, (1)cos 1,0 = (02)cos s,y = 2/5, and (@3)cos 1, = 0.

20 Equation (2.51) holds true for a targeted search in which only a single template is used. An estimation
method for a statistical factor in wide-parameter-space searches without computationally cumbersome
Monte-Carlo simulations is found in [61].
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p(2F|Hc)

2F

Figure 2.3: Shaded regions depict the areas formed by false-alarm rate and false-dismissal
rate. The hypotheses Hg and Hg are a Gaussian-noise hypothesis and a signal hypothesis,
respectively. The false-alarm rate is the probability that a measured value of the F-
statistic exceeds the threshold when the data is consistent with Gaussian noise. The
false-dismissal rate is the probability that a measured value of the F-statistic falls below
the threshold in spite of the presence of CW signals.

2.4.2 Setting an upper limit on A

If the measured value of the F-statistic is not significant, we proceed to place an upper
limit on GW strain amplitude. Let hy (C') be an upper limit with confidence level C' on

the overall amplitude hg. The inverse of hg (C) (E h§ ) can be expressed as

C (ho) = / p (2F|hG) d (2F), (2.52)
2F obs
where p (2F|h{) denotes the PDF of the F-statistic in the presence of the signal whose

amplitude is hg. In terms of the false-dismissal rate, Eq. (2.52) can be written as
2-7:obs
Pp=1-C= / p (2F|hS) d (2F). (2.53)
0

The upper limit A§ with confidence level C can be obtained by solving Eq. (2.53) inversely.
However, the non-centrality parameter of the PDF p (2]: ]hoc) depends on the unknown
waveform parameters, «,d,cost and 1. To deal with this problem, there are two ways
to determine the PDF, p (2.7-"|h00) [62]. One is to suppose the most pessimistic situation
where the unknown parameters are fixed such that the SNRs take the lowest value. This
corresponds to setting the most conservative upper limits. The other is to assume the
uniform distributions of the unknown parameters. The PDF is obtained by injecting

artificial signals via Monte-Carlo simulations. Here, we employed the latter to estimate
the PDF, p (2F|A§).
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2.4.3 Spin-down ratio

It is useful to introduce spin-down ratio in order to make it clear how far observed upper
limits on hg are close to physically meaningful quantities. It is defined as the ratio of the
observed upper limit to the spin-down limit such as h3°”%/h%!. Let us consider the situation
where the loss of the rotational kinetic energy of a pulsar is in a state of equilibrium with
gravitational-radiation energy. Such a pulsar is often referred to as a gravitar [63]. Since
all the rotational energy are converted into the production of the GW, the equation of
energy conservation states that
dEgy  dEro

= 2.54
dt dt -’ ( )

where Eg, and E,. represent the gravitational-radiation energy and the loss of the rota-

tional energy, respectively. Concrete expressions for Fg, and E, are given by

dEro -
dt ’ = 47T2Izzfr0tfrot7 ) (255>

dBgy _ 82O
a5 G '

h2. (2.56)

Combining Egs. (2.54)—(2.56) yields

5GL, for\ 2 fa )
Pl = | S22 ) =8.06x 107198 | % 2.57
’ ( 2 Ad? f rot> g dkpc f rot ’ ( )

where I;éQ = 10% kg m? and dipe = 1 kpe. It should be noted that fi; takes a negative

value in general because the loss of the rotational energy brings spin-down to the pulsar?' 0]

In practice, Eq. (2.54) does not hold in the case of isolated pulsars because measured
breaking index n of isolated pulsars is usually less than 5 (e.g. n ~ 2.5 for the Crab
pulsar [65] and n ~ 1.4 for the Vela pulsar [66])?%. Setting upper limits whose spin-down
ratios are less than unity is an important milestone in the field of CW search [14]. So

far, the first generation GW detectors consisting of the initial LIGO, the initial Virgo,

21 A pulsar hosted in a globular cluster is likely to have an acceleration due to the gravitational
potential, which would lead to the pulsar’s apparent spin-up. The observed spin period Fops is related to
the intrinsic spin period P, by

a

Pobs = .int + (258)

c
where a)| denotes the pulsar’s acceleration along the line-of-sight [64]. In the case of a binary pulsar, mass
accretion from the companion brings the spin-up to the pulsar. Also, a pulsar glitch generally produces
an instantaneous spin-up [20].

22 Breaking index n is defined as wyop o —wit,. In the case of n = 3 and 5, the loss of the rotational
energy is due to magnetic dipole radiation and gravitational quadrupole radiation, respectively [20].
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and the GEO600 have performed targeted searches for a total of 195 known pulsars
62, 67, 64, 68, 69, 70, 14]. The spin-down limits for the Crab and the Vela pulsars
have already been beaten by the past searches (h*”/hid = 0.11 for the Crab pulsar and
h9?” /hsd = 0.13 for the Vela pulsar [14]).

2.4.4 Bayesian framework

In this section, a detection statistic is discussed in a Bayesian framework based on [71,
72)%3. Let us consider a binary hypothesis testing problem such that we choose one out

of the following two hypotheses:

t), (2.59a)
() + st AN). (2.59h)

The Gaussian-noise hypothesis H is a statement that data @ comprises of only Gaussian
noise n, whereas the signal hypothesis Hg is that data a includes a signal s in addition to
Gaussian noise n. In order to decide which hypothesis is likely to be correct, the posterior
odds ratio between Hg and Hg is employed, which is defined as

P (Hslz) _ P(Hs) P(z[Hs)

Os/a (x) = P(Halw) _ P(He) P (a|Hq) 0s/cBs/c () - (2.60)

The posterior odds ratio can be computed by means of Bayes’ theorem, which results in the
prior odds ratio og/¢ = P (Hs) /P (Hc) and the Bayes factor Bg,q = P (x|Hs) /P (x|Hg).
Equation (2.23) indicates that the amplitude parameters A and the Doppler parame-
ters A are independent of each other. In particular, in the case of a targeted search,
the Doppler parameters A are known to be Ay, a priori by EM observations. Thus,
P (A, A[Hs) = P (A|Hs) P (A[Hs) = P (A|Hs) d (XA — Agig). Using this relation, the Bayes

factor can be computed as follows.

P(x|Hs; A, A
Bs/a (“")_/ %LJHG) LP (A, AJHs) d' AdA

_ / A (@ A Agy) P (AHs) d* A

— L (@hae) (2.61)

23 Bayesian method of a targeted CW search is presented in [71]. In this paper, an end-to-end search
pipeline for known pulsars is constructed and the performance test for multi-detector network is performed
numerically. Prix and Krishnan discussed a targeted search in the Bayesian framework and introduced
the B-statistic [72]. They discovered the F-statistic as a special case of a Bayes factor on the assumption
of uniform priors in amplitude parameters A*. The B-statistic is defined as the Bayes factor with more
physical priors in unknown pulsar parameters. They showed that the B-statistic is more powerful than
the F-statistic in the sense of the Neyman-Pearson optimality via Monte-Carlo simulations.
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2 Basics of CW search method

where A (x; A, Agg) is the likelihood ratio defined in Eq. (2.31a) and ¢, is a constant
depending on the priors in the amplitude parameters®!. When integrating the likelihood
ratio over the amplitude parameters in (2.61), we made use of Eq. (2.33) and the formula

for a multidimensional Gaussian integral?*. Combining Egs. (2.65) and (2.61) yields
OS/G (ac; )\) = 05/@6:16}-(93;)‘). (2.65)

As discussed above, marginalization over the amplitude parameters A brings the Bayes
factor to the F-statistic on the assumption of the uniform priors in A. Since og/¢ and c,

are constants, the F-statistic is regarded as an optimal detection statistic?.

2.5 Wide-parameter-space searches

Thus far, about 2,500 radio pulsars have been discovered by EM observations within
our galaxy even though these is only a tiny fraction of all the pulsars [15]. This is
because pulsars are very weak radio sources and also because the direction of a beam
from a pulsar needs to cross our line-of-sight for EM detection. In fact, the number of
electromagnetically undiscovered pulsars within 5 kpc is estimated to be of the order
of 107 from the birth rate apart from the detectability by ground-based GW detectors
[16]. However, a wide-parameter-space search is required to explore unknown CW sources,
which entails a labor-intensive search method because the source parameters are unknown
completely in advance of observation.

Search methods for GWs are usually based on a matched filtering technique in which

24 Let the priors in the amplitude parameters obey uniform distributions:

C ho (.A) < hmax-

. (2.62)
0 otherwise,

P (AlHs) = {

where hpyay is introduced as a cut-off parameter to compute the normalization factor C. Using d*A =
(1/4) B (1 — cos? L)3 dhod cos tdipdeg, the priors can be normalized as

( W)QCth

2
. 2.63
70 max ( )

- /P(A“lHS) dA =

The constant ¢; ! is related to C by ¢, = (27)C/v/det M.
25 For an n-dimensional real vector «, an n-dimenstional real vector J, and an n x n real symmetric
matrix M,

(2m)"
det M

1 1
/d"sc exp [—QmTM;c + chJ] = exp {QJTMlJ] , (2.64)

where det M denotes the determinant of M.
26 Since the constant ¢* depends on directions of CW sources through det M, this factor cannot be
neglected in a blind search.
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2 Basics of CW search method

a likelihood function is maximized over unknown parameters in a brute-force way. In
the case of CW searches, parameters to be searched over are the Doppler parameters
A={a,9, f, froe }. Thus, there are a large number of signal templates that far exceeds
computational resources available to us, as opposed to targeted searches. Each template
corresponds to each grid point in waveform-parameter-space. Because of the use of a
discrete mesh spanned on the parameter space, search parameters are never perfectly
matched with the signal parameters, which leads to the loss of the SNR. Thus, templates
are required to be placed densely enough to avoid missing CW signals. Template place-

ment is often carried out by using a signal-template mismatch that is a fractional loss of
a SNR,

M= , (2.66)

where AX denotes the difference between the signal and template and is defined as A\ =
Asig — A. Grid spacings are determined so that the largest mismatch between any putative
signal and the closest template falls within a predetermined tolerance level. In what
follows, we see an enormous computational burden in the fully coherent F-statistic search
for unknown pulsars, and then we explain alternative search methods that allow us to

explore a wide-parameter-space at the cost of sensitivity.

2.5.1 Computational costs for wide-parameter-space searches

Constant amplitude model

To simplify the following discussion, it is useful to introduce a constant-amplitude model
in which time-dependencies in antenna-pattern functions are neglected. This simplified
model can be justified by the fact that F , varies on the time scale of a day whereas the
phase ® (t) oscillates on a time scale of 1/ fy. Also, coherent-integration time is typically
set to be longer than a day. By reference to Eq. (2.12), the constant-amplitude waveform

is taken in the following form [56, 73]:
s(t)=A;cos® (t) + Ayxsin® (¢), (2.67)

where the constants F , are absorbed into hy. In Eq. (2.67), there are two unknown
amplitude parameters Ay . The F-statistic is defined as the maximum value of the

log-likelihood ratio over the amplitude parameters,

2F = max2IlnA = % [(ze™")p

‘2
A+7A><

, (2.68)

25



2 Basics of CW search method

where (- - - )7 denotes the time average over coherent-integration time 727. When the CW
waveform is perfectly known and is expressed as sgg = A4 gig COS Pgip + Ay gig SiN Pgi, 2F

satisfies the following relation,

(2F) =2+ p*(0), (2.71a)
AT ez T
p2 (0) = ? }<Ssige ¢SIg>| = g (Ai,sig + Ai,sig) : (271b)

Note that 2F in the constant amplitude model follows the chi-squared distribution with
two degrees of freedom unlike Eq. (2.44a). This statistical difference arises from the

number of unknown amplitude parameters.

Signal-template mismatch
Next, let us focus on the case where there exists a signal-template mismatch, AX =
Asic — A. In a similar way to the perfectly matched case, an expectation value of 2F is

calculated as

(2F) =2+ p® (AN), (2.72a)
P (BX) = 55 [{sae™ el = 2 (O)[(e= 2] (2.720)

Grid points on the parameter space are placed closely to each other, so that the mismatch

2T The log-likelihood ratio defined in Eq. (2.30) can be reduced to the following equations,

InA = % [(xs)T - ;<52>T] = % [A+(xcos<l>)T + Ay (zsin®)p — i (A% + Ai)]
2T 1 2 1 . 2 2 : 2
=<5 |1 (Ay — 2{xcosP)p)” — 1 (Ax —2(xsin®)7)” + (xcos @)1 + (xsin ®)7| , (2.69)

where (cos? ®)7 ~ (sin® @) =~ 1/2, (cos ® sin )7 ~ 0 were employed. The F-statistic is defined as the
maximum value of the log-likelihood ratio over the amplitude parameters A, and Ay,

2F = max 2InA = % [(z cos @) + (zsin®)7] = % |<xe‘i¢>T’2. (2.70)
+544X

Since the above equation is independent of the constant GW phase, ® can be replaced by ¢.
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M can be expanded up to the second order of A\ as®®

p*(0) — p* (AN)

— _ a b 3
M = 7 (0) = g AN AN + [(ANX)7] (2.75a)
Gab = <aa¢sigab¢sig>T - <8a¢sig>T<8b¢sig>Ta (275b)
_ 9
aa(bsig = a)\a A:)\sig7 (275C)

where 0,¢s;, is derivatives of ¢ with respect to the Doppler parameters A = {«, 6, f, £ }
followed by evaluation at A = Ag,. Equation (2.75a) indicates that a geometric interpreta-
tion can be formulated for a signal-template mismatch. The mismatch can be interpreted
as a distance between a signal and a template in waveform-parameter-space defined by
a metric [74, 75]. In the constant-amplitude model, the metric g, is expressed only by
derivatives of the phase as in Eq. (2.75b), and so is often referred to as the phase metric
first introduced in [76]%.

Number of signal templates
A template bank that is a set of waveform templates is required for exploring wide
parameter space. In template-based searches, a template bank is constructed so that

the risk of missing a GW signal is minimized based on a metric*’. In other words, grid

28 The GW phase ¢ is expanded in a Taylor series in powers of (A — Agg)” as

1 a
5 A= Xig)” (A = Aig)” Dad +-o

=Asig

¢ ()‘) = ¢sig + ()\ - Asig)a aa¢

}\:Asig

1
= Ap = AX*Dysig — §AAGAAbaaab¢sig + -
, 1 1
= B =114 (AA“8a¢sig N QA)\GA)\baaab(bsig) B iA)\aA)‘baaQSsigab(bsig e (2.73)

where 9, denotes a derivative with respect to the phase parameters A. So, the mismatch M can be
expressed up to the second order of AX as

2
M=1-| <em¢>|2 —1_ ‘1 +i (Axa<aa¢sig> — ;A)\“A/\b@aab(ﬁsig)) — %A)\QAAbwaqbsigabaﬁsig) 4
2 2
=1 [(1 - ;A)\“A)\b<8aq§sig8b¢sig>) + (Av(aa¢sig> — ;A)\“A)\b(aa&(bsig)) e
= (<aa¢sigab¢sig> - <aa¢sig> <ab¢sig>) A)\aA/\b + O |:(A>\)3:| . (274)

29 General parameter space metric of multidetector F-statistic is derived in [77]. Using this multide-
tector metric, the parameter resolutions are proven to have nothing to do with the number of detectors.
Multidetector F-statistic metric is also discussed in the context of short-duration non-precessing inspiral
GW signals in [78, 79].

30 Efficient template placements in flat parameter spaces with constant-coefficient metrics are discussed
in [80]. The construction method for efficient template banks can be cast into the sphere covering
problem. For low-dimension parameter space n < 24, (nearly) optimal template banks are provided by
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points in waveform parameter space P are placed so that the mismatch between the signal
point Ay, and the nearest grid point A falls within a predetermined acceptable maximal
mismatch My,.x. Every point in parameter space P satisfies gupANAN < Mpae. A
template bank placed on the parameter space is usually taken in the form of lattice. So,

the proper volume and the number of templates are evaluated as

V:/dV:/\/detg dA, (2.76a)
P P

Vv
Ne — - 2.76h
Vs (M) (2.760)
where det g, Vj, and NV denote the determinant of the metric g4, the volume covered by
a single template that depends on the maximal mismatch M., and the number of the
templates, respectively. In the case of fully coherent F-statistic based search, a parameter
space metric is given by Eq. (2.75b). Using Egs. (2.16b) and (2.75¢), derivatives of the

phase ¢ with respect to the Doppler parameters are

Ar]F! e~ fF) e
Ek—j 5~ dwe ) =2 S Ar) e 2

k=0

where the coherent-integration time is assumed to be T' < 1 year and 7.y, is the position
vector describing the orbital motion around the Sun. Each component of the phase metric
defined by Eq. (2.75b) is of the order of

f UorbT
C

2
/ .. T?_] .

gf(k)f(k’) ~ Tk+1Tk +1a Gnini ™~ ( ) 616], Gnifgk) ~ %Tk—i_l@z, (278)

where ¢ is the unit vector along the orbital velocity ve,. The determinant of the metric

is evaluated as

s

Vdetg ~ f20 (T%) [] 7" (2.79)

k=0

From the above discussion, if spin-down parameters are taken into account up to the
first order s = 1, the number of the templates scales with A" ~ T°. Thus, the number
of templates increases with the coherent-integration time polynomially. Computational
costs for wide-parameter-space searches based on the fully coherent F-statistic easily

overwhelm existing computational resources available to us.

the A lattice [81]. However, such a template-based search method is known to be inefficient in higher
dimensions. To overcome this problem, random template banks are proposed in which templates are
placed uniformly randomly over the parameter space [82].
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2.5.2 Semi-coherent search

As discussed in the previous section, we cannot perform the most optimal search method
based on the fully coherent F-statistic in the case of unknown CW searches because of
lack of computational resources. Thus, a suboptimal strategy based on a semi-coherent
search must be adopted. Because computational cost for search and the corresponding
sensitivity have a trade-off relationship, large waveform-parameter-space can be explored
efficiently by sacrificing sensitivity?!.

The simplest semi-coherent search method is achieved by incoherent sum of Fourier
powers over all the SFT segments. The whole observation data is divided up into shorter
segments, and subsequently each segment is Fourier transformed by SFTs. Detection
statistics is basically constructed by use of incoherent combination of the SF'T powers.
The time baseline of SF'Ts, Tspr, is determined so that the power of a putative signal does
not leak into the adjacent frequency bins by the signal’s Doppler shift during Tspr. Also,
the time baseline should be short enough for detector noise to be regarded as stationary
within a single SFT segment. The length of SF'T is typically taken to be 30 min.

There are three types of SF'T-based semi-coherent methods that were commonly used
in the initial LIGO [84, 85]: StackSlide method [86, 87], Hough method [88, 83, 89], and
PowerFlux method [90, 91]. For example, the StackSlide approach uses the total power

P, as a detection statistic, which is defined as

1 Nspr
P, = . 2.81a
k Narr ; Pk, ( )
2|kl
2 o
a T ’ ) 281b
Pk, Tsr1Ska ( )

where pf, denotes the normalized SFT power contained in the k-th frequency bin of
the a-th SFT segment. The normalization factor in Eq. (2.81b) is chosen so that the
expectation value of pia is unity when the data is comprised of only the Gaussian noise
(see Eq. (A.2)). As illustrated in Fig. 2.4, the frequency bin that contains a putative
CW signal varies with time due to the Doppler shift and the spin-down of the source.
In order to accumulate the SNR efficiently, the SF'T powers are summed up incoherently

along the path of In order to accumulate the SNR efficiently, the SFT powers are summed

31 For example, the sensitivity of the F-statistic-based Hough method is expressed as

892 [ S, Sn
ho =\ 7 = 8.92N ,
Nseg Tseg Tobs

(2.80)

where the false-alarm rate and false-dismissal rate are assumed to be 1% and 10%, respectively [83].

Comparing Eq. (2.51), for the same value of T,ps, the sensitivity decreases as Ns_eé/ *

29



2 Basics of CW search method

up incoherently along the path of frequency bins of the putative signal described by
Eq. (2.22a).

Slide

Frequency

Time

Figure 2.4: A schematic view of semi-coherent search methods. Each row corresponds to
a frequency bin and each column corresponds to a SF'T segment. The pixels that contain
a putative CW signal are filled with diagonal lines. The signal frequency shifts are caused
by the Doppler effects and the intrinsic time evolution of the CW frequency.

Recent advances in computing power make it possible to perform a F-statistic-based
semi-coherent search method. An year-long observation data is split up into shorter
segments of the order of a day that is much longer than the case of SFT-based semi-
coherent methods. The F-statistic is computed from each segment on a coarse grid of
templates. Then, resulting F-statistics are summed up over all the segments incoherently
on a common fine grid of templatese. In a similar way to the StackSlide method, a
detection statistic consists of incoherent sum of the F-statistics along the path of the

putative CW signal,

Nseg
— 1
2F = > 27, (2.82)
Nseg j=1

where F; denotes the F-statistic computed from the j-th coherent segment.

30



CHAPTER 3

Low-frequency all-sky CW search
with TOBA

Large-scale laser interferometric GW detectors such as aLIGO [92], Advanced Virgo [93],
and KAGRA [12] are now constructed or are being constructed around the world. A net-
work of these advanced ground-based GW detectors will reach unprecedented sensitivity
which may be enough to establish GW astronomy. However, low-frequency GW band
below about 10 Hz cannot be explored by the currently existing laser interferometers be-
cause the sensitivities of detectors to GWs are hampered by seismic noise on the Earth.
One of the solutions to avoid noise due to the ground motion is to construct GW detectors
formed by satellites in space such as the evolved LISA (eLISA) [94] and the DECi-hertz
Interferometer Gravitational wave Observatory (DECIGO) [95]. Another solution is to
devise detector configurations on the Earth such as the torsion-bar antenna (TOBA) [96],
atomic interferometers [97], the juggled interferometer [98], and the full-tensor detector
[99].

A TOBA is a terrestrial low-frequency GW detector that is composed of two orthogonal
bar-shaped test masses [96]. When a GW passes through the detector, the two bars rotate
differentially around their centers. GW signals can be read by measuring the bar rotations
on the horizontal plane. The main feature of the TOBA is a good sensitivity at low
frequencies around 1 Hz even on the ground thanks to its low resonant frequency in the
rotational degrees of freedom. So far, the prototype TOBA was used to set upper limits
on the amplitude of the stochastic GW background [100, 101, 102]. In the subsequent
work, a new detector configuration for a TOBA was introduced by incorporating two
additional detector outputs by measuring the rotations of the bars on the vertical planes
[103, 104]. Such a multi-output TOBA can be regarded as a network of three coincident
but misaligned interferometric detectors.

In this chapter, we give an overview of our work on how much the new detector con-
figuration improves parameter estimation accuracies for GW detections. Subsequently,
we perform an all-sky CW search in a low-frequency region using data from a Phase-11
TOBA that is a prototype detector of the multi-output TOBA.

The outline of this chapter is as follows. In section 3.1, a concept of a TOBA is
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summarized and a new detector configuration for a TOBA is introduced. We study
accuracy of parameter estimation using the Fisher analysis. In section 3.2, we report the
results of an all-sky CW search in a low-frequency region using the Phase-II TOBA data.
This chapter is basically based on [17] and [18].

3.1 Multi-output TOBA and its performance

3.1.1 TOBA

A TOBA is a ground-based detector for low-frequency GWs, and was originally proposed
in [96]. A TOBA consists of two bar shaped orthogonal test masses to which mirrors
are attached at both ends as can be seen in Fig. 3.1. The two bars rotate differentially
on the zy plane due to the passage of incident GWs. The GW signals can be read in
the following way. An input laser beam is split into two orthogonal beams at a beam
splitter. The two beams are reflected by the mirrors attached to the ends of the bars
and are recombined at the beam splitter. The GW signals can be obtained by measuring
the optical path differences at a PD placed in a different direction from the laser. The

angular motions of the bars are written as follows:

. ) 1.
16/(8) + 70 (8) + w00 (8) = Shna (3.1)

where we denote the moment of inertia, the dissipation coefficient, the spring constant,
and the dynamical quadrupole moment of the two bars by I, g, kg, and qg,k, respectively.
The spring constant is written as k9 = mga?/{, where £ and a denote the length of the
suspension wire and the distance between two holes for the suspension wires, respectively.
When the time-dependence of the antenna pattern functions is negligible, Eq. (3.1) in the

Fourier domain can be expressed as

0(w)= Y Hi (w)hiy, (3.2a)
A:—f—;‘x ,
HA(w) =% d (3.2b)

21 w? — w?es,& (1 + ZSD> - Zw’y/]7

where ¢ is the loss angle arising from internal friction and wyesp = 27 freso = / Ko/ is
the resonant frequency in the 6 degree of freedom . Since the resonant frequency can be

set below 1 Hz, a TOBA is sensitive to low-frequency GWs.
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Figure 3.1: Layout of a TOBA detector that is composed of two orthogonal bar-shaped
test masses. Tidal force due to GWs induces differential rotations of the bars on the
xy plane. The angular fluctuations A6f of the bars correspond to the GW amplitude
h. GW signals are read by a laser interferometer in a similar way to the conventional
interferometric GW detectors.

3.1.2 Multi-output system

As discussed in the previous section, the originally proposed TOBA monitors angular
motions of the bar-shaped test masses on the xy plane. In [17, 103], a new detector
configuration for a TOBA is introduced by adding two other outputs that are obtained
from rotations of the bars on the vertical planes. Hence, the GW signals can be read from
the rotations of the bars on the xy, yz, and zzx planes as shown in Fig. 3.2. Similarly to
Eq. (3.1), the EOM of the bar in the ¢ degree of freedom is expressed by

I(0) + 766 (1) + 6 (1) = el (33)

The spring constant in the ¢ degree of freedom is written as k4, = mgd, where d is the
distance between the center of mass of the bar and its suspension point. The resonant
frequency is fres,p = \/m /27 above which the bar-shaped test masses are sensitive to
GW (see [17, 103] for more details). Because of 5 = —6;, we have three independent
output signals, s} = 6, — 09, s;1 = ¢1, and sy = ¢o. Antenna responses to GW for each
detector output are given in Appendix C.2.2 . Figure 3.3 depicts antenna pattern power
defined by P (o,0) =), (FZ-Jr2 + Fixz). The summation is taken over the three outputs
I, IT and III. This figure indicates that the multi-output TOBA has no blind direction,

and so its sensitivity is much more uniform than the conventional single-output TOBA.
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Figure 3.2: Layout of the multi-output TOBA. The two bar-shaped test masses can move
independently in the directions of the x, y, and 2z axes. The three independent output
signals can be obtained by monitoring the bar motions on the zy, xz, and yz planes (from

[17]).

(a) Single-output TOBA
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(b) Multi-output TOBA
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Figure 3.3: Square root of the antenna power pattern /P (a,d) for the single-output
TOBA (left panel) and the multi-output TOBA (right panel). The detectors are assumed
to be located at the TAMAS300’s site in Japan (35° 40’ 36” N, 139° 32" 10" E).
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3.1.3 Accuracy of parameter estimation

In the following, we study how accurately we estimate a source location using a multi-
output TOBA and also examine the estimation accuracy of the other waveform param-
eters. For this purpose we consider two nominal sources, monochromatic sources and
intermediate-mass black hole (IMBH) binary coalescences. First, we examine the case
of the monochromatic source for a fixed SNR in order to reveal how the multi-output
configuration improves the parameter resolution apart from the improved SNR. This ex-
amination gives an insight into the result of the IMBH mergers case. Then, we move on to
discussions about IMBH mergers at a fixed distance, which are more realistic targets of a
TOBA. In what follows, we make the simplifying assumptions that noise of each detector
is uncorrelated with each other and that each sensitivity can be expressed as the same
form. In this case, the noise spectrum matrix S, (f) has only diagonal elements all of

which can be written by the same form S, (f).

The case of monochromatic sources
Monochromatic GW with a frequency fy can be expressed by Egs. (2.10) and (2.11b).
Combining Eqs. (2.10) and (2.12), we find the detector response to a monochromatic

source as

hxi(t) = Ax; (t) cos [Px; (t)], (3.4a)
Ax; (t) = hoQxi (1), (3.4b)
1+cos2e\° ., 9 %2 2
Qxi (1) = (T) F* (t) + cos® o Fg* (1) ) (3.4¢c)
Py () = 27 fot + @0 + @pol xi (t) + Ypop,x (1), (3.4d)
2 F(t
Ppol,xi (t) = arctan {_1 +C§§SL2 , Fi Et;] ; (3.4e)
¥YDop, X (t) = 2ﬂf0%)((t>7 (34f>

where the suffixes “X1¢” stand for the i-th output in the X-th detector. The phase shift
¢pop,x (t) is called the Doppler phase because it comes from the Doppler correction®.

The phase shift ¢, x; (t) is often referred to as the polarization phase that depends

! The inner product n - v (t) is written as

7 -1 (t) = Rps [cos acos § cos (¢g,orb + Qorbt) + (cos esin a cos d + sin esin d) sin (¢o orb + Lorbt)]
+ RE (sindp sind + cos §p cos d cos [ — ap (t)]), (3.5)

where ap (t) and dp represent the detector position at time ¢ [57]. The symbols Q1 and € denote the
angular speed of the Earth’s revolution around the Sun and the Earth’s axial tilt, respectively.
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on the angular pattern functions F . [105]. The GW signal is characterized by the
seven waveform parameters {ho, fo, vo, @, d, 1, cost}. Substituting Eqs. (3.4a)—(3.4f) into
Egs. (D.4) and (D.5), we evaluate the accuracy of the parameter estimation accuracy
using the Fisher analysis (see Appendix D for more details).

The left panel of Fig. 3.4 shows the angular resolution in the case of a single detector
located at the TAMAS300’s site in Japan. This figure indicates that there is no difference
between two curves for T, > 1 day. For T, > 1 day, the error A€) drops with the time

and approaches to the diffraction-limited accuracy [106],

2 1Hz\” (1/v2) [10\?
AQi == :2 1 -8 — .
o0 = s~ 0 () (|sim'| () oo

where p is the total SNR and 7 is the angle between the normal to the ecliptic plane and the
direction of incident GW [107]. This is because Af? is mainly determined by the Doppler

effect caused by the Earth’s orbital motion. The deviation between the two curves appears
in the short-duration signals (less than 1 day). The error A in the single-output TOBA
decreases with time for T, = 10* seconds due to the Doppler effect caused by the Earth’s
rotation. For T, < 10% seconds, the sky location of the source cannot be determined
at all. In contrast, AQ in the multi-output TOBA is of the order of 0.1 steradians and
remains approximately constant even in the short-duration signals with SNR = 10 (less
than 1 day). This feature can be traced to the polarization phase @yl x;. In the case of
the multi-output configuration, the degeneracy of the two polarization modes is broken
as opposed to the single-output one because the three independent output signals can be
obtained. Hence, the angular resolution of the multi-output TOBA for short-duration
signals is much better than that of the single-output TOBA thanks to the information on
the polarization.

The right panel of Fig. 3.4 shows the angular resolution in the case of a three-detector
network. Each detector is assumed to be located at the site of TAMA300 (Japan), LIGO-
Hanford (US) and Virgo (Italy). In Fig. 3.4, the two curves coincide with each other for
long-duration signals (more than 1 day) due to the Doppler effects. This behavior is the
same as the single-detector case. On the other hand, A2 for both the single and multi
output configurations are constants below 10% seconds because the polarization phase
©pol,xi determines the angular resolutions. It should be noted that AQ2 of low-frequency
detectors for short-duration signals (less than about 1 day) is controlled by much different
factors than the conventional ground-based detectors. The angular resolution of a network
of ground-based detectors sensitive to above 10 Hz is mainly determined by the error of

the delays of the arrival time [108]. Tt is roughly estimated by the geometrical formula
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derived by Wen and Chen [107],

AQ =18 x 1073 sr (100 HZ>2 (3 x 107 m2) 1/V2 (E)Q (/)fot/mpng)
fo S cosi | \ prot 3v/3 )’

(3.7)

where S is the area formed by the three-detector network, pi is the total SNR, p; is
the SNR achievable with the i-th detector alone, and 7 is the angle between the normal
to the plane defined by the detector network and the direction of GW propagation?.
This formula does not work when applied to low-frequency GW detectors because the
directional derivatives of the pattern functions are neglected in the derivation of Eq. (3.7).
When low-frequency GW source is localized by ground-based detectors, the polarization

phases ¢po1 xi play a key role in the angular resolution.

(a) Single-detector case (b) Three-detector network case
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Figure 3.4: Angular resolution A{Q) as a function of observation time T, for monochro-
matic sources with fy = 1 Hz. Angular parameters are set to be a =6 =1 =1 = 1.0 ra-
dians. The amplitudes of GW signals are normalized by SNR = 10. The solid line and the
dashed line correspond to a multi-output TOBA and a single-output TOBA, respectively.

The case of IMBH-IMBH binary coalescences

Next, we consider a coalescing binary system composed of two point masses with m;
and my as a GW source. Unlike the monochromatic sources, the orbital radius shrinks
with time and the orbital frequency increases accordingly because of the GW radiation
loss. In this case, parameter estimation accuracy depends on the functional form of noise
spectral density S, (f). As a signal model of a binary coalesce, we adopt the restricted
post-Newtonian waveform with the 1.5 PN phase in which the amplitude is retained up

to the Newtonian order:

iLXi (f) _ AQXZ (t*) f—?/Ge—i[sopol,Xi(t*)-i-AODop,X(t*)] ei\I!(f)’ (38&)
2 The value 3 x 10 m? corresponds to the area formed by the TAMA-LIGO-Virgo network.
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5 1 ¢ (GMN\®
AE\/ﬂma( 3 ) ’ (3.80)

\Ij(f):27rftc_%_¢c_&)(f)a (38C)

X 3 (GM, /3 20 (743 11

D(f) = 1 ( = 87Tf) [1 + 9 <% + Zn) x — 167TZE3/2} : (3.8d)
GM,\ 3 B 4 (74

t(f)=t.—5 ( = ) (8mf)~*? [1 + 3 (3—32 + %n) T — %7‘(1’3/2} : (3.8¢)

where t. and ¢, are the time and the phase at the coalescence, respectively (see e.g. [55]).

3/5 (my +m2)71/5 and the mass ratio n = myms/ (my +m2)2

The mass M, = (myms)
are called a chirp mass and a symmetric mass ratio, respectively, and a post-Newtonian
variable z = [7G (my + ma) f/ 03]2/ ® was introduced. We cut-off the GW signal at fisco =
A/ [6\/671’@ (my + mg)] beyond which the quasi-circular orbit is not stable any longer and
the two point masses plunge toward each other. So, we set fL( f) =0 for f > fisco in
Eq. (3.8a).

We analyze parameter estimation accuracy for GWs from 10*M;, equal-mass IMBH
binaries located at a distance of 200 Mpc. The GW signal described by Egs. (3.8a)—(3.8¢)
consists of the eight waveform parameters {A,t., ¢., a, 9,1, cost, M.}. Substitution of
Eq. (3.8a) into Eq. (D.5) yields the values of Fisher matrix elements. From Eq. (D.4), we
get the accuracy of the waveform parameters. Here, we neglect the effect of the expansion
of the Universe and the higher order terms in the Post-Newtonian expansion. However,
the angular resolution AS2 we calculate in this section is expected to be accurate because
the angular resolution is accumulated at the inspiral phase long before the final plunge.

Performing 1,000 Monte-Carlo simulations, we obtain Fig. 3.5 that represents the prob-
ability distributions in a single-detector case for (a) SNR, (b) angular resolution, (c)
measurement error of overall amplitude, and (d) measurement error of chirp mass®. The
panel (a) of Fig. 3.5 shows that SNRs of the multi-output configuration are better by a
factor of about 1.2 than the single-output case. This factor can be simply explained by
\/12 +(1/2)° + (1/2)* ~ 1.2 from Egs. (C.10a)—(C.10c). The panel (b) indicates that

the angular resolution in the multi-output configuration are improved by an order of mag-

nitude. This feature can be traced to the polarization phase ¢po x;. Since GWs from
coalescing IMBH binaries are regarded as short-duration signals, the sky positions are
well determined by the multi-output TOBA compared with the single-output TOBA in a
similar discussion to the previous section. Accuracies of the other waveform parameters,
especially A, are also improved as shown in the panels (c¢) and (d) of Fig. 3.5 because
the over-all amplitude A is strongly correlated with the GW polarizations through the

antenna pattern functions F .

3 In the case of low SNRs, the estimation accuracies would be overestimated [74].
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Figure 3.5: Histograms for (a) SNR, (b) angular resolution, (c¢) measurement error of
overall amplitude, and (d) measurement error of chirp mass in the case of a single-detector
for one-year observations. GWs are assumed to be emitted from 10* M, equal-mass IMBH
binaries located at a distance of 200 Mpc. We assume that sky locations and inclination
angles are distributed uniformly. Polarization phases are arbitrarily set to be 0.5 radians.
The two lines correspond to the single-output and multi-output TOBA, respectively.
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3.1.4 Summary

In this section, we studied the performance of the proposed multi-output TOBA and
presented the parameter estimation accuracy for the two nominal sources, monochromatic
sources and binary coalescences. For long-duration signals, the multi-output TOBA can
be treated as the same way as the conventional single-output TOBA apart from the
improved SNR, as expected. The advantage of the multi-output system is merely the
accumulation of the SNR. On the other hand, in the case of short-duration signals, the
multi-output TOBA improves the parameter estimation accuracy drastically compared
with the single-output TOBA because it can break the degeneracy of two polarization

modes of GW signals even in the case of a single detector.

3.2 Low-frequency CW search with a TOBA

To date, data from the initial LIGO and Virgo science runs have been used to place up-
per limits on GW amplitudes from unknown isolated pulsars with GW frequencies above
20 Hz [84, 49, 85, 109, 110, 111, 112, 113, 114, 115, 116]. On the other hand, contin-
uous GWs below 20 Hz have yet to be investigated because seismic noise on the Earth
hinders the sensitivity of detectors to GWs in such a low-frequency regime. The ATNF
catalogue shown in Fig. 2.1 lists about 1,500 pulsars in the frequency range from 1 Hz
to 10 Hz, whereas it contains only about 400 above 10 Hz [15]. Hence, it is interesting
to explore the low-frequency regime, although the expected GW amplitude scales as fre-
quency squared. In this section, we first search for unknown continuous GWs coherently

in the low-frequency regime using data from the Phase-II TOBA and report its results®.

3.2.1 Phase-I1 TOBA

Previously, the Phase-I TOBA has been constructed, which is composed of a single 20 cm
test mass and has succeeded in putting constraints on the abundance of stochastic GWs
[100, 101, 102]. Motivated by the work discussed in the previous section [17], the Phase-II
TOBA that is a prototype of the multi-output TOBA was developed [103, 104]. The
main features of the Phase-II TOBA are common-mode noise rejection, the multi-output
system, and the active and passive vibration systems. As can be seen in Fig. 3.7, the
Phase-II TOBA has two 24 cm bar-shaped test masses each of which is suspended by
two parallel tungsten wires near its center. In order to reduce the common-mode noise

effectively, the two test masses are installed in such a way that their centers of mass are

4 Recently, upper limits on stochastic GW background was set in the frequency band of 1 —5 Hz using
the Phase-II TOBA data [117]. The most stringent upper limit is Qgwh?y, < 6.0 x 1018 at 2.58 Hz from
a frequentist viewpoint, where higg denotes the Hubble constant in units of 100 km/s/Mpc.
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positioned at the same point on the horizontal plane. The motions of the bars in both the
horizontal and vertical planes are monitored by using fiber Michelson laser interferometers,
so that three independent output signals can be obtained unlike the previous prototype
TOBA. A hexapod-type active vibration isolation system is incorporated into the Phase-I1
TOBA to reduce seismic noise at around 1 Hz; see [103, 104] for more details.

The Phase-1T TOBA is placed in Tokyo (35°42'49.0”N, 139°45’47.0"E) and operated for
22.5 hours from 6:18 UTC, December 11, 2014 to 4:48 UTC, December 12, 2014. The
measured strain sensitivity of the Phase-II TOBA is shown in Fig. 3.6 in which the red,
blue, and, green lines correspond to the output signals from the xy, zz, and yz degrees
of freedom, respectively. The z axis is in the local vertical direction, whereas the x and y
axes align with the two bars when they are at rest (see also Fig. 3.2). The GW equivalent-
strain sensitivity is about 1071 Hz~%/2 at around 1 Hz for the signal on the horizontal
plane. The sensitivity is limited by the seismic noise below 2 Hz and by unexpected noise
in the optical fiber above 2 Hz. The peaks appearing at around 0.7 Hz, 5.7 Hz, 8.5 Hz,
and 14 Hz correspond to the resonance of the optical bench, and the resonance of the
vibration isolation table in the directions of y, z, and z axes, respectively. It should be
noted that we do not incorporate the data obtained from monitoring the vertical planes
into our following analysis because their sensitivities are unfortunately much worse than

the sensitivity from the horizontal plane, as is evident from Fig. 3.6.
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Figure 3.6: The strain sensitivity curve of the Phase-II TOBA. The horizontal axis shows
the frequency and the vertical axis shows the square root of the one-sided noise spectral
density /S, (f). The red, blue, and green lines correspond to the output signals from
the xy, xz, and yz degrees of freedom, respectively.
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Figure 3.7: Photograph of the Phase-Il TOBA [Credit: Yuya Kuwahara]. Each bar-
shaped test mass has a mass of 0.61 kg and a length of 24.0 cm. The two bars are
suspended by four tungsten wires with a length of 40.0 cm. The distance between the
suspension points is 1.7 cm. Optical sensors are installed on an optical bench. GW signals

are read out by measuring the relative motion between the test masses and the optical
bench.

3.2.2 Statistical properties of the data

SFT

Since CW signals are long-duration signals, the length of analyzed data is typically
more than of the order of a day. In the frequency domain analysis, such a long duration
signal poses some problems such as non-stationarities of noise background and frequency
shifts caused by the Doppler effects due to the Earth rotation and its orbital motion. In
order to handle these problems, short-time-baseline Fourier transform (SFT) is carried
out in CW analysis. SFT is a kind of Fourier transform usually used to deal with quasi-
periodic signals whose frequencies gradually vary with time®. In this process, time series
data are broken up into shorter time segments, which are often called SFT frames, by
using window function, and then each frame is Fourier transformed.

There are three constraints on the time baseline of SFTs, Tspr. The first is non-
stationarities of detector noise. To estimate the noise background accurately, the time
baseline of the SFTs should be short enough for the noise to be regarded as locally
stationary during the time baseline. The second is frequency shifts of putative signals
induced by NS’s spin-down and relative motion of the detector with respect to the NS. The
third is computational resources. The computational cost of performing a search linearly
increases with the number of SFT segments. Since the first and second requirements

oppose to the third, we have to chose a compromise between these needs. In practice,

5 In the field of signal processing, this process is often referred to as short-time Fourier transform
(STFT).
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Tspr is chosen such that the signal frequency does not shift by more than half a frequency

bin during Tspr,

Tspr < m (3.9)

The signal frequency f (¢) is modulated by the Doppler effect due to the relative motion
of the detector with respect to the NS as in Eq. (2.22a). So, the time derivative of the
observed frequency is estimated as

" n dv fo

f(t)ﬁfoz'%ﬁ .

dv
dt

2
. Jovi

~ 3.10
Ry (3.10)

where fj is the intrinsic spin frequency of the NS, vg is the spin velocity of the Earth,
and Rg the Earth radius. Equations (3.9) and (3.10) lead to the restriction on the time
baseline Tspr of the SFTs,

1 CRE

Tspr < 4/
2 fovd

Hy\ /2
20 Z> . (3.11)

~ 9.4 x 10% sec (
Jo

Therefore, we set the time baseline Typr to be 9,000 seconds in this seciton®. It should
be noted that the SFT baseline length can be taken longer at lower frequencies as long

as the data stationarity is assured.

Statistical properties of the data
We investigated the statistical properties of our data in the band 6-7 Hz using the
SFTs at around which the TOBA has the best sensitivity. It is convenient to define the

following quantity to evaluate to what extent the noise obeys a Gaussian distribution [62]:

Poy = " , (3.12)
For
Nband ];) | i ‘

where the indices a and k stand for the k-th frequency bin in the a-th SFT segment. P,
can be regarded as the normalized noise power in the frequency bin k. Because |foz,,€|2
follows a x? distribution with two degrees of freedom in the absence of GW signal in data,
the numerator and denominator in Eq. (3.12) follow x? distributions with 2 and 2Npanq

degrees of freedom, respectively. Thus, P, obeys a F-distribution, P, ~ F (2, 2Nband)7.

6 The time baseline Tgpr is typically set to be 1,800 seconds in the conventional targeted CW search
by LIGO/VIRGO.

7 In general, a statistic following F-distribution with parameters d; and do is defined as a ratio of
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The PDF and CDF are expressed as

1 i\ ? a N\
2 d 2
dydy) = ——— [ ER [ 3.14
st = (o) <4 (005) .
dlx d1 dg
F(x;dy,dy) =1 ——7—;—,— 3.14b
(IE, 1 2) <d2+d1x7272)7 ( )

where B (a,b) and I (z;a,b) denote the beta function and the regularized incomplete
beta function®. For Npang > 1, P, . is approximately distributed according to Gaussian
distribution with unit mean and variance.

The histogram of P, j is shown in the left panel of Fig. 3.8. If the data is distributed
according to a Gaussian distribution, P, is approximately proportional to an exponential,
or in other words, P, is aligned with a straight line in a semi-log plot. The measured
values of the mean and the standard deviation are 1.00 and 1.08, respectively. Thus, we
can regard that our data follows almost a Gaussian distribution. We also have studied
the stationarity of the data by computing the difference between adjacent phases of the
SFT data [62],

ADgp = P — o1 (3.16)

If the data is stationary, A®, , obeys a unifom distribution in the range of [—m, 7]. The
histogram of measured A®,, ; is shown in the right panel of Fig. 3.8 in which no strong

non-stationarity is found.

3.2.3 Data analysis

GW signal
We will start with briefly summarizing data analysis method we will use in this section
based on Chapter 3. A pulsar is a rapidly rotating NS whose spin frequency is nearly

constant, say fo. GWSs from such a source are generated by a non-axisymmetry of the

variances of x2 distribution with d; and d degrees of freedom,

2
Xd /dl
Fy, a0, = =5 . 3.13
ol =27, (3.13)
8 These functions are defined as
T'(a)T (b) B (z;a,b)

B = - I N = — .1

B (z;a,b) = / =t (1 — )"t at, (3.15b)
0

where a and b are assumed to be integers.
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Figure 3.8: Histogram of (a) the power P, and (b) the phase A®,  of the TOBA
SEF'T data at the k-th frequency bin. If the data is distributed according to a Gaussian
distribution, P, lies on the straight line described by a dotted line. If the data is
stationary, A®,,  is distributed uniformly in the range of [—m, 7] as described by a dotted
line.

pulsar around its spin axis. The GW amplitude is expressed by

= ey, (3.17)

where G, ¢, and [ are Newton’s gravitational constant, the speed of light, and the NS’s
moment of inertia, respectively. The non-axisymmetry is characterized by the parameter
¢ called ellipticity. The GW singal we expect to detect from a rapidly rotating NS is

described as

h(t) = hy () Fy (8) + ho (8) i (2) (3.18a)
ha (1) = ho”+052b cos® (t), (3.18D)
hy (t) = hocostsin ® (t) (3.18¢)

where hg is the overall amplitude, ® (¢) is the GW phase measured at the solar system
barycenter (SSB), and ¢ is the inclination, which is the angle between the line of sight and
the spin axis. The antenna pattern functions F . represent the response of the antenna
to the plus and cross polarization modes of the incoming GWs. The antenna patterns
of the TOBA are given by Eqgs. (C.12a) and (C.12b) in Appendix C°. The spin of the
Earth around its axis gives rise to the amplitude modulation that is described by the time
dependence of F .

The Earth’s spin around its axis and the its rotation around the Sun bring Doppler

9 The antenna patterns of the TOBA rotated by 45° on the detector plane are identical to that of a
90° interferometer.
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modulation to the GW phase up to the first derivative of frequency as follows:

O (1) = ¢ + 2mALf (AL), (3.19a)
f(At) = fo+ % fA, (3.19b)
At =71+ % + Arel — to, (319C)

where ¢g, 7, r, and n denote the initial phase at the reference time ty, the arrival time
of the GW measured at the detector, the detector position on the Earth with respect to
the SSB, and the unit vector pointing toward the NS from the SSB. The unit vector n
is related to the equatorial coordinates of the source, right ascension a and declination
0. The timing correction A, represents relativistic effects such as the Einstein delay and

the Shapiro delay.

F-statistic

We use a detection statistic called the F-statistic to discriminate whether or not an
expected GW signal exists in the data [57]. The F-statistic is derived from the method of
maximum likelihood function and is known as the most powerful test from a frequentist
standpoint according to the Neyman—Pearson lemma [72]. On the stationary Gaussian

noise assumption, the log-likelihood function is expressed as
1
InA = (z|h) — 3 (h|h), (3.20)
where (-|-) denotes the noise-weighted inner product defined as

(x]y) = 4Re /000 %df. (3.21)

The maximization of In A over the amplitude parameters A defined by Eqs. (2.24a)-
(2.24d) leads to the F-statistic,

2F = max [2InA]. (3.22)

The number of search parameters is reduced from eight to four in this process. In the
presence of a GW signal, 2F obeys a non-central y? distribution with four degrees of
freedom and a non-centrality parameter p?, where p is the average SNR in the case of a
signal perfectly matched with the template. In the absence of any GW signal, 2F obeys
the x? distribution function with four degrees of freedom. The SNR of the signal is related
to the expected value of the F-statistic by (2F) =4 + p*.

The threshold for F-statistic can be related to a false alarm probability pra as discussed
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in Sec. 2.4.1. When data is consistent with Gaussian noise, the probability that a single
value of 2F falls below 2F,, is written by Egs. (2.50a) and (3.28). Assuming values of
2F for Niemp templates are independent of each other, the false alarm probability, which

is the probability that one or more 2F take values above 2Fy,, is written as

Ntemp

pra = 1 — [/02 thrp(2_7-"|p2:0)d(2.7:) : (3.23)

where Niemp denotes the number of templates. In our case, Niemp is estimated to be
3.2 x 10'° as will be discussed. Setting ppa = 0.01, we obtain the threshold of F-statistic
as 2F = 64.6 by solving Eq. (3.23) inversely.

If the measured value of the F-statistic is below the predetermined threshold, we move
on to the step of placing a constraint on the GW amplitude hy. An upper limit of the
amplitude can be defined as a function of the confidence level C, hy (C'). The inverse of

ho (C) is written as

C (ho) = / p(2F|ho) d (2F), (3.24)
2Fobs

where Fp,s denotes the observed value of the F-statistic and p (2F|hg) denotes the prob-

ability distribution function of 2F in the presence of a signal with its amplitude hg. The

value of the upper limit is evaluated by solving Eq. (3.24) via Monte-Carlo simulations

over the unknown parameters {hg, cost, ¥}.

The value of hy which satisfies Eq. (3.24) can be numerically evaluated by the Newton-
Raphson method. Let J (hg) be a false-dismissal rate averaged over angular parameters
a,d,cost, and 0. The angular parameters are assumed to be distributed uniformly in
the range of o € [0,27],9 € [0,7],cost € [—1,1], and ¢ € [0, 27|, respectively. Note that
the initial phase ¢ is not averaged over because the value of the F-statistic is independent

of ¢y as shown in Eq. (2.46). For given a value of Pgp,
J (h§) = Prp. (3.25)

Taylor expansion of .J (hoc) around hg leads to the correction term of the Newton-Raphson
method,

J (h§) = J (ho) + (ho = h§) J' (ho) + O [(Aho)’]

C
_ Aho=h0—hC~J(h ) = J (ho) _ Pen — J (ho) 3.26)
0 J' (ho) J' (ho)
10 In a targeted search, sky positions (a, ) of NSs are already known by EM observations. So, these
two parameters are not averaged over. To put it another way, o and § in Eqgs. (3.29a) and (3.29b) are
fixed whereas cost and 1 are treated as random variables.
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The next iteration value of hg can be obtained by adding the above step to the previous
iteration value as
Pep — J(h”
FD ( 0 )
T (k")

hén-i-l) _ hén) + Ahén), Ahén) = (3.27&)

The function J (hg) can be evaluated by Monte-Carlo simulations over angular parameters
as referred to above. Also, F is averaged over in the range of F € [0, Fops)]. When detector
noise is stationary and Gaussian, the PDF p (2F|hg) obeys non-central x? distribution

function with four degrees of freedom and a non-centrality parameter p?,
p(2F|ho) = fx (2F;4,0%) . (3.28)

Combining Egs. (2.53) and (3.28), the functions J (ho) and J’ (ko) appearing in Eq. (3.27a)

can be approximately evaluated as

Nuc
2F obs
J (ho) = NMZ > fx (2Fi4, 07 (i, i, cos 1y, 7)) (3.29a)
=1
Nuvc
2)0 2-¢.obs fX 2374 A)‘
.2
T (o) = 5 N 2= N (3.29)

i=1

where Ny denotes the number of trials in the Monte-Carlo simulations!!. In our analysis,
N is set to be 10%. Concrete expressions for fx (x;4,\)'? and its derivative with respect

to the non-centrality parameter are

1
Ix (z;4,0) = 3¢ —3 (M) \/gﬁ (2), (3.31a)

dfx (x;4, A 1 x x

% — iez@“) EX (I (=) + 1 (2) =[5 (1 + %) I (z)] , (3.31b)

I, (2) = 1 /Tr e cos (nh) db), (3.31c)
T Jo

where z = vz A and [, (z) denotes the modified Bessel function of the first kindO

Y dX\/dhg = 2p?/hg is satisfied by proportional relation between the non-centrality parameter and the
GW amplitude, A = p? o h3.

12 Tn general, a non-central x? distribution with & degrees of freedom and a non-centrality parameter
A is expressed by

fx (x;k:,/\):%e F0+a) (A)%f I, (2). (3.30)

48



3 Low-frequency all-sky CW search with TOBA

Analysis and results

Equations (3.17)—(3.19¢) indicate that a continuous GW is characterized by eight pa-
rameters when we take into account up to the first derivative of frequency. The four
amplitude parameters are projected out by using the F-statistic. Then, the parameters
to be searched over become only the phase parameters {«, 9, fo, f }. The spacing of fre-
quency bins for the templates is chosen by the inverse of twice the observation time. The
grid spacings on the sky positions are chosen such that the maximum mismatch is less than
0.02. We take both Aa and Ad to be 0.01 radians conservatively. To reduce the computa-
tional burden, we did not search over spin-down parameters. So our analysis is valid only
for NSs with a spin-down f less than 1/(272) ~ 7.62 x 10! Hz s~! where Ty, = 22.5
hours is the data length. Thus, the number of spin-templates and sky-templates are esti-
mated t0 be Npin ~ 2T0ps ~ 1.62 % 10° and Ny, =~ 272/ (0.01)* ~ 1.92 x 10, respectively.
The total number of templates are Niemp = Nepin Ny =~ 3.2 x 1010,

We make SF'T's of the 22.5 hours contiguous data by employing MAKESF'TS code in the
LIGO scientific collaboration Algorithm Library (LAL) [118]. Each segment is windowed
by a Tukey window function'® prior to computing the SFTs. The length of each SFT
segment is chosen as 9,000 seconds for the reasons described in Sec. 3.2.2. The frequency
range to be searched is a 1 Hz band in 6-7 Hz where our detector has the best sensitivity.
The statistical properties of the data in this band are described in Sec. 3.2.2.

We compute 2F by making use of COMPUTEFSTATISTIC_V2 code in the LAL [119].
The left panel in Fig. 3.9 shows the distribution of 2F over a 0.01 Hz band between 6.10 Hz
and 6.11 Hz. The experimentally measured distribution of the F-statistic is represented
by the filled boxes. The theoretically expected distribution in the case of the Gaussian
noise without any GW signal is represented by a y? distribution with four degrees of
freedom, which are shown by the dotted line. As can be seen in the left panel of Fig. 3.9,
the two agree very well. This indicates that the data we observed is filled with almost
Gaussian noise. The right panel is identical to the left panel but changes the scale of the
vertical axis to a the semi-log scale. Because of the small non-Gaussian noise, the filled
area deviates slightly from the dotted line for larger values of the F-statistic.

We divide the 1 Hz band between 6 Hz and 7 Hz into 100 sub-bands each of length
0.01Hz. The loudest values of 2F in each sub-band resulting from the all-sky search are

13 The Tukey window function is defined as

[1—}—(:05 (2: (33— ;))] :
{1—1—005 (2: (x—l-i-;))} :

where r is a parameter related to a length of the window.
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3 Low-frequency all-sky CW search with TOBA

computed and are shown in the left panel of Fig. 3.10. There is no significant candidate
whose value of the F-statistic is above the predetermined threshold 2F;;,, = 64.6 corre-
sponding to ppa = 0.01. Then, we move on to the step of finding the upper limits on
ho by employing Eq. (3.24). The right panel in Fig. 3.10 represents the upper limit of
ho with a 95% confidence level in each sub-band. The obtained upper limits are of the
order of 5 x 10712, This values are precisely consistent with theoretically expected upper
limits calculated by Eq. (3.31) in [61]. In our case, prpa = 0.01,ppp = 0.05, Ny = 1,
and Niemp =~ 3.2 x 10", A statistical factor is estimated to be ~ 36.7, which implies
ho ~ 5.1 x 107'2. The constraints on hy become tighter as the frequency increases. This
feature basically reflects the noise curve shown in Fig. 3.6. The most stringent upper limit
on hg is 3.6 x 10712 at 6.84 Hz.
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Figure 3.9: Probability distributions of the F-statistic over 6.10 — 6.11 Hz. The right
panel is identical to left panel apart from the scale of the vertical axis and the range of
the horizontal axis. The filled areas in both panels represent histograms obtained from
the observations. In each panel, a dotted line represents a central x? distribution with
four degrees of freedom. When the data is dominated by a Gaussian noise, the histogram
obeys the dotted line.
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Figure 3.10: (a) Loudest values of 2F in sub-bands of 0.01 Hz width. (b) Upper limits
on hg with 95% confidence level in sub-bands as a function of frequency.
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3 Low-frequency all-sky CW search with TOBA

Discussion

We can interpret our upper limits on the strain amplitudes in terms of upper limits on
the ellipticity € using Eq. (3.17). For instance, when we consider a NS with a moment
of inertia I = 10% kg m? at a distance of d = 1 kpc, the most stringent upper limit we
obtained corresponds to the constraint on the ellipticity of € = 1.7 x 10'°. The maximum
possible value of ellipticity is typically of the order of less than 107¢ [26], so this limit has
yet to reach an interesting parameter region.

One of the proposed configurations of the TOBA [17] may achieve the best sensitivity
of ~ 10720 Hz /2 at around 0.1 Hz. With the proposed TOBA, we can detect GWs
from inspiralling compact binaries such as NS/NS binaries within the Local Group or
intermediate-mass black hole binaries within 10 Gpc, in addition to low-frequency con-
tinuous GWs from rapidly rotating compact stars. In fact, the F-statistic search method
we employed in this paper can be used for inspiralling compact binaries long before their
coalescences [120, 121, 122, 123].

3.2.4 Summary

In this section, we carried out an all-sky search for continuous GWs from isolated spinning
NSs in the frequency range from 6 Hz to 7 Hz using the F-statistic method. The data was
obtained from a 22.5-hour observation with the Phase-Il TOBA at Tokyo in Japan and
has good sensitivity at of the order of 1 Hz. We converted our data into 9,000-second SFT
segments and searched coherently for an isolated NSs for all sky positions by the method
of the F-statistic. As a result, no significant candidates were found at 6-7 Hz and the

most stringent upper limits on hy with 95 % confidence level in this band is 3.6 x 10712
at 6.84 Hz.
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CHAPTER 4

Targeted CW search with iIKAGRA

KAmioka GRAvitational-wave telescope (KAGRA)'[12, 124] is the first Japanese km-
scale interferometric GW detector, which is often categorized into second-generation GW
detectors as well as advanced LIGO and advanced Virgo. There exist two main unique
features in KAGRA. One is underground operation. KAGRA is located about 200 me-
ters underground below Tkenoyama mountain at Kamioka Mine in Gifu Prefecture, Japan
(35°24/43"N, 137°1821"E [125]). The underground observation is expected to reduce seis-
mic noise, and thus provide quiet and stable environment for GW observations. The
detector started to be constructed in 2010, which is now being upgrading toward observa-
tion with a full configuration within a few years. The other feature is cryogenic operation.
Detector sensitivity around a few hundred Hz is hampered by thermal noise that excites
vibrations in the mirrors and the suspension wires. In order to mitigate the thermal noise,
the four mirror test masses that constitute the two Fabry-Perot cavities are cooled down
to 20 K. Sapphire mirrors suspened by sapphire wires are used in KAGRA because of
its high thermal conductivitity at low temperatures. It is expected that these new tech-
nology? will provide a useful knowledge for third-generation GW detectors such as the
Einstein Telescope.

A roadmap for KAGRA is composed of two phases: the initial KAGRA (iIKAGRA) and
the baseline KAGRA (bKAGRA). In the iKAGRA phase, the configuration is a simple
Michelson interferometer in a room-tempearature as will be discussed in the next section.
From a standpoint of data analysis, the main purposes of iKAGRA are to validate the
search pipeline we developed, to find program-related problems at the early stage, and to
gain experiences to analyze actual data toward bKAGRA. In this chapter, we report the
results of an end-to-end test for a targeted search for known isolated pulsars. Also, we

summarize future prospects for CW search in the bKAGRA phase.

! The formal name is Large-scale Cryogenic Gravitational-wave Telescope (LCGT).
2 The technology for underground and cryogenic operation has been tested by Cryogenic Laser Inter-
ferometer Observatory (CLIO) detector that is a prototype detector for KAGRA [126].
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4 Targeted CW search with iKAGRA

4.1 Detector

4.1.1 Detector configuration

The initial KAGRA, so-called iKAGRA, consists of a Michelson interferometric GW de-
tector with its arm length of 3 km as shown in Fig. 4.1. The interferometer was constructed
in underground at Kamioka Mine in Gifu Prefecture. The underground observation is ex-
pected to mitigate seismic noise and make it possible for the detector to operate in both
quiet and stable environment. Figure 4.1 shows a simple schematic view of the iIKAGRA
configuration [127, 128]. The laser with 2 W power at a wavelength of 1064 nm is used
as an input laser beam. The input laser beam passes through an input mode cleaner
(IMC) composed of three mirrors (MCi, MCe, and MCo) in order to filter out higher-
order spatial modes of the laser beam and stabilize laser light frequency. Power recycling
(PR) mirrors are installed to broaden the input beam waist and adjust its direction. The
input beam is split into two orthogonal beams by the central beam splitter (BS). After
bouncing at the end mirrors (ETMX and ETMY), the two beams are recombined at the
BS and return to the laser system. An input Faraday isolater (IFI) is placed between the
IMC and the BS for optical isolation of the laser system from the interferometer. The IFI
prevents the reflected light from returning into the laser cavity and change its direction.
The recombined beam are detected at a photo-detector (PD) that is placed in the direc-
tion away from the laser system®. Temporal change of difference in the arm lengths due

to the passage of a GW is read out at the PD by means of optical interference effects.

4.1.2 Observation

The iKAGRA operated for about three weeks between March and April in 2016. The
observation run of the iKAGRA is divided into two phases, the first run in March and
the second run in April. The first run took place during a week between March 25, 17:00
JST and March 31, 17:00 JST (from 1142928017 to 1143446417 in GPS time). After the
commissioning in the first week of April, the second run was conducted between April 11,
9:00 JST and April 25, 17:00 JST (from 1144368017 to 1145606417 in GPS time).

Data obtained from interferometric GW detectors are generally stored in the form
of a frame format that is available via the Frame Library Software [129] developed by
LIGO and VIRGO collaborations. A frame is a standard format commonly used in GW
community and records the following information: the GPS start time of the frame,
the time length of the frame, a strain channel corresponding to the main data output

h (t), auxiliary channels that is obtained by monitoring the instruments and the ambient

3 GW signals are usually read out from the PD placed at the anti-symmetric port. In the iKAGRA,
the PD is placed at the symmetric port due to the small space in the anti-symmetric port.
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4 Targeted CW search with iKAGRA
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Figure 4.1: The schematic view of the iKAGRA configuration [127, 128]. The power of
incident laser light is 2 W and its wavelength is 1064 nm. Passing the mode cleaner leads
to fundamental spatial mode of the laser beam by filtering higher order spatial modes.
The three mirrors, IMC, MCi, MCe, and MCo stand for input, end, and output mirrors,
respectively. PR2 and PR3 mirrors are placed to adjust the beam waist.

environment around the interferometer, and so on. The iKAGRA data are stored in 32-sec
frame files each of which is a 16,384 Hz time series. When analyzing for GW detections,
we used post-processed data (proc data) that contains mainly a strain channel and data
quality flags. The flags give us useful information on the detector state for GW data
analysis. In the iIKAGRA data, data quality is categorized into the following three types

based on the auxiliary channels [130]:

Category A checks whether the interferometer is locked or not by using four auxiliary

channels.

Category B isalock flag obtained from the state machine automation platform Guardian
[131].

Category C checks values of feedback signals.

Strain data are sampled at a rate of 16,384 Hz, whereas data quality flags consist of a
1 Hz time series.

Figure 4.4 (a) shows the number of frame files from the iIKAGRA as a function of
date. The red colored histogram represents the total number of the frame files in a day.
Among them, available data for GW analysis whose flags indicate data as good states
are represented by the blue colored histogram. The ratio of the good state data to the

total data is shown in Fig. 4.4 (b). As can be seen in these figures, the observation run in
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4 Targeted CW search with iKAGRA

April is more stable than that in March. In fact, the Michelson interferometer in March
lost lock about every 30 minutes because tidal forces induced by the Moon and the Sun
exerted on the end mirrors. This caused the saturation of feedback signals in the actuation
range. The total locked time and the longest locked time in the first run are 129.5 hours
and 3.6 hours, respectively. Thanks to the updates during the commissioning, the total
locked time and the longest locked time in the second run are 257.7 hours and 21.3 hours,
respectively. The fraction of the available frame data on April 16 is only 30% and are very
few compared with other days. This is because the main shock of the 2016 Kumamoto
earthquakes occurred at 1:25 JST on April 16 in Kumamoto Prefecture.

The measured GW strain-equivalent noise level, or sensitivity is depicted in Fig. 4.3.
The red and blue region describe the sensitivity estimated from data collected in March
and April, respectively. The solid lines represent the median sensitivity during the
observation. The shaded zones represent the sensitivities between the 5th and 95th
percentile. Since the April run is stable, the red-shaded zone is almost invisible in
this figure. Typically, the strain sensitivities in March and April at f = 200 Hz are

Sn (f) ~2x 107" Hz7 % and 2 x 10716 Hz~ /2| respectively. The sensitivity is limited
by seismic noise below 4 Hz, ADC noise above 3 kHz, and acoustic noise at around 100 Hz.
The summary table of the iKAGRA observation is found in Table 4.1.

Observation period (GPS)  Ngames Nsprs Best sensitivity (Hz1/?)
First run 1142928017 — 1143446417 3,535 62 6.92 x 10716
Second run 1144368017 — 1145606417 28,438 504 1.03 x 10716

Table 4.1: Summary table of the iIKAGRA observation. Ngames and Nsprg are the total
number of frame files and SFT files available for CW analysis, respectively. The fifth
column represents the best median value of the sensitivity for the first run and the second
run.

4.2 SFT

4.2.1 SFT

In the frequency domain analysis, time series z (t) data are broken up into smaller seg-
ments, followed by windowing of each segment with the Tukey window function w ()
defined by Eq. (3.32). Then, each segment are converted into the frequency domain by

the discrete Fourier transform:

M
:Z’mk = At Z U}j.ﬁl]mjei2ﬂ-ijk/M, (41)

Jj=1
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(a) The number of GWFs (b) Fraction of available GWFs
0 3000 T T T T T T T T T
9 ; : ; T I e ]
22500 el o T HHA T | | ol L-‘ i
52000 {1 M _— - I o - ' 1IN
> 1500 il - (14 o6 NN ] .
2 i i
£1000 (I} - i - o4 =ttt - i y
c : : : :
© 500 —r rrrrrrrrrrrrrr - - o2 (LI - -
= : : : :
= 0 (18NN Loy L 0 L 1000 . L
03/24 03/31 04/07 04/14 04/21 04/28 03/24 03/31 04/07 04/14 04/21 04/28
Date Date

Figure 4.2: Left panel: Histogram of the number of frame files from the entire observation
run as a function of date. The red filled area represents the total number of the frame
files we obtained. The blue filled represents the total number of the frame files that are
good state. Right panel: Fraction of available frame files as a function of date. Since the
commissioning started after the March run, there are no frame files during the first week
in April.

Strain sensitivity [Hz'll 2]

ol oo
100 200 300 400 500 600 700 800 9001000
Frequency [Hz]

Figure 4.3: The measured GW strain-equivalent noise level of the iIKAGRA. The blue and
red lines correspond to the observation run during March (March 25 - March 31, 2016) and
April (April 11 - April 25), respectively. The solid line represent the median sensitivity.
The shaded zone represents the sensitivity between the 5th and 95th percentile. Since the
April run is stable, the red-shaded zone is almost invisible in the above figure.

o6



4 Targeted CW search with iKAGRA

where 7, represents the Fourier component in the a-th SFT segment and k-th frequency
bin. This process, referred to as SFT, is required to deal with non-stationarities of the
detector and frequency-shifts caused by the Doppler effects due to the Earth motion. As
discussed in section 3.2.2, the time baseline Tspr is chosen such that the signal frequency

does not shift by more than half a frequency bin during Tspr:

1 CRE
2 fo'l}]%

(4.2)

1.5 kHz\ /2
Tgpr < )

~ 1.7 x 10? sec (
Jo

We set the time baseline of the SFT to be 1,800 seconds in our analysis.

A single SFT segment comprises 1,800-sec contiguous frame data each of which has
32 second length. Figure 4.4 (a) shows the number of the available SFT segments for
GW analysis as a function of date. While 10 SFTs are produced on average in a day in
March, about 30 SFTs are available in a day in April thanks to the updates during the
commissioning. As a result of the SFT process, 29,801 frame files collected in the second
run produced non-overlapping 528 SF'T's. This corresponds to the total time baseline of
about 11 days. When we performed the SFT, we employed MAKESF TS code in the LAL.
In our analysis, we used the SFT data obtained only from the second run because there
were insufficient number of SFTs in the first run, and furthermore, the sensitivity in the

first run is much worse than that in the second run as shown in Fig. 4.3.

0 (a) The number of available SFTs (b) Cumulative fraction of available SFTs
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Figure 4.4: Left panel: Histogram of the number of available SFT segments as a function
of date. Since the iKAGRA operated very unstably in March due to the tidal effects
caused by the Moon and the Sun, we can use only about 10 SFTs in a day. On the
other hand, in April, the number of available SFTs is about 30 in a day. Right panel:
Cumulative fraction of available SF'T segments as a function of date.
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4.2.2 Data selection

Whereas detector noise can be regarded as approximately following Gaussian distribution,
it often shows strong non-Gaussianities due to environment disturbances, which would
degrade the detection power of the F-statistic. SFT segments that contains strong outliers
should be excluded in the analysis. In order to investigate statistical properties of data,
it is useful to introduce a normalized SFT power. The normalized SF'T power in the a-th

SFT segment and the k-th frequency bin is defined as

|Fo k|
Poc,k: = . Nb:ld—l s (43)
z : ~ 2
xXr k!
Nband =0 ‘ “ |

where Npanq is the number of the frequency bins within the narrow band. In Eq. (4.3), the
numerator represents the power in a single frequency bin, and the denominator represents
the average value of the bin power over the narrow frequency band. It is advisable for
the bandwidth Ny.nq to be taken broader than the frequency shift of putative CW signals
induced by the Doppler effect. If that is the case, P, ; can be regarded as being dominated
by the detector noise. When the detector noise obeys a Gaussian distribution, P, j follows
the F-distribution F'(2,2Npana).

To find SFT segments that contain strong non-Gaussianity, we set a threshold for P, j.
If a value of P, is beyond the threshold, we omit the SF'T segment containing this P, .
Let Ngpr random variables X1, - -+, Xy, be distributed according to the F-distribution
as X ~ F(2,2Npanq). For a given false-alarm rate, we define a probability such that the

maximum value among X, - , Xy exceeds a threshold Py in the following way:
pra = Prob [max (X1, -+, Xngop) > Pl - (4.4)
The right hand side in Eq. (4.4) can be reduced to

N,
Prob [max (Xl, s 7XNSFT) > Pth] =1- [F (-Pth; 27 2Nband)] o

7 (4.5)

where F' (Pp; 2, 2Npana) denotes the CDF (cumulative distribution function) of F-distribution.
Since the false-alarm rate is usually set to be much smaller than 1, ppy < 1, Eq. (4.5)

can be solved as

NSFT 1/]\/vband
Pth ~ Nband ( ) —1]1. (46)

In our analysis, Nyand, Nsrr, and ppa are set to be 180,540, and 0.1%, respectively. The
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resulting threshold of Py, is 13.6 beyond which P, j, is regarded as following a non-Gaussian
distribution.

Figure 4.5 (a) shows histogram of normalized SFT power over 0.1 Hz frequency band
starting at 225.899 Hz as a representative example. This frequency corresponds to a CW
signal from pulsar J0645+5158. The blue filled area represents the measured value of P, j.
If the detector noise in this band is distributed according to the Gaussian distribution,
the histogram is expected to lie on the dotted line. The deviation between the histogram
and the dotted line for large P, indicates small non-Gaussianities in the detector noise.
The mean and variance of F,j in this band are 1.07 and 1.24, respectively. The non-
stationarity of the noise is described by the averaged sensitivity over a day shown in
Fig. 4.5 (b). If the noise is completely stationary, the histogram follows the dotted line.
The measured value of the averaged sensitivity varies on a few factors around \/m =
2.9 x 10716 in this frequency band.

(a) Histogram of normalized Power (b) Averaged strain sensitivity
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Figure 4.5: Left panel: Histogram of normalized SFT power over 180 frequency bins
around f = 225.899 Hz corresponding to a CW signal from pulsar J0645+45158. In the
case that detector noise is pure Gaussian noise, the normalized power is expected to obey
F-distribution. In other words, the histogram lies on the straight line. The deviation
between the histogram and the dotted line indicates the existence of non-Gaussian noise.
Right panel: Strain sensitivity averaged over a day at around f = 225.899 Hz during the
April run. The dotted line is the averaged value of the strain sensitivity.

4.3 Data analysis

4.3.1 Seach method

In our analysis, we use calibrated strain data z (¢) that pass all the aforementioned data

quality check criteria. The strain data is expressed as a putative CW signal s (¢) with
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additive detector noise n (t):

z(t)=n(t)+s(t; A N), (4.7)
s(t; A,N) = Fo(t;n, ) Apcos @ () + Fy (t;n,)) Ay sin® (8 N) (4.8)

where F; , and A, , denote detector antenna patterns and CW amplitudes corresponding
to 4+, x modes, respectively. The Doppler parameter X is comprised of the sky position n,
the spin frequency f, and the spin-down parameters f, f,---. When we search for CWs
from known pulsars, these Doppler parameters are already measured by EM observations
in advance. In contrast, the amplitude parameters A are the collection of four unknown
parameters: the amplitude of the CW, hg, the inclination angle, ¢, the polarization phase,
1, and the initial phase, ¢y. The signal strength is characterized by
2

ho = T CeLLf (4.9)
where d, I,,, and € are the distance to the source, the moment of inertia, and the ellipticity,
respectively. In the case of a targeted search, we can estimate the theoretically expected

upper limit on hg as

. . 1/2
<h0>pFD:10% ~ 114 M —1.17 x 10*18 < Sn (fSIg) > (1]. daYS) , <410)

Pra=1% obs 10_16 I‘IZil/2 Tobs

where a false-alarm rate and a false-dismissal rate are set to be 1% and 10%, respectively.

Our analysis pipeline for CWs from known isolated pulsars is based on the F-statistic
method. In this method, there is no search parameter because the four unknown pa-
rameters A = {hg, 1, cost, ¢} are projected out in the process of maximization of the

log-likelihood ratio over A:
2F (x, Asig) = max 2In A (z; A", Asig)] - (4.11)

The SNRs are related to the F-statistic by E [2F] = 4 + (S/N)*. Also, the threshold for
the F-statistic can be related to a false alarm probability pra by Eq. (2.50a). When the
false alarm probability is set to be 1%, the threshold of F-statistic is estimated to be
2F i = 13.3 in the case of Gaussian noise. We make use of COMPUTEFSTATISTIC_V2
code in the LAL to evaluate a F-statistic value of each known pulsars.

Schematic view of the entire search pipeline for known pulsars are given in Fig. 4.6.
First, we create 1,800-sec SF'T segments from the set of contiguous frame files. Second,
we compute F-statistic coherently from the all the SFT segments. Then, the measured

values of 2F are compared with the threshold of the detection statistic. If the measured
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value is above the threshold, we regard it as the signal candidate. If not, we proceed to

set an upper limit on the strength of the signal.

Input h(t) data

N\

Make 1800-sec SFTs

Remove outliers

: No
Compute F-statistic S?t an upper
limit on h,

Yes

Register as a candidate

Figure 4.6: Entire search pipeline for known pulsars.

4.3.2 Results

If the data is consistent with stationary Gaussian noise, 2F is distributed according to >
distribution with four degrees of freedom. In order to investigate the actual PDF for the
2F, we compute the F-statistics from the SFT segments within a narrow frequency band
because the computed 2F from noise at the nearby frequency can be regarded as different
realizations of the same random process. Figure 4.7 represents probability distribution
of the F-statistics over 0.1 Hz band at around f = 225.899 Hz. This GW frequency
corresponds to PSR J0645+5158 and its 2F is 2.10. The blue-filled area represents the
measured values and the dotted line represents the PDF in the case of stationary Gaussian
noise. As can be seen in this figure, the two lines agree well with each other with the
exception of large values of 2F. Since the small non-Gaussianities exist in the data, the
deviation between the measured histogram and the dotted line appears for large 2F as in
the right panel of Fig. 4.7. The threshold of the F-statistic can be set by the false-alarm
rate. We set the false-alarm rate to be 1%. In this case, the threshold 2, corresponds
to the 99th percentile of the probability distribution in Fig. 4.7. For PSR J0645+45158,
2F i = 13.50.

Figure 4.8 (a) shows the measured value of 2F for 63 known isolated pulsars whose spin
frequencies range between 50 and 1,000 Hz. Green dots represent the thresholds of 2F
that are derived from the actual probability distribution based on the iKAGRA data. The
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Figure 4.7: Probability distributions of the F-statistic over 0.1 Hz band at around f =
225.899. The right panel is identical to the left panel apart from the scale of the vertical
axis and the range of the horizontal axis. The blue shaded areas in both panels represent
histograms obtained from the observations. In each panel, a dotted line represents a
central x? distribution with four degrees of freedom. When the data is dominated by
Gaussian noise, the histogram obeys the dotted line.

thresholds are at around 13. This is because if noise obeys a Gaussian distribution, 2, =
13.3 for ppa = 1%. Because all the computed values of 2F fall below the predetermined
threshold, we conclude that there is no significant candidate in our data. The left panel in
Fig. 4.8 represents the upper limits on hy with a 95% confidence level. The upper limits
are of the order of 107!, The most stringent upper limit is hy ~ 7.5 x 1071 at 460.17 Hz
from PSR J0024-7204L.
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Figure 4.8: The left panel represents the observed value of the F-statistic for each pulsar.
Each green dot corresponds to the data-derived threshold of the F-statistic for each pulsar.
All the measured values of 2 fall below the thresholds. The right panel represents the
upper limits on the signal strength with a 95% confidence level. The most stringent upper
limit is hg ~ 7.5 x 1071 at 460.17 Hz from PSR J0024-7204L.

From Eq. (2.11b), the upper limits on hy can be also interpreted as the upper limits on
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the ellipticity assuming I = 10%® kg m?, where I denotes the NS’s moment of inertia:

ctd

=——  h,. 4.12
© = Tomaip, ™ (4.12)

The results are shown in Fig. 4.9 (a). All the upper limits are above unity. The most
stringent upper limit is 3.0 at 819.9 Hz correpoding to J1658-5324. The spin-down ratio
which is defined as h)*”/hgd is given in Fig. 4.9 (b). The lowest value of the spin-down
ratio is 6.0 x 10° corresponding to J0534+2200 (Crab pulsar).

All the results we obtained are summarized in Table 4.2. Each column corresponds
to pulsar name, GW frequency which is twice the spin frequency, the spin-down rate,
the distance to the pulsar, the spin-down limit, the observed 2F value, the data-derived
threshold 2Fiy,,, and upper limit on hy with a 95% confidence level, respectively. The
values of fior, frot, and d are taken from the ATNF catalogue [15]. The upper limits
have a systematic error of about 20% due to detector calibration [132]. For pulsars with
fmt > 0, the spin-down rates are calcurated under the assumption of a characteristic

pulsar age of 10 year by Eq. (2.1).
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Figure 4.9: Left panel represents the upper limits on ellipticities of NSs assuming I = 1038
kg m?. The right panel represents the spin-down ratios. The lowest value of the spin-down
ratio is 6.0 x 10 corresponding to J0534+2200 (Crab pulsar).

Table 4.2: Upper limits on GW amplitude for known

isolated pulsars.

Pulsar fgw frot d hSd Qf 2-,’rthr th%
(Hz) (Hzs™') (kpc)

J0024-7204C 34741  1.5x 107" 40 1.1x107*" 335 1340 24x107'®
J0024-7204D  373.30 1.1 x 107' 40 1.1x107*" 898 1334 52x107"®
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Table 4.2: Upper limits on GW amplitude for known

isolated pulsars.

Pulsar fgw ]érot d h(s)d 2./,:' 2‘/Tthr h85%
(Hz) (Hzs™)  (kpo)

J0024-7204F  762.31 —9.3 x 1071° 4.0 99x107%® 6.37 1331 1.7x107Y
J0024-7204G  495.00 2.5 x 1071 40 1.1x107%" 1.38 1335 1.7x107'®
J0024-7204L  460.17 6.4 x 1071° 40 1.1x107% 0.81 1330 7.4 x107%
J0024-7204M  543.97 2.8 x 1071 40 1.1x107%" 1.11 13.43 23 x107'8
J0024-7204N  654.88 2.3 x 1071° 40 1.1x107%" 506 13.38 28x107'8
J0030+0451  411.06 —4.2 x 10716 0.3 38x107%" 221 13.37 39x10°'8
J05344+2200  59.89 —3.7 x 10710 20 14x107 232 1337 86x107'®
J0537-6910  124.05 —1.9x 107 497 29x107% 426 13.35 9.1 x107'®
J0645+5158  225.89 —6.2 x 10717 0.7 78x107%® 210 13.50 1.9x107'8
JO711-6830  364.23 —4.9 x 10716 1.0 1.2x107%" 235 1340 1.8x10°'8
J0931-1902  431.21 —1.9 x 10716 3.6 20x10"%® 906 13.34 7.5x 10718
J1024-0719  387.43 —6.9 x 10716 1.1 1.3x1072" 10.29 1340 4.0 x107'8
J10384+0032  69.32 —8.0 x 1017 23 51x107%® 232 1353 1.0x 107"
J1103-5403  589.49 —3.2 x 10716 3.1 26x1072 754 13.58 4.7x107'8
J1400-6325 64.14 —4.0 x 1071 70 12x107% 559 13.33 1.1x107Y7
J1453+1902  345.28 —3.4 x 10716 0.9 1.2x107% 501 1338 3.1x107%®
J151840204A 360.12 —1.3 x 1071° 80 27x107% 130 13.19 1.6x107'8
J1552-4937  318.25 —4.8 x 10716 33 41x107%® 539 1343 1.7x107"
J1629-6902 333.3 —2.7x 10716 1.3 7.6x1072% 144 1348 14x107'8
J1658-5324  819.90 —1.8 x 1071° 1.2 1.3x1072" 205 1323 1.7x107'®
J1721-2457  571.97 —4.5x 10716 1.5 65x1072 1.64 1324 33x10°'8
J1725-3853  417.37 —2.2x 1071° 34 76x107%® 219 13.39 83 x107'8
J1730-2304 24622 —3.0 x 10716 0.6 2.0x107% 917 1335 28 x 107
J1744-1134  490.85 —5.3 x 10716 04 29x107%" 423 1341 7.0x107'®
J1748-2021C  321.18  1.5x107'° 82 55x107%® 1.86 13.41 3.6x107'8
J1748-2021E 12297 —1.1x 107" 82 42x107% 349 13.61 95x107'8
J1748-2446C  237.07 85 x 1071 55 82x107%® 598 1341 3.1x107%®
J1750-3703C 7527 14 x107% 138 32x107%® 832 1322 89x 1078
J1750-3703D  389.11 —1.8x 107 138 57x1072® 1.38 13.37 3.1x107'8
J1757-27 113.07 —6.7 x 10716 54 51x107%® 762 13.50 4.3 x 1077
J1801-0857A 278.72 9.9 x 1071 72 6.3x107%® 876 1345 4.6x 1078
J1801-0857C  534.94 4.6 x 1071° 72 6.3x107%® 227 13,50 4.6x 107"
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Table 4.2: Upper limits on GW amplitude for known

isolated pulsars.

Pulsar faw frot d hed 2F  2Fme  hP
(Hz) (Hzs') (kpc)

J1801-0857D  473.20 —3.9 x 10716 72 14x107% 1095 13.37 1.8x 107"
J1801-1417  551.70 —4.0 x 10716 1.8 54x1072® 161 13.35 23 x107'8
J18214+0155  59.20 —2.5 x 10717 22 32x107%® 592 1344 19x107Y
J1823-3021A 367.64 —1.1x10""% 121 1.6x107%" 10.25 13.34 5.9 x 10°'8
J1824-2452A  654.81 —1.7 x 10713 55 3.3x107% 226 1334 1.7x107'®
J1832-0836  735.53 —1.1 x 1071 1.4 1.0x107%2" 162 1324 1.8x10°'8
J1836-2354B  618.75 4.6 x 1077 3.2 14x107% 1.06 13.54 7.7x107%
J1843-1448  365.54 —2.0 x 10716 34 25x107%® 327 1357 1.8 x 107
J1904+0451  328.28 —1.5x 10716 39 19x107% 197 1348 25x107'8
J1905+0400 528.48 —3.4 x 10716 1.3 6.9x1072 149 1350 4.9x10°'8
J1910-5959B  239.29 1.1 x 1074 2.1 21x107% 487 1339 1.6x 10718
J1910-5959C  378.98 —7.7 x 1077 2.1 23x107% 433 1336 28 x 107
J1910-5959D  221.35 —1.1 x 107" 21 3.8x107% 140 1334 1.7x107'®
J1910-5959E  437.46 2.0 x 10~ 21 21x107% 207 1351 74x107'®
J191140101B  371.44 6.9 x 10717 9.5 4.7x107%® 468 13.42 3.0x107%®
J1911+1347 43234 —8.0 x 10716 1.6 9.6x1072 371 1335 7.6x107'®
J1913+1011  55.69 —2.6 x 10712 44 55x107% 167 13.41 3.1x107Y
J1923+42515  527.96 —6.5 x 10716 09 12x107% 930 1327 15x107"7
J1944+0907  385.71 —6.3 x 10716 1.2 1.1x1072" 776 13.33 53 x 10718
J1944+2236  552.79 —5.7 x 10716 84 1.3x107% 1.16 13.34 25x107'®
J1955+2527  410.44 —3.8 x 10716 9.0 1.2x107%® 3.03 1331 7.0x107%®
J2007+2722  81.64 —1.6x 107'° 6.8 7.3x107%® 098 13.26 2.9 x 107
J2010-1323  382.90 —1.7 x 10716 1.2 6.0x1072 11.41 13.35 4.2x10°'8
J2124-3358  405.58 —8.4 x 10716 04 40x107%" 6.12 13.34 88x107'®
J2129+1210D 416.42 4.6 x 1078 129 35x1072 236 1356 1.0x107'7
J2129+1210F 496.64 —2.0x10"® 129 1.7x1072® 1.05 13.37 2.1x107'8
J2129+1210G  53.10 —14x 107 129 45x107%® 098 13.29 6.9 x 1078
J2129+1210H 296.58 —5.3x 1071 129 1.1x10"%® 886 13.26 3.4 x 10718
J232242057  415.93 —4.1 x 10716 0.7 1.4x107%" 1.82 1341 72x107'®

Notes: The upper limits h)°” entail detector calibration errors about 20% [132]. For pulsars with

fmt > 0, the spin-down rates are estimated under the assumption of a characteristic pulsar age of
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10° year by Eq. (2.1). The pulsar’s spin frequencies, spin-down rates, and the distances are taken
from the ATNF catalogue [15].

4.4 Future prospects

Figure 4.10 shows bKAGRA sensitivity and amplitudes of CW signals from 220 known iso-
lated pulsars in the case of one-year observation. The solid line is calculated by Eq. (4.10)
assuming VRSE configuration for bBKAGRA [133]. Spin-down limits for known isolated
pulsars given in Eq. (2.57) are represented by dots in this figure. The dots that exceed the
solid line correspond to detectable signal candidates because thier spin-down rates cannot
be explained only by the loss of GW radiations. As can be seen in Fig. 4.10, strength of
GW signals from young pulsars in lower-frequency region is likely to be constrained more
strictly than millisecond pulsars in spite of the fact that h oc fZ (see Eq. (4.9)). This can
be traced to the fact that young pulsars are likely to have larger spin-down rates. The
panels (a) and (b) of Fig. 4.11 represent pulsar distributions for spin-down ratios and up-
per limits on ellipticities that we will obtain in bKAGRA observations. About 50 pulsars
with 2f,,t > 10 Hz would emit GWs strong enough to beat the spin-down limits. The
panel (b) of Fig. 4.11 indicates that upper limits on ellipticities we would obtain fall much
below the theoretical maximum possible value suggested by Eq. (2.4). It should be noted
that Fig. 4.11 depends on pulsar models. We assume a fiducial moment of inertia of 103®
kg m2. However, actual moments of inertia are theoretically expected to range between
1-3 x10% kg m? when equations-of-state are taken into account [64]. So, these spin-
down limits may increase up to a factor of about 1.7. Distances to pulsars are basically
inferred from radio dispersion measures and are subject to uncertainties uncertainties of
about +10%. Table 4.3 summarizes seven high interest pulsars whose spin-down ratios
are below 0.1. In particular, spin-down ratios of Crab (J0534+2200) and Vela (J0835-
4510) pulsars will be beaten significantly by bBKAGRA observations although frequencies
around 60 Hz may be contaminated by narrow-band noise due to electrical power supply

system.

4.5 Conclusion

The observation run of the iIKAGRA operated for about three weeks in March and April
in 2016. We constructed the analysis pipeline for known isolated pulsars based on the
F-statistic method and investigated performance of our pipeline using the iKAGRA data.
We focused on the data from the second run in April and made use of the 28,438 32-sec
frame files. We produced 504 1,800-sec SFT segments from the contiguous frame files.
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Pulsar few Jrot d hy hg'/ (ho)
(Hz) (Hzs') (kpc)
J0835-4510 22.38 —1.5x 107" 02 34x107%*  0.019
J0205+6449 30.43 —4.4x 107" 32 43 x107%®  0.076
J1833-1034 3231 —52x107"" 41 35x107%®  0.082
J222946114 38.74 —29x 107" 3.0 33x10%  0.060
J1813-1749 44.74 —6.3x 107" 47 28 x107%®  0.052
J053442200 59.80 —3.7x 107 20 14x10"%*  0.006
J1400-6325 64.14 —4.0x107" 70 1.2x107%  0.070

Table 4.3: Seven high interest pulsars whose spin-down ratios fall below 0.1. The moments
of inertia are assumed to be 10%® kg m?.
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Figure 4.10: bKAGRA sensitivity and amplitudes of CW signals from known isolated
pulsars for one-year observation. The solid line is calculated by Eq. (4.10) assuming
VRSE configuration for bKAGRA [133]. The dots represent spin-down ratios for pulsars.
The moments of inertia are assumed to be 10%® kg m?. For pulsars with fi; > 0, the
spin-down rates are estimated under the assumption of a characteristic pulsar age of 10°
year by Eq. (2.1).
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Figure 4.11: Pulsar distributions for spin-down ratios and upper limits on ellipticities we
would obtain in bBKAGRA observations. Spin-down ratios can be estimated by Eq. (2.57).
Ellipticities are related to spin-down ratios by Eq. (4.9).

We computed the F-statistic coherently from the entire observation data and found that

there are no significant candidates in our data. Thus, we put constraints on the over-all
amplitude of GWs and obtained Fig 4.8. The upper limits are of the order of 10~!® which
are consistent with the upper limits estimated from the iIKAGRA noise level. The most
stringent upper limit is hg ~ 7.5 x 107 at 460.17 Hz corresponding to PSR J0024-7204L.
We confirmed that our search pipeline correctly operates as expected. This search pipeline
will be able to be applied to data from bKAGRA in the near future.
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CHAPTER 5

v2 veto for F-statistic-based

semi-coherent search

CWs are considered to be one of the most interesting detectable targets for large-scale
laser interferometric GW detectors such as the advanced LIGO [10], advanced Virgo [11],
KAGRA [12], and LIGO-India [13]. CWs are generated from rapidly rotating neutron
stars due to the non-axisymmetry around their spin axes. Broadly speaking, there exist
two main approaches to search for CW signals. One is the so-called targeted search in
which the source parameters such as sky position «,d, spin frequency f, and spin-down
rate f are already measured by EM observations. In this case, it is possible to analyze year-
long observation data coherently by the most optimal method known as F-statistic (Sec.
2.3) [57]. The other approach is often referred to as wide-parameter-space search whose
main targets are electromagnetically undiscovered CW sources®. Since the aforementioned
source parameters are unknown completely, it is necessary to explore a wide-parameter-
space characterizing CW signals, in which case the coherent matched-filtering method are
computationally prohibitive (Sec. 2.5.1) [136].

In order to reduce computational burden in wide-parameter-space search, semi-coherent
approach has been developed by many authors [86, 137, 87, 138, 139, 140]. In a hier-
archical semi-coherent search, year-long observation data is split up into segments small
enough to allow us to analyze each segment coherently. Coherent detection statistic called
F-statistic is computed for each coherent segment on a coarse grid of templates. Then,
F-statistic are summed over all the coherent segments incoherently on a common fine
grid. Significant candidates are followed up by fully coherent search using all the obser-
vation data. However, since such wide parameter-space search entails a huge number of
templates, many narrow-band disturbances, or lines agree well with the signal templates
and result in the high SNRs accidentally.

1 Wide-parameter-space search is generally divided into two categories: directed search and all-sky
search. All-sky search aims to detect CWs from undiscovered sources whose parameters are unknown
at all, in which case search parameter space consists of «, 4, f, f , f', ---. Directed search aims to detect
CWs from unknown pulsars in the direction where CW sources potentially exist, in which case search
parameter space consists of f, f , f ,-++. This search method lies between a targeted search and an all-sky
search. The first directed search has been conducted using LIGO S5 data sets from H1 and L1 detectors,
searching for unknown isolated pulsars in the direction of the Galactic center [134, 135].
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Line cleaning [85, 111, 113] is often used to veto known instrumental lines. The fre-
quency bands contaminated by such instrumental noise artifacts are identified through
detector characterization. On the other hand, many methods for dealing with unknown
lines are proposed. S-veto [85, 109] utilizes such a noise property that signal candidates
stemming from instruments and environment are not subject to frequency modulations
due to the Earth’s rotation and revolution. This method removes the sky regions around
the north and south poles from search parameter space, where noise lines behave as if
they were CW signals. The veto method called line-robust statistics has been recently
proposed by Keitel et al. [141, 142, 143]. Using the Bayesian framework, the authors
constructed the line-robust statistics by introducing an alternative simple line-noise hy-
pothesis in addition to the signal hypothesis Hg and the Gaussian-noise hypothesis Hqg
(Sec. 2.4.4). Since in their works a line is modeled as a CW-like signal which appears only
in a single detector , one of the drawbacks is incapability of rejecting coincident line-noise
events in a multi-detector network.

In this chapter, we introduce a x? veto in F-statistic-based semi-coherent search for
unknown CW signals and study its performance. A x? veto is widely used in compact
binary coalescence (CBC) search in order to exclude non-Gaussian noise transients which
would produce high SNR accidentally [144, 1]. The key idea of a x? veto is that a SNR of
transient noise accumulates with time in a different way from that of a true CBC signal. If
the SNR of the signal candidate builds up in a way that is inconsistent with the expected
CBC signal, the value of x? becomes large and indicates that the signal candidate should
be vetoed. A x? veto was also applied to a targeted CW search in [145] where line events
are rejected according to the spectral shape of the observed F-statistics around a CW
frequency. A x? veto is discussed in the context of Hough transform search [146].

This chapter is organized as follows. In section 5.1, we summarize F-statistic-based
semicoherent search. We give an overview of currently proposed veto methods for wide-
parameter-space search in section 5.2. In section 5.3, we formulate a x? veto for F-
statistic-based semicoherent search in the case of equal-SNR time-intervals and validate
it by using simulation data. Then, we test its detection power using actual LIGO data in

section 5.4. A summary follows in section 5.5.

5.1 F-statistic-based semi-coherent search

We will start with summarizing F-statistic-based semi-coherent search. The detection
statistic called F-statistic is widely used to detect a CW signal from an electromagneti-
cally known isolated pulsar. This is a coherent matched filtering based on the maximum

likelihood method, which is known as the most optimal detection statistic from a fre-
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quentist viewpoint [72]. For a stationary Gaussian noise, the likelihood ratio is expressed

A = (z|h) — % (hlh), (5.1)

where x and h are the detector output and the CW waveform, respectively. (-|-) appeared

in Eq. (5.1) denotes the noise-weighted inner product defined by

(x]y) = 4Re /000 %dﬁ (5.2)

where S, (f) is a one-sided noise power spectral density. The F-statistic is derived by
maximization of the likelihood ratio over amplitude parameters A* which consist of the
overall amplitude hg, the inclination ¢, the polarization phase v, and the initial phase ¢
[57],

2F =max 2InA. (5.3)
AH

The four amplitude parameters are projected out by this process. In the case of an all-
sky search, the parameters to be searched are the remaining phase parameters which are
composed of the sky positions, the frequency, and the spin-down parameters. Even when
we retain the spin-down effects up to the first order, the number of required templates
grows up with coherent-integration time polynomially [77]. Thus, it is computationally
impossible to perform a fully coherent search for year-long data.

A semi-coherent search method mitigates the computational cost by taking a sub-
optimal strategy at the cost of sensitivity. A data set is broken up into Ny, shorter
segments typically of the order of a day or longer. The F-statistics are computed from
each segment and then combined incoherently. The resulting detection statistic is an

average of the F-statistics over Ny, segments,

Nseg
— 1
OF = > 2F, (5.4)
Nseg j=1

where the index j stands for the j-th coherent segment. The significant candidates are

followed up by fully coherent search by using the entire observation data.

5.2 Veto method

In this section, we give a brief review of commonly used veto methods in F-statistic-based

semi-coherent search.
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5.2.1 Known lines

Line-cleaning

Line cleaning [85, 111, 113] is used to remove narrow-frequency bands that are known to
suffer from instrumental artifacts, or known lines, because noise lines behave as CW signals
and becomes signal candidates with high SNRs accidentally. Prominent contaminated
frequency bands are often identified by data characterization. According to [113], there
are various line sources including so-called the main lines at the 60 Hz electrical power
supply frequency and its harmonics, calibration lines injected intendedly for the purpose
of calibration, lines at violin-mode frequencies due to wire suspension systems, and 1 Hz
Harmonic, known as 1 Hz combs, caused by control and data acquisition system. In the
cleaning process, contaminated narrow-frequency bands are replaced by white Gaussian

noise whose power spectrum is the same as noise level in the adjacent frequencies.

5.2.2 Unknown lines

S-veto

In the previous LIGO search [85, 109], S-veto has been employed to remove unpredicted
noise lines. The S-veto is based on the fact that instrumental and environmental lines
are not influenced by frequency modulations due to the Earth’s rotation and revolution.
In the process of the S-veto, sky regions around the Earth’s pole are excluded from
search-parameter-space before a search, because such lines are prone to mimic CW signals
incoming from these regions. S-veto was originally used in the context of SF'T-based semi-
coherent searches (Sec. 2.5.2) [85]. Pletsch [147] generalized the S-veto to the F-statistic-
based semi-coherent CW search by using global-correlation equations. Time derivative of
Eq. (2.22a) yields

%:<1+—”<t2'n)f+f<t)—a(t)'n, (5.5)
where a (t) denotes the acceleration of the detector. The first and second terms in the
right hand side of Eq. (5.5) stems from the NS’s spin down and the Earth’s motion,
respectively. Since signal candidates arising from instrumental and environmental lines
are not subject to the frequency shifts induced by the Earth’s motion, vetoed region is an
annulus in the sky described by

(QX’UE)"fL

f+ f(tﬁducial) f <eg, (56)

where €2, vg, and ¢ represents the Earth’s angular velocity vector, the Earth’s orbital

velocity vector, and the parameter originating from the finite resolutions of the parameter
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space. The tolerance parameter € can be written as

A
€= ft‘iNcella (57)

where Af, Tys, and N denote the frequency resolution, the observation time, and the
minimum total number of frequency bins occupied by CW signals, respectively. The sky
region to be excluded is determined by Eq. (5.6). In [85], the fractions of the sky excluded
from the search are about 15% for H1 and 26% for L1. In [109], about 30% of the sky are

excluded.

Permanence veto

Permanence veto is used in semi-coherent searches based on F-statistic [134, 135]. This
method utilizes the fact that strong lines often appear only in a signle coherent segment.
In the process of the permanence veto, the coherent segment containing the strongest
lines is removed. Then, a value of F-statistic is re-computed over the remaining Nz — 1

coherent segments:

Nseg
— 1
2f+pv = ﬁ Z 2?}, (58&)
BT gk
2F, = max 2F, (5.8b)

where the k-th segment is assumed to contain the strongest F-statistic value. The new
detection statistic 2F |, is compared with the threshold. If the measured value of 2F ,,,
falls below the predetermined threshold, the signal candidate is regarded as arising from
noise lines. The main draw-back of the permanence veto is not being able to treat noise

lines appearing in two or more coherent segments.

Line-robust statistics

As discussed in Sec. 2.4.4, the F-statistic can be formulated by the posterior odds ratio
between the Gaussian-noise hypothesis Hg and the signal hypothesis Hg in the Bayesian
framework. The F-statistic can be used to decide which hypothesis agrees better with
observation data. Hence, there is a possibility that noise lines produce a large value of
F-statistic even if it does not resemble a CW signal model. In order to deal with this
problem, Keitel et al. [141, 142, 143] introduced the additional hypothesis that formulates

line as

Hy, = \/ (Hf A Hé) : (5.9a)

X=1 Y£X
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HE X (t) =n™ (1) + 5% (6 AY), (5.9b)

where H;\ is a hypothesis stating a CW-like line in a detector X . The simple line hypotheis
‘H1, assumes that only a single detector X contains a CW-like line and any other detectors
Y (# X) are comprised of pure Gaussian noise. Since the Gaussian noise hypothesis Hg
and the simple line hypothesis H, are mutually exclusive, the noise hypothesis can be
extended as Hqgr, = Hg V Hr. A new detection statistic, which is called a line-robust
statistic, is constructed from a posterior odds ratio between the extended noise hypothesis
Har and the signal hypothesis Hg,

P(Hslz) _ -

OS/GL( ) (HGL|93) - OS/G( )+ OS/L( ) ’ (5'10>

where P (Hgr|z) = P (He|x) + P (Hy|z). Computing Os,c (2)? and Os)y, ()® gives rise

to the concrete expression for the line-robust statistic,

]:tot(m)
Os/aL (x) = 0s/cL o) = (5.14a)
(1—pr) Nocg P Z X F
P (Hy) OL/G
= P(Hp|Har) = = : 5.14b
pbL ( L| GL) P(HGL) 1+0L/G ( )
P (H¥ op
pi =P (Hi |Haw) = 0h) _ e (5.14c)

P(Han) 1 +05/G’

where ¢* is reparameterized as FO = 1n¢*. The line-robust statistic Bsar, depends on
Nyet free prior parameters to be specified, F and piv. The line priors pi are estimated
by reference to normalized average SF'T powers for each detector. The prior F that

arises from the amplitude-prior cutoff shown in Eq. (2.61) determines a transition scale

2 Using a similar calculation to Eq. (2.61), the posterior odds between Hg and Hg in the case of
semicoherent methods can be calculated as

Os/c (%) = ogqen e (@) (5.11)

where F;.; denotes the sum of the F-statistics.
3 The posterior probability for HX shown in Eq. (5.9b) is expressed as

P (Hi |zX) = of/Gc;N“gefX(xX)P (HE|2¥) (5.12)

So, the posterior probability for the simple line hypothesis defined by Eq. (5.9a) is calculated as

P (Hyp|z) = ZP (H{ |2 H P (HE|2Y) = P (Helz) c ZOL/GG (=), (5.13a)
Y#X
_ P(HL) oX
oL/G = P(HG) = - L/G (513b)
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between Ogc () and Og)r, (x) (see [141] for further discussion). The main draw-back of
the line-robust statistic is not being able to handle coincident lines appearing in multiple
detectors by its definition. Also, the line-robust statistic is not applicable to a single

detector case.

5.3 The y? veto in equal-SNR time intervals

As discussed in Sec. 2.3, the F-statistic is known to be the most optimal detection statistic
under ideal Gaussian noise background. However, non-Gaussian noise frequently appears
in actual data output, which would degrades the detection efficiency. In particular, the
F-statistic is susceptible to narrow-band disturbances called lines which would lead to
a high false-alarm rate. Furthermore, the detection statistic 2F composed of the F-
statistics could yield a large value beyond a detection threshold even when lines with high
amplitudes appear in a few segments in the absence of a CW signal. This is because
SNR consistency across the different coherent segments is not taken into account in the
2 F-statistic.

In this section, we construct x? discriminator by focusing on SNR contained in each
segment. A CW signal contributes to a SNR at a constant rate apart from amplitude
modulation whereas a SNR arising from lines is expected to accumulate in a much different
way from a CW signal. The x? discriminator is designed to test the SNR consistency

between the different segments.

5.3.1 x? discriminator

We will start with putting some simplifying assumptions to be familiar with a y? discrim-
inator in a JF-statistic-based semi-coherent search. First, noise levels are set to be the
same for each coherent segment longer than 24 hours. Second, each coherent segment has
the same length. Third, a template is assumed to be perfectly matched with a true CW
signal. Fourth, each segment is not overlapped. The first three assumptions are eventually
relaxed later on in this chapter. From these assumptions, the F-statistic computed from
each segment can be approximately regarded as independent and identically distributed
random variables. As explained in Appendix B, the expectation value and variance of the

F-statistic in the j-th segment are expressed by

(2F;) =4+ pf, (5.15a)
orr, =4 (2407), (5.15b)
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where the angle bracket (- - -) denotes the ensemble average and p; denotes the SNR in the
J-th segment. Thanks to the aforementioned assumptions, the observed SNR contained
in each segment is expected to take the same value.

Next, we consider statistical properties of the incoherent sum of the F-statistics over

all the coherent segments:

N, seg

Feot =Y _Fj, (5.16)

in order to prepare for a x? discriminator. In the presence of a CW signal with total SNR
of piot in stationary Gaussian noise, 2F;; obeys a non-central x? distribution with 4 Ngeg

degrees of freedom and non-centrality pZ,, where p2, = Nsegpi. S0, 2F;. satisfies

(2Fiot) = Neeg (44 07) , (5.17a)
O3p., = 4Nseg (2 +03) . (5.17b)

The total value of the F-statistics can be decomposed into the following form:

Nucg Nueg Nicg
Fon = ZF2+Z > FiF, (5.18)
J=1 k=1#£j

where the second term represents the sum of the product F;Fj, over the different indices.
Since the detector noise in the different segments are regarded as independent of each
other, the relation (F,;Fi) = (F;)(Fx) is satisfied. Also, since the expection value of
F; takes the same value for all the segments thanks to the aforementioned assumptions,

(F;) = (Fy) is satisfied for any set of j and k. Combining these two equations, we obtain

<~7:t2ot> = Nseg<-7:j2> + Nseg (Nseg - 1) <'7:J>2

1
= Nyeg (1 + p3) + N2, (1 + §p§> . (5.19)

This is consistent with Eqgs. (5.17a) and (5.17b). In a similar way, (F,;Fie) is calculated

as

1 2
(5P = N (15 32) + (144) (5.20)

Next, we define AF; as the difference between measured value of F in the j-th segment
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and the expected value of F in the j-th segment inferred from the measured value of Fi,

1
AE = -7:] - f-tot‘ (521)
Nseg

The expectation value and variance of AF; are given by
(AF;) =0, (5.22a)

(a5 = (1- 52 ) (5.221)

where we made use of Egs. (5.19) and (5.20). When CW signals with additive Gaus-
sian noise exist in the j-th segment, AF; takes zero expectation value as indicated by
Eq. (5.22a). On the other hand, in the presence of non-Gaussian noise in the j-th segment,
AF; takes non-zero expectation value. Thus, the sum of (A]—"j)2 over all the segments
can be regarded as the measure to distinguish CW signals from non-Gaussian noises.

Motivated by this fact, we define a y? discriminator as

Ng Neeop —2
J\ X |2F; - 2F]|
2 seg 2 J
&= (AF)?2 =512 (5.23)
0--27:t0t ; ’ ; O-%]:tot /Nscg

After a simple calculation, the expectation value and variance of ¥? are calculated as

<X2> = Nseg - 17 (5.24&)
2, N = Lo v gy (N2 3N, 13 5.24b
Oz2 = Teg [ ( seg ) + ( seg seg + ) 62}—tot] ) ( : )

respectively, where By, denotes the kurtosis of 2F, defined by Eq. (B.6d) (see Appendix
E). It should be noted that the mean of y¥? depends only on the number of the coherent
segments, whereas the variance depends not only on the number of the segments but also
on the total SNR through the kurtosis fy,,. This dependence differs from the original
2, approaches to

X
2 (Ngeg — 1) and the y? discriminator approximately obeys a x? distribution with Ny — 1

x? discriminator introduced in Ref. [144]. For large values of Ny, o

degrees of freedom. This fact can be traced to the central limit theorem. The probability
distribution function (PDF) of 2F approaches to a Gaussian distribution as the number
of segment Ny, increases. In this situation, we can directly reuse the result of [144]
which indicates that the x? discriminator composed of Ny, segments is distributed as a

x? distribution with Nseg — 1 degrees of freedom.
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5.3.2 The threshold of y? discriminator

As explained in the previous subsection, the y? discriminator can be used to discriminate
whether signal candidates with large values of 2F arise from line-noise events or not. CW
signals with additive Gaussian noise are expected to have y? of Nyq—1 on the average from
Eq. (5.24a), whereas lines are expected to have large values of y* compared with Nyeq — 1.
Signal candidates which exceed a certain threshold of ¥2 should be rejected. The threshold
can be determined by Monte-Calro simulations for a given number of coherent segments
Ngeg. In the left panel of Fig. 5.1, we depict a threshold of Y2 in the case of Ngeg = 100
as a function of 2F, where 2F = 2Fo /Nseg. Four curves in this figure correspond to
different false dismissal probabilities for the Gaussian noise, ppp = 107,1072,1073, and
1074, respectively. The threshold weakly depends on 2F because the variance of ¥2 is
related to the kurtosis of Fio in Eq. (5.24b). As opposed to [144], the threshold decreases
as the expected SNR becomes large. This fact indicates that more significant lines are
rejected more easily. The right panel of Fig. 5.1 shows the threshold of y? as a function

of ppp for different values of 2F.

200 [ A T P .
180 | P|=D=104 B
B e
140 : : : : ;
120 péD=10_1 —

2F

Figure 5.1: Left panel: Threshold of x? as a function of 2F in the case of Nye = 100. Four
curves correspond to different false dismissal probabilities for the Gaussian noise, ppp =
1071,1072,1073, and 10~%, respectively. If a signal candidate exceeds the corresponding
threshold for a given pgp, it should be regarded as an outlier. Right panel: The threshold
of x? as a function of prp in the case of Nyg = 100. Three curves correspond to 2F = 5,6,
and 7, respectively.

5.3.3 Validation

To see whether or not x? discriminator works effectively, we generate Gaussian noise
background and inject CW-like lines into N segments among the whole segments using
the MAKEFAKEDATA V4 code in the LAL. The amplitudes of the injected lines are set
such that 2F ranges between 5 and 10 uniformly. After 10,000 injections, we obtain
Fig. 5.2, where f;, is the fraction of the injected lines defined as f;, = Np/Nee. The
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(a) Injected CW signals (b) Line noise with £ =0.01
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T T T T T T T T
104 e S _ 104 e S _
N N
10° R - R EERREES E 10° frgsadGRr - E
3 S S — e 3 S S
5 6 7 8 9 10 5 6 7 8 9 10
2F 2F

Figure 5.2: Measured values of x? as a function of 2F for 10,000 injections into Gaussian
noise background. The dotted line represents the threshold of x? for ppp = 1%. The
panels (a), (b), (c¢), and (d) correspond to injections of CW signals, injected CW-like lines
with fr = 0.01,0.02, and 0.03, respectively.
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dotted line corresponds to the threshold of x? for prpp = 1%. Panel (a) in Fig. 5.2
depicts the measured values of x? for each trial. As expected, the points are scattered
about the solid line corresponding to Eq. (5.24a). The other panels (b), (¢), and (d) in
Fig. 5.2 represent the measured values of x? for lines with f;, = 1,2 and 3, respectively.
The x? values far exceed the threshold, which indicates that lines under Gaussian noise
background would be vetoed easily.

Next, we perform injection tests to find detection efficiencies for the three statistics
{2F, T?-"erv,ﬁﬂz}, where ﬁ+xz statistic is defined as a value of F-statistic after the

x? veto:

ﬁ X2 < X‘?hr (T’T7 pFD) .

0 otherwise.

2F 2 = (5.25)

We inject CW signals into white Gaussian noise background using the MAKEFAKE-
DATA_V4 code. The injected parameters are chosen so that angular parameters {«, d, cos ¢, ¥}
are uniformly distributed in the range a € [0,27],0 € [—7/2,7/2],cost € [—1,1], and
1 € [0,27]. The signal frequency is assumed to obey a uniform distribution on the interval
[100,101] Hz. The signal strength hi,; is determined so that the averaged SNR satisfies
p2 = 2. To do this, hinj is set in the following way:

2F ¢ — 4
hinj = i6—hi, (5.26)
2F; — 4

where 2F¢ = 6 corresponds to p? = 2, h; is the signal strength randomly drawn, and 2F,
is the measured value of 2F*. We carry out 10,000 Monte-Carlo simulations for each of
the values of 2F in the range of 4.5-7.5 with a step of 0.1. As a result, we obtain Fig. 5.3.

Figure 5.3 shows the detection efficiencies for the three detection statistics {2F, 2F ., ﬁﬂ(z}
as a funtion of the threshold 2F,,. For the threshold of TF+X2, the false alarm prob-
ability is set to be 1% in this injection test. If the measured values of 2F exceed the
threshold 2F.,, signals are considered to be detected. As indicated by Fig. 5.3, the
conventional F-statistic is the most optimal detection statistic under the ideal Gaussian
noise background. Our detection statistic ﬁ+x2 overlaps with the F-statistic in Fig. 5.3.

So the detection efficiencies for these two statistics are almost comparable to each other
although the maximum value of the detection efficiency for 2F 2 is 99% because we take
prp = 0.01. On the other hand, ﬁﬂ)v is inferior to the other two statistics in terms of

the detection efficiencies. This is because the statistic ﬁ-ﬂrpv excludes a single coherent

4 Note that (2F) = 4 + p2.

80



5 x2 veto for F-statistic-based semi-coherent search
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Figure 5.3: Detection probability as a function of threshold 2F,, under the ideal
Gaussian noise background. Three curves represent the three detection statistics
{2F, ﬁﬂw,ﬁﬂz}, respectively. The threshold for ﬁ+x2 is calculated under the as-
sumption of ppp = 0.01. For each of the statistics, if the measured value exceeds the
threshold, we regard that a signal is detected. The statistics 2F and ﬁﬂg have almost
the same detection efficiency while 2F,,, is interior to these two statistics.

segment containing the loudest F-statistic value no matter whether a CW signal exists in

data or not, which would lead to missing out on detectable CW signals by 2F and 2F 2.

5.4 The y* veto in unequal SNR time-intervals

5.4.1 y? discriminator

So far, we have dealt with the case of stationary noise and equal-length segments. In
the following, we relax these assumptions in order to handle more realistic situations, in
which case a SNR in each segment is unequal to each other. We consider the year-long
observation data broken up into Ny segments whose lengths are not necessarily equal to
each other. The j-th segment is assumed to have the time length 7} and the noise spectral
density S;. Since the SNR in the j-th coherent segment is approximately proportional
to \/m for T; 2 24 hours, the variation in SNR for each coherent segment can be

corrected in the following way:
p5 = Neeg;p?, (5.27)

where p? denotes the average SNR and w; is defined by

N, -1
T; =T
——] E K 5.28
e S; pet Sk ( )
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From this definition, Zj\;f w; = 1 is satisfied. It is convenient to introduce a new

parameter k,, related to w; as

N@eg
LN
Kop = Z (Noegw;)" — 1, (5.29)
seg S

where n is an integer. For any value of n, k, takes non-negative value as verified in
Appendix F. The parameter k, takes the minimum value of zero when w; = --- = w,, =
1/Nseg which corresponds to the case of equal-SNR time intervals.

In a similar way to Sec. 5.3.1, we define x? as the difference between the measured
SNR and the expected SNR in each segment,

N, = 2
%[ (2F; — 4) — Nyegw; (2F — 4)|
2 _ Z J gy
v j=1 wjo_%fcot 7 <530>

where w; defined by Eq. (5.28) correct the variation in SNR for each segment induced by
non-stationary noises and unequal length of segment. After a similar calculation to Sec.

5.3.1, we obtain the expectation value and variance of x? discriminator as

2N?
(X*) = Noeg — 1+ —5~2h1, (5.31a)
T Frot
2 2
T =gt o (10N ko + 10NZ, (Nogs® = 4) 1 + |6 (1= 39%) + Naag (0 = 2)°| 2}
(5.31b)

where k_9,k_1 and ki are defined by Eq. (5.29). The coefficients &, result from a
non-equality of SNRs in the coherent segments. Unlike Eq. (5.15a), (x?) depends on an

observed SNR as well as aig.

5.4.2 Performance tests

LIGO S5 data

In this section, we conduct performance tests for a y? discriminator introduced in the
previous subsection using an actual data set. We analyze the initial LIGO data during the
entire fifth science run (S5) that took place during about two years between November 4,
16:00 UTC 2005 and October 1, 00:00 UTC 2007 (from 815155213 to 875232014 in GPS
time). The LIGO S5 data are comprised of data obtained from a three-detector network:
two detectors at Hanford (H1 and H2) and one detector at Livingston (L1). So far, the
S5 data have been employed to search for CWs from unknown pulsars over the whole

sky by Einstein@Home that is one of volunteer projects related to distributed computing
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[111, 113]. Here, we make use of the data collected from the H1 detector to validate how
our veto method works in the actual data set.

We divide the S5 observation data set into 101 segments with a length of 25 hours each
of which will be analyzed coherently using the F-statistic. Each coherent segment is not
necessarily contiguous but are within the range of 40 hours. Each segment is divided
into shorter segment of 1,800 seconds, high-pass filtered at 40 Hz, windowed by a Tukey
window, and followed by computing short-time-baseline Fourier transforms (SFTs). This

process gives rise to 5,686 SF'T segments.

Template placement and searched frequency band

We employ HIERARCHSEARCHGCT code [138, 139] to produce the F-statistic from
each coherent segment. The grid spacings are constructed so that the single-dimension
metric mismatch is equal to 0.03. For simplicity, we make use of templates laid out on a
rectangle grid that are related to the length of coherent segments, the single-dimensional

mismatch, and the frequency by

12m m \1/2 (40 h
Af = ~ 1. 1079 [Hz] (— .32
= = x0T [ (0.03) (Tmh)’ (5.32a)
. /T720m m \1/2 /40 h?
Af = ~713x 107" [H — .32
f =Sz =T X0 [ (0.03) (Twh) , (5.32h)
\V2m m \1/2 /53 Hz
Aa=Af=—>""_ ~0.101 [rad 32
“ 7 fTe cosdp 0.101 [rad] <0.03> ( f > ’ (5.32¢)

where dp is the detector latitude, 7 = Rg/c is the travel time of light from the Earth
center to the detector, and m is the single-dimensional mismatch. To reduce the compu-
tational costs, the spin-down parameters { f , f ,- - } are not searched over in our analysis
for simplicity. Hence, the spacing of frequency bins is set to be Af ~ 1.3 x 107% Hz. The
spacings of the sky positions are Ao = Ad ~ 0.10 (53 Hz/ f) radians.

We take the following four narrow frequency band of bandwidth 0.01 Hz as represen-
tative examples to calculate detection efficiency of the x? statistics. The two out of the
four bands are noisy bands with multiple lines whereas the remaining two are quiet bands

obeying an almost Gaussian distribution:

(A) a noisy frequency band with multiple lines f € [52.47,52.48] Hz.

(B) a noisy frequency band with multiple lines f € [58.60,58.61] Hz.

(C) a quiet frequency band following almost Gaussian distribution f € [54.87,54.88] Hz.

(D) a quiet frequency band following almost Gaussian distribution f € [58.10, 58.11] Hz.
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Figure 5.4 depicts noise weghts w; defined by Eq. (5.28) for these four frequency bands.
The values of w; vary by a factor of a few. In the case of equal-SNR time intervals, the

weights w; are expected to be 1/Nge =~ 0.01 and indicated by the dotted lines in Fig. 5.4.

(a) 52.47 - 52.48 Hz (b) 58.60 - 58.61 Hz
! ! ! ! ! ! ! ! ! T
0.03 e e A 7 0.03
E’ 0.02 f_» 0.02
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0.01 0.01
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(c) 54.87 - 54.88 Hz (d) 58.10 - 58.11 Hz
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Figure 5.4: Time evolution of weights defined by Eq. (5.28) for the four frequency bands.
In the case of equal-SNR time intervals, values of weights w; are expected to be about
0.01 and agree with dotted lines.

Detection threshold for each detection statistic

In the previous section, we find the threshold for y? statistic by injecting CW signals
into generated white Gaussian noise. Instead of the simulated data, we inject CW signals
into the LIGO S5 data by the MAKEFAKEDATA _V4 code to obtain the threshold for the y?
veto. The signal parameters {f, «,d, cost¢, 1} are chosen randomly within the frequency
band under the assumption that these parameters follow uniform distributions. We carry
out 10,000 Monte-Carlo simulations for each of the 2F values in the range of 5-11 with a
step of 1. The 2F values are calculated for perfectly matched templates. The threshold
for the x? statistic is chosen so that the probability that injected signals are overlooked
by mistake is 5%.

First, we carry out an all-sky search for each frequency band without CW injections.

The total number of templates is Niemp =~ 1.5 X 107 because Npeq ~ 0.01 Hz/Af ~
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7.5 % 10% and Ngy ~ 272/ (AaAd) ~ 2.0 x 10%. The loudest values of the three statistics
{2F 2F 1 v, 77'—+X2} among the whole template for each frequency band are registered for
the subsequent injection tests. It is known that there are no significant signal candidates
in the S5 data by virtue of the previous all-sky searches [111, 113]. So, when the values of
each detection statistic of injected CW signals exceed one of the loudest noise candidate,
we can regard that the injected signals are detected. In other words, we use the observed
values of the detection statistics of the loudest noise candidate as the threshold for CW
detections.

Figure 5.5 shows the cumulative number of noise candidates whose values of the three
detection statistics {2F,2F 4y, 2F 1,2} exceed 2F. For 2F, a huge number of noise
candidates take high values in comparison with the other two detection statistics, T?—"erv
and T?-"erz. because the F-statistic is apt to be affected by noise lines. In contrast,
TZ’ﬁrpv and ﬁ+x2 considerably reduce the observed values of the F-statistic by the veto
processes. In the panel (a) of Fig. 5.5, our x? veto rejects the noise candidates more
effectively than the permanence veto. This is because there exist noise lines existing over
multiple segments in the frequency range of 52.47-52.48 Hz. As a next step, we check
whether the veto methods reject true CW signals or not, and then we compare detection

efficiencies of 2F ,,,, and 2F , 2-statistics.

(a) 52.47 - 52.48 Hz (noisy band) 5 (b) 58.60 - 58.61 Hz (noisy band)

W7 71 T 1 " 71 T 3§ WpT 717 7 T T T_T

6 65 7 75 8 85 9 95 10 105 . 75 8 85 9 95 10 105
2_F* 2_F*

Figure 5.5: Histograms for the number of noise candidates that satisfies 2F > 2F, for
each frequency band. The panel (a) and (b) correspond to the two noisy frequency bands.

Procedure for calculating detection efficiency

We inject CW signals into the LIGO S5 data within each frequency band using the
MAKEFAKEDATA V4 code in order to calculate the detection efficiency. The sky positions
of the injected signals are assumed to be uniformly distributed over the entire sky. Also,
the orientations of the sources with respect to the H1 detector are assumed to obey
uniform distributions. We carry out 1,000 Monte-Carlo simulations for each of the values
of ho/\/S=n in the range of 0.02-3.20 with a step of 0.02, where S, denotes the strain
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sensitivity averaged over the entire observation run. For each injection, a parameter
space to be searched over is constructed so that a frequency range is 1 mHz band at
around the signal frequency and a sky region is a sky patch consisting of 100 grid points
close to the putative source position from a standpoint of the metric (see Sec. 2.5.1 for
more details) [77]. For each of the statistics {2F,2F v, 2F 2}, if one or more signal
candidates have the larger statistics than the predetermined threshold, we regard that

the signals are detected.

Results

Figure 5.6 shows the detection efficiencies for the aforementioned four frequency band
(A), (B), (C), and (D). Unlike Fig. 5.3, the horizontal axis is shown in units of normalized
amplitude hq/ \/S=n in place of 2F in order to easily relate to physical quantities. The
normalization factor S, denotes the one-sided spectral density of the S5 data averaged
over the whole segments. In each panel, the blue, green, and red lines correspond to the
detection statistics 2F, ﬁﬂgv, and 2._7:+X2, respectively.

The panels (a) and (b) of Fig. 5.6 correspond to the two noisy frequency bands (A) and
(B), respectively. These panels indicate that the conventional F-statistic has much worse
efficiency than the other two statistics in noisy bands because the F-statistic is susceptible
to lines, which results in a high false alarm rate. Meanwhile, the newly proposed detection
statistic ﬁ_,_xz has the best detection efficiency in these noisy bands. In particular, ﬁ+x2
in the panel (a) works more powerfully than the panel (b). This feature can be traced to
the number of lines existing in coherent segments. Whereas 2F ,,, can only exclude lines
in a signle coherent segment, TF+X2 can deal with lines existing over multiple coherent
segments. For example, in the panel (a) of Fig. 5.6, the detection probabilities of 2F,
2F 4y, and 2F ;2 for ho/\/S=n = 0.1 are 17.5%, 27.8%, and 43.0%, respectively. This
indicates that the x? veto process rejects strong noise lines but retains injected CW
signals. Thus, the F,,2-statistic more easily detects CW signals buried in noisy data.
The panels (c) and (d) of Fig. 5.6 correspond to the two quiet frequency bands (C) and
(D), respectively. As can be seen these panels, detection powers of the three detection
statistics are almost comparable to each other. In the panel (d), 2F are slightly better
than the other two statistics because noise in this frequency band approximately obey
Gaussian distributions, in which case the 2F is the best statistic as in Fig. 5.3.

We also constraint on GW strain amplitudes when the detection thresholds are set by
using the loudest noise candidates®. From Fig. 5.6, upper limits on hg/ \/S:n with a 95%
confidence level for 2F, 2F, ., and ﬁ+xz are 0.27,0.25, and 0.20 in noisy frequency bands
of 52.47-52.48 Hz, respectively. These upper limits can be more physically interpreted in

5 In a wide-parameter-space search, a detection threshold is usually limited by a computer’s memory
so that significant signal candidates are registered.
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terms of upper limits on the ellipticity € using Eq. (2.11b) for a fixed distance to the source.
If a NS is located at a distance of 0.1 kpc, upper limits on € are 2.79 x 1073,2.58 x 1073,
and 2.04 x 1073, respectively.

Label f (Hz) V'S, (Hz7'?) max 2F max 2F,,, max 2F

(A)  5247-52.48 296 x 107*  14.38 10.43 9.79
(B) 58.60-58.61 1.89 x 1072  10.03 6.99 7.20
(C) 54.87-54.88 2.01 x 102 6.12 5.73 6.12
(D) 58.10-58.11 1.70 x 1022 6.15 5.72 6.15

Table 5.1: Analyzed frequency bands for performance tests of detection statistics using
the LIGO S5 data. Labels (A) and (B) correspond to two noisy frequency bands, whereas

labels (C) and (D) correspond to two quiet frequency bands. The column labeled /S,
represents the strain sensitivity averaged over the whole segments. The detection statistics
2F,2F {py, and 2F ;2 are defined as Eqgs. (5.4), (5.8a), and (5.25), respectively. The

highest values of the detection statistics 2F,2F \py, 2F +2 Without injections are denoted
by max 2F, max 2F ., max 2F 2, respectively, which are used as detection thresholds
in Fig. 5.6.

5.5 Conclusion and discussion

In this chapter, we proposed the x? veto for semi-coherent F-statistic-based search, fo-
cusing on the SNR consistency across the different segments. Non-Gaussian narrow-band
disturbances, or lines frequently appear in detector data and can mimic CW signals. Lines
would produce a high false alarm rate and degrade a detection efficiency of 2F if no veto
method is applied. The newly proposed x? veto is designed to check whether or not an
observed SNR accumulates in a way that is consistent with a CW signal. As opposed
to the currently existing veto methods introduced in Sec. 5.2, the x? veto can deal with
multiple lines existing over two or more segments in a single detector and coincident lines
in a multi-detector network. We investigated the performance of the y? veto using the
LIGO S5 data. We found that the 2F values after the y? veto process are reduced dras-
tically in the noisy frequency bands as shown in Fig. 5.5. Also, we tested its detection
power in order to check to what extent the y? veto does not miss out on detectable CW
signals. Figure 5.6 indicates that the y? veto process improves the detection efficiency in
the noisy frequency bands in comparison with the other two detection statistics. This is
due to the fact that the y? veto process excludes strong noise lines but retains injected
CW signals.

It should be noted that our veto method would miss out on detectable transient CWs

that are CWs of duration of the order of hours—weeks. Such transient CWs are considered
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Figure 5.6: Detection probability as a function of normalized amplitude hg/+/S, for

each frequency band, where /.S, denotes the average strain sensitivity over the whole
segments. The panels (a) and (b) correspond to the two noisy frequency bands, whereas

the panels (c¢) and (d) correspond to the two quiet frequency bands.

The detection

statistics 2F, 2F 1y, and 2F ;2 are defined as Eqgs. (5.4), (5.8a), and (5.25), respectively.
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5 x2 veto for F-statistic-based semi-coherent search

to be potentially produced from magnetar giant flares [148], glitching NSs [149], and
maybe wobbling NSs [35]. Since our veto method checks SNR-consistency across the
whole segments of the order of a year, these transient CWs would be excluded from signal
candidates. However, several search methods specific to them have been proposed by
several authors [150, 143].

As future prospects, it would be interesting to extend the y? veto to a multi-detector net-
work case. The currently used veto method, the line-robust statistic requires two or more
detectors because in its framework line is defined as a narrow-band disturbance appear-
ing only in a single detector. So, this method cannot deal with coinsident lines. In fact,
in the past F-statistic-based semi-coherent search [113], 0.46% of final high-significant
signal candidates passed the consistency check between a multi-detector network, and so
are considered to arise from coincident lines [143]. Furthermore, when we use line-robust
statistic as a veto method, detection sensitivity would be strongly limited by duty cy-
cles of detectors that are the fraction of available data during the entire observation run.
For example, let us consider two-detector network whose duty cycles are assumed to be
r1 = ro = 50% (For LIGO S6 run, the duty cycles of H1 and L1 detectors are 50.6%
and 47.9%, respectively [14]). In this case, the line-robust statistic makes use of only
riry = 25% data on average. In contrast, the y? veto is applicable to a single-detector
and so can use (1, +79) /2 = 50% data on average. Hence, semi-coherent search based

on the x? veto may potentially improve detection power by a few factors.
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CHAPTER 6

Conclusion

In this thesis, we studied CWs from compact stars with a focus on data analysis using
actual data set. The main source of CW signals are a rapidly spinning NSs and there exist
so many uncertainties of NS physics related to equation-of-state of NSs such as maximum
possible value of ellipticity, wobbling motions of NSs, generation mechanism of CWs, and
relation between EM and CW emissions. CW search is expected to give new insights into
these unclear issues.

In Chapter 2, we summarized CW sources, emission mechanisms, and a link between
NS’s equation-of-state and its ellipticity. Then, we gave an overview on data analysis
tools for CW search that we need in the subsequent three chapters.

Chapter 3 is concerned with low-frequency CWs that have not been investigated due to
seismic noise by the currently existing ground-based laser-interferometric GW detectors.
To search for unexplored low-frequency regions below 10 Hz, we employed a recently
proposed TOBA detector. TOBA is a low-frequency terrestrial GW detector consisting
of two orthogonal bar-shaped test masses. Recently, multi-output configuration of TOBA
has been proposed in [18], which leads to three independent output signals from a single
detector. We give a short review of its figure-of-merits in terms of parameter estimation
accuracies including short updates. Then, we moved on to an all-sky search for low-
frequency CWs using the Phase-II TOBA that is a prototype detector of the multi-
output TOBA. While data obtained from bar rotations on yz and zx planes were not
incorporated in our analysis because of their worse sensitivities, we succeeded in setting
the most stringent upper limits on GW strain amplitudes with confidence level 95% as
3.6 x 10712 within 6-7 Hz frequency band.

Chapter 4 focused on KAGRA that is the first Japanese km-scale interferometric GW
detector. The iIKAGRA test run was conducted during three weeks in March and April in
2016, and now KAGRA is being upgraded toward its full configuration with a cryogenic
Fabry-Perot laser interferometer. We performed a targeted CW search for known isolated
pulsars using the iKAGRA data. The motivation of this study is to validate the search
pipeline, to find program-related problems at the early stage, and to gain experiences to
analyze actual data toward the full configuration operation. We investigated CW sig-

nals from 63 known isolated pulsars within 50-1,000 Hz frequency band. No significant
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6 Conclusion

signal candidates were found. The upper limits on the GW strain amplitudes with 95%
confidence level are of the order of 10~!® that are consistent with the upper limits theoret-
ically calculated from noise level of the iIKAGRA. We confirmed that our search pipeline
correctly operates as expected.

In Chapter 5, we presented a y? veto method for F-statistic-based semi-coherent search
for unknown CW sources in order to deal with sharp spectral noise lines that frequently
hampers detection sensitivity to CW signals. Our veto method is designed to check
whether or not an observed SNR accumulates as expected in the case of true CW signals.
Its unique feature is the applicability to multiple lines existing over two or more coherent
segments in a single detector and coincident lines in a multi-detector network. After
its formulation, we conducted its performance tests using data from the LIGO Hanford
detector during the S5 observation run. We found that our veto method successfully
rejects noise lines. Consequently, detection probabilities for unknown CW signals in
noisy frequency bands are significantly improved before and after our veto process (e.g.,
the detection probabilities are 17.5% for the pure F-statistic and 43.0% for the F-statistic
after our veto process at hg/ \/S=n = 0.1 in 52.47-52.48 Hz frequency band). As a future
work, our veto method will be extended to a multi-detector network.

KAGRA plans to start its observation run with the full configuration within a few
years. Since KAGRA is being constructed in underground to mitigate seismic noise, it
is expected to have an advantage in lower-frequency regions compared with the other
large-scale ground-based interferometric detectors. As discussed in Chapter 4, KAGRA
will surpass spin-down limits for about 50 known isolated pulsars in these regions, which
indicates that we will be close to detections of CW signals. Also, a wide-parameter-space
search for unknown CW sources in low-frequency region inaccessible by the other ground-
based detectors will be conducted only by KAGRA, in which case the x? veto method
introduced in Chapter 5 would play important roles in rejecting unpredictable noise lines
and improving the detection efficiency of CWs. KAGRA has enough chance of the first

detection of a CW source, which would shed light on unclear aspects of NS physics.
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APPENDIX A

PDF for Gaussian noise

On the assumption of stationarity and the Gaussianity for detector noise, the correlation

between the different Fourier components of the noise is written as

(n () (f)) = %5(f — )5 (f), (A1)

where T' denotes the observation time and S, (f) is called the one-sided noise spectral
density. The discrete version of Eq. (A.1) is

s T
<nknk,> = E(Skk'smk? (A2>

where the index k corresponds to f,'. Because both the real and imaginary part of 7y,

Nk, and 74, obey the same Gaussian distribution, their expection value and variance are

(Tkr) = (i) = 0, (A.4a)

TS (A.4b)

where we used |fz|° = i, + 7y ; and Eq. (A.2). The PDF for the detector noise in
Fourier space obeys

P (1) p (2ni)
X exp 5y Xp | =5 3
k ng

1 We made use of the following approximation.

T/2 X sin (7 fT)
§(f) ~ —2miftgy — p2 — T. A3
(f) /_T/g € 7TfT f—0 ( )
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A PDF for Gaussian noise

where 02 = TS, /4. Using the above equation, we obtain the PDF for the detector

s

noise as

~ exp

1

2

g

* i (f)[
Su (f)

ﬂzmﬁamw

where fnyq = N/2T is the Nyquist frequency.
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APPENDIX B

Statistical properties of F-statistic

B.1 Moment-generating function

In general, random variables are statistically characterized by probability distribution
functions (PDF). Also, their statistical properties can be described by moment-generating
functions (MGF) which have exactly the same information as the distribution functions

in many cases. MGF of a random variable X is defined as
Mx () = E ["¥], (B.1)

where F [X] denotes the expectation value of X. As the name implies, the MGF generates

the moments of X as

d" My (6)

E[X") = dor  lo=o

(B.2)
Also, there exists another useful propertity such that a MGF of a linear combination of
random variables X and Y is a product of the MGF of X and Y:

My (0) = Mx (0) My (). (B.3)

For example, let us consider a random variable Sy representing a linear combination of
N random variables X; (i =1,---, N) each of which follows a non-central y? distribution
with k; degrees of freedom and non-centrality \;; Sy = X; 4+ Xo + -+ + Xy. The MGF

of each X; is expressed as
o0/ (1-20)

My, (0; ki, i) = ————.
R Y e

(B.4)

The combination of Egs. (B.3) and (B.4) gives rise to the MGF of Sy as

Mgy (0) = Mx, (0; k1, \1) Mx, (0; ko, A2) - - - Mx, (0; kn, An)
MO/(1-20)  Ao0/(1-26) An0/(1-20)

(1—20"72 (1 —20)2% (1 - 20)/?
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B Statistical properties of F-statistic

oAN0/(1-20)
= m (B.5)
Because of one-to-one corresopndence between the PDF and the MGF, the random vari-
able Sy obeys the non-central y? distribution with Ky = ki +- - -+ ky degrees of freedom
and non-centrality Ay = A1 + -+ + An.

B.2 Statistical properties of F-statistic

Let X be a random variable distributed according to a non-central y? distribution with
k > 0 degrees of freedom and a non-centrality parameter p?. The first few moments for

X are given by

(X) =k +p* (B.6a)
0% =2(k+2p%), (B.6b)
23/2 (k + 3p%)
Tx = —(k n 2p2)3/2 ; (B.6¢)
By = 12 (k + 4p?) (B.6d)
TRV '

where (X),0%,7x, and Bx denote the mean, variance, skewness, and excess kurtosis for
X, respectively. In the presence of a CW signal, 2F; and 2F,, obey non-central x? distri-
butions with 4 and 4N degrees of freedom and non-centralities p7 and p,;, respectively.
So, Egs. (B.6a)—(B.6d) can be applied to 2F; and 2F;, after appropriately replacing k
and p? with the corresponding values. In the absence of a CW signal, 2F; and 2F
obey x? distributions with 4 and 4N degrees of freedom. This is a special case of the

non-central x* distribution with p? = 0 and pf,, = 0.
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APPENDIX C

Antenna pattern function

C.1 Definition

An incident GW is described as a tensorial quantity hji, while an observed quantity by
a GW detector is a scalar quantity h. The GW signal h is related to hj; by a detector
tensor D’F that contains geometrical information such as location of the detector on the
Earth and direction of the detector with respect to the GW source. Under the assumption
of the long wavelength limit N - @ /A < 1, a GW wavefrom is described by

hji (t,x) = /OO i ﬁjk () 6_27rz‘f<t_1§r.m/c)

[e.9]

= T b [ arhanetntone)
A=+,x o
= 30 ) [ ha(nye
A=+,x% —o0
e (N)ha (t), (C.1)
A=+,%

where ha (1), N , eﬁc denote the GW strain at the coordinate origin & = 0, the unit vector
of the direction of the incoming GW, and the polarization tensor, respectively. The index
A stands for two polarization mode, cross mode and plus mode. The waveform hjy, (, x)

is converted into the GW signal h by the detector tensor D7* as follows:

h(t) = D™ () by (¢)
= ST DI (1) A (N)ha (1)

A=+,x

= Y Falt, N)ha(t), (C.2)

A=4,%x

where Fy are often referred to as antenna pattern functions and are defined as

Fix(t,N)= D" (t) el (N). (C.3)
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C Antenna pattern function

The pattern functions F4 represent to the response of the detector to the two independent

polarization modes of GW.

C.2 Concrete expressions for antenna pattern func-

tions

The response of a GW detector to an incoming GW depends on its relative position and
orientation to the GW source. Such a geometrical information on the detector and the
sources is encoded in the antenna-pattern functions F) .. Since the relative motion of
the detector with respect to the sources is negligible for short-duration signals, F, , can
be regarded as a constant. On the other hand, for long-duration signals the detector
and the source cannot be regarded as at rest with respect to each other because of the
Earth’s rotation and revolution. These relative motions induce the amplitude-modulation
and phase-modulation of the signal. To take into account these effects, we follow the
formulation presented by Jaranowski, Krélak and Schutz [57]. The GW waveform h (¢) in
the proper antenna frame where the two bars are alined with z-axis and y-axis respectively

can be related to the waveform &' (t) in the wave-coming frame by
B(t) = MK MO (C.4)

where M (t) denotes a 3-dimensional transformation matrix. The matrix M (¢) is defined
by

M = MsMyM{, (C.5)

where M; is the transformation matrix from the wave-coming frame to celestial sphere
frame, M, is the transformation matrix from the celestial sphere frame to the cardinal
frame and M3 is the transformation matrix from the cardinal frame to the proper antenna
frame (see [31, 57| for more details ). The transformation matrices M, My and Mj are

given as follows:

sin cos1) — cosasindsiny  —cosacosy —sinasindsiny cosdsiny
M, =] —sinasiny —cosasindcosy cosasiny —sinasindcosy cosdcosyy |,
— COS ( COS O —sina cos § —sina
(C.6a)
sindp cosap (t) sindpsinap () —cosdp
M, = —sinap (t) cos ap (t) 0 , (C.6b)

cosdp cosap (t) cosdpsinap (t)  sindp
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C Antenna pattern function

—sin(y—¢/2) cos(y—¢/2) 0
Ms=| —cos(y—(/2) —sin(y—¢/2) 0 |. (C.6c)
0 0 1

where «, d, ap, dp, 7, and ( denote the right ascension, the declination, the latitude
and longitude of the detector position, the angle between the local East direction and the

bisector of the detector, and the angle formed by the two arms, respectively.

C.2.1 Laser interferometer

In the proper detector frame, the horizontal motions of the two end mirrors are induced
by the GW tidal force. When the GW force produces the small horizontal motion of the
x end mirror in the z-axis, the resulting GW response is expressed by hynin¥. The GW
signals can be read from the differential motions of the mirrors in the arms. Thus, the

detector tensor of the laser interferometer is expressed by

D% = = (ninf —nink), (C.7)

z  hylhy

where n, and n, are the unit vectors pointing toward the x and y-directions respectively
in the proper detector frame. Combining Eqs. (C.2)—(C.7) yields the concrete expressions

for the antenna pattern functions

F, (t) =sin([a(t) cos 2y + b () sin 2¢] , (C.8a)
Fy (t) =sin( [b(t) cos2¢ — a () sin 2¢], (C.8b)

where modulation functions a (¢) and b (t) are defined by

a(t) = %sinv (1+sin”dp) (1 +sin®4) cos[2 (o — ap (t))]

— %cos 2ysindp (1 4+ sin®4) sin [2 (o — ap (£))]

+ }l sin 27y sin 2 sin 24 cos [« — ap ()]

_ % cos 27 cos dp sin 20 sin [a — ap (t)]

+ Z sin 2y cos® dp cos? 6, (C.9a)
b(t) = cos2ysindpsind cos |2 (o — ap (t))]

+ %sin 27y (1 + sin? 6D) sindsin [2 (o — ap (1))]

+ cos 27y cos dp cos I cos [ — ap (1)]
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C Antenna pattern function

1
+ 5 sin 27y sin 20 cos d sin [ — ap (1)] . (C.9b)

C.2.2 Multi-output TOBA

As discussed in Sec. 3.1.2, the two orthogonal bars rotate differentially by the tidal force
from an incoming GW. When the tidal force produces the small rotation of the bar on the
x-axis toward the y-direction, the resulting GW signal is expressed by hjkng'cn’;. Similarly,

detector tensors for the three detector outputs are expressed by

1 , A

D% = 5 (nink +nink) = nin, (C.10a)
1

Dif = §n;n’;, (C.10b)
L1
k

Diyy = gmynt- (C.10c)

Using Eqgs. (C.2)—(C.6¢) and (C.10a)—(C.10c), we obtain the antenna pattern functions
of the multi-output TOBA as follows:

Fi;(t) =a;(t)cos2y + b; (t)sin 29, (C.11a)
Fyi(t) =b;(t) cos2tp — a; (t) sin 29, (C.11b)

where ¢ =I, II, III and modulation functions are given by

ay (t) = Z cos 27 cos? dp cos? §
+ i cos 2y (1 + sin® 5D) (1 + sin? 5) cos [2 (o — ap (1))]
+ i cos 27 sin 20 sin 20 cos [a — ap (t)]
+ % sin 27y cos dp sin 20 sin [ — ap (¢)]
+ % sin 2ysindp (1 + sin? 5) sin[2 (o — ap (1))], (C.12a)

by (t) = —sin 2y cosdp cosd cos [ — ap (t)]

—8in 2y sindp sind cos [2 (o — ap (t))]

1
+ — cos 2ysin 26 cos d sin [ — ap ()]

+ %cos 27 (14 sin®dp) sind sin 2 ( — ap ()], (C.12Db)
1
an (t) = 1 sin <7 + %) sin dp sin 29 sin [« — ap (t)]
1

— 4 c08 (fy + %) cos 20 sin 20 cos [ — ap (t)]
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APPENDIX D

Fisher analysis

In this appendix, we provide a brief review of Fisher analysis to evaluate parameter
estimation errors for a network of Ny detectors (see [151, 152] for more details). Each
detector output sx (t) is assumed to be written as a linear sum of noise nx (t) and the
GW signal hx (t), sx (t) = hx (t) + nx (). If noise is stationary, the correlation between

the Fourier components of the noise can be expressed by

(i (F) i (F)) = 36 (F = £ 50 (D (D.1)

where (- - -) denotes the ensemble average and S, (f) is a one-sided power spectral density
matrix of the detector network. It is convenient to introduce a noise-weighted inner

product between Nye-dimensional vector functions f (¢) and g (¢),

<f‘ —4Re2/ fx (f 5; Doy (f),, (D.2)

where Re denotes the real part and Ng is the number of detectors. Using this inner
product, SNR for the GW signal h () can be written as

% _ <h’h> v (D.3)

We assume that the GW signal h (t) is characterized by a collection of unknown pa-
rameters A = {A1, -, A\, }. When the noise is Gaussian in addition to stationary, the

statistical errors caused by the randomness of detector noise are estimated by
(ANAN) = (r—l)ij, (D.4)

for large SNR. The matrix I';; is referred to as the Fisher information matrix

Oh | Oh
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D Fisher analysis

To estimate the angular resolution of the detectors, we use the error in solid angle defined
by

AQ = 27 |sin §| /(A2 (AG%) — (Aald)2. (D.6)
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APPENDIX E

Calculation of the variance of the y?

discriminator

In this appendix, we derive the variance of the y? discriminator defined by Eq. (5.23).
Since F-statistic values of different segments are treated as independent and identically
distributed random variables in the case of the equal-SNR time intervals, 0322 can be

reduced to the following form:

= [ A+ S UaR) (A - (Z«AFJ)Q))
tor | j=1 =1 k#j j=1
= o [am)’ - (am)y). (1)

The first term in Eq. (E.1) is decomposed into

(AF)") = (F) - <f3fmt>@ N2<f2ffot>@ N3<ff5;t>@ N4<f:zt>@

(E.2)
The four terms (), (b), (c), and (@) are calculated as
@ = (F}) + (N = D) (F)Fp), (E.3a)
® = (F) +2(N = D) (F)Fp) + (N =) (F)* + (N = 1) (N = 2) (F7)(F)*, (E.3b)
© = (F}) +4(N = D) (F)F)) +3(N = 1) (F)* + 6 (N = 1) (N = 2) (F;)*(F)?
+ (N —-1)(N —=2)(N—3)(F;) E.3¢)
@ = NYF)), (E.3d)
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E Calculation of the variance of the x? discriminator

where the expectation values of F;, F7, 77, and F are expressed as

1

(Fj) =2+ 505, (E.4a)
(F7)=6+3p] + ip}*, (E.4b)
(F7) =24 +18p7 + 3p} + épﬁ, (E.4c)
(F1y =120 + 12007 + 30} + §p§ ) (E.4d)

2 16"/

Collecting the above results, we find the concrete expression for 0)%(2 as

3 _
o2, :%Nl) 2 (5N? — 1IN +9) +2 (5N? — 1IN + 9) p2 + N (N — 1) p]
Frot
N-1 )
= 2N = 1)+ (V? = 3N +3) o] (E.5)

where (a7, denotes the kurtosis of 2F, defined by Eq. (B.6d).
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APPENDIX F

Minimum value of k.,

We wish to find the set of w = {wy, -+ ,wx} that minimizes &, (w) subject to the
constraint Zjvzl w; = 1. According to the method of Lagrange multipliers, this can be

done by using the Lagrange function,

L (Ao, w) = iy (w) — Ao (Z w; — 1) (F.1)

where k, (w) is defined by Eq. (5.29) and )¢ is a constant called the Lagrange multiplier.
Setting the partial derivatives of Eq. (F.1) with respect to Ag and w to be zero,

N
OnL == wj+1=0, (F.2)

j=1
8wj£ =N (ij)n—l - /\0 = 07 (F?))
we obtain the critical point as \g = n and w; = .-+ = wy = 1/N. In order to check

whether this point is a local minimum or not, it is useful to introduce the bordered Hessian
matrix defined by a square matrix of second-order partial derivatives of the Lagrange
function (F.1),

o= | Oowk Oouil ) (F.4)
8>\0ij aijkﬁ

At the critical point, the Hessian is evaluated as det (H) = —N~ [n(n — 1)]" " < 0 for
n# 0,1 and N > 1. Since £ (Ao, w) has a single critical point, «, (w) takes the minimum
value of zero at the critical point wy = --- = wy = 1/N for n # 0,1. Since kg = k1 = 0,

kn > 0 is satisfied for any integer n.
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