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Abstract

This thesis is a compilation of the author’s study on continuous gravitational waves (GWs)

which are long-duration, nearly periodic gravitational waves from a compact star. A

rapidly spinning neutron star is believed to be the most interesting emitter of a detectable

continuous GW by second generation ground-based interferometric GW detectors. Detec-

tions of continuous GWs would give clues to GW generation mechanisms and equations

of state of neutron stars that are yet unclear.

First, we focus on a torsion-bar antenna (TOBA) that is a low-frequency terrestrial GW

antenna. A unique feature of a TOBA is the ability to explore a low-frequency region

inaccessible by the current large-scale interferometric detectors due to seismic noise. We

give an overview on a newly proposed multi-output TOBA. Subsequently, we perform a

first all-sky search for low-frequency continuous GWs in the frequency range from 6 Hz

to 7 Hz using data from a phase-II TOBA that is a prototype of the multi-output TOBA.

Next, we turn to the first Japanese km-scale interferometric GW detector, KAGRA

that is now under construction at Kamioka Mine in Gifu Prefecture, Japan. Unlike the

currently existing other interferometers, KAGRA will operate in underground and in a

cryogenic temperature, which would reduce seismic noise and thermal noise, and thus

would provide quiet and stable environment for GW observations. We perform a targeted

search for known isolated pulsars with data from the initial KAGRA test run. The main

purposes of this study are to validate the search pipeline, to find program-related problems

at the early stage, and to prepare for the full configuration operation of KAGRA. And

then, we report the results of the end-to-end test for the targeted search and summarize

future prospects for continuous GW search using KAGRA.

Finally, we propose a new veto method for continuous GW search for electromagneti-

cally undiscovered sources. Our veto method aims to exclude sharp spectral noise lines

that frequently hampers detection sensitivity to continuous GW signals. The main feature

of our veto method is the applicability to a single-detector search and coincident lines in

a multi-detector network. We conduct performance tests of our veto method using an

actual data set from the initial LIGO. We show that the new veto method excludes line

noise effectively and improve detection efficiency in noisy data.
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Glossary

Symbol

c Speed of light 2.99792458 × 108 m/s

G Gravitational constant 6.674018 × 10−11 m3/kg/s2

M¯ Solar mass 1.9984 × 1030 kg

ME Earth mass 5.9722 × 1024 kg

RE Earth radius 6.371 × 103 m

RES Distance from the Earth to the Sun 1 AU = 1.496 × 1011 m

Acronym

AU Astronomical unit

BH Black hole

BS Beam splitter

CBC Compact binary coalescence

CW Continuous wave

CDF Cumulative distribution function

DECIGO DECi-herz Interferometer Gravitational wave Observatory

EM Electromagnetic

GW Gravitational wave

IMBH Intermediate-mass black hole

LAL LIGO Algorithmic Library

LIGO Laser Interferometer Gravitational wave Observatory

LISA Laser Interferometer Space Antenna

NS Neutron star

MGF Moment-generating function

PD Photodetector

PDF Probability distribution function

SFT Short-time-baseline Fourier transform

SNR Signal-to-noise ratio

SSB Solar system barycenter

TOBA TOrsion-Bar Antenna
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Chapter 1
Introduction

Gravitational-wave astronomy

One hundred years after Einstein predicted the existence of gravitational waves (GWs),

the first direct detection of GW was accomplished by the advanced Laser Interferometer

Gravitational-wave Observatory (LIGO) during its first observing run [1]. The observed

GW signal, GW150914, was emitted from two merging black holes (BHs) with masses

of 36M¯ and 29M¯ located at a distance of about 410 Mpc [2, 3]. Subsequently to the

discovery of GW150914, the LIGO and Virgo collaborations announced the second GW

observation, GW151226, that originated from a binary BH system composed of 14.2M¯

and 7.5M¯ BHs [4].

GW astronomy is expected to provide information much different from and complemen-

tary to conventional electromagnetic (EM) one. Since EM waves cannot penetrate dense

matter, EM observations enable us to obtain information only on the surface of observed

objects. Also, EM waves are vulnerable to absorption and scattering by gas and dust in

the interstellar medium during the propagation. In contrast, thanks to weakness of the

interaction, GWs can help us explore astronomical phenomena masked by dense matter

such as the interior of a supernova explosion, the center of a nebula surrounded by disks

of gas and dust, and the inside of a neutron star (NS). Thus, GW astronomy is often

referred to as a new window to the Universe [5].

Detectors

The first attempt to directly detect GWs was made by Joseph Weber from the early

1960s [6, 7]. He devised and developed a resonant-bar GW detector composed of a

cylinder-shaped aluminum bar with a radius of 1 m, which is called the Weber bar an-

tenna. The fundamental vibrational mode of the resonant bar is excited by an incident

GW at or near the resonance frequency of the bar. The GW signals are read out by

converting the vibrations of the bar into electric signals with a transducer as shown in

the left panel of Fig. 1.1.

After the pioneering work of Weber, concept of a laser interferometric GW detector

was devised and developed [8, 9]. GW signals are read out by measuring tiny distance

variations between a central beam splitter (BS) and two end test mass mirrors by means
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1 Introduction

of optical interference effects. As shown in the right panel of Fig. 1.1, an input laser beam

is split into two orthogonal beams by the BS, and after bouncing at the end mirrors the

two beams are recombined at the BS. Temporal change of difference in the arm lengths

due to the passage of a GW is measured by a photo-detector (PD) placed in the direction

away from the laser. A laser interferometer is a wide-frequency-band detector for GW

and is sensitive to GW at frequencies from tens to hundreds Hz as opposed to a resonant

bar antenna. At the present time, several large-scale laser interferometric GW detectors

have been constructed or are being constructed around the world, including the advanced

LIGO [10], advanced Virgo [11], KAGRA [12], and LIGO-India [13].

Vacuum chamber
Suspension wire

Transducer

Mirror

MirrorBS

Laser

PD

Figure 1.1: The layout of a Weber bar and a simple Michelson interferometer.

Continuous waves

Continuous waves (CWs) are long-lived nearly periodic GWs and are considered to

be one of the most interesting detectable targets for GW observations. Such CWs are

potentially produced from steadily rotating systems. A rapidly spinning NS is believed

to radiate a CW due to some non-axisymmetry around its spin-axis that is detectable

by the aforementioned advanced ground-based GW detectors. Also, orbiting binary sys-

tems composed of compact stars such as NSs and BHs long before coalescence produce

low-frequency CWs although they are inaccessible by the advanced ground-based GW

detectors due to seismic noise in low-frequency region.

CW search is generally divided into two classes: a targeted search and a wide-parameter-

space search. A targeted search aims to detect CW signals emitted from pulsars that have

been already discovered by EM observations. In advance of CW search, pulsar parameters

such as the sky position, the spin frequency, and the spin-down rates are already measured

electromagnetically. In this case, there are no search parameters and we can perform the

most optimal search method. For the Crab and Vela pulsars, previous searches conducted

by the initial LIGO and Virgo have surpassed the upper limits on GW strain amplitudes

inferred from energy conservation law, so-called the spin-down limits [14]. The advanced

GW detectors are expected to beat the spin-down limits for several tens more known

pulsars.
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1 Introduction

In contrast, a wide-parameter-space search aims to detect CW sources undiscovered

in previous EM searches. So far, about 2,500 radio pulsars have been discovered by

EM observations within our galaxy even though these are only a tiny fraction of all the

expected pulsars [15]. In fact, the number of electromagnetically undiscovered pulsars

within 5 kpc is estimated to be of the order of 106−7 inferred from the birth rate, part

of which are expected to have spin-frequencies within the sensitive frequency band of the

current GW detectors [16]. Since source parameters are not known completely, exploring

a wide-parameter-space in a brute-force manner is required to extract unknown weak

CW signals buried in noisy data, which results in a computationally intractable number

of signal templates. Hence, we have to perform sub-optimal search method at the cost

of reduced sensitivity. In addition to heavy computational cost, a wide-parameter-space

search entails another problem. Sharp spectral noise lines often appear in detector noise

and mimic CW signals. Lines would bring about a high-false alarm rate and degrade

detection sensitivity. Vetoing unpredictable lines is also one of the central problems in

unknown CW search.

Outline of this thesis

This thesis is organized as follows. Chapter 2 briefly reviews CW sources and data

analysis methods to extract CW signals submerged in detector noise that will be employed

in the next three chapters. In Chapter 3, we focus on a torsion-bar antenna (TOBA) that

is a recently proposed terrestrial low-frequency detector. TOBA enables us to explore low-

frequency GWs inaccessible by the ground-based laser interferometers because of seismic

noise. We give an overview of our paper [17] regarding a multi-output TOBA including

short updates. Subsequently, we report the results of all-sky search for low-frequency CWs

with a newly developed TOBA based on [18]. In Chapter 4, we turn to the first Japanese

km-scale interferometric GW detector, KAGRA. We carry out a targeted CW search

using data from iKAGRA test run and validate the search pipeline we have developed. In

Chapter 5, we propose a new veto method for a wide-parameter-space search to deal with

line noise problems based on [19]. The main feature of our veto method is applicability to a

single-detector case and multiple lines appearing in two or more segments. We investigate

performance of our veto method using an actual data set from the initial LIGO. Finally,

Chapter 6 is devoted to conclusion.
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Chapter 2
Basics of CW search method

2.1 CW sources

2.1.1 Pulsar

CW is GW whose amplitude and frequency are nearly constant during observations. A

CW is expected to be one of the most detectable interesting targets for GW detections.

For ground-based GW detectors sensitive to frequencies between 10 Hz and 2,000 Hz, a

main source of CW is a rapidly rotating NS that produces GW due to its non-axisymmetry

around its spin axis. There exist various generation mechanisms of CWs: the non-

axisymmetric crust of a NS, the non-axisymmetric instabilities inside the NS such as

r-mode instability, and the free precession of the NS itself. Because the relation between

a spin frequency and a GW frequency depends on its generation mechanism, an origin of

a CW from a NS that is already discovered by EM observations can be identified.

A pulsar is considered to be a rotating NS born from a core collapse supernova explosion

after the gravitational collapse of a massive star. A typical radius and mass of a NS

are 10 km and 1.4M¯, respectively, so that its mass density is roughly estimated to

be 6.7 × 1014 g/cm3 assuming uniform density profile, which is comparable to normal

nuclear density. Pulsars produce radio emissions at the expense of their rotational kinetic

energies. As a result, in addition to the observed spin frequencies, time evolutions of the

spin frequencies, namely spin-down rates, are also observed. Figure 2.1 depicts about 2,500

currently known pulsars on a f -ḟ diagram that gives plenty information about the pulsar’s

properties such as magnetic field strengths and pulsar ages. Roughly speaking, pulsars

reside in two islands on this diagram. Pulsars occupying the region around f = 2 Hz

are often referred to as normal pulsars, whereas pulsars around f = 200 Hz are called

millisecond pulsars. Assuming that all the loss of the rotational energy is due to the

magnetic dipole radiations, the strength of B-field and pulsar age can be inferred from

B ∝
√

PṖ and τ ∝ P/Ṗ , respectively1. These indicate that normal pulsars have weaker

B-field and older ages than millisecond pulsars do. An additional important difference

between normal and millisecond pulsars is whether or not they form binaries. While

1 The pulsar age and the strength of the dipole magnetic field at the pole on the NS surface are
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2 Basics of CW search method

normal pulsars are likely to be solitary, most millisecond pulsars form binary systems as

shown in Fig. 2.1.
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Figure 2.1: Left: f -ḟ diagram for pulsars. The red dots represent isolated pulsars and
the blue ones represent pulsars in binary systems. Pulsars populate at around f = 2 Hz
are classed as normal pulsars, whereas pulsars at around f = 200 Hz are classed as
millisecond pulsars. Right: Histograms for the numbers of all pulsars and isolated pulsars
as a function of frequency. Pulsars with lower spin frequencies are likely to be solitary.
These data are taken from the Australia Telescope National Facility (ATNF) catalogue
[15].

2.1.2 CW sources

Let us consider a rapidly rotating NS to be modeled as a rotating triaxial ellipsoid of a

rigid body. If the NS has axisymmetry around its spin axis, no GWs are emitted from it.

In contrast, if there exists some non-axisymmetry, this leads to the production of GWs. It

mainly originates from non-axisymmetric distortions on the NS surface, non-axisymmetric

instabilities inside the NS such as r-mode instability, and free precession of the NS itself.

Generally, a non-axisymmetry of the NS around its spin axis is characterized by a single

parameter ε called ellipticity, which is related to the NS’s principal moment of inertia by

ε =
Ixx − Iyy

Izz

, (2.3)

estimated to be [20]

τ =
P

2Ṗ
' 15.8 Myr

(
P

1 s

)(
Ṗ

10−15

)
, (2.1)

B =

(
3Ic3PṖ

8π2R6

)1/2

' 3.2 × 1012 G
(

P

1 s

)1/2
(

Ṗ

10−15

)1/2

, (2.2)

respectively, where we assume that the NS’s spin-down is caused by the dipole radiation and the spin
period at the birth is much shorter than the present value. The radius and the moment are assumed to
be R = 10 km and I = 1038 kg m2, respectively.
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2 Basics of CW search method

where the z-axis is assumed to align with the spin axis. The parameter ε has information

on to what extent NS is distorted around its spin axis. The case of Ixx = Iyy = Izz

corresponds to a spherically symmetric NS. In the case of Ixx 6= Iyy, namely a non-

axisymmetric NS, GWs are generated from the NS. In the following, we give a brief

review of bumpy NSs, freely precessing NSs, and accreting NSs.

Bumpy NS

A NS is considered to be born as a result of a catastrophic supernova explosion, which

would bring some deformation to the NS. Although such a deformation relaxes gradually

over time, the NS’s crust can sustain the non-axisymmetric deformation at a critical level

ubreak, which is called the breaking strain. Owing to the high density of the NS, the outer

crust is considered to form a body-centered cubic Coulomb lattice composed of iron 56Fe

nucleus [21]. Non-axisymmetric distortions can be supported by the electrostatic force,

or the Coulomb force. The maximum value of ellipticity is roughly estimated to be [22]

εmax ' bubreak ∼ 10−6
(ubreak

0.1

) (
∆R

1 km

)(
R

10 km

)3 (
1.4M¯

M

)2

, (2.4)

where M , R, and ∆R denote the NS’s mass, the NS’s radius, and the thickness of the

crust, respectively. Roughly speaking, the rigidity parameter b is the ratio of the crustal

electrostatic binding energy EC to the gravitational binding energy EG
2. Because EC ∼

µVcrust ∼ 4πµR2∆R and EG ∼ GM2/R, the rigidity parameter b scales as in Eq. (2.4),

where Vcrust is the volume of the crust, and µ is called the mean shear modulus whose

typical value is 1029 J/m3. Thus, the smallness of b ∼ 10−5 is due to the fact that the

electromagnetic energy stored in the crust is much smaller than the gravitational one in the

NS [25]. Whereas the rigidity parameter is relatively well-understood, the breaking strain

ubreak is highly uncertain, beyond which the crust will crack. The maximum possible

value of ubreak in the NS curst is estimated to be around 0.1 by molecular dynamics

simulations in [26]. It is widely believed that NSs are composed of a solid crust and a

fluid core. On the other hand, some exotic alternatives to conventional NSs that contain

solid cores have been proposed. If this is the case, allowable maximum deformation could

2 This is because the shape of a NS is determined such that the total energy of the NS is minimized.
According to [23, 24], NS’s total energy is written as a function of ε:

E (ε) = E0 +
J2

2I0 (1 + ε)
+ Aε2 + B (ε − ε0)

2
, (2.5)

where E0, I0 are the energy and the moment of inertia in a non-rotating spherical case and J is the total
angular momentum. The last two terms are related to the gravitational binding energy and the strain
energy stored in the crust, respectively. Setting ∂E (ε) /∂ε to be zero leads to ε = εΩ + bε0, where εΩ ≡
J2/ [4 (A + B) I0] ' I0Ω2/4A is a deformation caused by centrifugal force and b ≡ A/ (A + B) ' A/B
denotes the rigidity parameter.
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2 Basics of CW search method

be much larger than indicated by Eq. (2.4) (e.g. εmax ∼ 4 × 10−4 (ubreak/10−2) for solid

strange-quark stars [27] and εmax ∼ 10−3 (ubreak/10−2) for NSs with crystalline color-

superconducting core [28]). Hence, the maximum possible value of ellipticity depends on

the crustal structure and the core equation-of-state. Future prospects for what upcoming

GW detectors will tell us about NS’s equations-of-state from known pulsar searches are

discussed in [29].

Also, strong magnetic field that is misaligned with the spin-axis can sustain the NS’s

deformation and distorts the NS in a non-axisymmetric manner. When a NS is modeled as

a uniform-density star composed only of non-superconducting component, the magnitude

of a magnetic distortion can be roughly estimated by a back-of-the-envelope formula [30]:

εB ' EB

EG

∼ 3 × 10−13

(
B

1012 G

)2 (
1.4M¯

M

)2 (
R

10 km

)4

, (2.6)

where EG ∼ GM2/R is the gravitational binding energy and EB ∼ B2R3 is the magnetic

energy stored within the NS. Figure 2.1 indicates the estimated magnetic field strength

ranges between 109 and 1012 Gauss under the assumption that NS’s spin-down is at-

tributed to magnetic dipole radiation. So, magnetic distortion is not large enough to

produce detectable GW signals as is evident from Eq. (2.6). On the other hand, if a

NS consists of a type-I superconducting core, the strength of GW signals is estimated

to be much stronger [31]. Since magnetic field lines cannot penetrate through the type-I

superconducting core, the magnetic field is confined to the crustal region composed of the

normal component (see Fig. 5 in [31]), in which case the internal magnetic fields would be

much larger than the external magnetic fields. The resulting magnetic ellipticity would

be much larger than indicated by Eq. (2.6). Because the internal structure of a NS has

yet to be well-understood and also because magnetic deformation depends on the interior

magnetic field structure and the core equation-of-state, to what extent the magnetic field

distorts the NS is yet unclear. Hence, observation of a GW signal would give a hint to

the NS physics.

Freely precessing NS

CW observations usually assume a pulsar model whose spin axis aligns with its principal

axis, in which case a CW is monochromatic at twice the spin frequency. However, if there

exists the misalignment between both axes, the NS is expected to freely precess and emit

GWs at once and twice the spin frequencies [32]3. Cutler and Jones [33] considered the

effect of GW back-reaction on NS’s precessing motion and showed that a damping time

of the wobble angle due to GW radiation is much longer than previously thought [34].

3 Strictly speaking, frequencies of a CW from a precessing NS are frot + fprec and 2frot, where frot

and fprec denote the spin frequency and the precession frequency, respectively.
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However, the subsequent work proved that freely precessing NSs are not appropriate CW

sources [35]. When a NS is more realistically modeled as a thin elastic crust containing

a superfluid core in place of a rigid body [36], internal dissipation arising from a mutual

friction between the crust and the superfluid core tends to damp the wobble angle much

more rapidly compared with the GW back-reaction. On the other hand, observational

evidence for freely precessing NSs was reported in the studies of PSR B1828–11 [37] and

PSR B1642–03 [38]4. Cutler [39] examined wobbling motion of a NS caused by internal

strong toroidal magnetic fields. Because the toroidal B fields act on the NS like a rubber

belt and tighten the NS’s waist, the NS would be distorted into a prolate shape. Since

such a NS would be unstable, the wobble angle is expected to grow up until the angular

momentum axis becomes orthogonal to the magnetic axis. Recently, phase modulations in

pulsations of the Magnetars 1E 1547.0－ 5408 and 4U 0142+61 in the Suzaku X-ray data

were reported by Makishima et al. [40, 41]. They interpreted that the phase modulations

can be traced to free precessions of the magnetars caused by strong toroidal B fields. Jones

[42] proposed the possibility that a NS containing a pinned superfluid core would emit

GWs at once and twice the spin frequency even if there is no electromagnetic signature

of free precession. Motivated by these observations and the theoretical proposal, Ono,

Eda, and Itoh [43, 44] investigated the possibility of estimating the mass of an isolated

NS using two-component CWs. They estimated the measurement accuracy of NS mass

using Monte Carlo simulations and found that the mass of the NS with its spin frequency

500 Hz and its ellipticity 10−6 at 1 kpc is typically measurable with an accuracy of 20%

using the Einstein Telescope. Although a two-component model for a CW signal is still

controversial as discussed above, a detection of a CW from a known pulsar would elucidate

the existence of a freely precessing NS or a NS containing a pinned superfluid core.

Low mass X-ray binaries

Low mass X-ray binary (LMXB) composed of a NS and a low-mass companion being on

the main sequence is considered to be one of the most attractive targets for CW search.

In this system, gas and dust are stripped from the companion star and accrete on the NS

surface. The gravitational potential energy of the accreted matter on the surface of the

NS is converted into the energy source of the X-ray emission of the LMXB. The resulting

X-ray flux observed at the Earth is roughly estimated to be FX ∼ GMṀ/4πRd2, where

the accretion rate, the distance to the NS, and the radius of the NS are denoted by Ṁ ,

d, and R, respectively. Meanwhile, the NS would rotate more rapidly by gaining torque

exerted by the matter accretion, Nacc ∼ Ṁ
√

GMR. Such a NS’s spin-up is expected

to last until the spin frequency reaches a break-up frequency of the order of 1.5 kHz

4 The wobble angles are estimated to be θ ' 3 degrees for PSR B1828–11 and θ ' 0.8 degrees for
PSR B1642–03 [37, 38].
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2 Basics of CW search method

beyond which the NS would be broken by the centrifugal force. However, the maximum

spin frequency estimated by EM observations falls much below the break-up frequency

contrary to the naive expectation [45]. These observational results indicate the existence

of a suppression mechanism that prevents a NS from spin-ups. Bildsten [46] suggested

the mechanism stems from gravitational-radiation loss. If this is the case, the angular

momentum carried by mass accretion is expected to be in a state of equilibrium with

gravitational-radiation loss5. Consequently, the GW amplitude h0 can be related to the

observed X-ray flux FX by

h0 =

(
5

3

FXGR3

Mfrot

)1/2

= 5.5 × 10−27

(
FX

F−8

)1/2 (
R

10 km

)(
1.4 M¯

M

)1/4 (
300 Hz

frot

)1/2

, (2.9)

where F−8 ≡ 10−8 erg cm−2 s−1 [47]. As Eq. (2.9) indicates, Sco X-1 [48] that is the

brightest stellar X-ray source in the sky is considered to potentially emit strong CW.

So far, GW from Sco-X1 has been investigated by the initial LIGO data [49, 50]. Data

analysis methods focusing on Sco X-1 were investigated by several authors including

Sideband method [47], TwoSpect method [51], Cross-Correlation method [52], and Stacked

F -statistic method based on Einstein@Home [53]. These search methods were compared

with each other via a mock-data challenge in [54].

2.2 CW signal model

2.2.1 General form of CW waveform

CW waveform

Generally, CW waveform from a rapidly rotating NS can be characterized by the two

independent polarization modes of hµν as

h+ (τ) = A+ cos Φ (τ) , h× (τ) = A× sin Φ (τ) , (2.10)

5 The torque exerted by the gravitational-radiation loss can be expressed by

NGW =
32G (εIzz)

2
ω5

rot

5c5
. (2.7)

The GW amplitude h0 is related to the GW torque Ngw by

h2
0 =

5G

8c3d2ω2
rot

Ngw. (2.8)

10



2 Basics of CW search method

where Φ (τ) is the GW phase observed at the Solar-system barycenter (SSB). The ampli-

tudes A+,× correspond to the two polarization modes and are defined as

A+ =
1

2
h0

(
1 + cos2 ι

)
, A× = h0 cos ι, (2.11a)

h0 =
4π2G

c4d
εIzzf

2
gw, (2.11b)

where h0 and ι denote the overall amplitude and the inclination angle that is defined as

the angle between the line-of-sight and the spin axis of the NS, respectively [55]. The

parameters c, d,G and fgw represent the speed of light, the distance to the source, the

gravitational constant, and the GW frequency, respectively. Equation (2.11b) indicates

that a more rapidly rotating NS with larger ε produces a stronger CW signal.

CW signal

CW signals are written as a linear sum of h+ and h×,

s (t;A, λ) =
∑

A=+,×

FAhA

= F+ (t; n̂, ψ) A+ cos Φ (t; λ) + F× (t; n̂, ψ) A× sin Φ (t; λ) , (2.12)

where the coefficients F+,× are called the antenna pattern functions that depends on both

the position and direction of the detector with respect to the source. The parameters

A and λ are the collections of the amplitude parameters A = {A+, A×, ψ, φ0} and the

Doppler parameters λ = {n̂, f, ḟ , · · · }, respectively. The sky position of the source is

specified by the unit vector n̂ ≡ (cos δ cos α, cos δ sin α, sin δ), where α and δ are called

the right ascension and the declination, respectively. The antenna pattern functions F+,×

represent the response of the detector to incident GWs and are expressed by

F+ (t; n̂, ψ) = sin ζ [a (t; n̂) cos 2ψ + b (t; n̂) sin 2ψ] , (2.13a)

F× (t; n̂, ψ) = sin ζ [b (t; n̂) cos 2ψ − a (t; n̂) sin 2ψ] , (2.13b)

where ζ is the angle between two arms of the detector, ψ is the polarization angle, and two

time-dependent functions a (t) and b (t) are often referred to as the modulation amplitudes.

The concrete expressions for the modulation amplitudes are given in Appendix C. The

definitions of n̂ and ψ are illustrated in Fig. 2.2. As shown in Eqs. (2.12), (2.13a), and

(2.13b), the CW signal strength is proportional to sin ζ. This factor implies that compared

with a 90◦-interferometer, a signal-to-noise ratio (SNR) is reduced by a factor of
√

3/2 in

the case of a 60◦-interferometer such as the Laser Interferometer Space Antenna (LISA)

and the Einstein Telescope because the SNR scales as the CW amplitude as will be

11
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discussed later. In what follows, ζ is assumed to be π/2.

North pole

ẑ

Earth

Source

n̂

û
v̂

−n̂

Equatorial plane

direction

û

η̂

ξ̂

v̂

ψ

−n̂

η̂

ξ̂

Figure 2.2: Definition of n̂ and ψ. The unit vector n̂ is defined as the unit vector pointing
toward the source from the detector. It is convenient to introduce an orthogonal bases
{−n̂, ξ̂, η̂} and {−n̂, û, v̂}. The polarization phase ψ is defined as the angle from ξ̂ to û.
Concrete expressions for these orthonomal bases are shown in the footnote7.

GW phase

Instantaneous signal frequency received at the SSB is defined as 2πf (τ) ≡ dΦ (τ) /dτ .

Assuming that the SSB and the source are at rest with respect to each other, the sig-

nal frequency varies slowly due to NS’s spin-down or spin-up. Thus, the phase can be

expanded in a Taylor series about the reference time τref as

Φ (τ) ≡ φ0 + φ (τ) , (2.16a)

φ (τ) = 2π
s∑

k=0

f (k) (τref)

(k + 1)!
∆τ k+1, (2.16b)

where φ0 ≡ Φ (τref) and ∆τ ≡ τ − τref. The parameter τ is the time that the wavefront

arrives at the SSB. The time t at which the same wavefront is observed at the detector is

7 In the equatorial coordinate system, an orthogonal basis {−n̂, ξ̂, η̂} is expressed as

n̂ ≡ (cos δ cos α, cos δ sinα, sin δ) , (2.14a)

ξ̂ ≡ n̂ × ẑ

|n̂ × ẑ|
= (sin α,− cos α, 0) , (2.14b)

η̂ ≡ ξ̂ × n̂ = (− sin δ cos α,− sin δ sinα, cos δ) , (2.14c)

where the unit vector ẑ = (0, 0, 1) is assumed to align with the North pole of the Earth. The unit vectors
û and v̂ are

û = ξ̂ cos ψ + η̂ sinψ, v̂ = −ξ̂ sinψ + η̂ cos ψ, (2.15)

where the polarizaton phase is defined as sin ψ ≡ û · η̂ and cos ψ ≡ û · ξ̂.

12



2 Basics of CW search method

related to the SSB time τ by

τ = t +
r (t) · n̂

c
− d

c
+ ∆rel¯, (2.17)

where r · n/c is the Römer time delay8, d/c is the propagation time from the source to

the SSB, and ∆rel¯ is the relativistic time delay caused by the Shapiro time delay9 and

the Einstein time delay10. Since d/c is treated as a constant in the case of isolated NSs,

this term are neglected in the following for simplicity. In practice, the phase part can be

modeled as

φ (τ) = 2π∆τ

[
f (τref) +

1

2
ḟ (τref) ∆τ

]
. (2.21)

Taking the time derivative of φ (τ), the instantaneous signal frequency received at the

SSB is expressed up to the second order of the spin-down effects as

f (t) = f̂ (t)

(
1 +

v (t) · n̂
c

)
, (2.22a)

f̂ (t) ' f (τref) + ḟ (τref) (t − τref) , (2.22b)

where f̂ (t) denotes the intrinsic frequency that varies with time only due to the NS’s spin-

up and spin-down effects. When performing a CW search, the relativistic corrections and

the higher order derivatives of the spin-frequency are taken into account in this thesis11.

8 The detector motion is decomposed into the orbital motion around the Sun and the rotational motion
around its spin axis as r (t) = rorb (t) + rspin (t). So, the Römer time delay is estimated by∣∣∣∣r (t) · n

c

∣∣∣∣ ≤ |rorb (t) · n|
c

+
|rspin (t) · n|

c
≤ RES

c
+

RE

c
' 5.0 × 102 sec, (2.18)

where RES and RE denote the distance from the Earth and the Sun and the Earth radius, respectively.
9 The Shapiro time delay originates from the curvature created by the gravitational potential of the

Solar system. A GW takes a slightly longer time to reach a detector than it would in the flat space. The
maximum value of the Shapiro time delay is roughly estimated to be

∆S¯ ≤ 2GM¯

c3
ln

1 + cos θ2

1 + cos θ1
' 1.2 × 10−4 sec, (2.19)

where θ1 = π − ξ, θ2 = ξ, and ξ = arctan (R¯/RES).
10 The Einstein time delay is the effect of the gravitational redshift caused by the Solar system and is

approximately evaluated by

d∆E¯

dt
=

1
c2

[
GM¯

r
+

1
2
v2
⊕

]
. (2.20)

11 If some effect contributes to the accumulation of the GW phase over the total observation time less
than 1/4 of a cycle, neglecting this effect leads to a reduction of SNR by not more than 10%. This is
known as 1/4 of a cycle criterion (see Appendix A in [56] for more details).
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2.2.2 JKS factorization

Combining Eqs. (2.12), (2.13a), (2.13b), and (2.16a), CW signal measured at a detector

is factorized as

s (t;A,λ) =
4∑

µ=1

Aµhµ (t; λ) , (2.23)

where Aµs are often referred to as amplitude parameters [57]. They represent the strength

of the CW signal and are defined as

A1 ≡ A+ cos φ0 cos 2ψ − A× sin φ0 sin 2ψ, (2.24a)

A2 ≡ A+ cos φ0 sin 2ψ + A× sin φ0 cos 2ψ, (2.24b)

A3 ≡ −A+ sin φ0 cos 2ψ − A× cos φ0 sin 2ψ, (2.24c)

A4 ≡ −A+ sin φ0 sin 2ψ + A× cos φ0 cos 2ψ. (2.24d)

The four time-dependent parts hµs in Eq. (2.23) characterize the shape of the CW signal

and depend on the modulation amplitudes a (t) and b (t). These four basis waveforms hµs

are expressed as

h1 (t; λ) ≡ a (t; n̂) cos φ (t; λ) , h2 (t; λ) ≡ b (t; n̂) cos φ (t; λ) , (2.25a)

h3 (t; λ) ≡ a (t; n̂) sin φ (t; λ) , h4 (t; λ) ≡ b (t; n̂) sin φ (t; λ) . (2.25b)

It should be noted that dependencies on the amplitude parameters and the Doppler

parameters are completely separated from each other in Eq. (2.23).

2.3 F-statistic

2.3.1 CW signal buried in detector noise

Let us consider GW observation by a network of Ndet detectors. The collection of multi-

detector output data is denoted by x (t) =
(
x1 (t) , · · · , xN (t)

)
, where xX (t) stands for

the output of the X-th detector. The output data can be written as the linear sum of

detector noise and a CW signal with parameters A and λ by

x (t) = n (t) + s (t;A,λ) , (2.26a)

s (t;A, λ) = Aµhµ (t; λ) , (2.26b)
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where the Einstein summation rule is adopted in Eq. (2.26b). Assuming stationarities of

detector noises in a detector network, an autocorrelation function κXY between nX and

nY is related to the one-sided power spectral density SXY (f) by virtue of the Wiener-

Khinchin theorem,

κXY (τ) = 〈nX (t + τ) nY (t)〉, (2.27a)

SXY (f) = 2

∫ ∞

−∞
κXY (τ) e−2πifτ . (2.27b)

In Fourier space, these equations can be reduced to an ensemble average between the

different Fourier components of noises as

〈ñX (f) ñY ∗ (f ′)〉 =
1

2
δ (f − f ′) SXY (f) . (2.28)

It is convenient to introduce noise-weighted inner product between two time-dependent

functions x (t) and y (t) as

(x|y) = 4Re

∫ ∞

0

x̃X (f) S−1
XY (f) ỹY ∗ (f) df, (2.29)

where S−1
XY represents the inverse matrix and satisfies S−1

XY SY Z = δXZ .

2.3.2 F-statistic

Definition of the F-statistic

When the detector noise is stationary and Gaussian, its probability distribution function

(PDF) obeys p (n) ∝ exp [− (n|n) /2] as is verified in Appendix A. From a standpoint

of the Frequentist, the most optimal detection statistic to discriminate whether or not a

CW signal exists in observation data x is achieved by a likelihood ratio Λ (x; s) according

to the Neyman-Pearson lemma12, which is defined as

ln Λ (x; s) ≡ ln
P (x|s)

P (x|0)
= (x|s) − 1

2
(s|s) . (2.30)

Substituting Eq. (2.26b) into Eq. (2.30) gives rise to

ln Λ (x;A, λ) = Aµxµ − 1

2
AµMµνAν , (2.31a)

xµ (λ) ≡ (x|hµ) , Mµν (λ) ≡ (hµ|hν) . (2.31b)

12 Optimal strategy for sinusoidal signals buried in noisy data is discussed by the use of the Neyman-
Pearson criteria in [58].
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The F -statistic13 is defined as the maximization of ln Λ (x;A, λ) over the amplitude pa-

rameters Aµ,

2F (x; λ) ≡ max
Aµ

[2 ln Λ (x;A, λ)] = xµMµνxν , (2.32)

14 where Mµν denotes the inverse matrix of Mµν , namely Mµν ≡ {M−1}µν
. In this

process, the amplitude parameters are projected out and only the Doppler parameters λ

are to be searched over.

Concrete expression for the F-statistic

In an actual data set, detector noises in a detector network are not stationary and

different from each other. To handle the non-stationarities, time series data are broken

up into shorter time segments called SFT segments. The time baseline of SFTs, TSFT, is

chosen such that the noise level in the α-th SFT and the X-th detector, SX,α (f), can be

regarded as stationary. It is convenient to introduce the following notations.

〈f〉t ≡
1

TSFT

∫ TSFT/2

−TSFT/2

f (t) dt, (2.34a)

〈Q〉w ≡ 1

NSFT

∑
X,α

wX,α〈QX,α〉t, (2.34b)

wX,α ≡
S−1

X,α

S−1
, (2.34c)

where S−1 ≡
∑

X,α S−1
X,α. By definition,

∑
X,α wX,α = NSFT is satisfied. The symbols

〈· · · 〉t, 〈· · · 〉w, and wX,α denote the time average over a single SFT, the total noise-weighted

average, and the noise weights. Assuming each detector noise is independent of each other,

S−1
XY = S−1

X δXY is satisfies. The noise weighted inner product shown in Eq. (2.29) can be

13 The F-statistic was first introduced by Jaranowski, Królak, and Schutz in [57] (well known as
JKS98). The F-statistic is generalized to the case of multi-detector network and multiple pulsars by
Cutler and Schutz in [59]. Jaranowski and Królak proposed the G-statistic in [60]. They considered the
case where there are two unknown parameters, over-all amplitude and initial phase, whereas polarization
phase and inclination are already measured by X-ray observations as in the case of the Vela pulsar. The
G-statistic is derived from the maximum-likelihood method in a similar way to the F-statistic.

14 Completing the square of the log-likelihood ratio is

2 lnΛ (x;A, λ) = − (Aµ − xρMρµ)Mµν (Aν −Mνσxσ) + xµMµνxν . (2.33)

So, lnΛ takes the maximum value at Âµ = Mµνxν that are called the maximum likelihood estimators.
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approximated as15

(x|y) ' 2Tobs

S
〈xy〉w (2.36)

where a narrow-band approximation around f = f0 ≡ f (τref) is used because a spin

frequency is regarded as a nearly constant during an observation. Using Eq. (2.36), Mµν

in Eq. (2.31b) is expressed as16

Mµν ' 1

2


A C 0 0

C B 0 0

0 0 A C

0 0 C B

 , Mµν ' 2

D


B −C 0 0

−C A 0 0

0 0 B −C

0 0 −C A

 , (2.38)

where A,B,C,D are defined as

A ≡ (a|a) , B ≡ (b|b) , C ≡ (a|b) , D ≡ AB − C2. (2.39)

Combining Eqs. (2.32), (2.38), and (2.39) brings the F -statistic to the following form:

F =
B

D

(
x2

1 + x2
3

)
+

A

D

(
x2

2 + x2
4

)
− 2C

D
(x1x2 + x3x4) . (2.40)

15 Using the narrow-band approximation and the independence of the detector noise, (x|y) is approx-
imated as

(x|y) '
∑
X

4S−1
X (f0)Re

∫ ∞

0

x̃X (f) ỹX∗ (f) df '
∑
X

2S−1
X (f0)

∫ Tobs/2

−Tobs/2

xX (t) yX (t) dt

'
∑
X,α

2S−1
X,α (f0)

∫ TSFT/2

−TSFT/2

xX,α (t) yX,α (t) dt =
∑
X,α

2TSFTS−1
X,α〈x

X,αyX,α〉t

= 2NSFTTSFTS−1
∑
X,α

1
NSFT

wX,α〈xX,αyX,α〉 =
2Tobs

S
〈xy〉w, (2.35)

where Tobs = NSFTTSFT was used. In the first line, the Parseval’s theorem was employed to convert the
integration in the frequency domain to the time domain. In the second line, xX,α (t) = xX (tX,α + t) is
used, where tX,α denotes the centering time of the α-th SFT in the X-th detector.

16 Temporal changes in modulation amplitudes are caused by the Earth’s motion. So, a (t) and b (t)
varies much more slowly with time than the phase φ (t) varying on the time scale of 1/f0. This fact leads
to the following approximations.

(h1|h3) ' (h1|h4) ' (h2|h3) ' (h2|h4) ' 0, (2.37a)

(h1|h1) ' (h3|h3) '
1
2

(a|a) ≡ 1
2
A, (2.37b)

(h2|h2) ' (h4|h4) '
1
2

(b|b) ≡ 1
2
B, (2.37c)

(h1|h2) ' (h3|h4) '
1
2

(a|b) ≡ 1
2
C, (2.37d)

where the observation time Tobs is assumed to be much longer than 1/f0.
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PDF of F-statistic

Completing the square of the F -statistic in Eq. (2.40) leads to the form of the sum of the

squares of four Gaussian random variables. In fact, there exists a linear transformation

L such that17

xi ≡ Lijzj, (2.42a)

2F = z2
1 + z2

2 + z2
3 + z2

4 . (2.42b)

Since zi can be obtained by the linear transformation of xi obeying the Gaussian distri-

bution, new variables zi also obey the Gaussian distribution. Therefore, 2F is distributed

according to a non-central chi-squared distribution with four degrees of freedom (see Ap-

pendix B for more details).

2.4 Targeted search

A targeted search aims to search for a CW signal from an already discovered pulsar .

The pulsar parameters such as the sky position, the spin frequency, and the spin-down

rates are measured by EM observations. In other words, the Doppler parameters λ are

known whereas the amplitude parameters A are unknown. As shown in Eq. (2.40), an

F -statistic value is a function only of the Doppler parameters λ because the amplitude

parameters A are projected out in the process of the maximization of the log-likelihood

ratio. Thus, in a targeted search, there is no need to explore a wide-parameter-space.

2.4.1 Theoretically expected upper limits

Average SNR2

The output data x projected on the basis waveforms hµ is expressed by

xµ (A, λ) = nµ + sµ (A, λ) , (2.43a)

xµ ≡ (x|hµ) , nµ ≡ (n|hµ) , sµ ≡ (s|hµ) . (2.43b)

Assuming that detector noise obeys Gaussian distribution, the ensemble average of nµ

17 The concrete expression for L is

L ≡ 1
2

(
N O
O N

)
, N ≡


√

A +

√
A

B
C −

√
A −

√
A

B
C√

B +

√
B

A
C

√
B −

√
B

A
C

 , (2.41)

where A, B, and C are defined by Eq. (2.39).
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and nµnν are expressed as 〈nµ〉 = 0 and 〈nµnν〉 = Mµν , where 〈(n|hµ) (n|hν)〉 = (hµ|hν)

is used. Using these relations, the ensemble averages of xµ and xµxν are computed as

〈xµ〉 = sµ and 〈xµxν〉 = sµsν + Mµν . Thus, the expection value of the F -statistic for

perfectly matched signals can be expressed by

〈2F〉 = 4 + ρ2 (0) , (2.44a)

ρ2 (0) ≡ (s|s) , (2.44b)

where ρ (0) denotes the optimal SNR18. The argument of ρ (0) stands for the fact that

there is no signal-template mismatch, namely ∆λ = 0. Combining Eqs. (2.24a)–(2.24d),

and (2.38), the optimal SNR in Eq. (2.44b) is computed as

ρ2 (0) = AµMµνAν

=
1

2

[(
A2

1 + A2
3

)
A +

(
A2

2 + A2
4

)
B + 2 (A1A2 + A3A4) C

]
=

1

2
h2

0 (α1A + α2B + 2α3C)

= h2
0

Tobs

S
[
α1〈a2〉T + α2〈b2〉T + 2α3〈ab〉T

]
, (2.46)

where the coefficients α1, α2, and α3 are defined by

α1 ≡
1

4

(
1 + cos2 ι

)2
cos2 2ψ + cos2 ι sin2 2ψ, (2.47a)

α2 ≡
1

4

(
1 + cos2 ι

)2
sin2 2ψ + cos2 ι cos2 2ψ, (2.47b)

α3 ≡
1

4

(
1 − cos2 ι

)2
sin 2ψ cos 2ψ. (2.47c)

As is shown in Eq. (2.46), the SNR depends on h0, cos ι, ψ, α, δ, f0, ḟ , · · · , but is inde-

pendent of the initial phase φ0. In order to evaluate average SNR2, it is convenient to

introduce

〈Q〉α,δ,cos ι,ψ =

∫ 2π

0

dα

2π

∫ 1

−1

d (cos δ)

2

∫ 1

−1

d (cos ι)

2

∫ 2π

0

dψ

2π
Q (α, δ, cos ι, ψ) , (2.48)

where 〈Q〉α,δ,cos ι,ψ denotes the quantity Q averaged over the angular parameters {α, δ, cos ι, ψ}.
To put it another way, 〈Q〉α,δ,cos ι,ψ is the average of Q assuming isotropically distributed

18 The ensemble average of 2F is computed in the following way:

〈2F〉 = 〈xµMµνxν〉 = Mµν〈xµxν〉 = Mµν (sµsν + Mµν) = δµ
µ + sµMµνsν

= 4 + AαMµαMµνMνβAβ = 4 + AαMαβAβ = 4 + (s|s) = 4 + ρ2 (0) , (2.45)

where s = Aαhα and MµνMνλ = δµ
λ were used.
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pulsars over the sky with isotropically distributed orientations. Using Eqs. (2.46) and

(2.48), the root-mean-square (RMS) SNR is derived as19

√
〈ρ2 (0)〉α,δ,cos ι,ψ =

2

5
h0

√
Tobs

S
. (2.49)

The RMS SNR is characterized by h0

√
Tobs/S, which is called the statistical factor.

It should be noted that
√

〈ρ2 (0)〉α,δ,cos ι,ψ scales as T
1/2
obs in the case of coherent search,

whereas a SNR in incoherent search scales as T
1/4
obs N

−1/4
seg . If the sensitivities of the detectors

take the same value Sn at the frequency f0, S = Sn/Ndet holds. Therefore, since the RMS

SNR is proportional to S−1/2, the sensitivity of a multi-detector network is better than a

single detector by a factor of N
1/2
det .

Expected upper limits

As is discussed in the previous section, 2F in the absence of a CW signal follows a

chi-squared distribution with four degrees of freedom. The PDF of 2F with ρ2 = 0

is p (2F|ρ2 = 0) = Fe−F/2. In the presence of a CW signal, 2F obeys a non-central

chi-squared distribution displayed by Eqs. (3.30), (3.31a), and (3.31c). Setting F∗ to

be a threshold for detection, the false-alarm rate pFA (2F∗) and the false-dismissal rate

pFD (2F∗, ρ2) can be expressed as

pFA (2F∗) =

∫ ∞

2F∗
p
(
2F|ρ2 = 0

)
d (2F) = (1 + F∗) e−F∗

, (2.50a)

pFD

(
2F∗, ρ2

)
=

∫ 2F∗

0

p
(
2F|ρ2

)
d (2F) , (2.50b)

where pFA (2F∗) can be calculated analytically, whereas pFD (2F∗, ρ2) requires the numer-

ical integration (see Fig. 2.3). If a false-alarm rate is taken to be 1%, a detection threshold

is 2F∗ ' 13.3 via Eq. (2.50a). Setting a false-dismissal rate to be 10%, Eq. (2.50b) leads

to ρ ' 4.5. Assuming an isotropically distributed orientation of a pulsar, upper limits on

h0 in a targeted search is theoretically expected to be

〈h0〉pFD=10%
pFA=1% ' 11.4

√
S

Tobs

, (2.51)

where 90◦-interferometers are assumed20.

19 We made used of 〈
(
〈a2〉T + 〈b2〉T

)
〉α,δ = 2/5, 〈α1〉cos ι,ψ = 〈α2〉cos ι,ψ = 2/5, and 〈α3〉cos ι,ψ = 0.

20 Equation (2.51) holds true for a targeted search in which only a single template is used. An estimation
method for a statistical factor in wide-parameter-space searches without computationally cumbersome
Monte-Carlo simulations is found in [61].
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p (2F|HS)

p (2F|HG)

2F2F∗

pFD pFA

Figure 2.3: Shaded regions depict the areas formed by false-alarm rate and false-dismissal
rate. The hypotheses HG and HS are a Gaussian-noise hypothesis and a signal hypothesis,
respectively. The false-alarm rate is the probability that a measured value of the F -
statistic exceeds the threshold when the data is consistent with Gaussian noise. The
false-dismissal rate is the probability that a measured value of the F -statistic falls below
the threshold in spite of the presence of CW signals.

2.4.2 Setting an upper limit on h0

If the measured value of the F -statistic is not significant, we proceed to place an upper

limit on GW strain amplitude. Let h0 (C) be an upper limit with confidence level C on

the overall amplitude h0. The inverse of h0 (C)
(
≡ hC

0

)
can be expressed as

C (h0) =

∫ ∞

2Fobs

p
(
2F|hC

0

)
d (2F) , (2.52)

where p
(
2F|hC

0

)
denotes the PDF of the F -statistic in the presence of the signal whose

amplitude is h0. In terms of the false-dismissal rate, Eq. (2.52) can be written as

PFD = 1 − C =

∫ 2Fobs

0

p
(
2F|hC

0

)
d (2F) . (2.53)

The upper limit hC
0 with confidence level C can be obtained by solving Eq. (2.53) inversely.

However, the non-centrality parameter of the PDF p
(
2F|hC

0

)
depends on the unknown

waveform parameters, α, δ, cos ι and ψ. To deal with this problem, there are two ways

to determine the PDF, p
(
2F|hC

0

)
[62]. One is to suppose the most pessimistic situation

where the unknown parameters are fixed such that the SNRs take the lowest value. This

corresponds to setting the most conservative upper limits. The other is to assume the

uniform distributions of the unknown parameters. The PDF is obtained by injecting

artificial signals via Monte-Carlo simulations. Here, we employed the latter to estimate

the PDF, p
(
2F|hC

0

)
.
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2.4.3 Spin-down ratio

It is useful to introduce spin-down ratio in order to make it clear how far observed upper

limits on h0 are close to physically meaningful quantities. It is defined as the ratio of the

observed upper limit to the spin-down limit such as h95%
0 /hsd

0 . Let us consider the situation

where the loss of the rotational kinetic energy of a pulsar is in a state of equilibrium with

gravitational-radiation energy. Such a pulsar is often referred to as a gravitar [63]. Since

all the rotational energy are converted into the production of the GW, the equation of

energy conservation states that

dEgw

dt
= −dErot

dt
, (2.54)

where Egw and Erot represent the gravitational-radiation energy and the loss of the rota-

tional energy, respectively. Concrete expressions for Egw and Erot are given by

dErot

dt
= 4π2Izzfrotḟrot, , (2.55)

dEgw

dt
=

8π2

5

c3d2

G
f 2

roth
2
0. (2.56)

Combining Eqs. (2.54)–(2.56) yields

hsd
0 =

(
−5

2

GIzz

c3d2

ḟrot

frot

)1/2

= 8.06 × 10−19 I
1/2
38

dkpc

(
− ḟrot

frot

)1/2

, (2.57)

where I
1/2
38 = 1038 kg m2 and dkpc = 1 kpc. It should be noted that ḟrot takes a negative

value in general because the loss of the rotational energy brings spin-down to the pulsar21．

In practice, Eq. (2.54) does not hold in the case of isolated pulsars because measured

breaking index n of isolated pulsars is usually less than 5 (e.g. n ∼ 2.5 for the Crab

pulsar [65] and n ∼ 1.4 for the Vela pulsar [66])22. Setting upper limits whose spin-down

ratios are less than unity is an important milestone in the field of CW search [14]. So

far, the first generation GW detectors consisting of the initial LIGO, the initial Virgo,

21 A pulsar hosted in a globular cluster is likely to have an acceleration due to the gravitational
potential, which would lead to the pulsar’s apparent spin-up. The observed spin period Ṗobs is related to
the intrinsic spin period Ṗint by

Ṗobs = Ṗint +
a‖

c
, (2.58)

where a‖ denotes the pulsar’s acceleration along the line-of-sight [64]. In the case of a binary pulsar, mass
accretion from the companion brings the spin-up to the pulsar. Also, a pulsar glitch generally produces
an instantaneous spin-up [20].

22 Breaking index n is defined as ω̇rot ∝ −ωn
rot. In the case of n = 3 and 5, the loss of the rotational

energy is due to magnetic dipole radiation and gravitational quadrupole radiation, respectively [20].
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and the GEO600 have performed targeted searches for a total of 195 known pulsars

[62, 67, 64, 68, 69, 70, 14]. The spin-down limits for the Crab and the Vela pulsars

have already been beaten by the past searches (h95%
0 /hsd

0 = 0.11 for the Crab pulsar and

h95%
0 /hsd

0 = 0.13 for the Vela pulsar [14]).

2.4.4 Bayesian framework

In this section, a detection statistic is discussed in a Bayesian framework based on [71,

72]23. Let us consider a binary hypothesis testing problem such that we choose one out

of the following two hypotheses:

HG : x (t) = n (t) , (2.59a)

HS : x (t) = n (t) + s (t;A, λ) . (2.59b)

The Gaussian-noise hypothesis HG is a statement that data x comprises of only Gaussian

noise n, whereas the signal hypothesis HS is that data x includes a signal s in addition to

Gaussian noise n. In order to decide which hypothesis is likely to be correct, the posterior

odds ratio between HS and HG is employed, which is defined as

OS/G (x) ≡ P (HS|x)

P (HG|x)
=

P (HS)

P (HG)

P (x|HS)

P (x|HG)
= oS/GBS/G (x) . (2.60)

The posterior odds ratio can be computed by means of Bayes’ theorem, which results in the

prior odds ratio oS/G ≡ P (HS) /P (HG) and the Bayes factor BS/G ≡ P (x|HS) /P (x|HG).

Equation (2.23) indicates that the amplitude parameters A and the Doppler parame-

ters λ are independent of each other. In particular, in the case of a targeted search,

the Doppler parameters λ are known to be λsig a priori by EM observations. Thus,

P (A, λ|HS) = P (A|HS) P (λ|HS) = P (A|HS) δ (λ − λsig). Using this relation, the Bayes

factor can be computed as follows.

BS/G (x) =

∫
P (x|HS;A, λ)

P (x|HG)
P (A,λ|HS) d4Adλ

=

∫
Λ (x;A, λsig) P (A|HS) d4A

= c−1
∗ eF(x;–sig), (2.61)

23 Bayesian method of a targeted CW search is presented in [71]. In this paper, an end-to-end search
pipeline for known pulsars is constructed and the performance test for multi-detector network is performed
numerically. Prix and Krishnan discussed a targeted search in the Bayesian framework and introduced
the B-statistic [72]. They discovered the F-statistic as a special case of a Bayes factor on the assumption
of uniform priors in amplitude parameters Aµ. The B-statistic is defined as the Bayes factor with more
physical priors in unknown pulsar parameters. They showed that the B-statistic is more powerful than
the F-statistic in the sense of the Neyman-Pearson optimality via Monte-Carlo simulations.
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where Λ (x;A, λsig) is the likelihood ratio defined in Eq. (2.31a) and c∗ is a constant

depending on the priors in the amplitude parameters24. When integrating the likelihood

ratio over the amplitude parameters in (2.61), we made use of Eq. (2.33) and the formula

for a multidimensional Gaussian integral25. Combining Eqs. (2.65) and (2.61) yields

OS/G (x; λ) = oS/Gc−1
∗ eF(x;–). (2.65)

As discussed above, marginalization over the amplitude parameters A brings the Bayes

factor to the F -statistic on the assumption of the uniform priors in A. Since oS/G and c∗

are constants, the F -statistic is regarded as an optimal detection statistic26.

2.5 Wide-parameter-space searches

Thus far, about 2,500 radio pulsars have been discovered by EM observations within

our galaxy even though these is only a tiny fraction of all the pulsars [15]. This is

because pulsars are very weak radio sources and also because the direction of a beam

from a pulsar needs to cross our line-of-sight for EM detection. In fact, the number of

electromagnetically undiscovered pulsars within 5 kpc is estimated to be of the order

of 106−7 from the birth rate apart from the detectability by ground-based GW detectors

[16]. However, a wide-parameter-space search is required to explore unknown CW sources,

which entails a labor-intensive search method because the source parameters are unknown

completely in advance of observation.

Search methods for GWs are usually based on a matched filtering technique in which

24 Let the priors in the amplitude parameters obey uniform distributions:

P (A|HS) =

{
C h0 (A) < hmax.

0 otherwise,
(2.62)

where hmax is introduced as a cut-off parameter to compute the normalization factor C. Using d4A =
(1/4) h3

0

(
1 − cos2 ι

)3
dh0d cos ιdψdφ0, the priors can be normalized as

1 =
∫

P (Aµ|HS) d4A =
(2π)2

70
Ch4

max. (2.63)

The constant c−1
∗ is related to C by c−1

∗ = (2π)2 C/
√

detM.
25 For an n-dimensional real vector x, an n-dimenstional real vector J , and an n × n real symmetric

matrix M , ∫
dnx exp

[
−1

2
xT Mx + xT J

]
=

√
(2π)n

detM
exp

[
1
2
JT M−1J

]
, (2.64)

where det M denotes the determinant of M .
26 Since the constant c∗ depends on directions of CW sources through detM, this factor cannot be

neglected in a blind search.
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a likelihood function is maximized over unknown parameters in a brute-force way. In

the case of CW searches, parameters to be searched over are the Doppler parameters

λ = {α, δ, f, ḟ , · · · }. Thus, there are a large number of signal templates that far exceeds

computational resources available to us, as opposed to targeted searches. Each template

corresponds to each grid point in waveform-parameter-space. Because of the use of a

discrete mesh spanned on the parameter space, search parameters are never perfectly

matched with the signal parameters, which leads to the loss of the SNR. Thus, templates

are required to be placed densely enough to avoid missing CW signals. Template place-

ment is often carried out by using a signal-template mismatch that is a fractional loss of

a SNR,

M ≡ ρ2 (0) − ρ2 (∆λ)

ρ2 (0)
, (2.66)

where ∆λ denotes the difference between the signal and template and is defined as ∆λ ≡
λsig−λ. Grid spacings are determined so that the largest mismatch between any putative

signal and the closest template falls within a predetermined tolerance level. In what

follows, we see an enormous computational burden in the fully coherent F -statistic search

for unknown pulsars, and then we explain alternative search methods that allow us to

explore a wide-parameter-space at the cost of sensitivity.

2.5.1 Computational costs for wide-parameter-space searches

Constant amplitude model

To simplify the following discussion, it is useful to introduce a constant-amplitude model

in which time-dependencies in antenna-pattern functions are neglected. This simplified

model can be justified by the fact that F+,× varies on the time scale of a day whereas the

phase Φ (t) oscillates on a time scale of 1/f0. Also, coherent-integration time is typically

set to be longer than a day. By reference to Eq. (2.12), the constant-amplitude waveform

is taken in the following form [56, 73]:

s (t) = A+ cos Φ (t) + A× sin Φ (t) , (2.67)

where the constants F+,× are absorbed into h0. In Eq. (2.67), there are two unknown

amplitude parameters A+,×. The F -statistic is defined as the maximum value of the

log-likelihood ratio over the amplitude parameters,

2F = max
A+,A×

2 ln Λ =
4T

S
∣∣〈xe−iφ〉T

∣∣2 , (2.68)
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where 〈· · · 〉T denotes the time average over coherent-integration time T 27. When the CW

waveform is perfectly known and is expressed as ssig = A+,sig cos Φsig + A×,sig sin Φsig, 2F
satisfies the following relation,

〈2F〉 = 2 + ρ2 (0) , (2.71a)

ρ2 (0) ≡ 4T

S
∣∣〈ssige

−iφsig〉
∣∣2 ' T

S
(
A2

+,sig + A2
×,sig

)
. (2.71b)

Note that 2F in the constant amplitude model follows the chi-squared distribution with

two degrees of freedom unlike Eq. (2.44a). This statistical difference arises from the

number of unknown amplitude parameters.

Signal-template mismatch

Next, let us focus on the case where there exists a signal-template mismatch, ∆λ =

λsig − λ. In a similar way to the perfectly matched case, an expectation value of 2F is

calculated as

〈2F〉 = 2 + ρ2 (∆λ) , (2.72a)

ρ2 (∆λ) ≡ 4T

S
∣∣〈ssige

−iφ〉T
∣∣2 = ρ2 (0)

∣∣〈e−i∆φ〉T
∣∣2 . (2.72b)

Grid points on the parameter space are placed closely to each other, so that the mismatch

27 The log-likelihood ratio defined in Eq. (2.30) can be reduced to the following equations,

lnΛ =
2T

S

[
〈xs〉T − 1

2
〈s2〉T

]
=

2T

S

[
A+〈x cosΦ〉T + A×〈x sin Φ〉T − 1

4
(
A2

+ + A2
×

)]
=

2T

S

[
−1

4
(A+ − 2〈x cosΦ〉T )2 − 1

4
(A× − 2〈x sinΦ〉T )2 + 〈x cosΦ〉2T + 〈x sin Φ〉2T

]
, (2.69)

where 〈cos2 Φ〉T ' 〈sin2 Φ〉T ' 1/2, 〈cosΦ sinΦ〉T ' 0 were employed. The F-statistic is defined as the
maximum value of the log-likelihood ratio over the amplitude parameters A+ and A×,

2F = max
A+,A×

2 lnΛ =
4T

S
[
〈x cosΦ〉2T + 〈x sinΦ〉2T

]
=

4T

S
∣∣〈xe−iΦ〉T

∣∣2 . (2.70)

Since the above equation is independent of the constant GW phase, Φ can be replaced by φ.
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M can be expanded up to the second order of ∆λ as28

M =
ρ2 (0) − ρ2 (∆λ)

ρ2 (0)
= gab∆λa∆λb +

[
(∆λ)3] , (2.75a)

gab ≡ 〈∂aφsig∂bφsig〉T − 〈∂aφsig〉T 〈∂bφsig〉T , (2.75b)

∂aφsig ≡
∂φ

∂λa

∣∣∣
–=–sig

, (2.75c)

where ∂aφsig is derivatives of φ with respect to the Doppler parameters λa = {α, δ, f, ḟ , · · · },
followed by evaluation at λ = λsig. Equation (2.75a) indicates that a geometric interpreta-

tion can be formulated for a signal-template mismatch. The mismatch can be interpreted

as a distance between a signal and a template in waveform-parameter-space defined by

a metric [74, 75]. In the constant-amplitude model, the metric gab is expressed only by

derivatives of the phase as in Eq. (2.75b), and so is often referred to as the phase metric

first introduced in [76]29.

Number of signal templates

A template bank that is a set of waveform templates is required for exploring wide

parameter space. In template-based searches, a template bank is constructed so that

the risk of missing a GW signal is minimized based on a metric30. In other words, grid

28 The GW phase φ is expanded in a Taylor series in powers of (λ − λsig)
a as

φ (λ) = φsig + (λ − λsig)
a
∂aφ

∣∣∣
λ=λsig

+
1
2

(λ − λsig)
a (λ − λsig)

b
∂a∂bφ

∣∣∣
λ=λsig

+ · · ·

⇒ ∆φ = ∆λa∂aφsig −
1
2
∆λa∆λb∂a∂bφsig + · · ·

⇒ ei∆φ = 1 + i

(
∆λa∂aφsig −

1
2
∆λa∆λb∂a∂bφsig

)
− 1

2
∆λa∆λb∂aφsig∂bφsig + · · · , (2.73)

where ∂a denotes a derivative with respect to the phase parameters λ. So, the mismatch M can be
expressed up to the second order of ∆λ as

M = 1 −
∣∣〈ei∆φ〉

∣∣2 = 1 −
∣∣∣∣1 + i

(
∆λa〈∂aφsig〉 −

1
2
∆λa∆λb〈∂a∂bφsig〉

)
− 1

2
∆λa∆λb〈∂aφsig∂bφsig〉

∣∣∣∣2 + · · ·

= 1 −

[(
1 − 1

2
∆λa∆λb〈∂aφsig∂bφsig〉

)2

+
(

∆λa〈∂aφsig〉 −
1
2
∆λa∆λb〈∂a∂bφsig〉

)2
]

+ · · ·

= (〈∂aφsig∂bφsig〉 − 〈∂aφsig〉〈∂bφsig〉)∆λa∆λb + O
[
(∆λ)3

]
. (2.74)

29 General parameter space metric of multidetector F-statistic is derived in [77]. Using this multide-
tector metric, the parameter resolutions are proven to have nothing to do with the number of detectors.
Multidetector F-statistic metric is also discussed in the context of short-duration non-precessing inspiral
GW signals in [78, 79].

30 Efficient template placements in flat parameter spaces with constant-coefficient metrics are discussed
in [80]. The construction method for efficient template banks can be cast into the sphere covering
problem. For low-dimension parameter space n . 24, (nearly) optimal template banks are provided by
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points in waveform parameter space P are placed so that the mismatch between the signal

point λsig and the nearest grid point λ falls within a predetermined acceptable maximal

mismatch Mmax. Every point in parameter space P satisfies gab∆λa∆λb ≤ Mmax. A

template bank placed on the parameter space is usually taken in the form of lattice. So,

the proper volume and the number of templates are evaluated as

V =

∫
P

dV =

∫
P

√
det g dλ, (2.76a)

N ' V

V0 (Mmax)
, (2.76b)

where det g, V0, and N denote the determinant of the metric gab, the volume covered by

a single template that depends on the maximal mismatch Mmax, and the number of the

templates, respectively. In the case of fully coherent F -statistic based search, a parameter

space metric is given by Eq. (2.75b). Using Eqs. (2.16b) and (2.75c), derivatives of the

phase φ with respect to the Doppler parameters are

∂f (k)φ (t) = 2π
[∆τ ]k+1

(k + 1)!
∼ tk+1, ∂niφ (t) = 2π

ri

c

s∑
k=0

f (k)

k!
[∆τ ]k ∼ fri

orb

c
, (2.77)

where the coherent-integration time is assumed to be T ¿ 1 year and rorb is the position

vector describing the orbital motion around the Sun. Each component of the phase metric

defined by Eq. (2.75b) is of the order of

gf (k)f (k′) ∼ T k+1T k′+1, gninj ∼
(

fvorbT

c

)2

eiej, gnif (k) ∼
fTvorb

c
T k+1ei, (2.78)

where ei is the unit vector along the orbital velocity vorb. The determinant of the metric

is evaluated as

√
det g ∼ f 2O

(
T 2

) s∏
k=0

T k+1. (2.79)

From the above discussion, if spin-down parameters are taken into account up to the

first order s = 1, the number of the templates scales with N ∼ T 5. Thus, the number

of templates increases with the coherent-integration time polynomially. Computational

costs for wide-parameter-space searches based on the fully coherent F -statistic easily

overwhelm existing computational resources available to us.

the A∗
n lattice [81]. However, such a template-based search method is known to be inefficient in higher

dimensions. To overcome this problem, random template banks are proposed in which templates are
placed uniformly randomly over the parameter space [82].
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2.5.2 Semi-coherent search

As discussed in the previous section, we cannot perform the most optimal search method

based on the fully coherent F -statistic in the case of unknown CW searches because of

lack of computational resources. Thus, a suboptimal strategy based on a semi-coherent

search must be adopted. Because computational cost for search and the corresponding

sensitivity have a trade-off relationship, large waveform-parameter-space can be explored

efficiently by sacrificing sensitivity31.

The simplest semi-coherent search method is achieved by incoherent sum of Fourier

powers over all the SFT segments. The whole observation data is divided up into shorter

segments, and subsequently each segment is Fourier transformed by SFTs. Detection

statistics is basically constructed by use of incoherent combination of the SFT powers.

The time baseline of SFTs, TSFT, is determined so that the power of a putative signal does

not leak into the adjacent frequency bins by the signal’s Doppler shift during TSFT. Also,

the time baseline should be short enough for detector noise to be regarded as stationary

within a single SFT segment. The length of SFT is typically taken to be 30 min.

There are three types of SFT-based semi-coherent methods that were commonly used

in the initial LIGO [84, 85]: StackSlide method [86, 87], Hough method [88, 83, 89], and

PowerFlux method [90, 91]. For example, the StackSlide approach uses the total power

Pk as a detection statistic, which is defined as

Pk ≡ 1

NSFT

NSFT∑
α=1

ρ2
k,α, (2.81a)

ρ2
k,α =

2 |x̃k,α|2

TSFTSk,α

, (2.81b)

where ρ2
k,α denotes the normalized SFT power contained in the k-th frequency bin of

the α-th SFT segment. The normalization factor in Eq. (2.81b) is chosen so that the

expectation value of ρ2
k,α is unity when the data is comprised of only the Gaussian noise

(see Eq. (A.2)). As illustrated in Fig. 2.4, the frequency bin that contains a putative

CW signal varies with time due to the Doppler shift and the spin-down of the source.

In order to accumulate the SNR efficiently, the SFT powers are summed up incoherently

along the path of In order to accumulate the SNR efficiently, the SFT powers are summed

31 For example, the sensitivity of the F-statistic-based Hough method is expressed as

h0 =
8.92

N
1/4
seg

√
Sn

Tseg
= 8.92N1/4

seg

√
Sn

Tobs
, (2.80)

where the false-alarm rate and false-dismissal rate are assumed to be 1% and 10%, respectively [83].
Comparing Eq. (2.51), for the same value of Tobs, the sensitivity decreases as N

−1/4
seg .
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2 Basics of CW search method

up incoherently along the path of frequency bins of the putative signal described by

Eq. (2.22a).

Time

Slide
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q
u
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Figure 2.4: A schematic view of semi-coherent search methods. Each row corresponds to
a frequency bin and each column corresponds to a SFT segment. The pixels that contain
a putative CW signal are filled with diagonal lines. The signal frequency shifts are caused
by the Doppler effects and the intrinsic time evolution of the CW frequency.

Recent advances in computing power make it possible to perform a F -statistic-based

semi-coherent search method. An year-long observation data is split up into shorter

segments of the order of a day that is much longer than the case of SFT-based semi-

coherent methods. The F -statistic is computed from each segment on a coarse grid of

templates. Then, resulting F -statistics are summed up over all the segments incoherently

on a common fine grid of templatese. In a similar way to the StackSlide method, a

detection statistic consists of incoherent sum of the F -statistics along the path of the

putative CW signal,

2F ≡ 1

Nseg

Nseg∑
j=1

2Fj, (2.82)

where Fj denotes the F -statistic computed from the j-th coherent segment.
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Chapter 3
Low-frequency all-sky CW search

with TOBA
Large-scale laser interferometric GW detectors such as aLIGO [92], Advanced Virgo [93],

and KAGRA [12] are now constructed or are being constructed around the world. A net-

work of these advanced ground-based GW detectors will reach unprecedented sensitivity

which may be enough to establish GW astronomy. However, low-frequency GW band

below about 10 Hz cannot be explored by the currently existing laser interferometers be-

cause the sensitivities of detectors to GWs are hampered by seismic noise on the Earth.

One of the solutions to avoid noise due to the ground motion is to construct GW detectors

formed by satellites in space such as the evolved LISA (eLISA) [94] and the DECi-hertz

Interferometer Gravitational wave Observatory (DECIGO) [95]. Another solution is to

devise detector configurations on the Earth such as the torsion-bar antenna (TOBA) [96],

atomic interferometers [97], the juggled interferometer [98], and the full-tensor detector

[99].

A TOBA is a terrestrial low-frequency GW detector that is composed of two orthogonal

bar-shaped test masses [96]. When a GW passes through the detector, the two bars rotate

differentially around their centers. GW signals can be read by measuring the bar rotations

on the horizontal plane. The main feature of the TOBA is a good sensitivity at low

frequencies around 1 Hz even on the ground thanks to its low resonant frequency in the

rotational degrees of freedom. So far, the prototype TOBA was used to set upper limits

on the amplitude of the stochastic GW background [100, 101, 102]. In the subsequent

work, a new detector configuration for a TOBA was introduced by incorporating two

additional detector outputs by measuring the rotations of the bars on the vertical planes

[103, 104]. Such a multi-output TOBA can be regarded as a network of three coincident

but misaligned interferometric detectors.

In this chapter, we give an overview of our work on how much the new detector con-

figuration improves parameter estimation accuracies for GW detections. Subsequently,

we perform an all-sky CW search in a low-frequency region using data from a Phase-II

TOBA that is a prototype detector of the multi-output TOBA.

The outline of this chapter is as follows. In section 3.1, a concept of a TOBA is
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3 Low-frequency all-sky CW search with TOBA

summarized and a new detector configuration for a TOBA is introduced. We study

accuracy of parameter estimation using the Fisher analysis. In section 3.2, we report the

results of an all-sky CW search in a low-frequency region using the Phase-II TOBA data.

This chapter is basically based on [17] and [18].

3.1 Multi-output TOBA and its performance

3.1.1 TOBA

A TOBA is a ground-based detector for low-frequency GWs, and was originally proposed

in [96]. A TOBA consists of two bar shaped orthogonal test masses to which mirrors

are attached at both ends as can be seen in Fig. 3.1. The two bars rotate differentially

on the xy plane due to the passage of incident GWs. The GW signals can be read in

the following way. An input laser beam is split into two orthogonal beams at a beam

splitter. The two beams are reflected by the mirrors attached to the ends of the bars

and are recombined at the beam splitter. The GW signals can be obtained by measuring

the optical path differences at a PD placed in a different direction from the laser. The

angular motions of the bars are written as follows:

Iθ̈ (t) + γθθ̇ (t) + κθθ (t) =
1

4
ḧjkq

jk
θ , (3.1)

where we denote the moment of inertia, the dissipation coefficient, the spring constant,

and the dynamical quadrupole moment of the two bars by I, γθ, κθ, and qjk
θ , respectively.

The spring constant is written as κθ = mga2/`, where ` and a denote the length of the

suspension wire and the distance between two holes for the suspension wires, respectively.

When the time-dependence of the antenna pattern functions is negligible, Eq. (3.1) in the

Fourier domain can be expressed as

θ̃ (ω) =
∑

A=+,×

HA
θ (ω) h̃A

TT, (3.2a)

HA
θ (ω) ≡ qA

θ

2I

ω2

ω2 − ω2
res,θ (1 + iϕ) − iωγ/I

, (3.2b)

where ϕ is the loss angle arising from internal friction and ωres,θ = 2πfres,θ ≡
√

κθ/I is

the resonant frequency in the θ degree of freedom . Since the resonant frequency can be

set below 1 Hz, a TOBA is sensitive to low-frequency GWs.

32



3 Low-frequency all-sky CW search with TOBA

Test mass 1

Test mass 2

Input beam

Fabry-Perot
interferometer

y

x

Beam splitter

∆θ ∝ h

Figure 3.1: Layout of a TOBA detector that is composed of two orthogonal bar-shaped
test masses. Tidal force due to GWs induces differential rotations of the bars on the
xy plane. The angular fluctuations ∆θ of the bars correspond to the GW amplitude
h. GW signals are read by a laser interferometer in a similar way to the conventional
interferometric GW detectors.

3.1.2 Multi-output system

As discussed in the previous section, the originally proposed TOBA monitors angular

motions of the bar-shaped test masses on the xy plane. In [17, 103], a new detector

configuration for a TOBA is introduced by adding two other outputs that are obtained

from rotations of the bars on the vertical planes. Hence, the GW signals can be read from

the rotations of the bars on the xy, yz, and zx planes as shown in Fig. 3.2. Similarly to

Eq. (3.1), the EOM of the bar in the φ degree of freedom is expressed by

Iφ̈ (t) + γφφ̇ (t) + κφφ (t) =
1

4
ḧjkq

jk
φ . (3.3)

The spring constant in the φ degree of freedom is written as κφ = mgd, where d is the

distance between the center of mass of the bar and its suspension point. The resonant

frequency is fres,φ =
√

κφ/I/2π above which the bar-shaped test masses are sensitive to

GW (see [17, 103] for more details). Because of θ2 = −θ1, we have three independent

output signals, sI = θ1 − θ2, sII = φ1, and sIII = φ2. Antenna responses to GW for each

detector output are given in Appendix C.2.2 . Figure 3.3 depicts antenna pattern power

defined by P (α, δ) =
∑

i

(
F+

i
2 + F×

i
2
)
. The summation is taken over the three outputs

I, II and III. This figure indicates that the multi-output TOBA has no blind direction,

and so its sensitivity is much more uniform than the conventional single-output TOBA.
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3 Low-frequency all-sky CW search with TOBA
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Figure 3.2: Layout of the multi-output TOBA. The two bar-shaped test masses can move
independently in the directions of the x, y, and z axes. The three independent output
signals can be obtained by monitoring the bar motions on the xy, xz, and yz planes (from
[17]).
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Figure 3.3: Square root of the antenna power pattern
√

P (α, δ) for the single-output
TOBA (left panel) and the multi-output TOBA (right panel). The detectors are assumed
to be located at the TAMA300’s site in Japan (35◦ 40′ 36′′ N, 139◦ 32′ 10′′ E).
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3 Low-frequency all-sky CW search with TOBA

3.1.3 Accuracy of parameter estimation

In the following, we study how accurately we estimate a source location using a multi-

output TOBA and also examine the estimation accuracy of the other waveform param-

eters. For this purpose we consider two nominal sources, monochromatic sources and

intermediate-mass black hole (IMBH) binary coalescences. First, we examine the case

of the monochromatic source for a fixed SNR in order to reveal how the multi-output

configuration improves the parameter resolution apart from the improved SNR. This ex-

amination gives an insight into the result of the IMBH mergers case. Then, we move on to

discussions about IMBH mergers at a fixed distance, which are more realistic targets of a

TOBA. In what follows, we make the simplifying assumptions that noise of each detector

is uncorrelated with each other and that each sensitivity can be expressed as the same

form. In this case, the noise spectrum matrix Sn (f) has only diagonal elements all of

which can be written by the same form Sn (f).

The case of monochromatic sources

Monochromatic GW with a frequency f0 can be expressed by Eqs. (2.10) and (2.11b).

Combining Eqs. (2.10) and (2.12), we find the detector response to a monochromatic

source as

hXi (t) = AXi (t) cos [ΦXi (t)] , (3.4a)

AXi (t) = h0QXi (t) , (3.4b)

QXi (t) =

[(
1 + cos2 ι

2

)2

F+
Xi

2 (t) + cos2 ιF×
Xi

2 (t)

]1/2

, (3.4c)

ΦXi (t) = 2πf0t + ϕ0 + ϕpol,Xi (t) + ϕDop,X (t) , (3.4d)

ϕpol,Xi (t) = arctan

[
− 2 cos ι

1 + cos2 ι

F×
Xi (t)

F+
Xi (t)

]
, (3.4e)

ϕDop,X (t) = 2πf0
n̂ · rX (t)

c
, (3.4f)

where the suffixes “Xi” stand for the i-th output in the X-th detector. The phase shift

ϕDop,X (t) is called the Doppler phase because it comes from the Doppler correction1.

The phase shift ϕpol,Xi (t) is often referred to as the polarization phase that depends

1 The inner product n̂ · r (t) is written as

n̂ · r (t) = RES [cos α cos δ cos (φ0,orb + Ωorbt) + (cos ε sinα cos δ + sin ε sin δ) sin (φ0,orb + Ωorbt)]
+ RE (sin δD sin δ + cos δD cos δ cos [α − αD (t)]) , (3.5)

where αD (t) and δD represent the detector position at time t [57]. The symbols Ωorb and ε denote the
angular speed of the Earth’s revolution around the Sun and the Earth’s axial tilt, respectively.
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3 Low-frequency all-sky CW search with TOBA

on the angular pattern functions F+,× [105]. The GW signal is characterized by the

seven waveform parameters {h0, f0, ϕ0, α, δ, ψ, cos ι}. Substituting Eqs. (3.4a)−(3.4f) into

Eqs. (D.4) and (D.5), we evaluate the accuracy of the parameter estimation accuracy

using the Fisher analysis (see Appendix D for more details).

The left panel of Fig. 3.4 shows the angular resolution in the case of a single detector

located at the TAMA300’s site in Japan. This figure indicates that there is no difference

between two curves for Tobs > 1 day. For Tobs > 1 day, the error ∆Ω drops with the time

and approaches to the diffraction-limited accuracy [106],

∆Ωdiff =
c2

f2
0 ρ2πR2

ES |sin i|
= 2.5 × 10−8 sr

(
1 Hz

f0

)2
(

1/
√

2

|sin i|

)(
10

ρ

)2

, (3.6)

where ρ is the total SNR and i is the angle between the normal to the ecliptic plane and the

direction of incident GW [107]. This is because ∆Ω is mainly determined by the Doppler

effect caused by the Earth’s orbital motion. The deviation between the two curves appears

in the short-duration signals (less than 1 day). The error ∆Ω in the single-output TOBA

decreases with time for Tobs & 104 seconds due to the Doppler effect caused by the Earth’s

rotation. For Tobs . 104 seconds, the sky location of the source cannot be determined

at all. In contrast, ∆Ω in the multi-output TOBA is of the order of 0.1 steradians and

remains approximately constant even in the short-duration signals with SNR = 10 (less

than 1 day). This feature can be traced to the polarization phase ϕpol,Xi. In the case of

the multi-output configuration, the degeneracy of the two polarization modes is broken

as opposed to the single-output one because the three independent output signals can be

obtained. Hence, the angular resolution of the multi-output TOBA for short-duration

signals is much better than that of the single-output TOBA thanks to the information on

the polarization.

The right panel of Fig. 3.4 shows the angular resolution in the case of a three-detector

network. Each detector is assumed to be located at the site of TAMA300 (Japan), LIGO-

Hanford (US) and Virgo (Italy). In Fig. 3.4, the two curves coincide with each other for

long-duration signals (more than 1 day) due to the Doppler effects. This behavior is the

same as the single-detector case. On the other hand, ∆Ω for both the single and multi

output configurations are constants below 104 seconds because the polarization phase

ϕpol,Xi determines the angular resolutions. It should be noted that ∆Ω of low-frequency

detectors for short-duration signals (less than about 1 day) is controlled by much different

factors than the conventional ground-based detectors. The angular resolution of a network

of ground-based detectors sensitive to above 10 Hz is mainly determined by the error of

the delays of the arrival time [108]. It is roughly estimated by the geometrical formula
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3 Low-frequency all-sky CW search with TOBA

derived by Wen and Chen [107],

∆Ω = 1.8 × 10−3 sr

(
100 Hz

f0

)2 (
3 × 1013 m2

S

) (
1/
√

2

cos i

) (
10

ρtot

)2 (
ρ3

tot/ρ1ρ2ρ3

3
√

3

)
,

(3.7)

where S is the area formed by the three-detector network, ρtot is the total SNR, ρi is

the SNR achievable with the i-th detector alone, and i is the angle between the normal

to the plane defined by the detector network and the direction of GW propagation2.

This formula does not work when applied to low-frequency GW detectors because the

directional derivatives of the pattern functions are neglected in the derivation of Eq. (3.7).

When low-frequency GW source is localized by ground-based detectors, the polarization

phases ϕpol,Xi play a key role in the angular resolution.
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Figure 3.4: Angular resolution ∆Ω as a function of observation time Tobs for monochro-
matic sources with f0 = 1 Hz. Angular parameters are set to be α = δ = ι = ψ = 1.0 ra-
dians. The amplitudes of GW signals are normalized by SNR = 10. The solid line and the
dashed line correspond to a multi-output TOBA and a single-output TOBA, respectively.

The case of IMBH-IMBH binary coalescences

Next, we consider a coalescing binary system composed of two point masses with m1

and m2 as a GW source. Unlike the monochromatic sources, the orbital radius shrinks

with time and the orbital frequency increases accordingly because of the GW radiation

loss. In this case, parameter estimation accuracy depends on the functional form of noise

spectral density Sn (f). As a signal model of a binary coalesce, we adopt the restricted

post-Newtonian waveform with the 1.5 PN phase in which the amplitude is retained up

to the Newtonian order:

h̃Xi (f) = AQXi (t∗) f−7/6e−i[ϕpol,Xi(t∗)+ϕDop,X(t∗)]eiΨ(f), (3.8a)
2 The value 3 × 1013 m2 corresponds to the area formed by the TAMA-LIGO-Virgo network.
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A ≡
√

5

24

1

π2/3

c

d

(
GMc

c3

)5/6

, (3.8b)

Ψ (f) = 2πftc −
π

4
− φc − Φ̃ (f) , (3.8c)

Φ̃ (f) = −3

4

(
GMc

c3
8πf

)−5/3 [
1 +

20

9

(
743

336
+

11

4
η

)
x − 16πx3/2

]
, (3.8d)

t∗ (f) = tc − 5

(
GMc

c3

)−5/3

(8πf)−8/3

[
1 +

4

3

(
743

336
+

11

4
η

)
x − 32

5
πx3/2

]
, (3.8e)

where tc and φc are the time and the phase at the coalescence, respectively (see e.g. [55]).

The mass Mc ≡ (m1m2)
3/5 (m1 + m2)

−1/5 and the mass ratio η ≡ m1m2/ (m1 + m2)
2

are called a chirp mass and a symmetric mass ratio, respectively, and a post-Newtonian

variable x ≡ [πG (m1 + m2) f/c3]
2/3

was introduced. We cut-off the GW signal at fISCO ≡
c3/

[
6
√

6πG (m1 + m2)
]

beyond which the quasi-circular orbit is not stable any longer and

the two point masses plunge toward each other. So, we set h̃ (f) = 0 for f > fISCO in

Eq. (3.8a).

We analyze parameter estimation accuracy for GWs from 104M¯ equal-mass IMBH

binaries located at a distance of 200 Mpc. The GW signal described by Eqs. (3.8a)–(3.8e)

consists of the eight waveform parameters {A, tc, φc, α, δ, ψ, cos ι,Mc}. Substitution of

Eq. (3.8a) into Eq. (D.5) yields the values of Fisher matrix elements. From Eq. (D.4), we

get the accuracy of the waveform parameters. Here, we neglect the effect of the expansion

of the Universe and the higher order terms in the Post-Newtonian expansion. However,

the angular resolution ∆Ω we calculate in this section is expected to be accurate because

the angular resolution is accumulated at the inspiral phase long before the final plunge.

Performing 1,000 Monte-Carlo simulations, we obtain Fig. 3.5 that represents the prob-

ability distributions in a single-detector case for (a) SNR, (b) angular resolution, (c)

measurement error of overall amplitude, and (d) measurement error of chirp mass3. The

panel (a) of Fig. 3.5 shows that SNRs of the multi-output configuration are better by a

factor of about 1.2 than the single-output case. This factor can be simply explained by√
12 + (1/2)2 + (1/2)2 ' 1.2 from Eqs. (C.10a)−(C.10c). The panel (b) indicates that

the angular resolution in the multi-output configuration are improved by an order of mag-

nitude. This feature can be traced to the polarization phase ϕpol,Xi. Since GWs from

coalescing IMBH binaries are regarded as short-duration signals, the sky positions are

well determined by the multi-output TOBA compared with the single-output TOBA in a

similar discussion to the previous section. Accuracies of the other waveform parameters,

especially A, are also improved as shown in the panels (c) and (d) of Fig. 3.5 because

the over-all amplitude A is strongly correlated with the GW polarizations through the

antenna pattern functions F+,×.

3 In the case of low SNRs, the estimation accuracies would be overestimated [74].

38



3 Low-frequency all-sky CW search with TOBA

 0

 0.01
 0.02

 0.03
 0.04

 0.05
 0.06

 0.07

 10

(a) SNR

P
ro

ba
bi

lit
y

SNR

Single-output
Multi-output

 0
 0.01
 0.02
 0.03
 0.04
 0.05
 0.06
 0.07
 0.08

 0.1  1

(c) ∆A/A

P
ro

ba
bi

lit
y

∆A/A

Single-output
Multi-output

 0
 0.01
 0.02
 0.03
 0.04
 0.05
 0.06
 0.07
 0.08

10-3 10-2 10-1 100 101

(b) ∆Ω

P
ro

ba
bi

lit
y

∆Ω [sr]

Single-output
Multi-output

 0

 0.02

 0.04

 0.06

 0.08

 0.1

10-4 10-3

(d) ∆Mc/Mc

P
ro

ba
bi

lit
y

∆Mc/Mc

Single-output
Multi-output

Figure 3.5: Histograms for (a) SNR, (b) angular resolution, (c) measurement error of
overall amplitude, and (d) measurement error of chirp mass in the case of a single-detector
for one-year observations. GWs are assumed to be emitted from 104M¯ equal-mass IMBH
binaries located at a distance of 200 Mpc. We assume that sky locations and inclination
angles are distributed uniformly. Polarization phases are arbitrarily set to be 0.5 radians.
The two lines correspond to the single-output and multi-output TOBA, respectively.
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3.1.4 Summary

In this section, we studied the performance of the proposed multi-output TOBA and

presented the parameter estimation accuracy for the two nominal sources, monochromatic

sources and binary coalescences. For long-duration signals, the multi-output TOBA can

be treated as the same way as the conventional single-output TOBA apart from the

improved SNR, as expected. The advantage of the multi-output system is merely the

accumulation of the SNR. On the other hand, in the case of short-duration signals, the

multi-output TOBA improves the parameter estimation accuracy drastically compared

with the single-output TOBA because it can break the degeneracy of two polarization

modes of GW signals even in the case of a single detector.

3.2 Low-frequency CW search with a TOBA

To date, data from the initial LIGO and Virgo science runs have been used to place up-

per limits on GW amplitudes from unknown isolated pulsars with GW frequencies above

20 Hz [84, 49, 85, 109, 110, 111, 112, 113, 114, 115, 116]. On the other hand, contin-

uous GWs below 20 Hz have yet to be investigated because seismic noise on the Earth

hinders the sensitivity of detectors to GWs in such a low-frequency regime. The ATNF

catalogue shown in Fig. 2.1 lists about 1,500 pulsars in the frequency range from 1 Hz

to 10 Hz, whereas it contains only about 400 above 10 Hz [15]. Hence, it is interesting

to explore the low-frequency regime, although the expected GW amplitude scales as fre-

quency squared. In this section, we first search for unknown continuous GWs coherently

in the low-frequency regime using data from the Phase-II TOBA and report its results4.

3.2.1 Phase-II TOBA

Previously, the Phase-I TOBA has been constructed, which is composed of a single 20 cm

test mass and has succeeded in putting constraints on the abundance of stochastic GWs

[100, 101, 102]. Motivated by the work discussed in the previous section [17], the Phase-II

TOBA that is a prototype of the multi-output TOBA was developed [103, 104]. The

main features of the Phase-II TOBA are common-mode noise rejection, the multi-output

system, and the active and passive vibration systems. As can be seen in Fig. 3.7, the

Phase-II TOBA has two 24 cm bar-shaped test masses each of which is suspended by

two parallel tungsten wires near its center. In order to reduce the common-mode noise

effectively, the two test masses are installed in such a way that their centers of mass are

4 Recently, upper limits on stochastic GW background was set in the frequency band of 1−5 Hz using
the Phase-II TOBA data [117]. The most stringent upper limit is Ωgwh2

100 ≤ 6.0 × 1018 at 2.58 Hz from
a frequentist viewpoint, where h100 denotes the Hubble constant in units of 100 km/s/Mpc.
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3 Low-frequency all-sky CW search with TOBA

positioned at the same point on the horizontal plane. The motions of the bars in both the

horizontal and vertical planes are monitored by using fiber Michelson laser interferometers,

so that three independent output signals can be obtained unlike the previous prototype

TOBA. A hexapod-type active vibration isolation system is incorporated into the Phase-II

TOBA to reduce seismic noise at around 1 Hz; see [103, 104] for more details.

The Phase-II TOBA is placed in Tokyo (35◦42′49.0′′N, 139◦45′47.0′′E) and operated for

22.5 hours from 6:18 UTC, December 11, 2014 to 4:48 UTC, December 12, 2014. The

measured strain sensitivity of the Phase-II TOBA is shown in Fig. 3.6 in which the red,

blue, and, green lines correspond to the output signals from the xy, xz, and yz degrees

of freedom, respectively. The z axis is in the local vertical direction, whereas the x and y

axes align with the two bars when they are at rest (see also Fig. 3.2). The GW equivalent-

strain sensitivity is about 10−10 Hz−1/2 at around 1 Hz for the signal on the horizontal

plane. The sensitivity is limited by the seismic noise below 2 Hz and by unexpected noise

in the optical fiber above 2 Hz. The peaks appearing at around 0.7 Hz, 5.7 Hz, 8.5 Hz,

and 14 Hz correspond to the resonance of the optical bench, and the resonance of the

vibration isolation table in the directions of y, x, and z axes, respectively. It should be

noted that we do not incorporate the data obtained from monitoring the vertical planes

into our following analysis because their sensitivities are unfortunately much worse than

the sensitivity from the horizontal plane, as is evident from Fig. 3.6.
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Figure 3.6: The strain sensitivity curve of the Phase-II TOBA. The horizontal axis shows
the frequency and the vertical axis shows the square root of the one-sided noise spectral
density

√
Sn (f). The red, blue, and green lines correspond to the output signals from

the xy, xz, and yz degrees of freedom, respectively.
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3 Low-frequency all-sky CW search with TOBA

Figure 3.7: Photograph of the Phase-II TOBA [Credit: Yuya Kuwahara]. Each bar-
shaped test mass has a mass of 0.61 kg and a length of 24.0 cm. The two bars are
suspended by four tungsten wires with a length of 40.0 cm. The distance between the
suspension points is 1.7 cm. Optical sensors are installed on an optical bench. GW signals
are read out by measuring the relative motion between the test masses and the optical
bench.

3.2.2 Statistical properties of the data

SFT

Since CW signals are long-duration signals, the length of analyzed data is typically

more than of the order of a day. In the frequency domain analysis, such a long duration

signal poses some problems such as non-stationarities of noise background and frequency

shifts caused by the Doppler effects due to the Earth rotation and its orbital motion. In

order to handle these problems, short-time-baseline Fourier transform (SFT) is carried

out in CW analysis. SFT is a kind of Fourier transform usually used to deal with quasi-

periodic signals whose frequencies gradually vary with time5. In this process, time series

data are broken up into shorter time segments, which are often called SFT frames, by

using window function, and then each frame is Fourier transformed.

There are three constraints on the time baseline of SFTs, TSFT. The first is non-

stationarities of detector noise. To estimate the noise background accurately, the time

baseline of the SFTs should be short enough for the noise to be regarded as locally

stationary during the time baseline. The second is frequency shifts of putative signals

induced by NS’s spin-down and relative motion of the detector with respect to the NS. The

third is computational resources. The computational cost of performing a search linearly

increases with the number of SFT segments. Since the first and second requirements

oppose to the third, we have to chose a compromise between these needs. In practice,

5 In the field of signal processing, this process is often referred to as short-time Fourier transform
(STFT).
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3 Low-frequency all-sky CW search with TOBA

TSFT is chosen such that the signal frequency does not shift by more than half a frequency

bin during TSFT,

TSFT <

√
1

2|ḟ |
. (3.9)

The signal frequency f (t) is modulated by the Doppler effect due to the relative motion

of the detector with respect to the NS as in Eq. (2.22a). So, the time derivative of the

observed frequency is estimated as

ḟ (t) ' f0
n̂

c
· dv

dt
≤ f0

c

∣∣∣∣dv

dt

∣∣∣∣ ' f0

c

v2
E

RE

, (3.10)

where f0 is the intrinsic spin frequency of the NS, vE is the spin velocity of the Earth,

and RE the Earth radius. Equations (3.9) and (3.10) lead to the restriction on the time

baseline TSFT of the SFTs,

TSFT <

√
1

2

cRE

f0v2
E

' 9.4 × 103 sec

(
50 Hz

f0

)1/2

. (3.11)

Therefore, we set the time baseline TSFT to be 9,000 seconds in this seciton6. It should

be noted that the SFT baseline length can be taken longer at lower frequencies as long

as the data stationarity is assured.

Statistical properties of the data

We investigated the statistical properties of our data in the band 6–7 Hz using the

SFTs at around which the TOBA has the best sensitivity. It is convenient to define the

following quantity to evaluate to what extent the noise obeys a Gaussian distribution [62]:

Pα,k ≡ |x̃α,k|2

1

Nband

Nband∑
k′=0

|x̃α,k′|2
, (3.12)

where the indices α and k stand for the k-th frequency bin in the α-th SFT segment. Pα,k

can be regarded as the normalized noise power in the frequency bin k. Because |x̃α,k|2

follows a χ2 distribution with two degrees of freedom in the absence of GW signal in data,

the numerator and denominator in Eq. (3.12) follow χ2 distributions with 2 and 2Nband

degrees of freedom, respectively. Thus, Pα,k obeys a F -distribution, Pα,k ∼ F (2, 2Nband)
7.

6 The time baseline TSFT is typically set to be 1,800 seconds in the conventional targeted CW search
by LIGO/VIRGO.

7 In general, a statistic following F -distribution with parameters d1 and d2 is defined as a ratio of
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3 Low-frequency all-sky CW search with TOBA

The PDF and CDF are expressed as

f (x; d1, d2) =
1

B (d1/2, d2/2)

(
d1

d2

) d1
2

x
d1
2
−1

(
1 +

d1

d2

x

)− d1+d2
2

, (3.14a)

F (x; d1, d2) = I

(
d1x

d2 + d1x
;
d1

2
,
d2

2

)
, (3.14b)

where B (a, b) and I (x; a, b) denote the beta function and the regularized incomplete

beta function8. For Nband À 1, Pα,k is approximately distributed according to Gaussian

distribution with unit mean and variance.

The histogram of Pα,k is shown in the left panel of Fig. 3.8. If the data is distributed

according to a Gaussian distribution, Pα,k is approximately proportional to an exponential,

or in other words, Pα,k is aligned with a straight line in a semi-log plot. The measured

values of the mean and the standard deviation are 1.00 and 1.08, respectively. Thus, we

can regard that our data follows almost a Gaussian distribution. We also have studied

the stationarity of the data by computing the difference between adjacent phases of the

SFT data [62],

∆Φα,k = Φα,k − Φα,k−1. (3.16)

If the data is stationary, ∆Φα,k obeys a unifom distribution in the range of [−π, π]. The

histogram of measured ∆Φα,k is shown in the right panel of Fig. 3.8 in which no strong

non-stationarity is found.

3.2.3 Data analysis

GW signal

We will start with briefly summarizing data analysis method we will use in this section

based on Chapter 3. A pulsar is a rapidly rotating NS whose spin frequency is nearly

constant, say f0. GWs from such a source are generated by a non-axisymmetry of the

variances of χ2 distribution with d1 and d2 degrees of freedom,

Fd1,d2 =
χ2

d1
/d1

χ2
d2

/d2
. (3.13)

8 These functions are defined as

B (a, b) =
Γ (a) Γ (b)
Γ (a + b)

, I (x; a, b) =
B (x; a, b)
B (a, b)

, (3.15a)

B (x; a, b) =
∫ x

0

ta−1 (1 − t)b−1
dt, (3.15b)

where a and b are assumed to be integers.
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Figure 3.8: Histogram of (a) the power Pα,k and (b) the phase ∆Φα,k of the TOBA
SFT data at the k-th frequency bin. If the data is distributed according to a Gaussian
distribution, Pα,k lies on the straight line described by a dotted line. If the data is
stationary, ∆Φα,k is distributed uniformly in the range of [−π, π] as described by a dotted
line.

pulsar around its spin axis. The GW amplitude is expressed by

h0 =
16π2G

c4d
εIf 2

0 , (3.17)

where G, c, and I are Newton’s gravitational constant, the speed of light, and the NS’s

moment of inertia, respectively. The non-axisymmetry is characterized by the parameter

ε called ellipticity. The GW singal we expect to detect from a rapidly rotating NS is

described as

h (t) = h+ (t) F+ (t) + h× (t) F× (t) , (3.18a)

h+ (t) = h0
1 + cos2 ι

2
cos Φ (t) , (3.18b)

h× (t) = h0 cos ι sin Φ (t) , (3.18c)

where h0 is the overall amplitude, Φ (t) is the GW phase measured at the solar system

barycenter (SSB), and ι is the inclination, which is the angle between the line of sight and

the spin axis. The antenna pattern functions F+,× represent the response of the antenna

to the plus and cross polarization modes of the incoming GWs. The antenna patterns

of the TOBA are given by Eqs. (C.12a) and (C.12b) in Appendix C9. The spin of the

Earth around its axis gives rise to the amplitude modulation that is described by the time

dependence of F+,×.

The Earth’s spin around its axis and the its rotation around the Sun bring Doppler

9 The antenna patterns of the TOBA rotated by 45◦ on the detector plane are identical to that of a
90◦ interferometer.

45



3 Low-frequency all-sky CW search with TOBA

modulation to the GW phase up to the first derivative of frequency as follows:

Φ (t) = φ0 + 2π∆tf̂ (∆t) , (3.19a)

f̂ (∆t) = f0 +
1

2
ḟ∆t, (3.19b)

∆t = τ +
r · n̂

c
+ ∆rel − t0, (3.19c)

where φ0, τ , r, and n̂ denote the initial phase at the reference time t0, the arrival time

of the GW measured at the detector, the detector position on the Earth with respect to

the SSB, and the unit vector pointing toward the NS from the SSB. The unit vector n

is related to the equatorial coordinates of the source, right ascension α and declination

δ. The timing correction ∆rel represents relativistic effects such as the Einstein delay and

the Shapiro delay.

F-statistic

We use a detection statistic called the F -statistic to discriminate whether or not an

expected GW signal exists in the data [57]. The F -statistic is derived from the method of

maximum likelihood function and is known as the most powerful test from a frequentist

standpoint according to the Neyman−Pearson lemma [72]. On the stationary Gaussian

noise assumption, the log-likelihood function is expressed as

ln Λ = (x|h) − 1

2
(h|h) , (3.20)

where (·|·) denotes the noise-weighted inner product defined as

(x|y) = 4Re

∫ ∞

0

x̃ (f) ỹ∗ (f)

Sn (f)
df. (3.21)

The maximization of ln Λ over the amplitude parameters A defined by Eqs. (2.24a)–

(2.24d) leads to the F -statistic,

2F = max
A

[2 ln Λ] . (3.22)

The number of search parameters is reduced from eight to four in this process. In the

presence of a GW signal, 2F obeys a non-central χ2 distribution with four degrees of

freedom and a non-centrality parameter ρ2, where ρ is the average SNR in the case of a

signal perfectly matched with the template. In the absence of any GW signal, 2F obeys

the χ2 distribution function with four degrees of freedom. The SNR of the signal is related

to the expected value of the F -statistic by 〈2F〉 = 4 + ρ2.

The threshold for F -statistic can be related to a false alarm probability pFA as discussed
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in Sec. 2.4.1. When data is consistent with Gaussian noise, the probability that a single

value of 2F falls below 2Fthr is written by Eqs. (2.50a) and (3.28). Assuming values of

2F for Ntemp templates are independent of each other, the false alarm probability, which

is the probability that one or more 2F take values above 2Fthr, is written as

pFA = 1 −
[∫ 2Fthr

0

p
(
2F|ρ2 = 0

)
d (2F)

]Ntemp

, (3.23)

where Ntemp denotes the number of templates. In our case, Ntemp is estimated to be

3.2× 1010 as will be discussed. Setting pFA = 0.01, we obtain the threshold of F -statistic

as 2Fthr = 64.6 by solving Eq. (3.23) inversely.

If the measured value of the F -statistic is below the predetermined threshold, we move

on to the step of placing a constraint on the GW amplitude h0. An upper limit of the

amplitude can be defined as a function of the confidence level C, h0 (C). The inverse of

h0 (C) is written as

C (h0) =

∫ ∞

2Fobs

p (2F|h0) d (2F) , (3.24)

where Fobs denotes the observed value of the F -statistic and p (2F|h0) denotes the prob-

ability distribution function of 2F in the presence of a signal with its amplitude h0. The

value of the upper limit is evaluated by solving Eq. (3.24) via Monte-Carlo simulations

over the unknown parameters {h0, cos ι, ψ}.
The value of h0 which satisfies Eq. (3.24) can be numerically evaluated by the Newton-

Raphson method. Let J (h0) be a false-dismissal rate averaged over angular parameters

α, δ, cos ι, and ψ10. The angular parameters are assumed to be distributed uniformly in

the range of α ∈ [0, 2π] , δ ∈ [0, π] , cos ι ∈ [−1, 1], and ψ ∈ [0, 2π], respectively. Note that

the initial phase φ0 is not averaged over because the value of the F -statistic is independent

of φ0 as shown in Eq. (2.46). For given a value of PFD,

J
(
hC

0

)
= PFD. (3.25)

Taylor expansion of J
(
hC

0

)
around h0 leads to the correction term of the Newton-Raphson

method,

J
(
hC

0

)
= J (h0) +

(
h0 − hC

0

)
J ′ (h0) + O

[
(∆h0)

3] ,

⇒ ∆h0 ≡ h0 − hC
0 '

J
(
hC

)
− J (h0)

J ′ (h0)
=

PFD − J (h0)

J ′ (h0)
. (3.26)

10 In a targeted search, sky positions (α, δ) of NSs are already known by EM observations. So, these
two parameters are not averaged over. To put it another way, α and δ in Eqs. (3.29a) and (3.29b) are
fixed whereas cos ι and ψ are treated as random variables.
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The next iteration value of h0 can be obtained by adding the above step to the previous

iteration value as

h
(n+1)
0 = h

(n)
0 + ∆h

(n)
0 , ∆h

(n)
0 ≡

PFD − J
(
h

(n)
0

)
J ′

(
h

(n)
0

) . (3.27a)

The function J (h0) can be evaluated by Monte-Carlo simulations over angular parameters

as referred to above. Also, F is averaged over in the range of F ∈ [0,Fobs]. When detector

noise is stationary and Gaussian, the PDF p (2F|h0) obeys non-central χ2 distribution

function with four degrees of freedom and a non-centrality parameter ρ2,

p (2F|h0) = fX

(
2F ; 4, ρ2

)
. (3.28)

Combining Eqs. (2.53) and (3.28), the functions J (h0) and J ′ (h0) appearing in Eq. (3.27a)

can be approximately evaluated as

J (h0) =
2Fobs

NMC

NMC∑
i=1

fX

(
2Fi; 4, ρ

2 (αi, δi, cos ιi, ψi)
)
, (3.29a)

J ′ (h0) =
2ρ2

h0

2Fobs

NMC

NMC∑
i=1

fX (2Fi; 4, λ)

dλ

∣∣∣
λ=ρ2(αi,δi,cos ιi,ψi)

, (3.29b)

where NMC denotes the number of trials in the Monte-Carlo simulations11. In our analysis,

NMC is set to be 106. Concrete expressions for fX (x; 4, λ)12 and its derivative with respect

to the non-centrality parameter are

fX (x; 4, λ) =
1

2
e−

1
2
(λ+x)

√
x

λ
I1 (z) , (3.31a)

dfX (x; 4, λ)

dλ
=

1

4
e−

1
2
(λ+x)

[
1

2

x

λ
(I0 (z) + I2 (z)) −

√
x

λ

(
1 +

1

λ

)
I1 (z)

]
, (3.31b)

In (z) ≡ 1

π

∫ π

0

ez cos θ cos (nθ) dθ, (3.31c)

where z ≡
√

xλ and In (z) denotes the modified Bessel function of the first kind．

11 dλ/dh0 = 2ρ2/h0 is satisfied by proportional relation between the non-centrality parameter and the
GW amplitude, λ = ρ2 ∝ h2

0.
12 In general, a non-central χ2 distribution with k degrees of freedom and a non-centrality parameter

λ is expressed by

fX (x; k, λ) =
1
2
e−

1
2 (λ+x)

(x

λ

) k
4−

1
2

I k
2−1 (z) . (3.30)
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Analysis and results

Equations (3.17)–(3.19c) indicate that a continuous GW is characterized by eight pa-

rameters when we take into account up to the first derivative of frequency. The four

amplitude parameters are projected out by using the F -statistic. Then, the parameters

to be searched over become only the phase parameters {α, δ, f0, ḟ}. The spacing of fre-

quency bins for the templates is chosen by the inverse of twice the observation time. The

grid spacings on the sky positions are chosen such that the maximum mismatch is less than

0.02. We take both ∆α and ∆δ to be 0.01 radians conservatively. To reduce the computa-

tional burden, we did not search over spin-down parameters. So our analysis is valid only

for NSs with a spin-down ḟ less than 1/(2T 2
obs) ' 7.62 × 10−11 Hz s−1 where Tobs = 22.5

hours is the data length. Thus, the number of spin-templates and sky-templates are esti-

mated to be Nspin ' 2Tobs ' 1.62×105 and Nsky ' 2π2/ (0.01)2 ' 1.92×105, respectively.

The total number of templates are Ntemp = NspinNsky ' 3.2 × 1010.

We make SFTs of the 22.5 hours contiguous data by employing MakeSFTs code in the

LIGO scientific collaboration Algorithm Library (LAL) [118]. Each segment is windowed

by a Tukey window function13 prior to computing the SFTs. The length of each SFT

segment is chosen as 9,000 seconds for the reasons described in Sec. 3.2.2. The frequency

range to be searched is a 1 Hz band in 6–7 Hz where our detector has the best sensitivity.

The statistical properties of the data in this band are described in Sec. 3.2.2.

We compute 2F by making use of ComputeFstatistic v2 code in the LAL [119].

The left panel in Fig. 3.9 shows the distribution of 2F over a 0.01 Hz band between 6.10 Hz

and 6.11 Hz. The experimentally measured distribution of the F -statistic is represented

by the filled boxes. The theoretically expected distribution in the case of the Gaussian

noise without any GW signal is represented by a χ2 distribution with four degrees of

freedom, which are shown by the dotted line. As can be seen in the left panel of Fig. 3.9,

the two agree very well. This indicates that the data we observed is filled with almost

Gaussian noise. The right panel is identical to the left panel but changes the scale of the

vertical axis to a the semi-log scale. Because of the small non-Gaussian noise, the filled

area deviates slightly from the dotted line for larger values of the F -statistic.

We divide the 1 Hz band between 6 Hz and 7 Hz into 100 sub-bands each of length

0.01Hz. The loudest values of 2F in each sub-band resulting from the all-sky search are

13 The Tukey window function is defined as

w (x) =



1
2

[
1 + cos

(
2π

r

(
x − r

2

))]
, 0 ≤ x <

r

2
1,

r

2
≤ x < 1 − r

2
1
2

[
1 + cos

(
2π

r

(
x − 1 +

r

2

))]
, 1 − r

2
≤ x ≤ 1

(3.32)

where r is a parameter related to a length of the window.

49



3 Low-frequency all-sky CW search with TOBA

computed and are shown in the left panel of Fig. 3.10. There is no significant candidate

whose value of the F -statistic is above the predetermined threshold 2Fthr = 64.6 corre-

sponding to pFA = 0.01. Then, we move on to the step of finding the upper limits on

h0 by employing Eq. (3.24). The right panel in Fig. 3.10 represents the upper limit of

h0 with a 95% confidence level in each sub-band. The obtained upper limits are of the

order of 5× 10−12. This values are precisely consistent with theoretically expected upper

limits calculated by Eq. (3.31) in [61]. In our case, pFA = 0.01, pFD = 0.05, Nseg = 1,

and Ntemp ' 3.2 × 1010. A statistical factor is estimated to be ∼ 36.7, which implies

h0 ∼ 5.1 × 10−12. The constraints on h0 become tighter as the frequency increases. This

feature basically reflects the noise curve shown in Fig. 3.6. The most stringent upper limit

on h0 is 3.6 × 10−12 at 6.84 Hz.

 0.05

 0.1

 0.15

 0.2

 0  5  10  15  20  25

P
(2

F
)

2F

10-5

10-4

10-3

10-2

10-1

 5  10  15  20  25

P
(2

F
)

2F

Figure 3.9: Probability distributions of the F -statistic over 6.10 − 6.11 Hz. The right
panel is identical to left panel apart from the scale of the vertical axis and the range of
the horizontal axis. The filled areas in both panels represent histograms obtained from
the observations. In each panel, a dotted line represents a central χ2 distribution with
four degrees of freedom. When the data is dominated by a Gaussian noise, the histogram
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Discussion

We can interpret our upper limits on the strain amplitudes in terms of upper limits on

the ellipticity ε using Eq. (3.17). For instance, when we consider a NS with a moment

of inertia I = 1038 kg m2 at a distance of d = 1 kpc, the most stringent upper limit we

obtained corresponds to the constraint on the ellipticity of ε = 1.7× 1010. The maximum

possible value of ellipticity is typically of the order of less than 10−6 [26], so this limit has

yet to reach an interesting parameter region.

One of the proposed configurations of the TOBA [17] may achieve the best sensitivity

of ∼ 10−20 Hz−1/2 at around 0.1 Hz. With the proposed TOBA, we can detect GWs

from inspiralling compact binaries such as NS/NS binaries within the Local Group or

intermediate-mass black hole binaries within 10 Gpc, in addition to low-frequency con-

tinuous GWs from rapidly rotating compact stars. In fact, the F -statistic search method

we employed in this paper can be used for inspiralling compact binaries long before their

coalescences [120, 121, 122, 123].

3.2.4 Summary

In this section, we carried out an all-sky search for continuous GWs from isolated spinning

NSs in the frequency range from 6 Hz to 7 Hz using the F -statistic method. The data was

obtained from a 22.5-hour observation with the Phase-II TOBA at Tokyo in Japan and

has good sensitivity at of the order of 1 Hz. We converted our data into 9,000-second SFT

segments and searched coherently for an isolated NSs for all sky positions by the method

of the F -statistic. As a result, no significant candidates were found at 6–7 Hz and the

most stringent upper limits on h0 with 95 % confidence level in this band is 3.6 × 10−12

at 6.84 Hz.
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Chapter 4
Targeted CW search with iKAGRA

KAmioka GRAvitational-wave telescope (KAGRA)1[12, 124] is the first Japanese km-

scale interferometric GW detector, which is often categorized into second-generation GW

detectors as well as advanced LIGO and advanced Virgo. There exist two main unique

features in KAGRA. One is underground operation. KAGRA is located about 200 me-

ters underground below Ikenoyama mountain at Kamioka Mine in Gifu Prefecture, Japan

(35◦24′43′′N, 137◦18′21′′E [125]). The underground observation is expected to reduce seis-

mic noise, and thus provide quiet and stable environment for GW observations. The

detector started to be constructed in 2010, which is now being upgrading toward observa-

tion with a full configuration within a few years. The other feature is cryogenic operation.

Detector sensitivity around a few hundred Hz is hampered by thermal noise that excites

vibrations in the mirrors and the suspension wires. In order to mitigate the thermal noise,

the four mirror test masses that constitute the two Fabry-Perot cavities are cooled down

to 20 K. Sapphire mirrors suspened by sapphire wires are used in KAGRA because of

its high thermal conductivitity at low temperatures. It is expected that these new tech-

nology2 will provide a useful knowledge for third-generation GW detectors such as the

Einstein Telescope.

A roadmap for KAGRA is composed of two phases: the initial KAGRA (iKAGRA) and

the baseline KAGRA (bKAGRA). In the iKAGRA phase, the configuration is a simple

Michelson interferometer in a room-tempearature as will be discussed in the next section.

From a standpoint of data analysis, the main purposes of iKAGRA are to validate the

search pipeline we developed, to find program-related problems at the early stage, and to

gain experiences to analyze actual data toward bKAGRA. In this chapter, we report the

results of an end-to-end test for a targeted search for known isolated pulsars. Also, we

summarize future prospects for CW search in the bKAGRA phase.

1 The formal name is Large-scale Cryogenic Gravitational-wave Telescope (LCGT).
2 The technology for underground and cryogenic operation has been tested by Cryogenic Laser Inter-

ferometer Observatory (CLIO) detector that is a prototype detector for KAGRA [126].
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4.1 Detector

4.1.1 Detector configuration

The initial KAGRA, so-called iKAGRA, consists of a Michelson interferometric GW de-

tector with its arm length of 3 km as shown in Fig. 4.1. The interferometer was constructed

in underground at Kamioka Mine in Gifu Prefecture. The underground observation is ex-

pected to mitigate seismic noise and make it possible for the detector to operate in both

quiet and stable environment. Figure 4.1 shows a simple schematic view of the iKAGRA

configuration [127, 128]. The laser with 2 W power at a wavelength of 1064 nm is used

as an input laser beam. The input laser beam passes through an input mode cleaner

(IMC) composed of three mirrors (MCi, MCe, and MCo) in order to filter out higher-

order spatial modes of the laser beam and stabilize laser light frequency. Power recycling

(PR) mirrors are installed to broaden the input beam waist and adjust its direction. The

input beam is split into two orthogonal beams by the central beam splitter (BS). After

bouncing at the end mirrors (ETMX and ETMY), the two beams are recombined at the

BS and return to the laser system. An input Faraday isolater (IFI) is placed between the

IMC and the BS for optical isolation of the laser system from the interferometer. The IFI

prevents the reflected light from returning into the laser cavity and change its direction.

The recombined beam are detected at a photo-detector (PD) that is placed in the direc-

tion away from the laser system3. Temporal change of difference in the arm lengths due

to the passage of a GW is read out at the PD by means of optical interference effects.

4.1.2 Observation

The iKAGRA operated for about three weeks between March and April in 2016. The

observation run of the iKAGRA is divided into two phases, the first run in March and

the second run in April. The first run took place during a week between March 25, 17:00

JST and March 31, 17:00 JST (from 1142928017 to 1143446417 in GPS time). After the

commissioning in the first week of April, the second run was conducted between April 11,

9:00 JST and April 25, 17:00 JST (from 1144368017 to 1145606417 in GPS time).

Data obtained from interferometric GW detectors are generally stored in the form

of a frame format that is available via the Frame Library Software [129] developed by

LIGO and VIRGO collaborations. A frame is a standard format commonly used in GW

community and records the following information: the GPS start time of the frame,

the time length of the frame, a strain channel corresponding to the main data output

h (t), auxiliary channels that is obtained by monitoring the instruments and the ambient

3 GW signals are usually read out from the PD placed at the anti-symmetric port. In the iKAGRA,
the PD is placed at the symmetric port due to the small space in the anti-symmetric port.
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Figure 4.1: The schematic view of the iKAGRA configuration [127, 128]. The power of
incident laser light is 2 W and its wavelength is 1064 nm. Passing the mode cleaner leads
to fundamental spatial mode of the laser beam by filtering higher order spatial modes.
The three mirrors, IMC, MCi, MCe, and MCo stand for input, end, and output mirrors,
respectively. PR2 and PR3 mirrors are placed to adjust the beam waist.

environment around the interferometer, and so on. The iKAGRA data are stored in 32-sec

frame files each of which is a 16,384 Hz time series. When analyzing for GW detections,

we used post-processed data (proc data) that contains mainly a strain channel and data

quality flags. The flags give us useful information on the detector state for GW data

analysis. In the iKAGRA data, data quality is categorized into the following three types

based on the auxiliary channels [130]:

Category A checks whether the interferometer is locked or not by using four auxiliary

channels.

Category B is a lock flag obtained from the state machine automation platform Guardian

[131].

Category C checks values of feedback signals.

Strain data are sampled at a rate of 16,384 Hz, whereas data quality flags consist of a

1 Hz time series.

Figure 4.4 (a) shows the number of frame files from the iKAGRA as a function of

date. The red colored histogram represents the total number of the frame files in a day.

Among them, available data for GW analysis whose flags indicate data as good states

are represented by the blue colored histogram. The ratio of the good state data to the

total data is shown in Fig. 4.4 (b). As can be seen in these figures, the observation run in
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April is more stable than that in March. In fact, the Michelson interferometer in March

lost lock about every 30 minutes because tidal forces induced by the Moon and the Sun

exerted on the end mirrors. This caused the saturation of feedback signals in the actuation

range. The total locked time and the longest locked time in the first run are 129.5 hours

and 3.6 hours, respectively. Thanks to the updates during the commissioning, the total

locked time and the longest locked time in the second run are 257.7 hours and 21.3 hours,

respectively. The fraction of the available frame data on April 16 is only 30% and are very

few compared with other days. This is because the main shock of the 2016 Kumamoto

earthquakes occurred at 1:25 JST on April 16 in Kumamoto Prefecture.

The measured GW strain-equivalent noise level, or sensitivity is depicted in Fig. 4.3.

The red and blue region describe the sensitivity estimated from data collected in March

and April, respectively. The solid lines represent the median sensitivity during the

observation. The shaded zones represent the sensitivities between the 5th and 95th

percentile. Since the April run is stable, the red-shaded zone is almost invisible in

this figure. Typically, the strain sensitivities in March and April at f = 200 Hz are√
Sn (f) ∼ 2× 10−15 Hz−1/2 and 2× 10−16 Hz−1/2, respectively. The sensitivity is limited

by seismic noise below 4 Hz, ADC noise above 3 kHz, and acoustic noise at around 100 Hz.

The summary table of the iKAGRA observation is found in Table 4.1.

Observation period (GPS) Nframes NSFTs Best sensitivity (Hz−1/2)

First run 1142928017 – 1143446417 3,535 62 6.92 × 10−16

Second run 1144368017 – 1145606417 28,438 504 1.03 × 10−16

Table 4.1: Summary table of the iKAGRA observation. Nframes and NSFTs are the total
number of frame files and SFT files available for CW analysis, respectively. The fifth
column represents the best median value of the sensitivity for the first run and the second
run.

4.2 SFT

4.2.1 SFT

In the frequency domain analysis, time series x (t) data are broken up into smaller seg-

ments, followed by windowing of each segment with the Tukey window function w (t)

defined by Eq. (3.32). Then, each segment are converted into the frequency domain by

the discrete Fourier transform:

x̃α,k = ∆t
M∑

j=1

wjxα,je
−2πijk/M , (4.1)
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Figure 4.2: Left panel: Histogram of the number of frame files from the entire observation
run as a function of date. The red filled area represents the total number of the frame
files we obtained. The blue filled represents the total number of the frame files that are
good state. Right panel: Fraction of available frame files as a function of date. Since the
commissioning started after the March run, there are no frame files during the first week
in April.
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Figure 4.3: The measured GW strain-equivalent noise level of the iKAGRA. The blue and
red lines correspond to the observation run during March (March 25 - March 31, 2016) and
April (April 11 - April 25), respectively. The solid line represent the median sensitivity.
The shaded zone represents the sensitivity between the 5th and 95th percentile. Since the
April run is stable, the red-shaded zone is almost invisible in the above figure.
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where x̃α,k represents the Fourier component in the α-th SFT segment and k-th frequency

bin. This process, referred to as SFT, is required to deal with non-stationarities of the

detector and frequency-shifts caused by the Doppler effects due to the Earth motion. As

discussed in section 3.2.2, the time baseline TSFT is chosen such that the signal frequency

does not shift by more than half a frequency bin during TSFT:

TSFT <

√
1

2

cRE

f0v2
E

' 1.7 × 103 sec

(
1.5 kHz

f0

)1/2

. (4.2)

We set the time baseline of the SFT to be 1,800 seconds in our analysis.

A single SFT segment comprises 1,800-sec contiguous frame data each of which has

32 second length. Figure 4.4 (a) shows the number of the available SFT segments for

GW analysis as a function of date. While 10 SFTs are produced on average in a day in

March, about 30 SFTs are available in a day in April thanks to the updates during the

commissioning. As a result of the SFT process, 29,801 frame files collected in the second

run produced non-overlapping 528 SFTs. This corresponds to the total time baseline of

about 11 days. When we performed the SFT, we employed MakeSFTs code in the LAL.

In our analysis, we used the SFT data obtained only from the second run because there

were insufficient number of SFTs in the first run, and furthermore, the sensitivity in the

first run is much worse than that in the second run as shown in Fig. 4.3.
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Figure 4.4: Left panel: Histogram of the number of available SFT segments as a function
of date. Since the iKAGRA operated very unstably in March due to the tidal effects
caused by the Moon and the Sun, we can use only about 10 SFTs in a day. On the
other hand, in April, the number of available SFTs is about 30 in a day. Right panel:
Cumulative fraction of available SFT segments as a function of date.
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4.2.2 Data selection

Whereas detector noise can be regarded as approximately following Gaussian distribution,

it often shows strong non-Gaussianities due to environment disturbances, which would

degrade the detection power of the F -statistic. SFT segments that contains strong outliers

should be excluded in the analysis. In order to investigate statistical properties of data,

it is useful to introduce a normalized SFT power. The normalized SFT power in the α-th

SFT segment and the k-th frequency bin is defined as

Pα,k ≡ |x̃α,k|2

1

Nband

Nband−1∑
k′=0

|x̃α,k′|2
, (4.3)

where Nband is the number of the frequency bins within the narrow band. In Eq. (4.3), the

numerator represents the power in a single frequency bin, and the denominator represents

the average value of the bin power over the narrow frequency band. It is advisable for

the bandwidth Nband to be taken broader than the frequency shift of putative CW signals

induced by the Doppler effect. If that is the case, Pα,k can be regarded as being dominated

by the detector noise. When the detector noise obeys a Gaussian distribution, Pα,k follows

the F -distribution F (2, 2Nband).

To find SFT segments that contain strong non-Gaussianity, we set a threshold for Pα,k.

If a value of Pα,k is beyond the threshold, we omit the SFT segment containing this Pα,k.

Let NSFT random variables X1, · · · , XNSFT
be distributed according to the F -distribution

as X ∼ F (2, 2Nband). For a given false-alarm rate, we define a probability such that the

maximum value among X1, · · · , XNSFT
exceeds a threshold Pth in the following way:

pFA = Prob [max (X1, · · · , XNSFT
) > Pth] . (4.4)

The right hand side in Eq. (4.4) can be reduced to

Prob [max (X1, · · · , XNSFT
) > Pth] = 1 −

[
F (Pth; 2, 2Nband)

]NSFT

, (4.5)

where F (Pth; 2, 2Nband) denotes the CDF (cumulative distribution function) of F -distribution.

Since the false-alarm rate is usually set to be much smaller than 1, pFA ¿ 1, Eq. (4.5)

can be solved as

Pth ' Nband

[(
NSFT

pFA

)1/Nband

− 1

]
. (4.6)

In our analysis, Nband, NSFT, and pFA are set to be 180, 540, and 0.1%, respectively. The
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resulting threshold of Pth is 13.6 beyond which Pα,k is regarded as following a non-Gaussian

distribution.

Figure 4.5 (a) shows histogram of normalized SFT power over 0.1 Hz frequency band

starting at 225.899 Hz as a representative example. This frequency corresponds to a CW

signal from pulsar J0645+5158. The blue filled area represents the measured value of Pα,k.

If the detector noise in this band is distributed according to the Gaussian distribution,

the histogram is expected to lie on the dotted line. The deviation between the histogram

and the dotted line for large Pα,k indicates small non-Gaussianities in the detector noise.

The mean and variance of Pα,k in this band are 1.07 and 1.24, respectively. The non-

stationarity of the noise is described by the averaged sensitivity over a day shown in

Fig. 4.5 (b). If the noise is completely stationary, the histogram follows the dotted line.

The measured value of the averaged sensitivity varies on a few factors around
√

Sn (f) =

2.9 × 10−16 in this frequency band.
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Figure 4.5: Left panel: Histogram of normalized SFT power over 180 frequency bins
around f = 225.899 Hz corresponding to a CW signal from pulsar J0645+5158. In the
case that detector noise is pure Gaussian noise, the normalized power is expected to obey
F -distribution. In other words, the histogram lies on the straight line. The deviation
between the histogram and the dotted line indicates the existence of non-Gaussian noise.
Right panel: Strain sensitivity averaged over a day at around f = 225.899 Hz during the
April run. The dotted line is the averaged value of the strain sensitivity.

4.3 Data analysis

4.3.1 Seach method

In our analysis, we use calibrated strain data x (t) that pass all the aforementioned data

quality check criteria. The strain data is expressed as a putative CW signal s (t) with
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additive detector noise n (t):

x (t) = n (t) + s (t;A, λ) , (4.7)

s (t;A,λ) = F+ (t; n̂, ψ) A+ cos Φ (t; λ) + F× (t; n̂, ψ) A× sin Φ (t; λ) , (4.8)

where F+,× and A+,× denote detector antenna patterns and CW amplitudes corresponding

to +,× modes, respectively. The Doppler parameter λ is comprised of the sky position n̂,

the spin frequency f , and the spin-down parameters ḟ , f̈ , · · · . When we search for CWs

from known pulsars, these Doppler parameters are already measured by EM observations

in advance. In contrast, the amplitude parameters A are the collection of four unknown

parameters: the amplitude of the CW, h0, the inclination angle, ι, the polarization phase,

ψ, and the initial phase, φ0. The signal strength is characterized by

h0 =
4π2G

c4d
εIzzf

2
0 , (4.9)

where d, Izz, and ε are the distance to the source, the moment of inertia, and the ellipticity,

respectively. In the case of a targeted search, we can estimate the theoretically expected

upper limit on h0 as

〈h0〉pFD=10%
pFA=1% ' 11.4

√
Sn (fsig)

Tobs

= 1.17 × 10−18

( √
Sn (fsig)

10−16 Hz−1/2

) (
11 days

Tobs

)1/2

, (4.10)

where a false-alarm rate and a false-dismissal rate are set to be 1% and 10%, respectively.

Our analysis pipeline for CWs from known isolated pulsars is based on the F -statistic

method. In this method, there is no search parameter because the four unknown pa-

rameters A = {h0, ψ, cos ι, φ0} are projected out in the process of maximization of the

log-likelihood ratio over A:

2F (x, λsig) ≡ max
Aµ

[2 ln Λ (x;Aµ,λsig)] . (4.11)

The SNRs are related to the F -statistic by E [2F ] = 4 + (S/N)2. Also, the threshold for

the F -statistic can be related to a false alarm probability pFA by Eq. (2.50a). When the

false alarm probability is set to be 1%, the threshold of F -statistic is estimated to be

2Fthr = 13.3 in the case of Gaussian noise. We make use of ComputeFstatistic v2

code in the LAL to evaluate a F -statistic value of each known pulsars.

Schematic view of the entire search pipeline for known pulsars are given in Fig. 4.6.

First, we create 1,800-sec SFT segments from the set of contiguous frame files. Second,

we compute F -statistic coherently from the all the SFT segments. Then, the measured

values of 2F are compared with the threshold of the detection statistic. If the measured
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value is above the threshold, we regard it as the signal candidate. If not, we proceed to

set an upper limit on the strength of the signal.

Figure 4.6: Entire search pipeline for known pulsars.

4.3.2 Results

If the data is consistent with stationary Gaussian noise, 2F is distributed according to χ2

distribution with four degrees of freedom. In order to investigate the actual PDF for the

2F , we compute the F -statistics from the SFT segments within a narrow frequency band

because the computed 2F from noise at the nearby frequency can be regarded as different

realizations of the same random process. Figure 4.7 represents probability distribution

of the F -statistics over 0.1 Hz band at around f = 225.899 Hz. This GW frequency

corresponds to PSR J0645+5158 and its 2F is 2.10. The blue-filled area represents the

measured values and the dotted line represents the PDF in the case of stationary Gaussian

noise. As can be seen in this figure, the two lines agree well with each other with the

exception of large values of 2F . Since the small non-Gaussianities exist in the data, the

deviation between the measured histogram and the dotted line appears for large 2F as in

the right panel of Fig. 4.7. The threshold of the F -statistic can be set by the false-alarm

rate. We set the false-alarm rate to be 1%. In this case, the threshold 2Fthr corresponds

to the 99th percentile of the probability distribution in Fig. 4.7. For PSR J0645+5158,

2Fthr = 13.50.

Figure 4.8 (a) shows the measured value of 2F for 63 known isolated pulsars whose spin

frequencies range between 50 and 1,000 Hz. Green dots represent the thresholds of 2F
that are derived from the actual probability distribution based on the iKAGRA data. The
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Figure 4.7: Probability distributions of the F -statistic over 0.1 Hz band at around f =
225.899. The right panel is identical to the left panel apart from the scale of the vertical
axis and the range of the horizontal axis. The blue shaded areas in both panels represent
histograms obtained from the observations. In each panel, a dotted line represents a
central χ2 distribution with four degrees of freedom. When the data is dominated by
Gaussian noise, the histogram obeys the dotted line.

thresholds are at around 13. This is because if noise obeys a Gaussian distribution, 2Fthr =

13.3 for pFA = 1%. Because all the computed values of 2F fall below the predetermined

threshold, we conclude that there is no significant candidate in our data. The left panel in

Fig. 4.8 represents the upper limits on h0 with a 95% confidence level. The upper limits

are of the order of 10−18. The most stringent upper limit is h0 ∼ 7.5× 10−19 at 460.17 Hz

from PSR J0024-7204L.
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Figure 4.8: The left panel represents the observed value of the F -statistic for each pulsar.
Each green dot corresponds to the data-derived threshold of the F -statistic for each pulsar.
All the measured values of 2F fall below the thresholds. The right panel represents the
upper limits on the signal strength with a 95% confidence level. The most stringent upper
limit is h0 ∼ 7.5 × 10−19 at 460.17 Hz from PSR J0024-7204L.

From Eq. (2.11b), the upper limits on h0 can be also interpreted as the upper limits on
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the ellipticity assuming I = 1038 kg m2, where I denotes the NS’s moment of inertia:

ε =
c4d

16π2GIf 2
gw

h0. (4.12)

The results are shown in Fig. 4.9 (a). All the upper limits are above unity. The most

stringent upper limit is 3.0 at 819.9 Hz correpoding to J1658-5324. The spin-down ratio

which is defined as h95%
0 /hsd

0 is given in Fig. 4.9 (b). The lowest value of the spin-down

ratio is 6.0 × 106 corresponding to J0534+2200 (Crab pulsar).

All the results we obtained are summarized in Table 4.2. Each column corresponds

to pulsar name, GW frequency which is twice the spin frequency, the spin-down rate,

the distance to the pulsar, the spin-down limit, the observed 2F value, the data-derived

threshold 2Fthr, and upper limit on h0 with a 95% confidence level, respectively. The

values of frot, ḟrot, and d are taken from the ATNF catalogue [15]. The upper limits

have a systematic error of about 20% due to detector calibration [132]. For pulsars with

ḟrot > 0, the spin-down rates are calcurated under the assumption of a characteristic

pulsar age of 109 year by Eq. (2.1).
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Figure 4.9: Left panel represents the upper limits on ellipticities of NSs assuming I = 1038

kg m2. The right panel represents the spin-down ratios. The lowest value of the spin-down
ratio is 6.0 × 106 corresponding to J0534+2200 (Crab pulsar).

Table 4.2: Upper limits on GW amplitude for known

isolated pulsars.

Pulsar fgw ḟrot d hsd
0 2F 2Fthr h95%

0

(Hz) (Hz s−1) (kpc)

J0024-7204C 347.41 1.5 × 10−15 4.0 1.1 × 10−27 3.35 13.40 2.4 × 10−18

J0024-7204D 373.30 1.1 × 10−16 4.0 1.1 × 10−27 8.98 13.34 5.2 × 10−18
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Table 4.2: Upper limits on GW amplitude for known

isolated pulsars.

Pulsar fgw ḟrot d hsd
0 2F 2Fthr h95%

0

(Hz) (Hz s−1) (kpc)

J0024-7204F 762.31 −9.3 × 10−15 4.0 9.9 × 10−28 6.37 13.31 1.7 × 10−17

J0024-7204G 495.00 2.5 × 10−15 4.0 1.1 × 10−27 1.38 13.35 1.7 × 10−18

J0024-7204L 460.17 6.4 × 10−15 4.0 1.1 × 10−27 0.81 13.30 7.4 × 10−19

J0024-7204M 543.97 2.8 × 10−15 4.0 1.1 × 10−27 1.11 13.43 2.3 × 10−18

J0024-7204N 654.88 2.3 × 10−15 4.0 1.1 × 10−27 5.06 13.38 2.8 × 10−18

J0030+0451 411.06 −4.2 × 10−16 0.3 3.8 × 10−27 2.21 13.37 3.9 × 10−18

J0534+2200 59.89 −3.7 × 10−10 2.0 1.4 × 10−24 2.32 13.37 8.6 × 10−18

J0537-6910 124.05 −1.9 × 10−10 49.7 2.9 × 10−26 4.26 13.35 9.1 × 10−18

J0645+5158 225.89 −6.2 × 10−17 0.7 7.8 × 10−28 2.10 13.50 1.9 × 10−18

J0711-6830 364.23 −4.9 × 10−16 1.0 1.2 × 10−27 2.35 13.40 1.8 × 10−18

J0931-1902 431.21 −1.9 × 10−16 3.6 2.0 × 10−28 9.06 13.34 7.5 × 10−18

J1024-0719 387.43 −6.9 × 10−16 1.1 1.3 × 10−27 10.29 13.40 4.0 × 10−18

J1038+0032 69.32 −8.0 × 10−17 2.3 5.1 × 10−28 2.32 13.53 1.0 × 10−17

J1103-5403 589.49 −3.2 × 10−16 3.1 2.6 × 10−28 7.54 13.58 4.7 × 10−18

J1400-6325 64.14 −4.0 × 10−11 7.0 1.2 × 10−25 5.59 13.33 1.1 × 10−17

J1453+1902 345.28 −3.4 × 10−16 0.9 1.2 × 10−27 5.01 13.38 3.1 × 10−18

J1518+0204A 360.12 −1.3 × 10−15 8.0 2.7 × 10−28 1.30 13.19 1.6 × 10−18

J1552-4937 318.25 −4.8 × 10−16 3.3 4.1 × 10−28 5.39 13.43 1.7 × 10−17

J1629-6902 333.3 −2.7 × 10−16 1.3 7.6 × 10−28 1.44 13.48 1.4 × 10−18

J1658-5324 819.90 −1.8 × 10−15 1.2 1.3 × 10−27 2.05 13.23 1.7 × 10−18

J1721-2457 571.97 −4.5 × 10−16 1.5 6.5 × 10−28 1.64 13.24 3.3 × 10−18

J1725-3853 417.37 −2.2 × 10−15 3.4 7.6 × 10−28 2.19 13.39 8.3 × 10−18

J1730-2304 246.22 −3.0 × 10−16 0.6 2.0 × 10−27 9.17 13.35 2.8 × 10−18

J1744-1134 490.85 −5.3 × 10−16 0.4 2.9 × 10−27 4.23 13.41 7.0 × 10−18

J1748-2021C 321.18 1.5 × 10−15 8.2 5.5 × 10−28 1.86 13.41 3.6 × 10−18

J1748-2021E 122.97 −1.1 × 10−15 8.2 4.2 × 10−28 3.49 13.61 9.5 × 10−18

J1748-2446C 237.07 8.5 × 10−15 5.5 8.2 × 10−28 5.98 13.41 3.1 × 10−18

J1750-3703C 75.27 1.4 × 10−15 13.8 3.2 × 10−28 8.32 13.22 8.9 × 10−18

J1750-3703D 389.11 −1.8 × 10−14 13.8 5.7 × 10−28 1.38 13.37 3.1 × 10−18

J1757-27 113.07 −6.7 × 10−16 5.4 5.1 × 10−28 7.62 13.50 4.3 × 10−17

J1801-0857A 278.72 9.9 × 10−15 7.2 6.3 × 10−28 8.76 13.45 4.6 × 10−18

J1801-0857C 534.94 4.6 × 10−15 7.2 6.3 × 10−28 2.27 13.50 4.6 × 10−18
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Table 4.2: Upper limits on GW amplitude for known

isolated pulsars.

Pulsar fgw ḟrot d hsd
0 2F 2Fthr h95%

0

(Hz) (Hz s−1) (kpc)

J1801-0857D 473.20 −3.9 × 10−16 7.2 1.4 × 10−28 10.95 13.37 1.8 × 10−17

J1801-1417 551.70 −4.0 × 10−16 1.8 5.4 × 10−28 1.61 13.35 2.3 × 10−18

J1821+0155 59.20 −2.5 × 10−17 2.2 3.2 × 10−28 5.92 13.44 1.9 × 10−17

J1823-3021A 367.64 −1.1 × 10−13 12.1 1.6 × 10−27 10.25 13.34 5.9 × 10−18

J1824-2452A 654.81 −1.7 × 10−13 5.5 3.3 × 10−27 2.26 13.34 1.7 × 10−18

J1832-0836 735.53 −1.1 × 10−15 1.4 1.0 × 10−27 1.62 13.24 1.8 × 10−18

J1836-2354B 618.75 4.6 × 10−17 3.2 1.4 × 10−27 1.06 13.54 7.7 × 10−19

J1843-1448 365.54 −2.0 × 10−16 3.4 2.5 × 10−28 3.27 13.57 1.8 × 10−18

J1904+0451 328.28 −1.5 × 10−16 3.9 1.9 × 10−28 1.97 13.48 2.5 × 10−18

J1905+0400 528.48 −3.4 × 10−16 1.3 6.9 × 10−28 1.49 13.50 4.9 × 10−18

J1910-5959B 239.29 1.1 × 10−14 2.1 2.1 × 10−27 4.87 13.39 1.6 × 10−18

J1910-5959C 378.98 −7.7 × 10−17 2.1 2.3 × 10−28 4.33 13.36 2.8 × 10−18

J1910-5959D 221.35 −1.1 × 10−14 2.1 3.8 × 10−27 1.40 13.34 1.7 × 10−18

J1910-5959E 437.46 2.0 × 10−14 2.1 2.1 × 10−27 2.07 13.51 7.4 × 10−18

J1911+0101B 371.44 6.9 × 10−17 9.5 4.7 × 10−28 4.68 13.42 3.0 × 10−18

J1911+1347 432.34 −8.0 × 10−16 1.6 9.6 × 10−28 3.71 13.35 7.6 × 10−18

J1913+1011 55.69 −2.6 × 10−12 4.4 5.5 × 10−26 1.67 13.41 3.1 × 10−17

J1923+2515 527.96 −6.5 × 10−16 0.9 1.2 × 10−27 9.30 13.27 1.5 × 10−17

J1944+0907 385.71 −6.3 × 10−16 1.2 1.1 × 10−27 7.76 13.33 5.3 × 10−18

J1944+2236 552.79 −5.7 × 10−16 8.4 1.3 × 10−28 1.16 13.34 2.5 × 10−18

J1955+2527 410.44 −3.8 × 10−16 9.0 1.2 × 10−28 3.03 13.31 7.0 × 10−18

J2007+2722 81.64 −1.6 × 10−15 6.8 7.3 × 10−28 0.98 13.26 2.9 × 10−18

J2010-1323 382.90 −1.7 × 10−16 1.2 6.0 × 10−28 11.41 13.35 4.2 × 10−18

J2124-3358 405.58 −8.4 × 10−16 0.4 4.0 × 10−27 6.12 13.34 8.8 × 10−18

J2129+1210D 416.42 4.6 × 10−13 12.9 3.5 × 10−28 2.36 13.56 1.0 × 10−17

J2129+1210F 496.64 −2.0 × 10−15 12.9 1.7 × 10−28 1.05 13.37 2.1 × 10−18

J2129+1210G 53.10 −1.4 × 10−15 12.9 4.5 × 10−28 0.98 13.29 6.9 × 10−18

J2129+1210H 296.58 −5.3 × 10−16 12.9 1.1 × 10−28 8.86 13.26 3.4 × 10−18

J2322+2057 415.93 −4.1 × 10−16 0.7 1.4 × 10−27 1.82 13.41 7.2 × 10−18

Notes: The upper limits h95%
0 entail detector calibration errors about 20% [132]. For pulsars with

ḟrot > 0, the spin-down rates are estimated under the assumption of a characteristic pulsar age of
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109 year by Eq. (2.1). The pulsar’s spin frequencies, spin-down rates, and the distances are taken
from the ATNF catalogue [15].

4.4 Future prospects

Figure 4.10 shows bKAGRA sensitivity and amplitudes of CW signals from 220 known iso-

lated pulsars in the case of one-year observation. The solid line is calculated by Eq. (4.10)

assuming VRSE configuration for bKAGRA [133]. Spin-down limits for known isolated

pulsars given in Eq. (2.57) are represented by dots in this figure. The dots that exceed the

solid line correspond to detectable signal candidates because thier spin-down rates cannot

be explained only by the loss of GW radiations. As can be seen in Fig. 4.10, strength of

GW signals from young pulsars in lower-frequency region is likely to be constrained more

strictly than millisecond pulsars in spite of the fact that h ∝ f 2
0 (see Eq. (4.9)). This can

be traced to the fact that young pulsars are likely to have larger spin-down rates. The

panels (a) and (b) of Fig. 4.11 represent pulsar distributions for spin-down ratios and up-

per limits on ellipticities that we will obtain in bKAGRA observations. About 50 pulsars

with 2frot > 10 Hz would emit GWs strong enough to beat the spin-down limits. The

panel (b) of Fig. 4.11 indicates that upper limits on ellipticities we would obtain fall much

below the theoretical maximum possible value suggested by Eq. (2.4). It should be noted

that Fig. 4.11 depends on pulsar models. We assume a fiducial moment of inertia of 1038

kg m2. However, actual moments of inertia are theoretically expected to range between

1–3 ×1038 kg m2 when equations-of-state are taken into account [64]. So, these spin-

down limits may increase up to a factor of about 1.7. Distances to pulsars are basically

inferred from radio dispersion measures and are subject to uncertainties uncertainties of

about ±10%. Table 4.3 summarizes seven high interest pulsars whose spin-down ratios

are below 0.1. In particular, spin-down ratios of Crab (J0534+2200) and Vela (J0835-

4510) pulsars will be beaten significantly by bKAGRA observations although frequencies

around 60 Hz may be contaminated by narrow-band noise due to electrical power supply

system.

4.5 Conclusion

The observation run of the iKAGRA operated for about three weeks in March and April

in 2016. We constructed the analysis pipeline for known isolated pulsars based on the

F -statistic method and investigated performance of our pipeline using the iKAGRA data.

We focused on the data from the second run in April and made use of the 28,438 32-sec

frame files. We produced 504 1,800-sec SFT segments from the contiguous frame files.
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Pulsar fgw ḟrot d hsd
0 hsd

0 /〈h0〉
(Hz) (Hz s−1) (kpc)

J0835-4510 22.38 −1.5 × 10−11 0.2 3.4 × 10−24 0.019
J0205+6449 30.43 −4.4 × 10−11 3.2 4.3 × 10−25 0.076
J1833-1034 32.31 −5.2 × 10−11 4.1 3.5 × 10−25 0.082
J2229+6114 38.74 −2.9 × 10−11 3.0 3.3 × 10−25 0.060
J1813-1749 44.74 −6.3 × 10−11 4.7 2.8 × 10−25 0.052
J0534+2200 59.89 −3.7 × 10−10 2.0 1.4 × 10−24 0.006
J1400-6325 64.14 −4.0 × 10−11 7.0 1.2 × 10−25 0.070

Table 4.3: Seven high interest pulsars whose spin-down ratios fall below 0.1. The moments
of inertia are assumed to be 1038 kg m2.
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Figure 4.10: bKAGRA sensitivity and amplitudes of CW signals from known isolated
pulsars for one-year observation. The solid line is calculated by Eq. (4.10) assuming
VRSE configuration for bKAGRA [133]. The dots represent spin-down ratios for pulsars.
The moments of inertia are assumed to be 1038 kg m2. For pulsars with ḟrot > 0, the
spin-down rates are estimated under the assumption of a characteristic pulsar age of 109

year by Eq. (2.1).
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Figure 4.11: Pulsar distributions for spin-down ratios and upper limits on ellipticities we
would obtain in bKAGRA observations. Spin-down ratios can be estimated by Eq. (2.57).
Ellipticities are related to spin-down ratios by Eq. (4.9).

We computed the F -statistic coherently from the entire observation data and found that

there are no significant candidates in our data. Thus, we put constraints on the over-all

amplitude of GWs and obtained Fig 4.8. The upper limits are of the order of 10−18 which

are consistent with the upper limits estimated from the iKAGRA noise level. The most

stringent upper limit is h0 ∼ 7.5×10−19 at 460.17 Hz corresponding to PSR J0024-7204L.

We confirmed that our search pipeline correctly operates as expected. This search pipeline

will be able to be applied to data from bKAGRA in the near future.
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Chapter 5
χ2 veto for F-statistic-based

semi-coherent search
CWs are considered to be one of the most interesting detectable targets for large-scale

laser interferometric GW detectors such as the advanced LIGO [10], advanced Virgo [11],

KAGRA [12], and LIGO-India [13]. CWs are generated from rapidly rotating neutron

stars due to the non-axisymmetry around their spin axes. Broadly speaking, there exist

two main approaches to search for CW signals. One is the so-called targeted search in

which the source parameters such as sky position α, δ, spin frequency f , and spin-down

rate ḟ are already measured by EM observations. In this case, it is possible to analyze year-

long observation data coherently by the most optimal method known as F -statistic (Sec.

2.3) [57]. The other approach is often referred to as wide-parameter-space search whose

main targets are electromagnetically undiscovered CW sources1. Since the aforementioned

source parameters are unknown completely, it is necessary to explore a wide-parameter-

space characterizing CW signals, in which case the coherent matched-filtering method are

computationally prohibitive (Sec. 2.5.1) [136].

In order to reduce computational burden in wide-parameter-space search, semi-coherent

approach has been developed by many authors [86, 137, 87, 138, 139, 140]. In a hier-

archical semi-coherent search, year-long observation data is split up into segments small

enough to allow us to analyze each segment coherently. Coherent detection statistic called

F -statistic is computed for each coherent segment on a coarse grid of templates. Then,

F -statistic are summed over all the coherent segments incoherently on a common fine

grid. Significant candidates are followed up by fully coherent search using all the obser-

vation data. However, since such wide parameter-space search entails a huge number of

templates, many narrow-band disturbances, or lines agree well with the signal templates

and result in the high SNRs accidentally.

1 Wide-parameter-space search is generally divided into two categories: directed search and all-sky
search. All-sky search aims to detect CWs from undiscovered sources whose parameters are unknown
at all, in which case search parameter space consists of α, δ, f, ḟ , f̈ , · · · . Directed search aims to detect
CWs from unknown pulsars in the direction where CW sources potentially exist, in which case search
parameter space consists of f, ḟ , f̈ , · · · . This search method lies between a targeted search and an all-sky
search. The first directed search has been conducted using LIGO S5 data sets from H1 and L1 detectors,
searching for unknown isolated pulsars in the direction of the Galactic center [134, 135].
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Line cleaning [85, 111, 113] is often used to veto known instrumental lines. The fre-

quency bands contaminated by such instrumental noise artifacts are identified through

detector characterization. On the other hand, many methods for dealing with unknown

lines are proposed. S-veto [85, 109] utilizes such a noise property that signal candidates

stemming from instruments and environment are not subject to frequency modulations

due to the Earth’s rotation and revolution. This method removes the sky regions around

the north and south poles from search parameter space, where noise lines behave as if

they were CW signals. The veto method called line-robust statistics has been recently

proposed by Keitel et al. [141, 142, 143]. Using the Bayesian framework, the authors

constructed the line-robust statistics by introducing an alternative simple line-noise hy-

pothesis in addition to the signal hypothesis HS and the Gaussian-noise hypothesis HG

(Sec. 2.4.4). Since in their works a line is modeled as a CW-like signal which appears only

in a single detector , one of the drawbacks is incapability of rejecting coincident line-noise

events in a multi-detector network.

In this chapter, we introduce a χ2 veto in F -statistic-based semi-coherent search for

unknown CW signals and study its performance. A χ2 veto is widely used in compact

binary coalescence (CBC) search in order to exclude non-Gaussian noise transients which

would produce high SNR accidentally [144, 1]. The key idea of a χ2 veto is that a SNR of

transient noise accumulates with time in a different way from that of a true CBC signal. If

the SNR of the signal candidate builds up in a way that is inconsistent with the expected

CBC signal, the value of χ2 becomes large and indicates that the signal candidate should

be vetoed. A χ2 veto was also applied to a targeted CW search in [145] where line events

are rejected according to the spectral shape of the observed F -statistics around a CW

frequency. A χ2 veto is discussed in the context of Hough transform search [146].

This chapter is organized as follows. In section 5.1, we summarize F -statistic-based

semicoherent search. We give an overview of currently proposed veto methods for wide-

parameter-space search in section 5.2. In section 5.3, we formulate a χ2 veto for F -

statistic-based semicoherent search in the case of equal-SNR time-intervals and validate

it by using simulation data. Then, we test its detection power using actual LIGO data in

section 5.4. A summary follows in section 5.5.

5.1 F-statistic-based semi-coherent search

We will start with summarizing F -statistic-based semi-coherent search. The detection

statistic called F -statistic is widely used to detect a CW signal from an electromagneti-

cally known isolated pulsar. This is a coherent matched filtering based on the maximum

likelihood method, which is known as the most optimal detection statistic from a fre-
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quentist viewpoint [72]. For a stationary Gaussian noise, the likelihood ratio is expressed

as

ln Λ = (x|h) − 1

2
(h|h) , (5.1)

where x and h are the detector output and the CW waveform, respectively. (·|·) appeared

in Eq. (5.1) denotes the noise-weighted inner product defined by

(x|y) = 4Re

∫ ∞

0

x̃ (f) ỹ∗ (f)

Sn (f)
df, (5.2)

where Sn (f) is a one-sided noise power spectral density. The F -statistic is derived by

maximization of the likelihood ratio over amplitude parameters Aµ which consist of the

overall amplitude h0, the inclination ι, the polarization phase ψ, and the initial phase φ0

[57],

2F = max
Aµ

2 ln Λ. (5.3)

The four amplitude parameters are projected out by this process. In the case of an all-

sky search, the parameters to be searched are the remaining phase parameters which are

composed of the sky positions, the frequency, and the spin-down parameters. Even when

we retain the spin-down effects up to the first order, the number of required templates

grows up with coherent-integration time polynomially [77]. Thus, it is computationally

impossible to perform a fully coherent search for year-long data.

A semi-coherent search method mitigates the computational cost by taking a sub-

optimal strategy at the cost of sensitivity. A data set is broken up into Nseg shorter

segments typically of the order of a day or longer. The F -statistics are computed from

each segment and then combined incoherently. The resulting detection statistic is an

average of the F -statistics over Nseg segments,

2F =
1

Nseg

Nseg∑
j=1

2Fj, (5.4)

where the index j stands for the j-th coherent segment. The significant candidates are

followed up by fully coherent search by using the entire observation data.

5.2 Veto method

In this section, we give a brief review of commonly used veto methods in F -statistic-based

semi-coherent search.
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5.2.1 Known lines

Line-cleaning

Line cleaning [85, 111, 113] is used to remove narrow-frequency bands that are known to

suffer from instrumental artifacts, or known lines, because noise lines behave as CW signals

and becomes signal candidates with high SNRs accidentally. Prominent contaminated

frequency bands are often identified by data characterization. According to [113], there

are various line sources including so-called the main lines at the 60 Hz electrical power

supply frequency and its harmonics, calibration lines injected intendedly for the purpose

of calibration, lines at violin-mode frequencies due to wire suspension systems, and 1 Hz

Harmonic, known as 1 Hz combs, caused by control and data acquisition system. In the

cleaning process, contaminated narrow-frequency bands are replaced by white Gaussian

noise whose power spectrum is the same as noise level in the adjacent frequencies.

5.2.2 Unknown lines

S-veto

In the previous LIGO search [85, 109], S-veto has been employed to remove unpredicted

noise lines. The S-veto is based on the fact that instrumental and environmental lines

are not influenced by frequency modulations due to the Earth’s rotation and revolution.

In the process of the S-veto, sky regions around the Earth’s pole are excluded from

search-parameter-space before a search, because such lines are prone to mimic CW signals

incoming from these regions. S-veto was originally used in the context of SFT-based semi-

coherent searches (Sec. 2.5.2) [85]. Pletsch [147] generalized the S-veto to the F -statistic-

based semi-coherent CW search by using global-correlation equations. Time derivative of

Eq. (2.22a) yields

df

dt
=

(
1 +

v (t) · n̂
c

)
˙̂
f + f̂ (t)

a (t) · n̂
c

, (5.5)

where a (t) denotes the acceleration of the detector. The first and second terms in the

right hand side of Eq. (5.5) stems from the NS’s spin down and the Earth’s motion,

respectively. Since signal candidates arising from instrumental and environmental lines

are not subject to the frequency shifts induced by the Earth’s motion, vetoed region is an

annulus in the sky described by∣∣∣∣ ˙̂
f + f̂ (tfiducial)

(Ω × vE) · n̂
c

∣∣∣∣ < ε, (5.6)

where Ω, vE, and ε represents the Earth’s angular velocity vector, the Earth’s orbital

velocity vector, and the parameter originating from the finite resolutions of the parameter
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space. The tolerance parameter ε can be written as

ε =
∆f

Tobs

Ncell, (5.7)

where ∆f, Tobs, and Ncell denote the frequency resolution, the observation time, and the

minimum total number of frequency bins occupied by CW signals, respectively. The sky

region to be excluded is determined by Eq. (5.6). In [85], the fractions of the sky excluded

from the search are about 15% for H1 and 26% for L1. In [109], about 30% of the sky are

excluded.

Permanence veto

Permanence veto is used in semi-coherent searches based on F -statistic [134, 135]. This

method utilizes the fact that strong lines often appear only in a signle coherent segment.

In the process of the permanence veto, the coherent segment containing the strongest

lines is removed. Then, a value of F -statistic is re-computed over the remaining Nseg − 1

coherent segments:

2F+pv ≡ 1

Nseg − 1

Nseg∑
j 6=k

2Fj, (5.8a)

2Fk ≡ max
k′

2Fk′ , (5.8b)

where the k-th segment is assumed to contain the strongest F -statistic value. The new

detection statistic 2F+pv is compared with the threshold. If the measured value of 2F+pv

falls below the predetermined threshold, the signal candidate is regarded as arising from

noise lines. The main draw-back of the permanence veto is not being able to treat noise

lines appearing in two or more coherent segments.

Line-robust statistics

As discussed in Sec. 2.4.4, the F -statistic can be formulated by the posterior odds ratio

between the Gaussian-noise hypothesis HG and the signal hypothesis HS in the Bayesian

framework. The F -statistic can be used to decide which hypothesis agrees better with

observation data. Hence, there is a possibility that noise lines produce a large value of

F -statistic even if it does not resemble a CW signal model. In order to deal with this

problem, Keitel et al. [141, 142, 143] introduced the additional hypothesis that formulates

line as

HL ≡
Ndet∨
X=1

(
HX

L

∧
Y 6=X

HY
G

)
, (5.9a)
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HX
L : xX (t) = nX (t) + sX

(
t;AX

)
, (5.9b)

where HX
L is a hypothesis stating a CW-like line in a detector X. The simple line hypotheis

HL assumes that only a single detector X contains a CW-like line and any other detectors

Y (6= X) are comprised of pure Gaussian noise. Since the Gaussian noise hypothesis HG

and the simple line hypothesis HL are mutually exclusive, the noise hypothesis can be

extended as HGL ≡ HG ∨ HL. A new detection statistic, which is called a line-robust

statistic, is constructed from a posterior odds ratio between the extended noise hypothesis

HGL and the signal hypothesis HS,

OS/GL (x) ≡ P (HS|x)

P (HGL|x)
=

[
O−1

S/G (x) + O−1
S/L (x)

]−1

, (5.10)

where P (HGL|x) = P (HG|x) + P (HL|x). Computing OS/G (x)2 and OS/L (x)3 gives rise

to the concrete expression for the line-robust statistic,

OS/GL (x) = oS/GL
eFtot(x)

(1 − pL) eNsegF(0)
∗ +

∑
X

pX
L eF

X(xX)
, (5.14a)

pL ≡ P (HL|HGL) =
P (HL)

P (HGL)
=

oL/G

1 + oL/G

, (5.14b)

pX
L ≡ P

(
HX

L |HGL

)
=

P
(
HX

L

)
P (HGL)

=
oX
L/G

1 + oX
L/G

, (5.14c)

where c∗ is reparameterized as F (0)
∗ ≡ ln c∗. The line-robust statistic BS/GL depends on

Ndet free prior parameters to be specified, F (0)
∗ and pX

L . The line priors pX
L are estimated

by reference to normalized average SFT powers for each detector. The prior F (0)
∗ that

arises from the amplitude-prior cutoff shown in Eq. (2.61) determines a transition scale

2 Using a similar calculation to Eq. (2.61), the posterior odds between HG and HS in the case of
semicoherent methods can be calculated as

OS/G (x) = oS/Gc
−Nseg
∗ eFtot(x) (5.11)

where Ftot denotes the sum of the F-statistics.
3 The posterior probability for HX

L shown in Eq. (5.9b) is expressed as

P
(
HX

L |xX
)

= oX
L/Gc

−Nseg
∗ eF

X(xX)P
(
HX

G |xX
)

(5.12)

So, the posterior probability for the simple line hypothesis defined by Eq. (5.9a) is calculated as

P (HL|x) =
∑
X

P
(
HX

L |xX
) ∏

Y 6=X

P
(
HY

G|xY
)

= P (HG|x) c
−Nseg
∗

∑
X

oX
L/GeF

X(xX), (5.13a)

oL/G ≡ P (HL)
P (HG)

=
∑
X

oX
L/G. (5.13b)
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between OS/G (x) and OS/L (x) (see [141] for further discussion). The main draw-back of

the line-robust statistic is not being able to handle coincident lines appearing in multiple

detectors by its definition. Also, the line-robust statistic is not applicable to a single

detector case.

5.3 The χ2 veto in equal-SNR time intervals

As discussed in Sec. 2.3, the F -statistic is known to be the most optimal detection statistic

under ideal Gaussian noise background. However, non-Gaussian noise frequently appears

in actual data output, which would degrades the detection efficiency. In particular, the

F -statistic is susceptible to narrow-band disturbances called lines which would lead to

a high false-alarm rate. Furthermore, the detection statistic 2F composed of the F -

statistics could yield a large value beyond a detection threshold even when lines with high

amplitudes appear in a few segments in the absence of a CW signal. This is because

SNR consistency across the different coherent segments is not taken into account in the

2F -statistic.

In this section, we construct χ2 discriminator by focusing on SNR contained in each

segment. A CW signal contributes to a SNR at a constant rate apart from amplitude

modulation whereas a SNR arising from lines is expected to accumulate in a much different

way from a CW signal. The χ2 discriminator is designed to test the SNR consistency

between the different segments.

5.3.1 χ2 discriminator

We will start with putting some simplifying assumptions to be familiar with a χ2 discrim-

inator in a F -statistic-based semi-coherent search. First, noise levels are set to be the

same for each coherent segment longer than 24 hours. Second, each coherent segment has

the same length. Third, a template is assumed to be perfectly matched with a true CW

signal. Fourth, each segment is not overlapped. The first three assumptions are eventually

relaxed later on in this chapter. From these assumptions, the F -statistic computed from

each segment can be approximately regarded as independent and identically distributed

random variables. As explained in Appendix B, the expectation value and variance of the

F -statistic in the j-th segment are expressed by

〈2Fj〉 = 4 + ρ2
j , (5.15a)

σ2
2Fj

= 4
(
2 + ρ2

j

)
, (5.15b)
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where the angle bracket 〈· · · 〉 denotes the ensemble average and ρj denotes the SNR in the

j-th segment. Thanks to the aforementioned assumptions, the observed SNR contained

in each segment is expected to take the same value.

Next, we consider statistical properties of the incoherent sum of the F -statistics over

all the coherent segments:

Ftot ≡
Nseg∑
j=1

Fj, (5.16)

in order to prepare for a χ2 discriminator. In the presence of a CW signal with total SNR

of ρtot in stationary Gaussian noise, 2Ftot obeys a non-central χ2 distribution with 4Nseg

degrees of freedom and non-centrality ρ2
tot, where ρ2

tot ≡ Nsegρ
2
j . So, 2Ftot satisfies

〈2Ftot〉 = Nseg

(
4 + ρ2

j

)
, (5.17a)

σ2
2Ftot

= 4Nseg

(
2 + ρ2

j

)
. (5.17b)

The total value of the F -statistics can be decomposed into the following form:

F2
tot =

Nseg∑
j=1

F2
j +

Nseg∑
j=1

Nseg∑
k=1 6=j

FjFk, (5.18)

where the second term represents the sum of the product FjFk over the different indices.

Since the detector noise in the different segments are regarded as independent of each

other, the relation 〈FjFk〉 = 〈Fj〉〈Fk〉 is satisfied. Also, since the expection value of

Fj takes the same value for all the segments thanks to the aforementioned assumptions,

〈Fj〉 = 〈Fk〉 is satisfied for any set of j and k. Combining these two equations, we obtain

〈F2
tot〉 = Nseg〈F2

j 〉 + Nseg (Nseg − 1) 〈Fj〉2

= Nseg

(
1 + ρ2

j

)
+ N2

seg

(
1 +

1

2
ρ2

j

)
. (5.19)

This is consistent with Eqs. (5.17a) and (5.17b). In a similar way, 〈FjFtot〉 is calculated

as

〈FjFtot〉 = Nseg

(
1 +

1

2
ρ2

j

)2

+
(
1 + ρ2

j

)
. (5.20)

Next, we define ∆Fj as the difference between measured value of F in the j-th segment
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and the expected value of F in the j-th segment inferred from the measured value of Ftot,

∆Fj ≡ Fj −
1

Nseg

Ftot. (5.21)

The expectation value and variance of ∆Fj are given by

〈∆Fj〉 = 0, (5.22a)

〈(∆Fj)
2〉 =

(
1 − 1

Nseg

)
σ2
Fj

, (5.22b)

where we made use of Eqs. (5.19) and (5.20). When CW signals with additive Gaus-

sian noise exist in the j-th segment, ∆Fj takes zero expectation value as indicated by

Eq. (5.22a). On the other hand, in the presence of non-Gaussian noise in the j-th segment,

∆Fj takes non-zero expectation value. Thus, the sum of (∆Fj)
2 over all the segments

can be regarded as the measure to distinguish CW signals from non-Gaussian noises.

Motivated by this fact, we define a χ2 discriminator as

χ̄2 ≡ Nseg

σ2
Ftot

Nseg∑
j=1

(∆Fj)
2 =

Nseg∑
j=1

∣∣2Fj − 2F
∣∣2

σ2
2Ftot

/Nseg

. (5.23)

After a simple calculation, the expectation value and variance of χ̄2 are calculated as

〈χ̄2〉 = Nseg − 1, (5.24a)

σ2
χ̄2 =

Nseg − 1

Nseg

[
2 (Nseg − 1) +

(
N2

seg − 3Nseg + 3
)
β2Ftot

]
, (5.24b)

respectively, where β2Ftot denotes the kurtosis of 2Ftot defined by Eq. (B.6d) (see Appendix

E). It should be noted that the mean of χ̄2 depends only on the number of the coherent

segments, whereas the variance depends not only on the number of the segments but also

on the total SNR through the kurtosis β2Ftot . This dependence differs from the original

χ2 discriminator introduced in Ref. [144]. For large values of Nseg, σ2
χ̄2 approaches to

2 (Nseg − 1) and the χ̄2 discriminator approximately obeys a χ2 distribution with Nseg −1

degrees of freedom. This fact can be traced to the central limit theorem. The probability

distribution function (PDF) of 2F approaches to a Gaussian distribution as the number

of segment Nseg increases. In this situation, we can directly reuse the result of [144]

which indicates that the χ2 discriminator composed of Nseg segments is distributed as a

χ2 distribution with Nseg − 1 degrees of freedom.

77



5 χ2 veto for F -statistic-based semi-coherent search

5.3.2 The threshold of χ2 discriminator

As explained in the previous subsection, the χ2 discriminator can be used to discriminate

whether signal candidates with large values of 2F arise from line-noise events or not. CW

signals with additive Gaussian noise are expected to have χ̄2 of Nseg−1 on the average from

Eq. (5.24a), whereas lines are expected to have large values of χ̄2 compared with Nseg−1.

Signal candidates which exceed a certain threshold of χ̄2 should be rejected. The threshold

can be determined by Monte-Calro simulations for a given number of coherent segments

Nseg. In the left panel of Fig. 5.1, we depict a threshold of χ̄2 in the case of Nseg = 100

as a function of 2F , where 2F ≡ 2Ftot/Nseg. Four curves in this figure correspond to

different false dismissal probabilities for the Gaussian noise, pFD = 10−1, 10−2, 10−3, and

10−4, respectively. The threshold weakly depends on 2F because the variance of χ̄2 is

related to the kurtosis of Ftot in Eq. (5.24b). As opposed to [144], the threshold decreases

as the expected SNR becomes large. This fact indicates that more significant lines are

rejected more easily. The right panel of Fig. 5.1 shows the threshold of χ2 as a function

of pFD for different values of 2F .
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Figure 5.1: Left panel: Threshold of χ2 as a function of 2F in the case of Nseg = 100. Four
curves correspond to different false dismissal probabilities for the Gaussian noise, pFD =
10−1, 10−2, 10−3, and 10−4, respectively. If a signal candidate exceeds the corresponding
threshold for a given pFD, it should be regarded as an outlier. Right panel: The threshold
of χ2 as a function of pFD in the case of Nseg = 100. Three curves correspond to 2F = 5, 6,
and 7, respectively.

5.3.3 Validation

To see whether or not χ2 discriminator works effectively, we generate Gaussian noise

background and inject CW-like lines into NL segments among the whole segments using

the Makefakedata v4 code in the LAL. The amplitudes of the injected lines are set

such that 2F ranges between 5 and 10 uniformly. After 10,000 injections, we obtain

Fig. 5.2, where fL is the fraction of the injected lines defined as fL ≡ NL/Nseg. The
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Figure 5.2: Measured values of χ2 as a function of 2F for 10,000 injections into Gaussian
noise background. The dotted line represents the threshold of χ2 for pFD = 1%. The
panels (a), (b), (c), and (d) correspond to injections of CW signals, injected CW-like lines
with fL = 0.01, 0.02, and 0.03, respectively.
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dotted line corresponds to the threshold of χ2 for pFD = 1%. Panel (a) in Fig. 5.2

depicts the measured values of χ2 for each trial. As expected, the points are scattered

about the solid line corresponding to Eq. (5.24a). The other panels (b), (c), and (d) in

Fig. 5.2 represent the measured values of χ2 for lines with fL = 1, 2 and 3, respectively.

The χ2 values far exceed the threshold, which indicates that lines under Gaussian noise

background would be vetoed easily.

Next, we perform injection tests to find detection efficiencies for the three statistics

{2F , 2F+pv, 2F+χ2}, where 2F+χ2 statistic is defined as a value of F -statistic after the

χ2 veto:

2F+χ2 =

2F χ2 < χ2
thr

(
2F , pFD

)
.

0 otherwise.
(5.25)

We inject CW signals into white Gaussian noise background using the Makefake-

data v4 code. The injected parameters are chosen so that angular parameters {α, δ, cos ι, ψ}
are uniformly distributed in the range α ∈ [0, 2π] , δ ∈ [−π/2, π/2] , cos ι ∈ [−1, 1], and

ψ ∈ [0, 2π]. The signal frequency is assumed to obey a uniform distribution on the interval

[100, 101] Hz. The signal strength hinj is determined so that the averaged SNR satisfies

ρ2 = 2. To do this, hinj is set in the following way:

hinj ≡

√
2F6 − 4

2F i − 4
hi, (5.26)

where 2F6 ≡ 6 corresponds to ρ2 = 2, hi is the signal strength randomly drawn, and 2F i

is the measured value of 2F4. We carry out 10,000 Monte-Carlo simulations for each of

the values of 2F in the range of 4.5–7.5 with a step of 0.1. As a result, we obtain Fig. 5.3.

Figure 5.3 shows the detection efficiencies for the three detection statistics {2F , 2F+pv, 2F+χ2}
as a funtion of the threshold 2F thr. For the threshold of 2F+χ2 , the false alarm prob-

ability is set to be 1% in this injection test. If the measured values of 2F exceed the

threshold 2F thr, signals are considered to be detected. As indicated by Fig. 5.3, the

conventional F -statistic is the most optimal detection statistic under the ideal Gaussian

noise background. Our detection statistic 2F+χ2 overlaps with the F -statistic in Fig. 5.3.

So the detection efficiencies for these two statistics are almost comparable to each other

although the maximum value of the detection efficiency for 2F+χ2 is 99% because we take

pFD = 0.01. On the other hand, 2F+pv is inferior to the other two statistics in terms of

the detection efficiencies. This is because the statistic 2F+pv excludes a single coherent

4 Note that 〈2F〉 = 4 + ρ2.
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Figure 5.3: Detection probability as a function of threshold 2F thr under the ideal
Gaussian noise background. Three curves represent the three detection statistics
{2F , 2F+pv, 2F+χ2}, respectively. The threshold for 2F+χ2 is calculated under the as-
sumption of pFD = 0.01. For each of the statistics, if the measured value exceeds the
threshold, we regard that a signal is detected. The statistics 2F and 2F+χ2 have almost
the same detection efficiency while 2F+pv is interior to these two statistics.

segment containing the loudest F -statistic value no matter whether a CW signal exists in

data or not, which would lead to missing out on detectable CW signals by 2F and 2F+χ2 .

5.4 The χ2 veto in unequal SNR time-intervals

5.4.1 χ2 discriminator

So far, we have dealt with the case of stationary noise and equal-length segments. In

the following, we relax these assumptions in order to handle more realistic situations, in

which case a SNR in each segment is unequal to each other. We consider the year-long

observation data broken up into Nseg segments whose lengths are not necessarily equal to

each other. The j-th segment is assumed to have the time length Tj and the noise spectral

density Sj. Since the SNR in the j-th coherent segment is approximately proportional

to
√

Tj/Sj for Tj & 24 hours, the variation in SNR for each coherent segment can be

corrected in the following way:

ρ2
j = Nsegwjρ2, (5.27)

where ρ2 denotes the average SNR and wj is defined by

wj ≡
Tj

Sj

[
Nseg∑
k=1

Tk

Sk

]−1

. (5.28)
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From this definition,
∑Nseg

j=1 wj = 1 is satisfied. It is convenient to introduce a new

parameter κn related to wj as

κn ≡ 1

Nseg

Nseg∑
j=1

(Nsegwj)
n − 1, (5.29)

where n is an integer. For any value of n, κn takes non-negative value as verified in

Appendix F. The parameter κn takes the minimum value of zero when w1 = · · · = wn =

1/Nseg which corresponds to the case of equal-SNR time intervals.

In a similar way to Sec. 5.3.1, we define χ2 as the difference between the measured

SNR and the expected SNR in each segment,

χ2 ≡
Nseg∑
j=1

∣∣(2Fj − 4) − Nsegwj

(
2F − 4

)∣∣2
wjσ2

2Ftot

, (5.30)

where wj defined by Eq. (5.28) correct the variation in SNR for each segment induced by

non-stationary noises and unequal length of segment. After a similar calculation to Sec.

5.3.1, we obtain the expectation value and variance of χ2 discriminator as

〈χ2〉 = Nseg − 1 +
2N2

seg

σ2
Ftot

κ−1, (5.31a)

σχ2 = σχ̄2 +
2

σ4
Ftot

{
10N3

segκ−2 + 10N2
seg

(
Nsegρ

2 − 4
)
κ−1 +

[
6
(
1 − 3ρ2

)
+ Nseg

(
ρ2 − 2

)2
]
κ+2

}
,

(5.31b)

where κ−2, κ−1 and κ+2 are defined by Eq. (5.29). The coefficients κn result from a

non-equality of SNRs in the coherent segments. Unlike Eq. (5.15a), 〈χ2〉 depends on an

observed SNR as well as σ2
χ2 .

5.4.2 Performance tests

LIGO S5 data

In this section, we conduct performance tests for a χ2 discriminator introduced in the

previous subsection using an actual data set. We analyze the initial LIGO data during the

entire fifth science run (S5) that took place during about two years between November 4,

16:00 UTC 2005 and October 1, 00:00 UTC 2007 (from 815155213 to 875232014 in GPS

time). The LIGO S5 data are comprised of data obtained from a three-detector network:

two detectors at Hanford (H1 and H2) and one detector at Livingston (L1). So far, the

S5 data have been employed to search for CWs from unknown pulsars over the whole

sky by Einstein@Home that is one of volunteer projects related to distributed computing
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[111, 113]. Here, we make use of the data collected from the H1 detector to validate how

our veto method works in the actual data set.

We divide the S5 observation data set into 101 segments with a length of 25 hours each

of which will be analyzed coherently using the F -statistic. Each coherent segment is not

necessarily contiguous but are within the range of 40 hours. Each segment is divided

into shorter segment of 1,800 seconds, high-pass filtered at 40 Hz, windowed by a Tukey

window, and followed by computing short-time-baseline Fourier transforms (SFTs). This

process gives rise to 5,686 SFT segments.

Template placement and searched frequency band

We employ HierarchSearchGCT code [138, 139] to produce the F -statistic from

each coherent segment. The grid spacings are constructed so that the single-dimension

metric mismatch is equal to 0.03. For simplicity, we make use of templates laid out on a

rectangle grid that are related to the length of coherent segments, the single-dimensional

mismatch, and the frequency by

∆f =

√
12m

πTcoh

' 1.33 × 10−6 [Hz]
( m

0.03

)1/2
(

40 h

Tcoh

)
, (5.32a)

∆ḟ =

√
720m

πT 2
coh

' 7.13 × 10−11 [Hz/s]
( m

0.03

)1/2
(

40 h

Tcoh

)2

, (5.32b)

∆α = ∆δ =

√
2m

πfτE cos δD

' 0.101 [rad]
( m

0.03

)1/2
(

53 Hz

f

)
, (5.32c)

where δD is the detector latitude, τE ≡ RE/c is the travel time of light from the Earth

center to the detector, and m is the single-dimensional mismatch. To reduce the compu-

tational costs, the spin-down parameters {ḟ , f̈ , · · · } are not searched over in our analysis

for simplicity. Hence, the spacing of frequency bins is set to be ∆f ' 1.3× 10−6 Hz. The

spacings of the sky positions are ∆α = ∆δ ' 0.10 (53 Hz/f) radians.

We take the following four narrow frequency band of bandwidth 0.01 Hz as represen-

tative examples to calculate detection efficiency of the χ2 statistics. The two out of the

four bands are noisy bands with multiple lines whereas the remaining two are quiet bands

obeying an almost Gaussian distribution:

(A) a noisy frequency band with multiple lines f ∈ [52.47, 52.48] Hz.

(B) a noisy frequency band with multiple lines f ∈ [58.60, 58.61] Hz.

(C) a quiet frequency band following almost Gaussian distribution f ∈ [54.87, 54.88] Hz.

(D) a quiet frequency band following almost Gaussian distribution f ∈ [58.10, 58.11] Hz.
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Figure 5.4 depicts noise weghts wj defined by Eq. (5.28) for these four frequency bands.

The values of wj vary by a factor of a few. In the case of equal-SNR time intervals, the

weights wj are expected to be 1/Nseg ' 0.01 and indicated by the dotted lines in Fig. 5.4.
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Figure 5.4: Time evolution of weights defined by Eq. (5.28) for the four frequency bands.
In the case of equal-SNR time intervals, values of weights wj are expected to be about
0.01 and agree with dotted lines.

Detection threshold for each detection statistic

In the previous section, we find the threshold for χ2 statistic by injecting CW signals

into generated white Gaussian noise. Instead of the simulated data, we inject CW signals

into the LIGO S5 data by the Makefakedata v4 code to obtain the threshold for the χ2

veto. The signal parameters {f, α, δ, cos ι, ψ} are chosen randomly within the frequency

band under the assumption that these parameters follow uniform distributions. We carry

out 10,000 Monte-Carlo simulations for each of the 2F values in the range of 5–11 with a

step of 1. The 2F values are calculated for perfectly matched templates. The threshold

for the χ2 statistic is chosen so that the probability that injected signals are overlooked

by mistake is 5%.

First, we carry out an all-sky search for each frequency band without CW injections.

The total number of templates is Ntemp ' 1.5 × 107 because Nfreq ' 0.01 Hz/∆f '
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7.5× 103 and Nsky ' 2π2/ (∆α∆δ) ' 2.0× 103. The loudest values of the three statistics

{2F , 2F+pv, 2F+χ2} among the whole template for each frequency band are registered for

the subsequent injection tests. It is known that there are no significant signal candidates

in the S5 data by virtue of the previous all-sky searches [111, 113]. So, when the values of

each detection statistic of injected CW signals exceed one of the loudest noise candidate,

we can regard that the injected signals are detected. In other words, we use the observed

values of the detection statistics of the loudest noise candidate as the threshold for CW

detections.

Figure 5.5 shows the cumulative number of noise candidates whose values of the three

detection statistics {2F , 2F+pv, 2F+χ2} exceed 2F . For 2F , a huge number of noise

candidates take high values in comparison with the other two detection statistics, 2F+pv

and 2F+χ2 . because the F -statistic is apt to be affected by noise lines. In contrast,

2F+pv and 2F+χ2 considerably reduce the observed values of the F -statistic by the veto

processes. In the panel (a) of Fig. 5.5, our χ2 veto rejects the noise candidates more

effectively than the permanence veto. This is because there exist noise lines existing over

multiple segments in the frequency range of 52.47–52.48 Hz. As a next step, we check

whether the veto methods reject true CW signals or not, and then we compare detection

efficiencies of 2F+pv and 2F+χ2-statistics.
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Figure 5.5: Histograms for the number of noise candidates that satisfies 2F > 2F∗ for
each frequency band. The panel (a) and (b) correspond to the two noisy frequency bands.

Procedure for calculating detection efficiency

We inject CW signals into the LIGO S5 data within each frequency band using the

Makefakedata v4 code in order to calculate the detection efficiency. The sky positions

of the injected signals are assumed to be uniformly distributed over the entire sky. Also,

the orientations of the sources with respect to the H1 detector are assumed to obey

uniform distributions. We carry out 1,000 Monte-Carlo simulations for each of the values

of h0/
√

Sn in the range of 0.02–3.20 with a step of 0.02, where Sn denotes the strain
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sensitivity averaged over the entire observation run. For each injection, a parameter

space to be searched over is constructed so that a frequency range is 1 mHz band at

around the signal frequency and a sky region is a sky patch consisting of 100 grid points

close to the putative source position from a standpoint of the metric (see Sec. 2.5.1 for

more details) [77]. For each of the statistics {2F , 2F+pv, 2F+χ2}, if one or more signal

candidates have the larger statistics than the predetermined threshold, we regard that

the signals are detected.

Results

Figure 5.6 shows the detection efficiencies for the aforementioned four frequency band

(A), (B), (C), and (D). Unlike Fig. 5.3, the horizontal axis is shown in units of normalized

amplitude h0/
√

Sn in place of 2F in order to easily relate to physical quantities. The

normalization factor Sn denotes the one-sided spectral density of the S5 data averaged

over the whole segments. In each panel, the blue, green, and red lines correspond to the

detection statistics 2F , 2F+pv, and 2F+χ2 , respectively.

The panels (a) and (b) of Fig. 5.6 correspond to the two noisy frequency bands (A) and

(B), respectively. These panels indicate that the conventional F -statistic has much worse

efficiency than the other two statistics in noisy bands because the F -statistic is susceptible

to lines, which results in a high false alarm rate. Meanwhile, the newly proposed detection

statistic 2F+χ2 has the best detection efficiency in these noisy bands. In particular, 2F+χ2

in the panel (a) works more powerfully than the panel (b). This feature can be traced to

the number of lines existing in coherent segments. Whereas 2F+pv can only exclude lines

in a signle coherent segment, 2F+χ2 can deal with lines existing over multiple coherent

segments. For example, in the panel (a) of Fig. 5.6, the detection probabilities of 2F ,

2F+pv, and 2F+χ2 for h0/
√

Sn = 0.1 are 17.5%, 27.8%, and 43.0%, respectively. This

indicates that the χ2 veto process rejects strong noise lines but retains injected CW

signals. Thus, the F+χ2-statistic more easily detects CW signals buried in noisy data.

The panels (c) and (d) of Fig. 5.6 correspond to the two quiet frequency bands (C) and

(D), respectively. As can be seen these panels, detection powers of the three detection

statistics are almost comparable to each other. In the panel (d), 2F are slightly better

than the other two statistics because noise in this frequency band approximately obey

Gaussian distributions, in which case the 2F is the best statistic as in Fig. 5.3.

We also constraint on GW strain amplitudes when the detection thresholds are set by

using the loudest noise candidates5. From Fig. 5.6, upper limits on h0/
√

Sn with a 95%

confidence level for 2F , 2F+pv, and 2F+χ2 are 0.27, 0.25, and 0.20 in noisy frequency bands

of 52.47–52.48 Hz, respectively. These upper limits can be more physically interpreted in

5 In a wide-parameter-space search, a detection threshold is usually limited by a computer’s memory
so that significant signal candidates are registered.
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terms of upper limits on the ellipticity ε using Eq. (2.11b) for a fixed distance to the source.

If a NS is located at a distance of 0.1 kpc, upper limits on ε are 2.79× 10−3, 2.58× 10−3,

and 2.04 × 10−3, respectively.

Label f (Hz)
√

Sn (Hz−1/2) max 2F max 2F+pv max 2F+χ2

(A) 52.47–52.48 2.96 × 10−22 14.38 10.43 9.79

(B) 58.60–58.61 1.89 × 10−22 10.03 6.99 7.20

(C) 54.87–54.88 2.01 × 10−22 6.12 5.73 6.12

(D) 58.10–58.11 1.70 × 10−22 6.15 5.72 6.15

Table 5.1: Analyzed frequency bands for performance tests of detection statistics using
the LIGO S5 data. Labels (A) and (B) correspond to two noisy frequency bands, whereas

labels (C) and (D) correspond to two quiet frequency bands. The column labeled
√

Sn

represents the strain sensitivity averaged over the whole segments. The detection statistics
2F , 2F+pv, and 2F+χ2 are defined as Eqs. (5.4), (5.8a), and (5.25), respectively. The
highest values of the detection statistics 2F , 2F+pv, 2F+χ2 without injections are denoted
by max 2F , max 2F+pv, max 2F+χ2 , respectively, which are used as detection thresholds
in Fig. 5.6.

5.5 Conclusion and discussion

In this chapter, we proposed the χ2 veto for semi-coherent F -statistic-based search, fo-

cusing on the SNR consistency across the different segments. Non-Gaussian narrow-band

disturbances, or lines frequently appear in detector data and can mimic CW signals. Lines

would produce a high false alarm rate and degrade a detection efficiency of 2F if no veto

method is applied. The newly proposed χ2 veto is designed to check whether or not an

observed SNR accumulates in a way that is consistent with a CW signal. As opposed

to the currently existing veto methods introduced in Sec. 5.2, the χ2 veto can deal with

multiple lines existing over two or more segments in a single detector and coincident lines

in a multi-detector network. We investigated the performance of the χ2 veto using the

LIGO S5 data. We found that the 2F values after the χ2 veto process are reduced dras-

tically in the noisy frequency bands as shown in Fig. 5.5. Also, we tested its detection

power in order to check to what extent the χ2 veto does not miss out on detectable CW

signals. Figure 5.6 indicates that the χ2 veto process improves the detection efficiency in

the noisy frequency bands in comparison with the other two detection statistics. This is

due to the fact that the χ2 veto process excludes strong noise lines but retains injected

CW signals.

It should be noted that our veto method would miss out on detectable transient CWs

that are CWs of duration of the order of hours–weeks. Such transient CWs are considered
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Figure 5.6: Detection probability as a function of normalized amplitude h0/
√

Sn for

each frequency band, where
√

Sn denotes the average strain sensitivity over the whole
segments. The panels (a) and (b) correspond to the two noisy frequency bands, whereas
the panels (c) and (d) correspond to the two quiet frequency bands. The detection
statistics 2F , 2F+pv, and 2F+χ2 are defined as Eqs. (5.4), (5.8a), and (5.25), respectively.
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to be potentially produced from magnetar giant flares [148], glitching NSs [149], and

maybe wobbling NSs [35]. Since our veto method checks SNR-consistency across the

whole segments of the order of a year, these transient CWs would be excluded from signal

candidates. However, several search methods specific to them have been proposed by

several authors [150, 143].

As future prospects, it would be interesting to extend the χ2 veto to a multi-detector net-

work case. The currently used veto method, the line-robust statistic requires two or more

detectors because in its framework line is defined as a narrow-band disturbance appear-

ing only in a single detector. So, this method cannot deal with coinsident lines. In fact,

in the past F -statistic-based semi-coherent search [113], 0.46% of final high-significant

signal candidates passed the consistency check between a multi-detector network, and so

are considered to arise from coincident lines [143]. Furthermore, when we use line-robust

statistic as a veto method, detection sensitivity would be strongly limited by duty cy-

cles of detectors that are the fraction of available data during the entire observation run.

For example, let us consider two-detector network whose duty cycles are assumed to be

r1 = r2 = 50% (For LIGO S6 run, the duty cycles of H1 and L1 detectors are 50.6%

and 47.9%, respectively [14]). In this case, the line-robust statistic makes use of only

r1r2 = 25% data on average. In contrast, the χ2 veto is applicable to a single-detector

and so can use (r1 + r2) /2 = 50% data on average. Hence, semi-coherent search based

on the χ2 veto may potentially improve detection power by a few factors.
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Chapter 6
Conclusion

In this thesis, we studied CWs from compact stars with a focus on data analysis using

actual data set. The main source of CW signals are a rapidly spinning NSs and there exist

so many uncertainties of NS physics related to equation-of-state of NSs such as maximum

possible value of ellipticity, wobbling motions of NSs, generation mechanism of CWs, and

relation between EM and CW emissions. CW search is expected to give new insights into

these unclear issues.

In Chapter 2, we summarized CW sources, emission mechanisms, and a link between

NS’s equation-of-state and its ellipticity. Then, we gave an overview on data analysis

tools for CW search that we need in the subsequent three chapters.

Chapter 3 is concerned with low-frequency CWs that have not been investigated due to

seismic noise by the currently existing ground-based laser-interferometric GW detectors.

To search for unexplored low-frequency regions below 10 Hz, we employed a recently

proposed TOBA detector. TOBA is a low-frequency terrestrial GW detector consisting

of two orthogonal bar-shaped test masses. Recently, multi-output configuration of TOBA

has been proposed in [18], which leads to three independent output signals from a single

detector. We give a short review of its figure-of-merits in terms of parameter estimation

accuracies including short updates. Then, we moved on to an all-sky search for low-

frequency CWs using the Phase-II TOBA that is a prototype detector of the multi-

output TOBA. While data obtained from bar rotations on yz and zx planes were not

incorporated in our analysis because of their worse sensitivities, we succeeded in setting

the most stringent upper limits on GW strain amplitudes with confidence level 95% as

3.6 × 10−12 within 6–7 Hz frequency band.

Chapter 4 focused on KAGRA that is the first Japanese km-scale interferometric GW

detector. The iKAGRA test run was conducted during three weeks in March and April in

2016, and now KAGRA is being upgraded toward its full configuration with a cryogenic

Fabry-Perot laser interferometer. We performed a targeted CW search for known isolated

pulsars using the iKAGRA data. The motivation of this study is to validate the search

pipeline, to find program-related problems at the early stage, and to gain experiences to

analyze actual data toward the full configuration operation. We investigated CW sig-

nals from 63 known isolated pulsars within 50–1,000 Hz frequency band. No significant
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6 Conclusion

signal candidates were found. The upper limits on the GW strain amplitudes with 95%

confidence level are of the order of 10−18 that are consistent with the upper limits theoret-

ically calculated from noise level of the iKAGRA. We confirmed that our search pipeline

correctly operates as expected.

In Chapter 5, we presented a χ2 veto method for F -statistic-based semi-coherent search

for unknown CW sources in order to deal with sharp spectral noise lines that frequently

hampers detection sensitivity to CW signals. Our veto method is designed to check

whether or not an observed SNR accumulates as expected in the case of true CW signals.

Its unique feature is the applicability to multiple lines existing over two or more coherent

segments in a single detector and coincident lines in a multi-detector network. After

its formulation, we conducted its performance tests using data from the LIGO Hanford

detector during the S5 observation run. We found that our veto method successfully

rejects noise lines. Consequently, detection probabilities for unknown CW signals in

noisy frequency bands are significantly improved before and after our veto process (e.g.,

the detection probabilities are 17.5% for the pure F -statistic and 43.0% for the F -statistic

after our veto process at h0/
√

Sn = 0.1 in 52.47–52.48 Hz frequency band). As a future

work, our veto method will be extended to a multi-detector network.

KAGRA plans to start its observation run with the full configuration within a few

years. Since KAGRA is being constructed in underground to mitigate seismic noise, it

is expected to have an advantage in lower-frequency regions compared with the other

large-scale ground-based interferometric detectors. As discussed in Chapter 4, KAGRA

will surpass spin-down limits for about 50 known isolated pulsars in these regions, which

indicates that we will be close to detections of CW signals. Also, a wide-parameter-space

search for unknown CW sources in low-frequency region inaccessible by the other ground-

based detectors will be conducted only by KAGRA, in which case the χ2 veto method

introduced in Chapter 5 would play important roles in rejecting unpredictable noise lines

and improving the detection efficiency of CWs. KAGRA has enough chance of the first

detection of a CW source, which would shed light on unclear aspects of NS physics.

91



Appendix A
PDF for Gaussian noise

On the assumption of stationarity and the Gaussianity for detector noise, the correlation

between the different Fourier components of the noise is written as

〈ñ (f) ñ∗ (f ′)〉 =
1

2
δ (f − f ′) Sn (f) , (A.1)

where T denotes the observation time and Sn (f) is called the one-sided noise spectral

density. The discrete version of Eq. (A.1) is

〈ñkñ
∗
k′〉 =

T

2
δkk′Sn,k, (A.2)

where the index k corresponds to fk
1. Because both the real and imaginary part of ñk,

ñk,r and ñk,i obey the same Gaussian distribution, their expection value and variance are

〈ñk,r〉 = 〈ñk,i〉 = 0, (A.4a)

〈ñ2
k,r〉 = 〈ñ2

k,i〉 =
T

4
Sn,k, (A.4b)

where we used |ñk|2 = ñ2
k,r + ñ2

k,i and Eq. (A.2). The PDF for the detector noise in

Fourier space obeys

p (ñk) = p (ñk,r, ñk,i) = p (ñk,r) p (ñk,i)

∝ exp

[
−

ñ2
k,r

2σ2
nk

]
exp

[
−

ñ2
k,i

2σ2
nk

]
= exp

[
−|ñ (fk)|2

2σ2
nk

]
, (A.5)

1 We made use of the following approximation.

δ (f) '
∫ T/2

−T/2

e−2πiftdt = T
sin (πfT )

πfT
−→
f→0

T. (A.3)
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A PDF for Gaussian noise

where σ2
nk

≡ TSn,k/4. Using the above equation, we obtain the PDF for the detector

noise as

p (n) ∝
N/2∏
k=0

exp

[
−|ñk|2

2σ2
nk

]
= exp

−1

2

N/2∑
k=0

4 |ñk|2

TSn,k


= exp

−1

2
× 4

fNyq

N/2

N/2∑
k=0

|ñk|2

Sn,k

 = exp

[
−1

2
× 4

∫ fNyq

0

|ñ (f)|2

Sn (f)
df

]

' exp

[
−1

2
× 4

∫ ∞

0

|ñ (f)|2

Sn (f)
df

]
= exp

[
−1

2
(n|n)

]
, (A.6)

where fNyq = N/2T is the Nyquist frequency.
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Appendix B
Statistical properties of F-statistic

B.1 Moment-generating function

In general, random variables are statistically characterized by probability distribution

functions (PDF). Also, their statistical properties can be described by moment-generating

functions (MGF) which have exactly the same information as the distribution functions

in many cases. MGF of a random variable X is defined as

MX (θ) ≡ E
[
eθX

]
, (B.1)

where E [X] denotes the expectation value of X. As the name implies, the MGF generates

the moments of X as

E [Xn] =
dnMX (θ)

dθn

∣∣∣
θ=0

. (B.2)

Also, there exists another useful propertity such that a MGF of a linear combination of

random variables X and Y is a product of the MGF of X and Y :

MX+Y (θ) = MX (θ) MY (θ) . (B.3)

For example, let us consider a random variable SN representing a linear combination of

N random variables Xi (i = 1, · · · , N) each of which follows a non-central χ2 distribution

with ki degrees of freedom and non-centrality λi; SN = X1 + X2 + · · · + XN . The MGF

of each Xi is expressed as

MXi
(θ; ki, λi) =

eλiθ/(1−2θ)

(1 − 2θ)ki/2
. (B.4)

The combination of Eqs. (B.3) and (B.4) gives rise to the MGF of SN as

MSN
(θ) = MX1 (θ; k1, λ1) MX2 (θ; k2, λ2) · · ·MXN

(θ; kN , λN)

=
eλ1θ/(1−2θ)

(1 − 2θ)k1/2

eλ2θ/(1−2θ)

(1 − 2θ)k2/2
· · · eλNθ/(1−2θ)

(1 − 2θ)kN/2
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=
eΛNθ/(1−2θ)

(1 − 2θ)KN/2
. (B.5)

Because of one-to-one corresopndence between the PDF and the MGF, the random vari-

able SN obeys the non-central χ2 distribution with KN = k1 + · · ·+kN degrees of freedom

and non-centrality ΛN = λ1 + · · · + λN .

B.2 Statistical properties of F-statistic

Let X be a random variable distributed according to a non-central χ2 distribution with

k > 0 degrees of freedom and a non-centrality parameter ρ2. The first few moments for

X are given by

〈X〉 = k + ρ2, (B.6a)

σ2
X = 2

(
k + 2ρ2

)
, (B.6b)

γX =
23/2 (k + 3ρ2)

(k + 2ρ2)3/2
, (B.6c)

βX =
12 (k + 4ρ2)

(k + 2ρ2)2 , (B.6d)

where 〈X〉, σ2
X , γX , and βX denote the mean, variance, skewness, and excess kurtosis for

X, respectively. In the presence of a CW signal, 2Fj and 2Ftot obey non-central χ2 distri-

butions with 4 and 4N degrees of freedom and non-centralities ρ2
j and ρ2

tot, respectively.

So, Eqs. (B.6a)–(B.6d) can be applied to 2Fi and 2Ftot after appropriately replacing k

and ρ2 with the corresponding values. In the absence of a CW signal, 2Fj and 2Ftot

obey χ2 distributions with 4 and 4N degrees of freedom. This is a special case of the

non-central χ2 distribution with ρ2
j = 0 and ρ2

tot = 0.
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Appendix C
Antenna pattern function

C.1 Definition

An incident GW is described as a tensorial quantity hjk, while an observed quantity by

a GW detector is a scalar quantity h. The GW signal h is related to hjk by a detector

tensor Djk that contains geometrical information such as location of the detector on the

Earth and direction of the detector with respect to the GW source. Under the assumption

of the long wavelength limit N̂ · x/λ ¿ 1, a GW wavefrom is described by

hjk (t,x) =

∫ ∞

−∞
df h̃jk (f) e−2πif(t−N̂ ·x/c)

=
∑

A=+,×

eA
jk(N̂ )

∫ ∞

−∞
df h̃A (f) e−2πif(t−N̂ ·x/c)

'
∑

A=+,×

eA
jk(N̂ )

∫ ∞

−∞
df h̃A (f) e−2πift

=
∑

A=+,×

eA
jk(N̂ )hA (t) , (C.1)

where hA (t), N̂ , eA
jk denote the GW strain at the coordinate origin x = 0, the unit vector

of the direction of the incoming GW, and the polarization tensor, respectively. The index

A stands for two polarization mode, cross mode and plus mode. The waveform hjk (t,x)

is converted into the GW signal h by the detector tensor Djk as follows:

h (t) ≡ Djk (t) hjk (t)

=
∑

A=+,×

Djk (t) eA
jk(N̂ )hA (t)

=
∑

A=+,×

FA(t, N̂ )hA (t) , (C.2)

where FA are often referred to as antenna pattern functions and are defined as

F+,×(t, N̂ ) ≡ Djk (t) e+,×
jk (N̂ ). (C.3)
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C Antenna pattern function

The pattern functions FA represent to the response of the detector to the two independent

polarization modes of GW.

C.2 Concrete expressions for antenna pattern func-

tions

The response of a GW detector to an incoming GW depends on its relative position and

orientation to the GW source. Such a geometrical information on the detector and the

sources is encoded in the antenna-pattern functions F+,×. Since the relative motion of

the detector with respect to the sources is negligible for short-duration signals, F+,× can

be regarded as a constant. On the other hand, for long-duration signals the detector

and the source cannot be regarded as at rest with respect to each other because of the

Earth’s rotation and revolution. These relative motions induce the amplitude-modulation

and phase-modulation of the signal. To take into account these effects, we follow the

formulation presented by Jaranowski, Królak and Schutz [57]. The GW waveform h (t) in

the proper antenna frame where the two bars are alined with x-axis and y-axis respectively

can be related to the waveform h′ (t) in the wave-coming frame by

h (t) = M (t) h′ (t) M (t)T , (C.4)

where M (t) denotes a 3-dimensional transformation matrix. The matrix M (t) is defined

by

M = M3M2M
T
1 , (C.5)

where M1 is the transformation matrix from the wave-coming frame to celestial sphere

frame, M2 is the transformation matrix from the celestial sphere frame to the cardinal

frame and M3 is the transformation matrix from the cardinal frame to the proper antenna

frame (see [31, 57] for more details ). The transformation matrices M1,M2 and M3 are

given as follows:

M1 =

 sin α cos ψ − cos α sin δ sin ψ − cos α cos ψ − sin α sin δ sin ψ cos δ sin ψ

− sin α sin ψ − cos α sin δ cos ψ cos α sin ψ − sin α sin δ cos ψ cos δ cos ψ

− cos α cos δ − sin α cos δ − sin α

 ,

(C.6a)

M2 =

 sin δD cos αD (t) sin δD sin αD (t) − cos δD

− sin αD (t) cos αD (t) 0

cos δD cos αD (t) cos δD sin αD (t) sin δD

 , (C.6b)
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M3 =

 − sin (γ − ζ/2) cos (γ − ζ/2) 0

− cos (γ − ζ/2) − sin (γ − ζ/2) 0

0 0 1

 . (C.6c)

where α, δ, αD, δD, γ, and ζ denote the right ascension, the declination, the latitude

and longitude of the detector position, the angle between the local East direction and the

bisector of the detector, and the angle formed by the two arms, respectively.

C.2.1 Laser interferometer

In the proper detector frame, the horizontal motions of the two end mirrors are induced

by the GW tidal force. When the GW force produces the small horizontal motion of the

x end mirror in the x-axis, the resulting GW response is expressed by hijn
j
xn

k
x. The GW

signals can be read from the differential motions of the mirrors in the arms. Thus, the

detector tensor of the laser interferometer is expressed by

Djk =
1

2

(
nj

xn
k
x − nj

yn
k
y

)
, (C.7)

where nx and ny are the unit vectors pointing toward the x and y-directions respectively

in the proper detector frame. Combining Eqs. (C.2)−(C.7) yields the concrete expressions

for the antenna pattern functions

F+ (t) = sin ζ [a (t) cos 2ψ + b (t) sin 2ψ] , (C.8a)

F× (t) = sin ζ [b (t) cos 2ψ − a (t) sin 2ψ] , (C.8b)

where modulation functions a (t) and b (t) are defined by

a (t) =
1

4
sin γ

(
1 + sin2 δD

) (
1 + sin2 δ

)
cos [2 (α − αD (t))]

− 1

2
cos 2γ sin δD

(
1 + sin2 δ

)
sin [2 (α − αD (t))]

+
1

4
sin 2γ sin 2δD sin 2δ cos [α − αD (t)]

− 1

2
cos 2γ cos δD sin 2δ sin [α − αD (t)]

+
3

4
sin 2γ cos2 δD cos2 δ, (C.9a)

b (t) = cos 2γ sin δD sin δ cos [2 (α − αD (t))]

+
1

2
sin 2γ

(
1 + sin2 δD

)
sin δ sin [2 (α − αD (t))]

+ cos 2γ cos δD cos δ cos [α − αD (t)]
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+
1

2
sin 2γ sin 2δD cos δ sin [α − αD (t)] . (C.9b)

C.2.2 Multi-output TOBA

As discussed in Sec. 3.1.2, the two orthogonal bars rotate differentially by the tidal force

from an incoming GW. When the tidal force produces the small rotation of the bar on the

x-axis toward the y-direction, the resulting GW signal is expressed by hjkn
j
xn

k
y. Similarly,

detector tensors for the three detector outputs are expressed by

Djk
I =

1

2

(
nj

xn
k
y + nj

yn
k
x

)
= nj

xn
k
y, (C.10a)

Djk
II =

1

2
nj

xn
k
z , (C.10b)

Djk
III =

1

2
nj

yn
k
z . (C.10c)

Using Eqs. (C.2)−(C.6c) and (C.10a)−(C.10c), we obtain the antenna pattern functions

of the multi-output TOBA as follows:

F+,i (t) = ai (t) cos 2ψ + bi (t) sin 2ψ, (C.11a)

F×,i (t) = bi (t) cos 2ψ − ai (t) sin 2ψ, (C.11b)

where i =I, II, III and modulation functions are given by

aI (t) =
3

4
cos 2γ cos2 δD cos2 δ

+
1

4
cos 2γ

(
1 + sin2 δD

) (
1 + sin2 δ

)
cos [2 (α − αD (t))]

+
1

4
cos 2γ sin 2δD sin 2δ cos [α − αD (t)]

+
1

2
sin 2γ cos δD sin 2δ sin [α − αD (t)]

+
1

2
sin 2γ sin δD

(
1 + sin2 δ

)
sin [2 (α − αD (t))] , (C.12a)

bI (t) = − sin 2γ cos δD cos δ cos [α − αD (t)]

− sin 2γ sin δD sin δ cos [2 (α − αD (t))]

+
1

2
cos 2γ sin 2δD cos δ sin [α − αD (t)]

+
1

2
cos 2γ

(
1 + sin2 δD

)
sin δ sin [2 (α − αD (t))] , (C.12b)

aII (t) =
1

4
sin

(
γ +

π

4

)
sin δD sin 2δ sin [α − αD (t)]

− 1

4
cos

(
γ +

π

4

)
cos 2δD sin 2δ cos [α − αD (t)]
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+
1

8
cos

(
γ +

π

4
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Appendix D
Fisher analysis

In this appendix, we provide a brief review of Fisher analysis to evaluate parameter

estimation errors for a network of Ndet detectors (see [151, 152] for more details). Each

detector output sX (t) is assumed to be written as a linear sum of noise nX (t) and the

GW signal hX (t), sX (t) = hX (t) + nX (t). If noise is stationary, the correlation between

the Fourier components of the noise can be expressed by

〈ñX (f) ñ∗
Y (f ′)〉 =

1

2
δ (f − f ′) Sn (f)XY , (D.1)

where 〈· · · 〉 denotes the ensemble average and Sn (f) is a one-sided power spectral density

matrix of the detector network. It is convenient to introduce a noise-weighted inner

product between Ndet-dimensional vector functions f (t) and g (t),

(
f

∣∣∣g)
= 4Re

Ndet∑
X,Y =1

∫ ∞

0

f̃X (f) g̃∗
Y (f)

Sn (f)XY

df, (D.2)

where Re denotes the real part and Ndet is the number of detectors. Using this inner

product, SNR for the GW signal h (t) can be written as

S

N
=

(
h

∣∣∣h)1/2

. (D.3)

We assume that the GW signal h (t) is characterized by a collection of unknown pa-

rameters λ = {λ1, · · · , λn}. When the noise is Gaussian in addition to stationary, the

statistical errors caused by the randomness of detector noise are estimated by

〈∆λi∆λj〉 =
(
Γ−1

)
ij

, (D.4)

for large SNR. The matrix Γij is referred to as the Fisher information matrix

Γij =

(
∂h

∂λi

∣∣∣ ∂h

∂λj

)
. (D.5)
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To estimate the angular resolution of the detectors, we use the error in solid angle defined

by

∆Ω ≡ 2π |sin δ|
√

〈∆α2〉〈∆δ2〉 − 〈∆α∆δ〉2. (D.6)
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Appendix E
Calculation of the variance of the χ2

discriminator
In this appendix, we derive the variance of the χ2 discriminator defined by Eq. (5.23).

Since F -statistic values of different segments are treated as independent and identically

distributed random variables in the case of the equal-SNR time intervals, σ2
χ̄2 can be

reduced to the following form:

σ2
χ̄2 ≡ 〈

(
χ̄2

)2〉 − 〈χ̄2〉2

=
N2

σ4
Ftot

 N∑
j,k=1

〈(∆Fj)
2 (∆Fk)

2〉 −

(
N∑

j=1

〈(∆Fj)
2〉

)2


=
N2

σ4
Ftot

 N∑
j=1

〈(∆Fj)
4〉 +

N∑
j=1

N∑
k 6=j

〈(∆Fj)
2 (∆Fk)

2〉 −

(
N∑

j=1

〈(∆Fj)
2〉

)2


=
N3

σ4
Ftot

[
〈(∆Fj)

4 − 〈(∆Fj)
2〉2

]
. (E.1)

The first term in Eq. (E.1) is decomposed into

〈(∆Fj)
4〉 = 〈F4

j 〉 −
4

N
〈F3

j Ftot〉
a© +

6

N2
〈F2

j F2
tot〉

b© − 4

N3
〈FjF3

tot〉 c© +
1

N4
〈F4

tot〉 d©.

(E.2)

The four terms a©, b©, c©, and d© are calculated as

a© = 〈F4
j 〉 + (N − 1) 〈F3

j 〉〈Fj〉, (E.3a)

b© = 〈F4
j 〉 + 2 (N − 1) 〈F3

j 〉〈Fj〉 + (N − 1) 〈F2
j 〉2 + (N − 1) (N − 2) 〈F2

j 〉〈Fj〉2, (E.3b)

c© = 〈F4
j 〉 + 4 (N − 1) 〈F3

j 〉〈Fj〉 + 3 (N − 1) 〈F2
j 〉2 + 6 (N − 1) (N − 2) 〈Fj〉2〈F2

j 〉2

+ (N − 1) (N − 2) (N − 3) 〈Fj〉4, (E.3c)

d© = N4〈Fj〉, (E.3d)
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E Calculation of the variance of the χ2 discriminator

where the expectation values of Fj,F2
j ,F3

j , and F4
j are expressed as

〈Fj〉 = 2 +
1

2
ρ2

j , (E.4a)

〈F2
j 〉 = 6 + 3ρ2

j +
1

4
ρ4

j , (E.4b)

〈F3
j 〉 = 24 + 18ρ2

j + 3ρ4
j +

1

8
ρ6

j , (E.4c)

〈F4
j 〉 = 120 + 120ρ2

j + 30ρ4
j +

5

2
ρ6

j +
1

16
ρ8

j . (E.4d)

Collecting the above results, we find the concrete expression for σ2
χ̄2 as

σ2
χ̄2 =

2N3 (N − 1)

σ4
Ftot

[
2
(
5N2 − 11N + 9

)
+ 2

(
5N2 − 11N + 9

)
ρ2

j + N (N − 1) ρ4
j

]
=

N − 1

N

[
2 (N − 1) +

(
N2 − 3N + 3

)
β2Ftot

]
, (E.5)

where β2Ftot denotes the kurtosis of 2Ftot defined by Eq. (B.6d).
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Appendix F
Minimum value of κn

We wish to find the set of w = {w1, · · · , wN} that minimizes κn (w) subject to the

constraint
∑N

j=1 wj = 1. According to the method of Lagrange multipliers, this can be

done by using the Lagrange function,

L (λ0,w) = κn (w) − λ0

(
N∑

j=1

wj − 1

)
(F.1)

where κn (w) is defined by Eq. (5.29) and λ0 is a constant called the Lagrange multiplier.

Setting the partial derivatives of Eq. (F.1) with respect to λ0 and w to be zero,

∂λ0L = −
N∑

j=1

wj + 1 = 0, (F.2)

∂wj
L = n (Nwj)

n−1 − λ0 = 0, (F.3)

we obtain the critical point as λ0 = n and w1 = · · · = wN = 1/N . In order to check

whether this point is a local minimum or not, it is useful to introduce the bordered Hessian

matrix defined by a square matrix of second-order partial derivatives of the Lagrange

function (F.1),

H =

(
∂λ0w0L ∂λ0wj

L
∂λ0wj

L ∂wjwk
L

)
. (F.4)

At the critical point, the Hessian is evaluated as det (H) = −NN [n (n − 1)]N−1 < 0 for

n 6= 0, 1 and N ≥ 1. Since L (λ0,w) has a single critical point, κn (w) takes the minimum

value of zero at the critical point w1 = · · · = wN = 1/N for n 6= 0, 1. Since κ0 = κ1 = 0,

κn ≥ 0 is satisfied for any integer n.
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