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Abstract: We present a comparative analysis of the plethora of nonextensive and/or nonadditive
entropies which go beyond the standard Boltzmann-Gibbs formulation. After defining the basic
notions of additivity, extensivity, and composability, we discuss the properties of these entropies and
their mutual relations, if they exist. The results are presented in two informative tables that are of
strong interest to the gravity and cosmology community in the context of the recently intensively
explored horizon entropies for black hole and cosmological models. Gravitational systems admit long-
range interactions, which usually lead to a break of the standard additivity rule for thermodynamic
systems composed of subsystems in Boltzmann-Gibbs thermodynamics. The features of additivity,
extensivity, and composability are listed systematically. A brief discussion on the validity of the
notion of equilibrium temperature for nonextensive systems is also presented.

Keywords: thermodynamics; entropy; additivity; extensivity; long-range interactions; horizons

1. Introduction

It is widely known that Boltzmann—Gibbs thermodynamics (from now on BG) and
statistical mechanics are additive and extensive [1]. The core physical quantity that refers
to these theories is entropy, which is assumed to be extensive, since it relates to the negli-
gence of the long-range forces between thermodynamic subsystems. This assumption is
justified only when the size of the system exceeds the range of the interactions between its
components. As a result, the total entropy of a composite system is equal to the sum of the
entropies of the individual subsystems (additivity), and the entropy grows with the size of
the system or its configuration space (extensivity).

However, contemporary physics exhibits a number of systems for which the long-
range forces are important. Examples of such systems are gravitational systems, since
gravity is long-range and interactive, and it is strongly non-linear when its extreme regimes
are taken into account. Strong gravity characterizes all of the compact astrophysical objects
in the universe, like white dwarfs, neutron and boson stars, quark stars, etc., with the most
extreme and most intriguing being black holes. The latter are surrounded by horizons
with areas that, according to Bekenstein and Hawking [2,3], can be interpreted as entropy.
Therefore, it is possible to formulate the appropriate laws of thermodynamics. Since for
black holes, the Bekenstein entropy scales with the area and not with the volume (size), it
is consequently a nonextensive quantity [4-9]. Additionally, because of the long-range
interaction nature of gravity, Bekenstein entropy is also nonadditive.

In fact, a number of nonadditive and/or nonextensive entropies have been proposed
in the literature [10-16]. Most of them have been applied to gravitational systems both in
astrophysics and in cosmology, and there is a debate regarding whether they can serve dark
energy [17-34], which is specifically called holographic dark energy [35]. Amazingly, a number
of these explorations do not acknowledge the nonextensivity of these systems, which creates
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some issues related to their firm thermodynamical background [36]. This motivates us to
investigate the problem of nonextensive entropy applications in a gravitational framework.

In this paper, we explore the topics of additivity and extensivity of entropies, which go
beyond standard BG thermodynamics, being strongly motivated by gravitational interac-
tions. Our focus is on non-standard entropies that are better fitting to gravitational systems,
such as Bekenstein entropy [2,3], Tsallis g-entropy [10,37], Tsallis—Cirto é-entropy [4], Bar-
row A-entropy [16], Tsallis g, d entropy, Tsallis—Jensen g, y-entropy [38], Rényi entropy [11],
Landsberg U-entropy [39], Sharma-Mittal entropy [12,13], and Kaniadakis entropy [14,15].

The following is the outline of this paper. In Section 2, we define additivity and
extensivity in thermodynamic systems and try to establish some generalities about possible
composition rules for entropy. In Section 3, we go beyond the definitions of additivity and
extensivity. In Section 4, we constructively review and compare the plethora of nonad-
ditive and/or nonextensive entropies, together with accompanying nonadditive and/or
nonextensive thermodynamical quantities. Then, we classify the entropies under study
with respect to their additivity and extensivity properties, as well as with the application of
the appropriate composition rules. Finally, in Section 5, we summarize this paper.

2. Boltzmann—-Gibbs Thermodynamics and Statistical Mechanics

Boltzmann—Gibbs thermodynamics and statistical mechanics are based on two key
hypotheses: that the entropy is extensive, and that the internal energy and entropy follow
the additive composition rule for a system made of some subsystems. All physical relations
in BG statistical mechanics are defined in light of these conditions, which, in fact, rely on
ignoring long-range forces between thermodynamic subsystems.

Boltzmann—Gibbs (BG) entropy is defined as follows [1]:

n n

1
Spc = —kp ) pilnp; =kp)_ piln—, 1)
i=1 i=1 pi

where p; is the probability distribution defined in a configuration space (). The number of
degrees of freedom (states) is #, kp is the Boltzmann constant, and the condition that the
total probability must be equal to one ) p; = 1 is fulfilled. For the case of all probabilities
being equal, i.e., for p; = const. = p, we obtain the following:

pi=l=np =p=1/n. (2)
1

n
1=

After applying (2) to (1), one obtains the following:
SBG :th’II’l, (3)

which means that the entropy is proportional to the number of states # in the configuration
space ().

In view of the key properties of BG thermodynamics, and in the context of our
investigations beyond these properties, we can define additivity and extensivity in a
general way based on the literature [39—41] as follows.

2.1. Additivity

Additivity means that for a given physical or thermodynamical quantity f, the follow-
ing composition rule is fulfilled:

f(A+B) = f(pau) = f(pars) = f(pa) + f(ps) = f(A) + f(B), (4)

where A and B are independent subsystems, each equipped with a set of configuration
space degrees of freedom, ()4 and (), and corresponding probabilities, p4 and pp. The
composite system A U B has the probability p4up, and it is equipped with a set of con-
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figuration space degrees of freedom 4 p. If the subsystems A and B are assumed to
be independent, then the probabilities are related by pa,p = papp, which allows for the
transition leading to the additivity rule (4) [42].

If a particular case of the entropy S is taken into account, then (4) reads as follows:

S(A+ B) = S(A) + S(B). )

2.2. Extensivity

Let us assume that there is a set of physical quantities (X, X1, Xp, . .., Xi) such that
Xo = f(X3, Xy, ..., Xk). The extensivity of a selected physical quantity means that the
function f that describes this quantity is homogeneous degree one [1,39,40]; i.e., that

f(aXl,aXz,...,an) = ﬂf(Xl, Xz,...,Xk> (6)

for every positive real number a > 0, for all Xy, X», - - - Xj. Taking k = 3, we have only
four quantities, Xy, X1, X, X3, and assuming that they are the entropy S, the energy E, the
volume V, and the mole number N, accordingly, we can obtain the standard Boltzmann-—
Gibbs thermodynamic extensivity relation for the entropy [39]:

S(aE,aV,aN) = aS(E,V,N). 7)

In fact, the property (6) is called "homogeneity’, and it is considered the most general
definition of extensivity (cf. [39]).

In standard textbooks on thermodynamics, one commonly uses a less general def-
inition of an extensive quantity, which says that if a system’s total number of states in
the configuration space () is proportional to its number of degrees of freedom, then this
quantity (such as the entropy, for example) is extensive. For BG entropy, as we have shown
in (3), one has that Sgg(n) = kpln (n) « n, where n is the total number of states in the
system.

The advantage of definition (6) is that one does not refer to any kind of geometrical
or bulk properties of a system such as the "size’, though the geometrical size of a system
seems intuitively to be related to the number of states or degrees of freedom.

2.3. Concavity
Concavity is the feature of the functions, which read as [4,39]

flax+ (1 —a)y) = af(x)+ (1 -a)f(y) (a>0). ®)

In the context of thermodynamics, concavity of entropy guarantees that the system in
thermodynamic equilibrium is stable.

3. Beyond Boltzmann—-Gibbs Thermodynamics
3.1. Composability

Let us consider two independent systems, A and B, combined as a single Cartesian
product A x B of the states of A and B with the requirement that [38]:

S(AXB)Y) = kBg<S(A),S(B)), ©)
kg " kg
where g is a smooth function of S(A), and S(B) and Y is a parameter, which in the limit
Y — 0, giving an additive composition rule (5). If the systems A and B fulfill the condi-
tion (9), then their combined system A + B is called composable. Of course, the BG system
is composable.
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3.2. Beyond Additivity

Additivity is violated if the rule (5) does not hold. In this case, one can have
two options [39]. The first one is when

S(A+ B) > S(A) + S(B), (10)

which is called superadditivity, and it leads to the tendency of the system to clump its
pieces/subsystems. The second one is when

S(A+B) < S(A) +S(B), (11)

which is subadditivity, and it tends to fragment the system into pieces rather than clumps. A
cosmological similarity of such a system is a phantom [43,44], since it spontaneously splits
into pieces under (anti)gravity, beginning with the largest-size pieces and terminating at
the smallest [45].

In the literature, there are a number composition rules for nonadditive systems, which
we introduce in Section 4. One of them, which generalizes the additive composition rule (5)
into a nonadditive case, is the Abé rule [46-48]. It fulfills the composability requirement
given by (9). If applied to entropy, it reads as follows

S(A+B) = S(A)+S(B)+%S(A)S(B), (12)
where Y takes numerical values according to the statistical definition of a specific entropy
type. For BG entropy, one just has Y = 0. With the assumption that all the entropies in (12)
are positive, one deals with superadditivity for Y > 0, and with subadditivity for Y < 0. In
fact, the physical interpretation of Y is the result of the long-range interactions between
subsystems, which leads to nonadditivity.

3.3. Beyond Extensivity

In BG thermodynamics, the additivity and the extensivity are closely related—additivity
implies extensivity, and extensivity implies additivity [1]. This is not the case in general,
and so the extensivity and the additivity may not be related, i.e., the extensivity may not
imply the additivity, and vice versa. An example of such a kind of a quantity, which is
based on the definition (6), is given by the function (X1, X») = x3/,/X? + X2. It obeys
extensivity, but not additivity [39].

Generally, the entropy S is nonextensive if

S(aX) # aS(X), (13)

where X is a thermodynamical quantity and a > 0, i.e., when the relations (6) and (7) are
violated.

4. A Comparable Analysis of Nonextensive Entropy Plethora
4.1. Bekenstein Entropy

The Bekenstein entropy is not motivated by anything like statistical mechanics, but it
is a well-established notion in gravity theory [2]. For a Schwarzschild black hole, it reads
(14)

M >2 _ AnkpGM?

Spek = 47kp (m,, e

and it is usually presented with its accompanying Hawking temperature, which reads

hic3

Ty = —
H = 87GkgM’

(15)
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where M is the mass of a black hole, ¢ is the speed of light, G is the gravitational constant, 7
is the reduced Planck constant, and 1, is the Planck mass. In fact, the temperature (15) can
be calculated from the entropy (14) by applying the Clausius formula

kg 9S
2= 16
T OE (16)
and using the Einstein mass—energy equivalence formula E = Mc?.
It is not always understood in the literature that because of the area rather than volume
scaling, the Bekenstein entropy is nonextensive, and that it obeys the following nonadditive
composition rule (see e.g., [49])

Sayp =54+ Sp+254VSs, 17)

which we will call the square root rule from now on. This rule comes directly as a con-
sequence of (14), according to which the entropy Sp « M2, so that Sy « M2, and
Sg & M2. If black holes merge in an adiabatic way, then their mass after merging is the sum
Maip = My + Mg, but the entropy Sayp M?HB/ giving an extra term 1/2M4Msp,
which is an extra nonadditive term in (17).
Curiously, after redefining the Bekenstein entropies as SatB = \/SarB = Mayp =
My + Mg, \/Sp = My =S4, and v/Sg = Mp = Sg, one can rewrite the composition rule
(17) in an additive way
Sayp =54+ S, (18)

but this is not of any physical meaning.

In conclusion, the Bekenstein entropy addition formula (17) does not fulfill the Abé
rule (12), though it looks quite similar. We comment on this point in relation to other
entropies in Section 4.3.

4.2. Tsallis q, Tsallis—Cirto 6, Tsallis q, 5, and Tsallis—Jensen q,y Entropies
4.2.1. Tsallis g-Entropy

The Tsallis g-entropy [10,50] is one of the earliest proposals for the generalization of BG
entropy. It encompasses an issue of the long-range interaction between thermodynamical
subsystems by introducing a nonextensivity parameter g4 (37 € R) into the BG entropy
definition (1), keeping the standard BG condition that the sum of all the probabilities is
equal to one, i.e, that } | p; = 1. It reads as follows:

n 1 n n
Sq = kB Z pi ll‘lq ; = —kB Z(pi)qlnq pi = —kB Zlnzfq pi, (19)
i=1 ! i=1 i=1

where a newly defined g-logarithmic function, In, p, is introduced:

1-9 _1q
_P
Ingp="——. (20)
q 1—gq
In the limit § — 1, one has the standard logarithm In; p = Inp. It is important that the
g-logarithm does not fulfill the standard logarithm addition rule Inab = Ina + In b, where
a, b are some arbitrary numbers. Instead, it fulfills a nonadditive composition rule given by

Ingab =1Inga+Ingb+ (1 —q)Ingalng b, (21)

which, in fact, is the origin of the Abé rule (12). Interestingly, through the introduction of
some specific g—product defined as [51]

1
(x®@y)y = [xl_q + yl_q — 1} - (x >0,y >0), (22)
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one can make the rule (21) additive, i.e.,
Ing [(x®y)q] = Ingx +Ingy. (23)
It is also possible to define the g-exponential function
1
ef =[1+1-q)p]™, (24)

which does not fulfill the standard exponent addition rule e**? = ¢%?, though in the limit
g — 1, it does, since ef = eP.

The Tsallis g-entropy definition (19) is usually presented in three equivalent forms.
However, using the definition of g-logarithm (20), all of them can be brought into the same
form (cf. Appendix A):

1T ()
So=ke—=7

It is important to mention that in order to fulfill the requirements of concavity for S, given
by (8), the nonextensivity parameter should be positive g > 0 [4].

In the limit g — 1, the Tsallis entropy S, given by (19), or (25) reduces to BG entropy
(1). After some check, it is possible to find that the Tsallis g-entropy (19) or (25) satisfies
the nonadditive composition Abé rule (12) if one defines a nonextensivity parameter as
Y = 1—g (cf. Appendix B). For equal probability states (2), the formula (25) gives the
Tsallis g-entropy as

(25)

ni—1 -1
1—9q

which nicely shows how it generalizes BG entropy (3) via a new parameter .

Sq = kB h’lqi’l = kB ’ (26)

4.2.2. Rényi Entropy

Rényi entropy [11], which is a measure of entanglement in quantum information theory,
is additive and preserves event independence. It is another important generalization of BG
entropy, which is defined as follows:

Iny" )
SR — kB nZl:1(pZ) . (27)
1-¢
By assuming that all the states are equally probable, as in (2), it follows from (27) that

SR = kB lnn, (28)

which is the same as BG entropy (1).
In fact, the Rényi entropy (27) can be written in terms of the Tsallis g-entropy by using
the formal logarithm approach [52] as follows:
kg

_ 1—q
Sk = 1_qln[1+ o S (29)

A unique feature of Rényi entropy is that it is additive, which results from some more general
Abé composition rule given by [49]:

H(Sars) = H(S) + H(Sy) + 1 H(SA)H(S5), (30)

together with redefinition using the logarithm in the form

L(S) = kYB In (1 + éH(S)), (31)
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which applied to (29) gives an additive formula

L(Sa+B) = L(Sa) + L(Sp), (32)

where L(S) corresponds to the Rényi entropy, and H(S) corresponds to the Tsallis g-entropy.
In such a formulation, one can write that the Rényi entropy fulfills the Abé rule (12), with
the parameter Y = 0.

4.2.3. Tsallis—Cirto J-Entropy

The Tsallis—Cirto d-entropy [4,9], sometimes also known in the literature as the Tsallis
entropy, is yet another generalization of BG entropy (1) via the introduction of another
nonextensivity parameter J as follows:

n
S =ks ) piinp)’ (6>0,6€R), (33)

i=1

and this difference is easily recognized when one compares it with the Tsallis g-entropy (19)
and with BG entropy (1).
Under the assumption that all the states are equally probable, as in (2), one determines
from (33) that
S5 = kp(In n)‘s = kg In’ n. (34)

Making another assumption that we deal with two independent systems, A and B, fulfilling
the condition n4+B = n4 . nB, one realizes that the composition rule for the Tsallis-Cirto

entropy (34) reads
Ss.a+) "’ _ (Ssa 1/ n S\ " (35)
kB kB kB ’

which is another example of a composition rule, which is different from the Abé rule (12).
We call this the é-addition rule from now on. In fact, Tsallis and Cirto suggest that [4,9]

)
S5 = kg (Slf;k> , (36)

where Sp, is the Bekenstein entropy (14). According to a new composition rule (35), one
realizes that the Bekenstein entropy, as given by Sz, o« (S5)1/?, can be additive, while the
Tsallis—Cirto entropy S; itself is nonadditive. Additionally, bearing in mind the definition
of Bekenstein entropy for a Schwarzschild black hole (14), one can easily notice that for
§ = 3/2, the Tsallis-Cirto entropy (36) is proportional to the volume S5 & M3, and so it is
an extensive quantity in view of the standard definition of extensivity. We come back to
this issue in Section 4.3.

4.2.4. Tsallis g, 5-Entropy

The Tsallis g, 6-entropy generalizes both the Tsallis g-entropy (19) and the Tsallis-Cirto
é-entropy (33), combining them as follows [4,9]:

n
Sq,§:kBX;pi(lnqpi)5 (5>0,g €R,6 €R). (37)
i=

Now, both g and J play the role of two independent nonextensivity parameters. By assum-
ing that all the states are equally probable as in (2), one gets from (37) that

Sy5 = kp(Ing n)5 = kg lng n. (38)

The Tsallis g, d-entropy does not fulfill the Abé addition rule or the J-addition rule, though
it fulfills the former in the limit § — 0 and the latter in the limit g — 0.
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4.2.5. Tsallis-Jensen g, y-Entropy

Recently, Tsallis and Jensen [38] proposed another generalization of BG entropy,

which reads 1
In E p! SR
Spn =k ==L g ( ) , 39

where Sg is the Rényi entropy and + is a new parameter somewhat analogous to the
parameter ¢ in the Tsallis-Cirto entropy (33).
Since the Rényi entropy possesses the BG limit for § — 1, we can write [38]

1

S 7
S1,y = ks <,f;) , (40)

and analogously, if we take Bekenstein entropy (14) instead of the BG in (40), in the same
limit g — 1, we get

1
SBek — kg <Slf;’<> " (41)

Bearing in mind the additive composition rule (5) for the BG entropy, and using (40), one
can write the additivity rule for Sy, as follows:

[S1,,(A+B)]" = [S1,(A)]" + [S1,(B)]". (42)

Similarly, taking into account the square root additivity rule (17) for the Bekenstein-like
entropy (41), one can write the composition rule as follows:

[SBek(A—O—B)} [SBek( )} [SBek( )} +2[SBek( )SBek( )}7 (43)

Finally, since the Rényi entropy Sg in (39) is in general additive according to the composition
rule (32), then we can write a generic composition rule for the Tsallis—Jensen entropy (39)
as follows:
S (A+B)]" = [Sgr(A)]" + [S44(B)]", (44)
and this is exactly the § composition rule (35) with v = 1/6.
Table 1 gives the summary of four different Tsallis invented entropies.

Table 1. Tsallis entropies.

Entropy Type Extensivity ~Additivity Abé Addition Rule J-Addition Rule
Boltzmann-Gibbs Spg yes yes yes, Y =0 yes,d =1
Tsallis Sq,l =5, no no yes,Y =1—¢q no
Tsallis-Cirto S1 5 = S5 no no no yes
General Tsallis 5,5 no no no no
Teallis-Jensen Sg, no no no yes, 6 =1/

4.3. Barrow Fractal Horizon A-Entropy and Its Relation to Bekenstein and Tsallis—Cirto 6-Entropy

Barrow entropy [16] has no statistical roots at all. It is closely tied to black hole horizon
geometry influenced by quantum fluctuations, which make an initially smooth black hole
horizon a fractal composed of spheres, forming the so-called sphereflake. This structure
is characterized by the fractal dimension dy, which in extreme cases are either the surface

or the volume, ie, 2 < d <3 resulting in an effective horizon area of 7 , where r is
the black hole horizon radius. After quantum-motivated modification of the area, the
entropy reads as follows:
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AN\1F8 S 1+%
Sgar = kB (A) = kg ( If;k> , (45)
p

where S is Bekenstein entropy, A is the horizon area, A is the Planck area, A, « lrz,
with [, is the Planck length, and A is the parameter related to the fractal dimension by the
relation A = d r—2.In fact, 0 < A <1 with the A — 1 limit, yielding a maximally fractal
structure, where the horizon area behaves effectively like a three-dimensional volume,
and with the A — 0 limit yielding the Bekenstein area law, where no fractalization occurs.
Although Barrow entropy has geometrical roots and is not motivated by thermodynamics,
it has the same form as Tsallis—Cirto 6 entropy (36) [53], being also related to Bekenstein
entropy Spe, as in (14), provided that
A

d=1+ 5 (46)
However, the ranges of parameters 6 and A are different—¢ has only the bound 6 > 0, while
0 <A <1lisequivalentto1 < § < 3/2. Thus, qualitatively, both entropic forms yield the
same temperatures as a function of a black hole mass. Both the Tsallis—Cirto entropy limit
0 — 3/2 and the Barrow limit A — 1 yield an extensive but still nonadditive entropy for
black holes. In fact, the cosmological studies of Barrow entropy as holographic dark energy
have been performed intensively [17-34], pointing towards this extensive case [18,38,54].

4.4. Landsberg U-Entropy
The Landsberg U-entropy is defined in relation to Tsallis g-entropy (25) as follows [39]:

- ( : ) 1Y () 1 s,
Syi=—(1———— | =k = , 47
v\ T o o oL W

and it fulfills the Abé rule (12) for Y = g — 1 (cf. Appendix B). By assuming that all the
states are equally probable as in (2), it simplifies (47) to the form

Sy =n1"'s,, (48)
so it simply relates to Tsallis g-entropy.

4.5. Sharma—Mittal Entropy

The Sharma-Mittal (SM) entropy [12,55] combines the Rényi entropy with the Tsallis
g—entropy, and it is defined as follows:

Ssm = %B [(f@gq) o 1], (49)
i=1

where R is another dimensionless parameter apart from q. For equally probable states in
(2), one determines from (49) that [56]

R
k 1—q_ 7173
Soy = ;{ {1+ kquq} ! 1}, (50)

where the R — 1 — g limit yields the Tsallis entropy, and the R — 0 limit yields the Rényi
entropy. It is interesting to notice that the SM entropy obeys the composition rule of Abé
(12) for Y = 1 (cf. Appendix C).
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4.6. Kaniadakis Entropy

The Kaniadakis entropy [14,15,24] results from taking into account Lorentz transfor-
mations of special relativity. It is a single K-parameter (—1 < K < 1) deformation of BG
entropy (1), with the K parameter related to the dimensionless rest energy of the various
parts of a multibody relativistic system. The basic definition of Kaniadakis entropy, which
directly generalizes BG entropy, reads as follows:

n

Sk = —kp ) pilng p;, (51)

i=1

where p; is the probability distribution and # is the total number of states, as mentioned in
Section 2. The formula (51) introduces the K-logarithm

K K

— x_
2K

X

1
Ingx = =% sinh (K1n x) (52)

with some basic properties like Ing x ™! = — Ing x and In_ x = In x, giving the standard
logarithm In x in the limit K — 0. An equivalent definition of Kaniadakis entropy, which
can be obtained after the application of the K—logarithm (52), reads as follows:

n

(pi)l (Pi)l
k . 53
Sk B ; . 2K (53)

The K—deformed logarithm is associated with the K—exponential as follows:
1 1/K
expyXx = exp [Karcsinh(Kx)] = (\/ 1+ K2x2 + Kx) , (54)

and it fulfills some basic relations like expy (x)expy (—x) = 1, and expy (x)exp_g(x), giving
the standard exponential function exp (x) in the limit K — 0. In fact, the K—logarithm and
K—exponential are the inverse functions, which means that they fulfill the relation

Ing (expgx) = expg(Ing x) = x. (55)

The K—logarithm fulfills a generalized composition rule, which reads as follows:

Ing (xy) = Ing x1/1+ K2(Ing y)? 4+ Ing yy/ 1 + K2(Ing x)2, (56)

and it admits the standard logarithm rule In(xy) = Inx + Iny in the limit K — 0. The rule
(56) comes from the definition of the K—sum:

(x@y)k = x\/1+ Ky +yv1+ K2, (57)
where one replaced x — Inx and y — Iny, giving the standard additivity rule (x © y)x =

x +y in the limit K — 0. Using the definition of Kaniadakis entropy (51), as well as the
K—logarithm addition rule, we can write down the Kaniadakis entropy composition rule

as follows:
K2 K?
SK(A—i-B) :SK(A) 1+kTSK(B)+SK(B) 1+k75K(A), (58)
B B

which we start calling the K—addition rule from now on. It is interesting to note that through
the application of the K—sum [14], defined as

(x@y)k = %sinh Liarcsinh(Kx)arcsinh(Ky)] , (59)
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one has for the K—logarithm
Ing[(x ® y)k] = Ing x + Ing y, (60)

so that applying it to (51), the Kaniadakis entropy (in full analogy to the g—product of
Tsallis given by (22)), can take a completely additive form as below (cf. the definition of
additivity (4) for statistically independent systems)

Sk(A+ B)x = Sk(paps) = Sk(pa) + Sk(ps) = Sk(A) + Sk(B). (61)
Using the K—product, the Kaniadakis entropy can also be extensive
Sk (x®") = rSk(x), (62)
where r = const., and it comes as a result of the identity
Ing (x®") = rln,g(x). (63)

Finally, in analogy to the previous considerations, and under the assumption that all the
states are equally probable, as in (2), one gets from (51) that

1 eKlnn o e—Klnn

Ing p; = X 2 (64)

which can further be transformed into

kg . K
Sk = fsmh (kBS>, (65)

where S = kg Inn is the BG entropy (3).

4.7. Thermal Equilibrium Temperature vs. Equilibrium Temperature for Nonextensive Entropies

One important issue related to nonextensive systems is the formulation of a proper
definition of the thermal equilibrium temperature, which is necessary according to the
zeroth law of thermodynamics [36,52,57]. This problem can be solved by using the notion
of the effective equilibrium temperature based on the equilibrium condition [46], recently
discussed in more detail in ref. [42]. In defining this temperature, one uses an analogy
to some strongly coupled quantum systems which can be in equilibrium at the effective
temperature, but not in the thermal equilibrium, as for the extensive systems. The equi-
librium temperature is obtained by maximizing the composition rule (9) with the fixed
total energy of the system Uyp = Uy + Up, which leads to the conditions 5 45 = 0, with
SaB = §(S4,Sp), and SU(A + B) = 0. The equilibrium temperature T, then reads

1 98 9%

5 %
o= = b = P4 66
‘7 kpp*  kpBa  kaPs (66)

where we have defined B for each system, i.e.,

dSp

CEY) -
kBﬁA = @ and kB,BB =

The application of the above procedure to the specific system described by the Tsallis
g-entropy (19), which fulfills the Abé composition rule (12) as an example of the general
composition rule (9), gives the equilibrium temperature [42]

1
kB’

1_
Ty =Tr = (14+ ——15,)

= (68)
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which is the Rényi temperature T [58] corresponding to Rényi entropy Sgr given by (29)
according to the Clausius formula (16).

It is interesting that the Rényi entropy and the Rényi effective equilibrium temperature
can be defined on a horizon of a Schwarzschild black hole [5-8,59] by assuming that the
Bekenstein entropy Sp given by (14) is the Tsallis entropy S; in (29) and (68).

A similar procedure of introducing the equilibrium temperature can be performed for
the Tsallis—Cirto d-entropy by calculating the corresponding temperature from the Clausius
relation (16) as follows: [42,58]

Ty (Spa\'’
=2 (S (©9)

which scales with 1/M?2 for 6 = 3/2, i.e., Tsx1/ M2 for a Schwarzschild black hole.

4.8. Classification of Entropies

Bearing in mind all the considerations of Section 4, we present a summary of the
additivity and extensivity properties of the entropies in the Table 2.

There is the whole group of Tsallis-invented thermodynamical entropies, which gen-
eralize BG entropy in some different ways (cf. also Table 1). They obey either the Abé
composition rule or the §-addition rule. The Tsallis g-entropy relates to both the Rényi and
the Landsberg U/ entropies, while it is generalized by the Sharma—Mittal entropy. On the
other hand, the Tsallis-Cirto J-entropy is related to the Barrow entropy and the Tsallis—
Jensen g, v entropy and, interestingly, it points towards extensivity, when observations are
taken into account [18,38,54]. The Kaniadakis entropy seem to form a separate group of
nonextensive entropies because of its hyperbolic formulation as a consequence of relativity
theory being taken into account, but it still has a BG limit. In fact, all the entropies in our
study have a BG limit, except Bekenstein entropy, which is not formulated as proper statis-
tics. However, it is composable, though its composition rule is unique among any other
rules, which are often shared with themselves. Additionally, in the microscopic counting of
states in the string theory [60,61], the nonextensive Bekenstein formula is recovered, though
it was also found that some higher-dimensional extremal black holes allow for Bekenstein
entropy, which is consistent with the Boltzmann-Gibbs extensive limit.

Table 2. The additivity, extensivity, and composability properties of entropies.

Entropy Type Extensivity  Additivity Abé Rule 6-Rule K-Rule
Boltzmann-Gibbs Sgg yes yes yes,Y =0 yes, 0 =1 yes, K =10
Bekenstein Sg, no no * no no no
Tsallis g-entropy S4 no no yes,Y =1—gq no no
Tsallis—Cirto S; (6 # 3) no no no yes no
Tsallis-Cirto Ss (6 = 3) yes no no yes, 6 =3 no
Barrow Spgr = Sper (A =0) no no* no no no
Barrow Sp,;, (0 < A< 1) no no no yes no
Barrow Sp,r (A =1) yes no no yes, § = % no
Rényi Sg no yes yes, Y =0 no no
Landsberg U-entropy Sir no no yes, Y =q—1 no no
Kaniadakis Sk no no no no yes
Sharma-Mittal Sgp(g, R) no no yes, Y =R no no
Tsallis q, 6-entropy S; 5 no no no no no
Tsallis-Jensen S ,, no no no yes, 6 =1/ no
Tsallis-Jensen Sy no no no yes, 0 =1/ no
Tsallis-Jensen S;1 = Sg no yes yes, Y =0 no no

* obeys square root composition rule (17).
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4.9. Generalized Four- and Five-Parameter Entropic Forms

There exists a four-parameter entropic formula [62], which reads as follows:

B -B
x, S ) ( x_ S )
1+ =2 ) —(1+—==>) |, 70
(1+%5 B ks 70
as well as the five-parameter formula [63] of the following form:

Se(at,B,o,€) = I:f{ [1 + %tanh <mﬁ+k53)r - {1 + %tanh <wﬁ_k53>} _ﬁ}, (71)

Both these formulas generalize some of the entropies which are contained in Table 2 and
have the following limits:

k
Selax,B,o) = ;B

1. ife — 0, then one recovers the Tsallis—Cirto (33) and Barrow (45) entropies;

2. ife—=0,a_ =0, 8—0 and ay /B is finite, then one recovers the Rényi entropy (29);

3. ife —>0a_- =0, 0=ar =R, and B = R/J, then one recovers the Sharma-
Mittal entropy Formula (50), though only when one replaces Tsallis g-entropy S, with
Tsallis-Cirto d-entropy Ss;

4. ife -0, — o0, ay =a_ =0/2 =K, then one recovers Kaniadakis entropy (65).

These entropies have an important advantage for cosmology. Namely, they are
singular-free at the cosmological bounce, which is characterized by vanishing of the Hubble
parameter H = 0 in bouncing scenarios [64]. Additionally, they allow for microscopic
interpretation [65,66].

Since all of them are in general nonadditive and nonextensive, it is not necessary to
discuss them in more detail, though they may recover BG behavior in some special cases.
However, we will not consider these cases in detail here.

5. Summary and Discussion

Beginning with the underlying properties of the Boltzmann—Gibbs classical entropy,
we have investigated the problem of nonextensity and nonadditivity in thermodynamics,
aiming towards gravitational systems which admit long-range interactions. The focus
has been on such extensions of Boltzmann—Gibbs entropic form, which allow for various
deformations of it via some new parameters modifying the space of microstates (). These
new parameters are given as some interpretations according to a deformation and can be
enumerated as the Tsallis nonextensivity q—parameter; the Tsallis—-Cirto nonextensivity
é—parameter, which is equivalent to the Barrow fractality A—parameter; the Tsallis—Jensen
nonextensivity parameter 7; the Sharma-Mittal R—parameter; and the Kaniadakis rela-
tivistic K—deformation parameter.

The entropies under study may fulfill some composition rules, including the Abé rule
and J—addition rule, both of which are nonaddtitive. Bekenstein entropy obeys some other
nonadditive rule, called the square root rule, which is somewhat similar, but not the type of
the Abé rule. The Kaniadakis entropy can be made additive within a special K—deformed
algebra, and it reaches the standard Boltzmann-Gibbs additive rule in the limit K — 0.
The same may refer to other entropies which are composable, such as the Tsallis g-entropy
and the Bekenstein entropy. A separate matter is whether these “made-additive” entropies
have a proper physical interpretation. Another point that we have discussed was the
definition of the equilibrium temperature for nonextensive systems, in contrast to the
thermal equilibrium temperature, which is ambiguous for these systems.

We have presented two important comparative tables with the additivity, extensivity,
and composability properties of the entropies under study, and the relations between
them have been shown explicitly. To our knowledge, such a collective comparison of
entropic forms have not yet been presented in the literature. In view of the recent interest
of both astrophysicists and cosmologists in the application of the plethora of alternatives
to Boltzmann-Gibbs entropies, this paper may then serve as a useful guide to these ap-
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n n
Sy = —ks Z(Pi)qlnq pi=—kg)_ (pi)T

n Ng—1 _ n N — (. _yn Y
SqIII — _kB ZIHqu pi = _kB Z(Pl) (Pz; 1 — _kB Z (pl) (Pz) — kBl Zz:l(pl)

plications. It is worth noting that a number of these entropies are considered suitable as
the candidates for holographic dark energy; therefore, the presented summary gives some
structure to their general properties in a systematic way, which can help astrophysicists
and cosmologists to sort them out into categories, which can then be systematically verified
by the data. Currently, it seems that most of the tests are being performed mainly for some
particular types of entropies without significant regard to their relations to others.
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Appendix A. Equivalent Forms of Tsallis g-Entropy

There are three equivalent forms of Tsallis g—entropy given by (19), which we can
label according to their appearance in (19): Sqp, Sq11, Sq111- We show their equivalence by
reducing each of them to the form (25) via the application the probability sum rule } | p; =1
and Formula (20). For S;j, one has

1—q

n 1 n > —1 n q_l 1—y" Y

SqIEkBZPilnqp_szpi(p> ; Z Pz kg %1_11(;71) , (A1)
i=1 i i=1 i=1

which is equivalent to (25). For Sy, one has

) (p)'—1-1 _ izl (i) = ()] 1= Eia (pi)? (A2)

& 1-g 1—g¢ P

which is equivalent to (25). For Sgy7, one has

n

—1 (A3)

i=1 = -1 '

where we have applied a redefined g—logarithm (20) with g/ = 2 — ¢. This finishes the
proof.

Appendix B. Validity of Abé Composition Rule for Tsallis §—Entropy and Landsberg
U —Entropy

We first assume two probabilistically independent systems, A and B, fulfilling

Y.y it = Y 2 pip? (A4)

i=1 ]:1 i= 1]

for every i, j, which gives
n m n m n m
q
LY () = L () = R () ()" (49)
i=1j=1 i=1j= =1j=
Following the definition of Tsallis g—entropy (25), one can write it using (A5):

q q
=1 i (Pf;HB) — =YX (r)" (Pf)
g—1 — b g—1

1
Sq(A+B) =kp , (A6)
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as well as

1—y7"  (pA)]
5q04)::k3‘;_}?%), (A7)

and analogously for S;(B).
Following the Abé rule (12) we can then write the right-hand side of it as follows:

q
Y 11—y (p2)! 1-y (pf
RHS = S;(A) + S4(B) + ——S4(A)Sq(B) = kg =1 (P) + kg ](]>

kg g—1 g—1
1—-ym, (pH"\ (11— ()" kg - -
+Yk i=1\Ti J = 1— A 41— Y (pB)
Y Y &, o4 Y & o Y &, oAva, B
— Ayg .~ By -~ A1y (pBYT ], (A8)
which after selecting Y = 1 — g, cancels six out of eight terms giving on the base of (A5)
that
q q
-2 O (p)" (pF 1= X o (g
RHS = ky—— 57 () (7]) e (v ) —S,(A+B). (A9)

q—1 q—1

The proof of applicability of the Abé rule for Landsberg U—entropy (47) proceeds
analogously, provided that Y = g — 1 instead.

Appendix C. Validity of Abé Composition Rule for Sharma-Mittal Entropy
Let us write the Abé rule for the Sharma-Mittal entropy as follows:

Ssu(A+B) = Ssu(A) + Ssp(B) + %SSM(A)SSM(B) (A10)
with N
SSM(A—%B)::ﬁg[(é;éé(p§+3ﬂ>lly—1] (A11)
and N
Ssu(4) = 2 [(lilw?)ﬂ) = 1} . (A12

RHS:I?[(;@?W) —1]+1§[<]§(p}3)q> —1]+I{Blf[<;(pifl)q> —1}x

= LHS, (A13)
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where we have taken Y = R, and applied (A5).
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