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Abstract

In this thesis we investigate various mathematical and physical problems surrounding the
theory of non-Hausdorff manifolds. We start by introducing a topological theory of non-
Hausdorff manifolds from first principles. We then pass our discussion into a smooth cat-
egory by defining various structures of geometric interest on non-Hausdorff manifolds, all
whilst circumventing the technical issues surrounding partitions of unity. We complete our
mathematical contribution by describing de Rham cohomology for non-Hausdorff manifolds,
ultimately proving a generalized version of de Rham’s Theorem. For the physical contribu-
tion, we focus our attention on certain two-dimensional non-Hausdorff manifolds that may
be interpreted as a type of topology-changing spacetime. We define a gravitational action
for 2d non-Hausdorff spacetimes, and determine the angular conventions required to sup-
press their contribution within a Lorentzian-signature path integral for gravity that sums over
topologies.
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Chapter 1

Introduction

In the theory of general relativity, space may change its geometry over time according to the
whims of gravity. Naturally, many authors have wondered whether the fundamental topol-
ogy of space may also fluctuate over time. This could mean that space splits in multiple,
causally-disconnected pieces, or perhaps some more-nuanced process in which space gains
holes or other higher-dimensional topological features. Over the years there have been sev-
eral considerations of these ideas, ranging between classical and quantum theories of gravity
[4, 12, 16, 24, 28, 29, 31, 32, 36, 48, 49, 67, 70, 97-99, 107].

Classically speaking, the influence that the underlying topology of spacetime has on the
resulting geometric behaviour is relatively well-understood [52, 86, 88]. Using these ideas,
various authors have derived certain no-go theorems on the nature of topology change. These
results typically describe some kind of causal misbehaviour as a kinematical obstruction aris-
ing from the topology changing spacetime [42, 52, 96], though may also manifest as more
geometric abnormalities involving energy conditions [11, 103] or spin structures [43, 44].
The standard consensus from these results is that, due to their undesirable physical proper-
ties, topology change in general relativity is forbidden — see [18, 33] for a more thorough
review.

Despite being inappropriate from the classic view of general relativity, some authors
nonetheless pursue topology change within a quantum theory of gravity. This theme dates
back to Wheeler [106], who suggested that at the Planck scale, the curvature of spacetime
may fluctuate so violently that it separates itself into topologically disconnected pieces. Mo-
tivated by this idea, some authors make the interesting claim that topology change may be
an integral feature of the universe, despite being classically forbidden [56].

Among the studies of topology change within quantum gravity, there are some explicit
attempts to include some topology-changing processes into a path integral. The most natural
narrative for these considerations is the sum-over-histories approach to quantum gravity, in
which the computation of transition amplitudes involves a sum over all topologies that permit
a "physically reasonable" spacetime structure [28, 51, 99]. An exact list of such desiderata
is not clear, and considerations may vary depending on the commitments of each approach
to quantum gravity. In any case, one would expect that topology-changing spacetimes ought
to be exponentially suppressed relative to classical configurations in the path integral, with
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more elaborate models receiving an even stronger suppression.

In the case of a naive sum-over-histories approach to gravity, topology changing tran-
sition amplitudes have been studied to various degrees. Typically, these occur in discrete
settings such as in simplicial theories of quantum gravity [3, 5, 58], or in the theory of causal
sets [28, 30]. In these approaches to quantum gravity, one typically leverages the extra as-
sumption of discreteness of spacetime at a fundamental level (in varying senses) to obtain
more tractable descriptions of their path integrals. Aside from these, explicit mentions of
the exponential suppression of topology-changing spacetimes in other simple contexts can
be found in [19].

Somewhat adjacently, there also exist several theories of Euclidean quantum gravity in
which distinct topologies are frequently summed over in the path integral. Perhaps the most
well-known is in the genus expansion of closed string theory [26, 90]. By virtue of being
two dimensional, the worldsheets of closed strings have total scalar curvatures proportional
to their Euler characteristic — a connection induced by the famous Gauss-Bonnet theorem
for Riemannian surfaces. In the bosonic path integral for closed strings, a sum over distinct
topologies is reduced to a sum of Euler characteristics, scaled explicitly by an overall weight
induced by the dilaton field. Through further arguments, the dilaton field is then justified to
be a fixed parameter of the theory, and thus suppression rules for the genus expansion are
completely determined by the theory.

In reality, we may expect there to be a Lorentzian analogue to these Euclidean path inte-
grals in which topology-changing spacetimes are summed over. In some sense, a prototype
of this idea was explored by Sorkin and Louko in [67], who studied the potential inclusion
of the Trousers space into a naive path integral summing over topologies in Lorentzian sig-
nature. This space can be seen as a basic building block of topology change in 24 [1, 31], as
it represents a Lorentzian analogue of a closed string splitting into two. Sorkin and Louko
evaluated the basic gravitational action of the Trousers space, and then determined the cor-
rect rules that would entail its suppression relative to the Lorentzian cylinder. Interestingly,
they concluded that no inherent suppression mechanism exists, and instead needs to be fix
by hand via a sign convention.

Despite topology change having been extensively studied in various degrees, there is an
interesting gap in the literature that has existed for over half a century. In a brief article dis-
cussing time asymmetry, Penrose sketched an idea for a process of topology change which
is markedly distinct from the standard mathematical models used by other authors. In his
picture, found as Figure 12.3(a) in [89], the topology of space changes at the scale of an
individual point in spacetime, rather than along spacelike hypersurfaces. In the simplest case
points are doubled, and this topology change is then taken to grow along along nullrays.
If taken within a compact spacetime with spacelike boundaries, i.e. the natural setting for
transition amplitudes, then this pointlike topology change will grow to cover the entirety of
space in finite time and result in an overall change of spatial topology.

Penrose’s spacetimes are interesting in that they seem to localize topology change all
the way down to a single event in spacetime. This process results in a causal oddity: the
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doubled points will have the same causal past, but causally-disconnected futures. These
multi-lightcone structures may agree with certain Everettian interpretations of wavefunction
collapse in quantum mechanics [34, 95], and the growth along nullrays is reminiscent of
inflationary models of the early universe. Despite the intrigue, there is a rather important
subtlety that Penrose correctly identifies: mathematically speaking, in order for such spaces
to be manifolds, then they must necessarily violate the Hausdorff property. Heuristically
speaking, the doubled points will be "superimposed on top of each other" in the result-
ing manifold, and in fact so will their future nullcones. This atypical mathematical feature
explains the lack of attention surrounding Penrosian topology change: non-Hausdorffness
makes these spaces fall outside the scope of ordinary differential geometry, and at his time
of writing it was unclear whether these atypical spaces were tractable in the first place.

In this thesis we will take seriously the topology-changing spacetimes of Penrose by
studying their inclusion within a path integral for quantum gravity in Lorentzian signature.
We will work towards the same setting as that of Sorkin and Louko [67], that is, we will
focus on the specific case of non-Hausdorff transitions from one circle to two. However, be-
fore studying their physical properties, we must first take on the important task of verifying
their mathematical plausibility. Simply put, we cannot determine the gravitational action of
non-Hausdorff spacetimes if they do not admit meaningful notions of calculus and geometry
in the first place. As such, a large portion of this thesis is first devoted to the foundational
development of a non-Hausdorff differential geometry, through which me may then formu-
late our physical questions.

Throughout the remainder of this introduction we will elaborate on the observations men-
tioned above. We will first summarise the mathematical formulation of (Hausdorff) topology
changing spacetimes commonly found in the literature, together with the causal abnormal-
ities and the aforementioned analysis of Sorkin and Louko. We will then explain the idea
of Penrose in detail, and flesh out some observations regarding non-Hausdorffness in math-
ematics and physics. Finally, we will provide a broad outline of this thesis, as well as some
important remarks regarding the formatting choices present in this document.

1.1 Topology Change via Lorentz Cobordisms

Broadly speaking, we may think of a spacetime! (M, g) as exhibiting topology change when-
ever it contains maximal spacelike hypersurfaces that are not homeomorphic. Since we
would like spacelike hypersurfaces to change through time, it is appropriate to describe this
process via a global time function f : M — R. This function f will assign to each event in
M a numerical value in such a way that it preserves the causal ordering of events in M. By
construction, each of the preimages f~!(¢) will be a maximal spacelike hypersurface of M.
Our intuition for topology change may then be refined by expecting there to be two times ¢
and ' such that £~1(¢) and f~!(¢') are not homeomorphic in M.

'Throughout this thesis we will reserve the term "spacetime" for locally-Euclidean, second-countable,
Hausdorff spaces equipped with a smooth atlas, a Lorentzian metric and a time-orientation, as per usual. We
will also assume that spacetimes consist of a single connected component, though its boundary may not gener-
ally be connected.
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With the computation of transition amplitudes in the back of our minds, we will consider
the specific case in which M is a compact manifold with spacelike boundary. This implies
that global time functions on (M, g) will take image on some closed interval [t;,#] instead of
the whole real line. Formally, we then say that a spacetime (M, g) with spacelike boundary
exhibits topology change whenever (M, g) admits a global time function ¢ : M — [t;,t/] for
which the preimages f~!(#;) and f~! (t7) are not homeomorphic. This allows us to arrange
the distinct spatial topologies to be on the boundary of spacetime, with (M,g) smoothly
interpolating between the two. We will now set about describing these topology-changing
spacetimes in detail. To begin with we will start with their properties as smooth manifolds.

Within mathematical literature, a compact n-dimensional oriented smooth manifold M is
called a cobordism between two codimension-1 closed manifolds Ny and N> whenever the
boundary of M is diffeomorphic to Ny LI N,. When this is the case, Ny and N, are referred to
as cobordant. Historically, this notion of cobordism was initially proposed as an attempt to
classify all closed manifolds of fixed dimension — being cobordant is weaker than diffeomor-
phic or homeomorphic equivalence, yet relates a pair of manifolds if one can be smoothly
interpolated into the other inside the "space of manifolds" [6, 73, 102].

The cobordism relation (which is an equivalence relation) allows the demarcation of
manifolds into a ring-structure called the cobordism ring, and the properties of this ring de-
tail interesting dimension-dependent questions about manifolds [102]. Moreover, this notion
of cobordism is related to the construction of one manifold from another by handle attach-
ments, a process known as surgery. Indeed, it can be shown that a pair of closed manifolds
are cobordant if one is constructible from the other by a finite series of handle attachments or
removals. In general, a pair of (n — 1)-dimensional closed manifolds need not be cobordant.
However, in low dimensions there are positive existence results: it can be shown that any
pair of (n — 1)-dimensional closed manifolds are cobordant when n = 2,3 or 4 [73].

This notion of a smooth cobordism can be elegantly described via Morse theory [74, 81].
In this approach, one foliates a manifold by maximal codimension-1 hypersurfaces, and
studies their evolution into each other. The manifold M is described via a Morse function, a
smooth map f : M — [0, 1]. Tracing through the level sets of f (i.e. the preimages f~!(¢))
will then describe a foliation of M. Importantly, not every preimage f~!(¢) will be an em-
bedded submanifold of M. In some cases, the preimage f~!(¢) may be an immersed sub-
manifold, meaning that there may be singular behavior on this slice of M. These special
slices correspond to critical points of the Morse function f, and the exact nature of these
critical points encodes which type of handle to attach to change the topology of the slices
of M. Thus from this Morse-theoretic data, one may rebuild M from a sequence of handle
attachments applied to V.

1.1.1 Lorentz Cobordisms as Morse Geometries

We may formulate topology-changing spacetimes within the language of cobordisms: an n-
dimensional compact topology-changing spacetime is a smooth cobordism between inequiv-
alent codimension-1 hypersurfaces Ni and N, for which the interpolating bulk manifold M
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N> R
1
f
M >
[ )
—

Figure 1.1: A smooth cobordism M between a pair of surfaces N| and N,. This procedure can be
described via a Morse function f: M — [0,1], where N; = f~1(0) and N, = f~!(1). The critical points of
f indicate changes in the topology of M.

admits a spacetime structure. Such spacetimes are known in the literature as Lorentz cobor-
disms [110, 111]. Given the Morse-theoretic description of cobordisms and their guaranteed
existence in low dimensions, it seems natural to try and induce a spacetime structure on a
smooth cobordism M in such a manner that the Morse function f : M — [0, 1] becomes a
global time function. This approach dates back to Yodzis [110, 111], though some basic
observation of the idea already exists in [42]. We will now demonstrate some shortcomings
inherent to this approach.

We first recall that although any smooth manifold always admits a metrics of Euclidean
signature, it is not the case that every manifold may be turned into a spacetime. A well-
known theorem states that a manifold M admits a globally-defined Lorentzian metric g with
time orientation whenever it admits a globally non-vanishing vector field [86]. In particular,
one may create a Lorentzian metric g on M from a Euclidean metric 4 by using a vector field
v to modify its signature via:

h(v,u)h(v,w) .

g(u,w) :=h(u,w) —2 H(v)

(1.1)
In the above, the global definition of & requires the global non-vanishing of the vector field
v, since otherwise the metric has a singularity in the latter term. Moreover if one opts to
remove the normalization altogether, then vanishing of v would allow the signature of the
metric to defer back to Euclidean signature at some points in M.

If we apply the above prescription to the gradient vector field v = Vf arising from a
Morse function f, we see that any topology-changing spacetime will inevitably admit sin-
gularities in its induced Lorentzian metrics at the critical points of its Morse function. Thus,
in the situation where a topology-changing spacetime can be smoothly described via Morse
theory, the resulting Lorentzian structure will be singular at certain points in the manifold.

Even in the case where we do not explicitly consider a Morse-theoretic approach, results
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such as the Hairy Ball Theorem demonstrate that not every smooth manifold admits a glob-
ally non-vanishing vector field [50]. In fact, arguments from cohomology tell us that such
a vector field only exists provided the underlying topological space has zero Euler charac-
teristic. Putting this together, we see that a compact, smooth manifold admits a spacetime
structure whenever its Euler characteristic vanishes. As we will see in a moment, it may well
be the case that simple topology-changing spacetimes have non-zero Euler characteristic,
and therefore do not admit any non-singular Lorentzian metrics, Morse-theoretic or other-
wise.

Before discussing our prototypical example of topology change, we will first outline a
sort-of converse argument to the above. In [42], Geroch assumes the existence of a desired
Lorentz cobordism, and then shows that it cannot be simultaneously topology-changing and
causally well-behaved. Suppose that M is a Lorentz cobordism between codimension-1 man-
ifolds Ny and N,. If we demand that this cobordism be non-trivial, i.e. that N; be not homeo-
morphic to N, then Geroch shows that a globally-defined spacetime structure causes (M, g)
to have closed timelike curves. The argument itself is fairly simple: the spacetime structure
on M defines a globally non-vanishing vector field v, and we may use the integral curves
associated to v to construct a family of maximal timelike curves. If we assume that there
are no closed timelike curves in M, then these integral curves will have to start on N; and
end on N,. Flowing N; along these curves will then yield a diffeomorphism with N;, and
thus there is no topology change. Simply put, Geroch’s result shows that topology change is
simultaneously incompatible with a non-singular metric and the absence of closed timelike
curves.

1.1.2 The Trousers Space

Perhaps the simplest example of a topology-changing spacetime is the Trousers space, which
is a smooth cobordism from one circle to two. Topologically speaking, an individual circle
is being pulled apart from itself, until it discontinuously rips into two copies, as pictured in
Figure 1.2. The Trousers space is the two-dimensional manifold that traces out this splitting
process. As a smooth manifold, the Trousers space is well-defined and can easily constructed
as a quotient space in a manner analogous to the construction of the cylinder from a square
[4, 36].

Firstly, we observe that the Euler characteristic of the Trousers space is equal to —1.
According to the previous discussion, this means that the Trousers space can never admit
a non-singular Lorentzian metric. Additionally, any modification of this topology to in-
clude any further complications to its branching (i.e. adding extra genera or extra legs to
the Trousers) will only ever decrease its Euler characteristic, and will never make it vanish.
This means that all two-dimensional trouser-like transitions will be subject to some kind of
abnormality in their causal structures. That being said, it is still possible to describe a metric
on the Trousers space whose causality is well-behaved almost everywhere.

In Figure 1.2, we see some level sets of a Morse function for the Trousers. At some stage
in the evolution there is a level set that is homeomorphic to the wedge sum S! V S!; a sort-of
"figure-8" configuration. At this stage, the spatial slice will be an immersed submanifold,
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Figure 1.2: The Trousers space, together with a sample of its spacelike slices. Due to Morse theory,
there is an inevitable singularity in any Lorentzian metric induced from a Morse function describing the
Trousers space.

and will contain a critical point in the Morse function. This particular critical point is known
as the crotch singularity, pictured as the marked point in Figure 1.2. It should be noted that
by virtue of the Trousers space exhibiting topology change, any Morse function will induce
a singularity of this kind. Nonetheless, the Trousers space will still admit a global time func-
tion, and thus exhibits at least some well-behaved causality.

Although any Morse-inspired metric on the Trousers space will inevitably possess a
crotch singularity, there is still a sense in which one may attribute at least some causal struc-
ture to the whole space. In [41], the authors introduce the notion of causal closure, which
permits the extension of well-defined causalities to their boundaries (in some sense of the
term). This technique can be successfully applied to the Trousers space, and yields an un-
usual lightcone structure at the crotch singularity, depicted in Figure 1.3. Here there are four
lightcones at the singularity — two past and two future. Physically speaking, we may interpret
this as a local breakdown of the Einstein Equivalence Principle.

Despite being slightly unusual from a causal perspective, there is still a sense in which
one may define and evaluate an Einstein-Hilbert action for the Trousers space. In two dimen-
sions, the gravitational action reduces to the total scalar curvature of the manifold, together
with boundary terms. In [67], Sorkin and Louko demonstrate that the Trousers is flat almost
everywhere, but there is a §-like singularity in the curvature of the Trousers space of strength
+2mi. In distinction to the dilaton field of closed bosonic string theory, the sign ambiguity
in the total scalar curvature is a genuine choice, with sign dictated by a choice of branch cut
of their analytic continuation scheme. Sorkin and Louko advocate for the sign choice —27i,
since this results in the suppression of the Trousers in a resulting gravitational path integral.
Note that the consideration of the Trousers space may be justified on causal grounds, by
virtue of its conformal structure inducing a causal poset relation [28].

The argument of Sorkin and Louko was later corroborated by the discrete Regge ar-
guments of [100], where the curvature contribution at the crotch singularity is computed
via an angular deficit. In this version of the argument, the Trousers space is triangulated
and its total scalar is determined by a Lorentzian version of the Gauss-Bonnet theorem. In
Lorentzian signature, angles are complex-valued, and in particular, a vector will collect a
contribution of j:%i every time that it crosses a null ray and passes into an adjacent quadrant
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Figure 1.3: The Trousers space together with it's crotch singularity. Here, the causal completion induces
four distinct lightcones (right); two future-directed and two past-directed.

of Minkowski space. By arranging a triangulation to take a vertex at the crotch singularity,
one may determine the curvature contribution at the crotch singularity to be +27i due to the
extra lightcones present. Again, it is argued by hand that —27i be the correct choice of sign
convention, as this entails the desired suppression behaviour.

Analyses such as [67] and [100] suggest that topology-change may be causally well-
behaved enough to be included within a path integral. However, it should be noted that the
causal abnormalities of the Trousers space are still prominent enough to pose problems for
other aspects of physics. In particular the Trousers space is not globally-hyperbolic, and
this poses significant problems for any resulting quantum field theories placed upon it. In
[4, 16, 70] it has been argued that a scalar quantum field placed on the Trousers space will
be misbehaved, ultimately due to the crotch singularity. Thus the Trousers space appears to
be "physically unreasonable" in at least some important sense.

1.2 Penrosian Topology Change

We now present a model of topology change which is markedly different to the Lorentz
cobordisms discussed above. This style of topology-changing spacetime was first introduced
by Penrose in [89]. In a sense, the picture of Penrose’s topology change occurs at the scale
of individual points, viewed as zero-dimensional submanifolds. Since cardinality is the lone
topological invariant of a zero-dimensional manifold, the only way to change the topology
of an individual point is to increase its number. In the simplest case, we can imagine that an
individual point in spacetime is doubled, with this topology change growing along null rays,
as pictured in Figure 1.4.

In the article [89], Penrose proposes this idea as a remark regarding time-asymmetry.
He likens these models to an Everettian interpretation of quantum mechanics, in which the
branching out accompanies a type of wavefunction collapse. However, this is all speculative
and throughout this thesis we will remain agnostic with regards to such ideas. Instead, we
will now concern ourselves with the mathematical nature of a spacetime like this. As Pen-
rose correctly identifies, the doubled-point structure of topology change renders these spaces
outside the scope of ordinary differential geometry: these spaces are not Hausdorff.
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Figure 1.4: A simplification of Penrose's non-Hausdorff topology changing spacetime (left), together
with a sample of its level sets (taken from [80, Fig. 2]). Although impossible to depict in ordinary
Euclidean space, here there are two copies of the origin superimposed on top of each other, together with
two copies of the future null cone.

1.2.1 Non-Hausdorff Manifolds

In contrast to the Hausdorff property, a topological space is called non-Hausdorff whenever
there exists a pair of points whose open neighbourhoods always intersect.”> Typical exam-
ples arise when trying to topologise a discrete collection of points, such as the Zariski space
of Algebraic Geometry, the digital line of pointset topology, and the non-Hausdorff spaces
of Domain theory. Aside from this, the point-set topological properties of non-Hausdorff
spaces are seemingly well-studied, typically going under the name of non-metrizable mani-
folds [39, T1].

Within differential geometry, non-Hausdorffness is rarely considered. Perhaps the best-
known occurrence of non-Hausdorff manifolds comes from the study of foliations [39]. In
this setting, one foliates a Hausdorff manifold by immersed submanifolds (called leaves), and
then introduces an equivalence relation that identifies points if they lie within the same leaf
of the foliation. As each leaf collapses to a single point in the quotient space, a new structure
emerges, called the leaf space of the foliation. This leaf space may be non-Hausdorff, as
Figure 1.5 (adapted from [69]) demonstrates for the line with two origins.

Although every group action induces an equivalence relation by which one may quotient,
the converse is not true in general. In fact, generally speaking, every equivalence relation is
dual not to a group, but to a groupoid. To each groupoid, one may associate a C*-algebra,
and thus we are lead to the study of non-commutative geometry a la Connes [22]. Applying
this observation to the non-Hausdorff leaf spaces of foliations, we may assign a groupoid to
this structure, known as the holonomy groupoid, and then use non-commutative algebras to
study the resulting objects. In this context, non-Hausdorff manifolds have been studied to
some extent.

Aside from the advanced studies of foliation theory and non-commutative geometry,
there is a gap in the literature regarding basic properties of non-Hausdorff manifolds from

2Throughout this thesis we will reserve the "manifold" for the ordinary usage, and will use the term "non-
Hausdorff manifold" to mean a locally-Euclidean, second-countable, non-Hausdorff space.
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Figure 1.5: A foliation of the space R?\{0} (left), and the leaf space of this foliation (right). This leaf
space is a non-Hausdorff manifold, known as the line with two origins.

their foundation up. Typically, standard texts on differential geometry may not even men-
tion non-Hausdorff manifolds at all, or perhaps they will provide a few remarks as an af-
terthought. Older texts such as Lang [62] or Hirsch [54] prefer to start their treatment of
manifolds locally and in as much generality as possible, so may not invoke the Hausdorff
property until several chapters in. Nonetheless, manifolds are usually defined to be Haus-
dorff, for the following reason.

The passage from local to global lies at the heart of differential geometry. Essentially
every geometric object one may consider on a manifold may be described by performing a
construction locally in each chart, and then consistently combining these local constructions
into something that makes sense across the whole manifold. There are several techniques for
gluing together locally-defined objects into a global one, and the most relevant for our pur-
poses involves the use of partitions of unity. Roughly put, partitions of unity provide a way
to smoothly "patch together" local data across overlapping subsets of a manifold by assign-
ing a function to each subset whose total sums to one over the entire space. Typically, these
functions are taken to have compact support in the subsets they are tied to, and thus in most
cases a partition of unity can be seen as a system of consistently-defined bump functions that
sum to one over the whole manifold.

Often times, we define a linear quantity chartwise, and then take linear combinations
of chartwise definitions, scaled by smooth functions. The precise properties of a partition of
unity ensures that only finitely-many terms in this linear combination contribute, and the sum
is finite and thus is well-defined. Using this idea, partitions of unity are applied in a variety
of constructions within differential geometry, including in the extensions of functions, the
locality of derivative operators, the definition of integration, the construction of a Rieman-
nian metric on any manifold, and so on. Given their utility, partitions of unity are typically
considered to be a crucial tool in differential geometry.

In a non-Hausdorff space, it is not always the case that a compact subset is topologically
closed. This unusual fact causes issues for a partitions of unity, as the support of a function
(which is defined to be a closed subset) may not fully lie in the intended open set anymore.
In fact this issue is much more pervasive — later in this thesis we will show that any cover
of a non-Hausdorff manifold by Hausdorff open sets will not admit a partition of unity sub-
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Figure 1.6: A construction of the line with two origins as an adjunction of two copies of the real line.

ordinate to it. It is for this technical reason that Hausdorffness is usually taken as a defining
property of manifolds.

1.2.2 Non-Hausdorff Spacetimes

Within the physics literature, non-Hausdorff manifolds are almost entirely unstudied. Per-
haps the best-known examples come from the maximal extensions of the Misner space [92]
and the Taub-NUT space [46, 52]. Note that here, the non-Hausdorffness occurs at the
boundaries of these spacetimes, and not in the bulk, as in Figure 1.4. Other discussions of
non-Hausdorff spacetimes exist in the philosophical literature [9, 53, 77]. However, up un-
til recently, no complete geometrical understanding of non-Hausdorff manifolds was studied.

Throughout this thesis we will realize Penrose’s idea by properly introducing the rele-
vant geometric structures of interest for physics, all whilst circumventing the non-existence
of arbitrary partitions of unity. In particular, we will describe the relevant topological, dif-
ferentiable and Lorentzian structures on a non-Hausdorff manifold, with a later interest in
applying these ideas in a path integral analysis similar to that of the Trousers space. Aside
from filling in a gap in the literature, we are motivated by the possibility that Penrosian
topology-changing spacetimes may admit non-singular Lorentzian metrics, at the cost of
their separability. Indeed, by virtue of being non-Hausdorff, it appears as though these
spacetimes fall outside of the no-go theorems for Lorentz cobordisms, and may therefore
be a superior model of topology change in Lorentzian signature.

Underpinning almost every result in this thesis is the following observation, which prob-
ably dates back to [45], and exists in some form in [47]. In [45], Haefliger and Reeb study
non-Hausdorff 1-manifolds as leaf spaces of codimension-1 foliations, and introduce an in-
teresting representation of non-Hausdorff manifolds as adjunction spaces. Figure 1.6 depicts
a simple example of their idea — essentially, one can construct the line with two origins by
gluing together two copies of the real line everywhere except at their origins. Generally
speaking, Haefliger and Reeb construct other non-Hausdorff 1-manifolds in this way, that is,
by gluing together copies of the real line along open sets.

In principle, the gluing construction of Haefliger and Reeb offers a clue as how to cir-
cumvent the partition of unity problem detailed above. Roughly put: if we were to show that
every non-Hausdorff manifold (perhaps subject to some additional constraints) were able to
be represented by gluing together ordinary Hausdorff manifolds together, then we may be
able to construct any geometric structure of interest piecewise on each Hausdorff subset. It
seems natural to then try and "consistently glue" the Hausdorff pieces together to effectively
transfer any geometric structure from local Hausdorff data into the global non-Hausdorff
manifold. A large portion of this thesis is devoted to making precise this notion of gluing.
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Using the idea of Haefliger and Reeb, we see that Penrose’s spacetime in Figure 1.4
ought to be constructed by gluing together two copies of ordinary 2d Minkowski spacetime
along the complements of the causal future of the origin. In flat spacetime causal cones
are topologically closed, so their complements are open and thus the gluing should yield a
non-Hausdorff space whose Hausdorff-violating points lie on the future null cones of the
doubled origin. In principle, this type of gluing should be possible at the level of Lorentzian
structures, and its curvature properties should be expressible in terms of the Hausdorff pieces
of Minkowski space.

1.3 Outline of this Thesis

Throughout this thesis we will present a theory of non-Hausdorff topology-changing space-
times. We will start from its mathematical foundations as a topological space, and then
slowly work our way through all of the relevant structures until we can meaningfully refer
to "non-Hausdorff spacetimes" as a modification of the familiar notion of a spacetime. After
discussing topological matters, we will then refine our notion to include smooth manifolds,
vector bundles, and then the sections of these bundles. With an eye towards reproducing the
analysis of Sorkin and Louko for the Trousers space, we will prove a Gauss-Bonnet theorem
and then use this to evaluate non-Hausdorff transitions between one circle and two. The
chapters are organised as follows.

In Chapter 2 we will introduce the basic topological properties of non-Hausdorff mani-
folds. In particular, we flesh out the details of the idea depicted in Figure 1.6 by introducing
a formalism for gluing together arbitrarily-many topological spaces together. As with the
observation of Haefliger and Reeb, we will see that if one glues ordinary manifolds along
open subsets then under certain circumstances one may construct a non-Hausdorff manifold.
Importantly, we will see that every non-Hausdorff manifold can be expressed as a gluing of
Hausdorff ones in this manner. Throughout this chapter we will also take asides into other
topological elements of gluing spaces, in particular we also partially characterise maximal
Hausdorff submanifolds that a non-Hausdorff topological manifold may admit.

In the third chapter, we extend our gluing formalism to an appropriate smooth category.
We start by showing that if, in addition to the requirements of Chapter 2, one assumes all
manifolds in the gluing construction are smooth, and all maps preserve these smooth struc-
tures in some precise sense, then the resulting quotient space assumes the structure of a
smooth non-Hausdorff manifold. We use then extend this result to the setting of vector bun-
dles as well: we show that all vector bundles over a non-Hausdorff manifold may be realised
as a particular gluing of Hausdorff vector bundles. Importantly, we will also describe the
space of smooth sections over a non-Hausdorff bundle in terms of sections over particular
Hausdorff subbundles. Finally, we finish Chapter 3 by describing the Cech cohomology
for non-Hausdorff manifolds, and use this to classify non-Hausdorff line bundles in certain
cases.

In Chapter 4 we study differential forms and their integral properties in the non-Hausdorff
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case. Such an inquiry requires particular care: both integration and de Rham cohomology
typically assume arbitrarily-existent partitions of unity in their standard treatment, so in the
non-Hausdorff case several modifications of standard differential geometry need to be made.
We will make these modifications, and then consequently prove an equivalence between de
Rham and singular cohomologies in the non-Hausdorff case. We finish Chapter 4 with a
proof a non-Hausdorff version of the Gauss-Bonnet theorem. The novelty here is that the in-
tegral expression for total curvature requires an additional counterterm which computes the
geodesic curvatures of the Hausdorff-violating submanifolds sitting inside the non-Hausdorff
surface — a clear difference from the standard Hausdorff case.

Finally, in Chapter 5 we will investigate the inclusion of non-Hausdorff manifolds within
a path integral for gravity in Lorentzian signature. We consider the simplest possible setting,
namely two dimensions. The reason for this ought to be clear — gravity in two dimensions
is purely topological, so if there are any oddities due to the non-Hausdorffness of our mani-
folds, then these ought to already manifest in the 2d theory. Throughout this chapter we will
prove a Lorentzian version of the Gauss-Bonnet theorem of Chapter 4, and then use this to
motivate a gravitational action for non-Hausdorff manifolds. The result is an action similar
to the ordinary Einstein-Hilbert action, however there is an extra Gibbons-Hawking bound-
ary term for the Hausdorff-violating submanifolds sitting inside our space. In direct analogy
to the Sorkin-Louko analysis for the Trousers space, we then derive the correct sign conven-
tion for Lorentzian angles that will entail appropriate suppression rules for non-Hausdorff
transitions within the path integral.

We will then conclude the thesis with a technical summary of our results and some com-
ments regarding future work. It should be remarked that as a general theme, we will assume
the most generality in the beginning, and will slowly refine our notion of non-Hausdorff
manifold to match our more-involved considerations. In Chapter 2, for instance, we will
consider the case of non-Hausdorff manifolds formed from countably-many Hausdorff ones.
Already by Chapter 3 we will restrict our notion to merely finite colimits. Then, in Chapter 4
we will add additional cohomological assumptions to the Hausdorff-violating submanifolds,
and finally in Chapter 5 we will consider the specific example of the so-called non-Hausdorff
Trousers space. Each assumption that results in a loss of generality has been made explicit
in the technical summary found in the end matter of this document.

1.4 Remarks on Formatting

This document is a "Thesis by publication", defined according to OIST’s Graduate School
guidelines. The present work is a concatenation of the four papers [83—85] and [80], all
of which I completed throughout my enrollment as a PhD student. According to the afore-
mentioned guidelines, 1 have elected to leave the content of these four papers essentially
unchanged, aside from the following modifications.

1. At the start of each Chapter I have included a one-page heuristic introduction that
briefly introduces the context of the paper in regards to the overall logical flow of this
thesis.
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2. At the end of each Chapter I have included a small summary, entitled "Summary of
Chapter" which summarizes the key points of the paper in regards to the overall context
of the thesis.

3. The bibliography of each paper has been removed from the end of each Chapter and
has been replaced with a total bibliography found at the end of this thesis.

4. The indexing of Theorems, Definitions, Lemmas, equations and so on have been re-
formatted to match the overall indexing of the chapters.

5. Any self-referential language has been modified to merge with the language of this
thesis — for instance, terms like "In this paper..." have been replaced with "In this
chapter...".

6. The abstracts have been removed from each paper.

7. The acknowledgments of each individual paper have been removed and merged with
the overall acknowledgments at the start of this document.

8. Any appendices to the papers have been removed from the bulk text of the chapter and
placed at the end of the overall document.

Aside from these formatting changes, there are no modifications to the intellectual content of
the papers. In particular, I have opted to include the original introductions and conclusions
within each chapter. This means that each Chapter, being an individual paper, is essentially
self-contained. Due to the logical flow of my thesis topic, this means that each paper will
inevitably contain repetitions of ideas, definitions, results, and so on. Therefore, any reader
who chooses to read this document from start to finish is encouraged to keep this in mind,
and to skip over repeated subject matter where necessary.



Chapter 2

Topological Properties of non-Hausdorff
Manifolds

This chapter is published under the name “Non-Hausdorff Manifolds via Adjunction Spaces",
Topology and its Applications, 326:108388, 2023 [84], and I am the sole author.

In this chapter we introduce the point-set topological properties of non-Hausdorff man-
ifolds. We start by providing a general formalism of adjunction spaces which allows for
arbitrarily-many topological spaces to be glued together. Within this formalism we will con-
firm various useful features of non-Hausdorff manifolds that will be used later on in this
thesis. In particular, we show that

* Countably-many Hausdorff manifolds may be glued along pairwise homeomorphic
open submanifolds to yield a second-countable, locally-Euclidean space.

* If these open submanifolds have pairwise homeomorphic boundaries (a condition that
is made precise in Section 2.4.1), then the resulting topological space is always a non-
Hausdorff manifold.

* In a similar spirit to Hajicek’s study of H-submanifolds [47], we show that every non-
Hausdorff manifold may be realised by our adjunction formalism.

Aside from these results, we also provide various examples of non-Hausdorff manifolds. In
particular, we spend some time evaluating a 2-sphere in which the equatorial S' is twisted
around itself so that its antipodes are Hausdorff-violating. We finish the chapter with a contri-
bution towards classifying the maximal Hausdorff submanifolds that a given non-Hausdorff
manifold may permit.

15
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Figure 2.1: The line with two origins (right), constructed by gluing together two copies of the real line.

2.1 Introduction

In this chapter we will study non-Hausdorff manifolds. These are locally-Euclidean second-
countable spaces that contain points that are “doubled" or superimposed on top of each other.
As the name would suggest, such points cannot be separated by open sets, and thus violate
the Hausdorff property. The prototypical example of a non-Hausdorff manifold is the so-
called line with two origins, pictured below.

The line with two origins can be constructed by gluing together two copies of the real
line together everywhere except at the origin. Other examples such as those figures found
in [8] and [45] suggest a general theory for constructing non-Hausdorff manifolds by gluing
together Hausdorff ones along open subspaces. A recent result of Placek and Luc confirms
that any non-Hausdorff manifold can be built according to such a procedure [68].

In this chapter we will introduce and refine an approach similar to that of [68] and [82]
to further study non-Hausdorff manifolds. We will start by introducing a calculus for ad-
joining countably-many Hausdorff manifolds together. We will show that any adjunction of
countably-many Hausdorff manifolds M; along open subsets A;; with pairwise homeomor-
phic boundary components will yield a non-Hausdorff manifold M in which the Hausdorft-
violation occurs precisely at the M-relative boundaries of the subsets A;;. Moreover, in such
a situation the manifolds M; will sit inside M as maximal Hausdorff (open) submanifolds.

Interestingly, a non-Hausdorff manifold will often admit infinitely-many maximal Haus-
dorff submanifolds [77]. This observation motivates the following question: in a non-
Hausdorff manifold built by gluing together Hausdortf manifolds M;, are there any topo-
logical properties that distinguish the M; from the other maximal Hausdorff submanifolds?
There is a well-known criterion due to Hajicek [47] that guarantees a given subset is a max-
imal Hausdorff submanifold. We will spend some time refining this idea, with the eventual
conclusion being that if the non-Hausdorff manifold is “simple" (in a precise sense to be de-
fined later) then the spaces M; are the unique subspaces satisfying a stricter form of Hajicek’s
criterion.

This chapter is organised as follows. In the first section we will introduce a generalised
theory of adjunction spaces as colimits of appropriate diagrams. We will identify various
conditions which allow certain topological features to be preserved in the adjunction pro-
cess. With an eye towards the rest of the chapter, special attention is paid to those adjunction
spaces formed by gluing together topological spaces along open subspaces.

In Section 2.3 we will apply this formalism to the setting of manifolds. We will show
that locally-Euclidean second-countable spaces can be formed by gluing together Hausdorff
manifolds along homeomorphic open submanifolds. We will then spend some time studying
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the situation in which the gluing regions have homeomorphic boundary components. We
will also argue that non-Hausdorff manifolds built in this way may be paracompact, however
they will not admit partitions of unity subordinate to every open cover. We finish Section 2.3
with a discussion of some known results found regarding Hausdorff submanifolds.

In Section 2.4 we will introduce some examples of non-Hausdorff manifolds built from
adjunction spaces. Most of these revolve around Euclidean space, with the exception of
a non-Hausdorff sphere [25, 55], which we will construct from four copies of punctured
spheres. Of particular interest is the branched Euclidean plane, which we will see has
infinitely-many maximal Hausdorff submanifolds. Motivated by our examples, in Section
2.5 we will generalise the result of [77] and show that particularly simple non-Hausdorff
manifolds admit only finitely-many maximal Hausdorff submanifolds satisfying a natural
condition on their boundaries.

Throughout this chapter we will assume that all manifolds, Hausdorff or otherwise, are
locally-Euclidean, second-countable and connected. We will denote Hausdorff manifolds
using standard Latin letters, and we will use boldface characters to emphasise that the man-
ifold in question is potentially non-Hausdorff. All notions of topology used in this chapter
can be found in standard texts such as [78] or [64].

2.2 Adjunction Spaces

We start by presenting our formalism for general adjunction spaces. The focus is mainly
on the situation in which topological spaces are glued along open sets, since this will be an
important precursor to our later discussions of non-Hausdorff manifolds.

2.2.1 Basic Properties

There are at least two ways to glue together multiple topological spaces in a consistent way.
These are:

1. to iterate a binary construction several times over, or
2. to glue a collection of spaces together simultaneously.

The first approach would amount to suitably modifying the standard adjunction spaces found
in say [64] or [14]. Throughout this chapter we will instead focus on the latter case. Formally,
gluing together multiple spaces can be achieved by fixing some index set / to enumerate the
spaces that we would like to glue together, and by defining a triple of sets .% := (X,A,f),
where:

* the set X is a collection of topological spaces X;,
* the set A is a collection of sets A;; such that A;; C X; for all j € I, and

* the set f is a collection of continuous maps f;; : A;; — Xj.
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In order to yield a well-defined adjunction space, we need to impose some consistency con-
ditions on the data contained within .%. These conditions are captured in the following
definition.

Definition 2.2.1. A triple % = (X, A,f), is called an adjunction system if it satisfies the
following conditions for all i, j € I.

Al) A =X; and f; = idx,
A2) Aji= fij(Ai)), and f;;" = fi
A3) fu(a) = firo fij(a) for each a € A;jNAy.

Observe that the second condition above ensures that each f;; is a homeomorphism.
Given an adjunction system .%#, we can then define the adjunction space subordinate to
Z , denoted | # X;, as the topological space obtained from quotienting the disjoint union

UX,- = {(x,i) | x € X;} 2.1

under the relation =, where (x,i) = (y, j) iff f;j(x) =y. The conditions of Definition 2.2.1
are precisely what is needed to ensure the relation = is an equivalence relation. Points in the
adjunction space |J & X; can be described as equivalence classes of the form

e i= {0, J) | fij(x) =y} (2.2)

By construction we have a collection of canonical maps ¢; : X; — (J & X; which send each
x in X; to its equivalence class in (J 4 X;. By construction these maps are continuous and
injective. Moreover, these maps will commute on the relevant overlaps, i.e. the equality

holds for all i, j in I. Since the topology of an adjunction space is the quotient of a disjoint
union, by construction we have the following useful characterisation of open sets.

Proposition 2.2.2. A subset U of |Jz X; is open in the adjunction topology iff gbl-_l (U) is
openin X; forall i in I.

In the binary version of adjunction spaces, it is well-known that the adjunction of two
spaces is the pushout of the diagram below [14].

Yy «l ayx (2.4)

The following result shows that the adjunction space subordinate to .% can be seen as the
colimit of the diagram formed from .7 .

Lemma 2.2.3. Let y; : X; — Y be a collection of continuous maps from each X; to some
topological space Y, such that for every i, j € I it is the case that ; = ;o f;;. Then there is
a unique continuous map g :\JzX; =Y and Y; = go ¢; forall i in I.
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Proof. We define the map g by g([x,i]) = y;(x), thatis, g = y;o ¢l.‘1. To see that this defines a
function, we need to confirm that g preserves equivalence classes. Suppose that [x,i] = [y, j],
i.e. x = f;j(y). Then:

g([x,1]) = wi(x) = y;(fi;(x)) = w;(v) = g([, J]) (2.5)

as required. We now show that g is continuous. Let U be open in Y, and consider the set
g ' (U) = ¢ioy; ' (U). Recall the set g~'(U) is open in |z X; iff for each i € I, the set
¢ ' (g7 (U)) is open in X;. Observe that:

o (g (U) =9 ogioy (U) =y (U) (2.6)
which is open since y; is continuous. It follows that g~!(U) is open in |J 5 X;, and thus g is
continuous. To see that g is unique, we can use a similar argument to that in [14]. [

Throughout the remainder of this chapter we will consider adjunction spaces formed by
gluing open sets together. In this case, we make the following useful observation.

Lemma 2.2.4. Let Jz X; be an adjunction space formed from 7. If each A;j is an open
subset of X;, then each ¢; is an open embedding.

Proof. Fix some ¢;. By construction ¢; is injective and continuous, so it suffices to show that
¢; is an open map. So, let U be an open subset of X;, and consider ¢;(U). By Prop. 2.2.2 this
set is open in |J # X; iff for every j € I, the preimage ¢ Jfl o ¢;(U) is open in X. Observe that
(])j-*l 0¢;(U) = fij(UNA;;). Since U is open in X;, the set U NA;; is open in A;; (equipped
with the subspace topology). By construction f;; : A;; — X; is a embedding. Moreover, each
fij is an open map since we have assumed that each A;; is open. Thus f;;(U NA4;;) is also
open in X;, from which it follows that ¢ j_l o ¢;(U) is open in X; for all j. Since U was
arbitrary, we may conclude that ¢; is an open map. The result then follows from the fact that
every continuous, open injective map is an open embedding. 0

2.2.2 Subsystems and Subspaces

Suppose that we have an adjunction space |J# X; built from the adjunction system .%. It
follows immediately from Definition 2.2.1 that any subset J of the underlying indexing set
I will yield another adjunction system ¢, which can be obtained by simply forgetting the
parts of .% that are not contained in J C I. As such, there is an associated adjunction space
U« X, that consists of gluing only the component spaces X; where j lies in the subset J. In
this situation we will refer to ¢ as an adjunctive subsystem of .7, and we will write ¢ C .7.

In order to distinguish objects in (Jo X; from objects in the full adjunction space, we will
use the double-bracketed notation [-] to denote objects defined in the adjunctive subspace.
In particular, we will use

[, /1= {0k) [k e A firlx) =y} 2.7)

to denote the points in (J¢ X;. Furthermore, we will denote the canonical maps of the ad-
junctive subspace by x;’s.
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The universal property 2.2.3 yields a continuous map g : Uy X; — Uz X; which will
send each equivalence class [x, j] of Uy X into the (possibly larger) equivalence class [x, j]
of U # X;. In general there is no guarantee that the map g acts as a homeomorphism between
x;(X;) and ¢;(X;). However, this happens to be the case if we require the gluing regions A;;
to be open.

Theorem 2.2.5. Let .7 be an adjunction system in which each all of the gluing regions A;;
are open in their respective spaces. For any adjunctive subsystem ¢ C %, the continuous
function g : Uy Xj — Uz X; defined by [x,i] — [x,i] is an open embedding.

Proof. By 2.2.3 g is continuous, so it suffices to show that g is both injective and open.
For injectivity, let [x, j] and [y,k] be two distinct points in (Jo X;. By construction the
equivalence class [x, j| contains all elements of the form (fj(x),l). Since [y,k] is distinct
from [x, j], we may conclude that fj(x) does not equal y, and thus [x, j] # [y, k] as well. This
confirms that g is injective.

Suppose now that U is some open subset of the adjunctive subspace J X;. By Prop
2.2.2, U is open in the adjunctive subspace iff all of the preimages x;l (U) are open in their
respective spaces X;. Since we have assumed all A;; are open, Prop. 2.2.4 ensures that all of
the canonical maps ¢; of the adjunction space | # X; are open embeddings. Thus the images
9o x}‘l( ) are open in the spaces @;(X;). Since these are open subspaces of | z X;, we may

conclude that each ¢; 0 x ;- L(U) is an open subset of | J & X;. It follows that the union

Udjox; '( (2.8)

jeJ

is open in | J # X;. However, this set is precisely equal to the image g(U). Since we chose U
arbitrarily, it follows that g is open and therefore g is an open embedding. [

2.2.3 Preservation of Various Properties

We have seen that the adjunction of arbitrarily-many topological spaces is again a topological
space. However, there is no guarantee that the gluing process will preserve any pre-existing
structure. The following result is a collection of conditions that suffice to preserve topo-
logical features. We state these here without proof, since the arguments involved routinely
follow from Lemma 2.2.4 and basic facts of topology.

Theorem 2.2.6. Let % = (X, A, f) be an adjunction system with indexing set I, and denote
by X the adjunction space subordinate to .7 .

1. Suppose that for each i in I, the collection PB; forms a basis for X;. If each ¢; is an
open map, then the collection 8 = {¢;(B) | B € %;} forms a basis for X.

2. Let X be an adjunction space in which each @; is an open map. If each X; is first-
countable, then so is the adjunction space X.

3. Let X be an adjunction space in which the indexing set I is countable. If every X; is
Lindelof, then so is X.
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4. Let X be an adjunction space in which the indexing set I is countable. If each X; is
separable, then so is X.

5. Suppose each X; is second-countable. If I is countable and each ¢; is an open map,
then X is also second-countable.

6. If each X; is connected and each A,; is non-empty, then X is connected.

7. Let X be an adjunction space in which every A;; is non-empty. If each X; is path-
connected, then so is X.

8. If 1 is finite and each X; is compact, then so is X.

9. Let X be an adjunction space formed from a collection of Ty spaces. If the canonical
maps ¢; are all open, then X is Tj.

10. Let X be an adjunction space in which each X; is locally-Euclidean. If each ¢; is an
open embedding, then X is also locally-Euclidean.

2.3 Non-Hausdorff Manifolds

We will now use the adjunction formalism detailed in the previous section to construct non-
Hausdorff manifolds. Observe that according to Lemma 2.2.4 and items 5 and 10 of Theorem
2.2.6 we already have the following.

Theorem 2.3.1. Let .% be an adjunctive system consisting of countably-many (Hausdorff)
manifolds M;, in which each A;j is an open submanifold. Then the adjunction space subor-
dinate to . is a locally-Euclidean second-countable space.

Let us denote by M the adjunction space built according to the above. The open charts
of M at the point [x,i] are given by (¢;(U), 9o ¢, ') where (U, 9) is any open chart of M;.
Thus the manifold M mirrors the local behaviour of the Hausdorff manifolds M;. According
to 2.2.4 we may interpret M as a locally-Euclidean, second-countable space that is covered
by Hausdorff submanifolds.

2.3.1 Homeomorphic Boundaries

We will now identify conditions under which Hausdorff violation is guaranteed in the ad-
junction process. In order to do so, we will first recall a binary relation that formally encodes
Hausdorff violation. We will opt for the notation used in [47, 77], though it should be noted
that the same relation can also be found in [61] and [71, p. 67] in essentially equivalent forms.

Let M be a locally-Euclidean second-countable space, and consider the binary relation Y,
defined as xYYy if and only if every pair of open neighbourhoods of x and y necessarily inter-
sect. The relation Y is reflexive and symmetric by construction, but it need not be transitive.!

1Interestingly, the relation Y is weaker than the Hausdorff relation used in [53]. It is likely that their relation
is the transitive closure of Y, though a proof of this is beyond the scope of this chapter.
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It is well-known that a topological space is Hausdorff whenever convergent sequences have
unique limits. Although the converse is not always true, in a first countable space one can
always construct a sequence that converges to both elements of a Hausdorff-violating pair.
As such, in our context the relation xYYy asserts the existence of a sequence that converges to
both x and y in M. Given a subset V of M, we define

Y ={xeM|3y(yeVAxYy)}, (2.9)
thus Y consists of all points in M that are Hausdorff-inseparable from V.

In what follows, we will use the Y-relation to describe the Hausdorff violating points
of the canonical subspaces ¢;(M;). In order to do so, we will make use of the following
definition.

Definition 2.3.2. Let .% be an adjunction system as in Theorem 2.3.1, and let M be the
corresponding adjunction space. We say that the gluing regions A;; have homeomorphic
boundaries whenever each A;j is a proper subset of M; and each gluing map f;; can be
extended to a homeomorphism fij : CL(A;;) — CI(A}).

This additional requirement will allow us to describe the Hausdorff-violating points us-
ing the M-relative boundaries of the canonical subspaces M;. Before getting to the detailed
description, we will first introduce some useful notation.

According to Theorem 2.2.4, we may view the subspaces M; as embedded inside the
larger space M. To simplify notation, we will identify each M; with its image ¢;(M;). Under
this convention we may view M; as an honest Hausdorff (open) submanifold of M. In what
follows, it will be useful to describe the boundaries of the M; in M. We will use the notation
0 to denote the M-relative boundaries of the M;, that is, we define

OM; := M (¢;(M;)). (2.10)

This boldface notation will similarly be used for the M-relative closures and interiors of sets.
We will also identify each A;; in M; with its images ¢;(A;;) and ¢;(4;;) in M. In general,
each A;; may have several M-relative boundary components. We denote these as follows:

8iAij = (aM(Pi(A,'j)) ﬂ(]),‘(Ml'). 2.11)

We will now show that requiring an adjunction system to have homeomorphic gluing regions
establishes a clear relationship between the boundary operator @ and the binary relation Y.

Lemma 2.3.3. Suppose that M is a non-Hausdorff manifold built from an adjunction space
in which the gluing regions have homeomorphic boundaries. Let g;; : 8'A;; — 0’A;; be the

map given by g;; := @; Of,-j o q)fl.
1. The map g;; is a homeomorphism.

2. For distinct points [x,i] and |y, j| in M, we have that g;;([x,i]) = [y, j] if and only if

e, YTy, )
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3. MjﬂaM,-:Mjﬁ yMi

Proof. The first item is immediate from 2.2.4 and 2.3.2. Let [x,i] and [y, j] be distinct points
in M. Suppose first that g;;([x,i]) = [y, j]. By construction this means that y = f;;(x). In M,
the gluing region A;; = A j; equals the intersection M; M. Since the points [x,i] and [y, j] are
distinct in M, it must be the case that x and y are in the boundaries of A;; and A j; respectively.
Let a, be some sequence in A j; that converges to y in M;. Since fi j 1s a homeomorphism, it
follows that fl;l (an) is a sequence in A;; that converges to x in M;. In the adjunction space M,

the sequences [ay,, j] and | fi;l(an), i] will be equal, and will converge to two distinct limits
[x,7] and [y, j]. Thus [x,i]Y[y, j]. The converse follows from part (1) and the fact that each M,
is Hausdorff, thus has unique limits. For the third item, suppose that [y, j] is some element
of OM;. Then there is a sequence in M; which converges to [y, j| in M. Since M; is an open
neighbourhood of [y, j], without loss of generality we may assume that this sequence lies
in A;j. Thus [y, j] lies in 87A;;. It follows that [y, j]Yg:;([y, j]), and thus [y, j] € YMi | The
converse inclusion follows almost immediately from (1) and (2). ]

The above result allows us to conclude that the Hausdorff-violating pairs of a non-
Hausdorff manifold can be identified as the pairwise boundaries of open submanifolds that
are glued together, provided that these boundaries exist and are homeomorphic to each other.
The following result extends this idea.

Lemma 2.3.4. Let M be a non-Hausdorff manifold built from an adjunctive system % . If the
regions A;;j have homeomorphic boundaries, then for each M; we have that

YW= am; = 9/A;;. (2.12)
j#i

Proof. The inclusion YMi C @M; follows from Prop. 2.3.3.3. Suppose that [y, j] is some
element of @M;. Then there exists a sequence in M; that converges to [y, j]. Since M; and M b
are open, without loss of generality we may assume that the sequence sits in the intersection
Ajj. It follows that [y, j] lies in 8/A;;. This shows that dM; C U;,; 8/A;j. Suppose now
that [y, j] is in 8/A;;. We can use Prop 2.3.3 to conclude that [y, j]Yg i([y, j]). It follows that
Ujz 074;; € YM O

2.3.2 Paracompactness and Partitions of Unity

It is well-known that Hausdorff manifolds are necessarily paracompact and admit partitions
of unity subordinate to any open cover [65]. In this section we will explore such results in
the non-Hausdorff setting.

According to our discussion thus far, we may build non-Hausdorff manifolds from ad-
junction spaces. Since all Hausdorff manifolds are paracompact, we may expect there to be
an analogue to the results of Theorem 2.2.6 for paracompactness. Indeed this is true: if we
consider finitely-built adjunction spaces and further restrict our attention to those adjunc-
tion spaces in which the gluing regions have homeomorphic boundaries, then we obtain the
following result.
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Theorem 2.3.5. Let M be a non-Hausdorff manifold built from an adjunction space in which
the gluing regions have homeomorphic boundaries. If the indexing set I of the adjunction
system # is finite, then M is paracompact.

Proof. (Sketch) Let % be some open cover of M. Consider the open covers % := {¢,”(U) | U €
% } of the M;. Since each M; is paracompact, each open cover %; has a locally-finite refine-
ment 7;. We then define

7 =U{o(v) [V ey (2.13)

i€l

Clearly 7 is a refinement of % . To show that ¥ is locally-finite around some point [x, i], we
will construct an open neighbourhood W that intersects finitely-many members of 7#". For
any j in /, there are three scenarios.

1. [x,i] lies in M; N M;. In this case we may use the local finiteness of #; in M; around
fij(x) to obtain some open neighbourhood X; that intersects finitely-many elements of
;. The set ¢;(X;) will then intersect finitely-many elements of ¥ coming from 7.

2. [x,i] lies in M;\CI(M;), that is, [x,i] is in the set Int(A£;\M;). This is an open set that
is disjoint from M.

3. [x,i] lies in M; N OM,. In this case, we may use the local finiteness of M; around the
boundary element f,, (x). This maps homeomorphically into some open neighbour-
hood of x in CIMi(A; 7). We may extend this to an open neighbourhood X; of x in M;.
The set ¢;(X;) then intersects finitely-many of the open sets in #* coming from ¥;.

Intersecting all of the open sets mentioned above will yield an neighbourhood W of [x, i] that
intersects at most finitely-many elements of 7. Note that W is open since we have assumed
that / is finite. 0

The above result confirms that certain non-Hausdorff manifolds may be paracompact.
In contrast to this, in the non-Hausdorff case there may be open covers that do not admit
subordinate partitions of unity. This is immediate from standard results such as those in
[65], however for the sake of completeness we will include a different argument.

Theorem 2.3.6. Let % = {Uqy}qca be an open cover of a non-Hausdorff manifold M. If
each Uy, is Hausdorff, then the cover % does not admit a partition of unity subordinate to it.

Proof. Let a and b be elements of M such that aYb. Observe first that any continuous
function f: M — X to a Hausdorff space X will necessarily map f(a) = f(b). Indeed, if
it were the case that f(a) # f(b), then we could apply the Hausdorff property to find two
disjoint open sets U and V in X separating f(a) and f(b). The continuity of f would then
cause the open sets £~ (U) and f~!(V) to contradict aYb.

With this in mind, suppose towards a contradiction that there exists some partition of unity
{Wqa} subordinate to the cover {Uy }. Consider the point @ in M. Since the partition of unity
sums to 1 at a, there must be at least one function Wy, such that yy(a) > 0. It follows that

a€{xeM | yg(x) £0} C(xEM| yal¥) £ 0} C U (2.14)
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However, by our observation will we have that Wy (b) = Wy (a) > 0. Therefore the above
chain of inclusions applies equally to b, from which we may conclude that both a and b lie
in the set Uy. This contradicts our assumption that U, is Hausdorff. ]

It follows from the above that the open cover consisting of the canonical submanifolds
M; cannot admit a subordinate partition of unity. It is likely that Theorem 2.3.6 will result in
some non-trivial obstructions when attempting to recreate the standard theory of differential
geometry in the non-Hausdorff regime, though that is beyond the scope of this chapter.

2.3.3 H-submanifolds

In the remainder of this section we will argue that all non-Hausdorff manifolds can be ex-
pressed as adjunction spaces. Before getting to the argument, we first need to review the
notion of an H-submanifold. We recall the following definition, originally found in [47].

Definition 2.3.7. Let M be a non-Hausdorff manifold. A subset V of M is called an H-
submanifold if V is open, Hausdorff and connected, and is maximal with respect to these
properties.

Since non-Hausdorff manifolds are locally-Euclidean, in particular they are locally-Hausdorff.
We may use this observation, together with an appeal to Zorn’s Lemma to argue the follow-
ing.

Proposition 2.3.8. The collection of H-submanifolds of a non-Hausdorff manifold forms an
open cover.

It is not immediately clear whether a given Hausdorff submanifold is an H-submanifold.
Fortunately this has been resolved by Hajicek [47, Thm. 2], who provides a useful criterion
for determining whether or not a given subspace is an H-submanifold. In our notation,
Hajicek’s criterion can be stated as follows.

Theorem 2.3.9 (Hajicek’s Criterion). A subset V of a non-Hausdorff manifold M is an H-
submanifold if and only if the equality &V = CI(Y") holds.

We can use Hajicek’s criterion together with Lemma 2.3.4 to conclude that any non-
Hausdorff manifold M built according to 2.3.2 admits the canonical subspaces M; as H-
submanifolds. As we will see in Section 2.4, it is not always the case that the M; are the only
H-submanifolds of M.

2.3.4 A Reconstruction Theorem

We will now use Proposition 2.3.8 to argue that all non-Hausdorff manifolds can be described
via adjunction spaces. The idea behind this proof can be found in both [82] where it is proved
for vector bundles, and [68], where it is proved for manifolds in general. For completeness
we will provide a proof consistent with our notation.

Theorem 2.3.10. If M is a non-Hausdorff manifold then M is homeomorphic to an adjunc-
tion space.
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Proof. Consider the family M; of all H-submanifolds of M. We know from Prop. 2.3.8 that
the M; form an open cover of M. Since M is second-countable, in particular M is Lindelof.
Thus without loss of generality we may assume that the M; form a countable open cover of
M. We can then define an adjunction system .% using:

* the countable collection of M;, with
* Ajj:=M;NMj, and
* fij : Aij — M the identity map.

Clearly this collection satisfies the conditions of Definition 2.2.1 and the criteria of Theo-
rem 2.3.1. Thus the associated adjunction space |J# M; is a well-defined locally-Euclidean
second-countable space. We can invoke the universal property of adjunction spaces (Lemma
2.2.3) to conclude that there exists a unique continuous map g such that we have the follow-
ing commutative diagram for every pair of M;’s:

A,’j > Ml'

A

(2.15)

where the 1. are the inclusion maps, and g : |J# M; — M is the map that acts by [x,i] — x.
This map is clearly open — this follows from the fact that ¢; and 1; are open maps for all i.
Moreover, f is a bijection — the inverse is given by f~!(x) = [x,i] where i is the index of
any M; that contains x. By construction, this map is well-defined. Thus we have obtained a
bijective, continuous, open map from J & M; to M. 0

2.4 Examples

As mentioned in the introduction, the prototypical example of a non-Hausdorff manifold is
the so-called line with two origins. We will now introduce several more examples, built
according to our adjunction space formalism. The following spaces will motivate the dis-
cussion in Section 2.5, where we will study the prospect of characterising the types of H-
submanifolds that a non-Hausdorff manifold might admit.

2.4.1 The n-branched Real Line

Take I to be an indexing set of size n, and consider the adjunction system .% where:
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T T
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Figure 2.2: The construction of the n-branched real line

* each M; equal to a copy of the real line equipped with the standard topology,
* each A;; equal to the set (—eo,0) for all i, j distinct, and
e each f;; : A;j — M is the identity map.

Once we require that each A;; equals M;, the data contained in .% forms an adjunction
system. The adjunction space subordinate to .% will be a collection of n-many copies of the
real line all glued to each other along the negative numbers, as pictured in Figure 2.2. Ac-
cording to Theorems 2.3.1 and 2.3.5 the n-branched real line is a paracompact non-Hausdorff
manifold. Observe that the origins remain unidentified, thus there are n-many distinct equiv-
alence classes [0, ] in the n-branched real line. These points will violate the Hausdorff prop-
erty. Moreover, there are n-many H-submanifolds equalling the canonically embedded M.

It should be noted that there are other interesting 1-manifolds that can be built from
finitely-many copies of the real line. Indeed, consider three copies of the real line, in which
Ajp = (—00,0), Apz = (0,00), and Aj3 = 0, and all f-maps equal the identity. This data
defines an adjunction system, and the resulting space will be a non-Hausdorff manifold in
which there are three distinct copies of the origin in which the Y-relation is not transitive.

2.4.2 An Infinitely-Branching Real Line

We will now construct a non-Hausdorff manifold using countably-many copies of the real
line. Suppose that the indexing set I coincides with the natural numbers, ordered linearly.
Consider the triple .7 := (X, A, f), where:

* each M, equals R with the standard topology,
(—oo,i) ifi<
* Ajj={ (—o0,j) ifi>j,and
R ifi=j
* each f;; is the identity map on the appropriate domain.

The reader may verify that this collection .# does indeed form an adjunction system. The
resulting adjunction space, which we denote by T, will be a countable collection of real lines,
successively splitting in two at each natural number, as pictured in Figure 2.3.

In this example, the copies of R naturally sit inside T as H-submanifolds. In contrast to
the previous example, there is an extra H-submanifold, given by

V=] o(A;). (2.16)

i jel
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Figure 2.3: The construction of an infinitely-branching real line.

It should be noted that a similar space can be found as the rigid 1-manifold of [38].

2.4.3 A 2-Branched Euclidean Plane

We can form branched planes by taking the product of the n-branched real line with a copy
of R. The resulting spaces will still be non-Hausdorff manifolds, and can be seen as a col-
lection of Euclidean planes that branch out from each other along x-axes.

Consider the 2-branched real plane. According to Theorem 2.3.10 there should be a way
to construct this space in terms of adjunctions. The obvious choice is to form an adjunction
system using:

1. My =M, =R?,
2. A;p = {(x,y) € R? | y < 0} is the open half-plane, and
3. f:A12 — M> is the identity map.

This collection satisfies the conditions of 2.3.1, and the resulting adjunction space, denoted
R?, is a paracompact non-Hausdorff manifold. The construction is depicted in Figure 2.4.
The Hausdorff-violating points of R? lie on the two copies of the x-axis. For convenience,
we will denote the two x-axes by X; and Xj.

By Theorem 2.3.4 we see that the two copies of R? that naturally sit inside R? will be
H-submanifolds. However, the space R? admits many other H-submanifolds. We will now
briefly describe one. Consider the subspace V' of R defined by:

V =R\ ({(x,0) € X; | x <0} U{(x,0) € X, | x > 0}), (2.17)

that is, we remove from R? the non-positive x-axis from X; and the non-negative x-axis from
X>. Observe that both copies of the origin are removed. The subset V' is open in R? since its
complement is closed. Moreover, the Y-set of V is:

YW ={(x,0)eX; |x>0}U{(x,0) €X> | x <0} (2.18)
By a simple analysis, one can see that

avV =YV U{[(0,0),1],[(0,0),2]} = CI(YY), (2.19)
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RZ

RZ
R2

Figure 2.4: An adjunction construction of a 2-branched plane R?. Here the thick line denotes two
Hausdorff-inseparable copies of the x-axis.

Figure 2.5: The non-Hausdorff sphere S?, taken from [55].

and thus Hajicek’s criterion guarantees that V' is an H-submanifold of R%.

2.4.4 A non-Hausdorff Sphere

We finish this section with an example of a compact non-Hausdorff manifold. Roughly
speaking, this space will be a 2-sphere in which the equatorial copy of S' is wrapped around
itself so that the antipodal points become Hausdorff-inseparable, as pictured in Figure 2.5.
We will denote this non-Hausdorff sphere by S2.

The original construction of S? uses a modified torus to obtain the doubled equator [55].
A more succinct construct identifies antipodes of the 2-sphere everywhere outside the equa-
torial copy of S' [25]. Both of these constructions are not adjunction spaces, and it has even
been suggested that such a colimit construction does not exist [94]. We will now remedy this
by providing a construction of 82 in terms of an adjunction of punctured 2-spheres. We will
start with the standard 2-sphere, embedded into R? for convenience. Consider the equatorial
copy of S' parameterised as

S'={(x,y,0) | x¥* +y* = 0}. (2.20)
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Ml M2 M3 M4
My | My | M\ST [ MN\LD [ ML
My | MAS' | My | MA\L2 | MA\L%
My | ML | MA\L2 | M; | MP\S!
My | MALL | MA\LE | MA\ST | My

Figure 2.6: The adjunction data for the non-Hausdorff sphere

2 NI
2 NI

Figure 2.7: A successive construction of S%. Here (a) is the adjunction of the spaces M and M,. Figure
(b) represents the gluing of M;,M, and Mj3. Figure (c) is the final space.

Let a = (1,0,0) and b = (—1,0,0) be antipodes on S'. Consider the following punctured
spheres:

* M; and M, are S*\{a}, and
* Mj and M, are S?\{b}.

We will now glue the M; in such a manner that halves of each S' eventually form a
double-covered equator. Within each M; there are two arcs connecting the antipodal points a
and b. We denote these by L', and L' , that is,

L'y :={(x,y,0) € M; | y >0} and L. := {(x,y,0) € M; | y < 0}. (2.21)
Observe that in each M; the segments L, are closed subsets. Figure 2.6 contains all of the
pairwise gluing regions A;;. This data indeed defines an adjunction system, and it is perhaps
easiest to visualise the gluing as a successive process — Figure 2.7 depicts the stages in the
construction.

2.5 The Characterisation of H-Submanifolds

In Section 2.4.3 we saw the 2-branched Euclidean plane, a non-Hausdorff manifold that ad-
mits infinitely-many H-submanifolds. Of these infinite H-submanifolds there are two that
stand out — the images of the two copies of the plane. This raises an interesting question:
given an adjunction space that forms a non-Hausdorff manifold, what topological properties
characterise the images ¢;(M;)? In this section we will take steps towards this characterisa-
tion.
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2.5.1 Simple non-Hausdorff Manifolds

We will restrict our attention to a basic type of non-Hausdorff manifold. Following the
terminology of [77], we will refer to these as simple non-Hausdorff manifolds. The definition
is as follows.

Definition 2.5.1. A non-Hausdorff manifold M is called simple if it is homeomorphic to an
adjunction space |J  M; in which:

* each M; is the same Hausdorff manifold M,

* the indexing set I is finite,

* each A;; is the same connected open subspace A that has connected boundary, and
* each gluing map f;; is the identity.

Similarly, an adjunction system % is called simple if its adjunction space yields a simple
non-Hausdorff manifold.

The above definition captures the idea of a non-Hausdorff manifold branching out finitely-
many times from a single submanifold. Note that the n-branched real line and the 2-branched
plane of Section 2.4 are both simple, whereas the infinitely-branching real line is not.

The main benefit of considering simple non-Hausdorff manifolds is that they admit a
particularly easy description of Hausdorff violation. Observe that the component spaces of
a simple non-Hausdorff manifold will have homeomorphic boundaries, since we may use
the identity map to define each extension f; j» and thus the boundary-maps g;; equal ¢; o (pi_l
(cf. 2.3.2). We also make the following useful observation, which follows immediately from
Definition 2.5.1.

Lemma 2.5.2. [f M is simple, then 8'A;; = 8'A = 8'Ay for all i, j,k in I.

It follows from the above that the Hausdorff-violating sets in a simple non-Hausdorff
manifold will consist of the /-many (disjoint) connected components of the boundary of A.
Thus we may conclude that the non-Hausdorff sphere of Section 2.4.4 is not simple, since

2
the set Y5 is path-connected.

2.5.2 A Generalisation of Miiller’s Theorem

We will now argue that simple non-Hausdorff manifolds admit a characterisation of their
canonical subspaces M;. There is an argument due to Miiller [77] that certain simple branched
Minkowski spaces admit a characterisation in terms of existent limit points. We will extend
this result by passing into a broader generality, and by using a weaker condition.

Recall that Hajicek’s criterion demands that each H-submanifold satisfies &V = C1(Y").
We will argue that in a simple non-Hausdorff manifold, the canonical subspaces M; are the
unique H-submanifolds satisfying the stricter equality 8V = Y". Our argument will be via
induction on the size of the indexing set underlying .%. In order to do so, we will make use
of the following key lemma.



Topological Properties of non-Hausdorff Manifolds 32

Lemma 2.5.3. Suppose that M is simple and V is an H-submanifold of M satisfying aV =
YY. Then for any boundary component &'A, either Y and &'A are disjoint, or &'A is
contained within YV .

Proof. By 2.5.1 O'A is connected, so it suffices to show that the intersection YV N &A is
clopen in &'A. Observe first that by assumption Y coincides with the boundary 8V, so it is
closed in M. Moreover, observe that Lemma 2.5.2 yields the equality

YV naiA=Joog" (V N akA) . (2.22)
keti

Since the sets V N %A are all open and they map homeomorphically into O'A = 8'A, we
may conclude that YV N @A is a union of open sets. U

We may use the above lemma together with Theorem 2.3.4 to obtain the following result.

Theorem 2.5.4. Let M be a simple non-Hausdorff manifold that is homeomorphic to a binary
adjunction space My Uy M. If'V is an H-submanifold of M that satisfies the equality OV =
YV, then either V = My orV =M.

Proof. By definition the gluing regions in a simple non-Hausdorff manifolds have homeo-
morphic boundaries, so we may apply Lemma 2.3.4 to conclude that both M; satisfy OM; =
YMi Suppose towards a contradiction that there is some H-submanifold V of M that satisfies
dV =YV, but is distinct from both M; and M,. Then there are points [x,1] in V\M, and
[v,2] in V\M. Let y be a path connecting [x, 1] to [y,2] in V. Consider some element z in
the y-relative boundary 9% (M) that is distinct from [x, 1]. Then z lies in &M as well. Since
oM, = YMi there exists some w in M, such that zYw. Since z lies on the curve ¥ (which is
a curve in V), it follows that the element w is a member of YV Therefore YV N 82%A £, so
8%A CYY by Lemma 2.5.2. We may now repeat the same argument, this time starting with
the subset M, Ny. We will obtain an element w’ that lies in the set YV N &'A. This implies
that both &'A and 82A are subsets of YV, which contradicts V as Hausdorff, O]

In order to continue an inductive argument, we need to appeal to the adjunctive subspaces
of Section 2.2.2. Observe first that any subsystem ¢ of a simple adjunction system .# will
again be simple. We will also have the following collection of facts, which follow trivially
from 2.2.5.

Lemma 2.5.5. Let .7 be a simple adjunction system, and 4 C .%. Denote by g : Uy M; —
U.# M, the map sending each [x,i] to [x,i]. Let V be an H-submanifold of \J z M;. Then

1. ifVCg (UgMj), then [V] := g~ (V) is an H-submanifold of Uy M, and
2. ifadditionally V satisfies 8V = YV, then so does [V].
We will now use the above results to prove the main theorem of this chapter.

Theorem 2.5.6. Let M = | 5 M; be a simple non-Hausdorff manifold. IfV is an H-submanifold
of M that satisfies the equality OV = Y, then V = M; for some i in I.
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Proof. We proceed via induction on the size of the adjunction space .#, that is, by induction
on the size of the indexing set /. If n = 2, then the result follows from the argument detailed
in Theorem 2.5.4. Suppose that the hypothesis holds for adjunction spaces of size n, and let
M be an adjunction space of size n+ 1. Suppose towards a contradiction that there exists
some H-submanifold V that is distinct from My, ..., M, | yet satisfies the condition 8V =YV .

Observe first that V cannot be contained within some finite union of n-many M;’s. Indeed
— if it were then we could apply Lemma 2.5.5 and restrict V to [V]. We may then apply the
induction hypothesis to conclude that [V] equalled some M; in the adjunctive subspace, and
thus V would equal that same M; in M. It must therefore be the case that V' is not a subset of
some union of n-many M;’s. Moreover, by maximality it cannot be the case that V C M, ;.
Therefore, we may infer that:

1. there exists some element x in V that lies in the difference M, .1\ UL, M;, and
2. there exists some element y in V that lies in the difference M\ M, 2

We may now proceed in a manner similar to that of Theorem 2.5.4, with some key modifica-
tions for this more-complicated scenario. Let y be a path in V that connects x to y in V. We
will now use 7 to yield a contradiction.

1. Consider the set YN M, 1. The path ¥ might enter and exit M, several times. So,
consider the connected component C of YN M, that contains the endpoint x. The
existence of the endpoints x and y ensure that the set C is an open subset of ¥ that is
both non-empty and proper. As such, C has a y-relative boundary. Let z be the element
of d7C distinct from x. Then z is also an element of dM,,, ;. By Lemma 2.3.3, there
must exist some 7' in M, such that zYZ'. Since z lies in ¥, which lies in V, we may
conclude that 7 € YV Thus 7 lies in both 8" 1!A and YV According to Lemma 2.5.3,
we may conclude that 8"*!A is a subset of YV

2. Consider the set Y\A. This is a non-empty, closed proper subset of y. Let D be the
connected component of y\A that contains x. The set D has two elements in its y-
relative boundary — the first is x, and the second will be some other element w in 7.
Then w € 97A, from which it follows that w also lies in the set 8" 11A. Since w is an
element of y, which is a path in V, it follows that V N 8" 1A contains w.

We have thus arrived at our contradiction — according to items (1) and (2) above the inter-
section VNYV is non-empty, which contradicts our assumption that V is Hausdorff. We may
therefore conclude that there is no V in M that satisfies &V =YV and is distinct from each
M],...,Mn+1. D

2.6 Conclusion

In this chapter we have introduced a general theory for simultaneously gluing arbitrarily-
many topological spaces together along open subsets. In Section 2.3 we saw that if we
consider a countable collection of Hausdorff manifolds that are glued along homeomorphic

2Throughout this proof we will suppress the equivalence classes of points in M for readability.
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open subspaces, then we will always obtain a locally-Euclidean, second-countable space.
Theorem 2.3.10 confirmed that all non-Hausdorff manifolds can be described in this man-
ner. According to Theorems 2.2.6 and 2.3.5 we saw that such spaces are 77, and may also be
paracompact, provided that certain criteria is met. However, due to 2.3.6 they may have open
covers which do not admit partitions of unity subordinate to them. Upon requiring that the
gluing regions have pairwise homeomorphic boundaries, we saw in Theorems 2.3.3 and 2.3.4
that we can describe the Hausdorff-violating points of a non-Hausdorff manifold via these
boundary components. This description can be summarised by the equality: M; = Y™,

Finally, we extended and improved a result of Miiller [77] to include general simple
non-Hausdorff manifolds. Theorem 2.5.6 shows that any simple non-Hausdorff manifold M
admits n-many H-submanifolds that satisfy the reduced Hajicek criterion &V = YV. These
special H-submanifolds are given uniquely by the M;, which were the spaces used to con-
struct M in the first place.

It is not clear how to further generalise the result of 2.5.6. The requirement of simplicity
was used in two essential ways: first, we restricted our attention to finite-sized adjunction
systems in order to be able to perform an inductive argument, and we demanded the heavy
restriction of 2.5.2 in order to use Lemma 2.5.3, which was an integral part of our eventual
argument. It may be the case that the reduced Hajicek criterion is not an appropriate condi-
tion to uniquely characterise canonical subspaces of a non-simple non-Hausdorff manifold.
Indeed — the infinitely-branched real line of Section 2.4.2 has an “extra" H-submanifold that
still satisfies the property &V = YV. A more nuanced condition may be required for the
general argument.

Summary of Chapter

In this chapter we introduced the basic topological properties of non-Hausdorff manifolds.
We realised the original ideas of Haefliger and Reeb into a fully-fledged general formalism
for gluing topological spaces together. In particular, we used this adjunction formalism to
glue together Hausdorff manifolds. If this was done so that

1. the gluing regions were topologically open,
2. the gluing maps were open topological embeddings, and importantly

3. the boundaries of the gluing regions and the boundaries of their images under the
gluing maps were homeomorphic,

then the resulting quotient space always assumes the structure of a non-Hausdorff manifold.
In this quotient space, the Hausdorff-violating regions were characterised as the topological
boundaries of the gluing regions involved in the construction. Later on, we saw a converse
to the above: we showed that all non-Hausdorff manifolds can be realised as an adjunction
of Hausdorff manifolds. These results pave the way for a description of the geometry of
non-Hausdorff manifolds in a manner that circumvents the issue of non-arbitrary existence
of partitions of unity in the non-Hausdorff case. In the next chapters, we will leverage our
adjunction description of non-Hausdorff manifolds heavily.



Chapter 3

Vector Bundles over non-Hausdorff
Manifolds

This chapter is published under the title “Vector Bundles over non-Hausdorff Manifolds",
Topology and its Applications, page 108982, 2024 [85], and I am the sole author.

In this chapter we describe smooth non-Hausdorff manifolds and their vector bundles.
Here we prove several important results that will be used later on:

As an extension of Theorem 2.3.1, we show that smooth atlases can be defined on
a non-Hausdorff manifold, provided that we glue smooth Hausdorff manifolds along
pairwise diffeomorphic open submanifolds.

In the case that we consider an adjunction space of finitely-many Hausdorff man-
ifolds M;, we show that the ring of smooth, real-valued functions on the resulting
non-Hausdorff is isomorphic to a fibred product of the spaces C*(M;).

We show that vector bundles fibred over the Hausdorff manifolds M; can be glued
together to form a non-Hausdorff vector bundle fibred over the non-Hausdorff mani-
fold. Conversely, we also show that all non-Hausdorff bundles arise in this manner, a
generalisation of Theorem 2.3.10.

We show that sections over non-Hausdorff bundles can be described as a fibre product
of the sections I'(E;) over Hausdorff subbundles.

Finally, we finish the chapter by describing the Cech cohomology of a non-Hausdorff man-
ifold in terms of the corresponding cohomology groups associated to the Hausdorff M; and
the gluing regions A;;. This is then used to count the inequivalent line bundles that one may
fibre over a non-Hausdorff manifold.

35
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3.1 Introduction

The standard theory of differential geometry assumes that any pair of points in a manifold
can be separated by disjoint open sets. This, known as the Hausdorff property, is typically
imposed for technical convenience. Indeed, it can be shown that any Hausdorff, locally-
Euclidean, second-countable topological space necessarily admits partitions of unity subor-
dinate to any open cover. In turn, these partitions of unity can then be used to construct some
familiar features of a manifold.

Conversely, non-Hausdorff manifolds will always have open covers that cannot admit
partitions of unity [84]. Despite this inconvenience, non-Hausdorff manifolds seem to arise
within several areas of mathematics and theoretical physics. Within mathematics, one can
find non-Hausdorff manifolds in the leaf spaces of foliations [39, 45], and in the spectra
of certain C* algebras [25]. Within theoretical physics, some general discussion of non-
Hausdorff spacetimes can be found in [53, 89, 105], and non-Hausdorff manifolds can be
found in the maximal extension of Taub-NUT spacetimes [46], in certain twistor spaces
[108], and to various degrees in the study of branching spacetimes [9, 33, 47, 68, 77, 82].

Despite occurring in both mathematics and physics, a general theory of non-Hausdorff
geometry is lacking. In [84], initial steps were made with a study of the topological properties
of non-Hausdorff manifolds. The key idea underpinning their study were the observations of
[45, 47, 68, 82], which suggest that non-Hausdorff manifolds can always be constructed by
gluing together ordinary Hausdorff manifolds along open subspaces. This gluing operation
is commonly known as an adjunction space, though it may also be seen as the topological
colimit of a particular diagram. The goal of this chapter is to extend the formalism of [84] to
include both smooth manifolds and the vector bundles fibred over them.

This chapter is organised as follows. In Section 3.2, we start by recalling some details
of [84], and by making some important restrictions on the types of non-Hausdorff manifolds
that we will consider. Once this is done, we will show that our non-Hausdorff manifolds nat-
urally inherit smooth structures from the Hausdorff submanifolds that comprise them. We
will then describe the ring of smooth real-valued functions, and use a modified version of
partitions of unity to extend functions from Hausdorff submanifolds into the ambient non-
Hausdorft space. We will show that, due to the contravariance of the C* functor, the space
of functions of a non-Hausdorff manifold can be seen as the fibred product of the functions
defined on each of the Hausdorff submanifolds.

In Section 3.3 we will begin to consider the vector bundles that one may fiber over a non-
Hausdorff manifold. In a direct analogy to the theorems of [68] and [84], we will show that
every vector bundle over a non-Hausdorff manifold can be realised as a colimit of bundles
fibred over the Hausdorff submanifolds. We will then use this result to describe the space of
sections of a non-Hausdorff vector bundle. A similar fibred-product description will emerge,
this time due to the contravariance of the I' functor. This description will then be used to
construct Riemannian metrics on our non-Hausdorff manifolds.

In Section 3.4 we will explore the prospect of classifying the line bundles over a non-
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Hausdorff manifold. We will do this by appealing to the well-known result that real line
bundles over Hausdorff manifolds can be counted by the first Cech cohomology group with
Z, coefficients. As such, we will first provide descriptions for the Cech cohomology groups
of our non-Hausdorff manifolds as Mayer-Vietoris sequences built from the cohomologies
of certain Hausdorff submanifolds. We will see that, despite the Cech functor H being con-
travariant, in general there is no fibred product description for the cohomology groups of our
non-Hausdorff manifolds. This result suggests that a general formula for the exact number
of line bundles over a non-Hausdorff manifold is probably not possible. However, in the case
that all of the spaces under consideration are connected, we will derive an alternating-sum
formula for the number of line bundles that a non-Hausdorff manifold admits.

Throughout this chapter we will assume familiarity with differential geometry up to the
level of [65] or [101]. In Section 3.4, unless otherwise stated, all results regarding the Cech
cohomology are taken from [13]. We will assume that all manifolds, Hausdorff or otherwise,
are locally-Euclidean, second-countable topological spaces, and as a convention we will use
boldface notation to denote non-Hausdorff manifolds and their functions.

3.2 Smooth non-Hausdorff Manifolds

In this section we will introduce a formalism for smooth non-Hausdorff manifolds. We will
start with the relevant topological features, and then we will use these to endow our manifolds
with smooth structures. We will then discuss smooth real-valued functions on non-Hausdorff
manifolds.

3.2.1 The Topology of non-Hausdorff Manifolds

We will now briefly review the topological properties of non-Hausdorff manifolds. All facts
in this section are stated without proof, since they can already be found in [84], albeit in a
slightly more general form.

We begin by generalising the adjunction spaces found in many standard texts such as
[50] or [14]. Our data .# will consist of three key components: a set M = {M;};c; of
d-dimensional Hausdorff topological manifolds, a set A = {M;;}; je; of bi-indexed sub-
manifolds satisfying M;; C M;, and a set f = {fj;}i je; of continuous maps of the form
fij : M;; — M. For convenience, throughout this chapter we will assume that the indexing
set I is some initial segment of the natural numbers. In order to ensure that this data induces
a well-defined topological space, we will need to impose some consistency conditions. This
is captured in the following definition.

Definition 3.2.1. The triple % = (M,A,f) is called an adjunction system if it satisfies the
following conditions for all i, j € I.

Al) M;i =M, and f;; = idy,

A2) Mji = fij(My;), and f;;" = fji
A3) fu(x) = fixo fij(x) for each x € M;; N\ My.
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Given an adjunctive system .#, we define the adjunction space subordinate to ¥ to be the
quotient of the disjoint union:

gMi = (,.EUIMi> ~

where ~ is the equivalence relation that identifies elements (x,i) and (y, j) of the disjoint
union whenever f;;(x) =y. Observe that the conditions of Definition 3.2.1 are precisely
the conditions needed to ensure that ~ is a well-defined equivalence relation. Points in the
adjunction space are equivalence classes of elements of each of the spaces M;. We will
denote these classes by [x, i], that is,

3.1)

[x, 1] := {(y,j) el M|y :fij(x)}- (3.2)

iel

By construction there exists a collection of continuous maps ¢; : M; — |J # M; that send each
x in M; to its equivalence class [x, i] in the adjunction space.

In the case that an adjunction system .# has an indexing set of size 2 we will refer to
Uz M; as a binary adjunction space. It is well-known that these spaces can be equivalently
seen as the pushout of the diagram

Ji2

M, My, —22 5 My (3.3)

in the category of topological spaces [14]. Similarly, it can be shown that general adjunction
spaces are colimits of the diagram formed from the data in .%, with the maps ¢; satisfying
the analogous universal property.

Lemma 3.2.2. Let ¥ be an adjunction system and let | J o M; be the adjunction space sub-
ordinate to .F. Suppose that ¢; : M; — X is a collection of continuous maps such that
Qi = @jo f;j for every i,j in I. Then there is a unique continuous map € : \JgM; — X
such that ¢; = €o ¢; forall i in I.

With this in mind, we will regularly borrow language from category theory and refer to
an adjunctive system and its subordinate adjunction space as a diagram and its colimit, re-
spectively.

The canonically-induced maps ¢; can be particularly well-behaved, provided that we
make some extra assumptions on the data in .%. The following result makes this precise.

Lemma 3.2.3. Let .# be an adjunction system in which the gluing regions M;; are all open
submanifolds and the maps f;; are open topological embeddings. Then

1. the maps ¢; are all open topological embeddings, and

2. the adjunction space subordinate to ¥ is locally-Euclidean and second-countable.

Due to the above, we will often refer to the ¢; as the canonical embeddings. We will also
use M, N, ... to denote adjunction spaces subordinate to any system satisfying the assump-
tions of Lemma 3.2.3. Given that each canonical embedding ¢; acts as a homeomorphism,
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we will often simplify notation and identify each M; with its image ¢;(M;).

According to Lemma 3.2.3 the colimit M resulting from a diagram .% of Hausdorff man-
ifolds may be a locally-Euclidean second-countable topological space. However, there is no
guarantee that any such M will be non-Hausdorff. As a matter of fact, we will need to as-
sume that the open submanifolds M;; are proper, open submanifolds whose boundaries are
pairwise homeomorphic. The following result summarises the consequences of this assump-
tion.

Theorem 3.2.4. Let .F be an adjunctive system that satisfies the criteria of Lemma 3.2.3, and
let M denote the adjunction space subordinate to 7. Suppose furthermore that each gluing
map fij : Mij — M ; can be extended to a homeomorphism f;; : CIMi (M, ;) — CIMi(M ;) such
that each E satisfies the conditions of Definition 3.2.1. Then

1. The Hausdorf{f-violating points in M occur precisely at the M-relative boundaries of
the subspaces M;.

2. Each M; is a maximal Hausdorff open submanifold of M.
3. If the indexing set I is finite, then M is paracompact.
4. If each M; is compact and the indexing set I is finite, then M is compact.

Throughout the remainder of this chapter we will take M to be a fixed but arbitrary non-
Hausdorff manifold that is built as an adjunction of finitely-many Hausdorff manifolds M;
according to both Lemma 3.2.3 and Theorem 3.2.4. Consequently, M is a paracompact,
locally-Euclidean second-countable space in which the manifolds M; sit inside M as maxi-
mal Hausdorff open submanifolds.

Adjunctive Subspaces and Inductive Colimits

Generally speaking, given an adjunctive system .#, we may form other diagrams by selec-
tively deleting data pertaining to particular indices in the set /. This procedure will define
what is known as an adjunctive subsystem. Given some subset J C I, and the adjunctive sub-
system .%’ formed by only considering the data in J, we may use Lemma 3.2.2 to construct
a map between the adjunction spaces subordinate to .% and .#’, given by:

K: UMi — UMi where x([x,i]) = [x,i]. (3.4)

F! F

Note that here we are using the double-bracket notation to distinguish the two types of equiv-
alence classes. It can be shown that this map k is an open topological embedding whenever
F satisfies the criteria of Lemma 3.2.3 [84, §1.2].

So far we have constructed our non-Hausdorff manifold M by gluing the subspaces M;
together simultaneously. However, it will also be useful to express M as a finite sequence
of binary adjunction spaces. We will refer to this sequential construction as an inductive
colimit. We will now justify the equivalence between these two points of view. The case for
a colimit of three manifolds is shown below.
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Lemma 3.2.5. Let M be a non-Hausdorff manifold built from three manifolds M;. Then M
is homeomorphic to an inductive colimit.

Proof. For readability we will only provide a sketch of the proof here — the full details
can be found in the appendix. We may take the gluing region A := M3 UM3; of M3, and
define the map f31 U f32 : A — M Uy, M> by sending each element x of A into M3; along the
gluing map f;3, and then into the equivalence class [ f3;(x), ] in M| Uy, M. Note that by the
gluing condition (A3) of Definition 3.2.1 there is no ambiguity here. We may thus glue M3 to
M, Uy, M> along the map f31 U f35. The universal properties of both (M1 Ug, M2) Uy, sy, M3
and M can then be invoked in order to create the desired homeomorphism. [

As one might expect, we may generalise the previous result to all finite adjunctive sys-
tems.

Theorem 3.2.6. Let M be a non-Hausdorff manifold built from n-many manifolds M;. Then
M is homeomorphic to an inductive colimit.

Proof. We will proceed by induction on the size of the indexing set I, for which we take
to be an initial segment of the natural numbers without loss of generality . The case of
|I| = 3 is already proved as the previous result. So, suppose that the hypothesis holds for all
non-Hausdorff manifolds with indexing set I of size n. Let M be a non-Hausdorff manifold
built from a diagram .#, with indexing set I = {1,...,n,n+ 1}. Consider the subsystem .%’
formed from .# by deleting all data pertaining to the space M, 1. Then .%’ is a well-defined
adjunctive system that yields a non-Hausdorff manifold N.

In analogy to Lemma 3.2.5, consider the gluing region of M, defined by A := U<, M(,41)i
together with the map f : A — N which sends each element x in A to its equivalence class
[f(n+1)i(x),i] in N. This yields a binary adjunction space N Uy M, ;1. Again in analogy to
Lemma 3.2.5, we may invoke the universal properties of both N Uy M, | and M to create a
homeomorphism between the two spaces. The result then follows by applying the induction
hypothesis to N. O

3.2.2 Smooth Structures

In Lemma 3.2.3, the topological structure of each manifold M; was preserved by requiring
that the gluing maps f;; act as open embeddings. The consequence was that the canonical
embeddings ¢; : M; — M were also open, which ensured that the local Euclidean structure
of the manifolds M; can be transferred to M. Formally, this can be achieved by using a
collection of atlases .27 of the manifolds M; to define an atlas . on M:

o = J{(91(Ua), 909" | (Un, 9a) € 4} (3.5)
i€l
We will now argue that this technique defines a smooth atlas of MM, provided that the gluing

maps f;; are all smooth.

Lemma 3.2.7. Let M be a non-Hausdorff manifold built according to Lemma 3.2.3. If,
additionally, the M; are smooth manifolds and the f;; are all smooth maps, then the set <
described above is a smooth atlas of M.
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Since any point [x,i] in M is an equivalence class, in principle a pair of charts in .o/
at this point may come from different atlases .<7; and .<7;. Such charts will be of the form
(¢:(Uq), 9o 0 ¢, ') and (0;(Ug),pg o q);l), where (Ug, @) is a chart of M; at the point x,
and (Ug, @g) is a chart of M; at the point f;;(x). The transition maps in M will then be:

(9god; ) o(@uod ) =ggo(; ' 0d)op, =ggofijop,’. (3.6)

Observe that the smoothness of each f;; ensures that these transition maps are smooth. !
Moreover, since each smooth atlas has a unique maximal extension, we may consider the
smooth structure induced from the atlas .«v' described above. This allows us to effectively
see our non-Hausdorff manifold M as smooth. We will now introduce some useful criteria
for identifying smooth maps.

Lemma 3.2.8. Let M and N be smooth (possibly non-Hausdorff) manifolds. A map f :
M — N is smooth if and only if the restrictions f|y, are smooth for all i in I.

Proof. According to Lemma 3.2.3 the collection M; forms an open cover of M. The result
then follows as an application of Prop. 2.6 of [65]. [l

According to the above result, we may now view the canonical embeddings ¢; : M; - M
as smooth open embeddings. We may also argue for a universal property as in Lemma 3.2.2
and thus interpret M as the colimit of the diagram .# in the category of smooth locally-
Euclidean spaces. The following remark makes precise the primary object of study in this
chapter.

Remark 3.2.9. In addition to the conditions of Lemma 3.2.3 and Theorem 3.2.4, hereafter
we will also assume that our non-Hausdorff manifold M is smooth in the sense of Lemma
3.2.7. Moreover, in order to study smooth objects defined on M, we will also need to assume
that the gluing regions M;; have diffeomorphic boundaries, which in this context means that
the closures CIM*i(M; ;) are all smooth closed submanifolds, and the extended maps ]TJ of
Theorem 3.2.4 are all smooth.

3.2.3 Smooth Functions

Since smoothness is a local property, we may define smooth functions on M as in the Haus-
dorff case. Moreover, we may still appeal to the structure of the real line to view the space
C>=(M) as a unital associative algebra.” In this section we will study C*(M) in some de-
tail. To begin with, we will discuss some techniques for constructing functions on M. We
will then use these techniques to establish a relationship between C*(IM) and the algebras
C*(M;).

'In fact, due to Definition 3.2.1, the gluing maps f; j are open smooth embeddings, meaning that we are
gluing along diffeomorphisms.

2Throughout this chapter we will only consider the smooth functions C** (M), though it should be noted that
one may readily consider weaker conditions such as C"(M) for r € N.
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The Construction of Functions on M

In the Hausdorff setting, there are two useful techniques for constructing smooth functions
on a manifold. Roughly speaking, these are:

1. to glue together smooth functions defined on open subsets, and

2. to extend functions defined on a closed subset.

Will will refer to these two techniques are often known as the “Gluing Lemma" and the “Ex-
tension Lemma", respectively. For a more thorough discussion of these two constructions,
the reader is encouraged to see Corollary 2.8 and Lemma 2.26 of [65].

We will now create versions of these two results for our non-Hausdorff manifold M.
To begin with, we show that the smooth functions on M can be built by gluing together a
collection of smooth functions that are defined on the Hausdorff submanifolds M,;.

Lemma 3.2.10. If r; : M; — R is a collection of smooth functions such that r; = r;o f;; for
all i, j in I, then the map r : M — R defined by r([x,i]) = ri(x) is a smooth function on M.

Proof. Observe first that r is well-defined — if we have [x,i] = [y, j], thenx € M;; with f;;(x) =
y. So, we have that

rly, jl =rj(y) = rj(fij(x)) = ri(x) = rlx,i. (3.7
Moreover, the restriction of r to each M; equals r;, which is smooth by assumption. The
result then follows from an application of Lemma 3.2.8. [l

The above result is a straightforward analogue of the Gluing Lemma. In contrast, an
analogue of the Extension Lemma is more involved. The underlying complication is that the
extension of a functions defined on a closed subset necessarily requires partitions of unity
subordinate to any open cover. As proved in [84], in the non-Hausdorff setting we have the
following obstruction to the existence of partitions of unity.

Lemma 3.2.11. Any open cover of M by Hausdorff sets does not admit a partition of unity
subordinate to it.

Since each M; is an open, Hausdorff submanifold of M, we cannot directly use any par-
titions of unity subordinate to the cover {M;}. However, our restrictions on the topology of
M are stringent enough so as to allow certain techniques involving partitions of unity. In-
deed, the requirement that the gluing regions M;; have diffeomorphic boundaries may allow
us to smoothly transfer objects between the submanifolds M;, and the requirement that M be
a finite colimit may allow this transfer to be performed inductively. We now illustrate this
approach with a construction of non-zero functions on M.

Theorem 3.2.12. Any smooth function r; on M; can be extended to a smooth function on M.

Proof. We proceed by induction on the size of /. Suppose first that M is a binary adjunction
space M| Uy, M>, and without loss generality suppose that i = 2. Let r, be any smooth
function on M. The restriction of r, to the closed submanifold CIM2 (M)3) is also a smooth
function, and moreover the composition

ryo fiz : CIM (Mpy) - R (3.8)
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is a smooth function on the copy of C/™! (M) that sits inside M;. We can now use a partition
of unity argument on M to extend r; 0712 to a function ry defined on all of M;. By con-
struction, the functions | and r satisfy the antecedent of Lemma 3.2.10, and consequently
they define a global function r on M which restricts to r, on M.

Suppose now the hypothesis holds for all non-Hausdorff manifolds constructed as the
colimit of n-many Hausdorff manifolds M;, according to Theorem 3.2.4. Let M be a non-
Hausdorff manifold defined as the colimit of (n+ 1)-many manifolds M;. Without loss of
generality, pick any smooth function r;, defined on M,,. According to Theorem 3.2.6, we may
view M as the inductive colimit:

NUfM,H_], 3.9

where we glue along the set A := (J;<, M(,11);- By the induction hypothesis, there exists
some non-zero function r defined on the adjunction space N that extends r;,.

Using the fact that each f;; can be extended to a diffeomorphism of boundaries, we can
extend the collective function f to a closed function f : CIMr+1(A) — CIN(f(A)). The map f
is well defined since the extensions f{,,); satisfy a cocycle condition as in Definition 3.2.1,

and moreover f is a diffeomorphism since locally it equals St

We can restrict r to CI™N(A) and then the map r o f will be a smooth function defined on
CIMr+1(A). Using a partition of unity on M, |, we may extend the function ro f to some
function ’ defined on all of M, ;. We may then use Lemma 3.2.10 on r and 7/ to form a
globally-defined function on all of M, which by construction will restrict to r, on M,,. [

Usefully, smooth functions can be pulled back along smooth maps via precomposition.
In the case of the canonical embeddings ¢;, precomposition gives an algebra morphism ¢, :
C*(M) — C=(M;). As an immediate application of Theorem 3.2.12 we make the following
observation.

Corollary 3.2.13. For each M;, the map ¢; : C*(M) — C*(M;) is surjective.

The Fibre Product Structure of C*(M)

We saw previously that we can always create smooth functions on M by gluing together
functions that are defined on the component spaces M;, provided that they are compatible on
the overlaps M;;. The following result expresses this principle at the level of algebras.

Theorem 3.2.14. The algebra C*(M) is isomorphic to the fibred product

[1c™() :={(r1,....ra) e C*(M;)| ri=rjo fij on My forall i, j€1}.  (3.10)
F

icl
Proof. Consider the map ®* that acts on each smooth function r on M by:
Q" (r) == (¢, 9, 7). (3.11)

By the commutativity of the diagram .%, we have that

0710 fij(x) = x(Ufij(x), 7)) = £, i) = 97x(x), G.12)



Vector Bundles over non-Hausdorff Manifolds 44

thus ®@* takes image in the fibred product [T C*(M;). Moreover, the map ®* is also an
algebra homomorphism, since all the ¢ are. The map ®* is injective since any pair of
distinct functions r and r’ on M must differ on one of the M;, and it is surjective by Corollary
3.2.13. Since every bijective algebra homomorphism is an isomorphism, this completes the
proof. ]

We saw in the form of Lemma 3.2.2 that the adjunction space M is the colimit .# in
the category of topological spaces. Subsequent remarks in Section 3.2.2 confirmed that this
colimit also exists in the category of smooth locally-Euclidean manifolds. Since C* is a
contravariant functor, in principle we may apply it to all of .# to obtain a diagram in the
category of unital associative algebras. The following result confirms that C*°(M) is the
correct limit of this contravariant diagram.

Lemma 3.2.15. Let A be a unital associative algebra together with a collection of I-many
algebra morphisms p; : A — C*(M;). If the maps p; satisfy p; = pjo fij for all i, j in I, then
there is a unique algebra morphism o, : A — [[# C*(M,).

Proof. Consider the map € defined by

£(a) = (p1(a), .., pula)). (3.13)

This is clearly an element of the direct sum @;C*(M;), and moreover the commutativity
assumption of the p; ensures that € takes image in the fibred product. That € is an algebra
morphism follows from the fact that each p; is. Finally, the uniqueness of € is guaranteed
since the morphisms from [] & C*(M;) to C*(M;) are all projections. O

3.3 Vector Bundles

In this section we will construct vector bundles over our non-Hausdorff manifold M. We
will start by defining an adjunction of Hausdorff bundles E; that are fibred over each of the
submanifolds M;. After this, we will argue that every vector bundle over M can be con-
structed in this manner. We then will generalise Theorem 3.2.14 by providing a description
of sections of any vector bundle fibred over M, eventually finishing with a discussion of
Riemannian metrics in the non-Hausdorff setting. All of the basic details of vector bundles
can be found in standard texts such as [65, 101].

3.3.1 Colimits of Bundles

Suppose that we are given a collection of rank-k real vector bundles E; KN M;. Since each M;;
is an open submanifold of M;, we can always form the restricted bundle E;; := li’;-Ei, which
will be an open submanifold of E;. In order to define a bundle structure on an adjunction
space formed from these manifolds we need to assume a collection of bundle morphisms
Fij : E;; — Ej that cover the gluing maps f;;. According to Definition 3.2.1, these maps also
need to satisfy the cocycle condition Fjy o Fy = F;; on the triple intersections E;; N Ej.

With all of this data in hand, we may use Lemma 3.2.7 on the collection of bundles E; N
M; to form a non-Hausdorff smooth manifold E. We denote by y; the canonical embeddings
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of each E; into E. In order to describe a bundle structure on E, we would first like to define
a projection map 7 : E — M. This amounts to completing the commutative diagram

(3.14)

simultaneously for all i, j in /.

We will denote points in E by [v,i], where v € E;. Strictly speaking this is an abuse of
notation, since the equivalence classes of E are different from the equivalence classes used
to define points in M. However, in this notation the projection map 7 : E — M can be easily
defined as 7 ([v,i]) = [m;(v),i]. Observe that 7 is well defined since our requirement that the
bundle morphisms F;; cover the gluing map f;; ensures that

w([Fij(v),J]) = [mjo Fij(v), j] = [fije mi(v), J] = [m(v), i) (3.15)

for all v in E;;. Moreover, the map 7 is manifestly smooth since its local expression around
any point [v,i] of E will be the composition ¢; o ;0 x; .

By construction the map 7 is surjective, and furthermore we may endow the preimages
7~ ! ([x,1]) with the structure of a rank-k vector space induced from the fibre 7, ! (x) of E;. In
our notation, addition and scalar multiplication are given by

[v,i] + [w,i] = [v+w,i] and A[v,i] = [Av,i], (3.16)

respectively. These operations are well-defined by our assumption that the F;; are bundle
morphisms, and consequently the fibres of E will indeed be k-dimensional vector spaces.

In direct analogy to the construction of smooth atlases in Section 3.2.2, we can describe
local trivialisations of E using the bundles E;. Suppose that we have a point [x,i] in M, and
fix U to be a local trivialisation of the bundle E; at the point x, with trivialising map ®. Since
¢; is an open map, we can consider the set ¢;(U) as an open neighbourhood of [x,i] in M.
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This data can be arranged into the following diagram
k ® -1 Xi -1 v k
UxR «—— 7 (U) —— « ' (:(U)) ----- » 0;i(U) xR

(3.17)

U — $:(U)
where the p; are projections onto the first factor. The trivialising map ¥ can then be

defined as the composition ¥ := (¢;,id) o ®o xi_l. Transition functions for a pair of local

trivialisations (U, W) and (Ug,¥) around points in the gluing regions M;; will be:

W0, = ((91,id)0®@g0%; ") o ((91,id)0®gox ) (3.18)
= ((61,id)0@p) o (27 0 1:) 0 (05" o (9 id) (3.19)
= ((¢,id) 0@ 0 F;;0 @, o (¢, ,id)), (3.20)

which mimic the local properties of the bundle morphisms F;;.

According to our discussion thus far, we may consider E as a rank-k vector bundle fi-
bred over the non-Hausdorff manifold M in which the maps ); of E are injective bundle
morphisms that cover the canonical embeddings ¢;. This is summarised in the following
result.

Theorem 3.3.1. Let 4 := (E, B, F) be a triple of sets in which:
1. E={(E;,m;,M;)}ict is a collection of rank-k vector bundles,
2. B={E;;}i jei consists of the restrictions of the bundles E; to the intersections M, and

3. F= {Ej}iﬁ] is a collection of bundle isomorphisms Fjj : E;; — Ej; that cover the
gluing maps f;; and satisfy the condition Fy, = Fji o F;j on the intersection M;; N My,
foralli,jkinl.

Then the resulting adjunction space E := Uy E; has the structure of a non-Hausdorff rank-k
vector bundle over M in which the canonical inclusions ¥; : E; — E are bundle morphisms
covering the canonical embeddings ¢; : M; — M.

We will now confirm that the bundle E described satisfies a certain universal property.

Theorem 3.3.2. Let E be a vector bundle over M as in Theorem 3.3.1, and let F L. M be
a vector bundle. Suppose there exist bundle morphisms &; : E; — F covering the canonical
maps @; satisfying & = Ejo F;j for all i, j in I. Then there exists a unique bundle morphism
€:E = Fsuchthat & = y;0¢€ foralliinl.
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Proof. Since all bundles are smooth manifolds and all bundle morphisms are smooth maps,
we may apply the universal property of smooth non-Hausdorff manifolds to conclude that
there exists a unique smooth map € from E to F defined by

e([wi]) = &i(v). (3.21)

Observe that since the maps y; : E; — E and the maps &; : E; — F both cover the canonical
embeddings ¢;, we have that

poe([ni]) = po&i(v) = diom(v) = wo xi(v) = m([v,i]), (3.22)

and thus the map € covers the identity map on M. Moreover, € acts linearly on fibres of E
since € coincides with the map &; o Xfl on each E;, from which we may conclude that € is a
bundle morphism. O

According to the above result, we may interpret any vector bundle E constructed accord-
ing to Theorem 3.3.1 as a colimit in the category of smooth vector bundles over locally-
Euclidean, second-countable spaces.

3.3.2 A Reconstruction Theorem

It is well-known that all non-Hausdorff manifolds can be constructed using adjunction spaces.
In essence, this result follows from the fact that maximal Hausdorff submanifolds of a given
non-Hausdorff manifold form an open cover [47]. It is then possible to fix a minimal open
cover by Hausdorff submanifolds, and then to glue them along the identity maps defined on
the pairwise intersections. The details of this result can be found in [68, 84] and [82] in
different forms.

We will now argue that all vector bundles over M are colimits in the sense of Theorem
3.3.1. The argument is similar to the manifold case: we can always restrict a bundle down
to the component spaces M; to create a collection of Hausdorff bundles that can then be
re-identified. Formally, this restriction is obtained by taking the pullbacks of the bundle E
along the canonical embeddings ¢;.

Theorem 3.3.3. Let E be some vector bundle over M. Then E is isomorphic to a colimit
bundle of the form detailed in Theorem 3.3.1.

Proof. We would like to define a colimit bundle by gluing the pullback bundles ¢;"E along
bundle morphisms that act by identity on each fiber. Formally, this can be achieved by the
data ¢4 = (E,B, G), where:

* E consists of the pullback bundles E; := ¢;E,
* B consists of the restricted bundles E;; := (¢;E)|u,; = (¢io1;;)"E, and
* G consists of the maps Fj; : (¢;01;;)"E — ¢7E where (x,v) — (fij(x),v).

This data satisfies the criteria of Theorem 3.3.1, thus we may conclude that F := (Jy E;
is a vector bundle over M. By construction, the pullback bundles ¢E cover the canonical
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embeddings ¢; via the maps p, which project onto the second factor of the Cartesian product.
This means that pairwise we have the following diagram.

(0;E)|yu, —>— ¢;E

OB 2 . E 2
l - (3.23)
P1 M,‘j i — M,
fij
M]‘ s M

0;

This diagram commutes since the morphisms F;; act by the identity on their second factors.
According to the universal property of the colimit bundle F we may induce a (unique) bundle
morphism € from F to E. Pointwise, the map € acts by [(x,v),i] — v. This map is clearly
bijective, from which it follows that € is a bundle isomorphism. U

3.3.3 Sections

In Theorem 3.2.14 we saw that the ring of smooth functions of M is naturally isomorphic to
the fibred product [Tz C*(M;). In categorical terms, this product can be seen as the limit of
a diagram that is formed by applying the C* functor to all of the data in .%. We will now
extend this result to sections of arbitrary bundles over M. Throughout this section we take
E to be an arbitrary but fixed vector bundle over M, and we will denote by E; the restricted
(Hausdorff) bundles over the subspaces M;. In analogy to Lemma 3.2.10, we will first show
that every section of the vector bundle E can be described by gluing sections of E; that are
compatible on overlaps.

Lemma 3.3.4. For eachiin I, let s; be a section of E;. If the equality Fijos; = sjo f;; holds
forall i, jin I then the function s : M — E defined by s(|x,i]) = [si(x),i] is a smooth section
of E.

Proof. Observe first that s is well-defined, since:

s(£ij (), J1) = [s © fij(x), j] = [Fij o si(x), J] = [si(x),d]. (3.24)

The map s is a right-inverse of the projection map 7r since 7 o s([x,]) = 7 ([s;(x),i]) = [x, ]
for all [x,i] in M. Finally, since the restriction of s to each M; equals x;os;0¢. ", the map s
is smooth by Lemma 3.2.8. [l

Following on from the approach of Section 3.2.3, we may now prove an analogue to
Theorem 3.2.12.

Theorem 3.3.5. Any section s; of E; can be extended to a section s of E.
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Proof. We will proceed as in Theorem 3.2.12, that is, by induction on the size of indexing
set 1. Suppose first that M is a binary adjunction space M Uy, M>, with E isomorphic
to £y Up, E2. As in Theorem 3.2.12, we may take a non-zero section on Ej, restrict it
to the closure CI™2(M;), and then use the diffeomorphism fi, to pull back s, to some
smooth section 51, defined on the submanifold C/M! (M) of M. Using the fact that Fi, is a
bundle isomorphism onto its image, we may interpret 51, as a section of the closed subbundle
CI®(E1) defined over CIM1 (My,).

In order to extend sy, into the rest of M|, we will need to apply a generalisation of
the Extension Lemma for sections of vector bundles (cf. Lemma 10.12 of [65]). The idea
behind this generalised Extension Lemma is essentially the same as in the case of smooth
functions — we may always endow the closure C/M!(Mj,) with an outward-pointing collar
neighbourhood U, and then use the flow of the associated vector field to extend sy, to all of
U. Using a partition of unity subordinate to the open cover {U,M;\CIM (M)} of My, we
may then create a section s of Ej.

Observe that by construction, any section s; created according to the above procedure
will restrict to s1p on M,. A global section s of E then exists by applying of Lemma 3.3.4 to
s1 and s;. The inductive case follows the same structure as Theorem 3.2.12, this time using
the Extension Lemma for vector bundles instead. 0

Using the above, we can now create an argument similar to that of Theorem 3.2.14.

Theorem 3.3.6. For any vector bundle E over M, the space I'(E) of smooth sections of E
is isomorphic to:
I(E) = [[T(E). (3.25)
F

Proof. The argument is the same as that of Theorem 3.2.14, except that this time we use
Lemma 3.3.4 and Theorem 3.3.5. [

3.3.4 Riemannian Metrics

In order to discuss Cech cohomology in the next section, we will first need to confirm that
metrics exist on arbitrary vector bundles fibred over M. The precise construction of such
metrics will be similar to the approach of Lemmas 3.2.12 and 3.3.4. However, in order to
use this technique we first need to confirm the following.

Lemma 3.3.7. Let E be a vector bundle over M with colimit representation \ J4 E;. Then the
(0,2) tensor bundle T'"2E is isomorphic to the colimit bundle

JT2E, (3.26)
9

Proof. For readability we will only provide a sketch, since the details of this argument can
already be found in [82]. Let us denote by F;; the bundle morphisms that are used to construct
E from the E;. Since the F;; are diffeomorphisms from E;; to E};, the differentials dF;; will
be bundle isomorphisms between the tangent bundles TE;; and TEj;. Moreover, a basic
property of differentials confirms that

dFy, = d(FjioF;j) = dFj; odFy;. (3.27)
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Consequently, we may glue each tangent bundle TE; along the differentials dF;; to create
the bundle (Jy TE;. The differentials dy; : TE; — TE of the canonical embedding maps
Xi : E; — E can then be used together with Theorem 3.3.2 to conclude that the bundle Jy TE;
is isomorphic to TE. A similar argument can be made for the bundle 7(*2)E, except that
this time we glue along the maps that pull back the (0,2)-tensors along the diffeomorphisms
Fij. ]

A metric tensor on E may be seen as a global non-vanishing section of the bundle TO2E
that is symmetric and positive-definite in its local expression. Using the above result, we may
readily construct metrics on any vector bundle fibred over M.

Theorem 3.3.8. Any vector bundle E over M admits a metric.

Proof. According to Theorem 3.3.3, we may view E as a colimit of bundles E; that are
fibred over the Hausdorff submanifolds M;. Lemma 3.3.7 then allows us to express the
tensor bundle T(®2E as a colimit of the tensor bundles T(®2E;. We may then apply the
construction of Theorem 3.3.5 and use an inductive series of partitions of unity defined on
each M; in order to construct a global section g of the bundle TOO2E. Note that we may
guarantee that g is a bundle metric if we start with bundle metrics g; of E; and use the fact
that bundles metrics are closed under convex combinations. [

In the next section we will need to appeal to the existence of Riemannian metrics defined
on M. Fortunately, these exist as an application of the previous result to 7M.

Corollary 3.3.9. M admits a Riemannian metric.

3.4 Cech Cohomology and Line Bundles

Theorems 3.3.1 and 3.3.2 tell us that any line bundle over M exists as a colimit of line
bundles defined on each of the submanifolds M;. In this section we will explore how this
relationship manifests in the language of Cech cohomology. To begin with, we will proceed
generally and study the Cech cohomology of M in terms of the cohomologies of the M;.

Before getting to any results, we will first briefly recall the formalism of Cech cohomol-
ogy. Aside from a slight change in notation, we will essentially follow [13, §8]. Consider
an arbitrary topological space X, with an open cover % := {Uy | o € A}, and let G be an
Abelian group. We will use index notation to abbreviate multiple intersections of open sets
in 7% , that is, we will write Ugy-ay 7= UayN---NUgq,. A degree-q Cech cochain d consists
of a choice of a constant function for each of the (¢ + 1)-ary intersections of sets in % to the
group G. In symbols:

d:={agy-a,  Ugy-a,— G | Qo+, 0y € A and agy...q, is constant . (3.28)

As a convention we assume skew symmetry Aoty o0ty = — Ayl Q- 0ty for all 0 <
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i,j < gq.> The space of Cech g-cochains, which we will denote by C? (X,% ,G), consists of
all sets d of the above form. This space naturally inherits an Abelian group structure from
G. We denote by & the Cech differential, which raises the degree of each cochain by one. In
additive notation, the map 6 acts on individual functions as:

Saoy-ay0,1 (X) = Z(— 1)iaao-~d,~~~aq+1 (x), (3.29)

i

where here the caret notation ¢; denotes exclusion of that index. On the level of cochains,
the differential 6 defines 8d := {daay-a,0.1 | day-0y0,,, € d}- The Cech differential is a
group homomorphism that squares to zero, and we denote the resulting cohomology groups
by HY(X,% ,G). We may define these groups for any open cover %, and the collection of
all H 9(X,% ,G) can be made into a directed system of groups once ordered by refinement.
The Cech cohomology of X is then defined as the direct limit:

HY(X.G) := lig}/nI-VIq(X,?/,G). (3.30)

In what follows we will need to make use of the pullback of Cech cochains, so we re-
call this notion now. Suppose that ¢ : X — Y is a continuous map and % is an open
cover of the topological space Y. We may define an open cover ¥ of X by considering
all sets of the form ¢@~!'(U), where U is an element of . We may then define a map
¢* : C1(Y,%,G) — C4(X,¥,G) by demanding that ¢*agy--a,(X) = dgy-a, © P(x) for all
locally-constant functions on Y. By construction, the pullback ¢* is a group homomorphism.

34.1 Cech Cohomology via a Mayer-Vietoris Sequence

We will now set about expressing the Cech cohomology H 4(M, G) in terms of the groups
HY(M;,G). We will obtain this relationship inductively, so throughout this section we will
assume that M can be expressed as the colimit of two Hausdorff manifolds M; and M>, in
accordance with Remark 3.2.9.* We will also assume that M is endowed with a fixed but
arbitrary open cover %/. We will not need to appeal to the particular structure of the Abelian
group G, so we suppress this in our notation.

We start with a derivation of a Mayer-Vietoris sequence for M. In order to do so, we will
need to make use of the pullbacks of cochains. According to our configuration, we have the
following commutative diagram of pullbacks

3We remark that this convention is not strictly necessary, and indeed there is a formulation of Cech coho-
mology in which the indexing set A is taken to be linearly-ordered and the skew-symmetry condition is dropped.
However, these “ordered Cech cochains" will still yield the same cohomology groups later on. See Exercise
8.4 of [13] for more details.

4 Although we are working with non-Hausdorff manifolds primarily, it should be noted that the following
derivation will also work for more general colimits of Hausdorff manifolds that do not assume the “homeomor-
phic boundary" condition.
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My L) My éq(Mlz,OZ/lz) <11—2 éq(Ml,OZ/l)
ol
fi2 01 Iz of (3.31)
My M CIM, U)o ML)
2 2

where here %' = {¢. ' (U) | U € %}, and
2P =05V | Veuy={f' (V)| Vew?} (3.32)

As a convention we will index these three covers using the relevant subsets of the indexing
set of % .

We can combine the various pullback maps in order to create a single sequence from
the above diagram. We will consider two maps: ®*, which acts on cochains on M by
concatenating the pullbacks ¢ (as in 3.2.14, 3.3.6), and the map 1}, — f},, which pulls back
a pair of cochains defined on the M, to the subset M|, and then computes their difference. The
following result confirms that this arrangement of functions forms a short exact sequence.

Lemma 3.4.1. The sequence

=2 %
e

0 CIM, %) 25 CUMy, 2 ") & CUMs, %) CI My, %'%) =0 (3.33)

is exact for all g in N.

Proof. The map ®* is injective since any two cochains on M must differ somewhere on M,
or M», thus they will differ once pulled back by the appropriate ¢; map. The surjectivity of
the difference map 1, — f}, follows from a standard “extension by zero" argument, which
we will now summarise. Observe first that any cochain ¢ on M, has as elements functions
of the form ag,...q,, : Weyy---0, — G, Where we define We,y...q, 1= lle(UaO~..a,,) in accordance
with (3.32). In order to show that the map 1}, is surjective, we will need to define a cochain
b in C4 (My,%"), which amounts to specifying functions for all intersections of sets in the
open cover % '. With this in mind, for a given cochain ¢ in C¢(My,, % '?) we define

Do (x) =4 %% a 3.34
% a"( ) {0 otherwise. ( )

Simply put, the cochain b will use the functions existing within d where possible, and use
the zero function on all other g-ary intersections of sets in % !. Observe that by construction
the cochain b will restrict to & under a pullback by 1;5. This ensures that 1}, is surjective, and
thus so is the difference map t}, — f}.

Exactness may now be proved with an argument that Im(®*) = ker (1}, — f;,). Observe
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first that the commutativity of the diagram preceding this Lemma ensures that 1}, o ¢; =
fi5 005, and thus Im(®*) C ker (1}, — f},). For the converse inclusion, suppose that ¢ and b
are cochains on M and M, respectively, such that 1{,d = f12b Spelling this out, this means
that

aao..laq o llz(x) = bO(()“'OCq Oflz(x) (335)

for all open sets Wy, -+, Wg, in % '2. In order to define a cochain ¢ on M that satisfies
®* (&) = (a,b), we need to specify a locally-constant function for all of the (¢+ 1)-ary inter-
sections of open sets in 7. So, suppose that Ug, - - ,Uq, are arbitrary elements of %/. For
any [x,i] in the intersection Ug,...q,,, We define the map c-..q, as follows:

Aogay© Oy ([X,1])  if Uggeocpy NMy # 0

ey : (3.36)
bog--a,© Py ([x,i])  if Uy, "M # 0

Cag0, ([X,1]) = {

There is a potential ambiguity in this definition, so we must confirm that the value of ¢, ...q,
does not depend on the choice of M) or M;. So, suppose that the set Uy,...q, intersects both
M and M,. Then for any element in M;;,, we have two representatives of the equivalent class
[x, 1], namely x and fi,(x). We then have that

Qg 091 ([ 1]) = a0, 0 112() = by, © fia (X) = bay a0 65 ([fi2(2),2]) (3.37)

as required. By construction, ¢ pulls back to (d, lva) under the map ®*. We may therefore
conclude that ker (17, — f}>) C Im(®*), from which the equality follows. O

As a consequence of the above result, we observe that the Cech cochains of M admit a
fibred product structure.

Corollary 3.4.2. The Cech cochains on M satisfy the equality

CUM, %) = CIUML,U") X aug,y a012) C (Mo, %) (3.38)

C{(M
{ i) € CUMy, U ) & CUMy, U2 | 1hd = fhd } (3.39)

forall g € N.

Routine computations verify that the maps ®* and 1}, — f}, commute with the Cech
differential 6. Consequently, we may expand the data of Lemma 3.4.1 into the long exact
sequence

L8 v B By @ HOMs) P22 auy) & BT ) - (3.40)
where here the maps 8 are the connecting homomorphisms induced as an application of the
Snake Lemma. It should be noted that here we have tacitly passed to the cover-independent
version of Cech cohomology. In fact, the relationship above is induced from a combination

of refinement maps and the universal property of direct limits — the details can be found in
the Appendix.
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According to the above sequence, it will not be the case that the Cech cohomology of M
will equal a fibred product of the groups H9(M;) and HY(M>). Indeed, if we try and proceed
in similar spirit to Theorems 3.2.14 and 3.3.6 and argue for the injectivity of the ®*, we will
obtain an obstruction coming from the previous cohomology group of Mj,. This obstruction
can be read off of the Mayer-Vietoris sequence as:

HI(M) _ HI(M)
Im(8*)  Ker(®P)

— Im() = ker(tfy — fiy) = HIM:) X oy HIM2). (341

With an eye towards Section 3.4.3, we make the following observation.

Lemma 3.4.3. Suppose that M is a binary adjunction space in which My, M, and M1, are
all connected. Then

H' (M) = H' (My) X g1 3,y H' (M2) (3.42)

= { (1@ 1) € B 0 UML) | 1) = ]} (3.43)

Proof. According to Theorem 1.6 of [84], M is connected. Since the 0 Cech cohomology
group of a connected topological space always equals the globally-constant functions into
G. These function are in one-to-one correspondence with the elements of G, and thus our
Mayer-Vietoris sequence reduces to the following.

05G6G-GHG— G H (M) = H' (M) @ H (M) —» H' (M) — -+ (3.44)

In this situation, the pullback map ®* will coincide with the map that restricts a globally-
constant function on M to the corresponding functions on the M;. On the level of groups,
we may see the embedding of H%(M) into the sum H°(M;) © H°(M>) as the diagonal map
g+ (g,8)- Recall that the quotient of any group G @ G by its diagonal will be canonically
isomorphic to G itself. As such, in the above sequence, we may work from the left and use
exactness to conclude that the labelled connecting homomorphism 6* is the zero map, from
which the result follows. 0

3.4.2 The General Case

We will now discuss a version of Theorem 3.4.1 that is suitable for a non-Hausdorff manifold
M expressed as the colimit of finitely-many manifolds M;. We will start with a generalisa-

tion of Lemma 3.4.1 that takes into account the multiple intersections M;, .

To begin with, we need to generalise the difference maps 1}, — f},. Since there are now
n-many submanifolds M;, we will have multiple pairwise intersections M;;. We may order
the pairs of indices lexicographically and define a map

§:PpCium,u) — PCUMiy, %) (3.45)

i<j

which combines the difference maps t; — f;; in the obvious manner. Since there are now
multiple intersections M;, i each with their own spaces of cochains C9(M;;...; 4 Uh ), we
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will also have multiple pullbacks

U, (3.46)

pip

v :éq(M. ) %il"""'ip>_>cv‘61(Mi

where here Upofi) - M;,...i, — Mi1~.-z°.--ip is the inclusion map that forgets the " index. We

can similarly define difference maps

5: P My %)Y P CU My, ) (3.47)
i< <ip i< <ipyy
by’

to act on cochains d;,...; ,, defined on each M;, ...;
p+1 1" tp+1

S v ] ] * v
(0@)ir-viper = L (=DG o iy (3.48)

1

In essence, the map ) plays the role of the differential that one would define for the Cech
complex constructed from the open cover {M;}. In a similar manner to the binary case of
Section 3.4.1, this map 5 can be shown to square to zero and to commute with the Cech
differential & defined for C4(M, % ).

We will now set about proving the general version of Lemma 3.4.1, this time taking into
account the multiple intersections M;,..i,.

Theorem 3.4.4. The sequence

0— CIUM, %) 25 @M, %) 25 - 25 CIMy ., %) =0 (3.49)

is exact for all g in N.

Proof. We will proceed by induction on the size of the set /. The case of I = 2 is already
proved as Lemma 3.4.1. To spare notation, we will illustrate the inductive argument for
I = 3, though it should be understood that the full inductive case is near-identical. With all
the data available to us, we may construct a contravariant analogue of the diagram in [13, Pg.

Note that the extra sum in the exponent of —1 is due to our convention that the indexing set / starts at one
instead of zero.
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187] as follows, where we have suppressed the open covers for readability.

0 0 0 0
0 — s ker(k*) — 5 o) T a3y @ Ca (M) 5 M) — 0
0 — CIM, %) —F s @,CM;) —— @, CUMy) — CU(Mpz) — 0 (3.50)
K*
0 — CIMUMp) — CI(My) &CI(Ms) —— C9(Mio) 0 0
0 0 0 0

The map k™ is the pullback of the inclusion k : My Uy, M, — M described in Section 3.2.1.
The first row of the diagram is formed by taking kernels of the vertical maps, and the horizon-
tal maps in the first row are defined so as to make the diagram commute. Since the columns
of this diagram are all short exact sequences that split, in order to show the exactness of the
center row it suffices to show that the first and third rows are exact. Observe first that the
third row is a binary Mayer-Vietoris sequence, so is exact by Lemma 3.4.1.

Regarding the first row, we first observe that we may interpret the spaces C*(M3) and
C*(M,3) as genuine subspaces of C¥(M3) by taking their images under the isomorphisms f5;
and f3,. These pullbacks form a commutative subdiagram:

C(M31) & C(M3)
(=131, 13,)
C1(Ms3) fhefh Fhers (3.51)
C(M13) & C(Ma3)

which allows us to replace the terms in the first row of the previous diagram with cochain
spaces pertaining to M3 and its subsets.. Following the approach of [23], we may decompose
this substituted first row into the sequences:

0 — ker (k) 25 C9(M3) =5 C9(M3, UMzp) — 0 (3.52)
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0— éq(M31 UM32) — éq<M31) @éq(Mn) — éq(M123) —0 (3.53)

where here this decomposition is formed by taking the kernel of the 5 map and the map 1
is the inclusion of the union M3; U M3, into M3. The latter sequence is a Mayer-Vietoris
sequence, so is exact by Lemma 3.4.1. Thus our proof is complete once we argue that the
former is a short exact sequence.

Observe first that the map ¢ is injective since any two distinct elements of ker(x*) will
be zero on My Uy, M, thus can only differ somewhere on M3. The map —1* is surjective
by a standard extension by zero argument (cf. Lemma 3.4.1). Finally, we will show that
Im(¢5) = ker(—1*). The inclusion Im(¢;) C ker(—1*) is guaranteed since any element in
ker (k™) will also vanish on M3; UM3;. For the converse inclusion, let ¢ be some cochain on
M5 that restricts to zero on M3 U M3,. We can extend d to a full cochain honM by defining
the functions of b to be

0 otherwise '

bay-a ([51]) = {

The cochain b will then satisfy ¢3*l; = d, from which we may conclude that ker(—1*) C
Im(¢3), whence equality. O

The generalised Mayer-Vietoris long exact sequence of Theorem 3.4.4 can be equiva-
lently rephrased as follows.

Corollary 3.4.5. The Cech cochains of M satisfy the equality

C!M, %) =T]CUM;, %) (3.55)

id = fydl forallijel}.  (3.56)

={ (@, .a") e Do, w)
i
In direct analogy to the construction of the Cech-de Rham bicomplex of [13], we may
arrange the cochain data of all the.M; into a bicomplex as below.

AN AN AN

y 5 . 5 . ,
@ C* (M, W) —= B ;C*(Mij, %) — D jcx CH(Myjue, W *) — -

i A A

o -5 S (357)

®:C'\ M, ') 2 D, C' (Mij, %) S DBicjcr € (Miju, ) — -

A A A

0 -0 0

. 5 3 5 5 N
BiCOM;, %) —= D, COM;j, %) — D j i CO(Mijie, W) — -
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Theorem 3.4.4 ensures that the rows of this bicomplex are exact. As such, we may
employ standard spectral arguments (found in, say [13]) to conclude that the cohomology of
this bicomplex coincides with the Cech cohomology of M. We remark that it is possible to
obtain some alternate descriptions of the Cech cohomology of M by computing the spectral
sequence of the above bicomplex starting with the §-cohomology of the columns. However,
given the scope of this chapter we will not expand on this observation. For our purposes, we
will only use the following result.

Theorem 3.4.6. Suppose that M is built from n-many M; in which all intersections M;,...;,
are connected for all p < n. Then H' (M) coincides with the fibred product [] # H! (M;).

Proof. We will proceed by induction on the size of the indexing set /. This argument revolves
around an inductive form of the finite fibred product, so the reader unfamiliar with this form
is invited to read the appendix first.

The binary case is already proved in the form of Lemma 3.4.1. We will illustrate the case
for I = 3, though it should be understood that the inductive argument is near-identical to the
following. Let M be the colimit of the diagram formed from M, M, and M3. We can use
the inductive construction of M as in Lemma 3.2.5 to view M as an adjunction of the pair
M; Uy, M, to M3 along the union M3y UM3,. By the Mayer-Vietoris argument of Lemma
3.4.1 we have the following portion of the long exact sequence:

0 —— H(M) —— HO(M,UM>) ® H(M3) —— H° (M3, UM32)j
(3.58)

*_ g%
L1 v

5*
[—% H'(M) —— H'(MiUMy) ©H'(M3) = H'(M31UM3;) —— -+

where we have used that (M1 Uy, M>) "\M3 = M3; UM3, and 1, and 1, are the inclusions
of M3 UM3; into My Uy, M and M3, respectively. Observe that again we have passed into
the cover-independent Cech cohomology by using the direct limiting process found in the
Appendix. By assumption all of the H” terms in this sequence equal G, so we may apply the
same reasoning as that of Lemma 3.4.3 to conclude that the connecting homomorphism 6*
is the zero map. Thus H'(M) = ker(1} — 1), which can be equivalently stated as:

N

H' (M) = {([a],[5]) € H' (M UMz) & H' (M3) | i[a] = 1;[B]} (3.59)
= H' (My UM2) X1 31y, ity H' (M3). (3.60)

By assumption the triple intersection Mj,3 is also connected, so we apply the same reasoning
to the union M3{ U M3, to conclude that

I‘VII <M31 UM32) :ﬁl (M13) XHl(MIB)[‘VIl(MB). (3.61)
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Putting this all together, we have that

H' (M) = H' (M1 UM2) X i1 0 sy H' (M3) (3.62)
= H' (My UM2) X1 1. oo 11033 H'(M3) (3.63)
~ T4 (M) (3.64)
F
where the final isomorphism follows from Theorem A.1.2. 0

3.4.3 Classifying Line Bundles

We will now discuss the prospect of classifying real line bundles over a fixed non-Hausdorff
manifold M. Continuing on from the previous section, we will assume that M may be ex-
pressed as the colimit of n-many Hausdorff manifolds M; according to the requirements of
Remark 3.2.9. We can describe any rank-k vector bundle E over M as a choice of tran-
sition functions bgp : Ugg — GL(k) satisfying the conditions bgq([x,i]) = id and bgg o
bgy o by ([x,i]) = id for all [x,i] in M. When this is the case, we say that the open cover
% = {Uq} trivialises the bundle E. As in the Hausdorff case, any two sets {byg} and
{cqp} of trivialisations will describe the same bundle E whenever there exists a collection

of maps {kq : Uy — GL(k)} satisfying cog = kElbaﬁka.

In the case that E is a line bundle, we may use Theorem 3.3.8 to conclude that EE admits
a bundle metric. This allows us to reduce the structure group of E from GL(1) down to
O(1). As such, any transition function will now take image in the Abelian group Z,. We
may then equivalently view the construction of E from local trivialisations as a cocycle in
CY(M, % ,7Z,) whose cohomology class determines E up to isomorphism. Explicitly, for any
open cover % of M there is a bijection between the set Lineg (M, %) of real line bundles
trivialised by % and the % -dependent Cech cohomology H'(M, % ,Z,). We will now use
the direct limit construction of H'(M,Z,) to prove the following.

Theorem 3.4.7. There is a bijection between the set Liner(M) of inequivalent real line
bundles over M and the first Cech cohomology group H' (M, Z).

Proof. For each open cover % of M, denote by o, the bijection between Liner (M, %)
and H'(M,% ). By construction, each group H'(M,% ,Z,) maps into H'(M,Z,) via
some map Yy, and this map commutes with any refinement maps. We define a map € :
Lineg (M, Z,) — H'(M,Z,) by sending each L to yy o &4 (L), where % is some open
cover that trivialises L. To see that the map € is well-defined, suppose that L is some line
bundle that is simultaneously trivialised by two open covers %/ and #". We may then select
some open cover # that refines both %7 and ¥ simultaneously. Consider two maps A5, and
Ay that encode the refinements into %. By the direct limit construction of H'(M,Z,), we
then have that

Wy oty (L) =Yy odyoey(L)=yyoey(L)=vyyoldyoey(L)=yyoey(L), (3.65)

as required. Finally, we observe that € is bijective since every &y is. O
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Given the results of Sections 3.1 and 3.2, it would be useful if there were formulas to ex-
press the order of H'!(M, Z,) in terms of the orders of the groups H' (M;,Z,). Unfortunately,
a general formula may not exist. However, we may use Theorem 3.4.6 together with a basic
property of fibred products to yield the following.

Theorem 3.4.8. Let M be a non-Hausdorff manifold formed from Hausdorff manifolds M;,
according to 3.2.4. Suppose furthermore that:

1. the subspaces M,,...i, are all connected, for all p < n, and

2. each of the descended difference maps

§: P H'Mjyi)Zo)—~ P H' (M., . Zs) (3.66)

i1<<ip i1 <-<ipyq
is surjective.

Then the number of inequivalent line bundles on M can be expressed with the formula:

H' (M, Z5)| =Y Y (-D)PVH (M., 20)]. (3.67)

k<niy,-ipel

3.5 Conclusion

In this chapter we have explored the prospect of fibering vector spaces over a base space
which has the structure of a non-Hausdorff manifold. Using the topological criteria outlined
in both Section 3.2.1 and [84], we saw that bundle structures can be naturally defined, re-
constructed, and in some cases classified. Our initial observation was that of Theorem 3.2.7,
which confirmed that smooth non-Hausdorff manifolds can be constructed by gluing together
ordinary smooth manifolds along diffeomorphic open submanifolds. This, once combined
with the contravariance of the C* functor, then allowed us to express the algebra of smooth
real-valued functions of a non-Hausdorff manifolds as a limit in the abelian category of uni-
tal associative algebras.

Throughout Section 3.3, we saw that vector bundles fibred over our non-Hausdorff man-
ifold M can be constructed by taking a particular colimit of Hausdorff bundles. This was
proved as Theorem 3.3.1, and it was later shown in Theorem 3.3.3 that every vector bundle
over M can be described in this manner. Using this observation, we then showed that all
sections of all bundles over M carry a description in terms of sections on each Hausdorff
submanifold. In Theorem 3.3.8 this piecewise construction of sections was used to conclude
that bundle metrics will exist for any non-Hausdorff bundle E fibred over M. In particular,
Corollary 3.3.9 confirmed that Riemannian metrics always exist on any non-Hausdorff man-
ifold M satisfying our particular topological criteria.

In Section 3.4 we studied the Cech cohomology of non-Hausdorff manifolds. In Sec-
tions 3.1 and 3.2 we related the Cech cohomology groups H4(M) to the groups H¢ (Mi,..i,))
in the form of (generalised) Mayer-Vietoris sequences. These sequences will typically be
non-trivial, and therefore the fibre-product structure seen in 3.2.14, 3.3.6 and 3.4.5 will not
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present itself in Cech cohomology. Despite that, we saw in the form of Theorem 3.4.6 that
the first Cech cohomology group H' (M) will be a fibred product, provided that the Haus-
dorff submanifolds M; and all their intersections are connected. Finally, in Theorem 3.4.8
we identified some conditions under which the inequivalent real lines bundles over M can
be expressed as an alternating sum formula.

We will finish this chapter with some speculations regarding future developments. Of
particular interest is the relationship between the Cech cohomology groups established here,
and other theories such as de Rham cohomology. As an application of Theorem 3.3.6, the
differential forms on M satisfy a fibred product structure, and therefore it will be interest-
ing to compute the de Rham cohomology groups (a la [23]) and relate them to the groups
H 4(M,R). These relationships might then be used in conjunction with a sound theory of
affine connections to establish a Chern-Weil Theory for non-Hausdorff manifolds.

Summary of Chapter

In the previous chapter, we saw that non-Hausdorff manifolds can be constructed by glu-
ing together ordinary Hausdorff manifolds along particular open subsets. In this chapter we
took this idea one step further, by considering the case of vector bundles fibred over these
non-Hausdorff manifolds. Since a non-Hausdorff manifold can always be decomposed into
a collection of (maximal) Hausdorff submanifolds, and throughout this chapter we saw the
same story for their vector bundles. In particular, we saw that ordinary Hausdorff vector
bundles can be glued together to form a non-Hausdorff vector bundle, and moreover, any
non-Hausdorff vector bundle can be decomposed into Hausdorff vector bundles.

In the case of a finite adjunction, we also saw that the ring of smooth, real-valued func-
tions of a smooth non-Hausdorff manifold can be realised as a categorical limit of functions
on Hausdorff submanifolds, known as a fibre product. Heuristically, this description allows
one to construct smooth functions on a non-Hausdorff manifold by “gluing" together func-
tions defined on it’s Hausdorff subspaces. We saw that this description also held for sections
of bundles — a corollary being that all tensor fields on a non-Hausdorff manifold can be de-
scribed using Hausdorff tensor fields that are compatible in some precise sense. Looking
forward towards certain physical applications, the results in this chapter suggest that non-
Hausdorff manifolds are tractable from a naive geometric perspective, and display some of
the important mathematical features of physical spaces.



Chapter 4

De Rham Cohomology for non-Hausdorff
Manifolds

This chapter exists as a preprint under the name “A non-Hausdorff de Rham cohomology"
arXiv:2310.17151, 2023 [83], and I am the sole author.

In this chapter we investigate the nature of differential forms on a non-Hausdorff man-
ifold. Our aim is to build towards chapter 4 by describing all of the basic geometry that is
needed for describing and evaluating gravitational actions in two dimensions. In particular,
we will prove the following results:

* Using Theorem 5.2.3 of the previous chapter, we describe the differential forms on a
non-Hausdorff manifold and determine their integral properties.

* We show that a well-defined exterior derivative operator exists in the non-Hausdorff
case, and we use this to describe the de Rham cohomology of a non-Hausdorff mani-
fold via certain Mayer-Vietoris-style sequences.

* We prove the Gauss-Bonnet theorem for Riemannian non-Hausdorff surfaces. This
version of the theorem contains extra counterterms that compute geodesic curvature of
the Hausdorff-violating submanifolds present.

Alongside these results, we also prove the non-Hausdorff version of de Rham’s theorem,
which gives an equivalence between de Rham cohomology and singular homology.

62
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4.1 Introduction

The Hausdorff property says that any pair of distinct points can be separated by disjoint open
sets. In standard formulations of differential geometry, one assumes that all manifolds are
Hausdorff spaces. This is normally justified on technical grounds: it can be shown that any
locally-Euclidean, second-countable topological space admits partitions of unity subordinate
to an arbitrary open cover, provided that the space is Hausdorff. These partitions of unity
can then be used to build various global structures by patching together locally-defined ones.
Conversely, any non-Hausdorff, locally-Euclidean second-countable space cannot admit a
partition of unity subordinate to any cover by Hausdorff open sets, even when paracompact-
ness is assumed.

Observations such as the above often render non-Hausdorff manifolds as too bothersome
to include within standard treatments of differential geometry. Nonetheless, non-Hausdorff
manifolds still occur within certain domains of mathematics, despite their technical inconve-
nience. Indeed, non-Hausdorff manifolds can be found within foliation theory and/or non-
commutative geometry [17, 23, 25, 37, 39, 45, 60], and also within certain areas of mathe-
matical physics [33, 46, 47, 53, 68, 77, 89, 105, 108] .

In the seminal paper [45], Haefliger and Reeb observed that non-Hausdorff 1-manifolds
may naturally arise as the leaf spaces of certain foliations. Of special importance is their
construction of non-Hausdorff manifolds via adjunction spaces. Loosely speaking, the au-
thors showed that certain non-Hausdorff 1-manifolds may be constructed by gluing together
copies of the real line or along open subsets, whilst leaving the boundaries of these subsets
unidentified, as pictured in Figure 4.1. In a somewhat different context, Hajicek showed that
any non-Hausdorff manifold is naturally covered by maximal Hausdorff open submanifolds
[47]. These observations motivated the work of [84], which developed a general treatment of
non-Hausdorff topological manifolds in terms of generalised adjunction spaces. In [85] this
notion of adjunction space was extended to include smooth non-Hausdorff manifolds and the
vector bundles fibred over them.

In this chapter we will extend the formalism of [84] and [85] once more by studying the
differential forms that a non-Hausdorff manifold may admit. Motivated by Hajicek’s orig-
inal result, we will derive descriptions of non-Hausdorff de Rham cohomology via certain
Mayer-Vietoris sequences. We will mostly follow the standard derivation of these sequences
(found in [13], say), with some key modifications ultimately due to certain technical dif-
ficulties surrounding the non-existence of arbitrary partitions of unity. After this, we use
similar Mayer-Vietoris sequences for smooth singular cohomology in order to prove a non-
Hausdorff version of de Rham’s theorem. Finally, we will finish the chapter with a discussion
of the Gauss-Bonnet theorem for non-Hausdorff manifolds.

This chapter is organised as follows. In Section 4.2 we will recall the basic formalism of
non-Hausdorff manifolds, taken from [84] and [85]. Included are the basic notions of colim-
its of smooth manifolds, descriptions of the algebras of smooth functions, and a discussion
of non-Hausdorff vector bundles. Of central importance is the concept that sections of any
bundle will satisfy a certain fibre product formula. In this context, we mean that any section



De Rham Cohomology for non-Hausdorff Manifolds 64

/—\ [

Figure 4.1: The line with two origins, the prototypical example of a non-Hausdorff manifold. Here it is
constructed by gluing together two copies of R along the open subset (e0,0) U (0,00).

over a non-Hausdorff manifold can be uniquely described by a collection of sections defined
over Hausdorff submanifolds, together with some consistency conditions on their mutual
overlaps. We will spend due time on this observation, since it is a fundamental concept that
underpins the remainder of the chapter.

In Section 4.3 we will describe the differential forms on a non-Hausdorff manifold. Be-
fore doing so, we will first take some time to explain a description of vector fields in function-
theoretic terms. This interpretation of vector fields needs particular care, since the type of
bump functions used in locality arguments will generally not exist in our setting. Once this
is done, we will describe the space of non-Hausdorff differential forms, as well as their exte-
rior derivative. We then finish the section with a discussion of integration over non-Hausdorff
manifolds. As a small aside, we will see that Stoke’s theorem fails in a particularly controlled
manner for our non-Hausdorff manifolds.

In Section 4.4 we will discuss the de Rham cohomology of non-Hausdorff manifolds.
After making some important assumptions on the intersection properties of Hausdorff sub-
manifolds, we will derive the aforementioned Mayer-Vietoris sequences for de Rham coho-
mology. In the case that a non-Hausdorff manifold is built from two Hausdorff spaces, this
sequence is similar to the Hausdorff setting (cf. [13]). However, in the more-general case,
we will derive a Cech-de Rham bicomplex that relates the de Rham cohomology of a non-
Hausdorff manifold to a particular cover-dependent Cech cohomology (cf. [85, §3]).

In Section 4.5 we will prove de Rham’s theorem for non-Hausdorff manifolds. After
some careful derivations of (smooth) singular homology, we may use our Mayer-Vietoris
sequences together with and “integration over chains" pairing to describe an isomorphism
between de Rham cohomology and singular homology. Our approach will generally follow
that of [65], with some important modifications due to the failure of Whitney’s Embedding
theorem in the non-Hausdorff case.

Finally, in Section 4.6 we will prove a non-Hausdorff version of the Gauss-Bonnet theo-
rem for closed 2-manifolds. As we will see, the integration formulas of Section 4.3, together
with the Mayer-Vietoris sequences of Sections 3.4 and 3.5 will allow us to prove a Gauss-
Bonnet theorem by decomposing the total scalar curvature into an integral over Hausdorff
submanifolds. Applying the usual Gauss-Bonnet to each of these Hausdorff pieces will give
the desired relationship. Although we can derive the result by reducing everything to the
Hausdorff case, there is an important difference: for a non-Hausdorff 2-manifold there will
be additional contributions to curvature coming from the Hausdorff-violating submanifolds
that sit inside it.

Throughout this chapter we will assume that all manifolds, Hausdorff or otherwise, are
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locally-Euclidean second countable topological spaces. As a convention, we will use bold-
face to distinguish non-Hausdorff manifolds from their Hausdorff cousins.

4.2 Smooth non-Hausdorff Manifolds

We will now recall the basic topological properties of non-Hausdorff manifolds. The results
here are taken from [84] and [85], so we will state them without proof.

4.2.1 The Topology of non-Hausdorff Manifolds

An adjunction of two topological spaces X and Y is formed from some subset A of X and a
continuous map f : A — Y. The adjunction space X UyY is then defined to be the quotient
of the disjoint union X LY by an equivalence relation that identifies every element in A with
its image under f. In categorical terms, the adjunction space X Uy Y can be shown to be the

ushout of the diagram
p g A A X

f ox (4.1)
Y — XUpY

in the category TOP [14, 50], where here the maps ¢x and ¢y send each point in X or Y into
its corresponding equivalence class in the quotient space.

Motivated by this construction, we will now use this idea to form non-Hausdorff man-
ifolds. To begin with, we would like to consider more general diagrams than the above.
Following [84], we will consider diagrams consisting of manifolds, open submanifolds, and
maps between them. Formally, we will consider a tuple . = (M, A, f), where:

* M = {M,} is a finite set of Hausdorff topological manifolds,

* A= {M;;}i jes is a set of bi-indexed open submanifolds, satisfying M;; C M; for all i, j
in /, and

o f={fij}ijer is a set of continuous maps f;; : M;; — M.

There is no guarantee that the data of .# will yield a well-defined quotient space, so we will
need to restrict our attention to the following triples.

Definition 4.2.1. The triple % = (M, A, f) is called an adjunction system if it satisfies the
following conditions for all i, j € I.

Al) M,',‘ = M,' and f,',' == idMi

A2) Mji = fij(Mij), and f;;' = fji
A3) fulx) = Fit Ofij(x)for each x € M;j N\ My,
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The conditions listed above ensure that the resulting quotient space is well-defined. Given
an adjunction space .%, we may define the adjunction space subordinate to it as:

M;
M:= UM,' = (!al >/N (4-2)

F

via the relation ~ that identifies points (x,i) and (y, j) in the disjoint union whenever f;;(x) =
y. We will denote the points in M by tuples [x,i], where x € M;. Since M is a quotient space,
these points are actually equivalence classes of the form:

il i={ o) e LJM; |y = £} (43)

icl

We will denote by ¢; the continuous maps that send each x in M; to its equivalence class
[x,i] in M. By construction, the open sets of M can be usefully described with the following
condition.

Lemma 4.2.2. A subset U of M is open if and only if the set ¢i_1 (U) is open in M, for all i
inl.

Lemma 1.3 of [84] ensures that the above adjunction space together with the maps ¢;
satisfy a certain universal property. This allows us to view M as the colimit of the diagram
formed from the data in .%.

In principle, quotienting some collection of manifolds may also spoil local charts. How-
ever, we may preserve the local nature of the manifolds M; by imposing some conditions on
the gluing maps f;; and the submanifolds M;;. The following result captures the finer details.

Lemma 4.2.3. Let 7 be an adjunction system in which the maps f;; are all open topological
embeddings. Then

1. the maps ¢; : M; — M are all open topological embeddings, and

2. the adjunction space subordinate to .7 is locally-Euclidean and second-countable.

The above result ensures that our adjunction spaces M are locally-Euclidean, second-
countable spaces, thereby justifying our notation. Since the canonical maps ¢; are now em-
beddings, we may also view the Hausdorff manifolds M; as genuine subspaces of M. To
simplify notation, we will regularly identify M; with it’s image ¢;(M;), viewed as an open
submanifold of M.

Lemma 4.2.3 provides some conditions under which local charts of each M; may be
preserved in the adjunction process. However, the Hausdorff property may or may not be
preserved under these conditions.! The key observation here revolves around the boundaries
of the submanifolds M; —if we identify M;; and M ; in the adjunction process, but leave their
relative boundaries unidentified, then these boundaries (provided they exist) will violate the
Hausdorff property in M. The following result summarises some useful facts surrounding
this observation.

IConsider, for example, a binary adjunction in which M| = M, = M, = R, with fj, = id. The resulting
adjunction space is R. Alternatively, we may take A = (—e,0), and the adjunction space will be non-Hausdorff.
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Theorem 4.2.4. Let .7 be an adjunctive system that satisfies the criteria of Lemma 4.2.3, and
let M denote the adjunction space subordinate to 7. Suppose furthermore that each gluing
map fij : Mij — M ; can be extended to a homeomorphism f;; : CIMi(M;;) — CIMi(M ;) such
that the f_,] satisfy the conditions of Definition 4.2.1. Then:

1. The Hausdorff-violating points in M occur precisely at the M-relative boundaries of
the subspaces M;;.

2. [x,i] and [y, j| violate the Hausdorff property in M if and only if x € oMi(M;;) and
y € Mi(M;;) and fi;(x) =y.

3. Each M; is a maximal Hausdorff open submanifold of M.
4. M is paracompact.
5. If each M; is compact, then M is compact.

As mentioned in the introduction, non-Hausdorff manifolds will not admit partitions of unity
subordinate to an arbitrary open cover. The following is taken from [84, Thm 2.6].

Lemma 4.2.5. Let %/ be an open set of a non-Hausdorff manifold M such that each element
of % is Hausdorff. Then there is not a partition of unity subordinate to /% .

The key observation here is that any continuous function r : M — R will necessarily map
Hausdorff-violating points to the same value in R. As such, any proposed partition of unity
will either not sum to one everywhere, or will not be supported in the Hausdorff open sets of
the proposed cover.?

Inductive Construction of M

Generally speaking, many of the results that can be proved for binary adjunction spaces
will also hold for a colimit of finitely-many manifolds. This is due to a certain inductive
construction of colimits: if M a non-Hausdorff manifold built from (n 4 1)-many manifolds
M;, then we can equivalently view M as an adjunction of the two spaces N and M, |, where:

* N is the adjunction of the first n-many manifolds M;,
* the subset A = U<, Mj(,+1), viewed as an open submanifold of M, 1, and

* the gluing map F : A — N sends each a to the equivalence class in N containing the
point f,41)i(a), for all i < n.

The universal properties of colimits, applied to both M and N, ensure the equivalence be-
tween these two representations of M. The details can be found in Section 1.1 of [85].

Note that there are at least some open covers that admit partitions of unity — the singleton {M} being a
somewhat trivial example.
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4.2.2 Smooth Manifolds

We will now extend our discussion to the smooth setting. Suppose that we are given a non-
Hausdorff manifold M built according to Definition 4.2.1 and Lemma 4.2.3. Given atlases
<7; of the Hausdorff manifolds M;, we may define a topological atlas .7 on M as:

o = J{(#i(Ua), 9a09; ") | (Un, Pu) € i} (44)

icl

The antecedent conditions of Lemma 4.2.3 ensure that the transition maps of .27 will be con-
tinuous for charts coming from different M;. As one might expect, this observation similarly
holds for smooth manifolds. The following result is taken from [85, Lem 1.7].

Lemma 4.2.6. Let M be a non-Hausdorff manifold built according to Lemma 4.2.3. If,
additionally, the M; are smooth manifolds and the f;; are all smooth maps, then M admits a
smooth atlas.

The atlas .o/ described above will suffice as a smooth atlas of M. Under this reading,
we may view the canonical maps ¢; : M; — M as smooth open embeddings. Moreover,
arguments similar to that of [84, Lem. 1.3] ensure that M satisfies a universal property,
effectively turning it into the colimit of the diagram .# in the category of smooth locally-
Euclidean, second-countable spaces.

Smoothness of maps between non-Hausdorff manifolds can be defined as in the Haus-
dorff case, that is, by appealing to local coordinate representations about each point in
the manifold. Since the submanifolds M; form an open cover of M, we see that any map
1) : M — N is smooth if and only if all of the maps 1) o ¢; : M; — N are.

Remark 4.2.7. In addition to the conditions of Lemma 4.2.3 and Theorem 4.2.4, hereafter
we will also assume that our non-Hausdorff manifolds are smooth in the sense of Lemma
4.2.6. Moreover, we will also need to assume that the gluing regions M;; have diffeomorphic
boundaries, which in this context means that the closures CIMi(M;;) are all smooth closed
submanifolds with boundary, and the extended maps f_,j of Theorem 4.2.4 are all diffeomor-
phisms from CIMi(M;;) to CIMi(Mj;). In order to remove any potential ambiguity between
the topological and manifold notion of boundary, we will also assume that the submanifolds
M;; are all regular domains in the sense of [65, Prop 5.46]

Smooth functions on a non-Hausdorff manifold M can be defined in the same way as
the Hausdorff case. In particular, the space C*(M) of smooth functions is still a unital,
associative algebra over R. In our context, the canonical maps ¢; : M; — M are all smooth,
so we might expect there to be some relationship between C**(M) the algebras C*(M;). As a
matter of fact there is such a relationship, however in order to motivate the exact description
we first need to make the following observation regarding the construction of functions on
M, taken from [85, §1.3].

Lemma 4.2.8. Let M be a smooth non-Hausdorff manifold satisfying the criteria of Remark
4.2.7. Then:

1. If ri : M; — R is a collection of smooth functions such that r; =rjo f;; for all i, j in I,
then the map r : M — R defined by r(|x,i]) = ri(x) is a smooth function on M.
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2. Any smooth function r; on M; can be extended to a smooth function r on M.

Item (1) above is a direct reformulation of the so-called “Gluing Lemma" for smooth
maps, (cf [65, Cor. 2.8]). The second item above revolves around the so-called “extension
by zero" construction for Hausdorff manifolds (cf. [65, Lem. 2.26]). The idea behind the
proof is to transfer the smooth function r; to each closed subset M; using the extended
diffeomorphisms f_ij, and then to inductively extend by zero into each M;. This creates a
collection of smooth functions defined on each M; that agree on their pairwise intersections,
and the result then follows from Item (1) above. The results of Lemma 4.2.8 may be used to
prove the following [85, §1.3].

Theorem 4.2.9. The algebra C*(M) is isomorphic to the fibred product

HC°°(M,-) = {(rl,...,rn) € @C“(Miﬂ ri=rjo fijon M;; foralli,jc I}. 4.5)
F

icl

This fibred-product structure has many useful consequences. Abstractly, it allows us to
see C*°(M) as the limit of the diagram formed by applying the contravariant functor C*(+) to
the data of .%. Concretely, Theorem 4.2.9 allows us to describe a smooth function r on M
by any of the following equivalent descriptions:

r= (‘Pfrv ,¢:l’) = (I‘O¢1,--~ 7ro¢n) = (r‘MN'” 7r|Mn> = (rlv"' 7rﬂ)' (4'6)

The above fibre product can be equivalently represented by a sequence. In the case of a
binary adjunction space, we will have the following short sequence:

0= C=(M) =25 C=(My) & C=(My) ~2212, c=(3115) = 0 4.7)
where here ®* is the map that sends any function r to the pair (¢;r, ¢;r), and 112 : M1, — M,
is the inclusion map. Theorem 4.2.9 then states that the above sequence is exact at the first
step, that is, C* (M) = ker (1}, — f},). However, due to Lemma 4.2.5 there is no partition of
unity subordinate to the open cover {M,M;}, so in general we may not argue for the full
exactness of this sequence by standard means, found in Prop. 2.3. of [13], say. This is an
important issue, the resolution of which will be the subject of Section 4.4.

4.2.3 Vector Bundles

Vector bundles fibred over non-Hausdorff manifolds M can be constructed using colimits of
Hausdorff bundles E; N M;. The construction is very similar to that of Section 4.2.1, except
that we additionally require some bundle maps F;; covering the f;; that specify the gluing of
each fibre. Schematically, the colimit E of the bundles E; should make the diagram:
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(4.8)

commute for all i, j in /. This can all be confirmed formally, the details of which can be
found in [85, §2]. For the purposes of this chapter, the relevant details are given below.

Theorem 4.2.10. Let 4 := (E, B, F) be a triple of sets in which:
1. E={(E;,m;,M;)}ict is a collection of rank-k vector bundles,
2. B={E;j}i jei consists of the restrictions of the bundles E; to the intersections M;;, and

3. F={Fij}ijer is a collection of bundle isomorphisms F;; : E;j — E;; that cover the
gluing maps f;; and satisfy the condition Fy, = Fj o F;j on the intersections M, j, for
alli,j,kinI.

Then the resulting adjunction space E has the structure of a non-Hausdorff rank-k vector
bundle over M in which the canonical inclusions ); : E; — E are bundle morphisms covering
the canonical embeddings ¢; : M; — M.

The bundle E described above can be shown to satisfy a certain universal property, effec-
tively turning it into a colimit of the bundles E;. Moreover, it can be shown that every bundle
E 5 M is a colimit of Hausdorff bundles (cf [85, §2.2]). As an application of this idea,
we may readily obtain descriptions of the tensor bundles over the non-Hausdorff manifold
M. The tangent bundle 7M can be constructed as a colimit of the bundles 7'M;, where here
the gluing maps for the fibres are given by the differentials of the gluing maps for M, i.e.
Fij = dfij. According to Remark 4.2.7 each f;; is a diffeomorphism, so their differentials
will induce bundle isomorphisms on the 7M;;. The universal property of the colimit bundle
can be applied (together with the maps d¢; : TM; — TM) to conclude that 7M is canonically
isomorphic to a colimit of the bundles TM;. According to Theorem 4.2.4, a pair of tangent
vectors [v,i] and [w, j| in TM will violate the Hausdorff property if and only if they satisfy

veTpM;andw € T, M; and dfij(v)=w 4.9)

for some point p lying on the M;-relative boundary of M;;. Similarly, it can be shown that

any higher tensor bundle 7(”9)M is canonically isomorphic to a colimit of the same bundles
T(P’Q)Mi defined on each M.
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Theorem 4.2.11. Let M be a non-Hausdorff manifold satisfying the criteria of Remark 4.2.7.

Then the rank (p,q) tensor bundle T(P9OM is canonically isomorphic to an adjunction of the
bundles T\PDM;, glued along the maps

Fj=dfij® - @dfij@dfi®---Qdfj. (4.10)

p times q times

We finish this section with a pair of very useful observations regarding the sections of
non-Hausdorff bundles. To begin with, we observe that the sections of a non-Hausdorff
colimit bundle E can be described in a similar manner to that of smooth functions.

Theorem 4.2.12. Let E be a vector bundle over M. Then the space of sections I'(E) is
isomorphic to the fibred product

HF(Ei) = {(sl,...,sn) € @F(E,)‘ si=sjo fijon M foralli,je I}. 4.11)
7

icl

In short, this means that any section on a bundle E M canonically admits any of the
following equivalent representations:

§= ((piksv 7¢r>zks) = (so(pla"' ,SO(])n) = (S|M17"' 7S‘Mn) = (S17"' 7sn)- (412)

Moreover, the isomorphism described in Theorem 4.2.12 is an isomorphism of C*(M)-
modules, so the linear operations on the space I'(E) translate into this representation as well.

For our final observation, we see that sections can be used to describe the Hausdorff-
violating points in a colimit bundle.

Lemma 4.2.13. Let E be a vector bundle over M, with s a section of E. If [x,i] and [y, j] are
Hausdorff-inseparable in M, then s(|x,i|) and s(|y, j|) are Hausdorff-inseparable in E.

Proof. Suppose first that [x,i] and [y, j] are Hausdorff-inseparable in M. Then there is some
sequence |aq, 1] in M;; that converges to both points in M. Since any continuous map between
second-countable spaces will preserve the convergence of sequences, the sequence s([ag,])
will converge to both s([x,i]) and s([y,j]) in E. Since s is injective, s([x,i]) and s([y, j])
are distinct points that are both limits of the same convergent sequence, so are Hausdorft-
inseparable. [

4.3 Non-Hausdorff Differential Forms

In this section we will describe the differential forms on any non-Hausdorff manifold M
satisfying the criteria of Remark 4.2.7. As we will see, the fibre-product formula of Theorem
4.2.12 will provide a reasonable description of non-Hausdorff differential forms. However,
special care is required to prove the locality of any derivative operators defined on M. To

illustrate this idea, we will first provide a function-theoretic description of vector fields on
M.
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4.3.1 Vector Fields

Since non-Hausdorff manifolds are locally-diffeomorphic to Hausdorff ones, there are at
least some definitions of tangent vectors which directly apply to our setting. Under a geo-
metric interpretation, we can always define tangent spaces using velocity vectors of curves
passing through a given point. However, a function-theoretic definition of non-Hausdorff
tangent vectors is currently lacking in the literature.

Naively, one might try to define tangent vectors as point-derivations of the ring C*°(M).
However, this will not make sense, since bump functions of the type used in [65, Prop. 3.8]
to prove the locality of derivations will not exist in a non-Hausdorff manifold. Instead, we
will consider derivations on the space Cf;ﬂ (M) of germs of functions at a point. Locality
is naturally incorporated into this definition since C;J} (M) will equal C‘[’;i] (U) for any open
subset U of M. We can therefore describe a basis of the tangent space using coordinate
functions defined from open charts:

. 0
a—;- ,d}L &x“

(4.13)

[

as in the Hausdorff case (cf [104, §14.1]). The geometric and function-theoretic definitions
of tangent spaces can be shown to be equivalent, since they both have the same dimension as
the tangent spaces of any M;. An explicit isomorphism can be described using differentials
d¢;, which either maps curves from M; into M, or maps the space Cy’(M;) into Chi (M).

We may define the space X(M) of vector fields on M as the global sections of the bundle
TM. Locally, we see that a vector field X in X(M) is smooth if and only if the coefficients
A% described above are elements of C*(U), where U is the local chart used to induce the
coordinate expression. By appealing to the standard notions of local charts (i.e. with the
Euclidean Leibniz rule), we see that X is indeed a derivation of the ring C*(M).

In order to describe an explicit bijection between the space of vector fields and the space
of derivations, we must first prove that every derivation is a local operator on M. We will
approach this problem by first proving an auxilliary property, which we will call “semi-
locality".

Lemma 4.3.1. Let D be some derivation of C*(M). If r is a smooth function on M that
vanishes on M;, then Dr also vanishes on M;.

Proof. We first define a function @ : M — R such that 1r = r everywhere, with ¢» = 1 for
all Hausdorff-violating points in M;. We construct this function in a few steps: first consider
the set B := U 0'M;;, which consists of all Hausdorff-violating points in M coming from
M;. Let v; : M; — R to be a smooth bump function for the set B, constructed as in [65, §2].
We now define the smooth map v : M — R as follows:

yiod '([x,j]) if [x,j] € M;

) 4.14)
1 otherwise

¥ ([x, j1) :{
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(a) The 2-branched real line (b) The bump function on M; (c) The cutoff function on M,

Figure 4.2: Schematics of the smooth map ), defined for the 2-branched real line.

The map ) will restrict to the bump function y; on M;, and will act as a cutoff function that
equals 1 on M; everywhere outside the set Mj;. Figure 4.2 depicts the function 1) for the
branched real line. By construction, we have that ri» = r everywhere on M. It follows that

Dr =D(ry) = (Dr)y +r(Dvy), (4.15)

which reduces to the equality Dr = (Dr)) on M;. We will now show that Dr = 0 on M;.
There are two cases to consider.

Firstly, suppose that [x, i] is some point in M; that does not violate the Hausdorff property
in M. According to the construction of 4, this means that ([x,i]) # 1. Thus the Leibniz
property tells us that (Dr)([x,i]) = (Dr)([x,i]) - ¥(|x,i]), hence (Dr)([x,i]) = 0. Suppose
now that [x,i| does violate the Hausdorff property in M. This means that x lies in the set B,
and thus 9 ([x,i]) = 1. Let a, be some sequence in M;; that converges to x in M;. We may
always arrange for this sequence to avoid the other boundary sets in B, so without loss of
generality we may conclude that 1 ([ay,i]) # 1 for all n. By assumption the function Dr is
smooth, so it follows that Dr([ay,,i]) converges to Dr([x,i]) in R. However, we just showed
that Dr vanishes for every element of M; that does not violate the Hausdorff property. This
means that Dr([a,,]) is a constant sequence of zeroes in R. The limit of this sequence is 0,
that is,

Dr([x,i]) = Dr (hm [an,i]) — lim Dr([ay, i]) = 1im 0 = 0. (4.16)
n—yoo n—oo n—soo
We may thus conclude that Dr = 0 on M;, as required. O]

This notion of semi-locality means that we can always restrict a derivation D of C*(M)
down to a derivation D; of C*(M;) by defining

(Dir)(x) = (Dr)([x, ), (4.17)

where r is any extension of r into M, a la Lemma 4.2.8. Observe that D; inherits its linearity
and Leibniz property from D. Moreover, the semi-locality property of Lemma 4.3.1 ensures
that this map is well defined: any other extension F of r will cause the global function r — ¥ to
vanish on M;, which in turn means that Dr = Dr on M;. We will now argue that this notion of
semi-locality can also be used to guarantee that an arbitrary derivation on C*(M) is a local
operator.
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Lemma 4.3.2. Let D : C*(M) — C*(M) be a derivation. If r is a smooth function that
vanishes on some open set U, then Dr also vanishes on U.

Proof. Let p be some point in U. Since the M; cover M, p is of the form [x,i] for some x
in M;. The restriction of the function r to M; will vanish on the open set U N M,. Since the
restriction D; is a derivation on C*(M;), and all Hausdorff derivations are local, it follows
that D; f; vanishes on the subset U N M;. In the construction of the derivation D;, we are free
to choose the extension of f; to a global function in M. In particular, we may choose the
somewhat-trivial extension r to yield 0 = (D;f;)(x) = (Dr)([x,i]). O

With a confirmed notion of locality for derivations on C**(M), an explicit isomorphism
between the space of vector fields X (M) and the space of derivations Der(C*(M)) can now
be derived from the procedure outlined in [104, Pg. 219]. Under this reading, we may
meaningfully consider a vector field X on M as a derivation of C**(M). Any vector fields on
M; can be restricted to each M;; by an analogue to the above, so we can further restrict any
derivation D; defined above to a derivation D;; on C*(M;;). In fact from Theorems 4.2.11
and 4.2.12, we may actually view any derivation D of C*(M) as an element of the fibred
product

HDer(M,-) :={(D1,---,Dn) | Di=Dj on M;j forall i, j € I}. (4.18)
F

In particular, this means that for any smooth function r we have Dr = (Dyry,---,D,ry).

The Lie Derivative

In general, vector fields on M will not admit global flows, ultimately due to the “splitting" of
vector fields at Hausdorff-violating points. However, any vector field on M will be locally-
equivalent to a Hausdorff vector field, so there will still be unique local flows. As such, we
may still meaningfully define the Lie derivative -Zxr of a function r with respect to a vector
field X pointwise as .Zxr([x,i]) = Zx,ri(x). This is a manifesly local operator that will agree
on the submanifolds M;;, since both X and r do. As such, we may write Lie derivative as

gxr: ("?X]rl?"' 7$ann)- (419)

As an immediate consequence, we observe that the equalities Zxr = X(r) and Z2xY = [X, Y]
both hold.

4.3.2 Differential Forms and the Exterior Derivative

In similar spirit to the previous section, we may again apply Theorems 4.2.11 and 4.2.12 to
describe the algebra Q*(M) of differential forms on M via sections of the relevant exterior
powers of T*M. A fibred product formula will again hold for differential forms: given a
vector field X on M, a differential 1-form w will act by

w(X) = (@7 0(¢X), -+, ¢, 0(9,X)) = (@1 (X1), -+ , O (X))

@)Xy,
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with higher-degree forms acting analogously. Since the wedge product distributes over pull-
backs, we may readily extend it to differential forms on M using the equality:

wAN = (O AN, O ATp). 4.21)
We may write an exterior derivative d on Q*(M) similarly:
dw=(dwy,- - ,dwy). (4.22)

Observe that this is well-defined, since 1/;(d@;) = d(1/;0;) = d(f};0;) = f;(dw;) for all
i,j in I. This definition of exterior derivative appears to be natural in that a semi-locality
property similar to that of Lemma 4.3.1 is satisfied by construction. However, we ought to
show that the operator d uniquely satisfies the usual desiderata of the exterior derivative.

Theorem 4.3.3. The operator D is the unique operator on Q* (M) that satisfies the following
properties.

1. dis local.

2. dr(X) =X(r) forall X € X(M) andr € C*(M).

3.d*=0

4. dlwAn) = (dw) An+(—1)lwAdn forall w € QI(M) and n € Q*(M).

Proof. The locality of d may be argued in a similar manner to that of Lemma 4.3.2. Indeed,
suppose that we have some differential form w on M that vanishes on an open subset U. For
any [x,i] in U N'M; we have that w([x,i]) = w;(x). In particular, @; will vanish on the open
set U N M;. Since the exterior derivative on M; is a local operator, we have that dw([x,i]) =
da;(x) = 0. Suppose now that X is some vector field on M. Then:

(dr)(X) = ((dr)(X1), -, (dra)(Xa)) = (X1 (r1), - Xa(ra)) = X(x). (4.23)

Moreover, the exterior derivative on M satisfies properties (iii) and (iv) above, since the
exterior derivatives on M; do. To see that d is unique with respect to these properties, suppose
that there is some other operator d on Q* (M) satisfying items (i)—(iv) above. Since d is local,
we may restrict it to each M; to obtain an operator acting on Q*(M;). The properties (ii)—(iv)
are preserved under this restriction, and thus we may conclude that d = d on each M;. The
global result then follows from the fact that dw([x,1]) = dw;(x) = dw;(x) = dw([x,i]) for all
iin 7 and all w in Q*(M). O

4.3.3 Integration on non-Hausdorff Manifolds

Before getting to a definition of integration, we will first briefly comment on the existence
of orientations on M. Globally speaking, an orientation can be seen as a non-vanishing
top form, which is a section of the bundle A? T*(M). According to Theorem 4.2.12, any
orientation on M is induced from a series of compatible orientations on the submanifolds
M;. This idea can be restated as follows.
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Lemma 4.3.4. Let M be a colimit of Hausdorff manifolds, in accordance with 4.2.7. If
each M; is oriented, and the gluing maps f;; are orientation-preserving, then M admits an
orientation under which the maps ¢; : M; — M become orientation-preserving, smooth open
embeddings.

On a Hausdorff manifold, the integration of compactly-supported differential forms is
typically defined in terms of local charts, and then the total result is patched together using
a partition of unity. According to Lemma 4.2.5 we do not have access to partitions of unity
subordinate to arbitrary open covers, so we cannot use this definition in its desired generality.
Instead, we will use the so-called “integration over parameterisations". In this approach an
overall integral is broken down into smaller pieces that intersect on measure zero sets. The
following definition is an adaptation of that found in [65, §16].

Definition 4.3.5. Let M be a d-dimensional non-Hausdorff manifold defined according to
4.2.7 and oriented in the sense of 4.3.4, and let w be a compactly-supported differential form
on M. Suppose that we are given a finite collection {Aq} of open domains of integration in
R4, together with a collection of maps ag : Aq — M such that:

1. each ay is an orientation-preserving diffeomorphism from Ay onto an open subset Uy,
inM,

2. the sets Uy are pairwise disjoint, and

3. supp(w) == {[x,i] € M | w([x,i]) = 0} € Uy Ua.

We then define the integral of w in M to be

/Mw :;/Aaa;"w. (4.24)

Before deriving alternate descriptions of integration over M, we will first confirm that
the above definition is well-defined.

Proposition 4.3.6. The integral defined in Definition 4.3.5 is independent of the particular
choice of the parameterizing sets.

Proof. Suppose that bg : % — M is another collection of sets and maps satisfying the con-
ditions of Definition 4.3.5, and denote by Vﬁ the image of B[; under b[;. For each Uy, we
have that
supp(w)ﬂU_agU_aﬂUV_ﬁ:UU_aﬁV_ﬁ. (4.25)
B B
As such, we may consider the sets of the form Aq N By as a parametrized set covering Ag.
This means that we can break down the integral of 1/;w over A, into the sum:

a’w = U eaiw, 4.26
/Aoc ! %:/A:aﬂBﬁ OCﬁ ! ( )

where the map 144 is the inclusion of the set A N Bp into Aq. We may repeat the same

reasoning for fixed Vg and break the integral of b;;,w into a sum of integrals defined on the
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pairwise intersections A M Bg. From this we may conclude that

2/ apw = ZZ/ Lopdow (4.27)

AaﬂBﬁ
= 13,05 4.28
ZZ/AaﬂBﬁ pa Bw ( )
=Y / bpw (4.29)
B
B /Bp
as required. 0

Proposition 16.8 of [65] ensures that Definition 4.3.5 recovers the ordinary integral for
Hausdorff manifolds. Moreover, by some arguments of point-set topology it can be shown
that the pullback of a compactly-supported form by the maps ¢; will still be compactly-
supported in each M; — see Lemma A.2.1 in the Appendices for the details. We will now use
this observation in conjunction with Definition 4.3.5 to describe the total integral for M by
decomposing it into ordinary integrals defined over the submanifolds M;

Theorem 4.3.7. Let M be an oriented non-Hausdorff manifold, constructed as a binary
adjunction of M\ and M, according to 4.2.7 and 4.3.4. For all compactly-supported forms
w on M, integration satisfies the sub-additive equality:

/w:/ o+ [ o= [ o (4.30)
M M, M, M,

where here M, denotes the closure of M1, in M.

Proof. We would first like to describe a particular parametrisation of M in terms of parametri-
sations of the M; and M1,. Suppose that:

» {a; : A; — M, } is some parametrisation of the set M| \M>,
» {b;: Bi — M,} is some parametrisation of the set M»\M,, and

* {c;i: C; — M\, } is some parametrisation of the closed set M},, viewed as a subspace
of Ml.

Observe that the collection {A;} U {C;} forms a parametrisation of the entire manifold M,
and similarly {B;} U {C;} for M, where here C; denotes the transfer of the parametrization
C; into M> using the diffeomorphism fi>. In particular, this means that

/M1n=2(/an)+2(/ 20¢;) n):Z(/an>+Z(/c 01121") (431

for any differential form 1 on M;. Equivalently, this integral can be seen as a restriction
of 7 into the two sets M, and M;\M),, followed by an integration over the respective
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parametrizations of these two spaces. We remark at this stage that the inclusion of the bound-
ary of M, is necessary, as otherwise the restriction 1}, need not be compactly-supported.>
Similarly, we have that:

/1142“:2(/8 ) Z(/ (fjoci) ”)_Z(/Bib?“)+Z(/Cfc?<0fj*“(2.32)

for any differential form y on M. Since the maps ¢; are smooth, orientation-preserving open
embeddings, the collection

{01(A)}U{n(Bi) U {d10112(Ci) } (4.33)

forms a parametrisation of M. According to Proposition 4.3.6, the integral of any w can be
computed according to this particular parametrization. This yields:

/M“’ZZ/ (¢loai)*w+2/<¢20bi)*w+2/(q)lollzoci)*w (4.34)
+Z/ $rotipoc)” Z/ Protpoc) w (4.35)
:Z/A, ¢1oai) w+Z/ (¢200:) erZ/ ($rouzoc) w (4.36)
+Z/c,-( 920 fizoc)" Z/ Protpoc)w 4.37)

- <Z/.("’1Oai)*w+2/.(¢1°ll200i)*°’> (4.38)

(Z/ ob;) w+2/ $20 fizoci) w) (Z/ Protpoc;) w) (4.39)
:/Ml <7>1<4J+/M2 ¢2W—/Mu¢12w (4.40)

where here in the second equality we use the commutative property ¢ o1 = ¢r0 f1o. [

We can extend this representation to manifolds M which are finite colimits. In this case,
we will get a more-general alternating sum that keeps count of the number of sets being
used in each possible intersection. As a shorthand notation, we will write M,-l...ip for the set
My N M.

Theorem 4.3.8. Let M be an oriented non-Hausdorff manifold, built as the colimit of n-many
manifolds M; in accordance with 4.2.7. The integral of a differential form w over M satisfies:

n n
w= / (p-*w) - (- / ¢~*,,,~)w 4.41)
/M g{( M Ez - ip€l lll]
11< <llJ
Proof. See Appendix 3.8.1. [

3For example, suppose that M; = R and M, = (—o0,0), and consider a bump 1-form in M centered at the
origin. The restriction of this form to M), will take support on some interval [—a,0), which is not compact in
M. However, the interval [—a, 0] is compact in M1, = (0, 0)].
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In the above arguments we had to include extra integrals over the boundaries of M;;, since
otherwise there is no guarantee that the restrictions w/y, ; maintain a compact support. This
may appear to be an innocuous detail, since the inclusion of a boundary component of M|,
will merely add an extra set of measure zero into the total integral. However, the inclusion of
this boundary will have some-far reaching consequences regarding certain types of integral.
To illustrate this, we present the following counterexample to Stoke’s theorem.

Lemma 4.3.9. Let M be a binary adjunction such that M, and the M; are compact, without
boundary. Then

/ dw = — 0 w. (4.42)
M

Proof. Using Theorem 4.3.7 together with Stoke’s Theorem for Hausdorff manifolds, we
have:

/de:/Ml 0; dw—l—/qubzdw—/Mlz(plzdw (4.43)
:/ d¢fw+/ d¢2"w—/d¢f2w (4.44)
—/ (])lw—l—/ Pyw— Prrw (4.45)
M2
oMy
as required. [

In the Hausdorff setting, this particular integral will vanish. However, we see here that
in the non-Hausdorff integral the internal Hausdorff-violating submanifold still has an influ-
ence. As a consequence of the above, we see that exact differential forms may not integrate
to zero on a closed non-Hausdorff manifold.

4.4 De Rham Cohomology via Mayer-Vietoris Sequences

In this section we will describe the de Rham cohomology of a non-Hausdorff manifold M
satisfying the conditions of Remark 4.2.7. According to Theorem 4.2.4, the (images of) the
Hausdorff manifolds M; sit inside M as open sets. Moreover, we saw in Section 4.3 that
the space of differential forms Q*(M) and its exterior derivative d can be described in terms
of the same data defined on each M;. With this in mind, we will now set about deriving
Mayer-Vietoris sequences for the de Rham cohomology of M, computed according to the
open cover {M;}.

4.4.1 A Binary Mayer-Vietoris Sequence

We will derive our Mayer-Vietoris sequences inductively. So, throughout this section we
fix a non-Hausdorff manifold M which is constructed from a pair of Hausdorff spaces M,
and M, according to Remark 4.2.7. According to our discussion in the previous section,
the differential forms on M display a fibred product structure. In a similar manner to our
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description of the smooth functions C*(M) in Section 4.2.2, this can be arranged into the
following sequence.

0 —— QIM) —2 QI(M,) @ QM) B QM) —— 0 (4.47)

Ideally we would like these sequences to be exact, since then we could apply the Snake
Lemma to form a long exact sequence on cohomology. Although the fibre product structure
of each Q7(M) guarantees that the above sequences are exact in the first term, without the
existence of a partition of unity subordinate to {M;,M,}, there is no guarantee that the dif-
ference map 1, — f}, is surjective. As such, the above sequences will not be short exact in
general. To resolve this issue, we will instead exchange Q4(M,) for a subalgebra. Before
doing so, we first make the following observation.

Lemma 4.4.1. Let My, be the closure of M1> in My. Then there is an equality
Q" (M1) X gk 1,y - (M2) = QM) X g 375 @ (Ma). (4.48)

Proof. The inclusion from right-to-left is clear — any pair of forms that agree on M, will
also agree on M1,. For the converse, suppose that @; are a pair of g-forms on M; such that
15,01 = fi,@ on M. By our assumption, it suffices to show that @;(x) = @ (fi2(x))
for all elements x on the boundary of Mj,. So, consider a point x in dMj;. By Theorem
4.2.4, the points [x,1] and [f;;(x),2] violate the Hausdorff property in M. According to
Lemma 4.2.13, the global form w constructed from @; and w, can be used to describe the
Hausdorff-violating points of the g-form bundle over M. In our situation, this means that
w([x,1]) and w([f12(x),2]) violate the Hausdorff property in the g-form bundle over M.
Again by Theorem 4.2.4, this means that ®; = E*a)z, that is,

1o (x) = @1 o 1i2(x) = 01 () = @ (fia(x)) = fi2” @2 (x), (4.49)
as required. U

By restricting our attention to the differential forms on M, that are finite on its boundary,
we allow ourselves to extend any differential form @ in Q9(M;,) by zero into either M; or
M. This ensures that both the pullback maps t* and f* are surjective, and consequently so
is the difference of the two. By Lemma 4.4.1 we obtain our desired short exact sequence,

(f12)"

0 —— QM) —2 OF(My) @ Q (M) 2 Ok (Myy) —— 0 (4.50)

and thus we may form the following long exact sequence for de Rham cohomology.

' 1~ (Fi2)*
s HL. M) —— HI(M))  HI(Ms) 2

Hi (M)
—] 4.51)

g g o o gy
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In general we may not proceed any further than this. However, we observe that if M is built in
such a way that the gluing region M, is regular-open, then we may derive a Mayer-Vietoris
sequence that is perhaps more familiar. Recall that a (sub)manifold with boundary is homo-
topically equivalent to its interior (cf. [65, Thm 9.26]). Moreover, for a regular open set, it
is always the case that the interior of its closure equals itself. Combining these two facts,
we see that requiring M1, to be regular-open amounts to requiring that M, is homotopically
equivalent to its closure M1>. Since de Rham is homotopy invariant for Hausdorff manifolds,
our extra requirement ensures that H i, (M2) and H9(M5) are isomorphic. This means that
we can replace terms in the above sequence to obtain the following.
s H(M) —2 s H(My) @ H(My) 22 1 (M)
—] (4.52)

* 1 1 U /7,
L HEM) 2 B () o HI (Mn) 28 HIT (M) —— -

4.4.2 The Cech-de Rham Bicomplex

Suppose now that M is covered by finitely-many M;. In this case, we will proceed with an
argument similar to that of [13, 23, 85] to construct a bicomplex which will describe the de
Rham cohomology of M.

Before getting to the desired result, we first need to comment on some additional assump-
tions required in the proceeding arguments. In what follows, we will supplement each higher
intersection M;,...;, with its Hausdorff boundary, and compute the Mayer-Vietoris long exact
sequence according to these sets. However, our derivation will not hold in the case that the
closed submanifolds M, ..;, carry additional cohomological information that is not already
present in their interiors. In order to avoid such situations, we will assume that the higher
intersections satisfy the closure property:

m
M, = (1, (4.53)

for all m in I. Of course, this property does not hold for arbitrary closed sets. However, it
removes the possibility of sets M;; intersecting only on the codimension-1 boundary compo-
nents.

With these extra assumptions in mind, we will now derive a Mayer-Vietoris long exact
sequence for M. In doing so, we will need to use the Cech differential §, the details of which
can be found in [13, §8]. In our context, the map & generalises the difference maps l;;. — ;;.
as follows:

)4
6wi1~~-ip+1 = Z (_1)aliﬂ;...iamipwil'”i&”'ip’ 4.54)
a=1

where here the map 1;, gy - M; — M;, gy is the inclusion map, and the caret denotes

1+eip
the omission of that particular index. Note that by virtue of its combinatorics, the Cech

differential always squares to zero (cf [13, Prop. 8.3]).
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Theorem 4.4.2. Let M be a colimit of n-many manifolds M; in accordance with 4.2.7. In ad-
dition, suppose that each M;; is regular-open in M; and that the closure-intersection property
M., = My Z\T,p holds for all m < n. Then the sequence

0— QI(M) 25 D IM) > Pt (M) 25 - 25 Q1 (M1,) -0 (4.55)

i<j
is exact for all g in N.

Proof. We will argue this by induction on the size of the indexing set /. Observe first that the
binary case is already satisfied via the discussion in Section 4.4.1. For readability we will
illustrate the inductive argument for / = 3, since the general case is identical. According to
our assumptions on the topology of M, we may view M as an inductive colimit in which we
glue M3 to the union M; UM, along the subspace M3 UM;3. We denote by k the inclusion
of the adjuction My Uy, M, into M. Note that according to Section 1.1.1 of [85], k¥ is an
open topological embedding. Diagrammatically, the differential forms on all the spaces in
involved may be arranged as follows.

0 — s ker(k") — s 0a(my) L 00 (35) @ Q4 (W) -2 QI(Mizs) — 0

0 —— QIM) —T— @,Q1(M) —— @ (M) —— QM) — 0 (4.56)
0 — QI(MUMy) — QI(M) ©QI(My) —— QI(M12) 0 0
0 0 0 0

In the above diagram, the objects in the first row are kernels of the vertical maps, and the
horizontal maps are defined so as the make the diagram commute. Observe that the third row
is an exact sequence. Thus, in order to argue for the exactness of the central row, it suffices
to argue that the first row is exact. In principle we may argue for this directly. However, in
order to illustrate the inductive nature of this argument, we will instead decompose the first
row into the sequences:

0 — ker(k*) —2s QI(M3) — s QI(M13 UMa3) — 0 4.57)
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0 — Q4 (M3 UMas) — Q4 (M13) © Q4 (M3) — Q4 (WMi3) — 0 (4.58)

where here this splicing is formed by evaluating the kernel of the 6 map. Regarding the
former sequence, we will argue for exactness directly. Observe first that the map ¢ is mani-
festly injective, since any pair of distinct forms lying in ker x* will differ somewhere on Mj3.
Moreover, any form that lies in the image of the map ¢ is the restriction of a global form on
M that vanishes on M| UM,. Since M3 UM,3 is a subset of M| U M,, the restriction of such
forms will also vanish. This ensures that /m(¢;) C ker (—1*). For the converse, suppose that
® is some form on M3 that maps to zero under t*. This means that @ vanishes on M| and
M. As such, the collection (0,0, ®) will induce a global form 7 on M such that ¢;n = @
and 1) € ker (—1*). Finally, since the set M3 UMy is closed, an extension by zero into M3
will ensure the surjectivity of the restriction map —1*.

In general, the latter sequence may not be exact. However, our assumptions on the inter-
sections ensures that M3 = M3 M Mp3, which turns this sequence into a Hausdorff Mayer-
Vietoris sequence for closed subsets. Exactness of this sequence then follows by an argument
analogous to that of Lemma 3.8.3 in the Appendix.* Since the two aforementioned sequences
are exact, and they splice to form the first row of the diagram, we may conclude that the first
row of the diagram is exact, from which the result follows. O]

According to the previous result, we may organise the de Rham cohomology for M in
terms of the bicomplex detailed in Figure 4.3. This bicomplex relates the de Rham coho-
mology to the Cech cohomology of M computed from the open cover {M;}. According
to Theorem 4.4.2 the rows of this bicomplex are exact, so we may use standard arguments
(found in e.g. [13, §8]) to conclude that the cohomology of this bicomplex coincides with
the de Rham cohomology for M.

It is important to note that at this stage we have made no assumptions on the cohomology
of each M;. In particular, we did not assume that each M; (and their interesections) are
contractible. This means that generally speaking, there is no guarantee that the columns of
this bicomplex are exact, and thus we cannot prove a Cech-de Rham equivalence as in the
Hausdorff case.

4.5 A non-Hausdorff de Rham Theorem

De Rham’s theorem is a fundamental result that states an equivalence between de Rham co-
homology and singular homology with real coefficients. In this section we will extend the
result to non-Hausdorff manifolds, essentially by an appeal to the Mayer-Vietoris sequences
of Section 4.4.

Throughout this section we will follow [65, Chpt. 18], and denote singular n-simplices
by o : A; = M. We denote the space of singular g-chains by C,(M), where here we view
these as infinite-dimensional vector spaces over R. An arbitrary singular g-chain is then a

“In the general inductive step, this sequence will expand into a longer sequence of the form of that found in
Appendix 3.8.2, and exactness will instead follow from that result.
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0—03 (M)—— @93 (M;) —— @.Qs (I\T,]) — 6 kQ3 (Mijk) —
i i<j i<j<

0——Q2(M)—— B (M;) —— @ (Myj) ——D QL (Myj)— -

i<j i<j<k

<

0—Q! (M)—— D! (M) —— B Q' (M) —B Q'(Mijx)— ---

i<j i<j<k

0— QOM)—— @M, —— B (M) ——D (M) —s -

i<j i<j<k

COM, {M:)) — CHM, {M;}) — C2(M,{M:}) — -~

Figure 4.3: The Cech-de Rham Bicomplex for M.

formal linear combination of continuous maps from A, to M. We will denote the boundary
operator for simplices by d, defined as per usual.

Ordinarily, the Hausdorff de Rham theorem is proved by defining an “integration over
chains", which relates differential forms to singular chains. However, there is a subtely
here: in order to integrate over chains, differential forms need to be pulled back to A, along
smooth maps. As such, integration over chains actually induces a pairing between de Rham
cohomology and the “smooth singular homology", which a priori may differ from singular
homology. This issue may be resolved by arguing that smooth singular homology is equiva-
lent to singular homology via some homotopic approximation of continuous maps by smooth
ones. In this section we will follow a similar approach, with some key modifications.

4.5.1 Smooth Singular Homology

We start our derivation of de Rham’s theorem with a confirmation that smooth singular ho-
mology coincides with singular homology in the non-Hausdorff regime. In this context,
“smooth" means that any simplex o : A, — M has a smooth extension in some neighbour-
hood of each point in A,;. By standard arguments it can be shown that the boundary of a
smooth chain is again smooth, and thus the space C;’(M) of smooth g-chains forms a sub-
complex of C,(M), with the inclusion i : C7°(M) — C;(M) being a chain map.

For Hausdorff manifolds, the equivalence between the smooth and singular homologies
is typically argued by appealing to Whitney’s Embedding theorem, a consequence of which
is that any continuous map between manifolds is homotopic to a smooth one. This general
observation can be used to construct a homotopy equivalence between C,(M) and C7’(M)
(cf. [65, Thm 18.7]). Since Hausdorffness is a hereditary property, there are no circum-
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stances under which a non-Hausdorff manifold may be embedded into Euclidean space, of
any dimension. Moreover, it is unclear whether all continuous maps between non-Hausdorff
manifolds can be approximated by smooth maps. Instead of addressing the problem head-on,
we will instead prove the equivalence between H (M) and H,(M) by alternate means.

Since the standard Hausdorff argument is not available to us, instead we will derive a
Mayer-Vietoris sequence for smooth singular homology from first principles. For a binary
adjunction, this would amount to a proof of the exactness of the sequence

(01)+(2)+

MC;(MO@C;(MZ) ————C;(M) =0 (4.59)

0— C;(Mlz)

where the maps involved are analogues of the pushforwards found in [65]. As a matter of
fact, the above sequence is trivially exact if we replace the last non-zero term with the space
C; (M + M), which is the space of smooth singular chains in M that take image in either
M or M,. This is a subspace of Cf;(M), and thus there is an inclusion 1 : C;;’(Ml + M) —
C;(M). In the singular case, there is a well-known construction which guarantees that the
inclusion t is a homotopy equivalence [SO][Prop. 2.21]. As noted in [35, Pg. 135], the same
argument will hold for smooth singular chains as well. With an eye towards Theorem 4.5.2,
we will state the result in slightly more general language.

Lemma 4.5.1. Let % = {Uy,U,} be an open cover of M, and denote by C;(U; + Uy) the
space of smooth singular chains ¢ =Y, co,Oq Such that each 64 has image contained entirely
in either Uy or Uy. Then the inclusion v : C7(Uy +Up) — C7° (M) is a homotopy equivalence.

We may apply the Snake Lemma to the short exact sequences

0 — €3 (My M) 2T o g 0 () B ey ) - 0

(4.60)
and then use Lemma 4.5.1 to replace each H; (M} +M,) with H;’(M) in the resulting Mayer-
Vietoris sequence. We will now use this observation to prove an equivalence between the
groups H;’(M) and H,(M).

Theorem 4.5.2. Let M be a non-Hausdorff manifold satisfying the properties of Remark
4.2.7. Then the smooth singular homology group H; (M) is isomorphic to the singular ho-
mology group H? (M) for all p in N.

Proof. We proceed by induction on the size of the indexing set I defining M. Suppose first
that M is a binary colimit. By the discussion preceeding this theorem, there is a Mayer-
Vietoris long exact sequence for smooth singular homology. The standard derivation of the
Mayer-Vietoris sequence for singular homology (cf. [50, §2.2]) also holds in this setting.
The inclusions i : C7°(-) — C,(-) are all homomorphisms that commute with the relevant
boundary maps, as depicted below.
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0 — C7(M12) — CZ (M) BCy(M2) — C7(My+My) — 0

(4.61)

00— Cq(Mlz) — Cq(Ml)@Cq(Mz) — Cq(M1+M2) — 0

As such, we may use the naturality of the Snake Lemma to construct the following commu-
tative diagram.

e — H;(Mlz) — H;(Ml)@H;(Mz) — H;(Ml +M2) — Hq‘x;l(Mlz) — H;il(Ml)@H;il(Mz) —_—

< —— Hy(My2) —— Hy(My) ®Hy(Mp) —— Hy(M\+M>) —— Hy_1(M12) —— Hy_{ (M) ®Hy—1(Mp) — ---
(4.62)

Theorem 18.7 of [65] ensures that the inclusion maps between Hausdorff components
of this diagram are isomorphisms. Since the diagram commutes, we may apply the Five
Lemma to conclude that the central i.-map depicted above is also an isomorphism. By
applying Lemma 4.5.1 and the analogue for singular chains, it follows that

H(M) = HY (M) +M,) = Hy(M; + M) = Hy(M), (4.63)

as required.

For the inductive case, suppose that smooth singular homology coincides with singular
homology for all non-Hausdorff manifolds of size n. Suppose now that we have a non-
Hausdorff manifold built as a colimit of (n+ 1)-many Hausdorff manifolds M;. We may use
the inductive representation of M and rewrite it as a binary adjunction space M = NUfr M, 1,
where N is the colimit of the first n-many spaces in M, and N is glued to M, along the
subspace A := U;j<, Mj(,4.1)- Since the subsets N and M),;; form an open cover of M, we
may apply the result of Lemma 4.5.1 to conclude that

((ta),—F) (@) +(2)+

0—C7(A) C,(N)BCF (My11) ———— C(N+Mpi1) 0 (4.64)
is a short exact sequence, where here the maps ¢; are the canonical embeddings of N and
M, 1 into M. The inclusions i into singular cochains will still commute with boundary
maps, and thus the descended map i, will still be a chain map for the homologies. Since
A and M, are Hausdorff manifolds, the i, map on their cochains will be isomorphisms
by [65]. Moreover, the inductive hypothesis tells us that the map i, : H'(N) — H,(N) is
an isomorphism for all g. As such, we may again apply the Five Lemma to conclude that
Hy (N+Mp1) = Hy(N+M,1). The result then follows as an application of Lemma 4.5.1.

[
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4.5.2 Integration Over Chains

With Theorem 4.5.2 in mind, we will now restrict our attention to the smooth singular ho-
mology of M. As with the Hausdorff case, we may define a notion of integration over chains,
defined by pulling back differential forms on M to the simplex A,, and then evaluating the
integral there. Given a smooth singular chain ¢ = Y7/ cq0q and a differential form w on
M, we define the integral of w over c as:

I (w,c) = Z ca/ o w. (4.65)
a=1 Aq

In Section 4.3, we saw that Stoke’s theorem will generally not hold when integrating
forms on M. However, integration over chains circumvents this issue by evaluating the in-
tegral over the simplex A,, interpreted as a submanifold of RY. In particular, the Hausdorff
version of Stoke’s theorem applies (cf [65][Thm. 18.12]), and we may conclude the follow-
ing.

Lemma 4.5.3. If ¢ is a smooth singular q-chain and w is a (p — 1)-form on M, then

/ do= [ w. (4.66)

As with the Hausdorff case, it can be shown that the map .# descends to cohomology.
We will hereafter interpret integration as a map

7 : H?(M) — HZ(M;R), (4.67)

where the image is the smooth singular cohomology, interpreted as the canonical dual space
of Hy(M).

4.5.3 The de Rham Theorem

We will now combine the results of Section 4.4 with our discussion of smooth singular
homology to construct a non-Hausdorff version of de Rham’s theorem. The full argument is
detailed below.

Theorem 4.5.4. Suppose that M is a non-Hausdorff manifold satisfying the criteria of 4.2.7
and Theorem 4.4.2, and suppose furthermore that all unions of the sets M;; are regular-open
sets. Then the integral map % : H)o(M) — HZ(M;R) is an isomorphism.

Proof. Our argument will be similar in structure to that of Theorem 4.5.2, that is, we will
proceed by induction on the size of the indexing set /. Suppose first that M is a colimit of
two Hausdorff manifolds M| and M;. According to our discussion in Section 4.4, we may
construct a Mayer-Vietoris sequence for the de Rham cohomology of M by using the coho-
mologies of the M;, and the region M,. Following [65][§18.4], we note that the descended
integration maps .# commute with smooth maps and the connecting homomorphisms of de
Rham and smooth singular cohomologies. As such, we have the following commutative
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diagram.

s HE (M) @ HY (M) ——— HIZ (M) HI.(M) HI (M) @ Hip(My) —— Hio(Miy) — -+

- — HU' M R) 0 HE ' (Mo;R) — HL '(M12;R) — HL(M;R) — HL(M:R) @ HA(My;R) — HL(Mp:R) —> ---
(4.68)
We may then apply the Hausdorff version of de Rham’s theorem to all of the Hausdorff
columns of this commutative diagram. It then follows from the Five Lemma that the map
S :Hip(M) — HL(M;R) is an isomorphism.

Suppose now that the map .# is an isomorphism for all non-Hausdorff manifolds con-
structed as a colimit of n-many Hausdorff manifolds M;. Let M be a non-Hausdorff manifold
with indexing set of size (n+ 1). Similarly to Theorem 4.5.2, we will consider the inductive
colimit M = NUF M, 1. As with the binary case, we again have a Mayer-Vietoris sequence
for the de Rham and smooth singular cohomologies of M, this time using the open cover
{N,Mn+1}.5 Again by Theorem 18.12 of [65], the descended integral map .# commutes
with pullbacks and connecting homomorphisms, so we may proceed as in the binary case
and interpret .# as a chain map between the two Mayer-Vietoris sequences. The result then
follows from an application of the induction hypothesis applied to N and A, together with
the Five Lemma. O

Using the above argument, together with Theorem 4.5.2, we obtain the non-Hausdorff de
Rham’s theorem as an immediate corollary.

The Line with Two Origins

In the de Rham theorem of 4.5.4 we assumed that our non-Hausdorff manifolds were formed
according to the assumptions of 4.4.2. We will now illustrate the necessity of these assump-
tions with an example. Consider the line with two origins, constructed from two copies of R
glued along the open subset (—0,0) U (0, ) as in Figure 4.1. Observe that the open set M
is not regular open in R. In particular, this means that a Mayer-Vietoris sequence for the de
Rham cohomology will take the form

0+R—-ROER R = HR(M)—0-0 (4.69)

where here in the third term we have used that M, = R. Exactness of this sequence ensures
that the H},(M) = 0.

On the other hand, we may compute the singular homology for this space by alternate
means. By inspection it should be clear that the first singular homology of M should carry
some extra term, since Hf (M) is the abelianization of the first fundamental group of M, and
here there are non-contractible loops that wrap around the two copies of the origin. Alterna-
tively, we may use a Mayer-Vietoris sequence for singular homology and then dualize it to

STechnically, the Mayer-Vietoris sequence that we will obtain will have terms of the form H9(A), however,

due to our assumption that A is regular-open, we may replace such terms with H4(A).
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express the group H. 51 (M,R). We do not need to use the boundary of M), in this sequence, so
the simplicial cohomology of M may be described with the following long exact sequence

0>R—-RAR->ROR — H{(M,R) -0 —0 (4.70)

where we observe an extra copy of R in the third term, due to the two connected components
of M1>. By exactness, it follows that HS1 (M,R) = R, which differs from the associated de
Rham cohomology.

Interestingly, the line with two origins may also serve as a counterexample for the homo-
topy invariance of non-Hausdorff de Rham cohomology. Indeed, we may consider a mani-
fold N in which the two copies of the real line are glued along the sets B = (—oo, —1)U(1, ).
This will yield a non-Hausdorff manifold that is homotopy equivalent to M, yet is constructed
by gluing along regular open sets. As such, the manifold N falls under the scope of the non-
Hausdorff de Rham theorem, from which we may deduce that H!,(N) =R # 0 = H},(M).

4.6 The Gauss-Bonnet Theorem

For a compact Hausdorff surface ¥ with boundary, the Gauss-Bonnet theorem relates the
total scalar curvature to the Euler characteristic via the equality

21y (%) = % / RdA+ / Kkdy, (4.71)
) ox

where here the latter term computes the geodesic curvature of the boundary of X. In this
section we will prove a non-Hausdorff version of this statement. In order to emphasise that
we are working with surfaces, throughout this section we will denote our non-Hausdorff
manifold by 3, with its Hausdorff submanifolds denoted similarly. We will see that in a
manner similar to that of Theorem 4.5.3, even if the manifold 3 has no boundary, the total
curvature of 3 will take additional contributions from the internal Hausdorff-violating sub-
manifolds. In order to properly understand this theorem, we will start with a brief discussion
of curvature in non-Hausdorff manifolds.

4.6.1 Scalar Curvature for non-Hausdorff Manifolds

According to Theorem 4.2.12 the sections of the tensor bundle 7(20'% are a fibre product

of the spaces F(T(Z’O)Z,-). As such, we may describe a Riemmanian metric on X using a
collection of metrics g; defined on each X;, such that the isometry condition g; = fj} ogj
holds on X;; for all i, j in 1. Explicitly, we have the following result, paraphrased from [85].

Lemma 4.6.1. Let 32 be a non-Hausdorff manifolds built according to 4.2.7. If each ¥; is
equipped with a Riemannian metric g; such that f;; : X;j — M is an isometric embedding,
then 3 admits a Riemannian metric g such that the canonical maps ¢; : ¥; — X are open
isometric embeddings.

In coordinate-free notation, a connection on Y may be defined as an operator

VX)X X(D) = X(2), (X,Y) - VxY (4.72)
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that is C*(X)-linear in the first argument, and satisfies the Liebniz property
Vx(rY) =rVx(Y)+X(r)Y (4.73)

in the second argument. Given a metric g on X, we may define the Levi-Civita connection
as:
V(X Y)([x,]) := V'(X;,Yi) (x), (4.74)

where V' is the Levi-Civita connection for each (X;,g;). Note that the isometries f;; together
with the uniqueness of Hausdorff Levi-Civita connections ensure that the above definition is
well-defined and unique. The following result summarises some relevant properties of V.

Lemma 4.6.2. Let V be the connection defined above. Then
1. V is a local operator
2. V is compatible with the metric g
3. V is torsion-free.

Proof. Semi-locality of V is established by construction, and locality follows from an argu-
ment similar to the exterior derivative (cf Theorem 4.3.3). For readability we will illustrate
the latter two properties for the case that I = 2, since the general case simply requires more
indices. For compatibility with the metric, we have

X(g(Y,Z)) = (X1(g1(11,21)), X2(82(V2,22))) (4.75)
= (&1(Vx, 11, Z1) + 811, V%, Z1),82(Vi, Y2, Z0) + 82(Y2, V%, Z2))  (4.76)
= (51(Vx,Y1.21),82(V3,Y2.22)) + (81 (Y1, Vx, Z1),82(Y2, V3, 22))  (4.77)
=g(VxY,Z)+g(Y,VxZ), 4.78)

where in the second line we have used the metric compatibility of the Hausdorff Levi-Civita
connections. To see that V is torsion-free, we may use the expression for the Lie bracket

[XaY] = ([X17Y1]7 [X27Y2]) 4.79)

derived in Section 4.3.1. We may then use the Hausdorff Levi-Civita connections to deduce
that

VxY — VyX = (Vg Y| — Vi X1, Vi, Y2 — V5, Xo) (4.80)

= ([X1,11],[X2,12)) (4.81)

=[X,Y], (4.82)

as required. [

Now that we have established a Levi-Civita connection for Y, we may define the Rie-
mann curvature tensor as in the Hausdorff case. Given the expressions for V and the Lie
derivative on 3., we see that the Riemann curvature tensor for 32 will again be a fibred prod-
uct of the same tensors defined on each ¥;. Again, this will be a local operator since both V
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and the Lie derivative are. Since the maps f;; are isometries and the connection V is local,
we may compute the Ricci tensor, and consequently the Ricci scalar R on ¥ will be locally
equivalent to the same value computed within each Hausdorff manifold ;.

By a similar line of reasoning, the volume form of 3 can be described according to
Lemma 4.3.4. We may thus write the total scalar curvature of X as

/ RdA = / R\/det (g)d*x. (4.83)
3 3

Using Theorem 4.3.8, we may always decompose this integral into a sub-additive collection
of scalar curvatures defined on each X; and their various intersections.

4.6.2 The Euler Characteristic

Before getting to a proof of the Gauss-Bonnet theorem, we will first describe the Euler char-
acteristic of the manifold 3. Since simplicial homology is not available for non-Hausdorff
manifolds, we will instead define the Euler characteristic as

d

X(Z) =Y (—1)7 by(%), (4.84)
q=0

where we define these Betti numbers via singular homology groups. According to this defi-
nition, the Euler characteristic will satisfy the following sub-additive property.

Theorem 4.6.3. The Euler characteristic of 3 equals

x(2)=Y Y D" ) (4.85)

pelil,...,i,,el

Proof. We argue by induction on the size of the indexing set /. Suppose first that / = 2, that
is, that 32 is a binary colimit. According to the results of Section 4.5.1, we may construct a
long exact sequence that relates the spaces H4(X) to the cohomologies of X, X5 and X)5.
Since this sequence is a long exact sequence of vector spaces, the alternating sum of the
dimensions of the entries always equals zero. Spelling this out, we have:

0= Y (—1)7(by() = by(1) — by(Z2) +b4(12)) (4.86)
q
= Y (= 1)%bg(8) = Y (= 1) (bg(Z1) + by (22)) + L (= 1)y (E12) (4.87)
q q q
=x(2)—x(Z1) —2(Z2) + x(Z12) (4.88)

from which the equality follows.

Suppose now that the hypothesis holds for all colimits of size I = n, and let 3 have
indexing set size n+ 1. As with the proofs of Section 4.5, we may view X as an inductive
colimit X Ufr X, 1. The cohomologies of these spaces can be arranged into the following



De Rham Cohomology for non-Hausdorff Manifolds 92

Mayer-Vietoris sequence

s 1(S) — T HIS) @ HIE ) — s 1) )

(4.89)

* - *_
:—-> H‘]*l(E) L Hqil(E)@Hqil(Zn+l) _IA_> qul(A) .

where here A is the union of the subspaces X;,;1. Since this a long exact sequence of vector
spaces, we may again use that the alternating sum of dimensions vanish to deduce that:

0= Y (1) (bg(2) ~ by(5) ~ by(Eni1) + by (A)]) (4.90)
q
=Y (1) () =Y (= 1)7(by(2) +bg(Zut1)) + Y (—1)7b4(A) (4.91)
q q q
=x(2) = x(2) = x(Zug1) + X (A). (4.92)

We may then apply the inductive hypothesis to both ¥ and A = | J; £;,  to yield the following

X(E)=x(E)+x(Zps1) — 2(A) (4.93)
(Z Y D z-k)) + 2 (Zt1) (4.94)

k<niy,...ix€l
(Z Y (-0 zl,..,ik,nm) (4.95)

k<nit,...,ix€l

=Y Y 0", (4.96)

k<n+1iy,...,iy€I
as required. [

4.6.3 Proof of the Theorem

We will prove the Gauss-Bonnet theorem in a similar manner to the non-Hausdorff Stoke’s
theorem of Section 4.3. We start with the binary version of the theorem.

Lemma 4.6.4. Suppose that 3. is a non-Hausdorff manifold that can be constructed as a
binary colimit of Hausdorff manifolds ¥, and X, according to 4.2.7 and 4.4.2. If £| and X,
are compact and without boundary, then:

2y (X / RdA — / 4.97)
IZip

Proof. According to our discussion of curvature in Section 4.6.1, we may decompose the
total scalar curvature of 3. into the scalar curvatures of the ¥; by using Theorem 4.3.7. Us-
ing the Hausdorff Gauss-Bonnet theorem where possible, we have the following string of
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equivalences:
21y (3) =21 (x(Z1) + x (%) — ¥ (Z12)) (4.98)
1 1 1
—~ [ RiA+~ [ RdA—- /RdA [ kay (4.99)
2 b 2 py) X2 D)
— / RdA — / kdy, (4.100)
> 3212
where here we have used the fact that X is a manifold with boundary. 0

By an inductive argument, we may obtain the following general version of the Gauss-
Bonnet theorem for non-Hausdorff manifolds. Again for simplicity we restrict our attention
to a colimit in which the ¥; have no boundary.

Theorem 4.6.5. Suppose that 3 is a non-Hausdorff manifold that can be constructed as a
colimit of n-many Hausdorff manifolds ¥; according to Remark 4.2.7. If each ¥; is compact
and without boundary, and each ¥;; and their unions are regular-open sets, then

27:;5(2):1/ RiA+Y (-)P* ¥ / kdy | . (4.101)
2 > p=2 i1, ip€l 8M,-1...,-p

Proof. Using Theorems 4.6.3 and 4.3.8, together with the assumption that each X;; is regular
open, we have that:

n
27?%(2)22%(2(—1)”+1 Y x(Zil,...,,-,,)> (4.102)
p=1 lll,....‘l.pel
n
=Y (-0t Y 2wy (i) (4.103)
p=1 i1 yeenip€l
=Y (-t Yy <1/ RdA+/ Kdy> (4.104)
p=1 i1,emip€l 2 Lifip ILiy . ip
=Y (-t Y (1/ RdA>+Z(—1)P+1 Y (/ miy)
p=1 ilyomdpEl 25 5, p=2 ityip€l \7 iy ip
(4.105)
1 / n 1
=— [ RdA+ Y (—1)"* / kdy |, (4.106)
2)x Ez i,,Z,"EI ITiy i
as required. [

4.7 Conclusion

The goal of this chapter was to describe some basic features of de Rham cohomology for
non-Hausdorff manifolds. Using the colimit description of M already available to us, we
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constructed vector fields, differential forms and their integrals in Section 4.3. Naturally, we
related these to the various Hausdorff formulas for the submanifolds M;. Of central interest
at this stage was the subadditivity of integration, which required a compactification of the
pairwise intersections M; ;. In turn, this caused Stoke’s theorem to fail in a controlled manner.

De Rham cohomology itself was described in Section 4.4. Through an assumption of
regular-open sets satisfying certain intersection properties, we saw that the de Rham coho-
mology for our non-Hausdorff manifold M can be related to the cohomologies of the M;
using Mayer-Vietoris sequences. In the binary case, a long exact sequence emerged, and the
more-general colimit birthed a Cech-de Rham bicomplex whose cohomology coincided with
de Rham by standard means.

When discussing singular homology in Section 4.5, we saw that we could derive an
equivalence with the smooth theory without appealing to Whitney’s embedding theorem.
Instead, the equivalence followed from some derivations of Mayer-Vietoris sequence for
smooth singular homology, arising from first principles. We then proved de Rham’s theorem
by a similar approach, this time by appealing to the standard pairing via integration over
chains.

Finally, we combined the results of Sections 2,3 and 4 into a proof of a non-Hausdorff
Gauss Bonnet theorem. After a brief discussion of curvature in 2-manifolds, we derived a
convenient subadditivity property of the Euler Characteristic. In combination with Theorem
4.3.8, we then proved the desired Gauss-Bonnet theorem. Importantly, the compactifications
of the sets M;; within our definition of integration forced us to invoke the Gauss-Bonnet the-
orem for manifolds with boundary. In this context, these boundaries were “internal”, in the
sense that they were characterised by the Hausdorff-violating submanifolds sitting inside M.
As a final result, we proved this in further generality.

Finally, we finish the chapter with a few comments regarding further work. As the astute
reader may notice, throughout this chapter we discuss neither compactly-supported forms
nor their de Rham cohomology. There is at least some discussion of these topics within the
literature, however it appears that their notion of smooth function differs from that used in
this chapter. Nonetheless, it will be interesting to compute the Poincaré Duality of our non-
Haudorff manifolds, and compare it to that found in [23] and [60]. As well as this, it will
be interesting to see whether a Cech-de Rham isomorphism can be approached in a similar
manner to that of Theorem 4.5.4. According to [85], there is a Mayer-Vietoris sequence
that relates the Cech cohomology of M to the cohomologies of M; and M,. Although an
explicit Cech-de Rham isomorphism cannot be constructed on M due to the non-existence
of good open covers, it nonetheless seems reasonable to construct homomorphisms between
the Hausdorff spaces in both bicomplexes, and then to establish an equivalence via arguments
involving the associated spectral sequences. This idea can be captured within the following.

Conjecture 4.7.1. Let M be a non-Hausdorff manifold constructed according to 4.2.7 and
4.4.2. Suppose furthermore that each gluing region M;; is regular-open. Then

HY(M,R) > H?.(M) = H{(M,R) (4.107)
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forall g in N.

Summary of Chapter

Throughout Chapter 3 we saw that non-Hausdorff manifolds may admit smooth structures,
and their vector bundles may be described as colimits of Hausdorff ones. Those results
suggest that non-Hausdorff manifolds have lots of the mathematical structure required for
physical analyses. In this chapter, we refined this observation by studying differential forms
and their integral properties. Importantly, we derived descriptions of non-Hausdorff differ-
ential forms, and derived expressions for their integration. Our derivations took particular
care, as standard Hausdorff versions of these descriptions employ partitions of unity through-
out. Nonetheless, we confirmed the existence of a well-defined integral without appealing to
arbitrarily-existent partitions of unity.

As a mathematical curiosity, we then used our description of differential forms to derive
a non-Hausdorff de Rham cohomology. This cohomology was then related to the associated
cohomologies of the Hausdorff submanifolds via a certain type of Mayer-Vietoris sequence.
We also proved a non-Hausdorff version of de Rham’s theorem, this time proving an equiv-
alence with smooth singular homology. Finally, we derived some curvature expressions and
proved a non-Hausdorff version of the Gauss-Bonnet theorem in Euclidean signature. In-
terestingly, due to the previously-derived integral properties, we saw that the non-Hausdorff
Gauss-Bonnet theorem requires and additional term that computes the geodesic curvatures
of the extra Hausdorff-violating submanifolds sitting inside the overall non-Hausdorff space.

Throughout chapters 2,3 and 4 we have confirmed the geometric expressivity of non-
Hausdorff manifolds, and have confirmed their potential consideration within physics.



Chapter 5

Non-Hausdorff Spacetimes within a Path
Integral for 2d Gravity

This chapter is published under the name Topology Change from Pointlike Sources, Physical
Review D, 110(6):064026, 2024 [80]. It was written in collaboration with my supervisor
Prof. Yasha Neiman.

Throughout the our work thusfar, we have investigated the topological and geometric
properties of non-Hausdorff manifolds. In this chapter we will use this understanding to
properly phrase Penrose’s idea of topology-changing spacetimes. Our focus will be on the
two-dimensional setting, and we will recreate the analysis of [67] for the Trousers space.

In order to evaluate a non-Hausdorff gravitational action in two dimensions, we first
modify the Gauss-Bonnet theorem of Section 5.6 to the Lorentzian case. As with the Rie-
mannian version, this theorem is proved by collating the Hausdorff version of the theorem
together in a particular way. We will do this, and along the way will review and make minor
improvements to the Hausdorff Gauss-Bonnet theorem in Lorentzian signature.

Due to our construction, the gravitational action for non-Hausdorff transitions will take
extra contributions coming from the Hausdorff-violating points. These contributions will
amount to computing turning angles between adjacent nullrays. A sign convention is needed
to determine the imaginary part of the angle, and the choice of sign will determine whether a
transition is suppressed or enhanced in the exponent of the path integral. With this in mind,
we successfully derive the sign convention that will entail suppression of the non-Hausdorff
transitions, in a manner similar to that of the Trousers space.

96
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5.1 Introduction

In this chapter we will concern ourselves with topology changing spacetimes and their tran-
sition amplitudes within a path integral for gravity. We consider perhaps the simplest non-
trivial setting, that is, a transition from one circle into two.! The customary model for this
type of topology change is the so-called Trousers space, which is a smooth two-dimensional
manifold that traces out the splitting process, as pictured in Figure 5.1. The Trousers space
has long served as the prototypical example of topology change, and has been discussed in
various physical contexts [4, 12, 16, 24, 28, 29, 31, 32, 36, 48, 49, 67, 70, 97-99, 107].

Despite a broad discussion of topology change within physics, there exists an interest-
ing gap in the literature that has remained unexplored for over half a century. When dis-
cussing time-asymmetry in [89], Penrose sketches a particular type of topology-change that
is markedly different from the Trousers space. In his image, the manifold does not change its
topology at a single point in time, but at a single point in spacetime. This means that a single
point changes its topology from one connected component to two, and then this change is
allowed to grow along null rays. If taken within a compact universe, this will develop into a
full topology change of spacelike slices within finite time, and thus may be used to model a
possible transition between S' and S' LI S!.

Although a potentially interesting model for topology change, Penrose correctly iden-
tifies an important technical issue in his spacetimes: if one wants the pointlike splitting to
remain a manifold, then models such as those pictured in Figure 5.2 are necessarily non-
Hausdorff. At that time it was not clear how expressive a non-Hausdorff differential geom-
etry could be, and thus after musing for some time and deviating wildly from the original
scope of his paper, he finishes his discussion with the now-famous quote:?

I have, in any case, strayed far too long from my avowed conventionality in this
discussion, and no new insights as to the origin of time-asymmetry have, in any
case, been obtained. I must therefore return firmly to sanity by repeating to my-
self three times: ‘spacetime is a Hausdorff differentiable manifold; spacetime is
a Hausdorff...

In the past half century a theory of non-Hausdorff manifolds has emerged [17, 23, 37, 83—
85], and these discussions have occasionally extended into non-Hausdorff spacetimes [46,
47, 53, 68, 72, 77]. In this chapter we will leverage recent mathematical developments in
order to take seriously Penrose’s splitting spacetimes. As a guiding reference, we will mimic
the standard analysis of the Trousers space found in [67, 100] by defining and evaluating the
gravitational action for a non-Hausdorff version of the Trousers space. We will then compare
transition amplitudes for the Hausdorff and non-Hausdorff Trousers spaces, leading to the
eventual conclusion that the latter admits a similar imaginary-strength action that yields a

!Our reason for this will become clear throughout the chapter: we will consider some unconventional types
of topology change, and their novelty should already manifest in the two-dimensional regime where gravity is
famously topological.

ZWe have decided to include it in full, since the latter half of this quote is often misquoted as an argument
against non-Hausdorff manifolds.
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Figure 5.1: The Trousers space, together with a sample of its spacelike slices.

dampening in the resulting path integral.

In the remainder of this introduction we will briefly review some details of Hausdorff
topology change and provide an informal discussion of non-Hausdorff topology, before out-
lining the chapter in detail.

5.1.1 Topology Change and Path Integrals

An n-dimensional spacetime M with boundary dM = X LIX, exhibits ropology change when-
ever the initial boundary X; and the final boundary X, are not homeomorphic. In such a
model, the initial data X; is assumed to smoothly evolve and change its topology through
time. Mathematically speaking, such interpolating manifolds are known as cobordisms, and
have been studied extensively in the literature.

Following [28, 51, 99], in a naive sum-over-histories approach to quantum gravity we
consider a path integral whose sum may include multiple distinct geometries and topolo-
gies. For topology change in Lorentzian signature, the transition amplitude between a pair
of non-homeomorphic spacelike hypersurfaces (X1,/41) and (X5,h,) could be represented
symbolically as

(E1mEa ) = ¥ [ Flslexplir (M)} 6.1
M

where here we sum over all physically-reasonable Lorentz cobordisms interpolating between
Y1 and X,. With a naive prescription such as the above, we are met with an immediate princi-
pled question: which interpolating manifolds should we sum over in the domain of the path
integral?

Before considering such an question, it makes sense to determine whether or not the sum
is non-empty in the first place. In general dimensions, there are several known topological
obstructions to the existence of Lorentz cobordisms, which are usually articulated as rela-
tionships between £ and X,. It is well-known that any pair of (n — 1)-dimensional manifolds
will permit a smooth n-dimensional cobordism provided that they are related by a procedure
known as Morse surgery [73, 91]. Moreover, any smooth compact manifold admits a well-
defined Lorentzian metric provided that it admits a globally non-vanishing vector field [86].

3Here we assume /i = 1.
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Figure 5.2: A simplification of Penrose's non-Hausdorff topology changing spacetime (left), together
with a sample of its level sets. Although impossible to depict in ordinary Euclidean space, here there are
two copies of the origin superimposed on top of each other, together with two copies of the future null
cone.

This pair of observations may be taken in combination to explicitly describe Lorentz cobor-
disms via Morse theory [1, 29, 31, 110, 111]. Note that in particular, Lorentz cobordisms
exist between any pair of manifolds with dim(X;) < 3.

After verifying the existence of Lorentz cobordisms, the next step might be to impose
some top-down causal desiderata for the types of spacetimes we are willing to sum over. The
exact specifications of this causal behaviour are still subject to debate, but at the very least it
seems as though our spacetimes ought to admit a global time function, since this is implic-
itly used in the formation of (5.1). The existence of global time functions is known to be
equivalent to the property of stable causality [52]. Roughly put, a spacetime is stably causal
provided it contains no closed timelike curves, and neither does any small perturbation of its
metric. Such spacetimes lie relatively high up in the causal hierarchy of [75, 76].

At the apex of this causal hierarchy are the globally hyperbolic spacetimes. These space-
times are just about as causally well-behaved as possible, in that they always admit Cauchy
surfaces. However, it can be shown that any globally hyperbolic spacetime is necessarily
cylindrical, in that both its topological and smooth manifold structure are isomorphic (in the
appropriate sense) to a product of the Cauchy surface with either the real line or the unit
interval [10, 40]. As such, we see that topology-changing spacetimes may never be globally-
hyperbolic. Nonetheless, it appears as though we may be able to include topology-changing
spacetimes within (5.1) if relax our causality requirements slightly and allow for stably-
causal spacetimes. However, we are then met with the following result of Geroch (adapted
from [42]).

Theorem 5.1.1 (Geroch). Let M be a compact spacetime with initial boundary X1 and final
boundary ;. If ¥1 and ¥, are not homeomorphic, then M admits a closed timelike curve.

We are thus prompted to exclude topology-changing spacetimes on causal grounds, since
they are not stably causal. A possible circumvention of this issue is to relax the assump-
tion that M admits a globally-defined Lorentzian metric. Instead, we may allow an almost
Lorentzian manifold in which the metric is allowed to degenerate at select points in the
space. Within the context of topology change, this approach seems quite reasonable, as it
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naturally aligns with the Morse-theoretic view of smooth cobordisms. Under this reading,
we may consider what is known as a Morse function, which has critical points along which
the topology of space will change. The gradient of this Morse function will then provide us
with a vector field that vanishes only on the critical points, and this vector field may be used
to define an almost-Lorentzian manifold.

Another causal requirement might be to suggest that the almost-Lorentz cobordism in-
duces a causal poset structure on its lightcones. According to the causality theory of [28,
75, 76, 88], we may induce a binary causal precedence relation < on any almost-Lorentzian
manifold. This relation states a point p causally precedes a point g, written p < g if g lies
in the future lightcone of p. Causality properties may then be paraphrased as order-theoretic
properties of the relation <. In particular, one may suggest including into (5.1) all almost-
Lorentz cobordisms in which the binary relation < is reflexive, transitive and antisymmetric
[28]. Note that the requirement of antisymmetry excludes those spacetimes admitting closed
timelike curves.

5.1.2 The Trousers Space

Topologically, the Trousers space is homeomorphic to the 3-punctured sphere, and may be
seen as a cobordism from S! to S! LUS!. This manifold is almost-Lorentzian, in the sense that
it admits a non-degenerate Lorentzian metric everywhere except at a single point (commonly
called the crotch singularity). Away from this point, the Trousers space may be furnished
with a Lorentzian metric that is locally isometric to the flat cylinder [4, 67].

It seems reasonable to suggests that one may avoid Geroch’s theorem by simply remov-
ing this troublesome point and allowing the manifold to be non-compact. However, with
transition amplitudes such as (5.1) in mind, it seems that we would like to preserve compact-
ness as best as we can. An alternate resolution involves what is known as a causal closure
construction [41]. In this method one chooses to maintain compactness, at the cost of an
allowed degeneracy in the metric at the crotch singularity. A lightcone structure may still be
placed at the crotch singularity, however this structure will be irregular in the sense that there
will be double the amount of distinct lightcones — two future-directed and two past-directed
[48]. Suggestive depictions of the Trousers space and the origin of the irregular causal struc-
ture of its crotch singularity can be found in Figure 2 of the recent paper [36].

With a causally-closed Trousers space, we may still evaluate the transition amplitude
of (5.1). In two dimensions, the gravitational action in vacuum is given by the total scalar
curvature of the manifold:

i I
S (M.g) =5 /M RdA+ /a k. (5.2)

where here the latter term computes the geodesic curvature of the boundary and x is the
gravitational constant. An analysis of Louko and Sorkin shows that the above action may
still be evaluated for the Trousers space [67]. In their work they employ an ie-regularisation
in which the Lorentzian metric is perturbed into a complex one in a controlled manner. Their
conclusion is that the Trousers space has a 8-like curvature localised to the crotch singularity
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of strength +27i, with the ambiguity being controlled by the sign of the regulariser.

Alternatively, the curvature of the Trousers space may be obtained via a certain Lorentzian
Gauss-Bonnet theorem [100]. We will discuss the details of the Lorentzian Gauss-Bonnet
theorem and its subtleties at length in Section 5.3 of this chapter, so for now we will merely
deliver a brief summary. In short: the notion of Lorentzian angle does not make sense for
vectors of different signatures, again it is commonplace to employ the ie-regularisation of
[67] and complexify the Minkowski metric. This gives a notion of Lorentzian angle that is
well-defined, yet complex-valued [5, 58, 79, 100]. The Lorentzian Gauss-Bonnet theorem
then loosely states that:

1 / RdA + / kdy = F2mix(M). (5.3)
2/m oM

The imaginary coefficient on the right-hand-side arises from our complexification of the
metric, with 277 being the periodicity of angles around a point in flat two-dimensional
Minkwoski space, and the sign ambiguity again provided by the ie-regulariser. For the
Trousers space the Euler characteristic equals —1, so we may conclude that its total scalar
curvature equals +27i, in agreement with the prior analysis of [67].

The sign ambiguity in the ie-regulariser may be resolved in several ways. It is commonly
argued that the correct sign of the imaginary periodicity should be —27i, since then
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which would in turn cause the Trousers space to be suppressed relative to other spacetimes
like the cylinder or the 2-disk [5, 67, 79, 100]. In this chapter we will only focus on transi-
tions from S! to S LIS!. Within our context, a similar argument is valid: creating some more
complicated Trousers-like transition between circles by adding extra genera to the bulk will
always decrease the Euler characteristic. The Lorentzian Gauss-Bonnet theorem roughly
stated above then implies that adding more and more genera to the Trousers space will con-
tinually increase the imaginary part of the action, and thus the transition amplitudes of (5.1)
will become exponentially small. In contrast, if we were to choose the other sign convention,
then we are left with a periodicity of +27i in which higher genus Trousers-like spaces would
be exponentially enhanced. In this sense, the sign convention advocated in [5, 67, 79, 100]
indeed appears to be the correct one.

5.1.3 A Primer on non-Hausdorff Topologies

The Hausdorff property states that any pair of distinct points in a topological space may
be separated by disjoint open sets. Conversely, a topological space is called non-Hausdorff
whenever there exists a pair of points whose open neighbourhoods always intersect. Haus-
dorffness is usually assumed in the definition of a manifold, however there still exist non-
Hausdorff locally-Euclidean spaces. For example, the right-hand-side of Figure 5.3 depicts a
simple one dimensional non-Hausdorff manifold, commonly called the branched line. In this
space there are two copies of the origin, and the topology is defined to be locally-equivalent
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Figure 5.3: Hausdorff (left) and non-Hausdorff (right) topology change in one dimension. The Hausdorff

topology change is necessarily singular, whereas the non-Hausdorff model blows up the singularity into two
distinct points and adjusts their separability in order to ensure that the space remains locally-Euclidean.

to the real line. One can see that any pair of open intervals around the Hausdorff-violating
pair of origins will necessarily intersect throughout the negative numbers.

In the manifold setting, Hausdorff violation may be seen in many different ways. Perhaps
the most instructive is via the non-uniqueness of limits: it is well-known that any convergent
sequence in a manifold has a unique limit, provided that manifold is Hausdorff. In the non-
Hausdorff setting this is no longer true — in fact, a pair of points will violate the Hausdorff
property if and only if they can be realised as distinct limits of the same sequence [84].

Usually we include the Hausdorff property in the definition of a manifold for technical
convenience. In particular, it can be shown that any open cover of a Hausdorff manifold
admits a partition of unity subordinate to it [65]. These arbitrarily-existent partitions of unity
are used frequently in order to construct various geometric structures of interest. In the non-
Hausdorff case, such partitions of unity do not exist in full generality, and thus the various
enjoyable features of Hausdorff manifolds may appear to be in jeopardy. Put differently:
without the Hausdorff property we do not have access to the usual constructive techniques,
and prima facie it is not clear whether non-Hausdorff manifolds are as expressive as their
Hausdorff counterparts.

Despite this issue with partitions of unity, it is nonetheless possible to describe a differ-
ential geometry of non-Hausdorff manifolds. Underpinning this study is the observation that
non-Hausdorff manifolds may be constructed by gluing together ordinary Hausdorff mani-
folds along open sets [45, 47, 68, 84]. Intuitively, if one glues together Hausdorff manifolds
along an open subset but leaves the boundary of this subset unidentified, then this boundary
may become Hausdorff-violating in the quotient space. As an example: we may realise the
branched line of Figure 5.3 by gluing together two copies of the real line along the sub-
set A := (—o0,0). In the resulting quotient space, any sequence of negative numbers that
would ordinarily converge to the origin will now have two distinct limits, thereby realising
Hausdorft-violation.

5.1.4 OQutline of Chapter

In Section 5.2 we will provide a formal overview of non-Hausdorff differential geometry. We
will start with matters topological, and then move on to smooth structures, bundles, integrals
and eventually curvature. Underpinning our discussion is the aforementioned gluing concept
— essentially all of these geometric structures may be defined on non-Hausdorff spaces by
first defining them on Hausdorff submanifolds, and then by imposing some consistency con-
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ditions on overlapping submanifolds. The non-Hausdorff manifolds that we define will be
locally-isomorphic to Hausdorff ones, however their global features will differ. In particular,
we will see that their notion of integration needs to include the extra Hausdorff-violating
data in order to be well-defined, and this in turn will have some far-reaching consequences
for the rest of the chapter.

In Section 5.3 we will discuss various extensions of the Gauss-Bonnet theorem. We start
with the standard statement for Riemannian manifolds found in say [27], and we will then
modify it in two orthogonal directions: firstly, we will pass from Riemannian metrics to
Lorentzian metrics, and secondly, we will pass from Hausdorff surfaces to non-Hausdorff
ones. The result of our discussion will be a non-Hausdorff version of the Gauss-Bonnet the-
orem in Lorentzian signature. Here we will see a crucial novelty — due to integration results
of Section 5.2, the non-Hausdorff result will require an extra counterterm that computes
the geodesic curvature of the Hausdorff-violating submanifold sitting inside the manifold.
This counterterm is a sort-of “internal boundary" term that has no analogue in the Hausdorff
regime.

In Section 5.4 we provide the primary contribution of this chapter. Here, we will study
a non-Hausdorff version of the Trousers space. In essence, this “non-Hausdorff Trousers
space" can be see as a version of Penrose’s spacetime of Figure 5.2 that has been compact-
ified so that its initial and final surfaces equal S' and S' LI S!, respectively. To begin with,
in Section 5.4.1 we will analyse the causal properties of the non-Hausdorff Trousers space.
Using the results of Section 5.2, we will argue that this space cannot be excluded from the
path integral (5.1) on the basis that it is not a rich-enough geometric structure. We will then
analyse its causal properties by confirming the existence of a global time function, the non-
existence of closed timelike curves, the compactness of its causal diamonds, and the poset
structure of its causality relation <.

In the remainder of Section 5.4 we will then determine the gravitational action for the
non-Hausdorff Trousers space. As an organisational choice, we will first motivate the Lorentzian
action from its Euclidean cousin. In line with the Gauss-Bonnet theorems of Section 5.3, we
will see that the non-Hausdorff gravitational action requires another Gibbons-Hawking-York
term for the extra Hausdorff-violating surface. We will argue that the non-Hausdorff Trousers
space has zero curvature, meaning that in the Euclidean theory there is no inherent mecha-
nism that would enable its suppression. In the Lorentzian theory, however, we will see that
the presence of corner terms in the action, together with the freedom to choose signs of the
ie-regulator, will allow us to suppress the non-Hausdorff Trousers space as desired. Finally,
we finish with some brief remarks regarding more elaborate non-Hausdorff branching.

5.2 Non-Hausdorff Differential Geometry

We start with a review of non-Hausdorff manifolds. Throughout this section and the re-
mainder of this chapter, we will reserve the term “manifold" for its ordinary usage, that is,
manifolds are taken to be Hausdorff, locally-Euclidean and second-countable. In distinction
to this, we will use the term “non-Hausdorff manifold" to mean a non-Hausdorff, locally-
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Euclidean, second-countable space. Regarding notation, we will mostly follow the notation
of Lee in [65] for ordinary differential geometry, and [83—85] for non-Hausdorff variants. In
particular, we will use boldface letters to denote non-Hausdorff manifolds and their geomet-
ric structures — for example M,N; .. would denote non-Hausdorff manifolds whereas M, N, ...
would denote Hausdorff ones.

5.2.1 Topological Structure

To begin, we will describe a general technique for gluing together manifolds. This formal-
ism is known as an adjunction space in the literature, though may take subtly different forms
depending on the context. We assume as input two Hausdorff manifolds M and M; of the
same dimension, a subset A of M|, and a continuous map f : A — M,. We may then glue M,
to M, along the map f by quotienting the disjoint union M; LI M, according to the equiva-
lence relation that identifies each point in A to its image under f.

This notion of adjunction space is far too general, and may spoil the topological structure
of A in the gluing process. The following result identifies some conditions under which the
adjunction space described above will yield a non-Hausdorff manifold.

Theorem 5.2.1 ([84]). Let M| and M, be two Hausdorff manifolds of the same dimension,
and let A be an open subset of M. Suppose that f : A — M, is an open topological embed-
ding. If f can be extended to a closed embedding f : A — My,* then the quotient space

M UM,

M=—=M UM, (5.5

a~ f(a) !
is a non-Hausdorff manifold in which the Hausdorf{f-violating points occur precisely at the
boundary of the image of A in the quotient space.

At first glance, the above appears to be very similar to the connected sum of manifolds
(cf. [65]). However, there is an important distinction: the connected sum assumes that the
gluing region A is topologically closed, which is necessary in order to preserve the Hausdorff
property. However, in our context, we want to take our gluing region to be an open subset
with a non-empty boundary. This assumption intentionally spoils the Hausdorff property,
since the boundaries of these glued open sets remain unidentified, thus serve as distinct lim-
its to the same sequences.

It should be noted at this point that the adjunction space construction may also be phrased
categorically — the quotient construction of M in the above result can be viewed as the colimit
of the upper-left corner of the diagram below in the category of topological spaces.

A ;> M,

f 01 (5.6)

MQTM

“Here we use the notation A to denote the topological closure of A within Mj.
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In the above the map 1 : A — M is the inclusion map, and the ¢; : M; — M are the canonical
maps that send each point to its equivalence class in M. It can be shown that the maps ¢; are
open topological embeddings, provided that f is open and A itself is [84], and in fact this is
precisely what is used in order to transfer the local charts from M; into M. By construction,
any local chart (U, ¢) of M; defines a chart (¢;(U), o ¢, ') on M, and it is in this sense that
the non-Hausdorff manifold M of Theorem 5.2.1 is locally equivalent to the manifolds M
and M;. Given that the ¢; maps are open topological embeddings, we may see M| and M> as
sitting inside M as maximal Hausdorff open submanifolds.

The idea that the maps ¢; will be as equally well-behaved as the gluing map f may be
extended beyond topology alone. As the next result illustrates, we may actually pass this
entire adjunction construction into an appropriate smooth category.

Theorem 5.2.2 ([85]). Suppose in addition to the criteria of Theorem 5.2.1 that the M; and A
are all smooth manifolds, and f : A — M is a smooth map. If f can be extended to a smooth
embedding f : A — M», then M can be endowed with a smooth atlas.

Once endowed with a smooth atlas, the canonical embeddings ¢; : M; — M now be-
come smooth open embeddings. Consequently, we may view the Hausdorff manifolds M; as
smooth open submanifolds of M, with the ¢; acting as local diffeomorphisms.

It should be noted at this stage that the colimit formulation of [84, 85] is far more general
than what we have presented here, in that it may also be extended to colimits of more than
two manifolds. However, since we will only be considering transitions from § Tto SIS, we
will not require this formalism in full generality. Throughout the remainder of this section,
we will assume that M is a non-Hausdorff manifold built according to Theorems 5.2.1 and
5.2.2.

5.2.2 Vector Bundles

Smooth vector bundles over a non-Hausdorff manifold can be described with an analogue of
the colimit construction of Theorems 5.2.1 and 5.2.2. The only major difference is that we
must also require the existence of a gluing map for the fibres of the part of the bundle that
lies over the gluing region A. Once this is correctly done, we may indeed glue bundles along
their fibres in order to form a non-Hausdorff vector bundle. In a manner similar to that of
[68, 84], a converse to this construction holds: any vector bundle E fibred over M is in fact a
colimit of ordinary Hausdorff bundles E; fibred over the M;.

Intuitively speaking, we can represent any smooth section s of a non-Hausdorff bundle
E 5 M by pulling it back to the Hausdorff bundles ¢E — M; and describing it piecewise.
Provided that the two pulled-back sections ¢s agree once mutually restricted to the gluing
region A, it is then possible to canonically reconstruct s from Hausdorff data. Figure 5.4
depicts a semi-local representation of a non-Hausdorff section.

The pullback correspondence of Figure 5.4 may also be phrased algebraically. For any
non-Hausdorff vector bundle E over M, we may use pointwise addition and multiplication by
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Figure 5.4: A semi-local depiction of the formation of sections of non-Hausdorff bundles.

scalar functions to endow the space of sections I'(E) with the structure of a C**(M)-module.
This can then be related to the spaces of sections of the Hausdorff submanifolds as follows.

Theorem 5.2.3 ([84]). Let E be a vector bundle over M with colimit representation E =
E\Ur E; where F : Ex — E; is a bundle isomorphism covering f : A — M. Then the space
of smooth sections I'(E) is canonically isomorphic to the fibre product:

D(E) =T (E1) xrg) T(E2) = {(s1,8) eT(E1) &T(E2) | tis1 = f*s2}. (5.7

On the level of an individual section, the above result is stating that defining a smooth
section s on E amounts to defining a pair of sections s; on the restricted bundles E; that agree
once mutually pulled back to the bundle E4. On the categorical level, the pullback of sections
by smooth maps allows us to see I'(+) as a contravariant functor. Once applied to the colimit
diagram used to construct/describe the bundle E, we obtain a new diagram in a particular
(abelian) category of modules over rings. Theorem 5.2.3 then states that the contravariant
functor I'(+) sends our colimit E into the limit I'(E).

These abstract bundle-theoretic arguments can be applied to the tangent bundle 7M in
order to describe the vector fields over M. To begin with, one can show that the tangent
bundle TM is canonically isomorphic to the colimit of the bundles TM| and TM>, glued
along T'A via the gluing (bundle) map df : TA — TM,. Since f is an open embedding, its
differential d f is a bundle embedding, and thus falls under the scope of Theorem 5.2.3. We
may then conclude that any vector field v in I'(7M) can be uniquely described by a pair of
vector fields v; in I'(T'M;) that agree once restricted to A. The higher-rank tensorial bundles
also admit a similar colimit construction (cf. [85, Sec. 2]), and the tensor fields on the
non-Hausdorff manifold M may therefore be described with the fibre product formula of
Theorem 5.2.3.

5.2.3 Integration

In our discussions thus far we have been identifying conditions under which locally-defined
data may be described in the non-Hausdorff case, ultimately by a transfer of the Hausdorff
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data under the canonical maps ¢;. Once the correct gluing conditions were identified, our
discussion was somewhat intuitive and unproblematic. However, despite being locally-
equivalent to Hausdorff manifolds, there is a significant issue when passing from local to
global structures.

In Hausdorff differential geometry, a useful method for pasting together locally-defined
objects is via partitions of unity. The precise definition is not necessary for our purposes, but
their utility should not be understated: partitions of unity are used in various constructions
and arguments for manifolds, including the locality of derivative operators, the construction
of Riemannian metrics and their Levi-Civita connections, and various arguments involving
de Rham cohomology. In the non-Hausdorff case, we have the following inconvenient fact.

Theorem 5.2.4 ([83]). If M be a non-Hausdorff manifold built according to Theorems 5.2.1
and 5.2.2, then there is no partition of unity subordinate to any cover of M by Hausdorff
open sets.

In Hausdorff differential geometry, the integral of a compactly-supported differential
form is performed by decomposing the form into several local charts, performing the in-
tegrals in Euclidean space, and then summing over the results via a partition of unity. In
this context, the partition of unity is required in order to avoid overcounting the integral on
overlapping charts.

In the non-Hausdorff setting we do not have access to partitions of unity in full general-
ity, so we will need to define integration on a non-Hausdorff manifold by alternate means.
Instead of appealing to partitions of unity, we will follow the so-called “integration over
parametrizations", found in say [65, Chpt. 13]. Roughly put, in this scheme a total integral
is broken down into integrals over certain open sets whose closures cover the support of the
differential form, in such a way that adjacent regions only intersect at their measure-zero
boundaries. With this intersection property there is no risk of overcounting the integral, and
thus partitions of unity are not required.

Suppose that we have some compactly-supported differential form w on M, and con-
sider a collection {r; : U; — M} of finitely-many open domains of integration U; that are
mapped diffeomorphically into M such that orientations are preserved. Provided that the
union J; r;(U;) cover the support of w and the sets r;(U;) pairwise intersect on at most their
boundaries in M, we may define the integral of w in M to be

/Mw:;/ir;‘w. (5.8)

Although the above is technically a well-defined notion of integration, it is not particularly
useful for our needs. What is more helpful for us is the following, which relates the integral
of a form on M to the ordinary integrals over the Hausdorff submanifolds M, M, and A.

Theorem 5.2.5 ([83, Thm. 2.6]). Let w be a compactly-supported differential form on M.

Then
/w=/ (01+/ (02—/(0A, (5.9)
M M, M, A
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where A is the topological closure of A within My, and @; :== ¢;w and O; = 1700w =
fo O, w.

An important distinction between Theorem 5.2.5 and the standard subadditivity prop-
erty of Hausdorff integration is the inclusion of the additional boundary of the subspace A.
Heuristically, we need to ensure that the restriction of w to A is compactly supported, and
the only way to do this is to include the boundary of A within the integral. It may seem that
the inclusion of this extra component is an innocuous prescription, given that boundaries are
of measure zero. However, as we will see in Section 5.3, this extra boundary component will
have some far reaching consequences for the non-Hausdorff Gauss-Bonnet theorems.

5.2.4 Metrics and Curvature

We may construct metrics of arbitrary signature on a non-Hausdorff manifold by gluing to-
gether the spaces M| and M, along an isometry. In a global picture, we may view two metrics
on the M; as sections of the appropriate tensor bundle for which the overlap condition of The-
orem 5.2.3 manifests as an isometric equivalence on the gluing region A. It should be noted
that there is no issue regarding the regularity of the resulting non-Hausdorff metric — Theo-
rem 5.2.3 ensures that any Lorentzian metric, viewed as a global section of the appropriate
tensor bundle, is indeed smooth everywhere.

Despite the non-existence of partitions of unity, affine connections may still be con-
structed in the non-Hausdorff setting. In global notation, an affine connection on M is de-
fined as per usual, that is, as a bilinear operator

V .I(TM) xI'(TM) - I'(TM), V(v,w) — Vyw (5.10)

that is C*(M)-linear in the first argument, and satisfies the Leibniz rule: Vy(fw) = fVy(w) +
Zy(F)w for all f € C*(M) and v,w € ['(TM).> As with the non-Hausdorff sections of Section
5.2.2, it can be shown that any connection V on M will restrict to a pair affine connections
Vii= ¢V on M; that agree once mutually pulled back to A. As the following result states,
the converse is also true: a pair of connections on M; may be “glued" together to define a
connection on M.

Lemma 5.2.6 ([83]). Suppose V; are a pair of affine connections defined on the manifolds
M;. If 1,V = f*V, on A, then V defined by

(Vow)(x) =

01 (V) (ow) (97w) (07 (%)) ifx € 1(M1) M 1)
cM '

02 ((V2) (50 (93w)(0;, ' (x)) ) if x € $2(M2)

is an affine connection on M.

Observe that in the above, the assumption 1,V = f*V; is precisely what is needed to
ensure that V is well-defined, since by construction ¢; (M) N ¢2(Ma) = ¢1(A) N d2(f(A)).

5The Lie derivative used here is defined as in the Hausdorff case, that is, via local flows of the vector
fields. It can be shown that in the non-Hausdorff case, the Lie derivative is still a local operator that satisfies
Zyw = [v,w] —see Section 3.1 of [83] for a detailed discussion.



Non-Hausdorff Spacetimes within a Path Integral for 2d Gravity 109

Using the above prescription, it can be shown that a Levi-Civita connection exists for any
metric on M. Heuristically, although we don’t have full access to partitions of unity for M,
we do have full access for the Hausdorff manifolds M;. Therefore, we may construct pieces
of the Levi-Civita connection on each M;, and requiring that f : A — M, be an isometric
embedding ensures that these Hausdorff Levi-Civita connections may be transferred into M.
Following on from this, we may define familiar geometric quantities such as the Riemann
curvature tensor, the Ricci tensor and the Ricci scalar in the non-Hausdorff case, ultimately
by appealing to the fact that M is locally isometric to both M; [83].

In a similar spirit, orientations of the manifolds M; may be glued in a manner consistent
with Theorem 5.2.3 to yield an orientation of the non-Hausdorff manifold M. In such a situ-
ation, the canonical maps ¢; : M; — M become orientation-preserving isometries.

With an eye towards Section 5.4, we finish this section with a brief application of these
ideas. Suppose for a moment that M is a two-dimensional non-Hausdorff manifold with
Riemannian metric h. The canonical maps ¢; : M; — M act as isometric embeddings, which
means that M may be locally isometric to either M;, depending on where you are in the
manifold. According to the integral formula of Theorem 5.2.5, the total scalar curvature of
M may be written as

/RdA:/ RdA+/ RdA—/RdA (5.12)
M M, M, A

where here the metrics on the Hausdorff manifolds are the pullbacks of h by the relevant
maps, and each Ricci scalar and area form is computed via the pulled-back versions of h.

5.3 Gauss-Bonnet in Various Forms

The Gauss-Bonnet theorem is a powerful result that relates the total scalar curvature of a
two-dimensional manifold to its Euler characteristic. As explained in the introduction, our
main strategy for evaluating the gravitational action of the non-Hausdorff Trousers space will
be via this particular theorem. As such, we will now spend some time discussing various ver-
sions of the Gauss-Bonnet theorem. In distinction to Section 5.2, throughout this section we
will assume that all manifolds, Hausdorff or otherwise, are two-dimensional.

In Euclidean signature, the Gauss-Bonnet theorem for a manifold (M, k) with boundary
may be stated as the equality

1
2y (M) = E/MRdA-l-/aMkdy-l—ZGex,, (5.13)

where here y(M) is the Euler characteristic of M,% and the boundary dM is assumed to
consist of finitely many piecewise-smooth connected components [27]. The expressions
0..: denote the exterior angles between adjacent smooth segments of a boundary compo-

®Here we may define the Euler characteristic to be the alternating sum of the ranks of the simplicial homol-
ogy groups of M, or equivalently as x (M) = V4 — E 4 + F for any triangulation .7 of M.
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Figure 5.5: Turning angles for a piecewise-smooth, oriented closed curve y that bounds a flat disk
embedded in R2. Here the total geodesic curvature of 7 equals fykdy: Z?:] f% kdy+Y 6.y . The exterior
angles (red) are computed using tangent vectors at each marked vertex. Hopf's Umlaufsatz states that
the sum of these exterior angles equals 27, and the Gauss-Bonnet theorem confirms that the Euler
characteristic of the disk is equal to 1.

nent. Geometrically, these are the angles by which a vector must instantaneously turn at
the non-smooth corners, as pictured in Figure 5.5. We will often borrow from physics par-
lance and refer to these exterior angles as corner terms. Given that the boundary dM is a
piecewise-smooth curve, the corner term 6,,; at a vertex p is computed by taking the one-
sided derivatives of the adjacent curves and computing the angle between the corresponding
vectors lying in the tangent space T,M.

We will now set about modifying this theorem in two orthogonal directions: firstly, we
will review the so-called Lorentzian Gauss-Bonnet theorem, and then we will generalise
everything to the non-Hausdorff setting. As mentioned in the introduction, there is a con-
ceptual difficulty when proving the Lorentzian Gauss-Bonnet theorem, ultimately stemming
from the ill-defined notion of angle within Minkowski space. So, before getting to any modi-
fications of the Gauss-Bonnet theorem, we will first spend some time reviewing the literature
on Lorentzian angles.

5.3.1 Lorentzian Angles

In a two-dimensional vector space with a fixed metric, the convex angle between a pair of
normalised vectors may be determined from the parameter of the isometry transformation
that sends one vector into the other. When working with the usual Euclidean metric, the
isometry transformation lying in SO(2) is an honest rotation of the unit circle. Up to a
preferred orientation, the convex angle between two vectors in Euclidean space is uniquely
determined — ultimately because the action of SO(2) on R? is free and transitive.

This perspective also partially applies to Minkowski space. When passing to the (—,+)-
signature of the Minkowski metric, the orbit spaces under SO(1, 1) of non-null vectors divide
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R!! into four disjoint quadrants. As such, a pair of Minkowski vectors u and v will admit an
unambiguous and well-defined angle 6, provided that they are both non-null and are related
by a boost. We will label the orbit space of the unit spacelike vector v = (0, 1) as Q1, and
count the quadrants anticlockwise from there. Following [100], we introduce

Z(u,v):=u- v+\/uv (u-u)(v-v) and Z(u,v) =u- v—\/uv —(u-u)(v-v)
(5.14)
as useful shorthands. We may then express the angle 6,,, between two spacelike vectors lying
in the same quadrant as follows:

Z(u,v)

0,, =1
YO Ty

if u,v both spacelike and in the same quadrant. (5.15)

This formula may be related to the familiar trigonometric expression of boosts by stan-
dard identities — see [5] for the alternate form. Note that for spacelike vectors, the norm

|u| = /u-uis real.

Since no boost can change the signature of a Minkowski vector, it may appear as though
there is no meaningful notion of angle between vectors lying in different quadrants. The
now-standard remedy for this issue is to analytically continue the meaningful fragments of
angular formulae into the complex plane. With such a procedure, the result is a complex-
valued notion of angle. Treatments of complex-valued Minkowski angles exist in various
forms in the literature [5, 58, 79, 100], though they typically differ in both scope and con-
vention. For the purposes of this chapter, we will opt for Sorkin’s approach [100], since
his treatment is sufficiently general so as to include both null vectors and a Gauss-Bonnet
theorem.

As an illustration, we will now outline the derivation of a complex angle between two

Lorentzian vectors a := (0,1) and b := (1,0). Using the null basis m := (%, —%) and n :=

(%, %) we may write a =n —m and b = n+m. An interpolating vector ¢ lying in the convex
wedge between a and b may be described as ¢ = m+ An, where A € [—1,1]. Allowing A
to smoothly vary from —1 to 1 will trace out a continuous transformation of a into b. As

Z(a,c)

we do this, we see that the expression allc] will become singular as ¢ becomes null when

crossing quadrants at A = 0. This pole may be avoided by endowing the Minkowski metric
with a small positive-definite imaginary part (cf. [67]), which adjusts the dot product by
¢-c¢ — c-c=xig for vectors ¢ with norm close to zero. This allows us to circumvent the
singularity at A = 0 and continue into the adjacent quadrant without issue.

There are two subtleties to consider here. Firstly, we are trying to complexify the ratio
%, which means that we need to select a branch of the complex logarithm that will even-
tually be used as in (5.15). Following [100], we select the principle branch of the logarithm,
so that log(%) = _T’” Secondly, when performing the circumvention of the pole at A = 0,
the sign of the ie-regulariser will dictate the sign of the (imaginary) norm for timelike vec-

tors: |u| := \/u-u = +i/|u-u|. With this in mind, the Lorentzian angle between our chosen
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Figure 5.6: Sorkin's derivation of the Lorentzian angle between a spacelike and a timelike vector. Here

we pick the lightcone basis m:= (4,—3) and n=(3,4), for which a=n—m and b=n+m, and

¢ =n-+Am. We may then continuously trace from a to b, using a parameter A € [—1,1]. This parameter
Z(a,c)

i 2t A =0, which we may avoid via an ie-regularisation.

will yield a singularity in

vectors a and b, will be purely imaginary:

B Z(a,b)\ 1\ _i=m
6, = log< al b] ) = log <£) = :F?’ (5.16)

the sign of which depends on the choice of +-i€. For a general spacelike vector u in Quadrant
1 and a timelike vector v lying in Quadrant 2, there may also be a real part of the Lorentzian
angle. The general angular formula will be

6. = log (Z(”’V)) — log ( Zu,v) > + (5.17)

jul V] [l 1l 27

where here in the latter term we isolate the imaginary component of the angle by taking ||- ||,
the absolute value of the norm | - |.

In similar spirit, the Lorentzian angle between a pair of timelike vectors lying in the same
quadrant may be determined once we have fixed a sign for the complex quantity |u| = \/u - u.
In contrast to (5.15), we have:

V4
0,, = —log M if u,v both timelike and in the same quadrant. (5.18)
Jul[v]

Using the above, one can interpret the imaginary contribution of :F%" in the formula (5.17)
as a discrete “rotation” of the spacelike vector into Quadrant 2, followed by an application
of formula (5.18) to determine the remaining real part of the angle.
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Generally speaking, the ie-regularisation causes a discrete contribution of :F%” whenever
we compute angles between non-null vectors in adjacent quadrants of Minkowski space.
One can imagine a Euclidean rotation in which we trace one vector through null rays into
adjacent quadrants (cf. Figure 5.6). Every time a vector passes through a null ray it receives
a discontinuous contribution of $”7i. The total angle around the origin will then equal F27i,
as depicted in [5, 79].

The ie-regularisation of [5, 58, 67, 79, 100] may also be used to define angles between
null vectors. Combining equation (5.17) with the additivity of angles, and proceeding via a
case distinction, the angle involving null vectors may take any of the following forms:

. ¥

O = log ( mu ) 2 if u spacelike  (5.19)
lo][ul] 4

6,., — log (M) 7 if v timelike  (5.20)
’ lol[v] 4

m-n in ) )
Opm,n = log (1—2) F > if n null and m, n bound spacelike quadrant (5.21)
0

O = —log (M) F 7 if n null and m, n bound timelike quadrant (5.22)

Here we follow [100] and introduced two more conventions. Firstly, due to the additivity
of angles, we need to choose how to divvy up the imaginary contribution of F%' arising
from (5.17) into the two formulae (7) and (8). In the above we have opted for a balanced

contribution of :F%i for either side of the null vector. Secondly, we commit to an additional

variable /p, which is an arbitrary length scale that is required in order to make the angle
formulae dimensionless (cf. the 4d corner ambiguites in [59, 66]). Although both of these
conventions are choices, they will ultimately not affect the Gauss-Bonnet theorem once we
keep them consistently fixed.

5.3.2 A Gauss-Bonnet Theorem for Surfaces with Null Boundaries

A Lorentzian version of the Gauss-Bonnet theorem was originally proved implicitly by
Chern in [21], who extended his famous Chern-Gauss-Bonnet theorem to closed, even-
dimensional Lorentzian manifolds. Various alternate versions of the result exist in the lit-
erature, and each varies in scope and generality. Older resources such as [2, 7, 57, 63] prove
the theorem by considering manifolds with either empty or non-null boundary. This was
generally due to an underdeveloped notion of of Lorentzian angles at their time of writing.
In recent years, however, Sorkin [100] extended the Lorentzian Gauss-Bonnet theorem to
include null boundary components. We will now briefly overview his argument, and flesh
out some of the more rigorous details.

We start by proving a Gauss-Bonnet theorem for the Lorentzian triangle. This version,
commonly called the “local Gauss-Bonnet theorem" in Euclidean terminology, ultimately
follows from an analogue of Hopf’s Umlaufsatz — cf. the Euclidean version in Figure 5.5. In
this context, the Umlaufsatz states that the sum of turning angles around the oriented bound-
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ary of a Lorentzian triangle will always equal F=27i. Heuristically speaking, we can imagine
parallel transporting a vector around the boundary of the triangle and summing up the dis-
crete jumps at the corners. Since the triangle is assumed to be flat, the vector will return to
itself with no real angular defect, however it will have collected a full rotation of Minkowski
angles along its journey.

Formally, the Lorentzian Umlaufsatz may be proved via a case distinction on all the dif-
ferent types of triangles. For triangles with non-null edges, the Umlaufsatz was discussed by
both Jee [57] and Law [63]. For triangles involving null edges, the discussion was continued
in [100]. For the purposes of illustration, we consider the case of a triangle A with two null
edges m and n, and a spacelike edge w. After orienting dA, we may consider the turning
angles by fixing null vectors with an affine length equal to that of the corresponding edge of
A. Using the additivity of Lorentzian angles, we can represent the sum of turning angles as a
sum between purely null edges:

Bn + Onw + O = O + (Gn(—m) + 6(7m)w) + (ew(fn) + e(fn)m)

(5.23)
= O+ On(—m) + Oy () + Oy

Heuristically, we may imagine parallel transporting all three vectors to the same point, and
then using additivity of angles to cancel out the terms containing the spacelike vector w.
This intuition is depicted in Figure 5.7. From this perspective, the Umlaufsatz for A is clear,
provided that the ambiguous length scale [j is kept fixed throughout the sum of the turning
angles. We should also note that this version of the Umlaufsatz is equivalent to Sorkin’s
observation that the interior angles of a Minkowskian triangle will sum up to the flat half-
value Fix, since:

3

3 3
F2Mi=Y Oy = ) (Fit— Oj) = F3Wi— Y, Ojus- (5.24)
i=1 i=1 i=1

Using this result for triangles in Minkowski space, we may then triangulate a given
almost-Lorentzian surface, making sure to arrange any causal irregularities onto vertices
of the triangulation, and then derive a discrete version of the Gauss-Bonnet by the same ar-
guments found in the Euclidean case — for instance those of [27, Sec 4.5]. Provided that we
pick the same sign of the ie-regulariser for all the vertices in a given triangulation,” we can
then express curvature via a Regge action which sums over Lorentzian defect angles. This
yields the following version of the Gauss-Bonnet theorem, amenable to two-dimensional

Regge calculus in Lorentzian signature.

Theorem 5.3.1 (Adapted from [100]). Let M be an almost-Lorentzian surface with bound-
ary, and let  be a triangulation of M in which the degenerate points of M lie on vertices of
. Denote by Vy; and Vy, the set of vertices of 7 that lie in the bulk and boundary of M,
respectively. Then

TomixM) =Y &(p)+ Y, 8'(a), (5.25)

PEVM 9€Voum

"This assumption is implicit within [100], though is explicitly called the “global Wick rotation" in [5].
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Figure 5.7: The intuition behind the Umlaufsatz of a Lorentzian triangle with two null edges. Here we
use the point-vector correspondence of flat space to transport all vectors to the same point, and observe
the manifest value of F2xi.

where 8(p) = F2mi — Y. 0(p) and §'(q) = Fxi — Y. 0(q) measure the defect angles in 2d
and 1d, respectively.

We may derive a continuum version of the above by measuring curvature by different
means. In the triangulation argument of Regge calculus we flatten the triangles, thereby
localising any curvature to vertices. Alternatively, we could also determine the curvature of
a triangle A by measuring the defect in the sum of its interior angles. Following [20], by
taking a limit of smaller and smaller triangles around a point, we may define an infinitesimal
notion of curvature which may then be integrated to determine the total scalar curvature of
the bulk. Similarly, for each smooth boundary component, we may determine its geodesic
curvature via a limit of defect angles of small lines surrounding points. Thus we obtain the
following (smooth) version of the Lorentzian Gauss-Bonnet theorem.

Theorem 5.3.2. Let M be an almost-Lorentzian manifold with boundary. Then
1
= RdA—I—/ kdy+ ) Bey = F2mix(M). 5.26
> /M | kdy+ Y O = F2mix (M) (5.26)

5.3.3 Non-Hausdorff Gauss-Bonnet Theorems

We can repeat the philosophy of Section 5.2 in order to prove a Gauss-Bonnet theorem for
non-Hausdorff manifolds. Our approach will be to first relate the Euler characteristic of a
non-Hausdorff manifold to the Euler characteristics of its Hausdorff submanifolds. After
this, we may apply either the Euclidean or Lorentzian Gauss-Bonnet Theorem to all of these
Hausdorff pieces, and then collate the resulting integrals into a global non-Hausdorff curva-
ture term using the subadditivity formula of Theorem 5.2.5.

In our discussion thus far we have assumed some simplicial definitions of the Euler char-
acteristic. However, since all simplicial complexes are by construction Hausdorff topological
spaces, we do not have access to simplicial homology for non-Hausdorff manifolds. There
are several ways to bypass this issue. It is reasonable to suggest that there may be a non-
Hausdorff version of simplicial homology, with a well-defined boundary operator that may
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in turn yield some kind of topological invariants. However, we will avoid this line of inquiry
and instead appeal to a broader definition of Euler characteristic that holds for more-general
topological spaces. We define the Euler characteristic of a non-Hausdorff n-dimensional
manifold M as follows:

X(M) = ¥ (—1)rank(HS (M), (5.27)
i=1

where here we use the singular homology groups HlS (M). In the Hausdorff setting, this def-
inition of Euler characteristic coincides with the ordinary definition via triangulations, due
to the equivalence between simplicial and singular homology [50]. In the case of smooth
non-Hausdorff manifolds, singular cohomology is known to be isomorphic to de Rham co-
homology for any manifold satisfying the conditions of Theorem 5.2.2 [83].

Under this reading, we may now relate the Euler characteristic of a non-Hausdorff man-
ifold to those of its Hausdorff constituents. The following result confirms that the familiar
“inclusion-exclusion principle" (cf. pg. 221 of [93]) holds for our non-Hausdorff manifolds.

Theorem 5.3.3 ([83]). Let M be a non-Hausdorff manifold, defined according to Theorem
5.2.1. Then

A(M) = x(My) + x (M) — x(A). (5.28)

Proof. We provide a sketch of the proof; for details, see [83]. Firstly, we may observe that
the singular homology groups of M may be related to the homology groups of the Hausdorff
submanifolds by the Mayer-Vietoris sequence:

O fs

Ore— Py
—_— H5+1(M1)@H5+1(M2) 4 H5+1(M) j

0 HS, ((A)

ixDfs 01— 02
L HS(A) ——"— H3(My) ®HS (M) ——"— H3(M) 0

(5.29)
The precise description of these maps is not too important for our purposes, but can be found
in [83] (they are essentially a reformulation of the pushforward maps found in [50][Sec.
2.2], descended to homology). The important observation is that the above is a long exact
sequence of vector spaces that terminates. Crucially, for any long exact sequence of vector
spaces, the alternating sum of the dimensions of all the entries of the sequence must be zero.
The result then follows by a rearrangement of this vanishing alternating sum. 0

In order to prove a non-Hausdorff Gauss-Bonnet theorem, we need to make a subtle yet
crucial observation. In the integral formula of Theorem 5.2.5, we must integrate over the
topological closure of A, which in this context means that we are integrating a manifold with
boundary. However, in the subadditive formula of (M) listed above, we instead have an
expression for ) (A), and in general it is not the case that x(A) = x(A).® However, when we
work with the non-Hausdorff Trousers space in Section 5.4 we will not need to worry about

8In the case that the M; are manifolds without boundaries, this tension may be broken by assuming that the
open subset A is regular-open, meaning that the interior of A equals A itself. This allows a homotopy equiv-
alence between A and A, which induces an isomorphism of singular homologies and guarantees the equality

x(A) = x(A).
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this potential issue, so in what follows we will simply assume the equality y(A) = x(A).

According to the remark we made at the end of Section 5.2.4, we may apply the sub-
additivity principle of Theorem 5.2.5 to a 2d curvature form to yield the equality (5.12). If
we apply the Gauss-Bonnet theorem to each Hausdorff component of M, we will obtain the
equality:

I
Z/RdA_z MleA+ RdA——/RdA (5.30)
_ (27:)((M1) _ /a . kdy) + (27:%(1\42) - /a y kdy) - (znx@) _ /a Akdx)

(5.31)

=2nx(M </ kdy+/ kdy— /kdy) (5.32)
oM, oM,

Here we assume that the boundary of M consists of the images of dM; under the canonical
maps ¢;. Note that it’s possible for the two sets ¢;(dM;) to intersect, however this may only
occur if M1 and M, have a common manifold boundary along the gluing region A. Thus, the
closure A may have two different types of boundary: a manifold boundary that already exists
within A, and a topological boundary that forms the Hausdorff-violating points once mapped
into M. We thus write A = dA LI'Y, where here we use the special symbol Y to denote the
Hausdorff-violating piece of A. By the usual subadditivity of Hausdorff integration, we see
that

/ kdy:/ kd}/+/ kdy—/ kdy and /kdy:/ kd}/+/kdy. (5.33)
oM oM, oM, oA oA 0A Y

By substituting these equalities into the previous equation, we obtain a non-Hausdorff Gauss-
Bonnet in Euclidean signature:

; / RdA =21y (M ( / kdy — / kdy) (5.34)

We may the apply essentially the same reasoning as the above, this time using the Lorentzian
Gauss-Bonnet theorem of Theorem 5.3.2, to deduce the following.

Theorem 5.3.4. Let (M,g) be a non-Hausdorff two-dimensional spacetime built from Haus-
dorff spacetimes My and M according to Theorem 5.2.2. Suppose furthermore that the M;
are manifolds with boundary, and A satisfies X (A) = x(A). Then

F2miy(M / RdA + / kdy— / kdy. (5.35)

5.4 The non-Hausdorff Trousers Space

We will now define and evaluate the gravitational action for a non-Hausdorff version of the
Trousers space. As outlined in the introduction, we will consider a compactified version of
Penrose’s spacetime of Figure 5.2, taken to be long enough so that the initial surface ¥; is
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homeomorphic to S! and the final surface ¥, is homeomorphic to S' US'. According to our
discussion in Section 5.2, we can construct such a space by gluing two copies of the cylinder
together everywhere outside the causal future of a point. Formally, we take

* M| = M, to be cylinders S I« D! endowed with the same flat Lorentzian metric,

» a preferred point p in M; whose causal future J* (p) contains the final boundary S' x
{1} of M, as a subset,

e A=M;\J"(p) endowed with the open submanifold atlas and metric induced from Mj,
and

* f:A — M, to be the identity map.

We denote by T the topological space formed according to the above. Since the gluing map
f is taken to be the identity map, the data above falls within the scope of Theorems 5.2.1,
5.2.2 and 5.2.3, and thus we may view T as a smooth non-Hausdorff manifold that contains
the two cylinders M; as maximal Hausdorff open submanifolds. Moreover, the map f is
also a time-orientation preserving isometric embedding, so we may effectively transfer the
Lorentzian metrics of the cylinders M; into the non-Hausdorff manifold T according to our
discussion in Section 5.2.4. We denote the resulting non-Hausdorff spacetime by (T, g), and
we will hereafter refer to this as the non-Hausdorff Trousers space.

By construction, the M -relative closure A of the gluing region A will include the lightlike
future of the point p, as depicted in Figure 5.8. Once the quotient is performed to construct
(T,g), the Hausdorff-violating submanifold of T will be the two lightlike futures of the
distinct points ¢;(p) and ¢»(p). The height function f: T — R that maps each point in T
to its D'-coordinate in either M; will be a well-defined smooth function that allows us to
interpret (T,g) as a non-Hausdorff transition from § "'to §'1US!. Indeed — on the spacelike
slice of T that contains the points ¢;(p), the topology will begin splitting by changing from
Y1 = S! to a circle with two Hausdorff-violating points. These points will then propagate
along null rays, and finish splitting into two circles at some later time. At every point in time
after this, the spacelike slices of (T,g) will have the topology of S' LIS,

5.4.1 Causal Properties

As mentioned in the introduction, one may justify the inclusion of the Hausdorff Trousers
space into a path integral scheme such as Equation 5.1 on causal grounds. Despite being
non-globally hyperbolic, the Hausdorff Trousers space, aside from the causal irregularity at
the crotch, is a well-behaved spacetime. In particular, it exhibits no closed timelike curves,
admits a global time function, and determines a causal structure whose relation < is a partial
order.

We will now show that the non-Hausdorff Trousers space (T, g) enjoys similar, and even
superior, causal features. To begin, we recall the relation x <y if and only if y lies in the
future lightcone of x, which in this context means that there is a future-directed causal curve
connecting x to y. The following result characterises the causal relation < of T in terms of
the Hausdorff spacetimes M;.
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Figure 5.8: The region A for the non-Hausdorff Trousers space T. When constructing T we glue two
cylinders together everywhere in A, yet leave the future component of dA unidentified. In the quotient
space T, this yields two Hausdorff-inseparable copies of the lightlike future of the point p.

Lemma 5.4.1. For any two points x and y in T, we have that x <y if and only if(()]_1 (x) <

0, () or ¢5 ' (x) < ¢, (v), or both.

In this sense, we can see that the non-Hausdorff Trousers space T naturally inherits the
causal structures of M| and M,. In particular, we see that the causal structure (T, <) naturally
inherits a poset structure from the causality of the cylinders M;. °

Theorem 5.4.2. The causal relation < on T is a transitive, reflexive and antisymmetric
relation.

As a brief aside, we remark that the above appears to hold more generally — if we con-
sider some category of non-necessarily-Hausdorff spacetimes with isometric embeddings as
morphisms, then the mapping of spacetimes to causal sets may be considered as a covariant
functor into the category of partially-ordered sets. In this case, it is likely that the above argu-
ment generalises directly to conclude that this “causal functor" takes colimits to colimits, so
that we can describe any causal structure on a non-Hausdorff spacetime as a colimit of posets.

Aside from the poset structure of (T, <), the non-Hausdorff Trousers space satisfies other
nice causal properties, which do not hold in the Hausdorff Trousers case. First, recall from
pointset topology that the compactness of a set is preserved under continuous maps. Ap-
plied to our context, we may use the canonical maps ¢; : M; — T to send causal diamonds
JT(x)NJ~(y) from either M; into T. Since the Lorentzian cylinder is globally hyperbolic,
Lemma 5.4.1 allows us to conclude that the causal diamonds J*(x) NJ~(y) are compact

%In fact, it appears that a more precise categorisation of the features of the causal space (T, <) is that it
manifests as a model of the logico-mathematical theory BSTyg of [9, 82, 109]. This is an order-theoretic
axiomatisation of a certain type of indeterminism, and runs somewhat parallel to the considerations of the
causal set theorists.
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in T. Moreover, one can readily find spacelike slices of T whose domain of dependence
equals the whole space. In these two senses, the non-Hausdorff Trousers space is causally
better-behaved than the Hausdorff Trousers. In fact, these properties are strongly reminiscent
of global hyperbolicity — a connection that should be more fully explored by studying field
equations on the non-Hausdorff spacetime.

5.4.2 The Gravitational Action

We will continue our discussion in a similar spirit to Section 5.3.3, that is, we will first
describe a non-Hausdorff action in Euclidean signature, and then we will move on to the
subtleties of Lorentzian signature. In each case we will begin with a general treatment of non-
Hausdorff manifolds, before evaluating the derived actions for the case of the non-Hausdorff
manifold T, equipped with the metric of appropriate signature. As such, throughout this
section we will we assume that M is a non-Hausdorff two-dimensional manifold satisfying
the topological assumptions of Theorem 5.3.4 regarding the Euler characteristics of A and A.

Euclidean Gravity

For a two dimensional Hausdorff manifold M with possible boundary d M, vacuum Euclidean
gravity may be fully described via the Gauss-Bonnet action:

i I
S (M) = ﬂ/MR dA+E/aMkdy, (5.36)

where here any potential corner contributions have been absorbed into the Gibbons-Hawking-
York boundary term. According to the Gauss-Bonnet theorem for Riemannian surfaces, we
know that . (M,h) = 2?” X (M), and it is in this sense that two-dimensional gravity is a purely
topological theory.

If we were to proceed in a similar manner for a non-Hausdorff action, then it would
seem natural to maintain the topological nature of the theory and define the action according
to a Euclidean version of the non-Hausdorff Gauss-Bonnet theorem. For a non-Hausdorff
manifold M constructed via Theorem 5.2.2 and endowed with a Riemannian metric h, we
write:

1 i 1
(M, h) ._R/MRdAJrE/aMkdy—E/kay. (5.37)

By construction, the set Y = A\A is precisely one-half of the Hausdorff-violating subman-
ifold sitting inside M. This can be seen as a sort-of “interior surface term" or perhaps an
“internal boundary component”, the dynamics of which are captured by an extra Gibbons-
Hawking-York term of the appropriate sign.

Aside from a recreating a topological theory, the action . may also be justified according
to a variational principle. Indeed, if we were to vary .’ with respect to the Riemannian metric
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h, then we are left with the following:

Op? = 6p </MRdA+/aMkdy—/ka}/) (5.38)

:5h</ RdA+/ RdA—/RdA+/ kdy+/ kdy—/ kdy—/kdy)
M, M, A oM, oM, JdA Y

(5.39)
— &, (/M RdA+/a kdy) + 8, (/ RdA+/ kdy)
1 M, M, 8M2
— &), (/RdAnL/Bkdy)
A A

(5.40)
=0+0-0 (5.41)

where here we have used the same delineations of the boundary as in Section 5.3.3 and have
suppressed the overall factors of k! for readability. Observe that in the above expression we
needed to include the additional geodesic curvature of the submanifold Y, since otherwise
we are left with incomplete boundary data for the subspace A.

Now, consider the non-Hausdorff Trousers space T as defined previously, but this time
equipped with some Riemannian (rather than Lorentzian) metric h, defined according to our
general discussion in Section 5.2.4. Topologically, T consists of a pair of cylinders M; glued
along a semi-open cylinder A = S! x [0,1). These spaces all retract onto the circle, so their
Euler characteristics vanish. According to Theorem 5.3.3, the Euclidean action (5.37) for
(T,h) may then be evaluated as

1 1 1
S(T,h)=— | RdA-+ — kdy—— [ kd 5.42
<’)21</M +K/8MYK/YY (5.42)
_2717 T

= 2 ) O T o)+ (M) — 2 (A)) = 2 (040-0) =0 (5.43)

K K K
In short, this means that the non-Hausdorff Trousers space is flat, which agrees with the fact
that (T, h) is locally isometric to the flat cylinder by construction. We may conclude from
this that in the Euclidean theory, the non-Hausdorff Trousers space will have a larger contri-
bution to the path integral than the Euclidean version of the Hausdorff Trousers space.

In fact, if we consider a broader path integral that sums over all topologies interpolating
between all types of boundary components, then we are left with the observation that the
non-Hausdorff Trousers space contributes to the Euclidean path integral as strongly as the
cylinder. Moreover, it appears as though one can make arbitrarily-complicated configurations
of non-Hausdorff cylinders that remain globally flat, e.g. by adding extra legs to the Trousers,
which will similarly contribute with equal strength to the path integral. It seems that the only
way to ensure the suppression of non-Hausdorff Trousers in Euclidean gravity (relative to
the cylinder) would be to artificially introduce an extra term that tracks Hausdorff-violation:

exp{—"(M,g)} — exp{—(M,g) —a(M)}, (5.44)
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where here o ought to vanish for Hausdorff manifolds and be strictly positive otherwise.

Lorentzian Gravity

In Lorentzian gravity, we would like to define the action as in (5.37), where here we com-
pute the curvature and volume form according to the Lorentzian metric instead. We may
again motivate this choice by the topological nature of the action, and again the variation of
this action will vanish provided we include the additional Gibbons-Hawking-York term for
the Hausdorff-violating submanifold. However, in contrast to the Euclidean setting, we now
have the additional subtlety that the corner terms of the Hausdorft-violating submanifold
need to be computed using Lorentzian turning angles.

We will illustrate this for the non-Hausdorff Trousers space (T,h). Here there are two
special points in A that are used in the construction of T. These are p, the initial pointlike
source of topology change, and ¢, which is the final point of topology change. Observe that
there are two future-directed null rays connecting p to ¢, as pictured in Figure 5.8, which
makes the subset Y of A a boundary consisting of piecewise-geodesic null rays. Expanding
out the Lorentzian version of equation (5.37), we have:

1 1 1
y(T,g)—Z{/MRdA—{—E/aMde—E/ka}/ (5.45)
:i(/ RdA + RdA—/RdA>+l(/ kdy+/ kdy+/ kdy)
2K \Um, M, A K \Js! st st
(5.46)

1 ( / kdy+ / kd}/+20m), (5.47)
K \/n »

where here the 7; denote the two null rays connecting p to ¢ in A C M;. The total scalar
curvature terms above will all vanish, since each of the spaces involved is a flat cylinder.
Moreover, all of the geodesic curvature terms will also vanish, since the copies of S ! on the
boundary of T are all spacelike geodesic, and both the ¥; are null geodesics from p to ¢ in A.
Thus the total action reduces to the term Y’ 6,,;, which here is a sum of the turning angles of
Y =A\A at p and g.

Since both curves in Y are null rays, we are left with a computation of turning angles
using the null angular formulae of (5.19)—(5.22). Assuming that we may select the sign of
the ie-regulariser for the tangent spaces TPZ and TqZ of the corners p and g independently,
we are left with four possible combinations. These are:

@) TpZ and TqZ both use regulariser +i¢,
(ii) T,A and T,A both use regulariser —ie,
(ii1) TPZ uses regulariser +-i€ and TqZ uses regulariser —i€,

(iv) TPZ uses regulariser —i€ and TqZ uses regulariser +i€.
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For the first two cases, the two corner contributions to . (T, g) have equal strength but
opposite sign, so they cancel and the total action reduces to zero. Put differently, cases (i)
and (ii) will correspond to global Wick rotations for a triangulation of A, and thus fall within
the scope of the Gauss-Bonnet theorems 5.3.1 and 5.3.2. The Euler characteristic of T being
zero then ensures that . (T, g) vanishes, and we again encounter the same issue as in the
Euclidean case.

Alternatively, we may also consider cases (iii) and (iv): if we were to pick regularisers
with opposite signs, the sum of corner terms would not cancel. Thus we may not apply the
Gauss-Bonnet theorem in order to evaluate the action. Instead, we are left with actions taking
the values ) )

i) (T, g) = +% and .7 (")(T,g) = _%. (5.48)

The former will lead to a suppression of the non-Hausdorff Trousers space in the schematic
path integral (5.1), and the latter will lead to an enhancement. It seems reasonable, therefore,
to suggest that we select regularisers of opposite sign, according to case (iii) above. For
future reference, we state this here in more general form.

sgn(ie(x)) = (5.49)

+ie if x corresponds to an initial point of topology change
—ige if x corresponds to a final point of topology change

There is an obvious and intentional similarity between our angular prescription and that
of Sorkin/Louko [67]. Perhaps of interest is the difference in overall value of the result-
ing action — in [67] the action of the Hausdorff Trousers space is computed to be % (with
appropriate sign convention), and here, we obtain an overall strength of % Thus, if simul-
taneously included within the same path integral, it appears as though the non-Hausdorff
Trousers space will enjoy a weaker suppression factor relative to its Hausdorff counterpart.

5.4.3 More S! Transitions

As mentioned in the introduction, a generally unsung feature of Sorkin’s angular convention
is that any more transitions other than the Trousers spaces will yield a further dampening
within the path integral. Indeed, adding an extra genus (which topologically amounts to
taking a connected sum with the torus) changes the Euler characteristic by:

X(MHET?) = 2 (M) + x(T?) — x(5%) = x(M) -2, (5.50)

so adding any extra genera to the bulk of a Trousers space will continually decrease its total
contribution to the path integral. In this sense, according to the same-sign convention for i€,
any more elaborate branching will be further suppressed in the path integral. Alternatively,
if we were to pick the other sign of the regulator, then we are left with the observation that
transitions from X; to X, with arbitrarily-many genera will have the highest probability of
occurring. With this in mind, it makes sense to pick the sign that entails the suppression of
these higher-genus transitions.

In the non-Hausdorff case, we still have this genus complication, as well as the possibility
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Figure 5.9: The region A (left), together with more elaborate models. Based on Euler characteristic
alone, there is no distinction between these three spaces. However, due to our angular convention (5.49)
the total action will increase in multiples of i.

that the topology of ¥£; may change from multiple spacelike-separated sources. We will now
treat these two possible complications separately.

Transitions with extra pointlike sources

For a collection py,-- -, p,, of spacelike separated points on the cylinder, we may construct a
non-Hausdorff manifold by gluing two cylinders together along the open subset

B:= Ml\ U 7 (p) (5.51)
o—1

by taking f to be the identity map. The result will be a manifold that is homeomorphic to
the non-Hausdorff Trousers space T, but not isometric to it. The only difference is with the
causal structure of the Hausdorff-violating submanifold Y — we will obtain a null boundary
with a sort-of “zigzag" structure, as depicted in Figure 5.9.

When evaluating the action for this spacetime, we are again forced to consider some
sort of angular convention for the turning angles of the extra null boundary Y. In this case,
consistently applying the angular convention (5.49) will force an additional suppression of
these spaces relative to T. Precisely, if T, is the non-Hausdorff Trousers space arising from
n-many pointlike sources, then under our sign convention .(T,) will take value nmi/x.
Thus our more-elaborately branching models will naturally enjoy a larger suppression in the
path integral (5.1).

Transitions with extra genera

It is also possible that the non-Hausdorff Trousers space may contain extra genera in the
bulk, and these ought to be accounted for within the theory. In this situation we are com-
bining both Morse-theoretic and Penrosian topology change, and there are many possible
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combinations to consider. Perhaps much more may be said about this particular regime, and
there may well be limiting cases of interest, for instance, a non-Hausdorff branching point
occurring precisely at the crotch singularity of a Trousers space. For simplicity’s sake, we
will assume that the future null cones of any pointlike sources of topology change do not
contain any critical points such as the crotch singularity. Moreover, we will assume that M
is a non-Hausdorff manifold built from Hausdorff manifolds M; and M, glued along order-
preserving isometries, so that the Gauss-Bonnet theorem of 5.3.4 and the causal properties
of Section 5.4.1 are still maintained.'”

We will now rewrite the Lorentzian non-Hausdorff action in such a manner that we ob-
tain a purely topological piece, as well as a piece that spoils the Gauss-Bonnet theorem. The
former will arise from the action evaluated with the global +i€ angular convention, while
the latter will encode the effect of switching to our chosen angular convention (5.49).

Let 6,,, denote the turning angles of Y that would follow from the +i€ convention, and
let 6,,; denote the angles that follow from our convention (5.49). We can then write the Y
boundary term as:

/kaV: Z/ydeZ@m (5.52)
= (Z/ydeZém) + (Y Oext — Y 6ent) - (5.53)

Now, at each corner, the quantity 6,y — O,y is either 0 or —iz, depending on whether the
corner corresponds to an initial or final point of topology change, respectively. Thus, we
have:

/ kdy = (Z / kdy+Zéex,) —nmi (5.54)
Y 14

where 7 is the number of pointlike sources of topology change. Plugging this into the action
and using the Gauss-Bonnet theorem (which applies for the angles 6,,;), we get:

1 1 1
Y(M,g)_ﬁ/MRdAjLE/aMkdy—;/kay (5.55)
1/1 3 i

_ (1 RdA+/ kdy— /kd _ eex)+— 5.56
< (3 [ raas [ ar=F [rar-Foo )+ "2 50

21i nrwi

— 2o+ 2 ,

M)+ (5.57)

We see that in distinction to our Euclidean discussion of Section 5.4.2, our convention (5.49)
for Lorentzian turning angles at corners naturally introduces a term that suppresses non-
Hausdorff topology changes, in addition to the usual suppression of Hausdorff ones (i.e. of

19Note that the desired poset structure and global time function still exist, provided that we glue along
isometries that preserve time-orientation. In such a situation, the causal orderings of the M; will be preserved
under the canonical maps ¢;, and we may transfer the global time functions of the M; to M using Theorem
5.2.3.
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higher genera) via the Euler characteristic.

5.5 Conclusion

In this chapter we have provided a basic analysis of non-Hausdorff transitions between var-
ious copies of the circle, in a manner consistent with the original idea of Penrose [89]. Ac-
cording to the colimit constructions of Section 5.2, we saw that non-Hausdorff manifolds
may be readily endowed with a smooth structure, as well as all tensor fields that one may
require in differential geometry. All of these notions were defined without issue according to
local definitions together with consistency conditions on the map f : A — M, which provided
the specifics of the gluing construction.

A central issue for non-Hausdorff manifolds is the passing from local to global data. This
manifests in the non-existence of arbitrary partitions of unity (cf. Theorem 5.2.4), and in the
inability to use the usual notion of integration. However, we circumvented this issue and saw
in the integral formula of Theorem 5.2.5 that the global integral of a compactly-supported top
form on a non-Hausdorff manifold satisfies a particular subadditivity formula. The formula
5.2.5 is almost identical to the standard subadditivity for Hausdorff manifolds, except that
it required the crucial inclusion of the extra boundary term of dA. According to the colimit
construction of Section 5.2, this term integrates the extra piece of the Hausdorff-violating
submanifold sat inside M.

Although innocuous from a measure-theoretic perspective, the inclusion of this “inter-
nal boundary" term into the global integral had some important consequences for the non-
Hausdorft Gauss-Bonnet theorem. Our main observation of Section 5.3 was an extension of
the usual Gauss-Bonnet formula into the non-Hausdorff Lorentzian setting. Theorem 5.3.4
ultimately showed that the total scalar curvature alone that does not equate to the Euler char-
acteristic, but instead requires the extra integral counterterm, which in this context may be
interpreted as the geodesic curvature of the extra Hausdorff-violating submanifold sitting in-
side the space.

As we saw in Section 5.4, this Gauss-Bonnet theorem ultimately suggests that there is
no inherent way to guarantee the suppression of the non-Hausdorff Trousers space within
a Euclidean path integral that sums over topologies. However, in Lorentzian signature we
had the additional subtlety that now, in order to properly evaluate the action, we needed to
compute the particular turning angles between adjacent null geodesics. Given that each of
these turning angles is subject to its own convention for Lorentzian angles, we argued that
there indeed exists a method for suppression of non-Hausdorff Trousers spaces in Lorentzian
signature: we needed to intentionally spoil the Gauss-Bonnet theorem by selecting opposite
sign conventions depending on the nature of these turning angles. Once this was done, the
gravitational action took the correct sign in Lorentzian signature, which accounted the de-
sired suppression.

In distinction to the Hausdorff case, there are two possible types of further branching: the
addition of extra sources of pointlike change, and the inclusion of Hausdorff branching as
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per usual. In either case, we saw that more elaborate branching caused a further dampening
in the path integral.

Future Work

We will now finish with some discussions of future work. As we saw in Sections 1.4 and
3.1, the non-Hausdorff Trousers space naturally inherits any Lorentzian metric placed on the
ordinary cylinder. Moreover, we saw in Section 5.4.1 that the causal structure arising from
the metric g on T is relatively well-behaved, thus on causal grounds alone one may suggest
that the non-Hausdorff Trousers space should be reasonably included in the schematic path
integral of Equation (5.1). However, it seems natural to suggest that a“physically reasonable"
spacetime ought to be a suitable background upon which to define both spinors and quantum
fields.

Regarding possible spin structures: it is well-known in the Hausdorff case that questions
regarding the existence and uniqueness of spin structures on a given manifold may be best
articulated within the language of Cech cohomology. Specifically, it can be shown that a
given (Hausdorff) manifold admits a spin structure if and only the second Steifel-Whitney
number w; vanishes. In addition, it can be shown that the number of inequivalent spin struc-
tures on a given manifold may be classified with the Cech cohomology group H (M, Z,).
For the non-Hausdorff case, the Cech cohomology is partially understood [85], though a full
theory of non-Hausdorff spin geometry is yet to exist.

Regarding quantum fields: in the non-Hausdorff case the causal irregularities of the
crotch singularity do not exist, so the abnormalities present in the Trousers space (discussed
in [4, 16, 70]) will probably not exist either. Moreover, it appears as though the categori-
cal phrasing of non-Hausdorff manifolds detailed in Section 5.2 may readily be applied in
conjunction with the locally-covariant algebraic quantum field theory introduced in [15] to
construct at least some class of quantum fields. However, it is not clear what the exact prop-
erties of such fields ought to be, and this should be an interesting avenue of inquiry.

Broadly speaking, our discussion in this chapter suggest that Penrose’s topology chang-
ing spacetimes may be appropriately furnished with the mathematical structures required for
an inquiry into physics. From a causal perspective, these non-Hausdorff spacetimes appear
to be better behaved than the ordinary Trousers space, ultimately due to the absence of any
metric singularities. This good behaviour suggests that non-Hausdorffness may be a more
appropriate model of topology change in Lorentzian signature. Once the spin geometry and
quantum field theory of non-Hausdorff manifolds is well-understood, it would be very inter-
esting to study the inclusion of these spacetimes within pre-existing theories that sum over
topologies. In particular, our non-Hausdorff transitions may provide a geometric realization
of interacting (i.e. splitting and joining) strings within Lorentzian signature.
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Summary of Chapter

Throughout chapters 2,3 and 4 we developed the mathematical machinery needed to properly
analyze non-Hausdorff manifolds. In particular, we saw that non-Hausdorff manifolds can be
made smooth, and even endowed with metrics, the curvatures of which were integrable quan-
tities. In this chapter, we extended these ideas into the setting of Lorentzian non-Hausdorff
manifolds. Physically, we were motivated by the possibility of non-Hausdorff transitions
within a path integral that sums over topologies interpolating between one circle and two.
The standard picture employed the Trousers space, a two-dimensional almost-Lorentzian
manifold exhibiting a causal irregularity at a single point. Motivated by this object, we de-
fined the so-called non-Hausdorff Trousers space, which was formed by gluing together a
pair of Lorentzian cylinders along the complement of the causal future of a single point.

Throughout this chapter we analysed various properties of the non-Hausdorff trousers.
Interestingly, we saw that since it was formed as an adjunction of such causally well-behaved
spaces in the first place, the non-Hausdorff trousers inherited many of the causal features
of the Lorentzian cylinder. In particular, we saw that the non-Hausdorff trousers admits a
globally-defined Lorentzian metric, in stark contrast to the Hausdorff trousers. After making
some refinements to the Lorentzian version of the Gauss-Bonnet theorem, we then gener-
alised this result to the setting of non-Hausdorff spacetimes. Again as in the Riemannian
case seen in Chapter 4, here we saw that there is an additional term corresponding to the
geodesic curvature of the Hausdorff-violating submanifolds inside our space. Ultimately, it
was this total Lorentzian scalar curvature that motivated the correct non-Hausdorff gravi-
tational action — the additional counterterm acted as a kind-of Gibbons-Hawking boundary
term, and was required to make the variation of the action vanish.

Motivated by these geometric results, we then studied the potential inclusion of the non-
Hausdorff trousers within a path integral summing over the aforementioned transitions. The
result was positive: we provided a sign convention for the turning angles between Lorentzian
null rays that would entail desired suppresion of the non-Hausdorff trousers within the path
integral. This result mimicked the Hausdorff argument of Sorkin and Louko. Finally, as
a consistency check, we showed that under our sign convention, more elaborate branching
enjoyed a stronger suppression within the path integral.

Overall, the results in this chapter suggest that from a causal perspective, the non-Hausdorff
trousers space is at least as well-behaved as its Hausdorff counterpart, if not superior due
to the lack of causal irregularities. Although encouraging, we note that a further analysis
is required before making bold claims regarding the overall superiority of non-Hausdorff
topology change in Lorentzian signature.



Chapter 6

Conclusion

Throughout this thesis we have developed a working theory of non-Hausdorff manifolds,
with an eye towards models of Penrosian topology-changing transition amplitudes within a
naive 2d quantum gravity. Given the large gap in the literature, we first started with a de-
scription of the underlying topological features of non-Hausdorff manifolds, and then slowly
walked through a development of the geometry required for the meaningful descriptions of
non-Hausdorff transitions between copies of the circle, as a combination of the ideas of Pen-
rose and Sorkin/Louko. We will now finish this thesis with a technical summary of our work,
followed by a brief observation regarding future work.

Technical Summary

We began our inquiry by introducing a general formalism for non-Hausdorff manifolds in
terms of adjunction spaces. This formalism generalised the observation of Haefliger/Reeb
found in Figure 1.6 by providing a method for gluing together arbitarily-many topological
spaces X; along open subsets A;; via continuous maps f;; which encode the gluing. Im-
portantly, we showed that the resulting quotient space is always the colimit of the diagram
formed from the X;, A;; and f;; in the usual topological category.

Throughout Sections 1.2 and 1.3 we showed that the gluing maps f;; may preserve other
topological features of the spaces X;, provided some additional assumptions that depend on
the features in question. In particular, we showed that whenever the X; are topological man-
ifolds, the resulting quotient space preserves the properties of being locally-Euclidean and
second-countable, provided the gluing maps f;; are open topological embeddings and there
are countably-many spaces being glued. This prescription was slightly too general in order
to guarantee a non-Hausdorff structure in the quotient space, so we provided an additional
condition in Section 1.3.1 that ensures non-Hausdorffness.

In Section 1.3.2 we also showed a technical limitation to non-Hausdorff manifolds, that
is, the non-existent of certain partitions of unity. As we demonstrated, the Hausdorff con-
dition is rather crucial for the arbitrary existence of partitions of unity on a manifold, and
consequently our non-Hausdorff manifolds are not subject to the expected level of expres-
sivity. This is an important technical nuisance of non-Hausdorff manifolds, and one that will
always need to be kept in mind when working with them.
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Using the adjunction formalism of Chapter 1, we saw in the form of Theorem 2.3.10
that non-Hausdorff topological manifolds can always be formed by gluing together ordi-
nary Hausdorff ones along homeomorphic open submanifolds. Moreover, we also confirmed
that the images of these Hausdorff manifolds will exist as maximal open, Hausdorff, con-
nected submanifolds of the non-Hausdorff quotient space. These subspaces, known as H-
submanifolds in the literature [46, 77], were shown to satisfy the refined criterion dV = YV,
provided some additional assumptions on their simplicity. Overall, Chapter 1 can be seen
as a completion of the observation of Haefliger and Reeb to the setting of non-Hausdorff
topological manifolds in general dimension.

In the second chapter we extended our adjunction formalism into a suitable smooth cate-
gory. In particular, in Section 2.2.2 we showed that smooth manifolds M; can be glued along
smooth open submanifolds M;; via smooth gluing maps f;; to yield a smooth non-Hausdorff
manifold M. This space M is again a colimit of the appropriate diagram, this time in the
category of smooth, not-necessarily-Hausdorff manifolds. Thus armed with an appropri-
ate notion of calculus, we then studied the resulting ring of smooth, real-valued functions
C>(M). In the case of a finite colimit M, in Section 2.2.3 we used an inductive argument to
show that the space C**(M) is a limit of the algebras C*°(M;), known commonly as a fibre
product.

Vector bundles over a non-Hausdorff manifold M were then described in two, essen-
tially equivalent, manners: firstly, in Theorem 3.3.1 we saw that colimits of vector bundles
E; KN M; are well-defined, provided some extra bundle gluing maps F;; : E;; — E; are pro-
vided. A sort-of converse was also proved: it was shown in Theorem 3.3.3 that any vector
bundle E over a non-Hausdorff manifold M can be realised as a colimit of bundles in the
previous sense. We then extended the result of Theorem 3.2.14 to smooth cross-sections of
an arbitrary bundle E over a finite colimit M. Heuristically, it is shown in Theorem 3.3.6
that any section of any vector bundle over M can be seen as a collection of sections over
Hausdorff subbundles that are "compatibly glued" on the regions E;;. We then applied this
to the particular case of metrics, and proved that our smooth non-Hausdorff manifolds admit
Riemannian metrics, provided that we glue along isometries.

Results such as Theorems 3.2.14 or 3.3.6 appear to require some form of partition of
unity in order to verify. This is somewhat true, but in a refined sense. Throughout Chap-
ter 2 we assumed that our non-Hausdorff manifolds we built by gluing along regions A;;
that have pairwise diffeomorphic boundaries. Using the fact that continuous maps from a
non-Hausdorff space into a Hausdorff one must send Hausdorff-violating points to the same
value, this allowed us to confirm that functions (or sections) on non-Hausdorff manifold took
the same value on Hausdorff-violating points. We could then apply partitions of unity within
each Hausdorff submanifold at will, and use a different method of extension (namely 3.2.12
or 3.3.5) to describe functions on the whole non-Hausdorff manifold. This procedure allowed
us to effectively circumvent the partition of unity problem for non-Hausdorff manifolds.

In the final section of Chapter 2 we were first introduced to an important theme regarding
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cohomology theories: it is not the case that cohomology groups can be “glued" like mani-
folds, bundles, functions or sections. Instead, the cohomology of a non-Hausdorff manifold
exists in a particular relationship to the cohomologies of its Hausdorff constituents, known
familiarly as Mayer-Vietoris sequences. In Section 2.4.1 we saw the first version of such
a sequence, namely the Mayer-Vietoris sequence for non-Hausdorff Cech cohomology, and
then generalised the setting in Section 2.4.2. Throughout the remainder of Chapter 2 we saw
what these descriptions of cohomology bought us: in certain cases we were able to use non-
Hausdorff Cech cohomology to classify the inequivalent line bundles that a non-Hausdorff
manifold permits.

In Chapter 3 we took these cohomological considerations one step further by describing
de Rham cohomology for our non-Hausdorff manifolds. Given the general non-existence of
partitions of unity on a non-Hausdorff manifold, the standard descriptions via Mayer-Vietoris
sequences were particularly intractable. In order to resolve this, we restricted our attention
to the case in which the non-Hausdorff manifolds have gluing regions A;; whose topological
closures are smooth manifolds with boundary equipped with a small outward-pointing collar
neighbourhood. From this assumption, the non-Hausdorff Mayer-Vietoris sequence took a
particular form involving the de Rham cohomology groups of the form H(;IR (A_U) instead of
the usual ones. In the case that each of these regions A;; were regular-open, we found that
the expected Mayer-Vietoris sequences could be recovered. In this case, we then used a five-
lemma argument to prove the non-Hausdorff version of de Rham’s theorem.

Alongside our treatment of de Rham cohomology, in Chapter 3 we also derived the cor-
rect form of integration on a non-Hausdorff manifold. We opted for the so-called integration
over parameterizations, which integrates differential forms over patches of space that in-
tersect on measure-zero boundaries. Of particular interest was the expression in Theorem
5.2.5, where we expressed the non-Hausdorff integral of a differential form in terms of the
Hausdorff submanifolds M; and gluing regions A;;. Importantly, such an integral satisfied a
particular sub-additive equality, where in particular the integral over gluing regions included
the boundaries dA;;.

Although the inclusion of extra boundary terms dA;; into the integral over M may ap-
pear to be innocuous by virtue of boundaries being measure zero sets, we saw that there were
non-trivial consequences for certain topological results. In particular, in Lemma 4.5.3 we de-
rived the correct version of Stoke’s Theorem for non-Hausdorff manifolds, and saw a clear
counterterm manifest. Finally, we saw a similar counterterm manifest in the Riemannian
version of the Gauss-Bonnet theorem of 4.6.5. Again, we saw that the Euler characteristic
of a non-Hausdorff manifold M is connected to the total scalar curvatures of its Hausdorff
submanifolds subadditively, together with an additional counterterm for the boundaries dA;;.
Recalling from Chapter 1 that these boundary sets comprise half of the Hausdorff-violating
portions of the manifold M, the extra counterterm in the Euclidean Gauss-Bonnet theorem
may be interpreted as the geodesic curvature of the extra Hausdorff-violating submanifolds
sitting inside the non-Hausdorff surface M.

Finally, in Chapter 4 we finished the thesis by including particular 2d non-Hausdorff
manifolds within the path integrals of naive quantum gravity in Lorentzian signature. We
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started by once again extending our adjunction formalism, this time into Lorentzian geom-
etry. In particular, we argued that any Lorentzian structures can be extended into a non-
Hausdorff manifold M, provided that the gluing regions A;; are open Lorentzian subman-
ifolds and the gluing maps f;; are isometric open embeddings. We also argued in Section
4.4.1 that certain causal properties of Hausdorff spacetimes will be preserved in this gluing
process. Of particular interest was the preservation of global time functions, which could
be “glued" to form a global time function on the overall non-Hausdorff spacetime via the
exposition detailed in Chapter 2.

As a consequence of this causal analysis, we observed that a non-Hausdorff spacetime
built in this manner will admit a globally non-vanishing Lorentzian metric. This is in stark
contrast to the Trousers spacetime, and in this sense the non-Hausdorff transitions from one
circle to two are strictly superior to their Hausdorff counterparts. Extending this observation,
we also argued that the causal ordering on a non-Hausdorff spacetime may exhibit a poset
structure, and thus ought to be included within any sum-over-histories-style path integral that
includes Trousers spaces on causal grounds.

Later in Chapter 4 we derived and evaluated a gravitational action for non-Hausdorff
spacetimes. Since we were working in 2d, this action was essentially topological, and con-
nected to the Euler characteristic via a Lorentzian version of the Gauss-Bonnet theorem.
Our technique for proving the non-Hausdorff Gauss-Bonnet theorem in Lorentzian signa-
ture was a direct application of the techniques illustrated in Chapter 3 — we used a Mayer-
Vietoris-style sequence to express the de Rham cohomology of the non-Hausdorff spacetime
in terms of the cohomology groups of its Hausdorff submanifolds, applied the Hausdorff
Gauss-Bonnet theorem to all of these pieces, and then collated the result into a total inte-
gral that expressed a total scalar curvature. As with the Euclidean case discussed in Chapter
3, the Lorentzian Gauss-Bonnet theorem included an additional counterterm computing the
geodesic curvature of the Hausdorff-violating submanifold sitting inside our spacetime. In
Lorentzian signature, we interpreted this counterterm as an extra Gibbons-Hawking piece of
the action, attributed to an “interior boundary" of Hausdorff-violating null curves.

In the Hausdorff regime there are already some interesting subtleties regarding the Lorentzian
version of the Gauss-Bonnet theorem — the overall sign of the action (which in turn encoded
the suppression rules in the path integral) was actually a choice, that amounted to picking
the correct convention for Lorentzian angles. This was known to Sorkin and Louko in [67],
and the correct sign choice was used to justify the desired suppression of topology-changing
spacetimes within their path integral. In the final portion of Chapter 4 we recreated this
analysis in the non-Hausdorff case, by finding the correct sign angle that would entail the
desired suppression. In the non-Hausdorff analogue of the Trousers space the bulk is flat,
so the total strength of the action was determined by a sign convention on the corners of
the Hausdorff-violating interior boundaries. After selecting the right sign conventions for
all of the corners, we obtained the suppression rules (5.49). We then finished the chapter
by confirming that any more-elaborate branching would yield a stronger suppression in the
resulting path integral, provided our sign convention was respected.
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Future Work

Throughout this thesis we have progressively demonstrated the mathematical and physical le-
gitimacy of non-Hausdorff manifolds as a viable candidate for topology change in Lorentzian
signature. As we saw in Chapter 4, there are non-Hausdorff transitions between copies of
the circle which possess a globally non-singular Lorentzian metric. This metric, in turn, had
some surprisingly well-behaved causal properties, as was seen in Section 4.4.1. In particu-
lar, we saw that the causal precedence relation for some non-Hausdorff spacetimes may be a
poset, whilst possessing global time functions and compact causal diamonds, without being
globally hyperbolic in the usual sense of the term.

Quantum Fields on a non-Hausdorff Background

With these desirable causal properties in mind, it will be interesting to perform a further
qualitative comparison between the Hausdorff and non-Hausdorff versions of the Trousers
space. As was mentioned in the introduction to this thesis, the ordinary Trousers space
possesses a certain causal oddity due to the crotch singularity, which has four lightcones
instead of the usual two. As was argued, this is essentially the best possible option for the
Trousers space, since its Euler characteristic doesn’t vanish. However, the non-Hausdorff
Trousers space avoids these issues and therefore may be more physically-reasonable with
regards to its resulting properties. In the future, it will be very interesting to investigate other
physical properties, so as to build a more holistic comparison between the Hausdorff and
non-Hausdorff Trousers.

In [4, 16, 70] quantum fields are placed on the Trousers space and their basic properties
studied. These three analyses differ in their approach, however they all arrive to the same
conclusion: the causal irregularity and the crotch singularity will cause an infinite burst of
energy in the quantum field. In some sense this is to be expected, as quantum field theory
in curved spaces typically generalise from Minkowski spacetime into globally-hyperbolic
spacetimes. The reason for this is that globally-hyperbolic spacetimes possess a Cauchy
surface, and field equations on this surface are particularly amenable to quantization. The fa-
mous splitting theorem of Geroch [40] tells us that any globally-hyperbolic spacetime cannot
exhibit topology change, and conversely the Trousers space cannot be globally-hyperbolic.
With this in mind, one may expect at least something to go wrong with quantum fields placed
on the Trousers space.

In contrast to this, the non-Hausdorff Trousers space of Section 4.4 is built from two
globally-hyperbolic spacetimes by gluing them together along a subspace A which is also
globally-hyperbolic. Taking this as motivation, it seems as though there may be a method of
studying QFT on the non-Hausdorff Trousers by "gluing" quantum fields defined on all of
these globally-hyperbolic Hausdorff submanifolds. As we have seen several times through-
out this thesis, this notion of gluing is best described categorically. Therefore, it seems as
though a natural starting point for a non-Hausdorff quantum field theory ought to be the
locally covariant QFT of [15]. In this framework, a quantum field theory is defined to be
a functor that associates a C*-algebra of operators to each (Hausdorff) globally-hyperbolic
spacetime of a fixed dimension. This association, being functorial, is taken to be compatible
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with causal embeddings in such a way that the overall definition of a locally covariant QFT
mimics the Haag-Kastler axioms of algebraic quantum field theory.

Given that the non-Hausdorff Trousers space is defined to be a colimit of Hausdorff
globally-hyperbolic spacetimes, it seems as though the most appropriate thing to do would be
to extend a fixed locally-covariant QFT to include these non-Hausdorff colimits. This would
amount to finding an appropriate colimit of the C*-algebras associated to the Lorentzian
cylinder and the gluing region A, in such a way that the usual axioms of [15] are satisfied
as best as they can be. Supposing that such an investigation is successful, it will be very
interesting to determine whether or not quantum fields on the non-Hausdorff Trousers avoid
this "infinite burst of energy" by virtue of avoiding the causal irregularities present in the
ordinary Trousers space.

If successful, this investigation could provide compelling evidence for the superiority of
Penrosian topology change over the Morse-theoretic Hausdorff analogue. In turn, this could
suggest that non-Hausdorffness would be a more appropriate model for any two-dimensional
Lorentzian theory of quantum gravity which sums over distinct topologies. This may include
the worldsheets of closed bosonic string theory in Lorentzian signature, therefore suggesting
that non-Hausdorffness is a better picture of interacting strings in a Lorentzian string theory.
However, the validity of this speculation is unclear at present.

Discrete Quantum Gravity

Simplicial complexes, being Hausdorff, do not directly apply to the non-Hausdorff manifolds
we have described throughout this thesis. However, it seems nonetheless plausible to appro-
priately generalise the notion of discreteness to include our non-Hausdorff spaces. In a sense,
a prototype of this idea was discussed in Section 5.3, where we proved a non-Hausdorff
Lorentzian Gauss-Bonnet theorem by decomposing everything into Hausdorff pieces, per-
forming integrals there, and then recomposing everything into a meaningful global quantity.
It may well be the case that a similar approach may work in general: perhaps the correct
notion of discretization of a non-Hausdorff manifold is a simultaneous discretizations of
its Hausdorft submanifolds, up to some consistency conditions on overlaps and Hausdorft-
violating boundaries.

From a homological perspective, one would expect the correct notion of discretization to
admit an equivalence to the smooth singular homology detailed in Section 4.5. Presumably,
such an equivalence would arise via a derived Mayer-Vietoris sequence followed by a Five
Lemma argument. In that sense, the correct space of "non-Hausdorff g-chains" ought to
relate to ordinary simplicial complexes via a short exact sequence. In its simplest form, we
may expect some kind of space A,(M) of g-chains such that

((12)5,—(f12)+) (01)s+(92)+

0—>Aq(A12) Aq(Ml)@Aq(Mz) —>Aq(M) —0 (6.1)

forms a short exact sequence. Presumably then, in direct analogy to the techniques used
in Section 4.5, one might justify a non-Hausdorff simplicial homology via a duality with the
de Rham cohomology described in Section 4.4.
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Perhaps most interesting for physics would be an explicit description of the gluing pro-
cedures one needs in order to construct non-Hausdorff simplicial complexes from Hausdorff
building blocks. Most likely, the space A;(M) conjectured above ought to be constructible
by relaxing the notion of gluing simplices by allowing for the case in which simplices may
be glued along their interiors but not their boundaries. Alternatively, perhaps a better de-
scription could come from defining a new fundamental "non-Hausdorff simplex" which may
be glued according to more familiar-looking rules. In either case, such a development, if
successful, would be the correct starting point for a discrete version of the ideas outlined in
Chapter 5. This could, in turn, serve as an interesting modification of the usual theory of
Causal Dynamical Triangulations.

Higher-Dimensional Gravity

As mentioned in the introduction to Chapter 5, throughout this thesis we considered the
simplest possible case of non-Hausdorff topology change, namely, that of two dimensions.
An obvious extension of these ideas would be to extend the ideas of Chapter 5 into higher
dimensions. Generally speaking, one can imagine a non-Hausdorff manifold M that is built
from a pair of n-dimensional globally-hyperbolic spacetimes M; and M>, glued together
along a common region A := M;\J"(p), in direct analogy to the non-Hausdorff trousers
space of Section 5.4. Classically, the gravitational action for such a space ought to follow
similarly to that of Equation (5.37), that is, some kind of schematic decomposition:

y(Ma g) = yBulk(Ma g) + dery<M7 g) - yNH (Mag) (62)

where presumably the third, Hausdorff-violating piece of the action would be needed in
order to ensure the variation of the overall action vanish — cf. (5.38). The final term in the
above ought to be an action corresponding to a null internal boundary, so presumably the
precise form would be similar to those found in say [87] or [66].

Perhaps most interesting is the potential recreation of suppression rules similar to those
found in Chapter 5. Presumably, there would be a corner term present in the evaluation of the
null piece .-y (M, g), so perhaps a bespoke analytic argument is needed to guarantee the
potential suppression of such models relative to their ordinary, unbranched comrades. That
being said, such observations are speculative at best, and thus a further inquiry is required in
order to settle the matter.
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Appendix A

A.1 Appendix to Chapter 3

Lemma A.1.1. Let M be a non-Hausdorff manifold built from three manifolds M;. Then M
is homeomorphic to the two-step adjunction space

(M1 Us, Mz) UfM3. (A.1)

Proof. Let N denote the adjunction of M| and M, along the open subspace M1>. We will use
@1 and ¢, to denote the canonical embeddings of M| and M,, and brackets [-,-] to denote
points in N. Consider the subspace A := M3; U M3,, which is a subspace of M3. We define a

function f : A — N by
f(x) _ {[[f31(X),1]] if.XEM?,] (AZ)

[[f32(x),2]] if x € M3

The function f is well-defined since any element x in the intersection M3 N M3, will satisfy
the equality f31(x) = f21 o f32(x) by condition (A2) of Definition 3.2.1. The broad schematics
of our argument may be depicted as follows,

(A.3)

where here the maps y; and ¢; are all the canonical embedding maps of the various
(binary) adjunction spaces, and K is the map defined as in Section 3.2.1. Observe that all
three M; naturally embed into the adjunction space N Uy M3. Indeed: for My and M, we may
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use the compositions @ o x;, and for M3 we may simply use ¢,. Moreover, by construction
these maps commute with all of the 1;; and f;; maps. As such, we may employ the universal
property 3.2.2 of M to conclude that there exists a unique continuous map € : M — N U7 M3
making the diagram commute. Explicitly, this map will act as:

[[x,1],a] ifxeM,
e([x,i]) = ¢ [[x,2],a] ifxeM,. (A4)
[x,3],6] ifxeMs

Similarly, we can use the maps k : N — M and ¢3 : M3 — M together with the universal
property of the adjunction space N U M3 to conclude that there is a unique map € : N Uy
M3 — M. A simple exercise confirms that the maps € and € are inverses of each other, which
yields the desired homeomorphism. 0

Theorem A.1.2. Suppose that the diagram F appears in an Abelian category in inverse
form. Then the general fibred product [ # A; is isomorphic to an inductive limit.

Proof. We proceed via induction. Suppose first that the indexing set I has size 3. We will
show that A is isomorphic to the two-step construction (Aj X A A;) xp Az, where B :=
A13 X 4,5, A23. The following diagram depicts the schematics of the result.

A12 — Al {—-=-=-- Al XA12A2 <—~\\
/ >< L/, _________ N
A123 — A13 Az «—— A » (A1 XAlez) XBA3 (A.S)

We may use the universal property of B to construct two maps € : A X4,,A> —Band € : A3 —
B. Firstly, € is defined by applying the universal property to the two maps that following the
sequence Ay x4,,A» — A; — A;z3 — A123. The map € is defined by applying the universal
property of B to the two maps following the sequence A3 — A;3 — A123. The two-step fibred
product may then be defined as

(A1 ><A12A2) XpAz = {(a,b) €A XAlez) X Aj | 8(61) = S(b)}. (A.6)

We may then use the same argument as that of the previous Lemma and use the universal
properties of both A and (A; x4,,A2) XpAs3 to construct the desired isomorphism. For the
inductive argument, we can proceed in essentially the same manner as that of Theorem 3.2.6,
except that this time we reverse all the arrows and take limits instead. [
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The Cover-Independent Mayer-Vietoris Sequence

In Section 3.4.1 we determined the Mayer-Vietoris sequence for Cech cohomology relative
to an open cover %. We will now briefly justify a similar relationship between the Cech
cohomologies that arise via direct limits. Suppose that ¥ = {Vp } gcp is a refinement of the
open cover % = {Ugy} qeca- This refinement can be formalised using a map A : B— A defined
by the property Vg C Uy (g) for all B in B. The refinement map may be passed onto the level of
cochains by defining A (agy--a,) := @3 (qgp)--- A(a,) for all locally-constant functions in a given
cochain. There may be many such maps for the same refinement, however the following
argument is independent of the particular choice of A.

Lemma A.1.3. The refinement map A : C1(M,¥) — C1(M, %) commutes with both ®*

Proof. Let d be a cochain in C¢(M, #). For any function ag,...p, in d, we have

A (9] d)p,...p, = A(ap,...p, © 9i) = an(py)--a(p,) © i = ¢ (Aa). (A7)

Then
Ao®@*d= (Aodid,Aodyd)= (¢ oAd, P> oAd) =D o A(d). (A.8)
The case for 1}, and f}, are similar. m

A standard computation confirms that the refinement map A commutes with the Cech
differential [13]. This, together with the previous result, allows us to view A as a chain
map. We may then apply the Snake Lemma, together with the descended map A, to obtain
the following commutative relationship between the two cover-dependent Mayer-Vietoris
sequences.

L gL ) 2 HOMy, ) @ HY (M, %) a1y HI(My, 2'2) —2 ...

[ [ [ “9)

s HAMLY) —— HUMy, V) @ HI(Mo, V?) rr HI(My2,71?) —— -+

Note that the map A commutes with the connecting homomorphisms §* due to the nat-
urality of the Snake Lemma. The cover-independent Cech cohomologies are direct limits
that satisfy certain universal properties. Since the refinement maps A form commutative dia-
grams pictured above, we may invoke these universal properties of directed limits (by using
the right choice of compositions) in order to construct a unique Mayer-Vietoris sequence

L8 e 25 By @ B9 (My) 222 B9 () s BT (M) = - (AL10)

as required.
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A.2 Appendix to Chapter 4

A.2.1 Some Results Regarding Integrals

Lemma A.2.1. Let w be a compactly supported form on M. Then ¢;w is compactly sup-
ported on M;.

Proof. Let w be some compactly-supported form in M. Since ¢; is continuous, the preimage
of a closed set will still be closed in M;. By definition, the pullback w; into M; will have
support

supp(®;) = ¢; ' (supp(w)). (A.11)

We now argue that this set is compact. Suppose that %/ is some open cover of the set
supp(®;) in M;. We would like to construct some open cover ¥ of supp(w) in M such that
¥ coincides with ¢;(% ) on M;. This can be achieved by considering the sets

{6i(U) |U e %}U|J{9;(V) | VM = f;;(U) for some U € % } U Int™(M;\M;).
J# J#i
(A.12)
The above forms an open cover of the set supp(w), so by compactness there exists some
finite subcover. Moreover, a smaller subcover of this set will cover the set ¢;(supp(®;)), and
we may pull this back to a finite subcover of 7%/ . [

Theorem A.2.2. The integral of a differential form w over M satisfies:

n n
w=Y(/ ¢.*w)_ (1) 07y (A13)
/M ;( M; 1 pzzlz i17';p€1 Mil"'ip 1ip
i1<<ip

Proof. Proceeding via induction, we may write M as the binary adjunction NUM,, 1. Run-
ning through the same argument as Lemma 4.3.7, we have that

/Mw:/Nw—F/MnHw—/Aw (A.14)
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Applying the induction hypothesis to N and A (viewed as a subspace of M, ) we have that

/Mw:/NwJF/MHIw_/Aw (A.15)
_i (/M,-(n+1) d)i*w) "

i< <i
n+l n+l1
= fw | =) (=17 .
. (/M“’) )I(CIVLE D M (A.18)

p=2 i1, i M;, ..,
i1 <~'~<ip

0w | + / w (A.16)
M ...ip M1

Z(—])p Z /¢iﬂ;--~ip(n+1)w (A.17)

p:2 ilv“'7i[7 Mil'”i[’(”+1)
i< <

as required. [

A.2.2 Exactness of the Mayer-Vietoris Sequence for Manifolds with Bound-
ary
In the proof of Theorem 4.4.2, we argued for the exactness of a Mayer-Vietoris sequence of

the form:
O—>Qq(M_13UM_23) —>Qq(M_13)€BQq(M_23) — Q4(Mip3) =0 (A.19)

where we use that Mj,3 = M3 N Ms3.

Lemma A.2.3. Let A and B be codim-0 submanifolds with boundary, embedded within a
Hausdorff manifold M. Suppose furthermore that

* A and B satisfy ANB=ANB, and
* ANB is a codim-0 submanifold of M with boundary.

Then the following is a short exact sequence.

0— QIAUB) —— QI(A) ®Q4(B) 2% QIANB) — 0 (A.20)

Proof. The injectivity of r and the inclusion Im(r) C ker (1; — 1) follow as in the standard
Mayer-Vietoris. Moreover, an extension by zero from AN B into A and B will ensure the
surjectivity of the inclusions 13 and 1.

The non-trivial step is in the proof that ker (1} —15) € Im(r). Suppose that wy and wg
are two forms on A and B respectively, such that 1; w4 = 1z3wp. We define the form @ on the

union A UB as:
ws(x) ifxeA
®aUB(X) :{ (x) (A.21)

wp(x) ifxeB’
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The equality 1; w4 = 1;®p guarantees that @ defines a function. We will now argue that o is
smooth. Recall first that a form on an embedded submanifold will be smooth if and only if
it is the restriction of some smooth form defined on some larger open set. By assumption @y
and wp are both smooth, which means that there exists

* some open set U containing A, and a form wy € Q4(U) such that @y = wy on A, and
* some open set V containing B, and a form @y € Q4(V) such that @y = @p on B.

We will now glue these two forms together to define a form @ on the union U UV. In order
to do so, we need to confirm that @y and @y agree on the intersection U NV. In general this
may not be true, so we will now modify our forms accordingly. Let py and py be a partition
of unity of the union U UV, subordinate to the open cover {U,V }. We now define two forms

@y == oy — pv(oy — oy ), and @y := oy + py(Oy — o). (A.22)

These two forms will remain unchanged on the intersection A N B, however, they will cancel
their differences on the set (U NV)\(ANB). Indeed, on the intersection U NV we have:

Wy — Gy = oy — py(0y — oy) — (0y — py(0y — oy)) (A.23)
= oy — oy — (pv + pu)(0y — o) (A.24)
=y — oy —(1)(oy —ay) (A.25)
= 0. (A.26)

Thus @y and @y agree on the intersection U NV. As such, we may glue these forms together
to define a form wyy. By construction @y y is a smooth form on the neighbourhood U UV
that restricts to wsup on AUB. Thus @y p is a member of Q7(A U B), and consequently
ker (1 —15) C Im(r). O

Theorem A.2.4. Let {A;}_, be a collection of closed, codim-0 submanifolds of a Hausdorff
M. Suppose furthermore that the equalities Ay...,, = HZLIAP hold for all m < n. Then the
sequence

0—QIA) - PQIA;) - EPQI(A;j) - — QI (A1) >0 (A.27)

i<j
is exact for all g in N.

Proof. Observe first that r* is injective as usual, §> = 0 via combinatoric means (found in say
[13]), and the last 6 map is surjective via an extension by zero argument as before. Again the
non-trivial step is to ensure that ker(8) C Im(8). Let ® be some element of Q7 (A;,...;,)
such that 0w = 0. Let U; be a collection of open sets that cover the A;, and let p; be a
partition of unity for the union JU;, subordinate to the open cover {U;}. We may extend
each component j,...; . into a differential form

@iyiy € D Q1(Uiy.i,)- (A.28)

ig<-<lip
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As with the previous Lemma, there is no guarantee that @ will be -closed as a differential
form over the Uj,...;,. To remedy this, we will modify each component of @ with a countert-
erm, by defining:
niO"'ip = (biO"'ip — Z pr(5w)ri0-~-i,,- (A29)
r#i0‘~-ip
Observe that each of these new forms will still restrict to @j,...;, on the intersections Aj...,,
since the counterterm will vanish there. We now have that

5nio---ip+] = ;(_1>ani0'“la“'lp (A30)
=) (-1 (w - Y P 6co)> (A31)
r#i---ip

- f (—1)® ((I),.O,,,,-;...l-p) —Z(_m( y p,<6w)”.0ml.&_.,ip>. (A32)

rio-ip
Unpacking this latter term, we see that there are two possible cases:

1. if r # ig. In this case, we see may unpack the summation of 6 @:

(bw) . .~ . = ) o, (A.33)

rlo...la...lp rlo...la...la...lp

B=0,---,p+1 orf=r

The only non-zero contribution will be when 8 = r, since otherwise we are omitting
indices iy and i 5 twice in the overall sum, with opposite sign.

2. if r = ig. In this case we are adding back in the deleted index, so p,(6w) .  ~ . =
pl@(‘S )iO'“ia'“ip'

Putting this all together, we have that

p+1
Z(—l)a< y pr(Sw)riO_“ia._l) Zp,amo ot Y p8@y.,  (A34)

o rig-ip r#ig - ipi1

= (Zpl> 5d)i0...ip. (A35)

icl

We may thus conclude that 61 = 0. Using the exactness of the Mayer-Vietoris sequence
for open coverings (cf. [13, §8]), there exists some form 6 in @ QI(Uj,.. i _,) such that
06 = 1. The restriction of 0 to the intersections Ajgiyy_ will then yield a smooth g-form in
@D QI(Aj,...i, ) that maps to @ under . This confirms that ker(6) C Im(3), from which the
result follows. [
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