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Abstract: A formal, mathematical statement of the prin-
ciple of equivalence in general relativity is that one must
always be able to find — at each location within a curved
spacetime — the local free-falling frame against which one
can measure the acceleration-induced time dilation and
degree of curvature relative to flat spacetime. In this
article, we use this theorem to prove that a de Sitter expan-
sion, required during cosmic inflation, does not satisfy this
condition and is therefore inconsistent with the PoE. To empha-
size the importance — and reality — of this outcome, we contrast
it with the analogous derivation for the Schwarzschild metric,
which instead satisfies this requirement completely. We point
out that this failure by de Sitter results from its incorrect hand-
ling of the Friedmann-Lemaitre-Robertson-Walker (FLRW)
lapse function, g,;.. Our conclusion calls into question whether
a period of inflated expansion could have even been possible in
the context of FLRW cosmologies, and is noteworthy in light of
recent, high-precision measurements showing that inflation could
not have solved the temperature horizon problem while simulta-
neously producing the observed primordial power spectrum.

Keywords: classical theories of gravity, cosmological theory,
early universe, inflation, dark energy

1 Introduction

Inflation has become an indispensable component of the
standard model [1,2] (see also previous studies [3,4]). Its
implied accelerated expansion in the early Universe may
have solved several inconsistencies plaguing big bang cos-
mology and, perhaps more importantly, may have also
seeded the primordial fluctuation spectrum [5] that even-
tually led to the formation of large-scale structure.

In spite of the considerable effort expended in finding
its underlying field and potential, however, it still lacks true
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predictive power. In addition, very little attention has been
paid to its fundamental basis within the context of general
relativity (GR), the theory that spawned it via one of the
most influential solutions to Einstein’s equations.

In this article, we begin to address this deficiency by
examining the consistency of such an accelerated expan-
sion with the foundational ingredient in Einstein’s theory,
i.e., the principle of equivalence (PoE), which requires that
there exist at every spacetime point a local free-falling (iner-
tial) frame relative to which one may measure the accelera-
tion in the comoving frame. We shall demonstrate that the
adoption of the Friedmann-Lemaitre—Robertson—-Walker
(FLRW) metric — with its constrained lapse function g, = 1 -
to describe the inflationary spacetime is actually inconsistent
with the requirements of the PoE. To emphasize de Sitter’s
failure in this regard, we contrast it with the analogous deri-
vation for the Schwarzschild metric, which instead comple-
tely satisfies the PoE self-consistently. We end with a brief
discussion of the consequences of this conclusion.

2 PoE

We define x# = (ct, x, x%, x®) to be the coordinates in the
comoving frame, 8w the metric coefficients, and F’\yv the
corresponding Christoffel symbols. Most of the observa-
tions today appear to be telling us that the Universe is
spatially flat [6], so we assume the spatial curvature con-
stant, k, to be zero in the FLRW metric, which may there-
fore simply be written as

ds? = c2dt? - a(t)Z[(dxl)Z + (dXZ)Z + (d_X3)2], (6))

in terms of the expansion factor a(t). In the following, we
shall adopt its de Sitter form relevant during inflation, ie.,
with the inclusion of

a(t) = eHt, 2

where the Hubble parameter H is constant. The metric
coefficients are thus
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and one can easily show from this that the non-zero
Christoffel symbols in the comoving frame must be
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A formal, mathematical expression of the PoE holds
that there must exist at every spacetime point x¢' in x“ a
local free-falling (inertial) frame £#(x) that one may use to
“measure” the spacetime curvature in x* [7]. For conveni-
ence and without loss of generality, we shall adopt the
cosmological principle, in which the Universe is homoge-
neous and isotropic (at least on scales larger than ~300 Mpc
today), and arrange the coordinates x# and &# to have a
common origin.

In order for ¢ to fulfill the role played by the local,
free-falling frame, they must satisfy the equations (see Eq.
3.2.11 in Weinberg’s book [7])
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To identify these coordinates, we shall follow a procedure ana-
logous to the transformation used to cast the Schwarzschild
metric into its so-called Cartesian isotropic form [8], which we
shall revisit shortly in the following section.

Of course, while velocity is “relative” in GR, accelera-
tion is “absolute,” meaning that if one can measure an
acceleration with respect to one inertial frame, the same
acceleration would emerge relative to any other inertial
frame. So the point of finding the coordinates £? is merely
to identify at least one such inertial frame to test whether
the metric (in this case Eq. (1)) is consistent with Eq. (5). The
goal is thus to find a transformation from the frame repre-
sented by the coordinates x* into a local frame falling
freely, whose metric has a Minkowski form (represented
by the &% coordinates), as we shall see shortly in Eq. (20).
This procedure is facilitated by the recognition that de
Sitter space is one of the six (and exactly six) applications
of the FLRW metric corresponding to a constant spacetime
curvature, ie., a spacetime whose metric coefficients may
be written independently of time [9,10].

The fact that de Sitter space has constant spacetime
curvature is not obvious from Eq. (1), but we can demon-
strate this using a transformation (based on fixed observer
coordinates) that renders its metric coefficients indepen-
dent of time [11]. To see this, we define

1
cT =ct - ERh In®, ©)

R=a(t)r,
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where r2 = (x)% + (x3)? + (x®)? and the gravitational (or
Hubble) radius is defined as

c
Ry = E @)
In addition,
2
R
=1-(=—]. ®
°=t [Rh]

With this transformation, the de Sitter metric may be written
ds? = dc2dT? - & 1dR% - R?*AQ2, 9)

where dQ? = d6? + sin? d¢?. As we can easily see, all the
metric coefficients in this equation are independent of the
new time coordinate T and, for future reference, we define
the Cartesian coordinates (X1, X2, X®), such that

X'= Rsin6 cosg,
X% =Rsinfsing,
X3 =R cos®.

(10)

Eq. (9), however, is not yet in Minkowki form, but we
can now easily find a transformation from the coordinates
(cT,R, 0, ¢) into a free-falling frame. We do this by fol-
lowing the approach of finding the metric’s Cartesian iso-
tropic form, in which we put

211
R=a1+[§”, i)
h
where
On = 2Rh- (12)
We thus have
P
dR = doﬁ (13)
and
P2
D = @ (14)
in terms of the quantities
2
P=1-|—||
Oh
) (15)
=11+ |—
osfi-(2

The newly transformed de Sitter interval may thus be
written

P

2
ds? = [5] 2472 - é(doz + g2dQ2) (16)
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and, if we define the Cartesian coordinates corresponding
to g as

x'=0sinf cosg,
x?=0sinfsing, a”n

x3=0coso,

we arrive at its Cartesian isotropic form,
pY 1
ds® = [5] cXdT? - E[(dxl)2 + (dy®)? + (dx*). (8)

The de Sitter metric written in this way allows us to see
immediately what the local free-falling frame written in
Cartesian coordinates looks like.

As we now apply the requirements of the PoE to the
metric in Eq. (18), we invoke the condition that the local
inertial frame needs to be defined only in the vicinity of x§'
(i.e., the local inertial frame at one such point need not be
the same as those elsewhere in the spacetime), so we may
put R = constant and o = constant wherever they appear
in the metric coefficients. In other words, we may assume
that P = P(x{") and Q = Q(x{') near x{', which finally allows
us to identify the local inertial frame coordinates:

_ P(xg)
O
1 1
&7 00D
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(19)

g =

&8 X,

ie,

ds? = (@E0% - (dg? - (@gD? - (% @O)

at any given spacetime point x¢'.

It is now a simple exercise to examine whether the
coordinates x* and ¢* satisfy Eq. (5). As we shall see, they
do not. For example, one finds for the a = g = v = 0 com-
ponent that

2
P 2[R
P2 (R]gy -
Q Rn(Rn
but this cannot be consistent for arbitrary values of R (or
r). Similarly, one finds for a = g = v = i that
eZHt Xi
oo fox

, (22)
R, PRy

which, again, is inconsistent for arbitrary values of X i Ade
Sitter expansion, such as that required during inflation,
therefore does not satisfy the requirements of the PoE.
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Having said this, a possible caveat to this conclusion
could have been that an analysis of the cosmic microwave
background (CMB) anisotropies clearly shows a fluctuation
spectrum that is not exactly scale free (for which the scalar
spectral index would then have been exactly 1). Its exact
value is instead ng = 0.9649 + 0.0042 [6], the slight differ-
ence implying some version of a slow-roll potential [5,12],
so that the Hubble parameter H during inflation could not
have remained perfectly constant. The expansion during
inflation is therefore not perfectly de Sitter and would
have proceeded almost according to Eq. (2), but not exactly.
This slight difference, however, would have had only a
minimal impact, if any, on the derivations in this section,
introducing essentially only small variations in the con-
stants P and Q in Eqgs (19), (21), and (22). But these changes
could not prevent the inconsistencies shown in the latter two
expressions, which would still require R and/or r to be zero
everywhere.

A better way to understand this is that the outcome
discussed here emerges for all the FLRW metrics with an
equation of state different from p + 3p = 0, not just for the
case being considered here (i.e, p + p = 0), as formally
demonstrated in the study of Melia [13]. Such previous pub-
lications have established the problem highlighted here with
a forced lapse function g, = 1in a more general context, so
even a variable H would not change the outcome of this
discussion. The benefit of the streamlined approach we are
using here is that the Christoffel symbols (Eq. 4) for a con-
stant H are so simple that one can show the result quite
robustly with just straightforward analytic derivations. In
other words, the problem with the use of de Sitter in the
FLRW metric is not the constant H, but the fact that inflation
is necessarily an accelerated expansion, which conflicts with
the zero time dilation implied by g, = 1. The conclusions
drawn in this section do not rely on the specific choice of
p +p =0 for the equation of state, but are most easily
demonstrated analytically for this case.

3 Comparison with the
Schwarzschild metric

Before we discuss this crucial result, let us — for compar-
ison and to emphasize the importance of the PoE in this analysis
— carry out an analogous derivation for the Schwarzschild
metric and show that the outcome in the latter case is comple-
tely different. In the next section, we shall point out that a
distinguishing feature between these two spacetimes is the
nature of their lapse function, g,,.
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The Schwarzschild metric describes the (vacuum) space-
time external to a spherically symmetric mass M and is typi-
cally written in its standard form

I
1_B

-1
ds? = - c2dt? - [1 - %] dr? - r2dQ?, (23)

in terms of spherical coordinates (r,0,¢) and the
Schwarzschild radius r; = 2GM/c?.

The most direct way of finding the local free-falling
frame & is to introduce a new radial coordinate, @, such
that

2
r= w[l ¥ E] , (24)
w
where wg = r5/4. It is not difficult to show that
dr=1- E][1 ¥ @]dw (25)
w w
and
2 -2
[1—5=[1—@]1+ﬁ]. (26)
r w w

Substituting these into Eq. (23), one therefore obtains

2 -2 4
ast=1- 2l 2 cae -1+ )
(0} o (o}

27)
x [(dy")® + (dy?)* + (dy*)?],
where @? = (y1)? + (y2)? + (%)%, ie,
y!=w sinf cos g,
y? =@ sinf sing, (28)
y3 = coso,
and
(dy))? + (dy2)? + (dy?)? = dw? + @w2dQ2  (29)

Eq. (27) is the Schwarzschild metric written in terms of
Cartesian isotropic coordinates [8].

In the vicinity of any given point xé‘ = (ct, 1y, B0, @),
the r and @w coordinates within the metric coefficients of
Eq. (27) are approximately constant. We define

-1
UE[]_—E1+E (30)
w w
and
2
V= [1 . %], @31
g

which are therefore also both approximately constant at
x¢{, and thus,

ds? = U%c%dt? - Vi(dow? + o?dQ?). (32)
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So we may define another set of coordinates

& =U ct,

& =V wsinf cos,

E2=V wsinfsing,
3=V @ cos.

(33

These allow us to write the Schwarzschild interval as
ds? = (d&)? - (d&H? - (d&2)2 - (A&,

the familiar Minkowski form in Cartesian coordinates,
which therefore represents the metric as seen within the
local free-falling frame at x{', given in terms of the coordi-
nates &# = (€2, &1, £2, £3). To be clear, this frame is the local
free-falling frame only at that point, x§'. It will be different
elsewhere. Indeed, a sequence of these frames derived at
progressively smaller r would reveal the infalling trajec-
tory toward the origin, characterized by a variation in U
and V with radius consistent with the free-fall velocity at
each point.

It is now straightforward to show that the coordinates
x# = (ct,r, 0, ¢)in Eq. (23) and & in Eq. (33) satisfy Eq. (5),
or the equivalent expression

_ o5 og!
B =y oy e

(34

(35)

where n,, = diag(1, -1, -1, -1) is the corresponding metric
tensor in flat spacetime. To do this, we need the Christoffel
symbols corresponding to the metric in Eq. (23), whose
non-zero components are simply

1r Is 1 T's[ rs]_l
IMy=r—ll-=| Thyp=-——l1-=|,
€792 r T2l r
1r rs)t
I‘ttr = EF_SZ 1- 78 = rtrb
1
r re—; =T,
I:
I7go = —r[1 - 75 (36)
1
0= ;o I,
. Ik
749 = —1sin? 6|1 - f]

I% = —siné coso,
F¢9¢ =cotf = F¢¢g.

For example, in thea = ¢ = v = 1 component of Eq. (5),
one has

@37

9&! @ ws !
i = [1 + —S][1 - 23| sing cos ¢,
w w

or
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which yields
28 fah-o]

3/2
= = i ) (38)
or? 272 - ] sinf cos¢

By comparison,

o

T axA (39

T
r
which becomes

o 1 I
96s rz

3/2
1- —] sin@ cos ¢, (40)

A =
M axt 2

matching Eq. (38). Repeating this exercise for any of the
other components in Eq. (5) produces a similarly matching
result.

This level of consistency may also be demonstrated via
Eq. (35). For example, the g;; metric coefficient may be
calculated as follows:

_ 0§ o
8y = > or Mp> 41)
which yields
ws )Y 9w )?
gll = —[1 + g] ?] . (42)
And using Eqgs (25) and (26), one ﬁnally shows that
|
1-—= (43)
ga=-1- %]

as it appears in Eq. (23).

So unlike the situation we found with de Sitter in
Section 2, the Schwarzschild metric is completely consis-
tent with the PoE, based on the fact that one can find — at
any location x{' within this spacetime — the local, free-
falling frame &, relative to which one may measure the
spacetime curvature associated with the metric for the
accelerated observer in Eq. (23).

4 Discussion

The obvious question is why the well-studied de Sitter solu-
tion to Einstein’s equations should be inconsistent with the
PoE, which is, after all, the basis for the field equations
themselves. Such an issue actually falls within the broader
context of whether the simplifications used to derive the
FLRW metric in the first place remain valid when one sub-
sequently chooses an equation of state for the cosmic fluid in
order to uniquely calculate the expansion factor a(t). As dis-
cussed in previous publications, the short answer is generally
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no, except for one particular case corresponding to the zero
active mass condition in GR, ie., p + 3p = 0 [13,14]. Thus,
choosing an equation of state p + p = 0, producing a de Sitter
expansion, or slow-roll conditions producing an expansion
very close to de Sitter, appears to be inconsistent with the
free-fall requirements associated with g, = 1, given that both
of these situations produce an accelerated Hubble frame.
Ultimately, this is why we see the evident, unavoidable failure
resulting in Eqs (21) and (22).

The more general examination of the validity of the
FLRW metric in the context of the PoE has revealed that
such contradictory results disappear when the metric coeffi-
cient g, correctly accounts for the time dilation resulting from
a curved spacetime, such as one finds in the Schwarzschild
case. This spacetime includes the lapse function g, =1 - r5/r
and, not surprisingly, is therefore able to fully satisfy the
requirements of the PoE.

But in this article, we have not needed to address such
deeper considerations. We have merely used the conven-
tional form of the FLRW metric applied to inflationary
cosmology. The PoE expressed in the form of Eq. (5) derives
from one of the most fundamental tenets in GR, notably
that spacetime curvature must always be measurable rela-
tive to the local free-falling frame. And we cannot avoid the
conclusion that Eq. (1), with the expansion factor in Eq. (2),
is simply inconsistent with this condition.

What are we to make of this result vis-a-vis the obser-
vations? Inflationary cosmology has been under develop-
ment for over 40 years, and the observations have not yet
ruled it out (or confirmed it). But therein lies part of the
problem. Inflation is frustratingly flexible, easily adjus-
table to match new data — at least globally, if not in fine
detail. Note, for example, how poorly its underlying field
and potential are understood, even after four decades of
development (see, e.g., a recent review in the study of
Vazquez et al. [15]). Recent advances, however, have begun
to pose some serious questions. For example, though infla-
tion was introduced largely to fix the temperature horizon
problem in the cosmic microwave background, it turns out
that there are other, equally critical, horizon problems in
cosmology, such as that associated with the electroweak
phase transition at t ~ 107 s [16]. So inflation is starting
to look more like a customized process designed to address
primarily one aspect of the early Universe, rather than a
foundation for everything else that followed.

This is not to say that inflation no longer provides
some ingredients necessary to establish the internal self-
consistency of the standard model. A realistic discussion of
its merits ought to include both the positives (see, e.g., the
study of Mukhanov [5]) and its negatives (see, e.g., previous
studies [17,18]), constituting an extensive discussion
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outside the scope of this article [19]. But to highlight some
recent observational developments that should motivate
the type of discussion we have presented in this article,
we point to the detailed analysis of the latest Planck data
release, which suggests that standard, slow-roll inflation
could not have solved the temperature horizon problem
while simultaneously producing the observed primordial
power spectrum. Evidence is growing that the fluctuation
spectrum seen in the CMB has a kp;, cutoff large enough to
impact the time at which inflation could have started [20-22],
which, in turn, would have constrained the number of e-folds
experienced by the Universe during its inflated expansion.

This implied delayed initiation to inflation ironically
weakens an earlier argument that this rapid expansion
would have violated the PoE. If inflation had started within
the Planck domain, where quantum gravity effects were una-
voidable, one would necessarily have had to include the exis-
tence of a minimal, measurable length of the order of the
Planck length in the Hamiltonian, which would have violated
the PoE [23]. In the post Planck satellite era, however, the
energy of inflation is constrained to be well below the Planck
energy and the “old” version of chaotic inflation has had to
give way to a newer replacement with a much delayed initia-
tion well past the Planck time [17,18]. This required delayed
beginning to any de Sitter expansion would have postponed it
well past a quantum beginning [24], so even this originally
valid criticism could in principle be avoided now.

Nevertheless, in this “new” chaotic inflationary para-
digm, the measured value of kpi, suggests that the infla-
tion-induced expansion would have missed solving the
temperature horizon problem by a factor ~10 [12]. It is
too early to tell whether such a result impacts all concei-
vable slow-roll inflationary potentials, or whether it cre-
ates a hurdle primarily for those proposed thus far. But the
fact that inflationary theory has not yet converged to a
unified, self-consistent picture after four decades of work
may just be an indication that it could not have happened.
In this context, the theoretical argument presented in
this article does not stand in isolation. It would provide a
foundation for the growing tension seen between the
expectations of inflation and the new, high-precision mea-
surements becoming available now.

5 Conclusion

Fortunately, this discussion will benefit from an influx of
concrete evidence — one way or the other — in the coming
years. Today, the standard model is faced with many incon-
sistencies and deficiencies, not solely the unresolved tempera-
ture horizon problem (see, e.g., the study of Melia [19]). The
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campaign to measure the real-time redshift drift of distant
quasars (see, e.g.., the study of Melia [25]) is a particularly
exciting prospect, because it will probe the underlying cos-
mology in a truly model-independent way, and its principal
outcome will be a simple yes/no answer. The ELT-HIRES [26]
and the SKA Phase 2 array [27] will attempt to measure the
redshift derivatives of distant sources. A measurement of zero
drift at all redshifts, contrasting with any variation at all,
would argue against the use of the FLRW metric to describe
the spacetime of models with an accelerated expansion, such
as inflationary cosmology. These observational campaigns
will be able to differentiate between zero and non-zero red-
shift drift at a confidence level of ~3¢ after only 5 years of
observation, and ~50 over a lifetime of 20 years.

A determination that the contents of the Universe
exhibit zero redshift drift would point to a cosmic expan-
sion consistent with the zero active mass condition in GR
[10,14], which produces an expansion factor a(t) = (t/ty).
Such a Universe does not have any horizon problems [16,28],
so the inconsistency we have highlighted in this article may
simply become moot if it turns out that the Universe did not
experience a phase of inflated expansion after all.

This is but one of several possible alternative scenarios
in which the early Universe would not have needed to
inflate in order to produce the expansion we see today.
Other than an adherence to the zero active mass condition
in GR, the Universe may have undergone a (perhaps infinite)
sequence of cyclic bounces [29,30], avoiding all horizon pro-
blems due to an equilibration before each cycle. Arguments
such as those we have made in this article can help to refine
the discussion more consistently with fundamental theory.
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