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HALOS OR NO HALOS : Is there "missing mass" hidden

in (massive or not) halos in flat galaxies ?

Jean-Pierre J. LAFON

Observatoire de Paris-Meudon
Département Recherches Spatiales/LA 264
92195 Meudon Principal Cedex

ABSTRACT : I+ has often fe too easily accepted that a lange
amount of "adequate” invisible matten should be invoked to ex-
rlain some phenomena oblsenrved in galactic systems. Howeven,
the existence of (massive on noit) dark halos surrounding the
ol senvable mattien (5 not s0 olvious, Iin particulanr as a resulid
of the flatness of rotation curves at lange nadial distances,
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I INTRODUCTION

Since the problem of the total mass in the Universe has
appeared as crucial for its future evolution, the determinati-
on of the amount of matter contained in systems at various vo-
lume scales has been considered with particular attention.

This paper is devoted to this problem for flat galaxies.

In spite of a lot of papers published during the last fif-
ty years, the structure and the dynamics of flat galaxies (a-
mong which our Milky Way) is not clearly elucidated. It is on-
ly generally accepted that the behaviour of such systems is do-
minated by non-collisionnal stellar dynamics i.e. each star
(and the gas) moves in the gravitationnal potential determined
by all the other stars. The stars behave like a "non collision-
nal gravitationnal plasma". However, this particular "non neu-
tral plasma physics" is not well known. This is the reason why
the amount and the distribution of mass in flat galactic discs
are matters of discussions; an important question is : is all
(or almost all the matter) in the visible stars or is there an
important invisible component? Many arguments have been raised
in favor of or against the presence of a (more or less) massive
hidden component.

In the next section we summerize the main arguments and in
the others we discuss the problem of the slope of the rotation
curves. The conclusion is that the question is not so simple
and that, contrary to what is too smarly stated, the observed
flat rotation curves can be those of galaxies wit or without
halos.

II WHY MASSIVE HALOS AND WHAT IN THEM ?

The arguments usually invoked in favor of the presence of
a large amount of non visible mass around galactic discs are :
*H# Stability of such discs against the formation of bars,
spiral arms, ... (Ostriker et al., 1974; Berman and Mark, 1979;
Sellwood, 1983)
*E Excitation of warps in galaxies (Bertin and Casertano. 1982)
#%  The Oort problem (Oort, 1960) : the discrepancy between
the counted density at the sun "that implied by dynamics".
*H# The orbits of very distant stars supposed belonging to
galactic systems (Hawkins, 1983)
3 The orbits of satellite galaxies around the Milky Way (Lin
and Lynden-Bell, 1977)
*3 Binary galaxy statistics (Turner, 1976)
##  The stability of the Local Group (Kahn and Woltjer, 1959)
*3 The differential variation of the mass to light ratio with
radial distance (Gilmore and Hewett, 1983)
R The flatness of rotation curves at large radial distances.

However, the existence of halos is still open to discus-
sion because, first, same arguments do not apply in all cases,
and then there are not enough correlated data showing that the
same halo enables to give a correct interpretation of the data
concerning same objects.

0f course, the nature of the matter these eventual halos
can be made of is also open to discussion; various possibili-
ties have been considered : gas, snowballs, dust and rocks,
Jupter-like bodies, low mass stars, dead stars, neutron stars,
massive neutrinos, gravitinos, monopoles, ... (discussion in
a paper by Hegyi and Olive (1983)).

Hereafter we consider the problem from a dynamical point
of view for individual galaxies.



III THE PROBLEM OF VISIBLE MASS AND ROTATION CURVES

The amount of mass can be determined from observational
data of two types : the rotation curve and the light curve.
Both can be determined for steady-state axisymmetric flat sys-
tems. In the case of non axisymmetric systems, except for ve-
ry irregular systems, bars, spiral arms, rings and other simi-
lar systems can be considered as transient pertur lations in-
volving a small part of the total amount of matter, superpo-
sed on an axisymmetric average state. Then, the rotation cur-
ve is that curve which gives the velocity v(r) of any test
mass eventually travelling along a circular orbit centered at
the center of the galaxy and of radius r in the mean plane of
the flat system versus the radial distance r.

The rotation curve can be interpreted directly in terms
of the gravitationnal potential ¢ through the gravitationnal
acceleration y since, for circular motion,

Y = v2(r)/r

Then, if one assumes that the stars move in the gravita-
tionnal potential due to them, Yy and ¢ can be interpreted in
terms of the mass density p using the Poisson equation :

8o = 4mGp

Comparing the mass density distribution to the light cur-
ve one can find the spatial variation of the mass to light ra-
tio.

Until last years, the rotation curve was measured for
fairly small radial distances, say a tenth of kiloparsec from
the center of the galaxy; it was supposed that these curves
should show decreasing tails according to Kepler's law (v(r)«
1/Vr) at larger radial distances since, there the test body
was probably submitted to the attraction of a point-like mass
(Figs 1 and 2). Theoretical models of curves withe Keplerian
tails where fitted to the data (Fig. 2), for instance using
formulas like those of Brandt and Scheer (1965).
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Figure 1. From Rubin, 1983. Rotation curves.
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Recent observations show that for much larger radial dis-
tances, the rotation curves usually remain flat : the circular
velocity does not decrease like 1//r (Figs 1 and 2). This is
often interpreted as revealing the presence of a highly massi-
ve invisible halo surrounding the flat system and governing
its motion. The following discussion is devoted to this ques-
tion : Are halos necessary and/or sufficient to produce flat
rotation curves? We shall see that, contrary to what is too
often thought, the rotation curves can be flat both for sys-
tems with or without halos (massive or not).

IV PROPERTIES OF SYSTEMS WITH SPHERICAL SYMMETRY

We now investigate the rotation curves of systems with
dynamics governed by a mass system with spherical symmetry.

1/ Point mass

First consider a point mass M at the center O of the sys-
tem. In such a system, Newton's law reads

o(r) = -GM/r Yy = -GM/r? = v?%/r
v(r) = V(GM/r) =« 1/V/r

This is illustrated by the system of the planets.

2/Sphenical mass distribution

Now assume that the mass is distributed in space in such
a way that the total mass within a sphere of radius r is m(r).
Then, using the Gauss theorem, one finds

Gm(r)/r?2 = v%(r)/r
v(r) = V(Gm(r)/r) =V (n(r)/r)

If m(r) tends to some limit m_ when r » =, v(r) « 1//r ,
but, conversely, if the rotation curve remains flat at large
distances, v(r{ £ ¢cst leads to m(r) = r .

Thus, it is important to notice that, if produced by a
massive spherical halo, a flat rotation curve implies a halo
with space density decreasing like 1/r? and so an infinite
mass.

Remark : A homogeneous halo (constant density) corresponds
to a mass within the distance r , m(r), equal to (4/3)mpr?
(where p denotes the constant density) and so to a circular
velocity v(r) = r/((4/3)Gmp) =« r , which characterizes a ri-
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gid rotation.

V EFFECTS OF FLATTENING

Now let us compare the rotation curves produced by the
mass distributed 1/ with spherical symmetry 2/ with axisymme-
try in an equatorial plane according to the same law n(r) whe-
re m(r) respectively denotes the mass inside a sphere of ra-
dius r in the former case and that inside a circle of radius r
in the latter case. There is a fundamental difference between
these two cases. In the former case the acceleration to which
a test star is submitted is equal to

y(r) = v2(r)/r = Gm(r)/r?
so that vZ(r) =/(Cm(r)/r)
is a local function of r, whereas in the latter case v(r) de-
pends on the whole mass distribution profile m(r) from r = 0
to r «», that is inside and outside the circle of radius r.

For instance, in the case of an exponential distribution
of matter (space density « exp(-r/h), m(r) tends to a limit
and v(r) becomes Keplerian as soon as r is of the order of
the length scale h, whereas in the case of an exponential disc
m(r) tends to a limit at radial distances of the same order
but v(r) becomes Keplerian at much larger distances (see Free-

man, 1970), since 1 7 r r r r
2 _ 1 (Iya2 r I z Iy
vi(r) =3 (h) (I (HK (5) - I (K, ()}

where I , K , I., K1 denote Bessel's functions. (Fig. 3)

Tth, ?or ; given rotation curve, the ratio of the amount
of matter contained contained within a radial distance r in a
flat model to tha in a spherically symmetric model cannot ea-
sily compared to 1. Numerical models are necessary.

Lequeux (1983) has compared the distribution of mass cor-
responding to simple phenomenological models of rotation cur-
ves. He has plotted the ratio Y of the mass m(r) inside a sphe-
re of radius r in some models with rotation curves 1like those
indexed by 1 and 2 on Fig. 4 to that in a spherical mocel with

hv(r)/GM

Exponential disc : m(r) « {h? - (h%+ hr)exp(-— %)}

Figure 3 - Rotation curves; from Freeman, 1970
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same rotation curves versus the radius a of the which separa-
tes the two first linear branches with different slopes (mea-
sured in units of the radius R at which the slope of curve 2
changes). Model 1 has a still flat rotation curve at large
radial distances whereas model 2 has a Keplerian rotation cur-
ve for r > R.

Fig. 4 shows that Y is of course equal to 1 in the case
of the spherical model, smaller than 1 in the other cases, and
smaller in case 2 than in case 1 for any a/R between O and 1.

It follows that flat rotation curves can be obtained for
flat systems of smaller mass than spherical systems with same
rotation curves.

VI DYNAMICAL EFFECTS OF FLATTENING

Other indications of dynamical effects of flattening have

?ecengly been pointed out separately by Tohline and Kalnajs
1983).

Tohline (1983) has shown that using numerical simulations
he could obtain flat rotation curves and that "cold discs”
(i.e. discs of stars mainly in quasi-circular orbits) can be
stabilized against bar or spiral arm formation without dark ha
los if dynamics is governed by interactions between two bodies
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Y o] comrmademcv——
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0 0.5 1 2 /R
Figure 4 - The mass m(r) inside radius r for various galactic
mogels : spherical model (horizontal line at the top), and
flat disk models with rotation curves as defined in the insert
Model 2 has a Keplerian rotation curve fo r > R (Lequeux, 1983)
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of the form Gmymy {1 + f}(where my and m, are the masses of

r? a

the bodies and a is of the order of the kiloparsec), instead
of the purely Newtonian interaction law. Typically the correc-
tion term is the solution of a two dimensional Poisson equati-
on and describes the attraction between two parallel infinite-
ly long rods.

Kalnajs (1983) could fit data for rotation curves and
light curves corresponding to constant mass to light ratios,
for three galaxies with only a disk component and for another
with a disk and a small bulge component.

Finally, from the results mentioned in Sects V and VI we
can conclude that flattening is important for dynamics. Final-
ly, the usual arguments invoked in favor of the presence of
massive halos, especially the flatness of the rotation curve
at large radial distances are not sufficient and do not enable
to decide clearly.

VII DYNAMICALLY SELF CONSISTENT MODELS

Thus, it is necessary to build up dynamically self consis-
tent models in which the potential is that determined by the
mass distribution through the Poisson equation and the mass
distribution is governed by the motion of each star in the po-
tential determined by all the others.

This can be done using numerical simulation of a large
number of individual particles, or, as dicussed hereafter,
using a statistical description of the systems based on distri-
bution functions.

The models that will now be considered are concerned with
with self consistent, axisymmetric, steady state three dimen-
sionnal though flat star systems. We analyse the possible sta-
tes : stability is not investigated.

These models are fully dynamical, i. e. each star moves in
the potential du to the others and the possible orbits are po-
pulated according to distribution functions of the form Yf
where #¥#% f is a function with a functional form satisfying
conditions expressing physical properties detailed hereafter

*¥#¥% y is a function equal to 1 if the maximum radial
distance reached by a star is lower than some finite radius R
determining the space dimension of the system, and equal to O
in other cases.The length R is a function of the parameters
appearing in f. This last condition introduces a smooth and na
tural cut-off in the distribution function that tends to O
when r * R.

The first paper of a series devoted to such models appea-
red in 1976 (Lafon, 1976). The distribution function adopted
is a sum of "coarse grain" distribution functions describing
"well-mixed" systems i.e. systems for which all continuous
smooth functions (mean velocity, mass density, ...) at each
point is independent of the "phase" of each star on its orbit
but depends only on the population of the orbits reaching this
point ((Lafon, 1976; Mello and Brody, 1972; Lynden-Bell, 1967).
It can be expressed under the form
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If(£,E) =Y 3 oy exp(aiE + big)
i
with £ = rv//(2€o) E = (u/2€o)2 + (g/r)? + (¢(r)ko)
where u, v, ¢(r), € respectively denote the radial and the
tengential velocity components, the gravitationnal potential,
some energy unit. It is also assumed that this function satis-
the following physical conditions, likely, at least as a zero
order approximation, as results from observations:

£f >0 3f/3E < 0 ar/3t £ 0

For distribution functions with cne term or two terms
with opposite signs in the sum, this respectively implies
functions of the form (Lafon, 1976) :

f{ETE) a exp(aE + bE) 1
f(&,E) a exp(bg) (exp(a1E) - exp(azE)) 2

with o > 0, a < 0 and @« > 0, a, < a2 < 0 respectively; b was
taken arbitrarily positive (ch;nging its sign reverses the ro-
tation of the system).

Iso~-f curves corresponding to a function of the latter
form are shown on Fig. 5. They look like those derived from
observations.

Q MONMENTUR €

ENERGY €

Form of iso-f curves in the &, E-plane for distribution
functions J

AZIMUTHAL VELOCITY

RADIAL VELOCITY

Form of iso-f curves in the u, t-plane for distribution
functions

Figure 5 = Iso-f curves from Lafon, 1976
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Numerical models have been constructed for distribution
functions of both forms. Typical results are shown on Figs 6
to 17. A special system of units was used used for these cur-
ves in order to allow scale changes.

*¥##% Unit of length : arbitrary

##%¥ Unit of potential : B, the potential at the center

of the system; B = ¢ _¢(0)

#*#3% Unit of mass : M, that generating a potential
equal to B at the distance A;
M = BA/G

*¥* Subsequent unit of velocity : v_, that of a star with
kinetic energy per unit mass eqlal to B; v2/2 = B

All the curves correspond to systems with a total mass
equal to 1. Parameters for Figs.6 to 9, 10 to 13, 14 to 17
are displayed in tables 1, 2, 3 respectively.

These results point out the following features :

*#% The systems are strongly non linear and self-consis-
tent; rotation curves very similar in the inner part are ob-
tained for fairly different distribution functions. The inner
part of the rotation curve is also insensitive to the central
mass density. Same remark concerning the curve representing
the percentage p(r) of the total mass within the circle of ra-
dius r. At the same time, the central density is highly sensi-
tive to the parameters a., b of the distribution function.

*#% The rotation curve is always flat, sometimes uprising
at large radial distances, never Keplerian, without massive
halo. The flatness seems linked to the smoothness of the de-
crease of the distribution function close to the edge of the
system. The non Keplerian behaviour appears as an effect of
the non circular, highly elliptic with .very small £ reaching
large radial distances , which are always present and should
never be neglected in the outer parts of the system : less
populated non circular orbits leads to smaller circular rota-
tion velocities.

*%¥ This is consistent with a steep density decrease in
the outer parts of the systen.

Table 1 - Data for Figure Curve a b Radius  Total Mass
Figs 6 to 9 1 -5 3764 1049 1
2 -5 3.852 1304 i
Lafon, 1976 3 -5 3814 1547 |
4 -5 3.680 1.804 1
) -5 3426 2.055 t
6 -5 2.850 2410 1
7 -5 1.252 2893 1
dashed —5Ng 2850 2.397 1
Crosses —5Ng 2.850 3. 1.25
Table 2 - Data for
Figs 10 to 13 Figure Curve a, a, b Radius  Total Mass
Lafon, 1976
1 -3 -05 3.868 1.203 1
2 -3 =05 3.808 1.337 i
3 -3 =05 3.205 1.976 1
4 -3 -1 4. 1.698 1
S -3 -1 3617 2.159 1
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Table 3 - Data for
Figs 14 to 17

Figure Curve a a, b Radius Total Mass

-4 -05 4.338 2789

1 1
Lafon, 1976 2 -4 -05 4 3220 1
3 -4 -1 4703 2884 1
4 -4 -1 4127 3704 1
s -4 -1 4 3826 1

VIII CONCLUSION

To summerize, observationnal data such as rotation curves
and light curves cannot be interpreted in terms of stellar dy-
namics and galactic structure in a simple direct way : the
"inversion problem" is complicated and must be investigated
cautiously. In particular, fairly different stellar systems
can correspond to curves with very similar arcs.

Then, though the presence of a (massive on not) dark halo
cannot le excluded a prioni, it {4 not possible to infen this
presence £rom the only topology (flatness) of the notation
cunve.,

Additionnal models fitting observationnal data both with
rotation curves and light curves related in a self consistent
dynamical way are necessary in each particular case. Such
models are being investigated now.
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1 4 Potential versus radial distance for models based on distribution functions of the form 2 using the data given in Table 3
1 5 Surface density versus radial distance for models based on distribution functions of the form 2 asing the data given in Table 3
y 8!
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17 Percentage of total mass within a circle of radius r as a function of r for models based on distribution functions of the form 2 using
the data given in Table



