
Thick-BraneWorlds

By

Jayne Thompson

B.Sc.(Hons), Melbourne University

A thesis submitted to The University ofMelbourne

for the degree of Doctor of Philosophy

School of Physics

June 2012

Principal Advisor: Prof. Raymond R. Volkas



c⃝ Jayne Thompson, 2012.

Produced in LATEX 2ε.



“If we do not succeed in solving a mathematical problem, the reason frequently

consists in our failure to recognize the more general standpoint from which the

problem before us appears only as a single link in a chain of related problems.

After finding this standpoint, not only is this problem frequently more accessible

to our investigation, but at the same time we come into possession of a method

which is applicable also to related problems.”

- David Hilbert, Mathematical Problems (1900)

“Real life is, to most men, a long second-best, a perpetual compromise between

the ideal and the possible; but the world of pure reason knows no compro-

mise, no particular limitations, no barrier to the creative activity embodying

in splendid edifices the passionate aspiration after the perfect from which all

great work springs.”

- Bertrand Russell, The Study of Mathematics (1919)
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Abstract

We examine 4 + 1-dimensional field theories exhibiting both 3 + 1-dimensional standard

model phenomenology and type 2 Randall-Sundrum gravity on a dynamically-generated

thick brane. We consider problems with finding and guaranteeing the stability of thick

brane solutions, and with the non-renormalizability of Yang-Mills gauge theory in 4 + 1-

dimensions. This motivates us to take a more systematic approach to gauge theories and to

study a richer variety of field theories beyond standard Yang-Mills gauge theories.

This thesis comes in three parts. In the first part we explicitly construct a model featuring

a single infinite extra dimension and an SO(10) grand unified theory, where standard model

phenomenology is recovered on a 3 + 1-dimensional domain-wall brane topological defect.

A 3 + 1-dimensional graviton and all standard model particles are dynamically localized to

the brane. To localize gauge fields we invoke an analogue of the Dvali-Shifman mechanism.

Similarly 3 + 1-dimensional left chiral fermions and effective 3 + 1-dimensional general

relativity are recovered via the split fermion mechanism, and a Randall-Sundrum type 2

warped metric, respectively. We prove that this model is stable, respectively unstable, for

two different regimes of free parameters in the dynamical equations.

In the second part we use Lifshitz anisotropic scaling to fix inherent problems with the

non-renormalizability of 4 + 1-dimensional Yang-Mills gauge theories. Here we address

problems with the Dvali-Shifman mechanism by paving the way to a 4 + 1-dimensional

domain-wall brane model in a Lifshitz field theory with critical exponent z = 2. We extend
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our analysis to look at specific examples of finite energy, stable, static topological defects

in 3 + 1-dimensional Lifshitz field theories with critical exponent z = 2. These defects are

forbidden in standard relativistic field theories by Derrick’s theorem. As such the observa-

tion of cosmic relics would be a hallmark signature of the breakdown of Lorentz invariance

at short distances.

In the final part of this thesis we consider grand unified theories (GUTs). These theories

are important to a wide range of models in this thesis. We consider the set of vacuum

expectation values which break the GUT to differently embedded isomorphic copies of a

subgroup H. We define and characterize the relationship between these vacuum expectation

values.
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Abbreviations

The following abbreviations are used throughout this thesis.

ED: Extra dimensions

KK: Kaluza-Klein

IR: Infrared

BPS: Bogomolnyi-Prasad-Sommerfield

LBPS: Lifshitz Bogomolnyi-Prasad-Sommerfield

QCD: Quantum chromo dynamics

SM: Standard model

SSB: Spontaneous symmetry breaking

TeV: Tera electron volt

UV: Ultraviolet

VEV: Vacuum expectation value

WKB : WentzelKramersBrillouin approximation
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1
Prologue: The path integral towards reality

Particle physics is a reductionist approach to modeling physical reality. We study indivisible

particles and their interactions as a way of characterizing the fundamental processes and

conservation laws which all physical systems have in common.

It is contentious to say that a complete description of the behaviour of these fundamental

components will help us predict physical laws for macroscopic systems. However there are

many examples where understanding the behaviour of the macroscopic system has changed

our model for microscopic reality, and vice versa. Some examples are the discovery of

Nambu-Goldstone bosons in superconducting materials, and the proposal that a colour-

flavor locking phase in quark-gluon plasmas causes neutron star glitches. Meanwhile ob-

servations of galaxy rotation curves have led us to postulate dark matter halos.

In this thesis we are interested in how changing the dimensions of the space-time manifold

affects the dynamics of the subatomic particles and fields. Maintaining a renormalizable

Yang-Mills gauge theory in 4 + 1-dimensions motivates us to rewrite the standard model

gauge theory as a Lifshitz field theory. Lifshitz field theories explicitly break Lorentz in-

variance, causing the speed of light to change with energy scale. This modification of the

behavior of subatomic particles becomes phenomenologically detectable in the ultraviolet

regime.

At the same time we investigate how Lifshitz field theories may cause stable, long lived,

cosmic relics in any d + 1-dimensional universes, where d ∈ N. Detection of long lived

3
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cosmic relics would be a macroscopic hallmark signature for Lorentz violation in subatomic

field theories.

The dichotomy between large and small is implicit in all three major topics in this thesis.

We study mechanisms and phenomenology, related to extra-dimensional domain-wall brane

models, which lead us to:

• Construct a domain-wall brane model, with realistic standard model phenomenology

on a 3 + 1-dimensional brane.

• Investigate Lifshitz field theories, and use them to create renormalizable 4+1-dimensional

Yang-Mills gauge theories.

• Domain-wall brane models feature large grand unified theories (GUT). We use the

crystallographic root systems for Lie algebras to understanding all the embeddings of

the standard model within these GUTs.

While investigating all three topics, we would like to discover if there is a consistent de-

scription of microscopic physics when we alter the macroscopic properties of the universe.

We take a bottom up approach to probing physics beyond the standard model by construct-

ing effective field theory models and investigating their phenomenology. The emphasis

is not on constructing a comprehensive fundamental theory, rather we are interested in

new approaches to field theory. These approaches arise from solving problems in extra-

dimensional field theories and gravity.

Because this thesis encompasses three different topics we briefly review each of them, so

that we have placed each in context. Then we spend a paragraph outlining each chapter of

this thesis.

1.1 Extra dimensions

Extra dimensional models are based on 4 + n-dimensional coordinate spaces. They can

be broadly classified as either universal extra-dimensional models, which usually feature

Planck length sized extra-dimensions, or large extra-dimensional models which incorporate
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a 3+1-dimensional brane. In large extra-dimensional models the standard 3+1-dimensional

universe lives on the brane. The complementary space is called the bulk. Typically a mecha-

nism for recovering 3+1-dimensional Newtonian gravity is introduced and key components

for a standard model gauge field theory are localized to the brane. The localization of these

fields and the origin of the brane may be assumed a priori as part of the original set up of

the model. Alternatively it may be implemented through a dynamical localization scheme,

where at low energies the effective dynamics of the 4 + n-dimensional fields resembles

3 + 1-dimensional standard model phenomenology on the brane.

There are many motivations for studying extra dimensions. They have been used to create

grand-unified theories [Kal21, Kle26] and as a means of cancelling conformal anomalies in

string theories.

Recently it has been shown that extra dimensions provide a natural solution to the hierar-

chy problem. This problem occurs because quantum corrections to the Higgs self-energy

diagram predict the Higgs mass to be at the Planck scale. However problems with unitar-

ity in W-boson scattering require the Higgs mass to be below 1 tera electron volt (TeV).

This in turn requires the self-energy quantum corrections to be cancelled. Cancelling these

quantum corrections involves severe fine tuning, see [RS99b, RS99a].

Extra dimensions are now a leading candidate for extensions to the standard model of par-

ticle physics. We will review the development of this field in Chapter 3.

1.2 Lifshitz field theory

In conjunction with extra dimensions we investigate replacing Lorentz invariance in the

standard model action with a Lifshitz anisotropic scaling symmetry.

Lifshitz anisotropy is a property of many physical systems. For example, the phase diagram

for magnetic materials have a Lifshitz critical point. At this point the material undergoes

a transition from a disordered high temperature paramagnetic phase or helicoidal phase, to

a low temperature ordered ferromagnetic configuration. In the helicoidal phase the system

is isotropic and the magnetic spins are unaligned; in the ferromagnetic phase the system is

anisotropic [KS85, Hen02].
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More generally consider an anisotropic system in d-dimensions whose free energy is a func-

tion of the order parameter M⃗:

F(M⃗) = a′2tM2 + a4M4 + cβ(∇βM⃗)2 + cα(∇2
αM⃗)2 + cγ(∇2

αM⃗)2(∇2
βM⃗) (1.1)

where M⃗ is an n component order parameter and t is the reduced temperature. We have

introduced a gradient operator ∇α which acts on the first m coordinates of M⃗ and a second

gradient operator for the remaining d − m coordinates ∇β. This system exhibits quadratic

derivative terms only in the last d − m coordinate directions. Here the Lifshitz point is the

critical point where classical behaviour onsets [HLS75].

Recently Hořava attempted to solve the quantum gravity problem [Hor09, HMT10], by re-

placing Lorentz invariance in the Einstein Hilbert action with a Lifshitz anisotropic scaling

symmetry in the ultraviolet (UV) regime. The anisotropy in Hořava’s theory refers to in-

variance of the action under a coordinate rescaling, which is parameterized by the critical

exponent z as follows,

x→ bx t → bzt (1.2)

In the action, this anisotropic rescaling symmetry results in 2z leading order spatial deriva-

tive of the spatial-metric tensor and quadratic leading order time derivatives. The theory is

power counting renormalizable and Hořava, [Hor09], argues that z = 1 is an infrared (IR)

fixed point of the model. This causes Lorentz symmetry to manifest at low energies as an

“accidental symmetry”.

Lifshitz anisotropic scaling invariance (1.2), simultaneously increases the range of power

counting renormalization in quantum field theories. The key idea of Lifshitz field theories,

in this context, is that by explicitly breaking Lorentz invariance, it is possible to write down

an action with higher-order spatial derivatives while maintaining quadratic time derivatives

and thus the unitarity of the theory. The UV properties of the radiative corrections in the

theory are softened by the higher inverse powers of momentum appearing in the propaga-

tor. One interesting application is to field-theoretic models featuring extra dimensions of

space. It is well-understood that the UV behaviour degrades as the number of dimensions
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is increased. Even increasing the spatial dimensions from three to four causes Yang-Mills

theory to be nonrenormalizable. Thus, Lorentz-invariant field-theory models involving ex-

tra dimensions are inherently UV incomplete, and must be defined with a UV cutoff. But

extra-dimensional Lifshitz theories can be UV complete.

Furthermore Lifshitz field theories violate Derrick’s theorem [Der64], allowing stable 3+1-

dimensional solitons.

1.3 Spontaneous symmetry breaking, and crystallographic root

systems

Embeddings of SU(5) × U(1) inside SO(10):

Consider the Dynkin diagrams for the root system D5 for SO(10), where each node has
been labelled by one of the 5 simple root (ξ(1), . . . , ξ(5)):

u u u
u

u
1 2 3

4

5

There are two ways to embed the SU(5) root system A4 inside D5. These correspond to the two
choices for embedding SU(5) × U(1) inside SO(10). We shall call these two choices standard
SU(5), which we will refer to as SU(5)s × U(1)Xs , and flipped SU(5), correspondingly referred
to as SU(5) f ×U(1)X f . It is conventional to choose flipped SU(5) f to be the root system diagram
on the left. The diagram on the right is standard SU(5)s.

u u u
u

u u u u
u

uA4 A4

In standard SU(5)s theories we break SU(5)s × U(1)Xs → [SU(3) × SU(2) × U(1)Y] × U(1)Xs .
Here the root system for the standard model Lie algebra is generated entirely by the simple roots
(ξ(1), ξ(2), ξ(3), ξ(4)). This means the standard model subgroup SU(3)×SU(2)×U(1)Y ⊂ SU(5)s.
The remaining Cartan subalgebra generator Xs is a pull back of the simple root ξ(5).

In flipped SU(5) f models we break SU(5) f ×U(1)X f → [SU(3)×SU(2)×U(1)Y f ]×U(1)X f . Here
U(1)Y f 1 SU(5)s, instead the Cartan subalgebra generator Y f is now the linear combination of
Xs and Ys, which is linearly independent from X f (conventionally we choose X f and Y f to be
mutually orthogonal under the matrix trace).

Finally our work encompasses a study of spontaneous symmetry breaking (SSB). In par-

ticular we are interested in generalizations of the flipped SU(5) scenario [Bar82, DKN84].
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This scenario arises in SO(10) grand unified theories. Here there are two possible choices

for embedding SU(5)×U(1) inside SO(10). One is called standard SU(5)s the other is called

flipped SU(5) f .

We study extensions of this pattern to embeddings of subgroups within extremely large

grand unified theories, like embeddings of SU(5) within E6

E6 → SO(10) × U(1)′′ → SU(5) × U(1)′ × U(1)′′. (1.3)

There are three possible ways of embedding SU(5) within E6. We can talk about each

embedding in terms of the corresponding candidate weak hypercharge generator. We call

three Cartan preserving embeddings standard, flipped, or double-flipped. For convenience

we name the hypercharge generators in the same way. Standard hypercharge is a generator

of SU(5). The flipped hypercharge is a linear combination of standard hypercharge and

the U(1)′ generator, while the double-flipped hypercharge also involves an admixture of the

generator of U(1)′′. These different embeddings are related by a Weyl group symmetry.

Understanding the relationship between these different embeddings is of importance to

extra-dimensional models because the “clash of symmetries” mechanism (a generalization

of the Dvali-Shifman mechanism, which creates a domain-wall brane and confines gauge

fields to the brane) requires that at opposite extremes of the extra-dimension a grand unified

symmetry, G, must be broken to two differently embedded isomorphic copies of a subgroup

H. These issues will be elaborated on in Chapter 9.

1.4 Content of chapters of this thesis

In Chapter 4 of this thesis we construct a domain-wall brane model based on the grand-

unification group SO(10). Our model is a classical field theory which physically motivates

the origin of the brane and uses well known dynamical localization mechanisms to explain

why the field theory appears 3 + 1-dimensional. Our model is an extension of earlier work

by Davies et. al. [DGV08], to a larger grand-unification group. We are interested in SO(10)

based GUTs because they allow us to incorporate all the fundamental fermions in any gen-

eration into a single representation.
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The domain-wall brane is provided by a topological defect solitary wave. We invoke the

Dvali-Shifman mechanism to dynamically localize gauge bosons on the wall. As part of the

implementation of this mechanism an adjoint Higgs field is introduced which spontaneously

breaks the SO(10) symmetry inside the wall. We present two scenarios: in the first, the

unbroken subgroup inside the wall is SU(5) × U(1), and in the second it is the left-right

symmetry group SU(3) × SU(2)L × SU(2)R × U(1)B−L. In both cases we demonstrate that

the phenomenologically-correct fermion zero modes can be localized to the wall, and we

briefly discuss how the symmetry-breaking dynamics may be extended to induce breaking

to the standard model group with subsequent electroweak breaking. Dynamically localized

gravity is realized through the type 2 Randall-Sundrum mechanism.

We analyze the stability of this model in Chapter 5. In particular, we consider the field con-

figurations of the topological defect domain-wall brane and the adjoint Higgs field which

condenses inside the domain-wall to break SO(10) to SU(5) × U(1). The profiles of these

fields are found by solving the dynamical equations of motion. The interaction terms in

the dynamical equations contain free parameters, which carry mass dimensions and will

therefore run with energy. For the domain-wall brane and adjoint Higgs field profiles given

in (4.3) we show there exists an open set in the free parameter space for which the adjoint

Higgs field and domain-wall-brane solutions are stable against bifurcation. This is a non-

trivial problem: we establish these solutions are not always stable and will bifurcate if the

running coupling constants meet a certain hypersurface of the parameters. We use Fredholm

theory for compact linear operators combined with the Lyapunov-Schmidt method to prove

our results.

In Chapter 6 we examine a fundamental problem with extra-dimensional domain-wall brane

models. This problem is the non-renormalizability of Yang-Mills gauge theory in greater

than 3 + 1-dimensions. This implies domain-wall brane models can only be effective up

to an ultraviolet cutoff, where a putatively UV complete theory must take over. The Dvali-

Shifman mechanism for localizing gauge fields to the domain-wall brane requires a 4 + 1-

dimensional gauge theory in a confinement phase with a mass gap. With domain-wall brane

models based on conventional Yang-Mills gauge theory, we must conjecture that the Dvali-

Shifman mechanism is effective and can not rigourously establish the validity of our model.
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We directly tackle this problem by analyzing whether or not Lifshitz field theories in 4 + 1-

dimensions may provide ultraviolet-complete domain-wall brane models. We first show that

Lifshitz scalar field theory can admit topological domain-wall solutions. A Lifshitz fermion

field is then added to the toy model, and we demonstrate that 3+1-dimensional Kaluza-Klein

zero mode solutions do not exist when the four spatial dimensions are treated isotropically.

In addition to the anisotropy between space and time, we must postulate breaking full 4-

dimensional rotational symmetry down to the subgroup of rotations which mix the usual 3-

dimensional spatial directions and fix the extra-dimensional axis. This allows us to recover

3 + 1-dimensional chiral fermions dynamically localized to the domain-wall.

In Chapter 7 we consider the stability of the Lifshitz domain-wall brane (6.5) presented in

Chapter 6. Here we establish results for the dynamical evolution of classes of perturbations

about (6.5). We do not present a comprehensive analysis along the lines of Chapter 5.

Instead we concentrate on reviewing Derrick’s theorem and explaining why it does not

apply to Lifshitz models. It is a corollary of Derrick’s theorem that Lorentz-invariant scalar

field theories in 3 + 1-dimensions, and higher dimensions, are unable to support solitons.

However Derrick’s theorem does not apply to Lifshitz field theories, because they introduce

additional derivatives.

Chapter 8 deals with static solitons. In 1 + 1-dimensional Lorentz invariant scalar field

theories, static solitons are stable, finite energy, solutions to the λϕ4 second order differential

equation. Here we point out and capitalize on one of the key differences between Lifshitz

field theories and standard Lorentz invariant ones. Namely, we use the dichotomy from

Chapter 7. In 3 + 1-dimensional relativistic field theories, finite energy, static solitons are

excluded by Derrick’s theorem. However 3 + 1-dimensional Lifshitz field theories with

dynamical critical exponent z = 2 can support static solitons.

For a 3 + 1-dimensional Lifshitz field theory with dynamical critical exponent z = 2, we

exhibit three generic types of solitons: non-topological point defects, topological point de-

fects, and topological strings. We focus mainly on Lifshitz theories that are defined through

a superpotential and admit BPS solutions. If nature obeys a Lifshitz field theory in the ul-

traviolet, as would be compatible with the Hořava-Lifshitz quantum point model for gravity

[Hor09], then these novel topological defects may exist as relics from the early universe.
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Their discovery would prove that relativistically invariant field theories break down at short

distance scales.

In Chapter 9 we present a systematic approach to writing adjoint Higgs vacuum expectation

values (vevs), which break a symmetry G to differently embedded isomorphic copies of a

subgroup belonging to the chain G ⊃ H1 ⊃ · · · ⊃ Hl, as linear combinations of each other.

Given an adjoint Higgs vacuum expectation value h breaking G → H, a full complement

of vevs breaking G to different embeddings of the subgroup H can be generated through

the Weyl group orbit of h. An explicit formula for recovering each vev is given. We focus

on the case when H stabilizes the highest weight of the lowest dimensional fundamental

representation, where the formula is exceedingly simple. We also discuss cases when the

Higgs field is not in the adjoint representation and apply these techniques to current research

problems, especially in domain-wall brane model building.
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2
Notation

We discuss our notational conventions, in the following order: conventions relating to space-

time symmetries followed by internal symmetries.

We work with d-dimensional space-time manifolds. When we wish to refer to the standard

space-time manifold with 3-spatial dimensions and 1-temporal dimension we shall use the

term 3 + 1-dimensional. In the case d > 4 if we want to emphasis that the space-time

manifold has n additional dimensions we will write 4 + n-dimensional.

The lower case Latin letters will run over spatial coordinates so that xi ≡ (x1, x2, x3, x5, . . . ,

x4+n). Upper case Latin letters will index 4 + n-dimensional space-time coordinates so that

xM ≡ (t, xi). In particular we use vector notation for 3-dimensional coordinate vectors,

x⃗ = (x1, x2, x3).

Following standard conventions, the lower case Greek letters µ and ν are reserved for 3+ 1-

dimensional 4-vectors so that xµ ≡ (t, x1, x2, x3).

The 4+n-dimensional metric tensor will be called gMN ; however we adopt the conventional

notation gµν for the special 3 + 1-dimensional n = 0 case. In both scenarios we adopt

the metric signature (+,−, . . . ,−). In many examples we will dimensionally reduce a 4 +

n-dimensional theory to derive the effective 3 + 1-dimensional metric or Einstein Hilbert

action. In these cases we will often label the 4+n-dimensional metric g̃MN and contractions

of this metric like the Ricci scalar R̃ or metric determinant g̃.

We will occasionally need a metric gi j which can be used to independently raise and lower

13
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the spatial coordinates.

The symbol D will stand for a gauge covariant, or gravitationally covariant derivative; this

will be clear from context. We will generally use the standard symbol ∆ ≡ gi j∂
i∂ j.

In 4 + 1-dimensional theories we will reserve several Greek letters to label specific fields.

Namely the function ϕ(xM) labels a real scalar while Ψ(xM) refers to the 4 + 1-dimensional

fermion which we will mode expand in a tower of fields ψn(xµ) corresponding to 3 + 1-

dimensional massive Dirac particles. In domain-wall brane models we will always use

ϕ(xM) to label the real scalar field which condenses to form the brane. We distinguish the

extra-dimensional coordinate with the syntax x5 ≡ y and by C(y) we mean the space of

continuous bounded functions with respect to the y-coordinate space.

In the internal symmetry space, we choose to work exclusively with diagonal Cartan sub-

algebra generators. This can be done without loss of generality because given an arbitrary

Cartan subalgebra it is always possible to simultaneously diagonalize each member using

a similarity transformation within the Lie algebra. If the Lie algebra has rank l we choose

hi where i ∈ {1, . . . , l} to refer to our basis for the Cartan subalgebra.

When working with general results from the theory of Lie algebra, we physically contex-

tualize our analysis using QCD and the weak force as examples. To do this we choose

explicit representations. In each case we make use of the adjoint representation and the

lowest dimensional fundamental representation, otherwise known as the smallest faithful

representation.

In QCD for the 3 representation of SU(3) we use the Gell-Mann matrices λ1, . . . , λ8 as gen-

erators. We refer to the gluons as a set of 8 Lorentz 4-vector fields Gi
µ where i ∈ {1, . . . , 8}

distributed over the Gell-Mann matrices; we write Xµ
i = Gµ

i λi where there is no intended

sum over i. We also make use of the linear combinations of the off diagonal gluons:

Z1
µ =

1
√

2
(X1

µ + iX2
µ), Z2

µ =
1
√

2
(X4

µ − iX5
µ), Z3

µ =
1
√

2
(X6

µ + iX7
µ). (2.1)

Correspondingly we take linear combinations of the two diagonal gluons, renamed for no-
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tational convenience X3
µ = A1

µ and X8
µ = A2

µ,

Bp
µ = Ai

µα
p
i , (2.2)

where p ∈ {1, 2, 3} and the αp
i vectors are the three roots α1

i = (1, 0), α2
i = (1/2,

√
3/2), α3

i =

(−1/2,
√

3/2). In keeping with this notation we use a relabelling of the diagonal Gell-Mann

matrices λ3 = A1 and λ8 = A2 to define the SU(3) Lie algebra generators κ = Aiα1
i , ρ = Aiα2

i

and ϵ = Aiα3
i associated respectively with B1

µ, B
2
µ and B3

µ. We also give rather unimaginative

names to the Lie algebra generators associated with the valence gluons Z1
µ,Z

2
µ and Z3

µ:

Z1 = λ1 + iλ2, Z−1 = λ1 − iλ2, (2.3)

Z2 = λ4 + iλ5, Z−2 = λ4 − iλ5, (2.4)

Z3 = λ6 + iλ7, Z−3 = λ6 − iλ7. (2.5)

Notice these are precisely the raising and lowering operators of the SU(3) Lie algebra.

Extending the SU(3) example we will refer to the I-spin, V-spin and U-spin directions

in colour space, which describe the three Cartan preserving embeddings of SU(2) inside

SU(3). These are the three embeddings which have the Cartan subalgebra generators for

SU(2) as a subset of the Cartan generators for SU(3). In terms of the Gell-Mann matrices,

the generators of the SU(2) subgroup in each case are

λ1, λ2, κ︸   ︷︷   ︸
2(I-spin)

, λ4, λ5, λ6, λ7, λ8

λ1, λ2, λ4, λ5, ϵ, λ6, λ7︸   ︷︷   ︸
2(V-spin)

, ϵ′

λ1λ2, ρ, λ4, λ5︸   ︷︷   ︸
2(U-spin)

, λ6, λ7, ρ
′ (2.6)

where we have chosen to introduce complementary matrices to the ρ and ϵ, namely ρ′ =
√

3/2A1 + A2 and ϵ′ = −
√

3/2A1 + 1/2A2 respectively, so that each set of Lie algebra

generators contains a diagonal Cartan subalgebra, which is orthogonal under the matrix

trace.



16 Notation

In our weak force examples we use the Pauli matrices {τ1, τ2, τ3} as a vector space basis

for the adjoint representation (note τ3 is the diagonal generator of the weak isospin gauge

group, I2, in this representation) and the standard notation for the three gauge bosons W1
µ =

w1
µτ

1,W2
µ = w2

µτ
2,W3

µ = w3
µτ

3 .

Analogously to the QCD case we consider linear combinations of the weak force gauge

bosons W+µ = w+µτ
+ = W1

µ − iW2
µ , W−µ = w−µτ

− = W1
µ + iW2

µ and W0
µ = w3

µτ
3 = W3

µ , and the

corresponding generators τ+ = τ1 − iτ2, τ
− = τ1 + iτ2 and τ0 = τ3. We use this notation

because +1, -1 and 0 are the respective U(1)Q quantum numbers or electric charges of these

linear combinations.

The adjoint action of the Lie algebra adhi · Eα on itself is defined by adhi · Eα = [hi, Eα]. In

the special cases where the Eα are eigenvectors under the adjoint operation for some hi we

write [hi, Eα] = α(hi)Eα

We say a linear transformation stabilizes a point if it maps that point back onto itself. For

example if |λ⟩ is an eigenvector of a Lie algebra generator tk ∈ L, so that tk · |λ⟩ = λ(tk) |λ⟩,

then we say |λ⟩ is stabilized by tk.



3
Introduction

We will begin with a broad review of extra-dimensional models. This will be broken down

into major topics including a discussion of the progenitive extra-dimensional theory de-

veloped by Theadore Kaluza and Oscar Klein. One of the key features of this model is

the Kaluza-Klein (KK) mode reduction of a 4 + 1-dimensional field into a tower of 3 + 1-

dimensional KK modes or resonances. In section 3.2 we proceed to large extra-dimensional

models. Arkani Hamed, Dimopoulos and Dvali (ADD) proposed the foundational model

in this area which demonstrated extra dimensions can be used to solve the hierarchy prob-

lem. The two seminal models from Randall and Sundrum (RS1 and RS2) are covered in

section 3.3. Importantly the RS2 type model is the basis of Chapter 4 of this thesis.

We discuss canonical topological defects in section 3.4. In particular we are interested

in domain-walls. A proof of the stability of real scalar field topological defects in 1 + 1-

dimensions, respectively instability in higher dimensions, is given through homotopy argu-

ments, respectively Derrick’s theorem.

Sections 3.5-3.6 of our review will discuss how particles become localized to the domain-

wall brane. We examine Rubakov and Shaposhnikov’s fermion zero mode method for lo-

calizing fermions to a topological defect [RS83]. This picture is complemented with a

discussion of the Dvali-Shifman mechanism for gauge field localization on a topological

defect domain-wall brane. We end our discussion of localizing fields to the domain-wall

brane by explaining how to extend the Dvali-Shifman mechanism to trap standard model

fields using large grand unified groups. In conjunction with this we discuss the potential

17
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problems with applying the Dvali-Shifman mechanism to 4 + 1-dimensional field theories.

Section 3.7 and subsection 3.7.4 introduce grand unified theories, and spontaneous symme-

try breaking.

To aid with building a renormalizable 4+1-dimensions Yang Mills gauge theory section 3.8

introduced Lifshitz anisotropic scaling and field theories. Lifshitz field theories will form

the foundation for Chapters 6 and 8.

We conclude the introduction with a discussion of roots and weights, along with the Weyl

group. These will be useful tools for studying the grand unified theories we have introduced.

3.1 Kaluza-Klein theory

3.1.1 Kaluza’s original idea

Extra-dimensions were first introduced in the 1920s by Oscar Kaluza and Theodore Klein.

Kaluza and Klein realized extra-dimensions could be used to unify Maxwell’s theory of

electromagnetism and Einstein’s general relativity. To achieve this Kaluza proposed ex-

tending the metric, so that the extended Lorentz indices, M, N, ran over a 4+1-dimensional

co-ordinate space (xµ, y), where µ is the normal 3 + 1-dimensional Lorentz index. The

extended metric tensor is:

g̃MN =

gµν + κ2ϕ2AµAν κ2ϕ2Aµ

κ2ϕ2Aν ϕ2

 (3.1)

where gµν is a rank two tensor under 3+1-dimensional spatial isometries, Aµ transforms like

a four vector of fields under the 3+1-dimensional Lorentz group and ϕ is a 3+1-dimensional

Lorentz scalar.

Kaluza imposed the “cylindrical condition”: None of the metric components depend on

the 5-th co-ordinate y. The 4 + 1-dimensional Einstein-Hilbert action for the theory is the

same as the 3 + 1-dimensional Einstein-Hilbert action where the Ricci scalar and metric

determinant are calculated from (3.1) under the assumption that all the derivatives with
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respect to y vanish. This gives:

S = −
∫

d4x
√

gϕ
(

R
16πG

+
1
4
ϕ2FµνFµν +

2
3κ2

∂µϕ∂µϕ

ϕ2

)
, (3.2)

where we have chosen to match the free parameter κ to the gravitational constant κ = 4
√
πG,

and Fµν = ∂µAν − ∂νAµ is the stress energy tensor for Aµ.

There is a limiting case of the action (3.2) where the roles of the various metric components

become clearly identifiable. If we choose to suppress the scalar field dynamics by requiring

ϕ = 1, then (3.2) becomes the standard Einstein-Hilbert action for a 3 + 1-dimensional

theory of electromagnetism and gravity. Using the principle of stationary action we can

derive Einstein’s equation for the 3 + 1-dimensional metric tensor with the electromagnetic

energy momentum tensor, Tµν = gµνFλδFδλ/4 − FµλFλ
ν , as a source, and a sourceless 3 + 1

dimensional Maxwell equation for the photon [OW97]:

Gµν = 8πGTµν, ∇µFµν = 0. (3.3)

3.1.2 Compactification

Figure 3.1: You can think about a com-

pactified extra dimension, as attaching a

cylinder to each point in space (picture

from Brian Green’s, The Elegant Uni-

verse).

Kaluza’s theory introduces new problems, namely

how do we hide the extra dimension and why impose

such an artificial “cylindrical condition”? Wouldn’t

it be more natural for the fields to have a nontriv-

ial profile along the extra dimension? This inspired

Klein to propose that extra dimensions will be unde-

tectable if they are compactified, or quotiented out

by a relation y ∼ y+ 2πR where the compactification

radius R is usually taken to be of order the Planck

length lPl = 10−33 cm. In this topology each metric

component will be periodic with respect to the 5-th

co-ordinate y. This means that we can expand each
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field into a sum over normal modes, or a KK tower:

gµν(x, y) =
∞∑

n=−∞
gµνn(x)einmy

Aµ(x, y) =
∞∑

n=−∞
Aµ5n(x)einmy

ϕ(x, y) =
∞∑

n=−∞
ϕn(x)einmy, (3.4)

with g∗µνn(x) = gµν−n(x) and m = 2π/R.

This approach has two major advantages. We can start with 4 + 1-dimensional fields and

clearly identify the 3 + 1-dimensional particles, which are the coefficients in the expansion

(3.4). Furthermore substituting (3.4) directly into the action and dimensionally reducing the

theory will allow us to extract the dynamics of the 3+ 1-dimensional particles in the theory.

To wit each KK tower contains a zero mode, corresponding to the coefficient of the n = 0

term, which does not depend on y. If we ignore the other modes then the Einstein-Hilbert

action for this zero mode will be (3.2).

The n , 0 modes become a distinctive signature for the extra-dimension. These extra

modes give rise to massive gravitons gµνn(x). To see this [Duf94] considers the general co-

ordinate parameter, ξ̃M(x, y), which parameterizes the symmetry of the 4 + 1-dimensional

Einstein-Hilbert action under co-ordinate transformation leading to perturbations in the 4 +

1-dimensional metric

δ̃gMN = ∂M ξ̃
Lg̃LN + ∂N ξ̃

Lg̃LM + ξ̃
L∂Lg̃MN . (3.5)

Fourier expanding this general co-ordinate parameter ξ̃M(x, y) gives

ξ̃µ(x, y) =
∞∑

n=−∞
ξ
µ
n (x)einmy

ξ̃4(x, y) =
∞∑

n=−∞
ξ4

n(x)einmy (3.6)

and allowing for ξ̃∗µn = ξ̃
µ
−n, shows that we have an infinite parameter family of local trans-

formations. There is a corresponding infinite parameter global algebra which is the Kac-
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Moody-Virasoro generalization of the Poincarè algebra, generated by

Pµn = einmy∂µ

Mµν
n = einmy (

xµ∂ν − xν∂µ
)

Qn = ieinmy∂my. (3.7)

However when we substitute the zero mode expressions into the 4+1-dimensional Einstein-

Hilbert action we find that the vacuum of (3.2) only respects 3 + 1-dimensional Poincarè

invariance cross producted with a U(1) symmetry arising from the extra-dimension. Con-

sequently when n , 0 in (3.6) the local gauge parameters ξµn and ξ4
n correspond to sponta-

neously broken generators. The higher KK modes Aµn(x) and ϕn(x) become the Goldstone

bosons associated with this broken symmetry, which the spin-2 gravitons gµνn(x) eat to be-

come massive modes (thereby acquiring 5 degrees of freedom) [Duf94].

3.2 Large extra dimensions and the ADD model

The prevailing wisdom was that extra-dimensions had to be of order the Planck scale. Csáki

[Csa04] gives a natural explanation for this. Imagine there are n extra compact dimensions

all of the same length 2πR. We call the volume of the extra dimensions Vn = (2πR)n. Let

the 4 + n-dimensional line element correspond to a product topology of 3 + 1-dimensional

Minkowski space-time with S n (solid angle parameters Ω(n)):

ds2 = ηµν dxµdxν − R2dΩ2
(n). (3.8)

The metric signature is + − − − − and the 4 + n-dimensional coordinate space is (xµ,Rθn),

where Θn is a n-dimensional vector of angles parameterizing the location in the toroidal

compactified extra dimensions. Then take the 4+n-dimensional Einstein-Hilbert action and

carefully include a factor of the fundamental gravitational scale M∗, to the power n + 2 to

ensure the action is dimensionless. If we integrate over the extra dimensions we get

S 4+n = −Mn+2
∗

∫
d4+nx

√
−g(4+n)R(4+n) ⊃ −Mn+2

∗ Vn

∫
d4x
√−gR. (3.9)
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This last term can be identified with the effective 3+ 1-dimensional Einstein-Hilbert action,

leading us to conclude that the fundamental gravitational scale must be related to the Planck

scale by

MPl = Mn
∗Vn ∼ Mn

∗R
n. (3.10)

Correspondingly in the matter sector of the action consider a 4 + n-dimensional scalar field

with action

S 4+n =

∫
d4+nx

(
∂Mϕ∂

Mϕ + m2ϕ2 − λϕ4
)
. (3.11)

If the scalar field is canonically normalized then it has mass dimensions [ϕ] = 1 + n
2 , and

therefore the coupling constants m2 and λ are dimensionful whenever n ≥ 1. In particular

the ϕ4 interaction term should be suppressed by a mass parameter. The natural choice for

this parameter is the cutoff for the theory M∗. It is convenient to rewrite the ϕ4 interaction

term as λ
Mn
∗
ϕ4.

However if we substitute a KK tower expansion for ϕ,

ϕ(xµ, y) =
∞∑

n=−∞
ϕn(x)einmy (3.12)

into (3.11) and dimensionally reduce the action (that is integrate over y to find the effective

3 + 1-dimensional action) then we find that all KK modes ϕn(x) have mass dimension 1.

Therefore in the effective 3 + 1-dimensional field theory there will be an interaction term

between KK modes of the form

λe f f ϕnϕkϕmϕ−n−k−m, (3.13)

where the effective 3 + 1-dimensional coupling constant λe f f = (2πR)nλ/Mn
∗ ∼ Rn/Mn

∗ .

Analogously in the gauge sector where the kinetic term is

S 4+n = −
∫

d4+nx
1

4g2/Mn
∗

FMN FMN
√

g(4+n), (3.14)

integrating over the extra dimensions gives

S = −
∫

d4x
Vn

4g2/Mn
∗

FµνFµν √g. (3.15)
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Hence the 3 + 1-dimensional effective gauge coupling

1
g2

e f f

∼ RnMn
∗ . (3.16)

Combining (3.16) and (3.10) we find that the natural size [Csa04] for the extra-dimension

is

R ∼ 1
MPl

g
n+2

n
e f f . (3.17)

In other words the size of the extra dimension is the same order of magnitude as the Planck

length. In this scenario at energies E < MPl, the effective 3+1-dimensional interaction terms

in (3.13) are highly suppressed, even amongst 3 + 1-dimensional zero modes. Furthermore

there is no hope of probing these microscopic extra dimensions with collider experiments.

This motivated the idea of brane world models with large compact extra dimensions. These

are compact extra dimensional models where only gravity is able to propagate in all 4 + n-

dimensions while standard model fields are restricted to a 3 + 1-dimensional slice of the

extra dimension known as a brane.

Arkani Hamed, Dimopoulos and Dvali proposed using brane world models with large com-

pact extra dimensions to solve the hierarchy problem [AHDD98]. Here we are referring to

the discrepancy between the electroweak symmetry breaking scale, MEW , or Higgs mass

and the Planck scale. From one loop corrections to the Higgs potential, the Higgs mass

receives corrections which are quadratic in the cutoff scale,

δm2
H =

1
8π2

(
λH − λ2

Y

)
Λ2 +

(
log. div.

)
+ finite terms, (3.18)

where λY is the Yukawa coupling constant, while λH is the Higgs self coupling [PL05].

Precision electroweak experiments put the optimal Higgs mass around 100 GeV. IfΛ = MPl

is used to set the cutoff scale then it becomes necessary to balance the corrections to an

unreasonable degree of precision, both at one loop level and at every subsequent order in

perturbation theory.

Arkani Hamed, Dimopoulos and Dvali [AHDD98] suggested that if all standard model

fields are trapped on a 3 + 1-dimensional brane then the extra dimensions may be quite
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large (up to the distance at which Newtonian gravity has been tested by Cavendish type

experiments R ∼ 0.2 mm). Therefore because the fundamental gravitational scale is related

to the Planck scale by (3.10), if there are two or more compact extra dimensions then the

fundamental gravitational scale may be comparable to MEW (around 1 TeV) while main-

taining MPl ∼ 1016 TeV. (With one extra dimension for M∗ ∼ 1 TeV we need the size of the

extra dimension to be comparable to the diameter of our solar system. Needless to say this

scenario was observationally ruled out during the 17th century.)

3.3 Randall-Sundrum models

Randall and Sundrum introduced two models called RS1 and RS2. The RS1 paradigm

solves the hierarchy problem using a compact extra dimension. The RS2 model recovers

Newtonian 1/r2 gravity in spite of a single infinite extra dimension. However in doing so,

it precludes the solution to the hierarchy problem.

3.3.1 The type 1 Randall-Sundrum paradigm

Randall and Sundrum took the alternate approach to solving the hierarchy problem [RS99a].

Instead of bringing the fundamental gravitational scale down to the electroweak symmetry

breaking scale, Randall and Sundrum showed that when you take the back reaction of the

brane tension on the 4 + 1-dimensional metric into account then the 4 + 1-dimensional

Einstein equations have a warped metric solution. After canonically normalizing the Higgs

field in this warped background, it is possible for the electroweak symmetry breaking to

occur at 1018 TeV and still appear to take place at 1 TeV on a 3+1-dimensional hyperplane.

Randall and Sundrum look for solutions to the 4 + 1-dimensional Einstein equations for a

4 + 1-dimensional metric g(5)
MN , which is described by

ds2 = e−σ(y)ηµν dxµ dxν − dy2, (3.19)

where the signature of the metric is + − − − −, and the 4 + 1-dimensional coordinate space

is xM = (xµ, y). The key feature of this metric is that it preserves Lorentz invariance on each

3 + 1-dimensional slice of the extra dimension. However unlike (3.8), it is not factorizable.
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By this we mean that the coefficient of the infinitesimal variation in the 3 + 1-dimensional

coordinate space dxµ, is proportional to a function of y, known as the warp factor.

The extra dimension is finite. It runs from y = −L to y = L and there is an orbifold Z2

symmetry y ↔ −y. There is an excellent reason for the orbifolding condition. Consider

perturbations around the 4 + 1-dimensional metric (3.19)

ds2 = e−σ(y)
[
ηµν + hµν

]
dxµdxν − Aµdxµdy − ϕ2dy2, (3.20)

where Aµ is a graviphoton, ϕ is the radion and hµν is the 3+ 1-dimensional graviton. Now if

we Kaluza-Klein expand these perturbations in the same KK tower as in (3.4), then because

ds2 has to be symmetric under y ↔ −y, Aµ must be an odd function of y. From the form of

the Kaluza-Klein tower (3.4) we can see that An(x) = −A−n(x) and A0(x) = 0. There is no

zero mode graviphoton, and from the Kaluza-Klein example we anticipate the theory will

have a zero mode graviton and radion as well a continuum of massive gravitons.

Randall and Sundrum then introduce a positive tension and a negative tension brane, which

they refer to as the hidden brane and the visible brane, respectively. We will see that having

both branes is necessary for a consistent solution to the Einstein equations. They place

each brane at an orbifolding fixed point. Specifically the positive tension (hidden) brane is

located at y = 0 while the negative tension (visible) brane is at y = L. Again this choice is

phenomenologically motivated.

In a similar model Gregory, Rubakov and Sibiryakov [GRS00] create a scenario where

gravity exhibits 4 + 1-dimensional characteristics at both UV and IR scales but is localized

to a brane at intermediary energies. This model necessitates placing the negative tension

brane in between the orbifolding fixed points. The brane is no longer fixed at y = L and

can oscillate along the y-direction. The radion kinetic term acquires a negative coefficient

which is proportional to the brane tension; oscillations in the position of this brane now lead

to negative energy problems [PRZ00].
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With these specifications the action for the RS model becomes

S = −
∫ √

g(5) d4x dy
[

1
2M−3
∗

R(5) + Λ

]
︸                                        ︷︷                                        ︸

S gravity

−Vhid

∫ √
ghid d4x︸                   ︷︷                   ︸

S hid

+Vvis

∫ √
gvis d4x︸                  ︷︷                  ︸

S vis

, (3.21)

where M∗ is the fundamental gravitational scale for the 4 + 1-dimensional theory, Vhid and

Vvis are the brane tension or unit energy per three-volume on the visible and hidden branes

respectively, g(5) is the determinant of the 4 + 1-dimensional metric tensor, similarly R(5) is

the 4+ 1-dimensional Ricci scalar. We use gvis for the determinant of the 3+ 1-dimensional

metric tensor on the visible brane and ghid for the hidden brane case, and we have chosen to

incorporate a 4 + 1-dimensional cosmological constant Λ.

The Einstein equations can now be derived and solved. These equations must be solved

consistently in the region between the two branes, which contains no sources other than the

4+1-dimensional cosmological constant, and at the locations of the two branes. This can be

seen directly from the righthand side of Einstein’s equations [PL05], which give the source

terms to the Einstein equations,

GMN = −
1

M3
∗
ΛgMN +

Vhid

M3
∗

√
ghid

g(5) δ
µ
Mδ

ν
Nghid

µν δ(y) − Vvis

M3
∗

√
gvis

g(5) δ
µ
Mδ

ν
Ngvis

µν δ(y − L). (3.22)

This must be matched against the Einstein tensor components for (3.19), the warped metric

ansatz:

Gµν = −3g(5)
µν

(
−σ′′ + 2(σ′)2

)
, Gµ4 = 0, G44 = −6g(5)

44 (σ′)2. (3.23)

From the region between the two branes we obtain our first condition on the metric ansatz

(3.19), namely 6(σ′)2 = Λ/M3
∗ , while at the location of each brane we pick up an Israel

junction condition. This tells us the derivative of the exponent of the warp factor, σ, is

discontinuous at both branes.

3σ′′ =
Vvis

M3
∗
δ(y) − Vhid

M3
∗
δ(y − L). (3.24)

In spite of this discontinuity there is a physical solution to the Einstein equations as the
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metric will still be smooth. In fact the solution to these equations is

σ(y) = 2k|y|, k2 =
Λ

24M3
∗
, (3.25)

provided Vvis = Vhid, and that we fine tune the brane tension against the 4 + 1-dimensional

cosmological constant

Λ =
V2

vis

24M3
∗
. (3.26)

Because of the sign of the action (3.21), we have therefore forced the 4 + 1-dimensional

space, bounded by the two branes, to be a slice of Anti-de Sitter space-time. This condition

occurs because we are asking for a flat Minkowski metric on the 3 + 1-dimensional space

spanned by the brane and for the branes to be static. As such we do not want a 3 + 1-

dimensional cosmological constant. Fine tuning is a way of exactly cancelling out the

3 + 1-dimensional cosmological constant.

Now Randall and Sundrum a priori assume that matter is localized to the visible brane. The

3 + 1-dimensional metric components at the location of the hidden brane are ηµν, however

on the visible brane they are e−2kLηµν. Therefore, given a Higgs field action is of the form

S vis ⊃ S Higgs =

∫ √
gvisd4x {gµνvis∂µH†∂νH − λ(|H|2 − v2

0)2}, (3.27)

where v0 is the mass parameter, the kinetic term inside the integrand is proportional to

e−2kL. To obtain a canonically normalized Higgs field it is therefore necessary to rescale

H → ekLH, which modifies the action to

S Higgs =

∫
d4x {ηµν∂µH†∂νH − λ(|H|2 − e−2kLv2

0)2}. (3.28)

Hence we can choose the electroweak symmetry breaking scale v = e−kLv0 to be around

1 TeV. We can simultaneously maintain a fundamental mass scale parameter v0 = MPl,

provided we choose kL ∼ 50.

By contrast, if we ask how the fundamental gravitational scale M∗ is related to MPl, then by

integrating over the y coordinate in S gravity and comparing the result to the 3+1-dimensional
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Einstein-Hilbert action, we find that

M2
Pl =

M3
∗

k

[
1 − e−2kL

]
; (3.29)

here we have used the property of the 4 + 1-dimensional Ricci scalar R(5) ⊃ e2k|y|R, that is,

R(5) is directly proportion to the effective 3 + 1-dimensional Ricci scalar R.

For our previous choice of kL, we find the 4 + 1-dimensional fundamental scale is also

similar to the Planck scale. This eliminates the hierarchy problem between the Planck and

electroweak symmetry breaking scales.

3.3.2 The type 2 Randall-Sundrum paradigm

In RS2, Randall and Sundrum extended the RS1 model to incorporate an infinite extra

dimension. The key asset of the RS2 model is that in spite of the presence of an infinite

extra dimension, there is a localized zero mode graviton on the domain-wall brane. This

leads to effective Newtonian gravity on the brane. Furthermore the RS2 model also recovers

normal 3 + 1-dimensional general relativistic phenomenology on the brane.

Randall and Sundrum [RS99b] begin by taking the setup from the RS1 model [RS99a], out-

lined in the previous section, and analyzing the spectrum of general linearized perturbations

about the 3 + 1-dimensional metric

ds2 =
[
e−2k|y|ηµν + hµν

]
dxµdxν − dy2. (3.30)

From invariance of the proper distance under the orbifold symmetry, we can see that the

gravitons hµν must be even functions of y. This gives us a boundary condition on the solu-

tions to the linearized Einstein equation.

In addition to these spin 2 gravitons, there is a radion ϕ which corresponds to fluctuations

around the g(5)
44 component of the metric (3.19).

Because there are no source terms in between the branes, in this region the perturbations

can be gauge fixed in a transverse traceless gauge: ∂µhµν = 0 and hµµ = 0. This causes all

the different components (indexed by different µ and ν) to be the same. For this reason we
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suppress these indices. Furthermore we make a Kaluza-Klein decomposition of the graviton

and rewrite the 4 + 1-dimensional field as a KK tower of 3 + 1-dimensional modes:

h(x, y) = Σmψ̂m(y)Hm(xµ). (3.31)

It is now possible to use separation of variables in the linearized Einstein equations to obtain

the simultaneous equations

[
−m2

2
e2k|y| − 1

2
∂2

y − 2kδ(y) + 2k2
]
ψ̂m = 0 and ∂µ∂

µHm = −m2Hm. (3.32)

From the above we conclude the 3 + 1-dimensional gravitons Hm(xµ) = eipm
µ xµ are freely

propagating plane waves in the 3+1-dimensional coordinate directions with each satisfying

a dispersion relation (pm)2 = m2, where the value of m2 is found by solving the correspond-

ing eigenvalue equation for the profile functions ψ̂m(y).

If we rescale the wave function ψ̂m, and simultaneously shift to conformal coordinates,

z = sgn(y)(ek|y| − 1)/k and ψ̂m(z) = ψ̂m(y)ek|y|/2, (3.33)

then we can turn the differential equation (3.32) for the graviton profile functions into a

Schrodinger equation [
−1

2
∂2

z + V(z)
]
ψ̂m(z) = m2ψ̂m(z), (3.34)

where the potential,

V(z) =
15k2

8(k|z| + 1)2 −
3k
2
δ(z), (3.35)

is called a volcano potential because its characteristic form has a deep well centred about

y = 0; this can be seen from Figure 3.2.

There is a localized zero mode graviton on the z = 0 brane (in the original coordinates this

is the y = 0 brane). This graviton corresponds to the m = 0 term in the KK tower. Its

3 + 1-dimensional wave function satisfies a massless dispersion relation (p0)2 = 0, while

the extra dimensional profile function is proportional to the warp factor ψ̂0 ∝ e−2|k|y. We

say this mode is localized because its profile function is sharply peaked around the location

of the z = 0 brane. In addition for a quantized spectrum of masses, m, there are corre-
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sponding massive modes, whose profile functions can be written as linear combinations of

(|z| + 1/k)1/2Y2(m(|z| + 1/k)) and (|z| + 1/k)1/2J2(m(|z| + 1/k)), where J2 and Y2 are Bessel

functions of the first and second kind.
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Figure 3.2: An approximation of the Randall Sundrum Volcano potential (where we have
replaced the infinitely thin Dirac delta function by a Gaussian wave function 1

a
√
π
e−z2/a2

,

whose limiting value when a tends to zero, is the delta function.) graphed in units of 1/k2

with a dimensionless axis variable kz. The deep well at y = 0 is able to trap a zero mode
graviton on the brane, while the warping of the potential
limkz → ±∞ V(z)/k2 → 0 gives rise to a continuum of freely propagating massive modes
starting from m = 0.

Remarkably, if we take the negative tension brane to infinity, L → ∞, the localized zero

mode graviton remains and we acquire a continuum of massive modes starting from m = 0.

To create an infinite extra dimension we now reflect the space-time about the origin z = 0;

this simply corresponds to removing the boundary condition that all gravitons must be even

functions of z.

Randall and Sundrum calculate the Yukawa gravitational attraction potential, V(r), between

two objects of mass m1 and m2 living on the brane and separated by a distance r:

V(r) = GN
m1m2

r
+

∫ ∞

0

dm
k

GN
m1m2e−mr

r
m
k
. (3.36)

The first term is mediated by the zero mode graviton, while the integral is the contribution

from the KK modes at z = 0. The measure dm/k indicates the density of KK modes, while

the extra factor m/k is caused by the suppression of the continuum KK modes at z = 0.
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We established in Figure 3.2 that due to the warping of the potential limkz→∞ V(z)/k2 → 0,

these continuum modes are freely propagating as kz → ∞. However to get to the location

of the brane, z = 0, they must tunnel through a potential barrier caused by the steep slope

of the volcano potential surrounding the crater. This leads to a suppression in the coupling

of continuum modes to matter localized on the brane.

Evaluating the integral (3.36) gives a modified Newtonian gravitational potential, V(r),

which receives only second order corrections in 1/kr :

V(r) = GN
m1m2

r

(
1 +

1
r2k2

)
. (3.37)

At distances r >> 1/k the contribution from the continuum modes to the Newtonian poten-

tial will go unnoticed and the extra dimension will be hidden from an observer living on the

brane! This has created a dynamic and insightful new field [Vis85, Ant90, AAHDD98].

3.4 Topological defects

In this thesis we are interested in extending the RS2 model. We would like to dynamically

generate the brane, rather than introduce it by hand using an explicitly 3 + 1-dimensional

term in the action. The RS2 action (3.21) contains the 3 + 1-dimensional term, S hid, which

explicitly breaks Poincaré invariance along the extra dimensional coordinate space.

To dynamically generate the brane we introduce a real scalar field topological defect [RS83,

Aka82, GW87]. In 4 + 1-dimensional theories this defect is a domain-wall which sponta-

neously condenses around y = 0, thereby spontaneously breaking translational invariance

along the extra dimension1. In 6-dimensional brane world models, the optimal field theo-

retical candidate for creating a 3 + 1-dimensional brane is a hedgehog. These defects will

1A rigid brane will spontaneously break translational invariance along the extra dimension and 4-
dimensional spatial rotational invariance. However if gravity is taken into account and the full complement
of perturbations about the brane is considered then there is a massless Goldstone boson associated with the
breaking of translational symmetry along the extra dimension. The translational invariance becomes a hidden
local symmetry which is not manifestly evident in the action due to the explicit choice of coordinates for em-
bedding the brane. This coordinate choice acts as a gauge fixing condition in the full diffeomorphisms invariant
5-dimensional theory. The Goldstone boson carries the extra degree of freedom. The 4-dimensional spatial
rotational invariance remains spontaneously broken, this symmetry does not become a hidden local symmetry
because it is associated with the local Lorentz invariance in the tangent space to the 5-dimensional space-time
manifold.
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also become important in Chapter 8, where we are interested in whether a 3+1-dimensional

universe with Lifshitz anisotropic scaling can contain cosmic relics created by stable, finite

energy, static topological defects. For these reasons we spend some time on the topic of

topological defects. We will review both domain-wall branes and hedgehogs. In addition

we will mention sting defects, which become important in Chapter 8.

3.4.1 Domain-wall topological defects

In 1 + 1-dimensional field theories (with 1-spatial dimension, y, and 1 temporal dimension)

domain-wall topological defects form static solitary waves with finite total energy. In 4+ 1-

dimensional field theories they can be used to generate codimension 1 domain-wall branes

with finite 3 + 1-dimensional energy density.

Canonically they are generated by a ϕ4 field. This is a real scalar field whose Lagrangian is

invariant under a discrete Z2 reflection symmetry ϕ→ −ϕ. Let

L = ∂µϕ∂µϕ −
λ

4
(ϕ2 − v2)2. (3.38)

The degenerate minima of the potential occur at ϕ = ±v; as demonstrated in Figure 3.3.
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Figure 3.3: The ϕ4 potential well after rescaling and using a dimensionless coordinate. The
invariance of the Lagrangian under ϕ → −ϕ creates a disconnected vacuum manifold. This
vacuum manifold is generated by Z2 reflections of the minimum ϕ = v (or ϕ = −v). In the
dimensionless coordinate system used to plot the potential well these two points are ϕ/v = 1
and ϕ/v = −1.
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In addition to the vacuum solutions to the Euler Lagrange equations ϕ = +v and ϕ = −v

there exists a solitary wave solution which satisfies the boundary conditions limy→±∞ ϕ(y) =

±v. This solution is known as the kink:

ϕkink(y) = v tanh
 √λvy

2

 . (3.39)

Additionally there is a corresponding anti-kink solution which is the negative of (3.39). In

1 + 1-dimensions the total energy of the solitary wave is finite:

E =
∫

dy
[
∂µϕkink∂

µϕkink +
λ

4
(ϕ2

kink − v2)2
]
=

4
3

√
λv3. (3.40)

This energy is concentrated around the point of interpolation of the kink, giving rise to a

co-dimension 1 domain-wall brane located at y = 0. From (3.40) we see that both the kink

and anti-kink solutions have higher energy than the vacuum. However neither configuration

will relax to the vacuum of the theory. The kink approaches distinct minima which belong

to disconnected sectors of the vacuum manifold at opposite extremes of the y-direction.

If we were to continuously deform the kink into the flat vacuum configuration ϕ = v (or

ϕ = −v), then we would have to pass through intermediary states where ϕ(y) asymptotically

approaches a nonzero constant c , ±v. That is −v < c < v . Because c does not belong to

the vacuum manifold, these intermediary states have infinite energy.

Another way to see this is to use the conserved current for the Lagrangian [Vac97] which,

from Noëther’s theorem [aGS93], is

jµ = ϵµν∂νϕ, (3.41)

where µ, ν ∈ {0, 1} and ϵµν is the 2-dimensional Levi-Civita tensor. This leads to a conserved

charge in the theory,

Q =
∫

dy j0 = ϕ(+∞) − ϕ(−∞), (3.42)

called the topological charge. Clearly the kink possesses a topological charge of +2v, while

the anti-kink has topological charge −2v, and the vacuum has charge 0. We say these config-

urations belong to different topological sectors. Because none of these field configurations

belong to the same topological sector, it is not possible to start out with one solution and
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spontaneously evolve into another.

We can directly demonstrate that ϕ4-field theory possesses topologically nontrivial solutions

(solutions whose topological charge is different from that of the vacuum and therefore can

not relax into the vacuum) using the 0-th homotopy group of the vacuum manifold. We can

think of the boundary conditions as forming a map from the boundary of the real line onto

the vacuum manifold. Because the vacuum manifold is generated by Z2 (see Figure 3.3

caption), this mapping is

S 0 → Z2. (3.43)

In general [Hua92] the n-th homotopy group, πn(X), of a space X, is the group of inequiv-

alent mappings of the n-sphere into X, S n → X. Inequivalent mappings belong to different

topological classes (they are not homotopy equivalent). The zeroth homotopy group, π0(x),

simply counts the number of path connected components in X.

Z2 is not path connected, therefore π0(Z2) , 0. The kink is a solution to the Euler Lagrange

equations whose boundary conditions give a mapping, φkink, from S 0 into Z2. The flat vac-

uum ϕ = v is also a solution to the Euler Lagrange equations whose boundary conditions

give a trivial mapping φvac from S 0 into Z2. These mappings φkink and φvac are not homo-

topy equivalent. It is impossible to continuously deform the kink into the vacuum through

intermediary states whose boundary conditions also belong to the vacuum manifold. A con-

tinuous deformation of the kink into ϕ = v would give rise to a homotopy equivalence of

φkink and φvac.

3.4.2 Higher defects in n-dimensions

We can directly generalize the above to a topological defect in n + 1-dimensions [DFM10].

First of all start out with a n + 1-dimensional coordinate space (n-spatial dimensions, 1

temporal dimension) containing a vector of m scalar fields (ϕ⃗)a = ϕa, where a = 1, . . . ,m

and both n, m > 1.

Consider a normalized vector of the asymptotic values of these m fields limr→∞
1
|ϕ⃗| (ϕ1, . . . , ϕm).

We distinguish between two cases:

1 The fields can take any real value as r → ∞. Therefore this normalized vector belongs
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to S m−1.

2 If we were to introduce a Lagrangian, invariant under an internal symmetry G, and

insist ϕ⃗ asymptotically approaches a vacuum of the theory which breaks G → H, then

the vector limr→∞
1
|ϕ⃗| (ϕ1, . . . , ϕm) will belong to the vacuum manifold G/H.

We follow the [DFM10] example and use case 1 as our default example in this section. In

case 1 we do not need to introduce a Lagrangian and talk about the vacuum manifold.

Define a (n−1)-sphere, S n−1, which is the boundary of the n-dimensional spatial coordinate

space. That is, if we take

dl2 = b(r)(dr2 + r2dΩ2
n−1) (3.44)

as the metric for the n-dimensional spatial coordinate space, then the (n − 1)-sphere S n−1

inherits the metric b(r)r2dΩ2
n−1. Let n⃗ = r⃗/r be a point on the (n − 1)-sphere.

Figure 3.4: An example of a mapping from the boundary of a 2-dimensional spatial co-
ordinate space to the space of asymptotic configurations of a doublet of real scalar fields,
limr→∞

1
|ϕ| ϕ⃗ = limr→∞

1
|ϕ| (ϕ1, ϕ2). This Figure was adapted from [DFM10].

Then there is a mapping from the boundary of n-dimensional spatial coordinate space, S n−1,

into the space of asymptotic configurations of the scalar fields

n⃗ =
r⃗
r
→ lim

r→∞
ϕ⃗

|ϕ⃗|
. (3.45)

See Figure 3.4 for an example of a mapping given by the asymptotic values of a doublet of
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real scalar fields as r → ∞ in a coordinate space with 2-spatial dimensions.

We now know that the number of topological classes (or inequivalent maps) is

πn−1(S m−1). (3.46)

If this number is non zero then there exists a map which does not belong to the same topo-

logical class as the vacuum, and hence the theory possesses soliton solutions which are

stable and will not relax to the vacuum.2 In general

πn(S n) = Z

πn(S m) = 0 if n < m. (3.47)

The cases n > m can not be succinctly summarized.

3.4.3 Cosmic strings

Box 3.1: “An example of a vortex is universally encountered by people taking baths or wash-

ing dishes. As the water flows down the drain it circulates. We cannot interpolate the circulating

velocity field all the way to the centre of the vortex since it would have to become multi-valued.

Instead the fluid density in the central region of the vortex vanishes.” Tanmay Vachaspati

The simplest generalization of the domain-wall brane is a vortex defect in 2+ 1-dimensions

(2 spatial and 1 temporal). Here we take a complex scalar field ϕ and modify our Lagrangian

(3.38) to be invariant under a U(1) global symmetry ϕ→ eiψϕ,

L = |∂µϕ||∂µϕ| −
λ

4
(|ϕ|2 − v2)2. (3.48)

Of course there is a degenerate vacuum manifold generated by U(1) applied to v. A choice

of vacua, veiα, for any α ∈ [0, 2π], spontaneously breaks the symmetry. We demand that the

asymptotic configuration of ϕ (as we head to infinity along any axis in the 2-dimensional

spatial coordinate space) belongs to the vacuum manifold U(1).

2Note there is a subtlety here. If we start talking about the homotopy class π1(X), then we are talking about
the number of inequivalent closed paths in X. However these paths are defined with respect to a base point x0

so really one should be using the the free homotopy group which takes account of this [Vac97].
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If we take the 2-spatial dimensions and write them in terms of spherical polar coordinates,

say (x, y) = r(cos θ, sin θ), then the mapping from the boundary of the 2-dimensional spatial

coordinate space onto the asymptotic configuration limr→∞ ϕ(x, y)/|ϕ| = eiθ is in a distinct

topological class from the vacuum and is therefore stable.

The existence of distinct topological classes is guaranteed by the fact that the homotopy

group π1(U(1)) , 0, since the first homotopy group counts the number of inequivalent paths

in the space. Paths in U(1), considered as a manifold, are inequivalent when they have

different winding numbers.

If we were to extend this calculation to a 3+1-dimensional space-time then the vortex would

become a string.

3.4.4 Hedgehog solutions in 3 + 1-dimensional relativistic field theories

In 3 + 1-dimensional field theories the canonical type of defect is a hedgehog or monopole.

Hedgehog solutions form when we introduce a triplet of real scalar fields ϕ⃗ = (ϕ1, ϕ2, ϕ3)

and demand that the Lagrangian is invariant under orthogonal transformations ϕ⃗ → Rϕ⃗ in

the (ϕ1, ϕ2, ϕ3) coordinate space, where R is a 3 × 3 rotations matrix belonging to O(3).

Notice that when the scalar fields ϕ⃗ acquire a vacuum expectation value this symmetry is

broken down to O(2), the group of orthogonal transformations which fix the vacuum axes

in 3-dimensional space. The boundary conditions as r → ∞ for solutions to this theory,

L = ∂µϕ⃗ · ∂µϕ⃗ −
λ

4
(ϕ⃗2 − v2)2, (3.49)

must belong to the vacuum manifold O(3)/O(2).

If we adopt normal 3-dimensional spherical polar coordinates and take a mapping from the

2-sphere boundary of the normal 3-spatial coordinate directions (inside a 3+ 1-dimensional

space-time manifold), onto the asymptotic configuration of the scalar field triplet whose

asymptotic vacuum configuration is

lim
r→∞

ϕ⃗

ϕ
= (sin θ cosψ, sin θ sinψ, cos θ), (3.50)
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then we obtain a solution in a different topological class from the vacuum. The topological

classes are enumerated by the homotopy group π2(O(3)/O(2)). Because this homotopy

group is nontrivial we can always find a solution to the dynamical equations for (3.49)

which is in a different topological class to the homogeneous vacuum.

When evaluated in 3 + 1-dimensions the total energy of this field is infinite. However if we

add a gauge symmetry to the hedgehog configuration then the contribution to the energy

from the asymptotic configuration of the gauge field cancels against the contribution from

the asymptotic behaviour of ϕ⃗ [Vac97]. This gives the stable t’Hooft-Polyakov magnetic

monopoles [Pol74].

In the next section we will prove that it is not possible to produce stable, finite energy

static solutions to a second order wave equation in relativistic 3+1-dimensional field theory

(3-spatial directions and 1 temporal).

3.4.5 Instability in higher dimensions

The hedgehog cannot simultaneously be stable and have finite energy density. This is a

corollary of Derrick’s theorem [Der64]:

Theorem 3.1: Derrick’s theorem: In d > 2-spatial dimensions there are no stable, finite

energy, localized, static solutions to the second order, d + 1-dimensional relativistically

covariant nonlinear wave equation derived by the principle of least action applied to

S [ϕ] =
∫

dd+1x
[
1
2
∂µϕ∂

µϕ − V(ϕ)
]
, (3.51)

for any V(ϕ).

We prove this statement directly for static solutions to the dynamical equations arising from

(3.51) in d + 1-dimensional relativistic field theories, for d > 2. Assume the energy density

is finite and the solution is stable.
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The energy density functional for the static scalar field is

E[ϕ] =
∫

dd x
[
1
2
∇ϕ · ∇ϕ + V(ϕ)

]
=

∫
dd x

1
2
∇ϕ · ∇ϕ︸              ︷︷              ︸

S 1

+

∫
dd xV(ϕ)︸        ︷︷        ︸

S 3

. (3.52)

For a static field, ϕ(x⃗) extremizes (3.51) if and only if ϕ(x⃗) extremizes (3.52).

Let ϕ(x⃗) extremize (3.52). This implies the energy functional is stationary with respect to

this field configuration and will vanish, at least to leading order, for all perturbations around

ϕ(x⃗). Consider a specific, small perturbation of the form

ϕ(x⃗)→ ϕ(kx⃗). (3.53)

This perturbation will cause the energy density functional to rescale to

Ek[ϕ] =
∫

dd x
[
1
2
∇ϕ(kx⃗) · ∇ϕ(kx⃗) + V

(
ϕ(kx⃗)

)]
. (3.54)

When we demand that the corresponding perturbation in the energy density function van-

ishes to first order in k, around k = 1, we are requiring

∂Ek[ϕ]
∂k

∣∣∣∣∣
k=1
= 0. (3.55)

Now

Ek[ϕ] =
∫

ddξ

[
k2−d 1

2
∇ξ⃗ ϕ( ξ⃗ ) · ∇ξ⃗ ϕ( ξ⃗ ) + k−dV

(
ϕ( ξ⃗ )

)]
≡ k2−dS 1 + k−dS 3, (3.56)

where ξ⃗ ≡ kx⃗ and E = S 1 + S 3. Imposing (3.55) we get the virial relation (2 − d)S 1 = dS 3,

which implies that E = 2S 1/d.

Simultaneously, if the solution is stable, we require this point to be a local minimum in the

Ek[ϕ] topology (a small variation cannot reduce the energy density). This will correspond to

the second order variation with respect to k being positive. However, using the information

that (2−d)S 1 = dS 3, it follows that d2Ek/dk2|k=1 = (2−d)(1−d)S 1+d(d+1)S 3 = (2−d)2S 1.
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Whenever d > 2 this is a contradiction since S 1 is positive-definite. Thus one of the original

assumptions is violated so either there is no stable solution, or the energy density is not

finite. Clearly, after obtaining a candidate soliton, ϕ(x⃗), whose energy density is finite, if we

compress this wave, then we will end up with a lower energy configuration.3

These results simultaneously apply to cosmic strings and domain-wall branes in d > 2

dimensions. These defects have divergent energy functionals.

3.5 Fermion zero modes

In this thesis we are primarily interested in models with a single infinite extra dimension.

This scenario leads to simple toy models where extra-dimensional physics exhibits standard

model phenomenology with conventional 3+1-dimensional gravity on the brane. Therefore

we consider thick branes generated by codimension-1 domain-wall topological defects.

We would like some way of localizing fermions to the domain-wall brane. The most promis-

ing candidate is the fermion zero mode approach.

To construct a Lorentz invariant 4 + 1-dimensional action for the spinor we need to extend

the Dirac algebra {γµ, γν} = 2ηµν, where the signature on the Minkowski metric is +,−,−,−

and µ = 0, 1, 2, 3. We use ΓM = (γµ,−iγ5) to introduce a 5-th gamma matrix, Γ5, which anti-

commutes with γ0, . . . , γ3 and satisfies
(
Γ5

)2
= η55 = −1. However the 4 + 1-dimensional

Lorentz transformations are now generated by {ΓM, M = 1, . . . , 5}, and therefore the small-

est representation for the Lorentz group is a four component spinor. Clearly no subspace

of this spinor is invariant under 4 + 1-dimensional Lorentz transformations. This contrasts

with the conventional 3 + 1-dimensional relativity where the smallest representation is the

2-component Weyl spinor, while parity transformations are the only symmetries which mix

left and right chiral modes. In the 4 + 1-dimensional scenario we have lost these well de-

fined chiral subspaces. Because the weak force breaks parity invariance and only couples

3Intuitively Derrick’s theorem arises because a hypothetical static, stable, finite energy density solution,
ϕ0(xi), to the Euler Lagrange equations would locally minimize the energy functional. However if we contract
the soliton slightly, corresponding to ϕ0(xi) → ϕ0(kxi) where k ≈ 1, then we find the energy functional scales
according to

E[ϕ0(kxi)] =
2k2 − 1

k4 E[ϕ0(xi)] (3.57)

and will decrease as k increases. This contradicts the hypothesis that E[ϕ0(xi)] is minimal.
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to left handed fermions, we will have to recover the notion of chirality in our effective

3 + 1-dimensional theory.

Through the fermion zero mode approach a Lorentz-invariant domain-wall brane can dy-

namically localize a massless chiral 3 + 1-dimensional fermion.

In Lorentz-invariant 4 + 1-dimensional brane-world models the 4 + 1-dimensional Dirac

action, which introduces a Yukawa interaction term between the 4 + 1-dimensional spinor

and the domain-wall brane (3.39), is

∫
d5x

[
iΨΓM∂MΨ − gϕΨΨ

]
. (3.58)

This gives rise to a Dirac equation

[
iΓM∂M − gϕ(y)

]
Ψ(xN) = 0. (3.59)

A solution of (3.59) also satisfies the Klein-Gordon equation

(
∂2

t − ∇⃗2 − ∂2
y + g2ϕ(y)2 + γ5g

(
∂yϕ(y)

))
Ψ(xM) = 0. (3.60)

There exists a complete basis, { fnL/R(y)}, for the space of bounded continuous functions of

the extra-dimensional coordinate, C(y), which can be used to project the solution, Ψ(xN), to

(3.59) and (3.60) onto towers of 3 + 1-dimensional chiral spinors {ψnL/R(xµ)}:

Ψi(x, y) = Ψ0L(xM) +
∑∫

n>0
{ΨnL(xM) + ΨnR(xM)},

= f0L(y)ψ0L(xµ) +
∑∫

n>0
{ fnL(y)ψnL(xµ) + fnR(y)ψnR(xµ)}, (3.61)

where we have introduced the notation ΨnL/R(xM) = fnL/R(y)ψnL/R(xµ). Moreover, we will

write Ψn(xM) = ΨnL(xM) + ΨnR(xM). There are as many decompositions of this type as

there are complete sets of continuous bounded functions of y. But, for two reasons, there is

one basis that is special. An expression (3.61) using this basis will be called a Kaluza-Klein

decomposition. First, for this basis theΨn(xM) appearing in (3.61) are independent solutions

to the Dirac equation (3.59) satisfying orthonormality conditions in a rigged Hilbert space.



42 Introduction

Second, each 3 + 1-dimensional spinor in this tower satisfies the 3 + 1-dimensional Dirac

equation for a particle with mass mn,

iγµ∂µψnL(xµ) = mnψnR(xµ),

iγµ∂µψnR(xµ) = mnψnL(xµ). (3.62)

The 3 + 1-dimensional left-chiral zero-mode ψ0L(xµ) spinor satisfies (3.62) with m0 = 0.

Equation (3.61) does not contain a right-handed massless 3+1-dimensional spinor. Directly

calculating the form of f0R(y) when ψ0R(xµ) is a massless 3 + 1-dimensional right-chiral

fermion and f0R(y)ψ0R(xµ) is a solution to (3.59) reveals that f0R(y) does not belong to C(y)

and hence cannot form part of a basis for this space.

Explicitly we find that f0L(y) and f0R(y) are given by

f0L/R(y) = Ne∓
∫ y
∞ dy′gϕ(y′), (3.63)

where N is a normalization factor for the left chiral zero mode. Figure 3.5 shows the inte-

grand for the left chiral zero mode f0L(y). The corresponding plot of the integrand of the

right chiral zero mode is the reflection in the x-axis of Figure 3.5.
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Figure 3.5: Plot of integrand appearing in the exponential of the 3 + 1-dimensional left
chiral zero mode fermion profile functions f0L(y). Because the primitive of this function
diverges to −∞ in either direction as y → ±∞, the profile function is peaked about y = 0
and exponentially suppressed as y → ±∞. The corresponding plot for the integrand of the
f0R(y) function is the negative (or reflection in the x-axis) of this Figure. The integrand
of the f0R(y) profile function is the anti-kink. Applying the same logic we find that f0R(y)
diverges exponentially as y→ ∞.
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From (3.62) it follows that each ψnL(xµ)+ψnR(xµ) satisfies a 3+1-dimensional Klein-Gordon

equation

(
∂2

t − ∇⃗2
)
ψnL(xµ) = m2

nψnL(xµ),(
∂2

t − ∇⃗2
)
ψnR(xµ) = m2

nψnR(xµ). (3.64)

If we use unbroken 3 + 1-dimensional Poincaré invariance to expand ψnL(xµ) + ψnR(xµ) in

terms of plane waves then we find that the dispersion relation describing the propagation

of the 3 + 1-dimensional spinor ψnL(xµ) + ψnR(xµ) with energy-momentum 4-vector pn =

(ωn, p⃗n) is

ω2
n − p⃗n · p⃗n = m2

n. (3.65)

From the perspective of a 3 + 1-dimensional observer these particles can now be given the

interpretation of propagating free particles with masses mn which transform according to a

spin-1/2 representation of an embedded 3 + 1-dimensional Lorentz space-time symmetry.

For each mode, Ψn(xM), which appears in (3.61), a 3 + 1-dimensional observer will see a

resonance in the detector at energy mn caused by what he perceives as a massive fermion

ψnL(xµ)+ψnR(xµ). At low energies only the left-chiral zero-mode ψ0L(xµ) will be detectable.

We choose to work with this special basis because we have a physical interpretation for the

individual modesΨn(xM). This interpretation allows us to argue that at low energies there is

a candidate 3 + 1-dimensional massless chiral fermion and to explain why parity is broken

(the kink localizes a zero mode of one chirality only).

We find this special basis and the allowed masses, mn, of the 3+ 1-dimensional spinors that

are present in (3.59) by solving the eigenvalue problem,

[
−∂2

y + g2ϕ(y)2 ± g∂yϕ(y)
]

fnL/R(y) = m2
n fn,L/R(y). (3.66)

Sturm-Liouville theory determines the existence and completeness of eigensystems gener-

ated by (3.66).

We can check these conditions are consistent and that the eigenfunctions in (3.66) are the

correct ‘special basis’ functions { fnL/R(y)} to use in (3.59). To do this we substitute Ψn(xM)



44 Introduction

into the 4 + 1-dimensional Dirac equation and use (3.62) to simplify. After isolating the

coefficients of the 3 + 1-dimensional spinors, ψnL(xµ) and ψnR(xµ), which correspond to

independent degrees of freedom, and setting each coefficient equal to zero independently

we arrive at:

[
−∂y − gϕ(y)

]
fnL(y) = mn fnR(y),[

∂y − gϕ(y)
]

fnR(y) = mn fnL(y). (3.67)

Uncoupling this first order system automatically generates the two second order differential

equations in (3.66). Moreover, by using separation of variables, (3.66) and (3.64), we can

show that each mode Ψn(xM) satisfies the Klein-Gordon equation (3.60).

3.5.1 Splitting the fermion profiles

This approach is called split fermions because if we were to introduce another scalar field,

ρ(y), into the model which also Yukawa couples to the fermions with coupling strength m5,

then the Dirac equation, (3.59), will be modified to

[
iΓM∂M − gϕ(y) − m5ρ(y)

]
Ψ(xN) = 0. (3.68)

The profile function of the left chiral zero mode is modified to

f0L/R(y) = Ne∓
∫ y
∞ dy′gϕ(y′)+m5ρ(y′); (3.69)

here again N is a normalization factor for the left chiral zero mode. Assume that either

1 gϕ(y)+m5ρ(y) has a single x-axis intercept and the same asymptotic behaviour as the

kink ϕ(y), or

2 ρ(y) = c is a constant satisfying |m5c| < |gv|, so gϕ(y)+m5ρ(y) just shifts the kink up or

down; we maintain the conditions limy→∞ gϕ(y) +m5ρ(y) < 0 and limy→−∞ gϕ(y) +

m5ρ(y) > 0.
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Then, by the same argument as is used in the caption of Figure 3.5, the left chiral 3 + 1-

dimensional zero mode profile function will belong to C(y) (respectively the 3+1-dimensional

right chiral zero mode profile function will not belong to C(y)). However the fermion will

be localized about the solution of gϕ(y)+m5ρ(y) = 0, instead of about the hyperplane y = 0.

If we stop and examine scenario 2, then the extra Yukawa coupling term is in fact a 4 + 1-

dimensional mass term for the fermion. Let c = 1 for convenience. We find that the fermion

is now localized about the x-axis intercept of the integrand gϕ(y) + m5 = 0. Therefore, if

we introduce two or more fermions with different 4 + 1-dimensional mass terms, then the

fermions get confined to parallel hyperplanes split along the bulk direction (y-coordinate

axes). Hence the origin of the name “split fermions”.

3.6 Dvali-Shifman mechanism

Having successfully localized chiral fermions, we would like to complement this picture by

trapping gauge fields on the brane.

The most straightforward approach would be to follow the same method in the gauge sector

as with the fermions; that is we could Kaluza-Klein decompose the 4+1-dimensional gauge

field, AN , into a tower of 3+1-dimensional gauge bosons with zero mode term, h0(y)aµ0(xµ),

and then try to localize the 3+1-dimensional zero mode to the domain-wall brane. However

this approach can only localize massive spin-1 fields. This is not what we require, both

because photons and gluons are massless, and because gauge coupling constant universality

is lost.

To see that gauge coupling constant universality is lost [Rub01, Dav07], consider the 4+ 1-

dimensional current term

S cur =

∫
d5x
√

gVN
CΨγ

CΨAN ⊂
∫

d4x
(∫

dy e−3k|y|| f0L(y)|2h0(y)
)
ψ0Lγµψ0Laµ0, (3.70)

where VN
C is the 4 + 1-dimensional vielbein for the RS2 metric. Now (3.70) shows that the

effective 3+1-dimensional coupling constant depends on the overlap of the profile functions



46 Introduction

for the 3 + 1-dimensional gauge boson and left chiral fermion zero modes

ee f f ∝
∫

d4x
(∫

dye−3k|y|| f0L(y)|2h0(y)
)
. (3.71)

For the coupling of a fermion to the photon, the 3 + 1-dimensional coupling constants must

be the quantized U(1) electromagnetic charges of the fermions. However according to (3.71)

this coupling will depend on their 4 + 1-dimensional zero mode profile functions. The only

way around this is to make h0(y) = c, a constant, thereby reducing the right hand side of

(3.71) to c times the normalization of the left chiral zero mode. However in this scenario

the gauge boson has a flat profile function.

An alternate approach which takes advantage of the dynamics of confining gauge theories

with a mass gap was proposed by Dvali and Shifman [DS97].

3.6.1 A 2+1-dimensional toy model with a trapped U(1) gauge boson.

Dvali and Shifman consider a 3+1-dimensional toy model based on an SU(2)×Z2 invariant

Lagrangian incorporating SU(2) gauged Yang-Mills theory which breaks to U(1) on a 2+1-

dimensional domain wall [DS97]. The Higgs sector in the Lagrangian of this theory,

L = − 1
4g2 Ga

µνG
a
µν︸          ︷︷          ︸

gauge field kinetic term

+ ψ̄L ̸ DψL + ψ̄R ̸ DψR︸                    ︷︷                    ︸
fermion kinetic terms

− (
hϕψ̄LψR + h.c.

)︸              ︷︷              ︸
fermion coupling to ϕ

+
1
2

(
DµXa

)2
+

1
2

(
∂µϕ

)2︸                       ︷︷                       ︸
Higgs kinetic term

−1
2
λ′

(
X2 + κ2 − v2 + ϕ2

)2 − λ
(
ϕ2 − ν2

)2︸                                                ︷︷                                                ︸
−V(ϕ,X)

,

(3.72)

contains an SU(2) singlet ϕ which establishes the domain-wall brane as well as an SU(2)

adjoint field X. The 2 + 1-dimensional domain-wall brane is located at the point of inter-

polation of the kink. Provided κ2 − v2 < 0, at this point ϕ = 0 and the adjoint Higgs field

becomes tachyonic and develops a vacuum expectation value which breaks SU(2)→ U(1).

Asymptotically limy→±∞ ϕ = ±v, causing the vacuum configuration for X and its profile to

asymptotically approach X = 0, as y → ±∞, thereby restoring the full SU(2) symmetry of

the theory.

The bulk is presumed to be in confinement phase with a strong coupling regime in the
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infrared. This creates a mass gap of order the bulk confinement scale Λconf[SU(2)] in the

vector boson spectrum. Away from the wall the gauge fields form bound states with mass

greater than Λconf[SU(2)].

On the domain wall the photon is free, however in order to propagate in the direction trans-

verse to the wall it must become conglomerated into a massive SU(2) glueball. The energy

cost associated with moving off the wall is untenable for the massless U(1) gauge boson

which effectively becomes trapped on the 2 + 1-dimensional topological defect.

In the ’t Hooft-Mandelstam [tH81, Man76] dual superconductivity picture [AHS99], elec-

tric field lines from test charges on the brane spread out like normal Coulomb fields along

the brane directions. However, when they meet the bulk they get repelled by the dual ana-

logue of the Meissner effect. Thus any two charges located on the brane will interact via a

2 + 1-dimensional Coulomb force at distances much greater than the thickness of the wall.

If the test charge is located in the bulk then the field lines are no longer at liberty to spread

out. Instead they form a flux string which tunnels through to the brane and expels the field

onto the domain wall. This is the dual superconductor effect corresponding to Abrikosov

vortex formation. Hence, regardless of the bulk localisation profiles of the fermions, the

effective field on the domain wall will exhibit the same 2 + 1-dimensional Coulomb distri-

bution.

3.6.2 Extension of the Dvali-Shifman mechanism

To create a phenomenologically realistic standard model gauge theory on a 3+1-dimension

domain-wall brane it will be necessary to extend the Dvali-Shifman mechanism in two

respects:

1 Firstly we must reformulate the mechanism so that it traps a full contingent of stan-

dard model gauge bosons on the domain-wall brane, instead of a single U(1) gauge

field.

2 Secondly we need to extend the space-time dimensions in the theory to incorporate a

3 + 1-dimensional domain-wall brane isometrically embedded in 4 + 1-dimensional

space-time.
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It is straightforward to extend the Dvali-Shifman argument to deal with a grand unified

theory gauge group G breaking to a subgroup H (such as the standard model) on the domain

wall. Under these circumstances it is assumed that the confinement scale on the brane,

Λconf[H], is significantly lower than the bulk scale, Λconf[G].

However, extending the model to cope with a larger number of dimensions is not easy.

The problem is that non-Abelian gauge theories are not renormalizable in more than 3 + 1-

dimensions.

3 + 1-dimensional non-perturbative lattice simulations provide qualified support for the hy-

pothesis that the Dvali-Shifman mechanism can trap gauge fields on a codimension-1 brane

[LMRS04]. But to our knowledge no one has tackled a 4+1-dimensional simulation. At this

stage the Dvali-Shifman mechanism remains an intriguing conjecture in 4 + 1-dimensions.

A necessary condition for the Dvali-Shifman mechanism is confinement in the bulk. It is

encouraging that lattice gauge theory simulations for SU(2) pure Yang-Mills theory in 4+1-

dimensions demonstrate a first order phase transition at finite lattice spacing as a function

of the gauge coupling constant: for coupling strengths above a critical value, the theory

appears to be confining [Cre79]. This result has been extended to pure SU(5) Yang-Mills

gauge theories in [Geo09].

However no conclusion can be drawn about the continuum limit since our non-renormalizable

theory has problems with point-like interactions at high energies. But this may not actually

be a problem for our application. All field-theoretic brane models are necessarily low-

energy effective theories due to their non-renormalisability, so they are implicitly defined

with an ultraviolet cutoff. The finite lattice spacing in the simulations is also an ultraviolet

cutoff, so it appears sensible to use the lattice gauge results to conclude that confinement in

4 + 1-dimensional effective gauge theories can exist.

While this argumentation provides encouragement to pursue models based on the Dvali-

Shifman idea, it does not rigorously establish that any specific model works. For one thing,

no such model is a pure Yang-Mills theory. Secondly, for each candidate theory one would

need to compute via lattice simulations the critical gauge coupling constant as a function of

the cutoff. Since the critical coupling constant in 4+1-dimensions is itself of non zero mass
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dimension, one would then need to check that this value is compatible with other scales in

the problem, such as the inverse width of the domain wall and the effective grand unified

symmetry breaking scale inside the wall.

In the next two sections we investigate grand unified gauge groups G which contain the stan-

dard model SU(3)C ×SU(2)W ×U(1)Y as a subgroup. Also we investigate Lorentz violating

field theories which exhibit Lifshitz anisotropic scaling. These field theories are able to lift

the problems with non-renormalizability of Yang-Mills gauge theory in higher dimensions,

thereby addressing issues with building brane world models in 4 + 1-dimensions.

3.7 Spontaneous symmetry breaking and grand unification

Grand unified theories were first introduced in 1974 by Georgi and Glashow. The underlying

principle is to take the standard model gauge group SU(3)C × SU(2)W × U(1)Y and embed

it within a compact simple Lie group. This approach has the advantage of unifying the

fermions, belonging to a given family, in 1- or 2-irreducible representations of the GUT

gauge group, a clear improvement over the standard model’s piecemeal approach. However

grand unified theories must introduce additional Higgs fields which spontaneously break the

symmetry down to the standard model, leading to complicated Higgs sectors and new free

parameters. They also experience problems with coupling constant unification, degeneracy

of mass relations, and proton decay. We choose to cover this topic through the explicit

examples of SU(5) and SO(10) grand unification, followed by a discussion of spontaneous

symmetry breaking.

In the following, note that there are an infinite number of embeddings of a subgroup SU(3)C×

SU(2)W × U(1)Y inside a Lie group G. Selecting an embedding corresponds to an explicit

choice of the hypercharge generator Y. Once an embedding has been chosen, conjugating

Y by an element of the Lie group g ∈ G gives a new hypercharge generator gYg−1. This

conjugated gYg−1 is the hypercharge generator of an isomorphic embedded copy of the

standard model gauge group. If the Lie group generator g < SU(3)C×SU(2)W×U(1)Y, then

the copy will be a different embedding. As such, when we talk about a specific embedding

we are simply invoking a convention within the literature. In this thesis we will place a

special emphasis on embeddings of a subgroup H within a Lie group G, where the Cartan
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subalgebra for H is a subspace of the Cartan subalgebra for G. Such embeddings are called

Cartan preserving.

3.7.1 SU(5) grand unification

For the canonical embedding of SU(3)C × SU(2)W × U(1)Y inside SU(5) we describe the

transformation properties of the fundamental 5 representation for SU(5) and the antisym-

metric 10 representation under the restriction SU(5) ↓ SU(3)C×SU(2)W×U(1)Y. The funda-

mental representation for SU(5) is a column vector T i, while the 10 representation is a 5×5

antisymmetric matrix T i j. If we choose to refer to the irreducible SU(3)C×SU(2)W×U(1)Y

representations sitting inside each as A, A1 etc, then the 5 and 10 representations break down

[Cur06] as follows:

5 −→ (3, 1)(−2/3) + (1, 2)(1)

T i Aρ=T ρ Ap
1=T p+3

10 −→ (3̄, 1)(−4/3) + (3, 2)(1/3) + (1, 1)(2)

T i j Ap=ϵpabT ab Apν
1 =T p,ν+3 A2=T 4,5.

(3.73)

Here by (3, 2)(1) we mean the representation labelled qL in equation 3.74, is a module of

the 3-dimensional representation of the SU(3) colour symmetry. Simultaneously in the other

two subspaces of the product space, (3, 2)(1) is a module of the 2-dimensional representation

of the SU(2) weak isospin gauge group, and qL → eiθqL under the U(1) weak hypercharge

symmetry. This prompts us to incorporate the first generation of fermions in the standard

model into the combination of a 10 and a 5 representation according to

5 → (3̄, 1)(2/3)︸      ︷︷      ︸
uc

R

+ (1, 2)(−1)︸     ︷︷     ︸
fL

10 → (3, 2)(1/3)︸      ︷︷      ︸
qL

+ (1, 1)(2)︸   ︷︷   ︸
ec

R

+ (3̄, 1)(−4/3)︸        ︷︷        ︸
dc

R

, (3.74)

where ac stands for the charge conjugate of the field a, [Sla81]. Simultaneously in the gauge

sector we find that the SU(5) adjoint representation contains the 8 gluons arising from an

embedded SU(3) adjoint representation, as well as the triplet of weak isospin vector bosons
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and the hypercharge mediator Bµ,

24 −→ (8, 1)(0)︸   ︷︷   ︸
Gµ

+ (1, 3)(0)︸   ︷︷   ︸
Wµ

+ (1, 1)(0)︸   ︷︷   ︸
Bµ

+ (3, 2) (−5)︸      ︷︷      ︸
X,Y

+ (3̄, 2) (5)︸   ︷︷   ︸
X,Y

. (3.75)

Additionally the 24-dimensional representation furnishes two representations for SU(3)C ×

SU(2)W × U(1)Y, the (3, 2) (−5) and its conjugate representation, which contain gauge

bosons carrying nontrivial colour and weak force quantum numbers [Sla81],

X−1

Y−4

 ∼ (3, 2) (−5) . (3.76)

3.7.2 SO(10) grand unification

We can ask if it is possible to extend the SU(5) scenario and unify the 10 and the 5 into

a single representation of a grand unified theory gauge group G ⊃ SU(5), and thereby

incorporate all the fermions in any generation of the standard model in a single irreducible

representation of G. The answer is yes, provided we also postulate the existence of a right

handed neutrino. This state is currently unobserved, however, due to its lack of electric

charge and colour indices, as well as its inability to couple to the weak force vector bosons.

This leads us to conclude, through the Gell-Mann-Nishijima formula,

Q = I2 +
1
2

Y, (3.77)

that the right handed neutrino is also uncharged under hypercharge, that it is extremely

weakly interacting, and is not phenomenologically ruled out. Under these conditions we

choose to work with the higher rank Lie group SO(10) which contains SU(5):

SO(10) ⊃ SU(5) × U(1) ⊃ SU(3)C × SU(2)W × U(1)Y × U(1). (3.78)

SO(10) has a 16 spinor representation where each state in the representation can be iden-

tified with a fermion belonging to the first generation of standard model particles. This
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follows from the branching rules

SO(10) −→ SU(5) × U(1)

16 −→ 10(−1) + 5̄(3) + 1(−5), (3.79)

and the identifications in (3.74) [Sla81]. We assign the role νc
R ≡ 1(−5).

The gauge sector has a similar embedding of the 24-dimensional SU(5) adjoint within the

SO(10) adjoint:

SO(10) −→ SU(5) × U(1)

45 −→ 24(0) + 1(0) + 10(4) + 10(−4). (3.80)

Again from (3.75) we conclude that a correct contingent of standard model gauge bosons

will be present in our SO(10) gauged grand unified theory. However there will be more

exotic vector bosons like the X and Y which create additional channels for proton decay.
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Box 3.2: The 16 is a spinor representation for SO(10): We explain why SO(10) has a spinor

representation and how to explicitly construct this representation.

An SO(2n) rotation group is defined as the set of transformations of a 2n-dimensional coor-

dinate vector x⃗, which leave the bilinear form B(x⃗, x⃗) = x⃗ · x⃗ invariant [Li74]. Using a 2n-

dimensional set of anticommuting matrices, {σ j | {σ j, σk} = 2δ j,k j, k = 1, . . . 2n} we can recast

the bilinear form as B(x⃗, x⃗) =
(
xiσi

)2
. These anticommuting matrices are known as a Clifford

algebra.

Now from the transformation properties of the coordinate vector under SO(2n) rotations we

conclude that xiσi → Oi
jx

jσi. Therefore the vector of matrices σ⃗ =
(
σ1, . . . , σ2n

)
furnishes a

vector representation for SO(2n).

Because the matrices σ′ j = Oi
jσi also generate a Clifford algebra we know the two algebras

are related by a similarity transformation

Oi
kσi → S(O)σkS(O)−1, (3.81)

where S(O) is a spinor representation of the SO(2n) matrix O. From expanding (3.81) to first

order in the generators of the representation we can demonstrate that

S(O) = 1 − 1
8

[
σi, σ j

]
ϵ i j = 1 − Σi jϵ

i j, (3.82)

where ϵ i j is a rank 2 antisymmetric tensor.

The 2n-dimensional Clifford algebra is formed by taking the direct products of n Pauli matrices;

σ2k−1 = 1 � · · ·� 1 � τ1 � τ3 � · · ·� τ3, (3.83)

σ2k = 1 � · · ·� 1︸       ︷︷       ︸
k−1

� τ2 � τ3 � · · ·� τ3︸          ︷︷          ︸
n−k

. (3.84)

There is a matrix which anticommutes with all of the 2n-dimensional Clifford algebra matrices,

σc = (i)nσ1 . . . σ2n = τ3 � · · ·� τ3︸          ︷︷          ︸
n

. (3.85)

The 2n + 1-dimensional Clifford algebra is constructed from (3.83) and (3.85), and the spinor

representations for SO(2n + 1) follow from (3.82). Additionally for a 2n-dimensional Clifford

algebra, σc commutes with all the generators, Σi j, of the associated SO(2n) spinor represen-

tation. Schur’s lemma tells us that SO(2n) spinor representation are reducible. When using

(3.83) to construct the SO(10) spinor representation we get 32 × 32 matrices. The irreducible

16-dimensional representations are then projected out using (1 + σc) and (1 − σc).
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3.7.3 Problems with grand unified theories

We have highlighted that grand unified theories introduce fresh problems. We briefly outline

some of these problems and will discuss one possible solution to them in Chapter 4.

Coupling constant unification

If the standard model is putatively to become unified in a grand unified theory then, at the

scale at which the GUT symmetry breaking occurs, the weak, strong and hypercharge gauge

bosons must all become part of a single irreducible adjoint representation of the GUT gauge

group. This implies the weak, strong and electromagnetic coupling constants must be the

same at this scale. If we presume that it is possible to run the coupling constants up to the

symmetry breaking scale using standard model physics (this will be the case if there are

no substantial modifications to the standard model between here and the unification scale)

then we must be able to identify this GUT symmetry breaking scale as the energy at which

the three coupling constants meet. However, using this assumption we can run the coupling

constants all the way to MPl without encountering an energy scale at which all three are the

same, within experimental bounds. Therefore there is no feasible grand unified symmetry

breaking scale without new physics at an intermediary energy scale.

Proton decay

SU(5) and SO(10) grand unified theories naturally induce proton decay. In SU(5) theories

this arises from the presence of the X and Y gauge bosons and the electroweak breaking

Higgs field which is introduced in an irreducible SU(5) 5 representation. A pair of fields

belonging to this representation play the role of the standard model electroweak doublet,

while the remaining 3 components mediate interactions between both leptons and quarks

leading to proton decay.

In SO(10) grand unified theories, because of the inclusion of the SU(5) 24 representation

within the SO(10) adjoint, we continue to have problems with the X and Y gauge bosons.

These problems are now augmented by extra gauge fields sitting in the additional nontrivial

SU(5) representations furnished by the 45 the 10(4) + 10(−4) ⊃ 45 under SO(10) ↓ SU(5).

In addition the minimal approach to breaking SO(10) down to the electroweak scale re-
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quires an electroweak symmetry breaking Higgs field in the 10 representation of SO(10)

to Yukawa couple to the fermions and thereby generate the fermion masses. The standard

electroweak doublet is identified with the pair of fields sitting inside this 10 representation

which transforms like (1, 2)(−3)(−2) under SO(10) ↓ SU(3)C×SU(2)W×U(1)Y×U(1), and

the other components of this 10 representation can mediate proton decay.

Gauge boson mediated interactions, which cause proton decay, can be suppressed by setting

the grand unified symmetry breaking scale to be much higher than the electroweak symme-

try breaking scale. The gauge bosons mediating proton decay are associated with broken

generators of the Lie group. When the Higgs field develops a vacuum expectation value

(vev) which breaks the grand unified theory, they do not annihilate this vev. These gauge

bosons pick up masses proportional to the grand unified symmetry breaking scale, leading

to a very strong suppression of proton decay in the electroweak breaking energy regime.

However to fix problems with the Higgs mediated proton decay we have to arrange for

the electroweak symmetry breaking components of the Higgs multiplet to acquire a vev at

MEW , while keeping the other proton decay mediating component at a considerably higher

mass scale. From the perspective of the grand unified theory one set of interactions are

unnaturally suppressed. This situation is highly contrived and is known as the “doublet-

triplet splitting problem”.

Fermion mass degeneracy

In the standard model the fermion masses are determined by the product of the electroweak

symmetry breaking Higgs vev and the Yukawa coupling λ. This follows from the form of

the Higgs field’s interaction with the fermions Lyuk = λψϕψ. Thus each fermion in a differ-

ent representation of the weak isospin gauge group will have a different Yukawa coupling

constant and the relationship between their masses will be completely unconstrained.

One of the great advantages of grand unified theories is that, by putting all the fermions in

one or two representation, they cut down the number of free parameters and therefore make

the theory more predictive. However this applies to the Yukawa coupling terms where the

GUT makes predictions about the relationship between the masses of different fundamental

particles at the GUT energy scale. These predictions carry implications for degeneracies at
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the electroweak breaking scale, such as ms/md = mµ/me, which are completely incongruent

with the experimentally measured standard model values.

3.7.4 Spontaneous symmetry breaking

Clearly the major problem with introducing grand unified theories is caused through the

process of breaking the GUT symmetry. This makes spontaneous symmetry breaking an

extremely pertinent topic in these theories.

Spontaneous symmetry breaking occurs when the action has a symmetry G, but the lowest

energy configuration of the potential (the vacuum) is stabilized by a subgroup H, called the

little group of G. Because the potential is invariant under G, the orbit of H in G,M = G/H,

forms a manifold of degenerate minima of the potential known as the vacuum manifold.

There exists a point, P, in the vacuum manifold associated with the coset 1H. All the ele-

ments tl, belonging to the Lie subalgebra of H, LH , generate infinitesimal diffeomorphisms

which fix P, while elements, m, belonging to the complement of LH in the Lie algebra L

induce parallel translation along geodesics at point P inM.

A parallel translation (induced by m) from P to a neighbouring point in the vacuum man-

ifold, Q, is accompanied by a continuous change in the space of diffeomorphisms which

fix P to the space of diffeomorphisms which fix Q. The latter is given by gHg−1, where g

is the Lie group element generated by m. Physically, members of the complement of LH

in L generate symmetries of the action which nevertheless shift the vacuum of the theory

associated with point P. If the vacuum at point P is designated |0⟩ and has the property

H |0⟩ = |0⟩ then the vacuum at Q is g |0⟩ and is consequently fixed by gHg−1 g |0⟩ = g |0⟩.

The principle of spontaneous symmetry breaking is completely general; once illustrated in

a particular context it is easily transferable to other contexts. The natural context would be

electroweak symmetry breaking. However in this thesis we are not directly concerned with

the phenomenological implications of electroweak symmetry breaking. Rather we spend a

significant amount of time investigating the specific cases of breaking SO(10) grand uni-

fied symmetries and the more general case of breaking an internal symmetry G down to

a subgroup H, especially for the case when the Higgs field is in the adjoint representa-

tion. Therefore we choose to follow Li’s approach [Li74] and highlight the simplest case
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of breaking SU(2) ≡ O(3) to U(1) by the real triplet of Higgs fields ϕ⃗. By doing this we

address the theory of symmetry breaking while forgoing a parallel commentary on the stan-

dard model phenomenological context which gives significance to electroweak symmetry

breaking.

Further we mention the conditions under which an adjoint Higgs field, in either an SU(5)

or an SO(10) grand unified theory, condenses. We examine extra dimensional models with

SU(5) or SO(10) bulk gauge symmetry. In these models an adjoint Higgs field can be used

to break the grand unified theory to a subgroup on the domain-wall brane. If the Dvali-

Shifman mechanism is effective this will trap the massless gauge fields belonging to this

subgroup on the brane.

A toy O(3) symmetry breaking example

Consider a Lagrangian based on the O(3) gauge symmetry [Li74],

A⃗µ → A⃗µ + θ⃗ × A⃗µ +
1
g
∂µϵ⃗

ϕ⃗ → ϕ + θ⃗ × ϕ⃗. (3.86)

This Lagrangian, L, can be written in terms of the field strength tensor

F⃗µν = ∂µA⃗ν − ∂νA⃗ν + gA⃗µ × A⃗ν (3.87)

and the generators of the adjoint representation. These generators form a triplet of 3 × 3

matrices with components (T i) jk = iϵi jk. In particular,

L = −1
4

F⃗µν · F⃗µν +
1
2

[(
∂µ − gT⃗ · A⃗µ

)
ϕ⃗
]2
+

1
2
µ2ϕ⃗2 − 1

4
λ
(
ϕ⃗2

)2
, (3.88)

where ϕ⃗2 = ϕ⃗ · ϕ⃗.

The minimum for the potential V = −µ2/2 ϕ⃗2 + λ/4
(
ϕ⃗2

)2
occurs at a non zero value of ϕ⃗2.

Under these circumstances the third component of the Higgs triplet can develop a non zero

vacuum expectation value

⟨ϕi⟩ = δi3v. (3.89)
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The dynamical field will be fluctuations about this vacuum, so it is appropriate to redefine

the fields to have a vanishing vacuum expectation value ϕ′i = ϕi−⟨ϕi⟩ = ϕi−δi3v. Expressing

the Lagrangian in terms of ϕ′i gives

L = L0 +Lint, where

L0 = −1
4

(
∂µA⃗ν − ∂νA⃗µ

)2
+

1
2

gv2
(
A2

1µ + A2
2µ

)
+

1
2

(
∂µϕ⃗

′)2
+[

1
2

(
µ2 − λv2

)
ϕ⃗
′2
3 − λv2ϕ2

′2
]
+

(
µ2 − λv2

)
vϕ′3; (3.90)

here L0 contains all the terms that are at most quadratic in ϕ′i , while Lint contains third and

fourth order terms in the perturbative fields ϕ′i which define the interactions.

If we choose v2 = µ2/λ, which corresponds to choosing to keep ⟨ϕ′i⟩ = 0 at tree level, it

becomes clear that the gauge fields A1µ and A2µ have gained a mass gv2 by eating the degrees

of freedom of the massless Goldstone bosons ϕ′1 and ϕ′2. The symmetry of the theory has

been broken down to a U(1) gauge symmetry of the remaining massless gauge boson Aµ3.

Adjoint symmetry breaking and Dvali-Shifman

Consider a Lagrangian which possesses an internal symmetry G, and a Higgs field ϕ trans-

forming under a non-trivial representation for G. The symmetry will break whenever

the minimum of the Higgs field potential is situated at ⟨ϕ⟩ , 0. Under these circum-

stances the vacuum expectation value of ϕ is not fixed by the full symmetry group. That is

{⟨ϕ⟩} 2 G · ⟨ϕ⟩.

In the case of SU(n) and SO(n) adjoint representations we take the most general quartic

potential,

VX = −
1
2
µ2TrX2 +

1
3
λ1TrX3 +

1
4
λ2

(
TrX2

)2
+

1
4
λ3TrX4, (3.91)

which is invariant under the internal symmetry. This quartic potential is a linear combination

of the Casimirs invariants.

We can express the Casimir invariants as traces over products of the adjoint Higgs field.

For SO(n) the condition Xi
j = −X

j
i implies the third order Casimir, TrX3, will vanish as

it is a contraction over an odd number of X fields, with a permutation symmetry on the

labels. It is possible to further simplify this formula for the potential by noting that there is
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a transformation simultaneously mapping every element in the Lie algebra onto the Cartan

subalgebra. In each case we seek to minimize this potential subject to the constraint that X

belongs to the Lie algebra of SU(n) and SO(n), respectively. This adds a Lagrange multiplier

condition implying we should consider extrema of the potential which occur within the set

of traceless Cartan subalgebra generators, that is, the minima of VX − gTrX.

Now let us examine the application of this to the Dvali-Shifman example for an SU(5)× Z2

invariant action with a Higgs sector composed of the domain-wall brane ϕ and an SU(5)

adjoint Higgs X. The Z2 symmetry must be imposed to create a domain-wall brane topo-

logical defect. Under this symmetry we impose ϕ → −ϕ and X → −X. The most general

Higgs sector potential under these conditions is

VX,ϕ =
(
cϕ2 − µ2

X
)

TrX2 + λ1ϕTrX3 + λ2 (TrX)2 + λ3TrX4 + λ
(
ϕ2 − v2

)2
. (3.92)

When we choose cv2 −µ2
X > 0 and limy→±∞ ϕ = ±v, then we implicity choose the boundary

condition limy→±∞X = 0, that is X approaches a vacuum as y → ±∞ preserving the full

SU(5) symmetry.

The domain-wall is located at y = 0. At y = 0 the kink, ϕ(0) = 0. The potential at this point

VX,ϕ=0 is a special case of VX for λ1 = 0. From solving the Lagrange multiplier equations,

if λ3 > 0 at this point4 the vacuum for the theory causes

SU(n)→ SU(n1) × SU(n − n1) × U(1), (3.93)

where n1 = ⌈1/2 n⌉ is the ceiling of 1/2 n, while if λ2 < 0, it causes

SU(n)→ SU(n − 1) × U(1). (3.94)

From the above we conclude thatX = 0 is not the vacuum configuration on the domain-wall

brane.

As X = 0 is no longer the vacuum inside the domain-wall, by invoking Dvali and Shifman’s

argument, it follows that the Higgs field will condense breaking SU(5). Provided the bulk is

4A solution to this problem is readily available in [Li74].
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in a confining regime with a mass gap the massless gauge bosons, belonging to the unbroken

subgroup within the domain-wall, become trapped.

Later we will consider the stability of the domain-wall brane and adjoint Higgs field profiles.

This will be done by considering small perturbations around the domain-wall and adjoint

Higgs field. We say the configuration is stable, respectively unstable, if these perturbations

remain small under dynamical evolution, respectively diverge. The dynamical evolution is

found by solving the coupled systems for the linearized perturbation equations. In general

this is a nontrivial problem.

However if we choose λ3 > 0 and choose the SU(5) adjoint Higgs field to condense to break

SU(5)→ SU(3)× SU(2)×U(1), on the domain-wall brane, then inside the domain wall the

perturbations will not become tachyonic, leading to a better chance of long term stability.

3.8 Lifshitz anisotropic scaling

Lifshitz anisotropic scaling can be used to pave the way to UV complete 4 + 1-dimensional

domain-wall brane theories. Improving the renormalization properties of field theories with

(d > 3)-spatial dimensions avoids potential problems with the convergence of lattice gauge

theory stimulations of the Dvali-Shifman mechanism, for localizing gauge fields on the

domain-wall brane, in the limit of infinitesimal lattice spacing.

In section 1.2 we touched on the main thrust of Lifshitz field theories. Namely a Lifshitz

field theory is formulated so that the marginal operators in the action are invariant under an

anisotropic rescaling of the spatial coordinates as defined in (1.2). For a critical exponent

z = 1, the theory exhibits normal Lorentz invariance. We are primarily interested in the case

z > 1. For this case we introduce the concept of weighted scaling dimensions, and then

argue that Lifshitz scalar field theories, as well as gauge theories, are power counting renor-

malizable with respect to the weighted scaling dimensions. We establish that these weighted

scaling dimensions are indeed the correct indicators of the renormalization properties of the

theory. We do this by calculating the superficial degree of divergence of a d+1-dimensional

Lifshitz theory, and showing that the theory is renormalizable for the case z ≥ d, when all

coupling constants have nonnegative Lifshitz weighted scaling mass dimensions.
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We mention research into the key problem in this area [IRS09], namely Lorentz invariance

must be recovered in the IR regime . However in this theory the maximum attainable speed

of each particle has positive weighted scaling dimensions and therefore runs with energy

scale. Thus as the energy rises, the particle’s maximum accessible speed also increases.

Furthermore the coupling constant for each individual field runs differently from the others.

This is in direct conflict with special relativity, so the model must be fine tuned to guarantee

all particles recover the correct speed of light at experimentally accessible energies. It is

not enough to set the maximum attainable speed of two particles to be equal at the Lorentz

symmetry violating scale, they must somehow converge to be equal at the electroweak scale.

An interesting question is whether this pair of coupling constants both converge to the speed

of light sufficiently fast in the IR to avoid detection by current experiments.

3.8.1 Weighted scaling dimensions

In a d+1-dimensional Lifshitz type theory the space-time manifold is foliated into a product

R × Rd with coordinates

(t, xi), (3.95)

where i = 1, . . . , d. The action is invariant under d-dimensional spatial rotations and trans-

lations but not under Lorentz boosts. The Lifshitz anisotropic scaling, or the degree of

anisotropy in the space-time manifold, is characterized by the value of the critical exponent

z. The critical exponent automatically sets the highest power of ∆z =
(
∂i∂

i
)z

appearing in

the action for a scalar field, ϕ. Thus if we discard all relevant operators, then the kinetic

terms in the action are

S li f =

∫
dd+1x

(
ϕ̇2 − ϕ (−∆)z ϕ

)
, (3.96)

where we have used the breaking of the Lorentz symmetry to simultaneously absorb the

coefficient of the ϕ̇2 term into a rescaling of the temporal coordinate, and the coefficient

of the spatial derivative term into a rescaling of the spatial coordinate space. This action

possess a rescaling symmetry,

t −→ λzt, xi −→ λxi, ϕ→ λ
z−d

2 ϕ. (3.97)
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Because the structure of (3.96) automatically adapts the loop propagators, the correct di-

mensions to use when evaluating whether the theory is power counting renormalizable are

the weighted scaling dimensions, where

[t]s = −z,
[
xi
]

s
= −1,

[
ϕ
]

s =
d − z

2
. (3.98)

Hereinafter by [τ]s we mean the weighted scaling dimensions of τ which are not to be

confused with the usual mass dimensions. Lorentz invariance corresponds to z = 1.

To make expressions more compact we shall write d + 1z-dimensions for a foliated space-

time manifold with weighted scaling characterized by (3.98) and we drop the ‘1’ subscript

in the isotropic space-time case.

3.8.2 Power counting renormalizability of Lifshitz scalar field theories

Adding relevant operators which softly break the Lifshitz anisotropic scaling symmetry

does not change the renormalization properties of the theory. Hence consider the full action

[Vis09] with all the relevant operators for Lifshitz scalar fields,

S ϕ−li f = S kin + S int

=

∫
dd+1x

{
ϕ̇2 − ϕ

[
−c2∆ + . . . + (−∆)z

]
ϕ
}
−

∫
dd+1x

N∑
n=1

gn.ϕ
n. (3.99)

Evaluating the mass dimensions of each of the coupling constant above, we find

[c]s = [x]s / [t]s = z − 1 and
[
gn

]
s = d + z + (d − z)n/2. (3.100)

Whenever Lorentz invariance is broken and z , 1, the speed of light is a dimensionful

quantity which cannot be absorbed into a coordinate rescaling, so we are unable to set c = 1

and we expect this parameter will run with the energy scale.

Further the theory is weighted power counting renormalizable if all the coupling constants

have positive weighted scaling dimensions. If z ≥ d, then
[
gn

]
s > 0 and the normal ordered

theory is weighted power counting renormalizable for all N. However if z < d, then we

require N ≤ 2(d + z)/(d − z). For example, a 4 + 12-dimensional theory with 6-th order
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interaction terms is renormalizable.

3.8.3 Power counting renormalizability of a toy Lifshitz gauge

theory

Because our primary interest in Lifshitz scaling is in the application to renormalizable 4+1-

dimensional Yang-Mills field theories, we repeat this analysis in the gauge sector, for an

arbitrary gauge group G.

A standard Lorentz invariant Yang-Mills action is built from contractions of the gauge in-

variant field strength tensor Fµν. However since we wish to introduce an extra 2z-th order

spatial differential operator acting on the gauge fields we need to separate out the electric

field strength tensor and the magnetic field strength tensors

Ei = ∂tAi − ∂iA0 − i [Ai, A0]

Fi j = ∂iA j − ∂ jAi − i
[
Ai, A j

]
, (3.101)

where we have used the index i to denote the spatial dimensions, and the gauge fields belong

to the adjoint representation of the Lie algebra for G. That is Ai = Aa
i Ta,where (Ta)bc = i f bc

a

is defined in terms of the structure constants for the Lie algebra,

[Ta,Tb] = i f c
abTc, (3.102)

and Tr
(
TaTb

)
= 1/2 δab. The weighted scaling dimensions of the fields become

[A0]s = z and [Ai]s = 1. (3.103)

Following [CH10], we abandon the canonical Lorentz invariant action for the gauge fields

and simply write down the most general action possible with two caveats. We maintain

the d-dimensional spatial rotational invariance of the theory; we maintain the unitarity of

the theory. Preserving unitarity in the theory requires the temporal derivative terms are no
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higher than second order. Thus

S Aµ−li f =
1
2

∫
dd+1x

 1
g2

E

Tr (EiEi) +
∑
J≥2

1
gJ

E

NJ∑
n=0

λJ,nD2nFJ

 , (3.104)

where we have suppressed the indices of the gauge covariant derivative Dk and of the mag-

netic field strength tensor Fi j, defined in (3.101). In the above sum the rule for enumerating

these indices is that all spatial indices must be contracted, and that we include one term

for each inequivalent contraction. For example, when J = 2 and n = 2 there are two in-

equivalent terms,
(
DiD jFi j

)2
and DkDkFi jFi j. The sum over even powers of Dk is to ensure

that there are no terms with an odd number of spatial indices which would break spatial

rotational invariance. The weighted scaling dimension [CH10] of the electric field strength

gauge coupling constant is [
gE

]
s =

z − d
2
+ 1. (3.105)

Hence to keep the mass dimensions of this coupling constant positive we need

z ≥ d − 2. (3.106)

We can find the highest order, NJ , of derivatives of a contraction of J copies of the mag-

netic field strength tensor by canonically normalizing the gauge field, Ai → Ãi = Ai/gE ,

and then demanding that the weighted scaling dimensions of the coupling constants satisfy[
λJ,n

]
s ≥ 0 [CH10]. The result is

NJ =

⌊
z + d

2
+

z − d − 2
4

J
⌋
. (3.107)

We can check these results for the Lorentz invariant case z = 1, where (3.105) predicts the

theory will be power counting generalizable only for d ≤ 3-spatial dimensions. However,

when the critical exponent z = 2 it is clear that we can construct a 4+12-dimensional gauge

field action which is weighted power counting renormalizable.
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3.8.4 Superficial degree of divergence

We corroborate our results from subsection 3.8.3 by showing that, when a Lifshitz scalar

field theory is weighted power counting renormalizable for N = ∞ in (3.99), the superficial

degree of divergence of the theory is always negative. We follow [Vis09] and invoke the

standard result that, when the superficial degree of a Feynman diagram and of all subgraphs

is negative, then the diagram is convergent. Our aim is to establish that the weighted scaling

dimensions are the correct weighted power counting dimensions for this theory.

Define conjugate variables to position and time, k and ω, which carry units of momentum

and energy, respectively:

[k]s = 1/ [dx]s = 1 and [ω]s = 1/ [dt]s = z. (3.108)

In these units we consider the contribution to a Feynman matrix element from an integral

over the internal momentum in a loop. From the integral we pick up

∫
dωl ddkl . . . (3.109)

which makes a contribution of
[
ωkd

]
s
= z + d to the superficial degree of divergence of the

diagram. The scalar field propagator inside the loop integral is

1

(ωl − ωe)2 −
{
m2 + c2

(⃗
kl − k⃗e

)2
+ · · · +

[(⃗
kl − k⃗e

)2
]z} , (3.110)

where
(
ωe, k⃗e

)
is some linear combination of the external momenta, and

(
ωl, k⃗l

)
are the loop

energy and momenta. Each propagator makes a contribution of −2z to the superficial degree

of divergence. Hence if there are L loops and I propagators in the Feynman matrix element

the superficial degree of divergence [Vis09] is

δ = (d + z)L − 2Iz = (d − z)L − 2(I − L)z. (3.111)

Since there is at least one propagator sitting inside every loop integral, the second term is

always negative and the upper bound on this expression is (d− z)L. Hence in theories where
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z > d, the superficial degree of divergence is always negative and all Feynman diagrams

converge. If the theory is normal ordered, then the case z = d will also be renormalizable.

An alternative way to state this result is when all coupling constants have positive weighted

scaling dimensions the theory is renormalizable, even in the presence of an arbitrarily large

number of interaction terms N = ∞ in (3.99).

3.8.5 Problems with coupling constant running

Ongoing research is critically examining whether coupling constant running can plausibly

cause Lorentz symmetry to emerge as an accidental symmetry in the infrared limit of z , 1,

Lifshitz models [IRS09, IS10, Ans09a, Ans09b, Ans09c, CH10]. The recent insights of

Hořava and Melby Thompson [HMT10] now make it more plausible that the infrared limit

of a suitably-defined version of Hořava-Lifshitz gravity can closely resemble pure general

relativity. Thus we can hope that some similar progress will be made for emergent relativity

in general.

In the context of 4 + 12-dimensional Lifshitz scalar field theory, in an example with a 6-th

order potential, Iengo et. al. [IRS09] examined the coupling constant running in this theory

and found that c, defined in (3.99), exhibits logarithmic running

c2(E) = c2(Λ)
[
1 + f log

(E
Λ

)]n
, (3.112)

where Λ is the energy scale at which the theory exhibits Lifshitz anisotropic scaling, while

f governs the reorganization group flow, and n is a first order parameter which depends on

the field ϕ. Repeating this analysis for two species of particles, the difference between the

maximal attainable velocities, δc2 = c2
ϕ1
−c2

ϕ2
, also runs logarithmicly. Iengo et. al. [IRS09]

explicitly demonstrate that in general, even when the maximal attainable velocities are equal

at the Lorentz violating scale, they will not be equal in the infrared regime; arranging for

δc2 = 0 in the IR requires fine tuning of the model.
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3.9 Crystallographic root systems and the Weyl group

Throughout this thesis we will cultivate a strong interest in roots and weights. Here we

review the concepts of roots and weights. These provide an extremely compact formalism

for dealing with the structure of large grand unified groups as well as insights into lower

rank groups like SU(3).

While confining gauge fields on a domain-wall brane in extra-dimensional models, through

either the Dvali-Shifman mechanism or an alternative, closely related, method known as

the clash of symmetries mechanism, it is necessary to understand embeddings of all sub-

groups, H ⊂ G, inside a given Lie group G. Roots and weights provide a systematic way of

approaching this problem and will be a vital background concept in Chapter 9.

3.9.1 Crystallographic root systems

Consider the closed reflection groups which act on a Euclidean vector space E. Let (a, b) be

a bilinear form on the Euclidean space. Each reflection fixes a hyperplane in E and flips the

vector orthogonal to this hyperplane. We label the hyperplanes Hα∨ , while the respective

orthogonal vector, α, is called a root.

Together the roots form a root system ∆ [Kan01]. This means that the collection of roots ∆

satisfy the conditions:

Definition 3.1: ∆ is a root system if for all α, γ, β ∈ ∆:

1. If α ∈ ∆, then χα ∈ ∆ if and only if χ = ±1;

2. The reflection of β in the hyperplane perpendicular to γ: sγ · β = β − (β, γ∨)γ. also

belongs to ∆.

We call the reflection group generated by involutions in the hyperplanes orthogonal to the

roots in ∆ the Weyl group,

W = {sγ| γ ∈ ∆}, (3.113)

where the action of sγ on ∆ follows from condition (2) of the root system Definition 3.1.
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By construction, the Weyl group permutes the roots in ∆. We will assume that the Weyl

group is irreducible. Under these circumstances the root system has no invariant subspaces.

If we construct the Euclidean space so that E = span∆, then the root system is called

essential.

We say that ∆ is crystallographic if, in addition to the above, for all roots α, γ ∈ ∆, the inner

product of α with γ∨ = 2γ/(γ, γ) is an integer, that is,

(β, γ∨) ∈ Z, (3.114)

γ∨ is called a co-root. From now on we assume that we are dealing with crystallographic,

essential root systems.

Every Lie algebra is associated with a crystallographic root system. Hence when looking

for the embeddings of a Lie subalgebra or calculating vertex factors and interaction terms

between particles belonging to nontrivial representations of the Lie group it is possible to

do the calculation either by choosing an explicit representation or by understanding the

relationship between the roots and the weights. Our aim is to understand all the Cartan

preserving embeddings of a subgroup H inside a Lie group G. This will allow us to extend

the ideas presented in section 1.3, and to index all the embeddings of the standard model

gauge group inside a grand unified group. We introduce some of the theory necessary to

understand the root system picture, including how to link it to matrix representations of the

Lie algebra and how to generate explicit representations like the adjoint.

Simple roots

It follows from the definition of ∆, Definition 3.1, that for each root α, there exists −α. This

leads us to partition the root system into two disjoint sets: the positive and the negative roots.

We elect to call a root, α, whose first non zero component is positive, a “positive root”. The

corresponding negated positive root, −α, is termed a “negative root”. Not all of these roots

are linearly independent. In fact a rank l Lie algebra has l independent Cartan subalgebra

generators and therefore inherits a set of l linearly independent roots {ζ(1), . . . , ζ(l)}, called

simple roots.
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The simple roots are conventionally chosen to be the l-dimensional subset of the positive

roots, with the property that every positive root can be written as a non-negative linear

combination of {ζ(1), . . . , ζ(l)}. It follows that every negative root can be written as a non-

positive linear combination of the simple roots. For each collection of positive roots there

exists a unique choice of simple roots satisfying this condition.

Coxeter presentations

The simple roots generate the root system in the sense that:

1 The simple roots generate the Weyl group, W. Any element of W can be expressed as

a sequence of refections in the hyperplanes orthogonal to the simple roots. This gives

rise to a presentation of the Weyl group, called the Coxeter presentation, generated

by reflections in the hyperplanes orthogonal to the simple roots, ζ i. If we refer to the

angle between any two simple roots ζ i and ζ j as π/mi j, then the Coxeter presentation

is

W =
{
sζ

i |
(
sζ

i
sζ

j)mi j
= 1,

(
sζ

i)2
= 1

}
. (3.115)

The Coxeter presentation expression for each element, sγ ∈ W, is not unique. How-

ever, if we define the length of an expression to be the number of reflections, sζ
i
, it

contains, then the relations can be used to reduce all Coxeter presentations for sγ to

a fixed minimum length. This fixed length is a property of γ relative to the choice of

{ζ1, . . . , ζl}.

To understand the relations in (3.115), let Hζi∨
be the (l -1)-dimensional hyperplane

orthogonal to ζi. Because ζ1 and ζ2 are linearly independent, the intersectionHζ1∨ ∩

Hζ2∨
is an (l − 2)-dimensional space. The complementary space is the plane spanned

by ζ1 and ζ2. A reflection in Hζ1∨
followed by a reflection in Hζ2∨

, sζ
1
sζ

2
, is the

same as a rotation by twice the angle between Hζ1∨
and Hζ2∨

(that is a rotation by

2π/m12) in the (ζ1, ζ2) plane. Therefore the relation (sζ
1
sζ

2
)m12 = 1 is equivalent to

the statement that m12 concatenations of a rotation by an angle 2π/m12 is the identity

transformation.

2 The Weyl group action on the root system is regular, that is, for all α, β ∈ ∆, there

exists precisely one sγ ∈ W such that β = sγ ·α. Hence given the simple roots and the
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Coxeter presentation for W, we can generate ∆.

Highest root

It follows that all roots in an irreducible crystallographic root system must belong to a lattice

Q = Zζ(1) + · · · + Zζ(l). (3.116)

Furthermore the difference between any two roots will also belong to Q. From these two

conditions it is possible to define a partial ordering on a crystallographic root system with

respect to the choice of simple roots. We can rank any pair of roots α, β ∈ ∆, according to

α > β if α − β ∈ Q+, where Q+ ⊂ Q is the subspace

Q+ = {x1ζ
(1) + · · · + xlζ

(l)| xi ≥ 0 for all i}, (3.117)

of the lattice Q with strictly non-negative coefficients. For each choice of simple roots there

is a unique ζ0 ∈ ∆ such that ζ0 > α for all α ∈ ∆ with α , ζ0. In appendix A.2 we show

how to write the highest root of each crystallographic root system, as a linear combination

of the simple roots.

Closed subroot systems

We are interested in all subspaces ∆H ⊂ ∆ which are also crystallographic root systems.

Once we have associated a Lie algebra with ∆, these will characterize all Lie subalgebras.

From Definition 3.1 of a root system , we can see a subspace ∆H ⊂ ∆ is a subroot system

whenever it is closed. A closed subroot system is defined as follows.

Definition 3.2: A closed subroot system is a root system, ∆H ⊂ ∆, such that for all α, β ∈ ∆H

if α + β ∈ ∆ then α + β ∈ ∆H .

Furthermore if ∆ is crystallographic then any subroot system ∆H is also crystallographic.

The Weyl group of the subroot system ∆H , WH = {sα|α ∈ ∆H}, is the subgroup of W which

permutes the subset of the roots belonging to ∆H .
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For each subroot system,5 ∆H , there is a systematic way of choosing a basis of simple roots

consisting of a proper subset IH ⊂ {ζ1, . . . , ζi} ∪ {−ζ0}, the union of the simple roots for ∆

and the negated highest root. The method is outlined in Box 3.3 below and follows from a

straightforward application of the Borel-de-Siebenthal theorem.

The Coxeter presentation for WH is generated by reflections in the hyperplanes Hζ j∨
, ζ j ∈ IH

orthogonal to the simple roots of ∆H .

Box 3.3: The Borel-de-Siebenthal theorem gives a method for finding the maximal

closed subroot systems, that is, of finding the subroot systems ∆H ⊂ ∆ such that for all

other subroot systems ∆k ⊂ ∆ we have ∆H 1 ∆K . Non maximal closed subroot systems

can be found by iteratively applying the Borel-de-Siebenthal theorem.

Theorem 3.2: (Borel-de-Siebenthal): Let ∆ be an irreducible crystallographic root system.

Let {ζ1, . . . , ζ l} be the simple roots for ∆. Let ζ0 be the highest root of ∆ with respect to

{ζ1, . . . , ζ l} so that

ζ0 = Σiciζ
i. (3.118)

Then the maximal closed subroot systems of ∆, up to Weyl group reflections, have simple roots

• {ζ1, ζ2, . . . , ζ̂ i, . . . , ζ l} where ci = 1;

• {−ζ0, ζ1, . . . , ζ̂ i, . . . , ζ l} where ci = p (prime);

where “ζ̂ i” denotes the elimination of ζ i.

Extended Dynkin diagram

The simple roots and Coxeter relations encode all the information necessary to generate the

entire crystallographic root system. When we add the highest root, we know all the closed

crystallographic subroot systems. We would like to summarize all this information in a

compact and easily accessible form known as the extended Dynkin diagram.

The extended Dynkin diagram incorporates both the simple roots and the highest root along

with the relationship between the simple roots in the Coxeter presentation (3.115). The cap-

tion of Figure 3.6 provides a key for reading these relations. The extended Dynkin diagrams

5or one of its Weyl group conjugates sγ · ∆H , where sγ ∈ W
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for all the different possible crystallographic root systems are exhibited in Figure 3.6. The

restricted range of possible Dynkin diagrams allows us to classify the different crystallo-

graphic root systems.

The crystallographic root systems are broadly classified into the An, Bn, Cn and Dn series

as well as the exceptional cases E6, E7, E8, F4 and G2.

Consider an extended Dynkin diagram associated with a crystallographic root system ∆ and

the expression for the highest root ζ0 ∈ ∆. If we want to find a maximal crystallographic

subroot systems ∆H then we use the Borel-de-Siebenthal theorem to choose a set of simple

roots for ∆H . Next isolate a node in the Dynkin diagram for ∆. If the associated simple

root ζ(k) (or highest root ζ0) belongs to ∆H , then we leave the node. If it does not belong

to ∆H , then we delete the node along with any adjacent edges. Do this for each node in the

extended Dynkin diagram for ∆.

The end product is the Dynkin diagram for ∆H . Using Figure 3.6 we can identify the closed

crystallographic subroot system ∆H .

To find all possible closed subroot systems of ∆ this process must be repeated iteratively to

obtain the non-maximal closed subroot systems.

3.9.2 Root systems

We have claimed that the simple roots and the Coxeter presentation contain all the infor-

mation about the root system, and that this information can be summarized in the extended

Dynkin diagram. Therefore we must be able to take the extended Dynkin diagram and

reproduce the entire crystallographic root system.

To do this we take the highest root and use the Coxeter presentation of the Weyl group

to produce the Weyl group orbit of ζ0. As the Weyl group is regular this orbit generates

all of ∆. For the example of the crystallographic root system E8 we reconstruct all 248

roots from the extended Dynkin diagram. In Figures 3.8 and 3.9 we have replaced each

of the 248 roots in the E8 root system by a small node. A coloured line linking any two

nodes indicates that the two roots are related by reflecting in the hyperplane orthogonal to

a simple root. The extended E8 Dynkin diagram, Figure 3.7, has been colour coordinated
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Figure 3.6: The extended dynkin diagram of an irreducible crystallographic root system has
a node for each simple root. In addition there is one extra node, which is marked with a
cross. This node corresponds to the highest root ζ0. If two simple roots, ζ(i) and ζ( j), are
related by mi j = 3 in (3.115), then the respective nodes are joined by a single edge, while
if mi j = 4 the edge is doubled, and when mi j = 5 the edge is tripled. These are the only
possibilities for closed crystallographic root systems. Notice that some edges are directed.
When the Dynkin diagram has a directed edge, some of the simple roots are shorter than
others. Conventionaly the arrow points in the direction of the shorter simple roots. For
example in the Bn diagram one of the simple roots, ζ(k), is shorter than the others, that is,
||ζ(k)|| < ||ζ(i)|| for all i , k. Picture from R. Kane Reflection Groups and Invariant Theory
Springer 2001 [Kan01].
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Figure 3.7: A colour coordinated extended Dynkin diagram for E8. Picture from AIM
(American Institute of Mathematics).

with Figures 3.8 and 3.9, so that if a line in Figure 3.8 or Figure 3.9 is colour X then the

line represents reflection in the hyperplane orthogonal to the simple root associated with the

X-colored Dynkin diagram node.

In this picture the highest root is at the top. All other roots have been obtained from the

highest root by a series of reflections in the simple roots.

See appendix A.2 for a more detailed version of Figures 3.8 and 3.9 which include an

explicit expression for each root belonging to a Euclidean subspace of R8.

3.10 Weights

We have defined our crystallographic root system with respect to a bilinear form B(a, b) =

(a, b) on the Euclidean space. There is a dual space to the roots under this bilinear form.

The vectors in this dual space are called the weights.

The action of the Weyl group on the root system can be extended to an action on the weight

space. Weyl group reflection of a weight ν in the hyperplane orthogonal to root κ is

sκ · ν = ν − (ν, κ∨)κ. (3.119)

It is possible to define a basis for the weight space {ω1, . . . , ωl}, which is dual to the simple

roots, that is

ωiζ j∨ = δi j. (3.120)

We call {ω1, . . . , ωl} fundamental weights. A linear combination of {ω1, . . . , ωl} with non-

negative coefficients is called a dominant weight.
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Figure 3.8: The positive roots for E8 and the eight simple roots are represented as nodes.
Edges are reflections in the simple roots, which can also be thought of as lowering operators
f̃i on the root system. They are colour coordinated with the extended Dynkin diagram nodes
so that if the extended Dynkin diagram node of a simple root ζ(i) is colour X, then the
reflection in the hyperplane orthogonal to the simple root ζ(i) is colour X. The highest root
is at the top of the diagram while the eight simple roots are at the bottom. Picture from AIM
(American Institute of Mathematics).
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Figure 3.9: The corresponding negative roots for E8. Picture from AIM.
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3.11 Lie algebras

Crystallographic root systems are in one-to-one correspondence with semi-simple complex

Lie algebras. This correspondence comes from a direct identification of the roots with

elements of the adjoint representation for the Lie group.

3.11.1 An SU(2) example

Let us start with an example of this correspondence. We explicitly identify the roots for the

SU(2) weak-isospin gauge group.

Consider the self-interacting gauge bosons for the weak force,

W+µ =

0 w+µ

0 0

 , W−µ =

 0 0

w−µ 0

 . (3.121)

The gauge bosons are associated with the SU(2) raising operator τ+, and the SU(2) lowering

operator τ−, respectively. These are eigenstates of the adjoint action of the weak-isospin

generator I2 = diag (1,−1), that is, adI2 · τ± = [I2, τ
±] = α±(I2) τ±. This sets α±(I2) = ±2.

We say that SU(2) contains two roots α+ and α− = −α+ (both of which are single component

vectors). They are related by reflection in the hyperplane orthogonal to α+, that is, sα+ ·α+ =

−α+ = α−. If we allow the root system to inherit an inner product (α+, α−) = B(τ+, τ−)

from the Cartan Killing form on the Lie algebra, then the root system is crystallographic;

the Cartan Killing form for the Lie algebra6 is defined for all T i, T j ∈ L through

B(T i, T j) = trace(adT i · adT j). (3.122)

In this context the roots are the isospin charges of W+ and W−:

[
I2,W+µ

]
= w+µ

[
I2, τ

+] = 2W+µ
[
I2,W−µ

]
= w−µ

[
I2, τ

−] = −2W−µ . (3.123)

6Note the trace here is over the Lie algebra, that is, the Cartan Killing form is directly proportional to the
contraction

∑
mk f mi

k f k j
m of the structure constants for the Lie algebra.
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3.11.2 The correspondence between Lie algebras and root systems

In general, it is possible to represent a semi-simple rank l Lie Algebra, LG, for a Lie group

G using two types of generators:

• a set of l mutually commuting diagonalisable generators, h1, . . . , hl, which together

with the linear combinations Σiaihi, form a Cartan subalgebra, CG and,

• a collection of simultaneous eigenstates Eα of the adjoint action of every Cartan sub-

algebra generator.

By definition these generators satisfy the commutation relations:

[hi, h j] = 0 and

[hi, Eα] = adhi · Eα = α(hi)Eα. (3.124)

We shall set αi = α(hi), for convenience. Each eigenstate, Eα, can be labelled by an l-

dimensional vector α = (α1, . . . , αl) called a root. The root is a list of the l eigenvalues

(structure constants) for the commutator, [hi, Eα], of Eα with each hi ∈ CG. Dynkin proved

that the collection of roots ∆ labelling the Lie algebra generators form a crystallographic

root system ∆.

The length of the roots depends on choosing a consistent normalization scheme for the gen-

erators. We fix the normalization of our Lie algebra generators by choosing Tr (EαE−α) =

2/(α, α), where (a, b) is an invariant inner product. For example, if one used an invariant

inner product on the Lie algebra generators, such as the Cartan-Killing form or the regular

trace and restricted this inner product to the Cartan generators, then because the root space

is dual to the Cartan subalgebra this induces an invariant inner product on the root space.

This is a condition known as the Chevalley-Serre basis. It guarantees the components of the

roots are integers.
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There are two more relations which characterize the Lie algebra,

[Eα, E−α] = hα and

[Eα, Eβ] = Nα,βEα+β if α , −β, (3.125)

where hα is a linear combination of the hi and if
[
Eα, Eβ

]
< LG, then Nα,β = 0.

These conditions are equivalent to the Jacobi relation. All Lie algebras must satisfy the

Jacobi relation, which states that for any T i,T j, T k ∈ L

[
T i

[
T j,T k

]]
+

[
T k

[
T i, T j

]]
+

[
T j

[
T k,T i

]]
= 0. (3.126)

It follows from (3.124) that for each root α ∈ ∆, labelling a generator Eα ∈ L, we auto-

matically use the root −α ∈ ∆, to label the hermitian conjugate generator E−α = Eα† ∈ L.

We refer to Eα as a raising operator, and E−α as a lowering operator. We use our definition

from subsubsection 3.9.1.3, to classify the roots as either positive or negative, and choose a

set of simple roots {ζ(1), . . . , ζ(l)}. A rank l Lie algebra has l independent Cartan subalgebra

generators and therefore l linearly independent simple roots.

It is clear from (3.124) that each root α is the pullback of a member of the Cartan subalgebra,

hα =
[
Eα, E−α

]
. (3.127)

Multiplying this expression on the left by h j ∈ {h1, . . . , hl} and taking the matrix trace we

see that

hα = α∨j h j, (3.128)

where we have assumed an implicit sum over j ∈ {1, . . . , l} and α∨j = gi j2αi/(α, α); again

we sum over i ∈ {1, . . . , l}, while gi j =
[
Tr (hih j)

]−1
is the inverse of the l × l matrix whose

i j-th element is gi j =
[
Tr (hih j)

]
.
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Linearity of the commutator bracket now allows us to extend our definition of the adjoint

action to any hβ acting on the Lie algebra according to

adhβ · Eα = α(hβ)Eα = (α, β∨)Eα. (3.129)

3.11.3 The Weyl group representation in the Lie algebra space

The Weyl group has a natural analogue in the matrix picture [Hel78]. Here conjugation by

the operator

wγ = exp(Eγ)exp(E−γ)exp(Eγ), (3.130)

acts on the Cartan subalgebra according to

wγ · hβ = wγhβw−γ = (sγ · β∨)ihi = (sγ · β)∨i hi, (3.131)

where w−γ = (wγ)−1. We can check that (3.130) is a matrix representation for the Weyl

group, acting as a module on the Cartan subalgebra CG, by checking that wγ · hβ = hsγ·β.

This follows directly from the action of wγ · hβ on Eα:

[wγ · hβ, Eα] = (sγ · β)∨i [hi, Eα] = αi(sγ · β)∨i Eα

= (α, (sγ · β)∨)Eα = [hsγ·β, Eα]. (3.132)

Conversely, conjugating (3.132) by w−γ gives

[hβ,w−γEαwγ] = (sγ · β, α∨)w−γEαwγ

= (β, (sγ · α)∨)w−γEαwγ = [hβ, Esγ·α]. (3.133)

This leads us to conclude that w−γ · Eα = Esγ·α. Therefore (3.130) also furnishes a matrix

representation for the Weyl group acting as a module on the space of generators {Eα| α ∈ ∆}.

In the matrix picture the Cartan subalgebra is an invariant subspace for the Weyl group and

the Weyl group permutes the raising and lowering operators E±α. The Weyl group orbit of

the generator, Eα, can be calculated from the Weyl group orbit of its root α.
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3.11.4 Generic representations of the Lie algebra

Lie algebras also have a close connection to the concept of weights.

More generally, the physical significance of being able to simultaneously diagonalize the

Cartan subalgebra is that, for any representation space of the Lie group, there exists a basis,

B, of simultaneous eigenvectors, |ν⟩ , of the entire Cartan subalgebra. Each eigenvector

|ν⟩ ∈ B can be labelled by the l-dimensional vector, ν = (ν1, . . . , νl) = (ν(h1), . . . , ν(hl)),

formed by listing its eigenvalues, hi |ν⟩ = ν(hi) |ν⟩, for hi = h1, . . . , hl. These l-dimensional

vectors are the weights.

Box 3.4 (An SU(2) weak force example): Consider the SU(2)-weak lepton doublet,

lL =

νeL

eL

 ∼ (1, 2)(−1). (3.134)

The SU(2) weights of the two states in this representation are the isospin quantum numbers of

the fermions. The electron neutrino, νe, has isospin quantum number +1/2. This is the highest

weight of the representation. The electron, e, has isospin quantum number −1/2. This is the

lowest weight of the representation.

In the adjoint representation the weights are the root vectors. If the Lie group represen-

tation acts as a module over a vector space of n-dimensional column vectors (analogously

to the SU(2)-weak lepton doublet), then the weights are the eigenvalues under left matrix

multiplication by the Cartan subalgebra generators. The eigenvector labelled by the highest

weight is annihilated by all raising operators.

We defined the Weyl group action on the weight space in (3.119). We check that under the

matrix representation of the Weyl group (3.130), our eigenbasis B transforms in the same

way as (3.119).

This follows because an arbitrary representation space for the Lie group furnishes a repre-

sentation space for the Weyl group. Directly computing the action of (3.130) on |ν⟩ ∈ B

shows that

w−κ · |ν⟩ =
∣∣∣sκ · ν⟩ . (3.135)
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The action of hi ∈ CG on w−κ |ν⟩ is given by

hiw−κ |ν⟩ = w−κ
(
wκhiw−κ

)
|ν⟩

= w−κ
(
hi − κihκ

)
|ν⟩

= w−κ
(
hi − κiκ∨j h j

)
|ν⟩

=
(
νi − (ν, κ∨)κi

)
w−κ |ν⟩

=
[
sκ · ν]i w−κ |ν⟩

= hi
∣∣∣sκ · ν⟩ , (3.136)

where the second equality follows by using h j = Σiδ
j
i hi in (3.131).

We introduce some terminology to facilitate our discussion on weights. The weights be-

longing to the Weyl group orbit of the highest weight are called extremal weights.

Consider a representation which has highest weight ν, and let Eδ ∈ L be a generic raising

operator for this representation. Then it is easy to see that each extremal weight µ = sκ · ν,

where κ ∈ ∆, is also the highest weight with respect to a different choice of positive roots,

because |µ⟩ is eliminated by an equivalent set of raising operators wκ · Eδ ∈ L. However

the Weyl group permutes the set of Lie algebra generators, so both representations have

the same generators. We would like a way of distinguishing between these representations

and others which have qualitatively different sets of generators. Id est representation with

qualitatively different sets of generators are not related to each other by a similarity trans-

formation and are also generally of different dimension.

It is necessary to work with the basis of fundamental weights {ω1, . . . , ωl} defined in sec-

tion 3.10, and satisfying (3.120). Under these circumstances every dominant weight is the

highest weight of a representation, and up to conjugation by the Weyl group every highest

weight is dominant.

3.11.5 Lie subalgebras and embeddings

Lie subalgebras LH ⊂ L have generators labeled by closed subroot systems ∆H ⊂ ∆; see

Definition 3.2 for a definition of closed subroot systems.
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When ∆H is a closed subroot system, the Lie subalgebra LH is closed, that is, for all

Eα, Eβ ∈ LH such that Nα,β , 0, we have [Eα, Eβ] ∈ LH .

Therefore if ∆H is a closed subroot system then LH satisfies the Lie algebra commutation

relations (3.124) and (3.125).

We can now use the Borel-de-Siebenthal theorem from subsubsection 3.9.1.4 and the matrix

representation for the Weyl group (3.130) to construct a representation of the Weyl group

for the subalgebra. We consider different embeddings of the subalgebraLH withinL which

are related by Weyl group conjugation.

The orbit W ·∆H represents all the embeddings of ∆H inside ∆. However we know that W∆H

maps ∆H back onto itself, so each element in the orbit W∆H ·∆H = ∆H gives rise to the same

embedding of LH inside L. Therefore the set W/W∆H · ∆H represents all the “qualitatively

different” embeddings of ∆H and LH inside ∆ and L, respectively. By “qualitatively differ-

ent” we mean the raising and lowering operators belonging toLH and wκLHw−κ are distinct

subsets of the full complement of raising and lowering operators belonging to L.

One outcome is that the number of embeddings of LH inside L is |W/W∆H |. Because the

Weyl group is finite we can simplify this expression7 to |W |/|W∆H |.

3.12 An explicit representation

We use the above to explicitly write down the matrices belonging to the adjoint representa-

tion for the Lie algebra.

We have been working with an explicit choice of bases for the Lie algebra defined through

the commutation relations (3.124) and (3.125). These are a special way of writing the most

general commutation relations for the Lie algebra

[
T l, T j

]
= i f k

l jTk, (3.137)

where f k
l j are the structure constants for the Lie algebra. We highlight the parallels between

7This follows directly from the orbit stabilizer theorem: Suppose that a linear algebraic group G acts on the
set X. If G is finite then |G| = |G · x| · |Stabilizer(x)|, that is, the order of the orbit of x, |G · x|, divides |G|.
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the structure constants f k
l j in (3.137) and the structure constants Nαβ in our special basis

(3.124) and (3.125). By choosing T l = Eα and T j = Eβ in (3.137) we find that Nαβ =

i f (α+β)
αβ .

In general the adjoint representation is given by

i
(
T j

)m

k
= f m

jk . (3.138)

We know the adjoint representation satisfies the Lie algebra commutation relations (3.137),

because it follows from the Jacobi identity (3.126) that

f m
jk f n

lm + f m
l j f n

km + f m
kl f n

jm = 0. (3.139)

This implies the adjoint representation can be calculated directly from the structure con-

stants.

For the simple roots ζ(i) and ζ( j), it is very easy to determine the Nζ(i)ζ( j) . We will write

Nζ(i)ζ( j) ≡ Ni j. This implies we can easily find the adjoint Lie algebra elements Eζ(i)
. Us-

ing Eζ(i)
we can build a full Lie algebra adjoint representation satisfying the commutation

relations (3.124) and (3.125).

Firstly we outline how to get the Ni j and then we outline how to generate all Eα ∈ L from

the Eζ(i)
.

For a crystallographic root system ∆ we have the following result.

Lemma 3.1: Let α, β ∈ ∆ satisfy α + β ∈ ∆. Let q be the largest integer j such that

β − jα ∈ ∆. Then

Nαβ = ±(q + 1). (3.140)

Now draw the root diagram for the crystallographic root system (see Figure 3.8 for an

example) and find all edges in the diagram which correspond to Weyl group reflections in a

simple root ζ(i). If two roots in the diagram are related by α = sζ
(i) ·β then α = β−(β, ζ(i)∨)ζ(i).

The root diagram catches all of these relations and therefore we can find the length of each

of these β, ζ(i) chains. From here we find all Nζ(i)β and hence we can construct Eζ(i)
.
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To find a matrix Eα for some α ∈ ∆ we first identify α with a member of the root lattice

(3.116) by writing α as a linear combination of the simple roots. If for example α = ζ(1)+ζ(2)

then from (3.124) we know that Eα ∝
[
Eζ(1)

, Eζ(2)]
. If α has a more complicated expression it

will be necessary to use nested commutators. In every case once we know the root diagram

we can write down an explicit expression for each root as a linear combination of the simple

roots and find a series of nested commutators which tell you how to construct the equivalent

generator.8

This formalism will be used extensively in Chapter 9 where we are interested in finding

all the embeddings of a subgroup H inside a Lie group G, be examining the relationship

between the crystallographic subroot systems ∆H ⊂ ∆

8Informally for the E8 example the method would be to start at the bottom of Figure 3.8 and top of Figure
3.9 with the 8 simple roots and then look at the row directly below, call this row the first row. Every root in the
first row is related by a Weyl group reflection to a simple root. Choose a specific root in this first row α, such
that α = sζ

(i) · ζ( j). Then we can choose α = ζ( j) − (ζ( j), ζ(i)∨)ζ(i). Now we can construct Eα from Eζ(i)
and Eζ( j)†.

Move down the diagram another row and use the same argument: every root in the second row is related by a
Weyl group reflection to a root in the first row. This will allow us to construct the Lie algebra element Eα for
each of the roots in Figure 3.9. To complete the Lie algebra for each Eα we need to add the conjugate transpose
matrix E−α.
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4
SO(10) domain-wall brane models

As indicated in the introduction, over the last decade extra spatial dimensions have become

an eligible and phenomenologically interesting extension to the standard model.

RS2 [RS99b] is of considerable interest because the extra dimension is treated analogously

to the usual three dimensions of space, unlike the compact extra dimension paradigm. How-

ever, pure RS2 leaves open the question of what the brane is (D-brane of string theory?) and

why non-gravitational fields are localized to it. Also, the extra dimension is not exactly on

the same footing as the other dimensions, because the placement of the fundamental brane

explicitly breaks translational invariance along the extra dimension.

We would like to bring together the RS2-type localized 3 + 1-dimensional gravity on a 3-

brane [RS99b] with the field theoretical mechanisms for creating a brane and localizing

standard model fields. By doing this we can create a model for a 3+1-dimensional universe

embedded as a hyperplane in 4 + 1-dimensional space-time. Such a universe is brane-like,

but it has finite thickness and the origin of the brane is specified. Brane formation is now an

instance of the spontaneous rather than the explicit breakdown of translational invariance.

Furthermore, one can envisage that all fields are localized for dynamical reasons to the

brane, not just the graviton as in pure RS2. Thereby we can reproduce realistic 3 + 1-

dimensional gravity and standard model phenomenology on the brane.

Our model is meant to be a very simple illustrative example. We are not trying to introduce

a complete theory and we have neglected certain standard model processes. For example,

in this chapter we introduce only the first generation of fermions and, of course, thereby ne-

87
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glect neutrino mass mixing. The theory can indeed accommodate these phenomena, through

an extension of [CV11]. However to incorporate these features correctly we would need to

do a full phenomenological parameter fitting. We feel it is premature, and the concepts in

this model are easier to understand without the fiddly technical details.

We acknowledge that Yang-Mills gauge theory is non-renormalizable in 4 + 1-dimensions.

In this chapter we assume that our model is effective up to some ultraviolet cutoff scale. We

adopt the position that there exists a putative ultraviolet complete theory, which will take

over above this cutoff scale. In chapter 6 we will examine a candidate ultraviolet complete

theory.

Furthermore our model cannot directly address the hierarchy problem and will not lead to

the unification of gravity and field theory (the two original reasons for introducing extra-

dimensions). However it is interesting that we have all the ingredients necessary to create

this model.

We are partially motivated by a recent model (to be called the DGV model hereinafter)

that may realise the dynamical localization of an SU(3)C × SU(2)W × U(1)Y gauge theory

plus gravity to a solitonic domain-wall brane with one warped extra dimension [DGV08].

The DGV paper speculates that Dvali-Shifman gauge field localization is implemented by

confining SU(5) bulk gauge dynamics.

The purpose of this chapter is to extend this model by enlarging the bulk gauge group to

SO(10). This allows the domain-wall localized gauge theory to be either SU(5) × U(1)X or

the left-right symmetric model, depending on the choice of Higgs potential.

In the next section, we discuss the qualitative features of this kind of domain-wall brane

model, as a warm up for the detailed constructions presented in sections 4.2 and 4.3. We

wrap up this chapter with a discussion of salient points for our model.

4.1 The Dvali-Shifman domain-wall brane setup

The most basic structure in domain-wall brane models is a kink configuration for a real

scalar field. We assume the Higgs sector of our model contains the Z2 invariant ϕ4 La-
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grangian, (3.38), for a real scalar field ϕ. Taking the coordinate y as the extra dimen-

sional axis, we choose the scalar field to asymptotically approach the vacuum configurations

limy→±∞ ϕ(y) = ±v. This selects the kink solution (3.39) to the dynamical equations for this

theory, where v is the Z2-breaking vacuum expectation value, while
√
λv
2 is the inverse width

of the kink. From subsection 3.4.1 we know that the energy density profile for this solution

is localized around the zero of the kink (y = 0); the real scalar field has condensed to form

a domain wall about y = 0. The region away from the 3 + 1-dimensional domain wall is

called the bulk.

The prototype domain wall must be embedded in a considerably richer theoretical struc-

ture in order to produce a model that might have realistic phenomenology. In particular,

the requirement that massless gauge bosons be dynamically localized to the wall is most

plausibly met by invoking the Dvali-Shifman mechanism [DS97]. In subsection 3.6.2 we

explained that it is possible to extend the Dvali-Shifman mechanism to trap a non-Abelian,

H-gauged, pure Yang-Mills gauge theory on the wall. This required the bulk gauge group

G ⊃ H. Additionally the bulk gauge theory must be in a confinement phase.

The DGV model uses G = SU(5) and H = SU(3)C × SU(2)W × U(1)Y , thus potentially re-

alising a domain-wall localized standard model. It is also a novel reinterpretation of SU(5)

grand unification. As with standard SU(5) theories, the extension to SO(10) immediately

suggests itself because all the standard model fermions of a given family may be assem-

bled into a single irreducible representation, the 16. Thus, in this chapter we start with

G = SO(10). Also we need a discrete symmetry outside of SO(10) for topological-stability

reasons; we choose Z2 for simplicity and economy.1

Therefore we consider an SO(10) × Z2 gauge-invariant Lagrangian, eventually to be cou-

pled to a Randall-Sundrum warped 4 + 1-dimensional metric in order to dynamically lo-

calize the graviton. Group-theoretically extrapolating the original argument presented by

Dvali and Shifman, an SO(10) singlet scalar field in conjunction with an SO(10) adjoint

Higgs is used to dynamically generate the required domain wall. The singlet Higgs takes

on a kink configuration, while the adjoint Higgs configuration is non-zero inside the wall,

1An earlier attempt at SO(10) domain-wall brane models can be found in [SV04]; it is based on the clash of
symmetries idea [DTVW02]. However, these schemes are unable to produce phenomenologically acceptable
fermion localization [Cur06].
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spontaneously breaking SO(10), and asymptotes to zero as |y|→ ∞, thus restoring SO(10)

in the bulk. For quartic potentials, we shall show that the unbroken group inside the wall

is SU(5) × U(1)X , while the extension to sixth order permits the further breaking to the

left-right group SU(3)C × SU(2)L × SU(2)R × U(1)B−L. If the Dvali-Shifman mechanism is

operative, then the gauge bosons of these subgroups are dynamically localized.

Chiral 3 + 1-dimensional fermions are localized through the split fermion mechanism from

section 3.5. These fermions interact with both the domain-wall brane and adjoint Higgs

field. In this scenario the adjoint Higgs field plays the role of the ρ(y) field from sub-

section 3.5.1. This causes each fermion to become confined around a 3 + 1-dimensional

hypersurface parameterised by certain values of the bulk coordinate y. These values differ

according to fermion species, because the adjoint Higgs configuration “splits” their local-

ization points [RS83].

For completeness we discuss the subsequent breaking of SU(5) × U(1)X , respectively, of

SU(3)C ×SU(2)L×SU(2)R×U(1)B−L to the standard model on the domain-wall brane. This

will require additional Higgs fields which must condense inside the domain wall as well as

some fine tuning conditions to induce the required gauge hierarchies.

An important advantage of this type of 4 + 1-dimensional grand-unified theory is that the

usual tree level mass relations between the quark and lepton masses, outlined in subsub-

section 3.7.3.3, no longer appear. This is precisely because the fermions are split along

the extra dimension. Each fermion’s 3 + 1-dimensional mass scale depends on overlap

integrals of the fermion’s bulk profile with the extra-dimensional profile functions of the

additional Higgs fields which we introduced to break the symmetry down to the standard

model gauge group. For the SU(5) × U(1)X case, the bulk profiles for the fermions depend

on their distinct U(1)X charges, thus these overlap integrals contribute factors to the 3 + 1-

dimensional mass parameters which are different for fermions in different SU(5) × U(1)X

representations. Hence the tree level mass relations are reduced to the SU(5)×U(1)X subset

of the normal SO(10) mass relations. A similar effect occurs for the left-right symmetric

alternative model.
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4.2 The SO(10)→ SU(5) × U(1)X model

Our goal is an SU(5)×U(1)X gauge theory on the 3+1-dimensional brane with a full SO(10)

unified theory in the bulk. For simplicity we shall start with a Minkowski flat action. Then

we compile our theory using the following algorithm:

• Construct a domain wall using a scalar SO(10) singlet.

• Use an adjoint Higgs to break SO(10) to SU(5)×U(1)X on the domain wall and invoke

Dvali-Shifman gauge field localization.

• Confine zero mode chiral fermions.

• Add a Randall-Sundrum warped metric.

• Discuss breaking SU(5) ×U(1)X to the standard model on the domain wall as well as

electroweak symmetry breaking.

4.2.1 Domain wall construction and gauge field localization

We consider a Higgs sector constituted by an SO(10) Higgs singlet ϕ ∼ 1 and an adjoint

Higgs X ∼ 45. We impose the discrete Z2 symmetry, y → −y, ϕ → − ϕ, X → −X. The

Higgs potential is

VX,ϕ = −
µ2

2
TrX2 +

λ1

4
(TrX2)2 +

λ2

4
TrX4 +

κ

2
ϕ2TrX2 +

λ

4
(ϕ2 − v2)2, (4.1)

where we have truncated our potential at fourth order. We argue that the general expression

for VX,ϕ can be expanded as a polynomial in the fields X and ϕ where higher order terms

are suppressed in an effective low energy theory by their dimensionful coupling constants.

We include 4th order terms because orthogonality of the SO(10) generators remonstrates

that truncating our potential at second order would have introduced an accidental symme-

try whereby each of the 45 SO(10) adjoint-Higgs field components could be transformed

independently under SO(10). Since our theory is non-renormalizable in 4 + 1-dimensions

and is therefore considered to be effective only up to an ultraviolet cutoff we do not expect
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pathologies from the dimensionful coupling constants. The adjoint Higgs multiplet is rep-

resented by the 10× 10 antisymmetric matrix, X = ∑
i TiXi, where the Ti are the generators

of the fundamental representation normalized so that Tr
(
TiT j

)
= 1

2δi j. In a certain regime

of parameter space the vacuum manifold is (X = 0, ϕ = ±v). From section 3.4, the solitonic

solutions to the Euler-Lagrange equations must obey Dirichlet boundary conditions, where

we require both Higgs fields to asymptotically approach vacuum configurations. We choose

the boundary condition to be (0,−v) at y = −∞ and (0, v) at y = +∞.

Since the vacuum manifold is not connected, the relevant homotopy group which describes

the different maps from the boundary of the real line onto the vacuum manifold π0(SO(10)×

Z2/SO(10)) is non-trivial. Our choice of boundary conditions ensures the kink belongs to a

different topological class than the homogeneous vacua ϕ = +v and ϕ = −v. Any solution

to the Euler-Lagrange equations satisfying the boundary conditions limy→±∞(X(y), ϕ(y)) =

(0,±v) cannot spontaneously evolve into a solution from another topological sector, irre-

spective of relative energy densities. Id est, any map such that the image includes both

disconnected pieces cannot be deformed continuously to give the trivial map from S 0 to

SO(10) × Z2/SO(10).

Under these conditions, section 3.4 explains that the stable solution to the Euler-Lagrange

equations is the minimum energy density solution belonging to this topological sector. Like

Dvali and Shifman, we identified stable solutions by checking the dynamical evolution of

perturbative linear modes. Also we checked our results numerically to account for higher

order effects. The energy density of each solution is dependent on the coupling constants,

hence different solutions are stable in different coupling constant regimes.

We find that λ2 = 0 is a bifurcation point for the manifold of solutions to the Euler-Lagrange

equations. When λ2 > 0 the SO(10) adjoint field will condense about y = 0, so that the

non-zero components of X arrange for SO(10) → SU(5) × U(1)X on the domain wall.

When λ2 < 0 our analysis indicates that to first order the X field components will try to

adopt a configuration which breaks SO(10) → U(1)5 on the domain wall. A more detailed

discussion is given in chapter 5.

Let us take a closer look at the λ2 > 0 scenario. Solutions to the Euler-Lagrange equations
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persist for a wide range of parameter values. Purely for the sake of convenience, however,

we choose to focus on a concrete analytic solution that exists provided the parameters obey

(4µ2 − 2κv2 + λv2)(20λ1 + 2λ2) − 5κ(4µ2 − κv2) = 0. (4.2)

We emphasize that this is not a fine-tuning condition. Rather, it defines a special slice

through parameter space that happens to admit an analytical solution.

Under these circumstances the Euler-Lagrange equations have a stable solution of the form,

ϕ(y) = v tanh(my), X1 = Asech(my), (4.3)

when A2 =
40µ2−10κv2

10λ1+λ2
, m2 = −2µ2 + κv2 and X1 is associated with the U(1)X generator

which we embed inside SO(10) according to T1 =
1√
20

diag(τ2, τ2, τ2, τ2, τ2), where τ2 is

the second Pauli matrix. Aside from having a closed form, this solution is convenient since

the dynamical equations for the first order terms in a perturbative expansion about this

solution can be transformed into hypergeometric differential equations. In chapter 5 we

solve these equations analytically and show that all perturbative modes are oscillatory. Thus,

the solution is stable against further condensation of the remaining 44 X field components.

As promised, this solution spontaneously breaks the SO(10) gauge symmetry down to

SU(5) × U(1)X on the domain wall. So if we assume the Dvali-Shifman mechanism to

be effective, that is assume the 4 + 1-dimensional bulk SO(10) gauge theory is in a confin-

ing phase which is valid up to some ultraviolet cutoff ΛUV, then SU(5) × U(1)X gauge field

localization will follow as a consequence of the background Higgs field configuration.

Having established the existence of a stable Dvali-Shifman domain-wall solution, we now

turn our attention to the localization of fermions.

4.2.2 Localizing Fermions

We use the split fermion mechanism developed in section 3.5 to localize the first generation

of standard model fermions plus the right handed neutrino.

Throughout this chapter we continue to use the notation ΓM = (γµ,−iγ5), to represent
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the extended Dirac algebra. These matrices satisfy {ΓN , ΓM} = 2ηMN . The fermions are

contained in a Ψ ∼ 16 representation of SO(10), and have the Lagrangian

LYukawa = iΨ̄ΓM∂MΨ − hXΨ̄σaσbXabΨ − hϕϕΨ̄Ψ, (4.4)

where X jk is the j, k-th entry of the 10 × 10 antisymmetric matrix used to represent X and

σ j is a member of the 10 dimensional Clifford algebra [Li74].

Box 3.2, in subsection 3.7.2, explains how to contract a general Clifford algebra. In (4.4)

we need the 10-dimensional Clifford algebra:

σ2k−1 = 1 � · · ·� 1 � τ1 � τ3 � · · ·� τ3, (4.5)

σ2k = 1 � · · ·� 1︸       ︷︷       ︸
k−1

� τ2 � τ3 � · · ·� τ3︸          ︷︷          ︸
5−k

, (4.6)

where it is understood that the index k runs over {1, . . . , 5}.

To maintain the discrete reflection symmetry we now simultaneously transform Ψ → iΓ5Ψ

in conjunction with y→ −y, ϕ→ −ϕ and X → −X.

Each spinor Ψi(x, y), where the index i denotes the different irreducible SU(5)×U(1)X com-

ponents of the 16, can be decomposed in terms of a set of simultaneous eigenfunctions

ψnLi(x) and ψnRi(x) for the 3 + 1-dimensional Dirac Hamiltonian and (to remove the degen-

eracy) the 3 + 1-dimensional chirality operator γ5. The eigenfunctions, which appear as

non-zero coefficients in our expansion, will be the 3 + 1-dimensional chiral zero mode, ψ0L

or ψ0R depending on the case, plus a finite number of discrete massive modes, as well as a

continuum of massive modes, as per

Ψi(x, y) =
∑∫

n
{ fnLi(y)ψnLi(x) + fnRi(y)ψnRi(x)}, (4.7)

where the sum is understood to include an integration over the continuum. This is a dimen-

sional reduction or generalised Kaluza-Klein procedure whereby the dependence on the y

coordinate of Ψi(x, y) is subsumed into a complete set of mode functions or profiles fn,L/R,i,

and the 4+1-dimensional field is redescribed as an infinite tower of 3+1-dimensional fields.

The discrete mode functions are square-integrable, while the modes from the continuum are
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delta-function normalizable.

We want the 4+ 1-dimensional Dirac fermions in the 16 representation of SO(10) to supply

16 left-handed 3 + 1-dimensional zero modes to be identified with a family of quarks and

leptons. To display these modes, it suffices to truncate the full mode decomposition to just

the chiral zero mode term f0Li(y)ψ0Li(x). Now this ansatz is substituted into the 4 + 1-

dimensional Dirac equation with the background domain-wall configuration playing the

role of the mass term:

0 = iΓM∂MΨ(x, y) − hXσaσbXab(y)Ψ(x, y) − hϕϕ(y)Ψ(x, y). (4.8)

The separation of variables allows us to isolate the dependence on the y-coordinate, after

requiring that each of the ψ0Li be left chiral and obey the usual massless 3 + 1-dimensional

Dirac equation. Fortunately, for X = Asech(my)T1 the matrix σaσbXab(y) is diagonal. We

label the diagonal entry belonging to row i and column i by (σaσbXab(y))ii, where there is no

intended sum over the index i. The differential equations decouple and the bulk localization

profiles for the fermions are then easily found to be

f0Li(y) = Nie
−

∫ y
y0

dy′ hX(σaσbXab(y′))ii+hϕϕ(y′)
, (4.9)

where Ni is a normalization constant. We choose the signs of the coupling constants, hX and

hϕ, so that the integrand cuts the axis with a positive slope. The asymptotic behaviour of the

kink implements the localization of each fermion to a 3+1-dimensional hyperplane coplanar

with the zero of its respective integrand, which occurs at y = y0. Due to coupling to the

SO(10) adjoint Higgs, fermions belonging to different SU(5) representations are localized

around different parallel hyperplanes in the bulk, see Figure 4.1.

These 3 + 1-dimensional localized massless fermions are our SU(5) brane world matter. In

flat space-time there is a mass gap between the zero mode and the lowest allowed massive

3 + 1-dimensional mode. Hence, at low energies, interactions between 3 + 1-dimensional

zero mass modes can only produce other zero mass fermions, [Rub01]. This, in conjunction

with the Dvali-Shifman gauge boson localization conjecture, produces a candidate low-

energy theory with dimensional reduction down to 3 + 1-dimensions.
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Figure 4.1: The graph displays the integrand in the exponent of (4.9) which gives the extra
dimensional profiles of the left handed zero modes associated with first generation fermions
in the SU(5)×U(1)X brane world model. The graph shown here corresponds to the parameter
choices hϕ = hX = 1 and the flat space background solution to the Euler-Lagrange equations
X1 = Asech(my), ϕ = vtanh(my) with A = v = 1. 3+ 1-dimensional left chiral fermions will
be confined to the hyperplane corresponding to the zero of their integrand.

We need to explain the physical interpretation we give to individual terms in our mode de-

composition. We argued in section 3.5 that equation (4.7) is simply a convenient way of

projecting the 4 + 1-dimensional field onto a collection of 3 + 1-dimensional coefficients

ψnL\Ri(x) by resolving the y-dependence of the field in terms of a complete set of orthonor-

mal functions fnL\Ri(y) which span the 1-dimensional rigged Hilbert space. We did this

because it allows us to see how 3+1-dimensional states with definite mass feel the classical

background. It is necessary to treat the different 3 + 1-dimensional eigenfunctions of γ5 in-

dependently since we have associated Γ5 with ∂y. However, mathematically (4.7) is simply

a convenient way of writing the field.

Since the physics is basis independent, we can choose to expand a general field, Ξ(x, y) =

Σngn(y)ξn(x) (x ≡ xµ), in terms of any complete set of states {gn(y)}. For example, if

the Ξ(x, y) is an SO(10) gauge singlet then, without loss of generality, we may conve-

niently choose the {gn(y)} so that the coefficients {ξn(x)} are solutions to the massive 3 + 1-

dimensional Klein-Gordon equation. In this case, the profile functions, gn(y), appearing in

the above expansion, correspond to physical states of the effective 3+ 1-dimensional theory
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which propagate as free particles in the confining bulk SO(10) gauge theory. In our case the

ψnL\Ri(x) are charged under U(1)X and will be forced, by a confining bulk, to propagate as

constituent particles of a bound SO(10) gauge singlet. This is conceptually akin to writing

the QCD Lagrangian in terms of quarks and gluons with the implicit understanding that the

propagating states are hadrons. Since SO(10) is broken inside the wall, the 3+1-dimensional

fields behave in a manner consistent with the standard model gauge interactions.

We argue that, because our zero mode profile functions are sharply peaked around the do-

main wall and the SO(10) confinement dynamics are suppressed here, our classical local-

ization profiles give us a reasonable first order approximation for the landscape of these low

energy particles. See [DGV08, Geo09] for more details.

4.2.3 Adding warped gravity

The last vital component of our model is warped gravity. We search for solutions to the

Einstein-Klein-Gordon equations for the action

S =
∫

d5x
√

G{−2M3R − Λ + T − VXϕ +LYukawa}, (4.10)

where G is the determinant of the five-dimensional metric tensor, M is the 5-dimensional

fundamental gravitational mass scale, R is the Ricci scalar, Λ is the bulk cosmological

constant, and T is simply the gauge field and Higgs boson kinetic terms. We would like

a solution with 3 + 1-dimensional Minkowski space and zero mode gravitons localized

on our field theoretical brane. To achieve a Minkowski metric on the brane we impose a

fine tuning condition on the bulk cosmological constant. The necessity of balancing the

bulk cosmological constant against the brane tension is a feature of Randall-Sundrum like

models. At the same time we need the qualitative forms of both X and ϕ to be similar to the

flat-space case. Substituting a Randall-Sundrum warped metric ansatz,

ds2 = e−p(y)/6M3
ηµνdxµdxν − dy2, (4.11)

into the Einstein-Klein-Gordon equations produces four coupled second order differential

equations which exhibit appropriate solutions for a wide range of parameter values. By
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choosing, as before purely for convenience, our parameters to lie on the manifold,

6m2M3 + v2m2 − 3M3λv2 + 3M3κv2 = 0,

−3m2M3 − v2m2 − 6M3µ2 + 3M3κv2 = 0,

20λ1 + 2λ2 − 10κ + 5λ = 0,

(4.12)

we find an analytic solution of the form:

p(y) = v2 ln(cosh[my]), ϕ(y) = v tanh[my], X1 = 2vsech[my]. (4.13)

This solution is consistent with all the localization properties mentioned above. It provides

the same Higgs configuration which we postulate induces Dvali-Shifman SU(5) × U(1)X

gauge field localization on the brane.



4.2 The SO(10)→ SU(5) × U(1)X model 99

Box 4.1: We also know the solution (4.13) has a localized zero mode graviton. In fact we

can use Peano’s theorem to find the zero mode perturbation around the solution to Einstein

equations. Note that when we are dealing with second order differential equations we replace y

by a vector of fields y⃗ = (y1, y2) and then replace (4.14) with the initial value problem for the

coupled system of differential equations y2 = y′1 and y′2 = f (t, y⃗, z), with y⃗(t0) = (y10 , y20 ).

Theorem 4.1: (Peano’s Theorem from [Har64]) Let f (t, y, z) be continuous on an open (t, y, z)-

set E and possess continuous first order partials ∂ f
∂yk , ∂ f

∂z j with respect to the components of y and

z:

• Then the unique solution y = η(t, t0, y0, z) of the initial value problem

y′ = f (t, y, z) y(t0) = y0 (4.14)

is of class C1 on an open domain ω− < t < ω+, (t0, y0, z) ∈ E, where ω± are functions

of the initial conditions, and of z, which you can think about as a free parameter in your

equation, like a coupling constant. That is ω± = ω±(t0, y0, z).

• Furthermore, if J(t) = J(t, t0, y0, z) is the Jacobian matrix
(
∂ f
∂y

)
of f (t, y, z) with respect to

y at y = η(t, t0, y0, z),

J(t) = J(t, t0, y0, z) =
(
∂ f
∂y

)
at y = η(t, t0, y0, z), (4.15)

then x = ∂η(t,t0,y0,z)
∂y0

k is the solution of the initial value problem,

x′ = J(t)x, x(t0) = ek, (4.16)

where ek = (e1
k , . . . , e

d
k ) with e j

k = 0 if j , k and ek
k = 1; x = ∂η(t,t0,y0,z)

∂z j is the solution of

x′ = J(t)x + g j(t), x(t0) = 0 (4.17)

where g j(t) = g j(t, t0, y0, z) is the vector ∂ f (t,y,z)
∂z j at y = η(t, t0, y0, z) and ∂η(t,t0,y0,z)

∂t0
is given by

∂η

∂t0
= −Σd

k=1
∂η

∂yk
0

f k(t0, y0, z). (4.18)

In changing from flat space to a warped metric we must include vielbeins in the fermion

action so that fields written at each point in terms of a local Lorentz coordinate system in the
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tangent space transform correctly under general coordinate transformations [Wei72]. Also

we have included the spin connections to ensure the derivative is covariant under Lorentz

transformations. With a metric-geometry described by (4.11) the fermionic terms in the

action must be rewritten in terms of the vielbeins and spin connections

Vµ
A = δ

µ
Aep(y)/12M3

, ωµ =
i

24M3 p′(y)e−p(y)/6M3
γµγ

5, (4.19)

V5
A = δ

5
A, ω5 = 0, (4.20)

where capital letters from the start of the Latin alphabet have been used to label the viel-

beins’ Lorentz indices and the Greek alphabet characters µ, ν are coordinate indices. Ex-

plicitly these become incorporated into the spin-covariant derivative DN = ∂N + ωN and

gamma matrices ΓN = VN
A Γ

A. With this simplified notation the fermions contribute to the

warped space 5-dimensional action according to:

S ψ =

∫
d5x
√

G{iΨ̄ΓN DNΨ − hXΨ̄σaσbXabΨ − hϕϕΨ̄Ψ}. (4.21)

We use an analysis presented in [DG07] to qualitatively demonstrate that, if we decompose

Ψ(x, y) according to (4.7), then, in warped space time, there is no mass gap between the

zero mode left handed fermion and the continuum of 3 + 1-dimensional massive left and

right chiral modes. To make this statement transparent we use separation of variables in the

Dirac equation, to obtain eigenvalue equations for the extra dimensional profiles. However

we now consider the extra dimensional profiles of the massive modes, fnLi, as well as the

zero mode. These satisfy the equations:

0 = 6M3 f ′0Li − p′ f0Li + 6M3g jϕ j f0Li n = 0

24M6m2
nep(y)/6M3

fnLi = −24M6 f ′′nLi + 10M3 p′ f ′nLi

+[4M3 p′′ − p′2 + 24M6W] fnLi n > 0

(4.22)

where the generic scalar field coupling term g jϕ j = hX(τaτbXab)ii + hϕϕ(y) has been used

to simplify the expression for W = (g jϕ j)2 − g jϕ
′
j + g jϕ j

p′

12M3 and mn is the mass of the n-th

3 + 1-dimensional chiral mode. That is:

iγµ∂µψnLi = mnψnRi and iγµ∂µψnRi = mnψnLi. (4.23)
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We can solve for the zero mode extra dimensional profile immediately,

f0Li(y) = N0e−
∫ y

y0
dy′ g jϕ j−p′/6M3

. (4.24)

For the solution presented in (4.13) there is a normalized 3+1-dimensional left handed zero

mode confined to the plane parameterized by

my = ln
[
root

(
15hϕM3t2 +

(
6
√

5hXΣa,b
(
σaσb

)
ii

(
iδa,b+1 − iδa,b−1

)
M3 − 5vm

)
t − 15hϕM3

)]
(4.25)

provided 6M3hϕ − vm > 0.

For an arbitrary point in the parameter space which will give rise to a different solution to

the Einstein-Klein-Gordon equations we can still say something about the existence of a

confined zero mode fermion. This is because square integrability of (4.24) depends on the

asymptotic properties of p and ϕ j. We know that in the case of a scalar field Lagrangian,

solving the Einstein-Klein-Gordon equations in a vacuum yields a warp factor p ∝ |y|, so we

expect p to approach |y| as y→ ∞. Also we impose the boundary conditions limy→±∞X = 0

and limy→±∞ϕ = ±v, so that any solution to the Einstein-Klein-Gordon equations will have

the same asymptotic form as (4.13).

For a continuous, bounded warp factor and Higgs field expressions with the same asymp-

totic form as (4.13) there is a delta function normalizable zero mode, confined to the y-plane

parameterized by the zero of the integrand in (4.24), provided 6M3hϕ − vm > 0. So far our

results are consistent with the flat space case. However we must now attend to the massive

chiral 3 + 1-dimensional modes.

Previously we argued that the presence of a mass gap between the zero mode and the lowest

discrete mode explained why electroweak scale experiments could not detect the tower and

continuum modes. It has been shown by [DG07] that in Randall-Sundrum warped space

the continuum modes start from zero mass. To see this we make the substitution f̃nLi =

e−p(y)/6M3
fnLi in (4.22) and change variables to conformal coordinates, dz

dy = ep(y)/12M3
, to
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obtain

[
− d2

dz2 + e−p(y(z))/6M3
W

]
f̃nLi = m2

n f̃nLi. (4.26)

The change to conformal coordinates, f : y → z, is a diffeomorphism from R into a con-

nected segment of the real line so we can analyze the potential e−p(y(z))/6M3
W as a function

of y and interpret the results as corresponding to the z-coordinate space factored through the

mapping f −1 : z→ y. This is well defined since f −1 is bijective.

Using our Einstein-Klein-Gordon solutions (4.13) we can easily see that e−p(y)/6M3
W asymp-

totes to zero. Thus we have a continuum of delta function normalized modes f̃nLi(z) starting

at zero 3 + 1-dimensional mass, mn, which approach plane waves asymptotically. This

translates into a continuum of eigenfunctions, fnLi(y), ∀mn > 0, which are delta function

normalized with respect to the weight function e−p(y)/4M3
. Davies and George [DG07] ar-

gue that these are precisely the normalization conditions required to reduce the kinetic term

in the 4 + 1-dimensional action (4.21) to its regular 3 + 1-dimensional counterpart. We take

this as the condition for proper normalization of the profile functions. Hence the continuum

modes fnLi(y)ψnLi(x) and their counterparts fnRi(y)ψnRi(x), which have analogous conditions

omitted here for simplicity, constitute properly normalized solutions to the Dirac equation.

Thus there is a continuum of massive chiral 3 + 1-dimensional modes starting from zero

mass. It is argued that provided 0 <
∂p
∂y << 1 the potential, e−p(y)/6M3

W, will decay

slowly to 0. This provides a wide barrier for the low energy, asymptotically free, con-

tinuum modes to tunnel through. Hence the corresponding wave functions will be heavily

suppressed at the position of the brane: y = 0. The same behavior is exhibited by the

spectrum of Kaluza-Klein modes for the general linearlized fluctuations around the metric

in the Randall-Sundrum delta function brane case [RS99b]. We argue that it is possible

for the cross section of any process involving interaction between the zero mode and light

continuum modes to be imperceptibly low.

Because the ψnL\Ri are not SO(10) gauge singlets, individual modes will propagate as con-

stituent particles of gauge singlet states in the confining bulk. However as argued in sub-

section 4.2.2 this does not compromise the integrity of our choice of mode decomposition
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for Ψ(x, y). Furthermore bound states comprised of low energy, massive, 3+ 1-dimensional

chiral, continuum modes will propagate far from the brane, while the zero mode fermion

will be trapped around the 3 + 1-dimensional topological defect. Hence the cross section

for processes involving interactions between the zero mode and the low energy continuum

modes will still be extremely low.

4.2.4 Additional symmetry breaking

The final components of our model are the SU(5)-breaking and electroweak breaking Higgs

fields, ζ(xµ, y) and η(xµ, y), respectively. We introduce these fields now. There are many

well documented ways of breaking SU(5) × U(1)X down to the electroweak gauge group

and beyond. We choose a specific scenario to illustrate the general process.

The symmetry breaking pattern:

SO(10) ⊃ SU(5) × U(1)X

−→ SU(3)C × SUW(2) × UY (1)

−→ SU(3)C × U(1)Q (4.27)

can be achieved easily by using a pair of 16 dimensional representations for SO(10). The

branching rules for this representation are [Sla81]:

SO(10) ⊃ SU(5) × U(1)X

16 → 10(−1) + 5∗(3) + 1(−5)

SO(10) ⊃ SU(3)C × SU(2)W × U(1)Y × U(1)X

16 → (3, 2)(1)(−1) + (3∗, 1) (−4) (−1) + (1, 1)(6)(−1) +

(3∗, 1)(2)(3) + (1, 2)(−3)(3) + (1, 1)(0)(−5). (4.28)

We would like the component of ζ(xµ, y) which transforms like (1, 1)(0)(−5) under SU(3)c×

SU(2)W × U(1)Y × U(1)X to condense inside the domain wall. The other 15 components of

ζ(xµ, y) should not condense. This will ensure that the gauge group is broken to the standard

model on the brane.
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Similarly for the field η(xµ, y), we would like the field component which is uncharged under

the embedded U(1)Q belonging to the doublet (1, 2)(−3)(3) to condense inside the domain

wall and all other components not to condense. This will implement electroweak symmetry

breaking on the brane and circumvent the doublet triplet splitting problem from subsubsec-

tion 3.7.3.2. The most general 4th order SO(10) invariant potential felt by these Higgs fields

is

Vζ,η = Σi, j{λH1,hi,h jh
†
i h j + λH2,hi,h j

(
h†i h j

)2
+ λH3

(
h†i hi

) (
h†jh j

)
+ λH4,hi,h jh

†
i h jϕ

2

+λH5,hi,h jh
†
i h jTrX2 + λH6,hi,h jh

†
i (τaτbXab)2h j + λH7,hi,h jh

†
i τ

aτbXabϕh j}, (4.29)

where the indices i, j run over the set {1, 2} with h1 = ζ(xµ, y) and h2 = η(xµ, y).

We factor the k − th entry in the 16-dimensional column vector for each Higgs field into a

sum of a complete set of extra dimensional profile functions ghi,k,n(y) with coefficients given

by solutions of the 3 + 1-dimensional massive Klein-Gordon equation, θhi,k,n(xµ). That is,

[hi]k =
∑∫

n
ghi,k,n(y)θhi,k,n(xµ), (4.30)

where

∂µ∂
µθhi,k,n + m2

nhi ,k
θhi,k,n = 0. (4.31)

Thus if we let ∂Vζ,η
∂[h†i ]k

= Uhi,k,h j,p[h j]p + O(h2
i ), where the indices k and p are being used to

label the 16 components of each Higgs field, while i and j still run over the set {1, 2} with

the same definition as before for h1(xµ, y) and h2(xµ, y), then we must find the solutions to

the Euler-Lagrange equations:

− ∂2ghi,k,n(y)
∂y2 θhi,k,n(x) +

p′

3M3 ghi,k,n(y)θhi,k,n(x) + Uhi,k,h j,pgh j,p,n(y)θh j,p,n(x)

= m2
nhi ,k

ep(y)/6M3
ghi,k,n(y)θhi,k,n(x). (4.32)

To get a qualitative idea of the behavior of solutions we consider the simplest case of (4.32).

That is we choose the coupling constants in (4.29) so that Uhi,k,h j,p = 0 when k , p or hi ,

h j. We would like the appropriate symmetry breaking components of η(xµ, y) and ζ(xµ, y)

to have a Kaluza-Klein mode with tachyonic mass. This indicates an instability in the
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background solution hi = 0. There is sufficient parameter freedom for this to be possible

while keeping p′

3M3+Uhi,k,hi,k−m2
nhi ,k

ep(y)/6M3
as a potential well centered about the coordinate

of the domain-wall brane. This is necessary to ensure that the condensed component of each

Higgs field is localized to the domain wall. For the remaining 15 components of each Higgs

field it is only necessary to ensure that one of these two conditions is voided so that the

field does not condense inside the domain wall. A thorough analysis would then require

us to go back and solve for both the flat space domain-wall configuration and the Einstein-

Klein-Gordon equations consistently with this new background to ensure the back reaction

of having additional Higgs fields with tachyonic components does not destabilize the brane.

This presents a considerable computational task and we do not attempt it here.

The zero mode fermions can now acquire masses through coupling to the SU(5) and elec-

troweak breaking Higgs fields. Coupling constants in the effective 3+1-dimensional theory

arise from the putative 5-dimensional coupling constant multiplied by the overlap integral

of the bulk profile functions. This follows from integrating out the y-dependence of the

terms in the 5-dimensional action. Hence fermions with different bulk profile functions will

have different tree level masses. Since the fermion profile functions are split along the bulk

according to their U(1)X charge the normal SO(10) tree level mass relations are reduced to

the less phenomenologically infringing SU(5) mass relations.

4.3 The SO(10)→ SU(3)C × SU(2)L × SU(2)R × U(1)B−L model

We would like to engineer a Higgs potential which breaks SO(10) → SU(3)C × SU(2)R ×

SU(2)L × U(1)B−L directly with the background SO(10) adjoint Higgs. Unfortunately, for

our fourth order potential, any Higgs solution respecting this symmetry on the domain wall

is perturbatively unstable against further condensation. This point is considered in more

detail in chapter 5. However it is possible to break SO(10) down to the left right symmetric

model using a sixth-order potential,

VX,ϕ = −
µ2

2
TrX2 +

λ1

4
(TrX2)2 +

λ2

4
TrX4 +

λ3

4
TrX6 +

λ4

4
TrX2TrX4 +

λ5

4
(TrX2)3

+
λ

4
(ϕ2 − v2)2(ϕ2 − ξ2) +

κ

4
ϕ2TrX2 +

λ6

4
(TrX2)2ϕ2 +

λ7

4
TrX4ϕ2 +

β

4
ϕ4TrX2. (4.33)
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This introduces a plethora of dimensionful coupling constants. However, since we are un-

able to renormalize 4+ 1-dimensional Yang-Mills gauge theories, we have assumed there is

an inherent cutoff scale beyond which our model is no longer effective, so we are at liberty

to add sixth-order terms.

The Euler-Lagrange equations still exhibit flat space solutions of the form

ϕ(y) = v tanh[my], X1 = Asech[my], (4.34)

with m2 = −2µ2+κv2+βv4 and A2 =
8(2µ2−κv2−βv4)−4λv2ξ2+4λv4

κ+2v2β
. We have relabeled the SO(10)

generators so that T1 now refers to T1 =
1√
12

diag(τ2, τ2, τ2, 0, 0). However the conditions

are now a lot more convoluted with the solution contingent on the relations

(λ3 + 2λ4 + 36λ5)A4 − (48λ6v2 + 8λ7v2)A2 + 48βv4 = 0,

12m2 + (6λ1 + λ2) A2 − 6κv2 + 6λ6v2A2 + λ7v2A2 − 12βv4 = 0,

72λv4 + (6λ6 + λ7) A4 − 24v2βA2 = 0. (4.35)

A general perturbative linear analysis must now be done numerically, as is explained in

chapter 5 and appendix B.1. However we note that for the parameter regime

2λ1A2 + λ2A2 − 2κv2 + 2λ6A2v2 + λ7A2v2 − 4βv4 > 0,

(5λ3A4 + 14λ4A4 + 36λ5A4 − 48λ6v2A2 − 24λ7v2A2 + 48βv4) > 0, (4.36)

it is possible to guarantee that all perturbations about (4.34) are oscillatory and that SO(10)

will break stably to SU(3)C × SU(2)L × SU(2)R ×U(1)B−L. We cannot predict the behaviour

of the perturbations outside this parameter regime. A general method for identifying the

bifurcation points has yet to be determined. The fermions are localized by exactly the same

techniques as in the SU(5) × U(1)X case.

The zero mode fermion profiles are now localized about the x-axis intercepts of Figure 4.2.

We can also solve the Einstein-Klein-Gordon equations under these circumstances. We find

that our previous ansatz, (4.13), will satisfy the Einstein-Klein-Gordon equations for the

sixth order potential provided we impose the same bulk cosmological constant fine tuning
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Figure 4.2: The graph displays the integrands in the exponent of (4.9) associated with extra
dimensional profile functions for the left right symmetric model bulk fermions. The graph
shown here corresponds to the parameter choices hϕ = hX = 1 and to the flat space solution
to the Euler-Lagrange equations X1 = Asech(my), ϕ = vtanh(my) with A = v = 1. 3 + 1-
dimensional left chiral fermions will be confined to the hyperplane associated with the zero
of their integrand.

and we are in the slice through the parameter regime:

− 3λξ2 − 12βv2 + 3λv2 − 6κ + 12v2λ6 + 2λ7v2 + 2λ2 + 12λ1 = 0,

3M3m2 + v2m2 + 6M3µ2 − 3M3κv2 − 3M3βv4 = 0,

λ3 + 6λ4 + 36λ5 − 12λ6 − 2λ7 + 3β = 0,

6M3m2 + v2m2 − 3M3λv4 + 3M3λv2ξ2 + 3M3κv2 + 6M3βv4 = 0,

9λ + 12λ6 + 2λ7 − 12β = 0. (4.37)

This symmetry breaking Higgs pattern selects a left right symmetric model on the brane

[SM75]. Subsequently it is possible to break our left right symmetric model down to the

standard model by a technique similar to the one outlined in subsection 4.2.4.

4.4 Further remarks

There are a couple of salient points for 4+1-dimensional domain-wall brane models, that are

based on the Dvali-Shifman mechanism, which we have not yet considered. Firstly, since
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we are constructing an SO(10) grand unified theory we need the standard model coupling

constants to unify at some high scale. Secondly, it was mentioned in subsection 3.6 that we

need a hierarchical ordering of the inherent physical scales for our model to work. Both

these points were discussed in the paper, [DGV08], on the DVG model. However, in going

from SU(5) to SO(10) gauge invariance in the bulk we have introduced a new intermediate

symmetry breaking scale. For this reason we explicitly review both ideas in the context of

our model.

The spectrum of Kaluza-Klein modes will affect standard model gauge coupling constant

running. In particular Kaluza-Klein modes for 4 + 1-dimensional fields carrying different

U(1)X charges which belong to the same SO(10) multiplet in the unified SO(10) gauge

theory generally have different masses. That is, the Kaluza-Klein modes originate in the

SO(10) gauge theory as split SO(10) multiplets. Because the Kaluza-Klein modes form

split SO(10) multiplets, and at specific energy scales only certain U(1)X components of the

split multiplet will be able to contribute to the beta functions, the comparative running of the

standard model coupling constants will change. Although coupling constant unification is

ruled out for 3+1-dimensional non-supersymmetric SO(10) GUTs, it is still possible for our

model. The full calculation would require us to do a phenomenological parameter fitting:

this will fix the higher mass Kaluza-Klein modes and therefore determine the coupling

constant running. We have not undertaken this particular task, however we find it tantalizing

that the coupling constant may unify at some high scale [Dav07].

To maintain the internal consistency of our model, we require a specific ranking of the

magnitudes of the inherent physical scales. For simplicity we will look specifically at the

SO(10)→ SU(5) × U(1)X model. The concepts do not change for the SO(10)→ SU(3)C ×

SU(2)L × SU(2)R × U(1)B−L model, hence everything we say here is relevant to this model

as well.

We need to look carefully at 5 specific physical scales: the ultraviolet cutoff ΛUV; the

SO(10) and SU(5) breaking scales on the brane ΛS0(10) ∼ [X(my = 0)]2/3 and ΛSU(5) ∼

⟨ζ(1,1)(0)(−5)(my = 0)⟩2/3, respectively; the SO(10) confinement scale in the bulk Λconf; the
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inverse wall width ΛDW ≡ m. These scales must be ranked according to:

ΛDW < Λconf < ΛSU(5) < ΛSO(10) < ΛUV. (4.38)

This hierarchy is necessary for the integrity of the Dvali-Shifman mechanism. Lattice gauge

theory simulations [LMRS04] tell us that the width of the domain wall must be greater than

the SO(10) glueball radius for the Dvali-Shifman mechanism to work. This translates into

the relation: the inverse wall width is less than the bulk confinement scale.

The confinement scale in the bulk must be lower than the SO(10) and SU(5) symmetry

breaking scales on the brane. Otherwise the non-perturbative bulk SO(10) confinement

dynamics would dominate on the brane and the behaviour of the ζ and X fields, which set

these scales, would be dictated by their strong SO(10) interactions. In this case the classical

dynamical equations we have solved for our background ζ and X configurations would not

be appropriate, and our theory would have an internal inconsistency.

Finally, our model is an effective field theory which is assumed to be valid only up to the

ultraviolet cutoff. This establishes ΛUV as the highest energy scale in the theory.

Amongst the above scales, ΛDW, ΛSU(5), ΛS0(10), and ΛUV are all functions of the free

parameters in the Lagrangian. We argue that there is sufficient parameter freedom to rank

them according to (4.38). The bulk SO(10) confinement scale is putatively to be calculated

from the value of the dimensionful gauge coupling constant g for the bulk SO(10) gauge

theory. Because this gauge theory is not renormalizable in 4 + 1-dimensions and because

we have introduced a UV cutoff, Λconf will depend on both ΛUV and g. If we follow the

approach adopted in section 3.6 and assume that our model has a transition to a confining

regime for values of the dimensionful gauge coupling constant g, greater than a critical

value gc (ΛUV), then the bulk confinement scale will be set by ΛUV and a g > gc (ΛUV).

This calculation is beyond the scope of the present work.
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4.5 Conclusions

In this chapter we identified all the ingredients needed for a 4 + 1-dimensional field the-

oretical model to produce an effective theory of 3 + 1-dimensional fields localized to a

domain-wall brane with SO(10) gauge invariance in the bulk. We complemented the effec-

tive 3+1-dimensional field theory with Randall-Sundrum type-2 [RS99b] localized gravity.

We proposed a field theoretical mechanism for generating the brane. In our model the brane

is created by a real scalar field which condenses over a topological defect. This type of brane

has a finite width along the extra-dimension and different phenomenological signatures from

the delta function thin brane.

In contrast to the Randall-Sundrum type-2 scenario this approach has the advantage that

all four spatial dimensions are treated equally in the fundamental action. Furthermore the

breakdown of translational invariance along the extra dimension now occurs spontaneously

due to the condensation of the real scalar field domain-wall brane.

In addition we were able to dynamically localize gauge fields and fermions to the domain

wall. We assumed that gauge field localization takes place via a 4 + 1-dimensional exten-

sion of the Dvali-Shifman mechanism. Further investigation into the implementation of

Dvali-Shifman gauge field localization arguments in 4 + 1-dimensions will be necessary to

establish a rigorous foundation for future models. We will return to this problem in chapter

6.

The Dvali-Shifman mechanism directly motivated an extension to a grand unified theory in

the bulk, SO(10) grand unification is an ideal candidate. We examined two scenarios where

the localized Yang-Mills gauge theory on the brane is either a SU(5)×U(1)X unified model

or a left right symmetric model.

In both these scenarios we took the first generation of fermions and discussed how to local-

ize a 3 + 1-dimensional massless left chiral zero mode for each particle. We localized each

3 + 1-dimensional fermion by applying the split fermion mechanism. In this mechanism

we use the fermion’s coupling to the domain-wall brane and the SO(10) adjoint Higgs field.

The SO(10) adjoint Higgs field couples more strongly to some fermions than to others. This
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causes the fermions to become localized to a series of parallel hyperplanes split along the

bulk direction.

In both scenarios we discussed how to introduce a pair of Higgs fields which condense

inside the brane. The Higgs fields break the gauge symmetry on the brane to the standard

model and subsequently break the electroweak gauge group. We argued it is feasible to

implement this symmetry breaking without localizing additional components of the SO(10)

Higgs multiplet which mediate proton decay.

The massless 3 + 1-dimensional chiral zero mode fermions can now gain mass via their

interaction with the electroweak symmetry breaking Higgs field. The 3 + 1-dimensional

mass term depends on the overlap of their profile functions with the electroweak Higgs field

profile function. Hence the degeneracy of SO(10) mass relations is slightly ameliorated.

In the gravity sector, we reproduced Randall and Sundrum’s localization of the zero mode

linearized fluctuation about the metric. This gives rise to localized 3+1-dimensional gravity.

We reiterate that the signature points of our model are:

• All 4 spatial dimensions are infinite.

• The brane is supplied by a dynamically generated domain wall.

• Standard model fields are localized by their interactions with the domain-wall-engineering

Higgs fields.

• All standard model fermions get unified in a single SO(10) representation in the bulk.

However SO(10) mass relations are conspicuously absent from our model.
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5
On the stability of a domain-wall brane model

In chapter 4 we presented a model based on a domain-wall brane solution and an adjoint

Higgs solution to the coupled dynamical equations

0 = �ϕ +
κ

2
Xi jX jiϕ + λϕ

(
ϕ2 − v2

)
,

0 = �Xab − 2µ2Xab + 2λ1Xab
(
Xi jX ji

)
+ 2λ2

(
X3

)
ab
+ κϕ2Xab. (5.1)

We imposed the topological boundary conditions limy→±∞(X, ϕ) = (0,±v). We call this sys-

tem of equations the DWB equations. These boundary conditions have topological charge

2v. We claimed that the stable solution to the dynamical equations is the lowest energy

solution belonging to this topological sector.

The homogeneous vacuum solutions (X, ϕ) = (0,±v) both have topological charge 0 and

are therefore not accessible.

We presented an analytic solution to the DWB equations of the form

ϕ0(xµ, y) = ν tanh(my), X0(xµ, y)i, j = A sech(my)Ti, j, (5.2)

where A2 =
40µ2−10κν2

10λ1+λ2
, while m2 = −2µ2 + κv2 and T = 1√

20
diag(σ2, σ2, σ2, σ2, σ2) is

written in terms of the second Pauli matrix

σ2 =

0 −ı

ı 0

 .
113
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The solution (5.2) establishes the domain-wall brane and ensures the adjoint Higgs field

condenses inside the brane to break SO(10) → SU(5) × U(1)X . The extra-dimensional

profile of (5.2) leads to an SU(5) grand unified gauge theory on the domain-wall brane and

traps fermions on parallel hyperplanes split along the bulk direction. If (X0, ϕ0) is not the

lowest energy solution with topological charge 2v then the system will be unstable. A small

perturbation, (δX̄(x, y, t), δϕ(x, y, t)), about (X0, ϕ0) will grow with time. This perturbation

can break the SU(5) grand unified theory on the brane, making it impossible to recover

3+1-dimensional standard model phenomenology.

In this chapter we argue that if a perturbation is not allowed because of the symmetry of

the background domain-wall brane configuration or if a perturbation has oscillatory time

dependence so that ||δX̄(x,y,t)||
||X0(y)|| ,

||δϕ(y,t)||
||ϕ0(y)|| << 1, ∀t > 0, then the domain-wall brane formed by

(X0(y), ϕ0(y)) is stable.

The coupling constants µ2, λ1, λ2, ν, λ, and κ are all free parameters. However, when the

theory is quantized they will be replaced by solutions to the renormalization group equa-

tions which run with the energy scale. Thus a physically interesting solution to the DWB

equations must be stable for an open set in the free parameter space.

While the analytic form of (5.2) exists only when the free parameters satisfy constraints

given in (4.2), we have numerically solved (5.1) for a wide region of parameter space

surrounding this slice. Our numerical results show that, on a ball in the free parameters

surrounding this slice, the solutions to (5.1) are of the form (5.2).

Therefore in this chapter we prove that a domain-wall brane solution (5.2) is stable on an

open region in parameter space encompassing (4.2).

5.1 Notation

This chapter is more in depth and will require some technical notation. We have included it

at the beginning of the chapter for the convenience of the reader.
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5.1.1 Banach spaces

Let O denote the order symbol so that l = O(ε) means there exists a constant c > 0 such

that |l| ≤ c|ε| as ε→ 0.

Let C(R), C0(R), and C2(R) denote, respectively, the spaces of bounded continuous func-

tions, of continuous functions that converge to 0 at ±∞, and of twice continuously differen-

tiable real valued functions on the line R. Thus C0(R) ⊂ C(R) are Banach spaces with the

supremum norm

∥y∥ = sup{|y(z)| : z ∈ R}.

We will abbreviate these to C, C0 and C2, respectively.

Throughout the chapter, Z and Y denote real Banach spaces. IfA : Z → Y then kerA and

RaA denote the kernel and range of A respectively. Let dim V denote the dimension of a

subspace V.

Let L1 and L2 denote, respectively, the spaces of Lebesgue integrable and of Lebesgue

square integrable functions on R. If v ∈ L1 and h ∈ C0 or v, h ∈ L2, let

⟨v, h⟩ =
∫ ∞

−∞
vh dz.

5.1.2 Coordinate change

We change variables from y to z = my so that we are working with a dimensionless co-

ordinate system. In this coordinate system we are able to rewrite (5.1) entirely in terms of a

set of parameters with zero mass dimensions

{λ1, λ2, λ, κ, v2, A2, ω2} → {λ1m, λ2m, λm, κm, v2/m3, A2/m3, ω2/m2}. (5.3)

We note that because m has to be real valued to ensure a solitonic background solution

for ϕ(y), our condition for perturbative stability, in terms of the new parameter ω2/m2, is

ω2/m2 ≤ 0 . To make it easier to cross reference the results of this stability analysis with

subsection 4.2.1 we choose not to relabel these new dimensionless parameters. Instead of
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relabeling, we point out that stability conditions written in terms of these new parameters,

will look exactly the same as conditions written in terms of the old dimensionful parameters

if we set m = 1. We hope it is clear that this is not a fine tuning condition; it is a shift of

notation to a convention where all parameters and variables have zero mass dimension.

The perturbation δX̄(z, t) is allowed to vary independently in the direction of each of the

45 components of the adjoint representation for SO(10). We use the notation δX̄(x, z, t) =

δX(x, z, t) + N(x, z, t), where δX(x, z, t) is a matrix containing the perturbations along the

directions of the Cartan subalgebra generators for SO(10), and N(x, z, t) contains all the

perturbations in the subspace of the adjoint representation that is orthogonal to the Cartan

subalgebra under the trace operator. We choose to work with the explicit choice of gener-

ators C1 =
1
2 diag(σ2, 0, 0, 0, 0), . . . ,C5 =

1
2 diag(0, 0, 0, 0, σ2), for the Cartan subalgebra of

the 10-dimensional SO(10) representation. Thus N(x, z, t) is a matrix with 2 × 2 blocks of

zero matrices along the diagonal.

Outline of Proof

We will break this argument down by ruling out classes of perturbations. We will start by

arguing that perturbations which break the 3-dimensional rotational invariance respected by

the solution (X0(z), ϕ0(z)) are not allowed. Hence we will suppress the coordinate label x

and write (X(z, t), ϕ(z, t)) = (X0(z, t) + δX(z, t) + N(z, t), ϕ0(z, t) + δϕ(z, t)). Then we suc-

cessively rule out all perturbations to X0(z) of the form N(z, t). Finally we will show that all

perturbations of the form (δX(z, t), δϕ(z, t)) are oscillatory in time and hence the background

solution (X0(z), ϕ0(z)) is stable under dynamical evolution.

Perturbations breaking 3-dimensional rotational invariance

Since our solution (X0(z), ϕ0(z)) is invariant under 3-dimensional spatial rotations there is

no preferred direction in the hyperplane orthogonal to the z-coordinate. We argue that be-

cause the background solution treats all spatial directions orthogonal to the bulk coordinate,

z, the same, it does not make sense to say a perturbation has formed along the direction of a

specific vector in this orthogonal space. This is because all directions are relative to an arbi-

trary choice of reference coordinate system [PV00]. Hence we consider only perturbations

of the form (δX(z, t) + N(z, t), δϕ(z, t)).
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Perturbations along non-Cartan directions

It is argued in [PV01] that if a perturbation does not change the energy density of our

solution (X0(z), ϕ0(z)) by introducing a term which is linear in the perturbative fields then

we can have a stable solution where these perturbations are set to zero in the expansion for

(X(z, t), ϕ(z, t)).

A term which is linear in the perturbative fields would be introduced through an expansion

of the SO(10) Casimir invariants appearing in the potential. Hence we consider the form of

TrX2 and TrX4 for X(z, t) = X0(z) + δX̄(z, t) = {X0(z) + δX(z, t)} + N(z, t) which we will

abbreviate to X = {X0 + δX} + N. For TrX2 the expression is

Tr [{X0 + δX} + N]2 = Tr
[
{X2

0 + 2X0δX + (δX)2} + 2{X0 + δX}N + N2
]
. (5.4)

Clearly this Casimir invariant has introduced a term which is linear in the perturbations

along the 5-independent Cartan subalgebra direction C1, . . . ,C5. Hence we must exam-

ine perturbations along the Cartan subalgebra directions in more detail to determine their

stability. However for the perturbations along the direction of the other 40 adjoint Higgs

field generators, orthogonality of our specific choice of generators for the representation

of SO(10) under the matrix bilinear form, trace, means that the linear term disappears. In

the above equation this is Tr [X0N] = 0. A similar observation can be made for all the

Casimir invariants for SO(10) because the only possible terms in a perturbative expansion

which are first order in the perturbations, will be of the form TrX2k ⊃ Tr
[
X2k−1

0 (δX + N)
]
,

where k ∈ Z+. The exponent, n, for a general Casimir invariant can always be written as

n = 2k because the antisymmetry of the SO(10) generators implies TrX2k+1 = 0 . It is easy

to check that for any solution X0 written as fields distributed over C1, . . . ,C5, X2k−1
0 will

also contain non-zero components only in the direction of the SO(10) Cartan subalgebra

generators, C1, . . . ,C5, and hence Tr
[
X2k−1

0 N
]
= 0 [PV01]. This means that the TrX4 does

not contribute any terms to the energy density that are linear in the perturbations N(z, t). So

a stable solution (X(z, t), ϕ(z, t)) can be constructed using only the Cartan subalgebra gener-

ators and we do not need to worry about linear perturbations along the directions of SO(10)

generators which are orthogonal to the Cartan subalgebra C1, . . . ,C5.
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Perturbations along Cartan directions

It is left to establish that the perturbations δX(z, t), along the Cartan subalgebra directions

C1, . . . ,C5, have oscilatory time dependence under dynamical evolution. For definiteness

we choose δX(z, t) to be the 10 × 10 matrix:

δX(y, t) = δX12(z, t)C1 + δX34(z, t)C2 + δX56(z, t)C3 + δX78(z, t)C4 + δX910(z, t)C5. (5.5)

Thus in shorthand our perturbed solution is:

X(z, t) = X0(z) + δX(z, t), ϕ(z, t) = ϕ0(z) + δϕ(z, t). (5.6)

We substitute this expansion into (5.1) and argue that initially time evolution will be dictated

by terms of first order in the small quantities δϕ(z, t) and δX(z, t). Discarding all higher

order terms we are left with coupled linear homogeneous equations, for δϕ(z, t) and the a,b

th entry of δX(z, t), of the form:

0 = �δϕ + κϕ0 (X0)i j (δX) ji +

(
κ

2
(X0)i j (X0) ji + λ

(
3ϕ2

0 − v2
))
δϕ,

0 = �δXab + 4λ1 (X0)ab (X0)i j (δX) ji +
(
−2µ2 + 2λ1 (X0)i j (X0) ji + κϕ

2
0

)
δXab +

2λ2 (δX)ai (X0)i j (X0) jb + 2λ2 (X0)ai (δX)i j (X0) jb

+2λ2 (X0)ai (X0)i j (δX) jb + (2κϕ0 (X0)ab) δϕ. (5.7)

These equations can be reduced to ordinary differential equations by using Fourier decom-

position to factor out the time dependence of δϕ(z, t) and δX(z, t). We consider the evolution

of a specific normal mode of the coupled system (eωtδX(z), eωtδϕ(z)).

Each mode must independently satisfy the boundary conditions: δX(z), δϕ(z) → 0 as z →

±∞ since a global change to the profile of either X(z) or ϕ(z) would require an infinite 3+1-

dimensional energy density and could not be accomplished by perturbative effects alone.

If ω2 ≤ 0 for all coupled solutions (eωtδX(y), eωtδϕ(z)) of the above equations, then the

perturbation will be oscillatory and the background solution (X0, ϕ0) will be perturbatively

stable over short periods of dynamical evolution. Of course the solutions to (5.7) depend
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on the parameters µ2, λ1, λ2, λ, κ. Thus we are looking for relations between the parameters

which guarantee ω2 ≤ 0 for all normal modes.

We will assess when our analytic solution (4.3) is stable. We provide an example where

SO(10) breaks to SU(5) × U(1)X and stops there. We also establish scenarios where (4.3)

is unstable. Hence we perturb about (X0(z), ϕ0(z)) = (Asech(z), vtanh(z)) and divide our

problem into two scenarios: either there exists two components of the superdiagonal of

δX(z), say −iδXk,k+1(z) and −iδXn,n+1(z), that are distinct or all non-zero components of the

superdiagonal of δX(z) are equal.

Two Cartan perturbations diverge relative to each other

In the first scenario: there exist k, n ∈ {1, ...9} such that −iδXk,k+1(z) and −iδXn,n+1(z) are

distinct. Therefore we have a non-trivial differential equation for δXϵ = δXk,k+1 − δXn,n+1.

We seek conditions which guarantee ω2 ≤ 0 for all solutions to

−∂
2δXϵ
∂z2 −

(
2 − λ2A2

5

)
sech2z δXϵ =

(
−ω2 − 1

)
δXϵ . (5.8)

Let U =
(
2 − λ2A2

5

)
. Equation (5.8) is just a 1-dimensional time independent Schrödinger

equation and if we impose the condition U > 0, then negative eigenvalues −ω2 < 0 will

correspond to bound states of the potential −Usech2(z)+1. So in what follows we are simply

determining the conditions necessary for this potential well to be sufficiently shallow so that

it does not admit bound states.

We use the following lemma from [Yag99], to conclude that if λ2 > 0 and λ2A2 < 10, then

there are no non-trivial solutions to (5.8) when ω2 > 0.

Lemma 5.1: [Yag99] Let κ > 0, λ > 0. The equation

v̈ + (−λ + κ sech 2t)v = 0 (5.9)

has a bounded solution if and only if there exists an integer M such that

λ = 1
4 (
√

4κ + 1 − 4M − 1)2 for 0 ≤ M < 1
4 (
√

4κ + 1 − 1)

or λ = 1
4 (
√

4κ + 1 − 4M − 3)2 for 0 ≤ M < 1
4 (
√

4κ + 1 − 3).
(5.10)
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If λ2 < 0, then ω2 > 0 and there will be a perturbative mode which grows with time.

This indicates that our analytical solution (4.3) will be unstable under dynamical evolution

and it is not possible to stably break SO(10) to SU(5) × U(1)X with this solution. This

appears fortuitous as we would expect a cascade effect where the solution for X(y) evolved

spontaneously into a form which would break SO(10) to a subgroup of SU(5) × U(1)X on

the domain wall. However δXϵ is given by the difference of any two arbitrary superdiagonal

entries in δX(y). Hence if λ2 < 0, then each non-zero component of δX will diverge relative

to all the others. Thus what we will be left with is an SO(10) adjoint Higgs profile that

breaks SO(10) down to U(1)5 on the domain-wall brane.

All Cartan perturbations diverge uniformly

In the case where the perturbations along all the Cartan directions are the same we will use

δX(z, t) = χ(z)eωt (C1 + · · · +C5) , δϕ(z, t) = φ(z)eωt, (5.11)

in the linearized equations (5.7). We retain the boundary conditions χ(z), φ(z) → 0 as

z→ ±∞. This produces the coupled equations

φ′′ =

[
ω2 +

(
κA2

4
sech2z + 3λν2 tanh2 z − λν2

)]
φ +

5Aκν
√

20
sech z tanh z χ

χ′′ =
[
ω2 + 1 +

(
3A2γ1 − κν2

)
sech2z

]
χ +

4Aκν
√

20
sech z tanh zφ

(5.12)

subject to the boundary conditions

lim
|z|→∞

φ(z) = 0 = lim
|z|→∞

χ(z). (5.13)

Here γ1 = λ1 +
λ2
10 while A, γ1, κ, µ

2, λ, and ν are parameters which satisfy the constraints

2 +
κA2

4
− λν2 = 0, −1 − 2µ2 + κν2 = 0, 2 + γ1A2 − κν2 = 0. (5.14)



5.1 Notation 121

Note (5.14) is equivalent to

µ2 =
1 + γ1A2

2
, ν2 =

2 + γ1A2

κ
, λ =

8 + κA2

8 + 4γ1A2 κ . (5.15)

Hence the Θ = (A, γ1, κ) may be regarded as free parameters satisfying γ1A2 ≥ −1, κ > 0

(note these inequalities are necessary and sufficient), while the remaining parameters are

given by (5.15).

The objective is to establish an open region in the free parameter space for which ω2 ≤ 0,

that is, ω is an imaginary complex number, for all solutions χ(z), φ(z) to the linearized

equations (5.12).

By a solution we mean a twice continuously differentiable vector valued function, (φ, χ),

satisfying (5.12) and (5.13).

Since φ and χ are continuous it follows from (5.13) that they are bounded while it follows

from (5.12) that they are analytic.

We assume throughout thatω , 0. First we make some observations about the system (5.12)

and use (5.15) to eliminate µ2, ν, and λ.

Since the system depends on ω2 it suffices to consider ω > 0. Multiplying the first equation

in (5.12) by 4ν/
√

20 and setting Φ = 4νφ/
√

20, system (5.12) becomes

Φ′′ =

[
ω2 +

(
κA2

4
sech2z + 3λν2 tanh2 z − λν2

)]
Φ +ν2Aκ sech z tanh z χ

χ′′ =
[
ω2 + 1 +

(
3A2γ1 − κν2

)
sech2z

]
χ + Aκ sech z tanh zΦ

(5.16)

which depends on ν2 rather than ν and so solutions (Φ, χ) depend on ν2. In particular if (φ, χ)

is a solution of (5.12) with ν = C < 0 then (−φ, χ) is a solution of (5.12) with ν = −C > 0.

Thus we need only consider the case ν ≥ 0. By a similar argument applied to A in place of

ν and using (5.14) we need only consider the case A ≥ 0. Now κ > 0, λ > 0 and ν , 0 by

(5.14). Moreover in our main result we will assume that γ1 > 0.

Using (5.14) and replacing Φ by φ and using (5.15) to eliminate κν2 it follows that (5.16)



122 On the stability of a domain-wall brane model

has the form

φ′′ = ω2φ +

(
4 − 6 sech2z +

κA2

2
tanh2 z

)
φ + A(2 + γ1A2) sech z tanh z χ

χ′′ = ω2χ +
(
1 − 2 sech2z + 2γ1A2 sech2z

)
χ + Aκ sech z tanh zφ.

(5.17)

It suffices to establish non-existence and existence for system (5.17) and (5.13) with the

parameters given in Θ.

To facilitate the presentation of our results we introduce the following notation. Let

Θ1 = (ω0, A0, γ1, κ) , Θ2 = (ω0, A0, κ) ,

and let Θ̄ and Θ̄i be defined naturally so, for example, Θ̄1 =
(
ω̄0, Ā0, γ̄1, κ̄

)
. Let

g(ω, A, γ1, κ) = 2ω2 +
A2

6
(16γ1 − κ). (5.18)

For u ∈ Rn let Bn
r (u) be the open ball of radius r and centre u in Rn and S 1 = {v ∈ R2 :

v2
1 + v2

2 = 1}.

For d, η, k > 0 let

Vd,k = (−d, d) × (0, k)2

Vω,d,η,k = {Θ ∈ Vd,k : g(ω, A, γ1, κ) > η(ω2 + A2)}.

Let S 1
d(u) = S 1 ∩ B2

d(u) for u ∈ S 1. For d, l > 0, v, w ∈ R, and u ∈ S 1 let

Ud(0, u, v) = (−d, d) × S 1
d(u) × B1

d(v) ,

Ud,l(0, u, v,w) = (−d, d) × S 1
d(u) × B1

l (v) × B1
d(w) .

For open sets U ⊂ Rn and V ⊂ R, let C1(U; V) denote the space of continuously differen-

tiable functions from U to V.

We establish the following non-existence (stability) result for the domain-wall brane

Theorem 5.1: If k > 4 and η ∈ (0, 2) there exists d(η, k) > 0 such that (φ, χ) = (0, 0) is the

only bounded solution to (5.12) and (5.13) when ω , 0 and Θ ∈ Vω,d,η,k.
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Remark 5.1: 1. We chose η ∈ (0, 2) to ensure that Vω,d,η,k , ∅, since Θ̂ = (0, k/2, k/2) ∈

Vω,d,η,k.

2. Note Vω,d(η,k),η,k is a non-empty open set of parameter space.

3. We will see that if ω , 0, A = 0, Θ ∈ R3, then there are no non-trivial solutions (φ, χ) of

(5.12) and (5.13).

4. If (16γ1 − κ)/6 > η for some η ∈ (0, 2), then g(ω, A, γ1, κ) > η(ω2 + A2) > 0 for all

(ω, A) , (0, 0). Then clearly Vω,d,η,k = Vd,k.

Moreover we prove the following existence result.

Theorem 5.2: Let (γ̄1, κ̄) ∈ R2, ω̄0 ∈ R, ω̄0Ā0 , 0, (ω̄0, Ā0) ∈ S 1 and g(ω̄0, Ā0, γ̄1, κ̄) = 0.

There exist d, l > 0 and γ1 ∈ C1(Ud(0, Θ̄2); B1
l (γ̄1)) such that

(i) γ̄1 = γ1(0, Θ̄2), and

(ii) (5.17) and (5.13) has a bounded solution with ω = εω0 , 0 and A = εA0 satisfying

(ε,Θ1) ∈ Ud,l(0, Θ̄1) iff γ1 = γ1(ε,Θ2).

The plan for the remainder of this chapter is as follows.

In section 5.2 we introduce the background results that we use.

In section 5.3 we prove our main result Theorem 5.1. There are four steps in the proof.

In the first step we show that for k > 4 and ω ≥ 4 there is a = a(k) > 0 such that (φ, χ) =

(0, 0) is the only solution of (5.17) when Θ ∈ Va,k.

In the second step we observe that the system decouples to

φ′′ =
[
ω2 + 4 − 6 sech2z

]
φ

χ′′ =
[
ω2 + 1 − 2 sech2z

]
χ,

(5.19)

when A = 0. In this case we use Lemma 5.1 to conclude that (φ, χ) = (0, 0) is the only

solution of (5.19) when ω ≥ ε > 0, that is, ω is positive and bounded from below.
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In the third step we use a limiting argument to show that for 4 > ω ≥ ε > 0 and k > 4 there

exists a = a(ε, k) > 0 such that (φ, χ) = (0, 0) is the only solution of (5.12) when Θ ∈ Va,k.

In the final step of the proof we apply Fredholm theory for compact linear operators com-

bined with the Lyapunov-Schmidt method to prove for k > 4 and η ∈ (0, 2) there is

ε0 = ε0(η, k) > 0 sufficiently small that if (ω0, A0, γ1, κ) ∈ S 1×(−k, k)2 and g(ω0, A0, γ1, κ) >

η > 0 then (φ, χ) = (0, 0) is the only solution of (5.17) and (5.13) when ω = εω0 , 0,

A = εA0, and 0 < ε < ε0. Thus there is ε0 > 0 sufficiently small that (φ, χ) = (0, 0) is the

only solution of (5.17) and (5.13) when k > 4, ω , 0, 16γ1 > κ, and Θ ∈ Vε0,k.

In section 5.4 we assume that ω̄0Ā0 , 0, (ω̄0, Ā0) ∈ S 1, (γ̄1, κ̄) ∈ (−k, k)2, and that

g(ω̄0, Ā0, γ̄1, κ̄) = 0. We use the implicit function theorem to prove that there are non-trivial

solutions (φ, χ) of (5.17) and (5.13) when ε is small, ω = εω0, A = εA0, (ω0, A0) ∈ S 1 is

close to (ω̄0, Ā0), and (γ1, κ) is close to (γ̄1, κ̄) iff γ1 = γ1(ε, ω0, A0, κ) for a smooth function

γ1. Thus there is a hypersurface of parameters for which there are solutions in a small sector

of (ω, A) space containing ε(ω̄0, Ā0) for ε small. Moreover this hypersurface is contained in

the boundary of the region where there are no solutions.

Finally we note that the study of existence of bounded solutions to linear ordinary differ-

ential equations like (5.12) is closely related to the bifurcation of transversal homoclinic

solutions in dynamical systems and so to the existence of deterministic chaos (for more see

details [Bat90, FG04, FG08, Gru92, Li96, Pal84, Yag99]). Consequently our approach can

be applied also to these kinds of dynamical problems.

5.2 Background results

For the convenience of the reader we recall some basic facts about Fredholm theory in

Banach space.

Let c > 0, h ∈ C0 and

gc(z, s) =


− 1

2c e −c(z−s), for s ≤ z

− 1
2c e c(z−s), for z ≤ s.

(5.20)
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It follows that the boundary value problem

y′′ = c2y + h(z), for z ∈ R (5.21)

0 = lim
|z|→∞

y(z) (5.22)

has a unique bounded solution y ∈ C0 ∩C2 iff y ∈ C0 satisfies the integral equation

y(z) = − 1
2c

z∫
−∞

e −c(z−s)h(s) ds − 1
2c

∞∫
z

e c(z−s)h(s) ds (5.23)

=

∫ ∞

−∞
gc(z, s)h(s) ds =: Gch(z). (5.24)

Indeed, if y ∈ C0 satisfies (5.24) it is easy check that |y(z)| ≤ ∥h∥/c2,

y′(z) =
∫ ∞

−∞

∂

∂z
gc(z, s)h(s) ds (5.25)

and that (5.21) and (5.22) are satisfied. Thus Gc : C0 → C0 is bounded linear. Moreover it

follows from (5.25) that |y′(z)| ≤ ∥h∥/c.

For (z, s) ∈ R2, let

qc(z, s) = gc(z, s) sech s, and

kc(z, s) = gc(z, s) sech2s.

For h ∈ C0, let

Qch(z) =
∫ ∞

−∞
qc(z, s)h(s) ds, and

Kch(z) =
∫ ∞

−∞
kc(z, s)h(s) ds.

Since | sech s| ≤ 2e−|s| it is easy to show that for c > 1

|Qc(h)(z)|, |Kc(h)(z)| ≤ 2
c(c − 1)

∥h∥ e −|z|, for z ∈ R. (5.26)

Moreover, by a similar argument to that above

|Qc(h)′(z)|, |Kc(h)′(z)| ≤ 1
c
∥h∥, for z ∈ R, (5.27)
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so that Qc, Kc : C0 → C0 are completely continuous.

Define Kc,b, Ac,b : C0 → C0 for y ∈ C0 by

Kc,by = −bKcy and

Ac,b = I − Kc,b,

where I is the identity on C0. For c > 1 and h ∈ C0 it is easy to see that y ∈ C0 ∩ C2 is a

solution to

y′′ = (c2 − b sech2z)y + h(z), for z ∈ R (5.28)

satisfying (5.22) iff y ∈ C0 is a solution to

Ac,by = Gch. (5.29)

Note by the above arguments that y′, y′′ ∈ C(R). Now Kc,b is completely continuous on C0

so it follows by Fredholm theory that:

(i) Z0,c,b = kerAc,b ⊂ C0 is finite dimensional and we may write C0 as a direct sum

C0 = Z0,c,b
⊕

Zc,b where Zc,b ⊂ C0 is a closed subspace.

(ii) Yc,b = RaAc,b ⊂ C0 is a closed subspace and we may write C0 as a direct sum

C0 = Y0,c,b
⊕

Yc,b where Y0,c,b ⊂ C0 is a closed subspace with dim Y0,c,b = dim Z0,c,b.

(iii) Ac,b : Zc,b → Yc,b is one-one and onto with bounded inverse so that for l ∈ Ya,b there

is a unique y ∈ Zc,b such that

Ac,b y = l

and there is C > 0 such that
1
C
∥l∥ ≤ ∥y∥ ≤ C∥l∥. (5.30)

For more information on Fredholm theory see [Zei88, sections 8.4 and 8.5].



5.3 The main result 127

When ω = 0 = A the system (5.12) decouples to

L1φ := φ′′ −
[
4 − 6 sech2z

]
φ = 0

L2χ := χ′′ −
[
1 − 2 sech2z

]
χ = 0.

(5.31)

The first equation in (5.31) corresponds to (5.28) where h = 0, c = 2 and b = 6 and the

kernel is spanned by φ0 where φ0(z) = sech2z.

Similarly the second equation in (5.31) corresponds (5.28) where h = 0, c = 1 and b = 2

and the kernel is spanned by χ0 where χ0(z) = sech z.

With φ0(z) = sech2z and χ0(z) = sech z we associate projections P1 and P2, respectively,

defined by

P1h = h − φ0⟨h, φ0⟩/||φ0||2

P2h = h − χ0⟨h, χ0⟩/||χ0||2,
(5.32)

for h ∈ C0.

If c = 2 and b = 6 and (5.28) has a solution, then it is easy to check that ⟨φ0, h⟩ = 0. It

follows from (i) and (ii) that Y2,6 = RaA2,6 = P1 C0 = Z2,6. Moreover if c = 1 and b = 2

and (5.28) has a solution it is easy to check that ⟨χ0, h⟩ = 0. It follows from (i) and (ii) that

Y1,2 = RaA1,2 = P2 C0 = Z1,2.

For the case A = 0 we use Lemma 5.1 in part four of the proof of Theorem 5.1.

The idea of the proof of Lemma 5.1 is to write the solution as a product of a power of

sech z and a hypergeometric function with argument − sinh2 z; see the appendix of [Yag99]

for details. See [FG08] for a discussion of this result and associated references.

5.3 The main result

Proof of Theorem 5.1. First we show that for k > 4 and ω ≥ 4 there is a = a(k) > 0

sufficiently small that (φ, χ) = (0, 0) is the only bounded solution of (5.17) when Θ ∈ Va,k.
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Setting c = ω in (5.21) and noting that A ≥ 0, κ > 0, and γ1 > 0 it follows from (5.17) that

∥φ∥ + ∥χ∥ ≤ 1
ω2

(
κA2

2
+ 4

)
∥φ∥ + A(2 + γ1A2)

ω2 ∥χ∥

+
1
ω2

(
2γ1A2 + 1

)
∥χ∥ + Aκ

ω2 ∥φ∥ (5.33)

≤ 1
ω2

(
κA2

2
+ 4 + 2γ1A2 + A(κ + 2 + γ1A2)

)
(∥φ∥ + ∥χ∥).

If
κA2

2
+ 4 + 2γ1A2 + A(κ + 2 + γ1A2) < ω2 (5.34)

it follows that φ = χ = 0. Further, if A = 0 then (5.34) becomes

4 < ω2. (5.35)

Thus if ω ≥ 4 and k > 4 there is a = a(k) > 0 sufficiently small, that (φ, χ) = (0, 0) is the

only bounded solution of (5.17) when Θ ∈ Va,k. As a matter of fact, we can take a(k) as the

only positive root of the cubic equation

4 − ω2 + (2 + k)a +
5
2

ka2 + ka3 = 0

whose existence is guaranteed by (5.35). However this formula is awkward so for the case

ak ≤ 1, ω ≥ 4, and k > 4 we proceed as follows: since

4 − ω2 + (2 + k)a +
5
2

ka2 + ka3 ≤ −11 +
9
2k
+

1
k2 < −

157
16

,

we may take a(k) = 1
k .

Now suppose that 0 < ω < 4 and A = 0. Substituting A = 0 into (5.14) and (5.17) we obtain

(5.19).

Applying Lemma 5.1 we see that (φ, χ) = (0, 0) is the only bounded solution of (5.19) and

(5.13) when A = 0 and ω > 0. Using this fact, we have the following result.

If k > 4 and ε > 0 we claim that there is a = a(ε, k) > 0 sufficiently small that (φ, χ) = (0, 0)

is the only bounded solution of (5.17) and (5.13) when ω ≥ ε and Θ ∈ Va,k.
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Suppose the result is false. Then there are (ω,Θ) = (ω j,Θ j) and corresponding solutions

(φ, χ) = (φ j, χ j) of (5.17) and (5.13) such that A j → 0+. By the first step of the proof

if k > 4 and ω ≥ 4 there is a so we assume that k > 4 and 4 > ω ≥ ε. Thus (ω j,Θ j)

is bounded and after rescaling we may assume that max{∥φ j∥, ∥χ j∥} = 1. But then by the

above arguments, we also obtain max{∥φ′j∥, ∥χ′j∥, ∥φ′′j ∥, ∥χ′′j ∥} ≤ Υ for a constant Υ de-

pending on a, k, ε. Choosing a subsequence and relabeling we may assume that (ω j,Θ j)

converges to a limit which, by abuse of notation, we again denote by (ω,Θ). Moreover, by

the Arzela-Ascoli theorem, we may assume that (φ j, χ j) converges uniformly on any com-

pact interval of R together with their 1 st and 2 nd derivatives to (φ, χ). Thus 4 ≥ ω ≥ ε,

max{∥φ∥, ∥χ∥} = 1 and φ, χ satisfy (5.19). But then (5.13) is satisfied as well [Bat90]. On

the other hand, we already know from Lemma 5.1 that (φ, χ) = (0, 0) which is a contradic-

tion since max{∥φ∥, ∥χ∥} = 1. The result follows.

For the final step we study (5.17) and (5.13) as both ω and A approach zero.

Setting ω = ω0ε and A = A0ε for A2
0 + ω

2
0 = 1, in (5.17) we obtain

L1φ = ε
[
εO1φ + O2χ

]
L2χ = ε

[
O3φ + εO4χ

] (5.36)

where

O1 = ω
2
0 +

κA2
0

2
tanh2 z, O2a = 2A0 sech z tanh z, O2b = γ1A3

0 sech z tanh z,

O4 = ω
2
0 + 2γ1A2

0 sech2z, O3 = A0κ sech z tanh z, O2 = O2a + ε
2O2b.

(5.37)

We apply the Lyapunov-Schmidt method to (5.36). Assuming that there is a non-trivial

solution for some ε > 0 there are φ1 and χ1 such that φ = εφ1 + c1φ0 and χ = εχ1 + c2χ0,

where

⟨φ1, φ0⟩ = 0, ⟨χ1, χ0⟩ = 0 (5.38)

and c2
1 + c2

2 = 1. Substituting φ = εφ1 + c1φ0 and χ = εχ1 + c2χ0 in (5.36) and using the
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definition of P1 and P2 we obtain

L1φ1 = P1
[
εO1(εφ1 + c1φ0) + O2(εχ1 + c2χ0)

]
(5.39)

L2χ1 = P2
[
O3(εφ1 + c1φ0) + εO4(εχ1 + c2χ0)

]
(5.40)

and
⟨εO1(εφ1 + c1φ0) + O2(εχ1 + c2χ0), φ0⟩ = 0

⟨εO4(εχ1 + c2χ0) + O3(εφ1 + c1φ0), χ0⟩ = 0.
(5.41)

Since ⟨φ1, φ0⟩ = 0, ⟨P1
[
εO1(εφ1 + c1φ0) + O2(εχ1 + c2χ0)

]
, φ0⟩ = 0, ⟨χ1, χ0⟩ = 0 and

⟨P2
[
O3(φ1 + c1φ0) + εO4(χ1 + c2χ0)

]
, χ0⟩ = 0 it follows from the Fredholm alternative

and (5.30) that we can uniquely solve (5.39) for φ1 and (5.40) for χ1 to obtain

∥φ1∥ ≤ C∥P1
[
εO1(εφ1 + c1φ0) + O2(εχ1 + c2χ0)

] ∥ (5.42)

∥χ1∥ ≤ C∥P2
[
O3(εφ1 + c1φ0) + εO4(εχ1 + c2χ0)

] ∥. (5.43)

Adding these inequalities and moving terms involving ∥φ1∥ and ∥χ1∥ to the left we see that

there is a constant C > 0 such that for ε > 0 small

∥φ1∥ + ∥χ1∥ ≤ C(∥φ0∥ + ∥χ0∥),

so ∥φ1∥ and ∥χ1∥ are bounded; here we have used c2
1 + c2

2 = 1. Now

⟨O2χ0, φ0⟩ = (2A0 + γ1A3
0ε

2)
∫ ∞

−∞
sech 4z tanh z dz = 0, and (5.44)

⟨O3φ0, χ0⟩ = A0κ

∫ ∞

−∞
sech 4z tanh z dz = 0. (5.45)

Using (5.41), (5.44) and (5.45) we obtain

F =

⟨O1(εφ1 + c1φ0) + O2χ1, φ0⟩

⟨O4(εχ1 + c2χ0) + O3φ1, χ0⟩

 =
00

 . (5.46)

Setting F = (F1, F2) we show below that the Fi can be expressed as power series in ε2
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computing the first term in the series for F1 and F2. Moreover we show by induction that

c1ω
2
0 is a factor of F1. Combining this with the first term in the series for F1 we will see that

F1 = c1ω
2
0

(
4
3
+ O(ε2)

)
.

Since ω = ω0ε , 0 it follows that if ε is sufficiently small then F1 = 0 only if c1 = 0.

We use this to show that there is ε0 > 0 such that F = (F1, F2) = (0, 0) implies c2
1 + c2

2 < 1,

when 0 < ε ≤ ε0, g(ω0, A0, γ1, κ) > η > 0, ω = εω0, A = εA0, ω
2
0 + A2

0 = 1, a contradiction.

It follows that (φ, χ) = (0, 0) is the only solution of (5.39), (5.40), (5.46), and (5.13) when

0 < ε ≤ ε0, g(ω0, A0, γ1, κ) > η > 0, and ω2 + A2 = ε2, as required.

To see that Fi can be expressed as power series in ε we note from section 5.2 that for f ∈ C0

and (c, b) ∈ {(2, 6), (1, 2)}

y′′ −
[
c2 − b sech2z

]
y = Pc,b f (5.47)

has a unique solution

y = A−1
c,b(Pc,b f ) ∈ Zc,b

where

A−1
c,b : Zc,b → Zc,b

is bounded while P2,6 = P1 and P1,2 = P2.

Thus (5.39) and (5.40) can be rewritten as

(
I − ε2A−1

2,6P1O1
)
φ1 − εA−1

2,6P1O2χ1 = A−1
2,6P1

[
εc1O1φ0 + c2O2χ0

]
(5.48)(

I − ε2A−1
1,2P2O4

)
χ1 − εA−1

1,2P2O3φ1 = A−1
1,2P2

[
εc2O4χ0 + c2O3φ0

]
. (5.49)

It follows from elementary operator theory that

φ1 =

∞∑
i=0

φ1,iε
i (5.50)

χ1 =

∞∑
i=0

χ1,iε
i (5.51)
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where φ1,i ∈ Z2,6 and χ1,i ∈ Z1,2 and the series converge in C0 for ε small. Substituting

in (5.48) and (5.49) and equating coefficients of powers of ε it is not difficult to see that

φ1,i, χ1,i ∈ C2 ∩C0 satisfy

L1φ1,0 = c2O2aχ0 (5.52)

L1φ1,1 = P1
[
O2aχ1,0 + c1O1φ0

]
(5.53)

L1φ1,2 = P1
[
O2aχ1,1 + O2bc2χ0 + O1φ1,0

]
(5.54)

L1φ1,i = P1
[
O2aχ1,i−1 + O2bχ1,i−3 + O1φ1,i−2

]
for i ≥ 3 (5.55)

L2χ1,0 = c1O3φ0 (5.56)

L2χ1,1 = P2
[
O3φ1,0 + c2O4χ0

]
(5.57)

L2χ1,i = P2
[
O4χ1,i−2 + O3φ1,i−1

]
for i ≥ 2 (5.58)

where φ1,i(z), χ1,i(z) → 0 as |z| → ∞. Here we used P1O2χ0 = O2χ0 and P2O3φ0 = O3φ0.

Indeed if x ∈ C0 is odd then P1x = x = P2x.

Substituting the expressions for φ1 and χ1 given in (5.50) and (5.51) into (5.46) we obtain

F1 = ⟨O1c1φ0 + O2aχ1,0, φ0⟩ + ε⟨O1φ1,0 + O2aχ1,1, φ0⟩

+

∞∑
n=2

εn⟨O1φ1,n−1 + O2aχ1,n + O2bχ1,n−2, φ0⟩ (5.59)

F2 = ⟨O4c2χ0 + O3φ1,0, χ0⟩ +
∞∑

n=1

εn⟨O3φ1,n + O4χ1,n−1, χ0⟩. (5.60)

To show the coefficients of odd powers of ε are all 0 we need the following lemma.

Lemma 5.2: If

y′′ − (c2 − b sech2z)y = f (z)

satisfies y(z)→ 0 as |z| → ∞ where (c, b) ∈ {(2, 6), (1, 2)} and y, f ∈ Zc,b and f ∈ C0 then

(a) y is even if f is even, and

(b) y is odd if f is odd.

Proof. We consider the case (c, b) = (2, 6); the case (c, b) = (1, 2) follows by a similar
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argument. If f is even then x(z) = (y(z) − y(−z))/2 ∈ Z2,6 and L1x = 0 so that x = 0 and y

is even. If f is odd then x(z) = (y(z) + y(−z))/2 ∈ Z2,6 and L1x = 0 so that x = 0 and y is

odd. �

Corollary 5.1: Let φ1,i and χ1,i satisfy (5.52) to (5.58). Then

(a) φ1,i, χ1,i is odd if i is even, and

(b) φ1,i, χ1,i is even if i is odd.

Proof. It follows from (5.52), (5.56) and Lemma 5.2 that φ1,0 and χ1,0 are odd. The result

follows by induction using this, (5.52) to (5.58) and Lemma 5.2. �

Since φ0 and χ0 are even it follows from Corollary 5.1, (5.59) and (5.60) that the coefficients

of ε2m+1 in (5.59) and (5.60) are 0.

Thus

F1 =
∑∞

m=0 a2mε
2m and (5.61)

F2 =
∑∞

m=0 b2mε
2m (5.62)

where

a0 = ⟨O1c1ϕ0 + O2aχ1,0, φ0⟩ (5.63)

b0 = ⟨O4c2χ0 + O3φ1,0, χ0⟩. (5.64)

It is easy to check that the solutions of (5.52) and (5.56) are

φ1,0(x) = −c2
A0

2
z sech2z (5.65)

χ1,0(z) = −c1
A0κ

4
sech z tanh z (5.66)
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so that

a0 = c1ω
2
0

4
3

(5.67)

b0 = c2

2ω2
0 +

A2
0

6
(16γ1 − κ)

 . (5.68)

It is easy to see that

a2m = ⟨O1φ1,2m−1 + O2aχ1,2m + O2bχ1,2m−2, φ0⟩. (5.69)

We show that a2m has c1ω
2
0 as a factor, for all m ≥ 1. For m ≥ 1 define ξm and ηm by

ξm = 2A0χ1,2m + γ1A3
0χ1,2m−2 (5.70)

ηm = φ1,2m−1 (5.71)

so that O2aψ1,2m + O2bψ1,2m−2 = ξm sech z tanh z. Thus it suffices to show that ξm and ηm

have c1ω
2
0 as a factor, for all m ≥ 1.

First we show that ξ1 = 2A0χ1,2 + γ1A3
0χ1,0 and η1 = φ1,1 have c1ω

2
0 as a factor. Then we

show by induction that both ξm and ηm have c1ω
2
0 as a factor, for all m ≥ 1.

Thus we need to solve (5.53) and (5.58) with i = 2 to find φ1,1 and χ1,2.

First we solve (5.53) for φ1,1.

Now

L1φ1,1 = P1
(
O2aχ1,0 + c1O1φ0

)
= c1P1

−A2
0κ

2
sech2z tanh2 z + (ω2

0 +
κA2

0

2
tanh2 z) sech2z

 = 0

since P1 sech2 = 0. Since L1 is linear it follows that φ1,1 = 0 and, in particular, φ1,1 has a

factor of c1ω
2
0.

Now we solve (5.58) with i = 2 for χ1,2, and substitute in (5.69).
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Since O4χ1,0 + O3φ1,1 is odd

L2χ1,2 = P2
(
O4χ1,0 + O3φ1,1

)
= O4χ1,0 + O3φ1,1

= −c1
A0κ

4

(
ω2

0 sech z tanh z + 2γ1A2
0 sech 3z tanh z

)
.

Thus using additivity of solutions it is easy to check that

χ1,2 = c1
A0κ

8

(
γ1A2

0 sech z tanh z + ω2
0z sech z

)
.

Thus

ξ1 = 2A0χ1,2 + γ1A3
0χ1,0 = c1ω

2
0

A2
0κ

4
z sech z

so ξ1 has c1ω
2
0 as a factor.

Thus ξm and ηm have c1ω
2
0 as a factor for m = 1.

Assume that ξm and ηm have c1ω
2
0 as a factor for 1 ≤ m ≤ k. It follows from (5.55) and

(5.58) that

L1ηk+1 = L1φ1,2k+1 = P1
(
O1φ1,2k−1 + O2aχ1,2k + O2bχ1,2k−2

)
L1ηk+1 = P1 (O1ηk + ξk sech z tanh z) (5.72)

L2ξk+1 = L2
(
2A0χ1,2k+2 + γ1A3

0χ1,2k
)

= P2
(
O4

(
2A0χ1,2k + γ1A3

0χ1,2k−2
)
+ O3

(
2A0φ2k+1 + γ1A3

0φ2k−1
))

L2ξk+1 = P2
(
O4ξk + O3(2A0ηk+1 + γ1A3

0ηk)
)
. (5.73)

It follows from (5.72) and the induction hypothesis that ηk+1 has c1ω
2
0 as a factor. It then

follows from (5.73) and the induction hypothesis that ξk+1 has c1ω
2
0 as a factor, as required.

So thus,

F1 = c1ω
2
0

(
4
3
+ O(ε2)

)
, (5.74)

F2 = c2g(ω0, A0, γ1, κ) + O(ε2). (5.75)

Since ω = ω0ε , 0, it follows from (5.74) that F1 = 0 for ε small only if c1 = 0. Assume
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that g(ω0, A0, γ1, κ) = 2ω2
0 +

A2
0

6 (16γ1 − κ) > η > 0. Thus F2 = 0 only if c2 = O(ε2). Thus

F = (F1, F2) = (0, 0) and (5.17) and (5.13) has a solution for ε small only if c2
1+c2

2 = O(ε2),

a contradiction since c2
1 + c2

2 = 1.

Since ω2
0 + A2

0 = 1 there is ε0 = ε0(η, k) > 0 such that (φ, χ) = (0, 0) is the only solution

of (5.17) and (5.13) when 0 < |ε| ≤ ε0, g(ω, A, γ1, κ) > ηε2 > 0 and ω2 + A2 = ε2. Now

if 0 < ω < ε0/
√

2 and 0 < A < ε0/
√

2 then ω2 + A2 < ε2
0. Thus we may summarize our

results as follows: If k > 4, η ∈ (0, 2) and d = min{ε0/
√

2, a(k), a(ε0/
√

2, k)} > 0, then

(φ, χ) = (0, 0) is the only solution of (5.17) and (5.13) when ω , 0 and Θ ∈ Vω,d,η,k.

Hence our analytic solutions (4.3) to the Euler-Lagrange equations (5.1) will maintain a

form which breaks SO(10) → SU(5) × U(1)X under short term dynamical evolution for an

open ball, Θ ∈ Vω,d,η,k, in the free parameter space.

�

5.4 Existence of non-trivial solutions

We now prove Theorem 5.2. Recall that Θ1 = (ω0, A0, γ1, κ) and Θ2 = (ω0, A0, κ) .

Proof. We assume that Θ1 ∈ S 1 × (−k, k)2 where ω0 , 0 and k > 4. In the third part

of the proof of Theorem 5.1 we showed there is ε0 > 0 such that (5.17) and (5.13) has

a solution when A = εA0, ω = εω0 , 0, and 0 < |ε| ≤ ε0 iff F = (F1, F2) = (0, 0),

where F1 is given by (5.74) and F2 is given by (5.75). Note Fi = Fi (ε,Θ1), i = 1, 2.

Moreover we showed that ε0 > 0 may be chosen so that Fi ∈ C1((−ε0, ε0)×S 1×(−k, k)2;R),

F2 = c2g(ω0, A0, γ1, κ) + O(ε2) and F1 = 0, iff c1 = 0. Now c2
2 + c2

1 = 1 for non-trivial

solutions so assume that c2 = 1.

Let Θ̄1 ∈ S 1 × (−k, k)2 satisfy ω̄0Ā0 , 0 and g(Θ̄1) = 0. Now F2(0,Θ1) = g(Θ1) =

g(ω0, A0, γ1, κ) so F2(0, Θ̄1) = 0 and

∂F2

∂γ1
(0, Θ̄1) =

8
3

Ā2
0 , 0.
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By the implicit function theorem there are neighbourhoods, Ud(0, Θ̄2) of (0, Θ̄2) given by

Ud(0, Θ̄2) = (−d, d) × S 1
d(ω̄0, Ā0) × B1

d(κ̄)

and Ud,l(0, Θ̄1) of (0, Θ̄1) given by

Ud,l(0, Θ̄1) = (−d, d) × S 1
d(ω̄0, Ā0) × B1

l (γ̄1) × B1
d(κ̄)

as well as γ1 ∈ C1
(
Ud(0, Θ̄2); B1

l (γ̄1)
)

such that γ̄1 = γ1(0, Θ̄2) and F2 = 0 in Ud,l(0, Θ̄1) iff

γ1 = γ1(ε,Θ2). �

5.5 Long term evolution

Ultimately, mode mixing and other non-linear effects arising from terms of higher order in

δX and δϕ will influence the long term evolution of the system. Assessing these effect is

beyond the scope of our quantitative analysis. We fall back on our claim that numerical

solutions to (5.1) for X and ϕ indicate that the analytic solutions (4.3) are stable under long

term dynamical evolution for an open ball in the free parameter space.

Please see the appendix B.1 for a discussion of the stability of the left right symmetric

domain-wall-brane model.

5.6 Conclusions

In this chapter we considered the stability of the SO(10) domain-wall brane solutions,

(ϕ0,X0) in (5.2), to the DWB equations (5.1). We did this by examining the dynamical

evolution of linear perturbations δϕ, respectively δX, about ϕ0, respectively X0. The dy-

namical evolution of these perturbations is governed by equation (5.7). We used a Fourier

transformation to expand δϕ and δX in terms of normal modes. We examined a specific

mode with time dependence eωt. The solution (ϕ0,X0) in (5.2) is called stable if there are

no nontrivial solutions, (δϕ, δX) , to the linear perturbation equations (5.7) when ω2 > 0.

The solution (ϕ0,X0) in (5.2) is called unstable if there exist nontrivial solutions (δϕ, δX)

to (5.7) when ω2 > 0. Because the coupling constants run with energy when the theory



138 On the stability of a domain-wall brane model

is quantized we insisted that solutions of the form (5.2) were stable for a range of free

parameters in the Euler Lagrange equations (5.1).

Because an SO(10) adjoint Higgs field perturbation, δX, has independent components along

45 different directions, we broke the problem down by considering subclasses of the pertur-

bations. The nontrivial case was where the perturbations along all Cartan directions are the

same1. We referred to the specific subclass of the perturbations (δϕ, δX), where the pertur-

bations along all Cartan directions are the same as (φ, χ). We defined the free parameters

in the model to be Θ = (A, γ1, κ). Our free parameters were chosen to be the coupling con-

stants in the DWB equations (5.1) satisfying the conditions (5.15) for our original solution

(5.2). We used Fredholm theory for compact linear operators and the LyapunovSchmidt

method to establish that there exists an open ball, Vω,d,η,k, in the free parameter space such

that when Θ ∈ Vω,d,η,k, the only solution to the linearized perturbation equations about

(5.2), for any ω2 > 0, is (φ, χ) = 0. In section 5.4 we established this result is nontrivial.

Namely we established there exists a certain alternate hypersurface of the free parameters on

which nontrivial solutions (φ, χ) to the linearized perturbation equations exist with nonzero

A = ϵA0 and nonzero ω = ϵω0 such that ω2 > 0. This is the first time the LyapunovSchmidt

method has been applied to a dynamical systems problem. This new approach is relevant

to other areas involving the study of dynamical systems and the study of the existence of

deterministic chaos.

1At the same time we are requiring all other perturbations in the remaining 40, SO(10) adjoint Higgs field
directions to be zero.
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Domain-wall branes in Lifshitz theories

6.1 Introduction

We lack a renormalizable 4 + 1-dimensional Yang-Mills gauge theory. If we can introduce

an ultraviolet complete 4 + 1-dimensional Yang-Mills gauge theory then chapter 4 will

provide a feasible structure for a complete brane-world model. This model will exhibit 3+1-

dimensional field theory and localized gravity. Furthermore the model should reproduce

standard model phenomenology, subject to a phenomenological parameter fitting, akin to

[CV11]. Therefore in the context of domain-wall brane models, we are extremely interested

in finding a logically consistent regulator for 4 + 1-dimensional Yang-Mills gauge theory.

We found the inspiration for improving the ultraviolet properties of 4+1-dimensional Yang-

Mills gauge theory in Hořava-Lifshitz gravity models.

As outlined in section 1.2, Hořava [Hor09, HMT10] used the Lifshitz anisotropic scaling

properties of magnetic materials as a regulator for quantum gravity. This involves modifying

the Einstein-Hilbert action by introducing higher spatial derivative curvature terms, which

break Lorentz invariance but ameliorate graviton-loop renormalization effects.

Hořava’s success has sparked enquiries into whether the good ultraviolet (UV) behaviour

of Hořava-Lifshitz gravity may be transferable to certain non-renormalizable Yang-Mills

gauge theories [IRS09, IS10]. Models which include higher spatial derivative extensions à

la Hořava are collectively referred to as Lifshitz field theories.

139
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As demonstrated in subsections 3.8.3-3.8.4 a 4 + 1-dimensional Lifshitz scalar field theory

with critical exponent z < 4 is power counting renormalizable whenever the potential has

2(d + z)/(d − z) th leading order interaction terms, and is superrenormalizable when z > 4.

Furthermore provided z ≥ 2 any 4+1-dimensional Lifshitz gauge theory will satisfy (3.106).

Hence we can write a power counting renormalizable action for the gauge fields. We are

hopeful that we can provide the machinery necessary to build a 4 + 1-dimensional Lifshitz

Dvali-Shifman analogue which generalizes section 3.6. The trapping of gauge fields on the

wall due to non-perturbative dynamics in the 4 + 1-dimensional bulk can be checked now

by lattice gauge simulations in the limit of infinitesimally small lattice spacing.

The purpose of this chapter is to take the standard building blocks for a 4 + 1-dimensional

Lorentz invariant brane-world model, collated in [DGV08, TV09, RS83], and see if they can

be extended to construct a Lifshitz power counting renormalizable brane-world model with

quartic leading order spatial derivatives. We are principally interested in whether there is

a Lifshitz analogue to the domain-wall brane and if we can dynamically localize fermions.

These two elements (together with the Dvali-Shifman mechanism for dynamical gauge bo-

son localization [DS97]) form the backbone for a dynamically localized domain-wall brane

standard model. Being an introduction to the subject, we restrict our analysis here to a toy

model featuring just a scalar and a fermion field. Of course a full theory would require many

more ingredients including gravity and gauge fields, but that is too ambitious a construction

to attempt in one step.

We stress that a Lifshitz domain-wall brane model would be markedly different to previous

work on extra-dimensional field theories and would be valuable because preceding work in

this field has been entirely devoted to effective field theories and, by construction, is only

predictive up to a UV cutoff scale [DGV08, TV09].

To this end we take the most general power-counting-renormalizable action for a real Lif-

shitz scalar field ϕ living in 4 + 1-dimensions which is consistent with a discrete reflection

symmetry ϕ → −ϕ, where the Z2 symmetry is necessary for generating topological bound-

ary conditions. For this model we demonstrate that a kink or domain-wall type of topo-

logical defect in the Lifshitz scalar field can condense to form a brane. However when we

extend the action to incorporate fermions we find that the standard interpretation of the 3+1-
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dimensional left-chiral fermion, as the dynamically-localized zero mode in a Kaluza-Klein

tower, fails.

In section 3.5 we argued that for isotropic 4 + 1-dimensional models, at low energies 4 + 1-

dimensional spinors behave like 3 + 1-dimensional left-chiral fermions localized on the

brane. For a solution, Ψ(xM), to the isotropic 4+ 1-dimensional Dirac equation, there exists

a basis for the space of continuous bounded functions of a single coordinate, x5 ≡ y, which

can be used to project the field Ψ(xM) onto a ‘Kaluza-Klein’ tower. This Kaluza-Klein

tower contains a normalizable massless 3 + 1-dimensional left-chiral zero-mode fermion

plus massive 3 + 1-dimensional fermions. At low energies only the dynamically-localized

massless chiral zero mode in this tower is kinematically allowed and the effective low-

energy dynamics carry the right phenomenological signature needed to model the quarks

and leptons of the standard model.

In this chapter we take a solution to the Lifshitz 4 + 1-dimensional Dirac equation with

quartic leading order spatial derivatives and with Yukawa interactions terms coupling the

fermions to the Lifshitz scalar.1 We write this solution as a Kaluza-Klein tower of 3 +

1-dimensional spinors and we show that this tower does not contain a massless 3 + 1-

dimensional left-chiral zero mode fermion. We find that spatially isotropic Lifshitz Dirac

equations do not have zero mode solutions as part of their Kaluza-Klein towers. To over-

come this difficulty we consider other models which do not treat all four spatial dimensions

symmetrically. We present the zero mode solution for a model where 4 + 1-dimensional

Lorentz invariance is broken explicitly to SO(3) spatial rotational invariance.

We refer the reader to chapter 2 for a guide to the notation used in this chapter and sec-

tion 3.8.1 of the Introduction for a discussion of weighted scaling dimensions.

In section 7.1 of this chapter we shall explicitly demonstrate that, for the minimal case of

a 4 + 1-dimensional model with quartic spatial derivatives, the Euler-Lagrange equations

1We choose to stop at quartic order purely for simplicity. A complete theory including renormalizable
gravity in 4 + 1-dimensions will require an action containing at least order-eight derivatives. In the same
spirit we consider only Yukawa interactions. This approach makes the analysis easier and allows for a direct
comparison to the analogous 4 + 1-dimensional Lorentz invariant scenario. For completeness we present an
action containing the full complement of fermion and scalar interaction terms invariant under 4-dimensional
spatial-rotations and generalize our Yukawa theory conclusion to cover this action by arguing that interaction
terms do not alter the no-go result.
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for a general power counting renormalizable Lifshitz scalar field action have a domain-wall

brane solution. In section 6.3 we explain why it is impossible to isolate and dynamically

localize a 3 + 1-dimensional left chiral zero mode fermion in Lifshitz spatially isotropic

4+1-dimensional domain-wall brane models. In section 6.4 we discuss alternative models

featuring compact extra-dimensions and smaller unbroken spatial symmetries. Our final

section is a conclusion.

We will apply standard terminology directly to our model without qualifying that we are

talking about a 4 + 1-dimensional, quartic leading order spatial derivatives extension to

the standard theory before each statement. We will use these descriptors only when our

intention is not clear from the context.

We remind the reader of our convention from section 3.8.1. We use d + 1z-dimensions for

a foliated space-time manifold with weighted scaling characterized by (3.98), and drop the

subscript “1” when talking about the Lorentz invariant limiting case z = 1. For a given

d + 1z-dimensions Lifshitz model we continue to use [τ]s to refer to the weighted scaling

dimensions of τ.

6.2 Domain-wall brane

6.2.1 The existence of a domain-wall brane

We start by looking for the analogue of the domain-wall brane in 4+1z-dimensional Lifshitz

scalar field theories. In section 3.4.1, in the context of isotropic 4 + 1-dimensional models,

we introduced the canonical ϕ4 Lagrangian and kink-like domain-wall brane. In 4 + 1z-

dimensional Lifshitz field theories the real scalar field Lagrangian and topological defect

solutions are modified by the presence of higher spatial derivatives.

In this section we isolate the real scalar field terms in the action.2 We work under the as-

sumption that there is an equivalence relation on the space of all actions such that actions S 1

and S 2 are identified if they contain the same terms up to global boundary terms. By con-

2It is physically justifiable to solve the scalar field dynamical equations, and then work out the motion of
fermions propagating in the scalar field background because, in the framework of domain-wall brane models,
the fermions are incorporated as a perturbative mode expansion about an empty vacuum state.
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sistently following this principle we will discard all terms in the equations of motion which

arise from boundary effects. Therefore from an empirical perspective, actions belonging to

the same equivalence class will be phenomenologically indistinguishable.

From subsection 3.4.1 we know that, to create a domain-wall brane our action must exhibit

the discrete reflection symmetry ϕ(xM) → −ϕ(xM). To simplify the model we choose to

work in flat space-time.3 We consider the most general action for R × R4 with critical ex-

ponent z = 2. This is consistent with the above and in the methodology of weighted scaling

dimensions is renormalizable with a full complement of relevant and marginal operators:

S ϕ = S ϕfree + S ϕint, (6.1)

=

∫
d5x

[(
1
2

(∂tϕ)2 − a2

2Λ2 (∆ϕ)2 − c2

2
(∂iϕ)2

)
+(

−g2

2
ϕ2 − g4

4!Λ
ϕ4 − b

4Λ3 (ϕ∂iϕ)2 − g6

6!Λ4ϕ
6
)]
,

where Λ is being used to keep track of the natural mass dimensions in isotropic space-time.

We have absorbed the coupling constant in front of (∂tϕ)2 into a rescaling of the field ϕ(xM).

In the weighted scaling dimensions of our theory we have

[t]s = −z = −2,
[
xi
]

s
= −1,

[
ϕ
]

s =
d − z

2
= 1. (6.2)

3Incorporating gravitation will be far from trivial, but not hopeless. First, one would have to face the
difficulties [CNPS09, LP09, BPS09, BPS10, Kob10] that have been identified in the original versions of 3 + 1-
dimensional Hořava gravity [Hor09]. Reference [HMT10] provides a way forward. Then one would need to
develop a 4 + 1-dimensional extension, which will require going to a z = 4 theory, and then would need to
establish that the brane tension causes the domain-wall to be a preferred observation hyperplane from which
gravity appears to be 3 + 1-dimensional, and that the effective gravity theory on the wall is sufficiently close
to general relativity. For domain-wall branes with 4 + 1-dimensional general relativity, the answer is provided
by the Randall-Sundrum [RS99a, RS99b] warped metric solution which involves pasting together two semi-
infinite regions of anti-de Sitter space-time with a matching junction condition at the location of the brane.
This configuration can be used to dynamically localize a 3 + 1-dimensional Kaluza-Klein zero mode graviton.
Something resembling this solution would presumably also have to exist within the putative 4 + 1-dimensional
Hořava gravity theory. The most straight-forward approach would be to verify the anti-de Sitter space-time
solutions in [HMT10] could be extended to the putative 4+1-dimensional Hořava gravity theory before looking
for an analogue to the Randall-Sundrum warped metric ansatz. These challenging problems are well beyond
the scope of this chapter.
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If we set [Λ]s = 0 then the coupling constants have weighted scaling dimensions:

[
a2

]
s
= 2z − 4 = 0,

[
c2

]
s
= 2z − 2 = 2,

[b]s = 3z − d − 2 = 0,
[
gn

]
s = d + z − n(d − z)

2
= 6 − n. (6.3)

From the above weighted scaling dimensions, we confirm that 4 + 12-dimensional Lifshitz

scalar field theory with a ϕ6 leading order potential is power counting renormalizable. Note

that the parameter c which plays the role of the maximum obtainable velocity in the free

particle IR dispersion relation, becomes a running parameter in the quantized theory. It

would thus be misleading to absorb the energy-scale-dependent c2 by a relative rescaling of

spatial and temporal coordinates.

The Klein-Gordon equation obtained from this action using the principle of stationary action

is

∂2
t ϕ +

a2

Λ2∆
2ϕ − c2∆ϕ − b

2Λ3ϕ
2∆ϕ − b

2Λ3ϕ∂iϕ∂
iϕ +

g6

5!Λ4ϕ
5 +

g4

3!Λ
ϕ3 + g2ϕ = 0. (6.4)

The domain-wall is the static solitary wave solution to the Klein-Gordon equation which is

isotropic in three spatial directions and interpolates between distinct minima of the potential

as a function of y.

Numerical domain-wall brane solutions to the Klein-Gordon equation have been found for

a wide range of parameters. In Figure 6.1 we give an example of a numerical domain-wall

brane configuration. In addition we can give an explicit example of an analytic domain-wall

brane,

ϕ = vtanh(uy), (6.5)

which is a solution to the Klein-Gordon equation for:

v =

√√√
−5g4Λ3

g6
+

√
5
√
−6g6g2 + 5g2

4Λ
6

g6
, u =

√√√√
bv2

32a2Λ
−

√
45b2v4Λ2 − 16a2g4

6Λ
2

96
√

5a2Λ2
,

and g6v4 + 10Λ(−6bu2v2 + Λ(48a2u4 + Λ(v2g4 − 12c2u2Λ))) = 0.
(6.6)

We clarify that this is not a fine-tuning condition, it is merely a prototypical example of
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Figure 6.1: The graph displays a numerical domain-wall brane solution to the Lifshitz
Klein-Gordon equation (6.4) for a choice of parameters which do not belong to the slice
defined in (6.6).

the kink solutions that exist for a large region of parameter space. The numerical solution

depicted in Figure 6.1 corresponds to a point which is not on this slice. Because we want the

solutions described by (6.5) and (6.6) to be real valued and because v must be a minimum of

the potential for (6.5) to be a solitary wave, we can bound the allowed region of parameter

space by the inequalities Λ, g6,−g2,−g4 > 0. Indeed none of the results presented in this

chapter are contingent on providentially choosing parameters which satisfy (6.6).

This establishes the existence of a domain-wall brane for R×R4 space-time with anisotropic

scaling characterized by critical exponent z = 2.

In the next chapter we will discuss the stability of the Lifshitz domain-wall brane (6.5). In

this case we are less interested in a tour de force analysis of the stability. Instead we are

intrigued that Lifshitz scalar field theories can evade Derrick’s theorem (see section 3.4.5),

thereby permitting long lived stable 3 + 1-dimensional topological defects.

As part of examining the stability of our Lifshitz domain-wall brane model, in chapter 7

we will prove Derrick’s theorem does not apply to Lifshitz scalar field theories. We do this

as preparation for chapter 8, where we focus on topological defects in 3 + 12-dimensional

Lifshitz scalar field theories.
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6.3 Fermions

In section 3.5 we explained why Lorentz-invariant domain-wall branes dynamically localize

a massless chiral 3 + 1-dimensional fermion.

We need to look at how the situation changes in the 4 + 12-dimensional case.

First we must clarify what we mean by a fermion in 4 + 12-dimensional space-time. We

consider Ψ(xM) to be a spinorial wave function on R × R4 which transforms under SO(4)

spatial rotations x j → x′ j = O j
kxk ≈ (δ j

k − ϵ
j
kiθ

i)xk according to

Ψ(xM) −→ S (O)Ψ(xM), S (O) = eω
jkΣ jk , (6.7)

where for convenience we set ω jk = ϵ jkiθi and Σ jk = − i
4 [Γ j, Γk]. As we are talking about

4-dimensional spatial rotations here the Γ j ∈ {γ1, γ2, γ3, γ5}.

In the IR limit we are assuming the theory exhibits an accidental Lorentz symmetry. This

Lorentz group incorporates a 3 + 1-dimensional subgroup given by the subset of SO(3)

spatial rotations augmented by boosts in the 3 + 1-dimensional coordinate space which are

a symmetry of the low-energy Lagrangian. Chirality will be restored in this low-energy

Lorentz-invariant theory provided we can localize a Kaluza-Klein zero-mode fermion and

provided this zero-mode fermion is an eigenstate of the γ5 operator which commutes with

the 3 + 1-dimensional Lorentz subgroup.

We consider the most general action for the 4 + 12-dimensional Dirac field Ψ(xM) invariant

under 4-dimensional spatial rotations. We are guided in our construction by the following

considerations. The 4 + 12-dimensional Dirac action will putatively flow towards (3.58) in

the low energy limit. Therefore the 4 + 12-dimensional Dirac action must contain all the

operators present in (3.58). To suppress perturbative fermion loop diagram contributions to

transition amplitudes we must incorporate second order spatial derivatives. We choose to

do this in such a way that the propagation of the free 4 + 12- dimensional scalar boson and

free 4 + 12-dimensional fermion will be described by the same dispersion relation. We will

absorb the coefficient in front of the temporal derivative into a rescaling of the field Ψ(xM).
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The most general action consistent with these principles is4

S =
∫

d5x
[
iΨΓ0∂tΨ + iβΨΓi∂iΨ − αΨ∆Ψ − gϕΨ(1 + δ1Γ

0)Ψ

−hϕ2Ψ(1 + δ2Γ
0)Ψ + k∂iϕΨΓ

i(1 + δ3Γ
0)Ψ

]
. (6.8)

We choose to work with a cut down version of (6.8). Our principal motivation is that the

calculations are simpler, however we are also keen to present the result in a manner whereby

it is easy to directly compare each step with the isotropic 4 + 1-dimensional case. We will

argue that the no-go result holds independently of which interaction terms we include. The

action we analyze is

SΨ =
∫

d5x
[
iΨΓ0∂tΨ + iβΨΓi∂iΨ − αΨ∆Ψ − gϕΨΨ

]
. (6.9)

Therefore our simple Dirac equation is

[
iΓ0∂t + iβΓi∂i − α∆ − gϕ(y)

]
Ψ(xM) = 0, (6.10)

and the associated Klein-Gordon equation is

0 =
[
∂2

t − β2∆ + (α∆ + gϕ(y))2 − gβγ5
(
∂yϕ(y)

)]
Ψ(xM). (6.11)

Choosing the dispersion relations for the free 4 + 12-dimensional fermion and scalar to be

the same, means a solution to the free field 4+12-dimensional Dirac equation also satisfies a

Klein-Gordon equation which contains the same differential operators as the Klein-Gordon

equation for the free scalar field. Comparing the above equation to (6.4) will confirm that

the free field kinetic operators are the same.

We will argue that for our z = 2 model, the Kaluza-Klein ‘zero mode’ f0L(y)ψ0L(xµ) is not a

solution to the 4+ 12-dimensional Dirac equation. Therefore it is not present in the Kaluza-

4We have implicitly included terms like ϕΨΓi∂iΨ which arise from integration by parts of the interaction
term ∂iϕΨΓ

iΨ.
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Klein tower expression (4.7) and cannot provide a candidate 3 + 12-dimensional left chiral

fermion.

We follow the logic: If f0L(y)ψ0L(xµ) is a solution to the 4 + 12-dimensional Dirac equation

then it is also a solution of the Klein-Gordon equation (6.11). Thus, if f0L(y)ψ0L(xµ) is not

a solution to (6.11) then it is not a solution to the 4 + 12-dimensional Dirac equation. Thus

it suffices to show f0L(y)ψ0L(xµ) is not a solution to (6.11).

We do this because the operator in the Klein-Gordon equation (6.11) is diagonal when

acting on a Kaluza-Klein tower (4.7) and for the left-chiral zero mode this operator can

be simplified to an identity matrix acting on the spinor space multiplied by a differential

operator. For the left chiral zero mode, (6.11) is

0 =
[
∂2

t − β2∆ + (α∆ + gϕ(y))2 + gβ
(
∂yϕ(y)

)]
f0L(y)ψ0L(xµ). (6.12)

It should become clear immediately that the kinetic operator in (6.12) contains terms like

2α∂2
y∇⃗2 which act on both the f0L(y) component of this solution and on the ψ0L(xµ) com-

ponent of the solution. This is different from the isotropic 4 + 1-dimensional Klein-Gordon

equation (3.60). It follows that using separation of variables in (6.12) will no longer work.

For any solution f0L(y)ψ0L(xµ) to (6.12), we can use unbroken 3 + 12-dimensional Poincaré

invariance to expand ψ0L(xµ) in terms of plane waves

ψ0L(xµ) =
∑∫

d4 p0 e−i(ω0t−p⃗0·x⃗)ψ0L(pµ0), (6.13)

where the coefficient

ψ0L(pµ0) =
1

(2π)4

∫
d4x ei(ω0t−ip⃗0·x⃗)ψ0L(xµ) (6.14)

and the allowed values of pµ0 are determined by substituting this expansion into (6.12). At

this stage, before finding the allowed values of pµ0, we must be clear that pµ0 cannot be a

function of y.

First, if pµ0 depends on y then (6.13) will imply that ψ0L(xµ) depends on y and our interpre-

tation of the Kaluza-Klein tower (4.7), as a projection of the solution Ψ(xM) to the 4 + 12-



6.3 Fermions 149

dimensional Dirac equation down onto a space of 3 + 12-dimensional spinors ψnL/R(xµ)

using a complete basis for C(y), is incorrect. This will mean there is a logical inconsistency

in our theory.

Second, there will be phenomenological problems for our domain-wall brane model because

when the brane is created by a soliton it has finite width. For the analytic solution given

in (6.5) this width is characterized by 1/u. If pµ0 depends on y then a particle which starts

on the y < 0 side of the brane and propagates minutely in the y-direction to the y > 0 side

will experience a sudden change in energy or momentum p⃗0. This is particularly true if pµ0

depends in any way on the derivative ∂yϕ(y) of the topological defect which is large around

y = 0 because ϕ(y) is varying rapidly at the location of the wall. Shrinking the width of

the wall will make the gradient of ϕ(y) larger around y = 0 and make any dependence of

pµ0 on precise y-coordinate location more pronounced. With this assumption we derive the

dispersion relations:

0 =
[
ω2

0 − α2
(
p⃗2

0

)2
]

f0L(y) + p⃗2
0

[
2α2∂2

y + 2αgϕ(y) − β2
]︸                        ︷︷                        ︸

o1

f0L(y)

−
[(
α∂2

y + gϕ(y)
)2 − β2∂2

y + gβ
(
∂yϕ(y)

)]
︸                                            ︷︷                                            ︸

o2

f0L(y). (6.15)

For this dispersion relation to be y-independent f0L(y) will have to be an eigenfunction

of both o1 and o2. Although we are free to choose any complete basis we like, there is

no function f0L(y) which is a simultaneous eigenfunction of both the operators o1 and o2.

Thus we have a contradiction. There is no ‘zero-mode’ solution to the 4 + 12-dimensional

Dirac equation and hence no candidate 3+ 12-dimensional left-chiral fermion at any energy

regime.5

We follow the source of this problem back to the higher spatial derivative appearing in

the kinetic terms in the Klein-Gordon equation. These higher spatial derivative operators

include terms like 2α2∂2
y∇⃗2 which acted on both f0L(y) and ψ0L(xµ) and, ultimately, caused

the operator o1 to appear in (6.15). Since the problem is due to the kinetic operator in the

5It is also possible to establish that there is no ‘zero-mode’ solution to the 4+12-dimensional Dirac equation
by direct computation. This is most easily accomplished in the Weyl basis. When the Kaluza-Klein ‘zero-
mode’ ansatz, Ψ0L(xM) = f0L(y)ψ0L(xµ), is substituted into the Dirac equation (6.10) inconsistent equations are
generated.
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Klein-Gordon equation (6.11) it cannot be fixed by adding additional interaction terms to

(6.10). These higher spatial derivative terms will be present in any 4+1z-dimensional SO(4)

invariant model with z ≥ 2. They are uniquely fixed by SO(4) spatial rotational invariance,

so the culprit in this theory is spatial dimensional democracy.

6.4 Breaking spatial isotropy

If we intend to project out effective 3 + 12-dimensional left-chiral fermions via Kaluza-

Klein decomposition then we cannot treat all four spatial dimensions symmetrically. This

immediately prompts us to consider the alternative compact extra-dimensions paradigm.

Consider a model where space-time is a direct-product of a 3 + 1-dimensional manifold,

M4, and a compact extra-dimension with an orbifolding symmetry (the extra dimension

is identified into cosets S 1/Z2). Equip the space M4 × S 1/Z2 with a preferred foliation

into constant time sheets and impose anisotropic scaling characterized by critical exponent

z = 2.

As before the standard tactic for recovering 3+ 1-dimensional chiral fermions is to Kaluza-

Klein mode expand Ψ(xµ, y) using a complete set { fnL/R(y)} of eigenfunctions of the y-

dependent component of the Dirac equation. The crucial difference is that the boundary

conditions are fixed by periodicity with respect to y of the wave-function and the trans-

formation of the spinor under the orbifolding symmetry. In the isotropic space-time case

these boundary conditions eliminate the right-handed zero mode profile function and 3+ 1-

dimensional chirality discriminating physics is again an emergent low energy phenomenon.

Unfortunately the conceptual differences between compact and infinite extra-dimensions

change the boundary conditions for the Euler-Lagrange equations rather than the form of

the kinetic operator. Because compact extra-dimension models still rely on the existence of

a separable solution f0L(y)ψ0L(xµ) to the Klein-Gordon equation (6.11) they will encounter

similar problems.

The only option left is to strongly break 4 + 1-dimensional Lorentz invariance to SO(3)

spatial rotational invariance. If we keep our anisotropic scaling with z = 2, we can write

down a Dirac action with a separable free particle dispersion relation. The most general
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action consistent with this condition is,

S =
∫

d5x
[
ΨiΓ0∂tΨ + iβΨΓi∂iΨ + αΨΓ

0∇⃗2Ψ + λΨ∂2
yΨ − gϕΨ(1 + δ1Γ

0 + ϵ1Γ
5)Ψ

−hϕ2Ψ(1 + δ2Γ
0 + ϵ2Γ

5)Ψ + k∂iϕΨ(1 + δ3Γ
0 + ϵ3Γ

5)ΓiΨ
]
.(6.16)

Again to make the analysis simpler and to set the problem up so that we can directly compare

our results to previous cases given in this chapter, we look at an action with the simple

Yukawa couplings 6

SΨ =
∫

d5x
[
ΨiΓ0∂tΨ + iβΨΓi∂iΨ + αΨΓ

0∇⃗2Ψ + λΨ∂2
yΨ − gϕΨΨ

]
. (6.17)

The derived Dirac equation is:

[
iΓ0∂t + iβΓi∂i + αΓ

0∇⃗2 + λ∂2
y − gϕ(y)

]
Ψ(xM) = 0. (6.18)

In constructing (6.17) we have deliberately multiplied the differential operator ∇⃗2 by a ma-

trix which anti-commutes with Γ5. This matrix cannot be Γ1, Γ2 or Γ3 because we are

demanding SO(3) rotational invariance, therefore it must be Γ0. We need to introduce this

matrix operator for two reasons. First, because it engineers a Klein-Gordon equation which

has a separable solution of the form Ψ0L(xM) = ψ0L(xµ) f0L(y). Explicitly the form of the

Klein-Gordon equation is

[
−

(
i∂t + α∇⃗2

)2 − β2∇⃗2 +
(
λ∂2

y − gϕ(y)
)2 − β2∂2

y − βγ5
(
∂ygϕ(y)

)]
Ψ(xM) = 0. (6.19)

There are no operators in (6.19) which operate on both the xµ and y coordinate spaces

simultaneously.

Second, to enable the effective 3 + 12-dimensional theory to be chiral, we need the left-

and right-chiral components of the zero mode to be independent solutions of (6.18). We

6Also we are mindful that the Klein-Gordon equation is derived from the action (6.16) where all interaction
terms contains operators like 2gδ1ϕ(y)∇⃗2. As a consequence of these cross terms which mix y-dependent
quantities with 3-dimensional spatial derivatives, the vector p⃗0 describing the zero-mode particle’s momentum
in the 3-dimensional spatial subspace will depend on the particle’s location in the extra dimension. This will
create a logical inconsistency in our Kaluza-Klein analysis entirely analogously to the spatially isotropic 4+12-
dimensional scenario.
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can then arrange for the right-chiral profile function f0R(y) not to belong to C(y) so that

the right chiral ‘zero mode’ is excluded from the Kaluza-Klein tower. We collect the xµ-

coordinate space differential operators in (6.18) and interpret the 3 + 12-dimensional zero-

mode massless spinor to be the solution of

[
iγ0∂t + iβ

(
γ1∂1 + γ

2∂2 + γ
3∂3

)
+ αγ0∇⃗2

]
ψ0L/R(xµ) = 0. (6.20)

It is easy to check that ψ0L(xµ) and ψ0R(xµ) will be independent solutions to (6.20) only

when the ∇⃗2 differential operator term in (6.20) is multiplied by γ0.

After using (6.20) to simplify the algebra we find that Ψ0L/R(xM) = f0L/R(y)ψ0L/R(xµ) will

be a solution to (6.18) if

0 = λ∂2
y f0L(y) − β∂y f0L(y) − gϕ(y) f0L(y),

0 = λ∂2
y f0R(y) + β∂y f0R(y) − gϕ(y) f0R(y). (6.21)

If we make the substitution f0L/R(y) = e±βy/2λF0L/R(y) then these equations can be converted

into a time independent Schrödinger equation for F0L/R(y):

[
−∂2

y +
g
λ
ϕ(y) +

β2

4λ2

]
F0L/R(y) = 0. (6.22)

We observe that for the kink form of ϕ(y) given in (6.5) and parameters belonging to the

open set 4gvλ > β2, the solution F0L/R(y) to (6.22) describes a freely propagating particle

in the region y < u arctanh(−β2/4gvλ) which is incident on a potential barrier for y >

u arctanh(−β2/4gvλ). Because all numerical solutions have the same kink like behaviour

we can extend this analysis to cover all domain-wall branes. We treat the analytic case here

because it has a closed form expression for the location of the potential barrier in (6.22). We

can use the WKB method to find an approximate solution to (6.22) and write the zero-mode

profile functions in terms of our analytic solution (6.5) for ϕ(y), as

f0L/R(y) ≈ (6.23)

e±βy/2λ


4
√

4λ2

4λgϕ(y)+β2 e−
∫ y

u arctanh(−β2/4gvλ)
dy′
√

gϕ(y′)/λ+β2/4λ2
: y > u arctanh(−β2/4gvλ)

4
√

4λ2

−β2−4λgϕ(y) e
i
∫ y

u arctanh(−β2/4gvλ)
dy′
√
−β2/4λ2−gϕ(y′)/λ : y < u arctanh(−β2/4gvλ).
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This approximation breaks down at the cusp of (6.23), y = u arctanh(−β2/4gvλ). Pro-

vided β > 0, the profile function f0R(y) grows exponentially as y → −∞ and the right

handed ‘zero mode’ will not belong to our Kaluza-Klein tower. In addition f0L(y) satisfies

limy→±∞ f0L(y) = 0. This follows from substituting the asymptotic form limy→±∞ ϕ(y) →

±gv for the analytic kink ϕ(y) given in (6.5) into the expression for f0L(y) in (6.23) and

taking the appropriate limits. The left chiral profile function f0L(y) decays exponentially in

both directions and therefore given ϵ > 0, ∃y(ϵ) such that | f0l(y)| < ϵ, ∀|y| ≥ y(ϵ) and on the

compact region |y| < y(ϵ) we can argue that f0L(y) is continuous and hence attains a finite

maximum. Thus f0L(y) is bounded.

Now we can solve (6.20) to obtain the form of the 3 + 12-dimensional spinor ψ0L(xµ). We

choose to write the full result for the left-chiral zero mode in terms of the solution for f0L(y)

given in (6.23) as:

Ψ0L(xM) = N f0L(y)

χ+0
 e−i(ω0t− p⃗0·x⃗), (6.24)

where N is a normalization constant, the two component column vector χ+ is the eigenstate

of the helicity operator7 corresponding to σ⃗ · p⃗0χ+ = | p⃗0|χ+, the lower two components

of the four component spinor are zero and the energy and momentum of the plane wave

pµ0 =
(
ω0, p⃗0

)
is fixed by the dispersion relation,

(
ω0 − αp⃗2

0

)2 − β2 p⃗2
0 = 0, (6.25)

which is derived by substituting this solution into the Klein-Gordon equation (6.19).

This energy-momentum relation for the 3 + 12-dimensional subspace no longer depends on

y.

However, if we derive the free scalar field Klein-Gordon equation directly from a z = 2,

SO(3) invariant action for ϕ(xM), then we will arrive at

∂2
t −

a2
1

Λ2

(
∇⃗2

)2 −
a2

2

Λ2 ∂
4
y −

a2
3

Λ2 ∂
2
y∇⃗2 − c2

1∇⃗2 − c2
2∂

2
y

 ϕ(xM) = 0. (6.26)

7The helicity operator gives the component of the spin of ψ0L(xµ) in the direction of propagation in the
3-dimensional x⃗ coordinate space. It is defined in terms of a vector of Pauli matrices σ⃗ = (σ1, σ2, σ3) and the
particle’s 3-momentum, p⃗0, as σ⃗ · p⃗0/| p⃗0|.
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The domain-wall brane (6.5) will still be a solution to (6.26). In fact in the spatially

anisotropic scenario where Lorentz invariance is broken directly to SO(3) spatial rotational

invariance, and the real scalar field Klein-Gordon equation (involving self interaction terms)

has the form,

∂2
t ϕ −

a2
1

Λ2

(
∇⃗2

)2
ϕ −

a2
2

Λ2 ∂
4
yϕ −

a2
3

Λ2 ∂
2
y∇⃗2ϕ − c2

1∇⃗2ϕ − c2
2∂

2
yϕ −

b1

2Λ3ϕ
2∇⃗2ϕ

− b1

2Λ3ϕ∇⃗ϕ · ∇⃗ϕ −
b2

2Λ3ϕ
2∂2

yϕ −
b2

2Λ3ϕ∂yϕ∂yϕ −
g6

5!Λ4ϕ
5 − g4

3!Λ
ϕ3 − g2ϕ = 0,(6.27)

our solitary wave domain-wall brane (6.5) will be a solution, provided the free parameters

satisfy (6.6) with the identifications a ≡ a2, c ≡ c2, and b ≡ b2.

From a comparison of (6.26) and (6.19) we infer that the fermions and bosons will now

propagate according to different dispersion relations. It is easy to check that if we insist on

writing down a Dirac equation for which the solutions Ψ(xM) are also solutions to (6.26)

for the case a3 = 0 (this will circumvent our previous problem of mixed partial derivative

operators) then we will have to use a 7-dimensional Clifford algebra. This forces the small-

est representation for our spinor Ψ(xM) to consist of 8-component column matrices and,

ultimately, once this Dirac equation has been solved we find that the ‘zero mode’ has too

many degrees of freedom to be given the interpretation of a massless chiral fermion.

6.5 Conclusions

In this chapter we have examined a 4 + 1z-dimensional Lifshitz scalar field theory, with

critical exponent z = 2.

We were motivated by the observation that 4 + 12-dimensional Lifshitz Yang-Mills gauge

theories can be power counting renormalizable, see section 3.8.3. We have laid the founda-

tions for ultraviolet complete domain-wall brane models and for further investigation into

trapping gauge bosons on a 4 + 12-dimensional Lifshitz brane through an analogue of the

Dvali-Shifman mechanism.

We recollect from section 3.6 that the Dvali-Shifman mechanism deals with trapping a U(1)

gauge boson on a 2 + 1-dimensional domain-wall brane. The mechanism is operative for
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a 3 + 1-dimensional Lorentz invariant SU(2) Yang-Mills gauge theory. The U(1) gauge

field becomes trapped as a result of non-perturbative dynamics in the bulk, when the bulk

is in a confinement phase of SU(2) with a mass gap. Lattice gauge simulations support the

hypothesis that the Dvali-Shifman mechanism can trap a U(1) gauge boson on a domain-

wall brane [LMRS04].

Lattice gauge stimulations for a Lorentz invariant 4 + 1-dimensional analogue of the Dvali-

Shifman mechanism are fundamentally limited by the fact that Lorentz invariant 4 + 1-

dimensional gauge theories are non-renormalizable.

We recognize Lifshitz anisotropic scaling can act as a regulator for 4 + 12-dimensional

Yang-Mills gauge theories. We were interested in this model primarily because it provides

an ultraviolet complete 4 + 12-dimensional Yang-Mills gauge theory which could be used

in conjunction with localization mechanisms in chapters 4 and 6 to provide a feasible, com-

plete brane-world model. In this scenario lattice gauge simulations can be used to test gauge

field localization in the limit of infinitesimal lattice spacing. However a proper treatment

of gauge field localization with the accompanying simulations is beyond the scope of this

chapter.

We have demonstrated that a topological defect in the scalar field can spontaneously con-

dense to form a domain-wall brane.

We considered the dynamics of a Lifshitz fermion in this background and showed that a 3+

12-dimensional left chiral Kaluza-Klein zero-mode fermion will become trapped on the wall

only when four fold spatial rotational invariance is strongly broken to three-fold rotational

invariance. So it is not possible to keep 4-dimensional spatial isotropy and localize a Kaluza-

Klein zero-mode candidate chiral fermions in 4+12-dimensional Lifshitz domain-wall brane

models. While we worked with z = 2 theory for simplicity, we do not expect the results to be

qualitatively different for the more realistic case of z = 4, necessary to have a renormalizable

quantum theory of gravity in 4 + 1-dimensions.

Many additional challenges remain before a realistic UV-complete domain-wall brane model

could be contemplated. These include the dynamical localization of gravity in some type of

Hořava-Lifshitz theory, and the incorporation of dynamically-localized gauge fields through
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the Dvali-Shifman mechanism, and supporting lattice stimulations.



7
Stability of the Lifshitz domain-wall brane

7.1 Introduction: the question of stability

The Lifshitz domain wall is topologically stable for the same reason the usual domain wall is

stable: the enforced discrete symmetry, when spontaneously broken, produces disconnected

vacua which serve as the boundary conditions for the domain-wall solution. The kink is a

mapping from the boundary of the real line, parameterizing the extra dimension, onto the

disconnected manifold {−v, v}. This mapping does not belong to the same topological class

as the spatially homogeneous vacua ϕ = ±v. Thus, the domain wall is prevented from

decaying to the lower-energy spatially-homogeneous vacua ϕ(xM) = ±v.

We have not analytically shown that our kink domain-wall brane is the lowest energy solu-

tion to the Euler-Lagrange equations satisfying these boundary conditions.

In the following discussion we guarantee the kink solution has finite 3 + 1-dimensional

energy density (energy per unit of 3-dimensional volume). Furthermore we show that the

kink is stable under perturbations corresponding to a contraction or dilation of the transverse

wall width. This suggests the kink is stable because perturbations which alter the profile

in any of the x⃗-coordinate directions are forbidden by SO(3)-rotational invariance. Our

background kink solution is invariant under 3-dimensional spatial rotations and there is no

preferred direction in the hyperplane orthogonal to the y-coordinate. Thus it does not make

sense to say a perturbation has formed along a specific direction in the x⃗-coordinate space

because all directions are relative to an arbitrary choice of reference axis [PV00].

157
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We are left with conjecturing about perturbations which do not deform the kink in any

direction perpendicular to the bulk coordinate axis and do not correspond to rescaling the

width of the domain wall. This means that we can only have perturbations which locally

deform the kink according to some nonlinear dependence on y. These are allowed because

translational invariance is spontaneously broken by the condensation of the kink.

We do not attempt a full perturbative stability analysis along the lines of chapter 5. We

therefore cannot address the most general case of a perturbation which depends nonlinearly

on the extra-dimensional coordinate y.

Instead, we concentrate on showing that Lifshitz topological defects in 4 + 12-dimensions

and 3 + 12-dimensions evade Derrick’s theorem.

Our aim is to highlight, in situ, information needed for the general discussion of stable

Lifshitz topological defects presented in chapter 8.

Our analytic kink (6.5) has finite 3 + 1-dimensional energy density given by

σ =
v2(−23g6v4 + 120Λ2(24a2u4 + Λ(v2(3bu2 − 5g4) − 45g2Λ + 30c2u2Λ)))

5400uΛ4 < ∞. (7.1)

Naturally if we integrate this quantity with respect to the 3-dimensional volume element to

obtain the total energy the answer will be infinite. This is the statement that domain-wall

branes are technically only solitons in 1+1-dimensions.

7.2 Derrick’s theorem for 4+12-dimensional Lifshitz scalar field

In fact, in isotropic 4 + 1-dimensional theories Derrick’s theorem [Der64] implies that all

static non-homogeneous1 solutions to the Klein-Gordon equation have infinite total energy,

independent of the precise set of self interaction terms in the action.

In Lifshitz theories the higher spatial derivatives change the scaling properties of the energy

functional. Effectively the higher spatial derivatives stabilize these perturbations and Der-

rick’s theorem can be evaded. This means we cannot rule out finite total energy solutions to

1We note that the qualification that flat vacuum solutions ϕ = ±v which have trivial xi-dependence evade
Derrick’s theorem.
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the Klein-Gordon equation in Lifshitz theories. However a finite total energy solution can-

not be homogeneous on 3+ 1-dimensional hyperplanes. Thus, if we wish to avoid breaking

3-dimensional spatial rotational invariance, then it will have to be radially symmetric and

will therefore correspond to a point-like topological defect. This configuration cannot pro-

vide a 3 + 1-dimensional brane. We find the prospect fascinating for other reasons but have

delayed a full investigation to chapter 8.

The higher spatial derivatives in Lifshitz theories also modify the virial theorem. For a

1+1-dimensional, solitary wave solution ϕ0(y) to the Klein-Gordon equation (6.4), there is a

(virial) relation between the contribution to the energy density from the gradient of the field,

and from the potential energy density. This can be derived from the total 3 + 1-dimensional

energy density. If we assume that all boundary terms which arise from integration by parts

are zero, then the 3 + 1-dimensional energy density is given by

σ[ϕ0(y)] =
∫

dy
a2

2Λ2 (∂2
yϕ0)2︸                 ︷︷                 ︸

S̃ 1

+

∫
dy K̃0∂

2
yϕ0︸          ︷︷          ︸

S̃ 2

+

∫
dy Ṽ0︸   ︷︷   ︸
S̃ 3

= S̃ 1 + S̃ 2 + S̃ 3, (7.2)

where

K̃0 =
b

12Λ3ϕ
3
0 +

c2

4
ϕ0

Ṽ0 =

[g2

2
ϕ2

0 +
g4

4!Λ
ϕ4

0 +
g6

6!Λ4ϕ
6
0

]
. (7.3)

The virial relation is derived by rescaling the solution ϕ0(y) → ϕ0(ky) and computing
∂σ[ϕ0(ky)]

∂k

∣∣∣∣
k=1
= 0. This result is a direct consequence of requiring that any static solitary

solution, ϕ0(y), extremizes the energy density. Here the virial relation is

3S̃ 1 + S̃ 2 = S̃ 3. (7.4)

Using this information in the second derivative ∂2 σ[ϕ0(ky)]
∂k2

∣∣∣∣
k=1

we find that

∂2 σ[ϕ0(ky)]
∂k2

∣∣∣∣∣∣
k=1
= 18S̃ 1 + 2S̃ 2. (7.5)
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Provided b > 0 the integrands of S̃ 1, S̃ 2 can be written as the sum of perfect squares2,

so that the second derivative must be strictly positive. As a corollary a 1+1-dimensional,

solitary wave solution ϕ0(y) to the Klein-Gordon equation (6.4) is stable under perturbations

corresponding to a contraction or dilation of the transverse wall width.

7.3 Derrick’s theorem for a 3 + 12-dimensional real scalar field

We can repeat this exercise for a 3 + 12-dimensional Lifshitz scalar field theory. In 3 + 1-

dimensions with dynamical critical exponent z = 2 a weighted power-counting renormaliz-

able action includes the marginal and relevant operators

ϕ̇2 (7.6)

(∇⃗2ϕ)2 (7.7)

ϕn∇2ϕ, with 0 ≤ n ≤ 5 (7.8)

ϕm, with 0 ≤ m ≤ 10. (7.9)

The relevant subleading operators explicitly, but softly, break the anisotropic scale invari-

ance. We include them because they do not destroy the “good renormalization” properties

of the Lifshitz scalar field theory.

Assuming we can discard all total derivative terms, the most general action may be com-

pactly written as

S =
∫

d3x dt
[
1
2
ϕ̇2 − 1

2
(∇2ϕ)2 − K∇2ϕ − V

]
, (7.10)

where K∇2ϕ is taken to be a general linear combination of the terms (7.8), and the potential

V(ϕ) is a general linear combination of (7.9). Here we choose to keep K and V completely

general. We can recover the relativistic speed of light parameter, c, as the coefficient of the

n = 1 term inside K.

If we apply the principle of stationary action, then we arrive at the 3 + 12-dimensional

2This is most easily seen by undoing the integration by parts to get S̃ 1 + S̃ 2 =
∫

dy a2

2Λ2 (∂2
yϕ0)2 +∫

dy c2

2 (∂yϕ0)2 + b
4Λ3 (ϕ0∂yϕ0)2.
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dynamical equations

ϕ̈ + ∇2(∇2ϕ) − Kϕϕ∇ϕ · ∇ϕ − 2Kϕ∇2ϕ + Vϕ = 0. (7.11)

For certain cases, like K(ϕ) = 2
R2v2 (4ϕ − 3v) (ϕ − v)2 and V = K2/2, this equation pos-

sesses a static solution ϕ0. We will demonstrate a numerical solution to (7.11), under these

circumstances, in section 8.2.1.

The energy functional for this static solitary wave is

E[ϕ] =
∫

d3x
[
1
2

(∇2ϕ0)2 + K0∇2ϕ0 + V0

]
= S 1 + S 2 + S 3. (7.12)

Applying the variation ϕ0(x⃗)→ ϕ0(kx⃗) = ϕ(ξ) to (7.12) we obtain

Ek[ϕ] = kS 1 + k−1S 2 + k−3S 3, (7.13)

where S 1 ≡
∫

d3x dt (∇2ϕ0)2/2 and S 2 ≡
∫

d3x dt K0∇2ϕ0. This implies the virial relation

S 1 − S 2 − 3S 3 = 0. (7.14)

The second-order variation is now equal to 2S 2 + 12S 3 = 4S 1 − 2S 2 by the virial relation.

Because this quantity can be either positive or negative (depending on the precise forms of

both K and V) Derrick’s theorem does not apply to the z = 2 Lifshitz case. A good place

to start looking for stable Lifshitz defects is K = ϕ5, which sees S 2 turn into an integral

of the negative-definite function −ϕ4∇ϕ · ∇ϕ after integration by parts. Alternatively the

simple case K = 0 has a positive second-order variation because S 2 = 0. The higher-

derivative terms tend to stabilise scalar-field solitons. This result is also encountered in the

(relativistic) Skyrme model [Sky62].

7.4 Conclusions

In this chapter we developed a partial formalism for examining the stability of a Lifshitz

domain-wall brane in 4 + 12-dimensions. We proved that the 4 + 12-dimensional domain-

wall brane is stable against perturbations which break 3-dimensional spatial rotational in-
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variance, and against contractions which shrink the transverse wall width. However we

did not rule out perturbations which are a general nonlinear function of the fifth coordinate

y ≡ x5; this is beyond the scope of our current analysis.

Derrick’s theorem shows relativistic field theories in d > 2 spatial dimensions do not support

finite energy, stable, static defects. During our stability analysis we discovered that 3 + 1

and 4 + 1-dimensional Lifshitz field theories with critical exponent z = 2, are exempt from

Derrick’s theorem. This opens up the intriguing possibility that the breakdown of Lorentz

invariance in the ultraviolet may leave hallmark signatures like cosmic relics which are

readily observable at any energy scale.

In the next chapter we present an in depth perspective on this issue.



8
BPS solitons in Lifshitz field theories

8.1 Introduction

The concept of stable static 3+1-dimensional Lifshitz topological defects is intriguing. If

Hořava’s Lifshitz anisotropic scaling is the natural regulator for quantum gravity, then it

is reasonable to assume quantum field theories may also exhibit anisotropic scaling in the

deep ultraviolet (UV) regime.

In chapter 7 we showed that Lifshitz scalar field theories in 3 + 1-dimensions with critical

exponent z = 2 evade Derrick’s theorem and therefore are not fundamentally prohibited

from having stable, static, finite-energy topological defects. However, evasion of Derrick’s

theorem does not prove that solitons actually exist. We argued in chapter 7 that applying a

nonlinear perturbation (outside of the field variations considered in Derrick’s theorem) may

still cause the candidate soliton to spontaneously relax into a lower energy configuration.

Therefore we turn to explicit computations.

In this chapter, we explicitly show examples of stable, finite energy, static Lifshitz solitons.

We specifically choose to work with a 3 + 12-dimensional Lifshitz scalar field theory. Here

by 3+ 12-dimensional field theories we mean a 3+ 1-dimensional Lifshitz field theory with

critical exponent z = 2 .

We study z = 2 models because they lead to the simplest differential equations. It would be

more realistic to work with critical exponent z = 3, which is featured in Hořava’s quantum
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gravity model. However the former choice z = 2 introduces fourth-order spatial deriva-

tives, while the latter choice z = 3 leads to sixth order differential equations. It is suffi-

cient to demonstrate that Derrick’s theorem is violated in z = 2 scenarios, and that 3 + 12-

dimensional field theories support finite energy, stable, static topological defects. This result

will presumably generalize to an arbitrary z > 1 scenario.

In general, Lifshitz theories are much more difficult to analyze than the usual second-order

relativistic theories. However we can simplify the calculations by using the field theory

analogue of Hořava’s “detailed balance” condition [Hor10]. This is the Lifshitz version of

the Bogomolnyi-Prasad-Sommerfield (BPS) [Bog76, Pra75] superpotential scenario. We

choose to work with Lifshitz BPS (BPS) models because it allows us to reduce the dynam-

ical equations back to second-order. This approach will greatly simplify the analysis in this

chapter. The paper [KV11] further motivates the Lifshitz BPS approach by highlighting

the connection between BPS systems and stochastic quantisation. We also note it creates

parallels between our work and supersymmetry.

Here we warm up with the canonical example of a non-topological Lifshitz point-like defect.

We then derive both “hedgehog” defects and string-like solitons, which we can call “Lifshitz

poles (L-poles)” and “Lifshitz strings (L-strings)”, respectively.

Derrick’s theorem [Der64] tells us that there is no analogue for these solitons in standard

second-order Lorentz-invariant 3 + 1-dimensional field theories.

As such the discovery of cosmic relics such as L-poles and/or L-strings would be a strong

fundamental argument for Lifshitz anisotropic scaling replacing standard Lorentz invariance

at short distances.

There are many potential observational signatures for Hořava Lifshitz quantum point gravity

in the UV regime, for instance delays in the arrival time for very high energy cosmic ray

events. However no strong consensus has been reached as to whether Lifshitz scaling or

Lorentz invariance accurately describes the UV regime.

Observational evidence of cosmological relics which are inexplicable by standard Lorentz

invariant field theories would be a strong signature of new physics.
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In the next section we derive the Lifshitz BPS equation. Subsequently we use special cases

of this equation to find Lifshitz BPS topological defects. In section 8.3 we clearly show the

BPS condition is a convenience not a necessary condition for Lifshitz solitons. We do this

by numerically solving a general non-BPS fourth-order system. Our finite-energy solution

to this system constitutes an existence proof. The final section provides a conclusion.

8.2 The Lifshitz BPS soliton solutions

We need to develop the Lifshitz BPS description. We devote this section to writing down

an explicit Lifshitz BPS model. This will allow us to clarify our terminology.

Box 8.1: We first examine standard relativistic 3 + 1-dimensional BPS scenarios with action

S [ϕ] =
∫

dx dt
[
1
2

(
∂µϕ

)2
+ V(ϕ)

]
, (8.1)

In the special case where the potential, V(ϕ), is a function of the superpotential W

V(ϕ) =
1
2

(
dW(ϕ)

dϕ

)2

. (8.2)

Here the integrand of the energy density,

E[ϕ] =
∫

dx

1
2

(
dϕ
dx

)2

+ V(ϕ)

 , (8.3)

can be factorized according to

E[ϕ] = ∓ [
W (ϕ(x = +∞)) −W (ϕ(x = −∞))

]
+

∫ +∞

−∞
dx

(
dϕ
dx
± dW

dϕ

)2

. (8.4)

Because the integrand of (8.4) is positive definite, for given boundary conditions it is easy to see

that the minimum energy static solution to the Euler-Lagrange equations, arising from applying

Hamilton’s principle to the action (8.1) satisfies

dϕ
dx
± dW

dϕ
= 0. (8.5)

These solutions are stable BPS solitons.
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Lifshitz field theories can emulate the above whenever we impose the condition,

V(ϕ) =
1
2

K(ϕ)2, (8.6)

in the Lifshitz 3 + 12-dimensional action given in (7.10).

Under these circumstances the fundamental theorem of calculus tells us that the superpo-

tential W is the indefinite integral of K with respect to ϕ. It is conventional to negate the

above relation so that K = −Wϕ.

The energy functional is a linear combination of perfect squares, with positive coefficients,

E[ϕ] =
∫

d3x
[
1
2
ϕ̇2 +

1
2

(
∇⃗2ϕ + K(ϕ)

)2
]
. (8.7)

Therefore static solutions, ϕ0, to the dynamical equations (7.11) which minimize the energy-

density satisfy

ϕ̇0 = 0, ∇⃗2ϕ0 + K0 = 0. (8.8)

In fact solutions ϕ0 of (8.8) have zero energy-density.

We briefly characterize the vacuum of the Lifshitz BPS system. Using the condition (8.6)

in (7.11) we find that

ϕ̈ + ∇2(∇2ϕ) − Kϕϕ∇ϕ · ∇ϕ − 2Kϕ∇2ϕ + KϕK = 0. (8.9)

Clearly the static homogeneous solutions of (8.9) are ϕ0 = v such that KϕK|ϕ0=v= 0. These

solutions minimize the potential. This requires either Kϕ|ϕ0=v= 0 and/or K|ϕ0=v= 0.

Now if K|ϕ0=v, 0 then we cannot have ∇⃗2ϕ0 +K|ϕ0= 0. However the homogeneous vacuum

always minimizes the energy-density and therefore must solve (8.8). Therefore the vacuum

ϕ0 = v occurs if and only if K|ϕ0=v = 0. Lifshitz BPS solutions for the allowed models are

degenerate with the vacua, and hence at least perturbatively stable.
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Figure 8.1: Numerical solution for the non-topological BPS L-pole corresponding to the
choice of K given in (8.13) with λ = v = 1.

8.2.1 Non-topological BPS L-pole

Let us examine some specific examples of Lifshitz BPS solitons. We begin with an Lifshitz

BPS point-like defect. This is the easiest possible example: a non-topological defect which

introduces a single radially symmetric field ϕ = ϕ0(r).

In spherical polar coordinates the dynamical equation for the Lifshitz BPS non-topological

point-like soliton arise from the specific case of (8.8), where:

(
2
r

d
dr
+

d2

dr2

)
ϕ0(r) = −K (ϕ0(r)) . (8.10)

We are looking for a solution ϕ0 which asymptotically approaches a finite value v as r → ∞.

For the special choice of free parameters in the Lifshitz potential (8.6) corresponding to

K(ϕ) =
2

R2v2 (4ϕ − 3v) (ϕ − v)2 , (8.11)

equation (8.10) has an analytic solution

ϕ0(r) =
vr2

R2 + r2 , (8.12)
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where R is a parameter that sets the characteristic size of the defect. Notice we have allowed

the Lifshitz potential (8.11) to be fine tuned, thereby arranging for an analytic solution

(8.12). This is natural because for any differential equation an analytic solution only exists

on a thin slice of the parameter space. The dimensions of this slice are set by the number

of unfixed parameters in the analytic solution. In (8.12) the free parameters are R and v,

making the slice 2-dimensional.

In general, other forms of the potential (8.6) also can lead to soliton solutions to the Lifshitz

BPS equation (8.10). However more general scenarios will necessitate numerical solutions.

In Figure 8.1 we give an example of a non-topological BPS L-pole found by numerically

solving (8.10) when

K(ϕ) = λϕ(ϕ2 − v2)2. (8.13)

For this choice of K we are not aware of any analytic solution.

8.2.2 Topological BPS L-pole or hedgehog

Our second example is an Lifshitz BPS hedgehog. Recollect from subsection 3.4.4 that a

hedgehog solution requires us to introduce a triplet of scalar fields ϕ⃗ = (ϕi), i = 1, 2, 3.

This triplet transforms as a vector under a 3-dimensional representation of O(3). We work

with an O(3) invariant action such that the corresponding energy functional for the static

configuration is

E[ϕ⃗] =
∫

d3x
[
∇⃗2ϕi + ϕiF(ϕ⃗ · ϕ⃗)

] [
∇⃗2ϕi + ϕiF(ϕ⃗ · ϕ⃗)

]
, (8.14)

where we have summed over contracted indices and

F = λ(ϕ⃗ · ϕ⃗ − v2)2. (8.15)

Notice that for the special choice, (8.15), of free the parameters for our potential V = ϕ⃗·ϕ⃗F2,

the scalar fields ϕ⃗ acquire a vacuum expectation value which breaks O(3) → O(2). Again

we have a Lifshitz generalization of the conditions needed to recreate the hedgehog solution

in subsection 3.4.4.
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The hedgehog ansatz in spherical polar coordinates is

ϕ⃗(r, θ, ψ) = h(r) (sin θ cosψ, sin θ sinψ, cos θ). (8.16)

The Lifshitz BPS equations ∇⃗2ϕi + ϕiF = 0 reduce to

d2h
dr2 +

2
r

dh
dr
− 2

h
r
+ λh(h2 − v2)2 = 0. (8.17)

This is actually a straightforward generalization of Polyakov’s original monopole [Pol74]

to include fifth-order non-derivative terms. These appear in Lifshitz BPS hedgehog equa-

tions, because the Lifshitz weighted power counting conventions extend the normal range

of power counting renormalization to 10th order interaction terms.

In Figure 8.2 we demonstrate a numerical solution which is regular at the origin and asymp-

totes to the vacuum expectation value ϕ⃗vac = v (sin θ cosψ, sin θ sinψ, cos θ) breaking O(3)

to O(2).
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Figure 8.2: Numerical solution to (8.17) with λ = v = 1.
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8.2.3 Topological BPS L-string

We also explicitly demonstrate the existence of a BPS L-string. These defects arise from a

Lifshitz 3 + 12-dimensional complex scalar field Φ, whose action and energy functional

E[Φ⃗] =
∫

d3x
[
∇⃗2Φ∗ + λΦ∗(Φ∗Φ − v2)2

] [
∇⃗2Φ + λΦ(Φ∗Φ − v2)2

]
, (8.18)

are invariant under a global phase symmetry Φ→ eiαΦ.

Notice that the vacuum, which can be any state in the vacuum manifold {eiαv|α ∈ (0, 2π)},

breaks the U(1) phase symmetry.

In cylindrical coordinates (ρ, θ, z), the topological global string ansatz is

Φ(ρ, θ) = eiθ f (ρ), (8.19)

where the string defines the z-axis.

Substituting this ansatz into the Lifshitz BPS string dynamical equations ∇⃗2Φ + λΦ(Φ∗Φ −

v2)2 = 0 leads to
d2 f
dρ2 +

1
ρ

d f
dρ
− f
ρ2 + λ f ( f 2 − v2)2 = 0. (8.20)

In Figure 8.3 we demonstrate a numerical string solution to (8.20) which asymptotes to the

vacuum Φvac = eiθv and is regular at the origin.

8.3 General Lifshitz systems

Up to this point we have considered only Lifshitz BPS solitons. We have chosen to investi-

gate BPS systems because the differential equations are easier and solutions are degenerate

in energy with the vacuum. This means a full stability analysis is not necessary. In particu-

lar to examine the stability of the non-topological Lifshitz BPS point-like defect we would

need to develop a fourth-order linear stability formalism.

In this section we provide a numerical solution for a non-BPS Lifshitz hedgehog. We in-

clude this solution because it shows that the BPS condition was not essential for creating
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Figure 8.3: Numerical solution to (8.20) with λ = v = 1.
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Figure 8.4: Numerical solution to (8.22) with λ = v = 1.
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Lifshitz topological defects.

In particular we choose the explicitly non-BPS combination K = 0 and

V =
λ

10

(
ϕ⃗ · ϕ⃗ − v2

)5
. (8.21)

The dynamical equations, using the ansatz (8.16), are

d4h
dr4 +

4
r

d3h
dr3 −

4
r2

d2h
dr2 + λh(h2 − v2)4 = 0. (8.22)

In Figure. 8.4 we give a numerical solution for h(r) which is regular at the origin and asymp-

totes to v . This configuration is topologically stable.

8.4 Conclusions

In this chapter we have demonstrated finite-energy, static soliton solutions to 3+1-dimensional

Lifshitz dynamical field equations with critical exponent z = 2. These solitons are not pos-

sible in standard 3 + 1-dimensional relativistic field theories.

We worked primarily with the Bogomolnyi-Prasad-Sommerfield conditions which allowed

us to simplify the 4th order 3 + 12-dimensional Lifshitz dynamical equations. Solutions to

the Lifshitz BPS equations have the dual advantages:

• A 3 + 12-dimensional Lifshitz BPS solution can be found by solving second order

differential equations.

• Lifshitz BPS solutions are degenerate in energy with the vacuum and therefore per-

turbatively stable.

Explicitly we showed instances of a Lifshitz BPS non-topological point-like defect as well

as an Lifshitz BPS hedgehog and an Lifshitz BPS string defect. These solutions constitute

an existence proof that finite energy (actually zero energy-density), stable, static Lifshitz

defects exist in 3 + 1-dimensions when the Lifshitz critical exponent z = 2.

Furthermore we demonstrated a numerical solution for a Lifshitz hedgehog soliton in a non-
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BPS scenario. We clarify that the BPS condition was chosen for convenience rather than

necessity. The condition was also chosen because there is a very nice connection with the

bosonic sectors of supersymmetric theories that are themselves related to a stochastic field

theory in one higher dimension. This connection is described in [KV11].

The observation of cosmic relics in the form of Lifshitz solitons would be a clear sign

that the standard Lorentz invariant description of quantum field theory breaks down in the

ultraviolet regime. Our motivation for studying Lifshitz topological defects was that, if

Hořava’s proposal of a Lifshitz quantum point gravity is correct, then it is natural to assume

that quantum field theory may also exhibit Lifshitz anisotropic scaling in the ultraviolet

regime. In this scenario these finite-energy defects would be a powerful diagnostic tool for

detecting the ultraviolet behavour of both quantum gravity and field theory.
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9
Symmetry breaking, subgroup embeddings and the Weyl

group

9.1 Introduction

The final result we wish to present in this thesis is a description of the symmetry breaking

patterns for the adjoint representation of a Lie group G. Specifically we describe how (and

when) the vacuum expectation values (vevs) of a collection of symmetry breaking fields,

which cause an internal symmetry, G, to break along a chain of subgroups G ⊃ H1 ⊃ · · · ⊃

Hl, can be written as a linear combination of an equivalent set of vevs which break G to

an isomorphic but differently embedded subgroup chain G ⊃ gH1g−1 ⊃ · · · ⊃ gHlg−1, for

some g ∈ G. For the special case of the subgroup, H, which stabilizes the highest weight of

the lowest dimensional fundamental representation, we highlight a simple method for con-

structing linear combinations relating vevs which pick out differently embedded isomorphic

copies of H.

More generally we consider an arbitrary representation. For an explicit choice of Cartan

subalgebra h1, . . . hl we construct the subgroup chain G ⊃ H1 ⊃ · · · ⊃ Hl such that each Hi =

H′i ×U(1)H1 × · · · ×U(1)Hi includes U(1)H1,...,Hi factors generated by h1, . . . , hi, respectively,

and a semi-simple factor H′i . Under conjugations of the Lie algebra L by g ∈ G we give

results for how (and when) the Cartan subalgebra gh1g−1, . . . , ghlg−1 can be written as a

linear combination of h1, . . . , hl. We cover the special case of linear combinations relating

the generator h of the U(1)H factor in the subgroup, H = H′ × U(1)H , which stabilizes

175
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the highest weight of the representation. We also cover how to write the weights of vevs,

which break the symmetry to these differently embedded subgroups, as linear combinations

of each other.

On the level of the Lie algebraLG which generates G. We are only interested in embeddings

of Lie subalgebras LH , LgHg−1 ⊂ LG which are Cartan preserving. That is, given a Cartan

subalgebra CG for LG, the Cartan subalgebras for LH and for LgHg−1 are subspaces of

CG. In this context, we showed in section 3.11.5 that, the differently embedded isomorphic

subalgebras are related via Weyl group conjugation, that is, g ∈ W.

We contextualize our presentation by discussing current fields where these results are useful.

Symmetry breaking is a crucial aspect of modern particle physics. This makes our results

applicable to a diverse array of model building scenarios. These include, but are not limited

to, extra-dimensional models [SV04, DGK+08, DTVW02]. In particular:

• Our main motivation for studying this problem arises from a generalization of the

Dvali-Shifman mechanism [DS97], known as the Clash of Symmetries mechanism

[SV04, DGK+08, DTVW02].

• The “flipped” grand unified theories, explained in section 1.3, arise because of an

automorphism of the Dynkin diagram (implicitly an automorphism of the Dynkin

diagram gives an automorphism of the root system and therefore of the Lie algebra)

[Bar82, DKN84].

• The low energy limit of Yang-Mills gauge theory predicts the breakdown of Weyl

group symmetry in the effective QCD action [GN11, CKP06].

• Our results are also relevant to special cases of the “vacuum alignment” scenario.

Here multiple Higgs fields, Φ1,Φ2, . . . are introduced in the same representation.

These can acquire vevs ⟨Φ1⟩, ⟨Φ2⟩, . . . which break the gauge symmetry down to

isomorphic but differently embedded copies of a subgroup .

We review the clash of symmetries mechanism in subsection 9.2.1. For a balanced per-

spective, we briefly address the low energy limit of Yang-Mills theories in subsection 9.2.2

as well as the vacuum alignment scenarios in subsection 9.2.3.
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In section 9.3 we will state clearly the formula for recovering the adjoint Higgs vevs which

break G to different embeddings of a subgroup H as linear combinations of vevs breaking G

along the chain G ⊃ H1 ⊃ H2 ⊃ · · · ⊃ Hl. We also treat the relationship between the weights

of vevs causing G to break to different embeddings of a subgroup H, for a non-adjoint Higgs

field. The remaining sections contain case studies which physically contextualize the root

systems discussion in this paper and explicitly apply the formulas derived in section 9.3, as

well as the conclusion.

We will rely heavily on sections 3.9-3.11.5 from the Introduction. These contain technical

details necessary to understand the proof in section 9.3. In addition we adopt the notational

conventions outlined in chapter 2.

9.2 Motivation

We preface our analysis with a few short comments on its potential applications to model

building.

9.2.1 Domain-wall brane models

This work was directly motivated by a study of domain wall topological defects created by

an adjoint scalar field, X. In particular we study the case where the Lagrangian is invari-

ant under a discrete symmetry, Z, and a continuous internal symmetry G, but along two

distinct antipodal directions the asymptotic configuration of the scalar field breaks Z × G

down to differently embedded isomorphic copies of H ⊂ G. This construction has a nat-

ural manifestation in grand-unified models with gauge group G and a single infinite extra

dimension. Here the adjoint scalar field interpolates between two vacuum configurations

preserving subgroups H and zgHg−1 (for some z ∈ Z and g ∈ G) as a function of the extra

dimensional co-ordinate, y. If the gauge coupling constants gH and ggHg−1 are assumed to

be below the confinement scale in each region, then the model will putatively trap gauge

bosons belonging to non-Abelian factors in H ∩ zgHg−1 on a codimension-1 domain wall

brane located at y = 0.

In this model the space-time on either side of the domain-wall brane exhibits dual supercon-
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ducting behaviour. The idea is that the gauge theories in both the semi infinite regions y > 0

and y < 0 are in a confining regime with a mass gap. This causes the massless gauge bosons,

belonging to the non-abelian factors in the intersection H∩ zgHg−1, to become dynamically

localized to the domain wall. This is, of course, an emergent effect, construed from low

energy effective dynamics which must be complemented by an assumed UV-complete the-

ory. The UV-completion is tasked with making Yang-Mills gauge theory renormalizable in

4+1-dimensions. When used effectively it is coined the “clash of symmetries mechanism”

[DTVW02, SV04, DGK+08].

The clash of symmetries mechanism reduces to the Dvali-Shifman mechanism whenever

g = 1. To illustrate the main difference between the Dvali-Shifman topological domain-wall

brane scenario and the clash of symmetries we have included Figure 9.1 from [DGK+08].

Figure 9.1 is a comprehensive graph of the different types of domain walls, namely the

non-topological, topological and clash of symmetries varieties.

Figure 9.1: This is a graph of the vacuum manifold G/H ∪ (G/H)z. This vacuum manifold
arises when G × Z → H, where Z is a discrete reflection symmetry and H ⊂ G. The two
circles represent the connected components of the vacuum manifold G/H and (G/H)z. Each
point on the first circle represents a vacuum |0; g⟩, respectively each point on the second
circle represents the (G/H)z equivalent vacuum. The end points of the three dotted lines
represent asymptotic boundary conditions for three different types of domain walls. The
dotted line gives an example of a non-topological domain-wall brane while the short dashed
line indicates boundary conditions for a topological domain-wall brane. The end points of
the long dashed lines are one possible example of the boundary conditions for a clash of
symmetries domain-wall brane. This figure is taken from [DGK+08].

To implement the clash of symmetries mechanism we must solve the Euler Lagrange equa-

tions for X for boundary conditions as y → ±∞ breaking G × Z to H and zgHg−1, respec-

tively. Therefore it is necessary to understand how the boundary conditions breaking G to

gHg−1 can be written as a linear combination of the adjoint scalar field vevs breaking G
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along the H1,...l branching direction in the Cartan subalgebra.

Solutions to the Euler Lagrange equations satisfying different boundary conditions have

different energies. Furthermore a boundary condition preserving a symmetry H can be

continuously transformed into a boundary condition preserving any other isomorphic coset

g1Hg−1
1 inside G. The phenomenology of each domain-wall solution is different because

each non-isomorphic intersection H ∩ g−1
1 gHg−1g1 will give rise to a different gauge theory

on the domain wall. Hence an exhaustive search for the lowest energy stable domain-wall

configuration must be executed. This search must range through all solutions to the Euler

Lagrange equations with different boundary conditions. In this case a systematic method

for finding all the different possible configurations must be established. To trap a copy of

the standard model gauge group on the domain wall, the grand unified gauge group must

have a comparatively high rank, for example E6, as in [DGK+08]. For high rank groups a

method for writing one set of boundary conditions in terms of another becomes critical.

To find the vev for the adjoint X breaking G to a subgroup gHg−1 as a linear combina-

tion of vevs along the H1,2,3,...,l branching direction in the Cartan subalgebra, the authors

of [DGK+08] wrote down the Casimir operators (invariants) for a general linear combina-

tion of the Cartan subalgebra, h1, . . . , hl. The co-ordinates in the Cartan subalgebra space

which extremized the Casimir operators correspond to linear combinations which break G

to gHg−1. The physical motivation for this is: invariance of the action under the internal

symmetry forces the potential to be a polynomial in the Casimir invariants. Therefore ex-

trema of the Casimir operators correspond to degenerate minima in the vacuum manifold

associated with spontaneous breaking of the internal symmetry G down to differently em-

bedded isomorphic copies of a subgroup H = H′ × U(1)H . Hence the coefficients in the

linear combination which extremize the Casimir invariants are precisely the components of

the adjoint Higgs field in the original Cartan subalgebra basis which combine to give the

ghg−1 generator which spontaneously condenses to break G → gHg−1. This approach is

labor intensive.
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9.2.2 Low-energy limit of Yang-Mills theory

We have found a natural motivation for our work in domain-wall formation due to the break-

ing of a global symmetry on cosmological scales. At the other end of the spectrum, in low

energy effective models for SU(3) (and SU(2)) pure Yang-Mills gauge theories, domain

walls form due to a breakdown of Weyl group symmetry caused by gluon condensation.

This traps gauge fields on the domain wall. Galilo and Nedelko [GN11] work with an ef-

fective potential generated by loop order corrections in a low energy effective field theory

approach to QCD:

Ueff =
1
12

Tr
(
C1F̂2 +

4
3

C2F̂4 − 16
9

C3F̂6
)
. (9.1)

Here the potential is confining provided, C1 > 0, C2 > 0, C3 > 0 and the non-Abelian

gauge field strength tensor, F̂µν, can be written in terms of the SU(3) Lie algebra structure

constants f abc,

Fa
µν = ∂µG

a
ν − ∂νGa

µ − i f abcGb
µG

c
ν,

(
F̂µν

)
bc
= Fa

µνT
a

bc, T a
bc = −i f abc. (9.2)

The second order Casimir invariant Tr(F̂)2 = −3Fa
µνF

a
µν ≤ 0, causes the minimum of the

effective potential to occur at a non-zero gluon field strength.

Fa
µνF

a
µν =

4
9C2

3

(√
C2

2 + 3C1C3 −C2

)2
Λ4 > 0, (9.3)

where Λ is the QCD confinement scale.

Galilo and Nedelko [GN11] look at the effective potential for F̂µν = hχBχµν, which involves

restricting the full SU(3) gauge theory to the U(1) × U(1) Abelian subspace, where the

generators are given as linear combinations of the diagonal Gell-Mann matrices,

hχ = χ1λ3 + χ
2λ8, (9.4)

and the associated field strength Bχµ,ν can be found by using the Abelian subalgebra version
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of (9.2) on Bχµ = χ1G3
µ + χ

2G8
µ. The minima of the effective potential are located at

χ = (cos
(2n + 1)π

6
, sin

(2n + 1)π
6

) for n ∈ {0, . . . , 5}. (9.5)

They are related by a discrete Weyl group symmetry. The requirement that QCD remains

unbroken despite a non-zero background field strength means the background field must

be the average of an ensemble of gauge field configurations with a high degree of disorder

and spatial variation of the direction χ in colour-space. This causes different vacua to be

selected in different spatial regions. Galilo and Nedelko [GN11] explain that domain-wall

configurations are formed by gauge fields interpolating between these vacua. Collectively

the hχ describe the vevs of an adjoint Higgs field which break SU(3) to U(1) × U(1). Here

they again form the boundary conditions for the domain wall.

In the pure SU(2) Yang-Mills theory, domain walls form between vacua preserving different

embeddings of a U(1)α symmetry associated with magnetic charge [Kob11].

In both the above models there is an opportunity to trap gauge fields on the domain wall.

This analysis can be generalized to SU(n) pure Yang-Mills theory where the rank of the

algebra will again necessitate a systematic way of identifying all the boundary conditions

for the domain walls.

9.2.3 Vacuum alignment

In general there are a wide variety of extensions to the standard model which introduce a

gauge symmetry G and multiple Higgs fieldsΦ1, Φ2, . . . such that all the Higgs fields are in

identical representations for G. Under these circumstances, when the Higgs fields acquire

vacuum expectations values ⟨Φ1⟩, ⟨Φ2⟩, . . . any pair of vevs which are not aligned will be

capable of breaking G to different subgroups. In the scenario where all these subgroups are

isomorphic, differently embedded copies of H ⊂ G, the analysis presented in section 9.3

explains how to obtain one vev from the other. This analysis can also be used to find the

unbroken symmetry.
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9.3 Statement of Proof

We are looking for a complete set of embeddings of the subgroup chain G ⊃ H1 ⊃ H2 ⊃

· · · ⊃ Hl, where the vevs of the adjoint Higgs fields which break G down to these subgroups

and define a basis for the Cartan subalgebra h1, . . . , hl , can be written as linear combinations

of each other.

In subsection 3.11.4 we established that the embeddings of H1 within G arise from conju-

gation of the Lie algebra LH1 for H1 by the Weyl group W/W∆H1
, where W∆H1

is the Weyl

group of the maximal subgroup H1. Moreover, we know conjugation by any Weyl group

element, wκ ∈ W/W∆H1
, acts on the Cartan subalgebra or vevs h1, . . . , hl according to

wκ · h j = Σi(δi j − Σnκ
nδn jκ

∨
i )hi = h j − κ jhκ. (9.6)

So after identifying the generators (roots) excluded from the embedding of H1 ⊂ G (∆H1 ⊂

∆) we have a general formula for writing the vevs of the adjoint Higgs field, wκ·h1, . . . ,wκ·hl,

causing the breaking of G ⊃ wκH1w−κ ⊃ wκH2w−κ ⊃ · · · ⊃ wκHlw−κ, as linear combination

of h1, . . . , hl . If, after choosing an embedding of H1 within G, identified with LH1 ⊂ L, we

wish to find all the different embeddings of H2 within H1, which have LH2 ⊂ LH1 , then we

simply repeat this procedure for W∆H1
/W∆H2

.

In the case where we are looking for the adjoint Higgs vevs, wκ · h, breaking G to different

embeddings of the subgroup H = H′ × U(1)H which stabilizes (the representation space

state labeled by) the highest weight of the lowest dimensional fundamental representation,

|λ⟩, these linear combination have a remarkably simple formula. We show that the lin-

ear combination giving each vev is Σiµ(hi)hi for an extremal weight µ of the fundamental

representation.

We first prove the adjoint Higgs vev, h, which breaks G to H is given by the linear com-

bination h = Σiλ(hi)hi, where the coefficients are the coordinates of highest weight of the

fundamental representation. Then we explain why other generators breaking G to different

embeddings wκ · H, wκ · h = Σiµ(hi)hi, are the linear combinations of h1, . . . , hl which have

the co-ordinates of the extremal weights, µ(hi) as coefficients.
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If Σiλ(hi)hi is the adjoint Higgs vev which breaks G to H, then it is the generator of the

U(1)H factor in H = H′ × U(1)H . Therefore Σiλ(hi)hi must stabilize |λ⟩ (be a generator of

H) and it must commute with each generator, Eα ∈ LG, if and only if Eα ∈ LH .

It is clear that Σiλ(hi)hi is a generator of H because Σiλ(hi)hi |λ⟩ =
(
Σiλ(hi)2

)
|λ⟩.

Furthermore, let Eα ∈ LH . Then Eα is a raising or lowering operator and Eα stabilizes

|λ⟩, therefore we must have Eα |λ⟩ = 0. If α ∈ ∆H then −α ∈ ∆H , and by the same logic

E−α |λ⟩ = 0. Consider the commutator

[Eα,Σiλ(hi)hi] = Σiλ(hi)[Eα, hi]

= Σiλ(hi)αiEα

= λ(Σiα
ihi)Eα

= λ(hα)Eα

= λ([Eα, E−α])Eα

= 0. (9.7)

Therefore Σiλ(hi)hi commutes with all the elements of LH .

Assume Σiλ(hi)hi commutes with a generator Eκ < LH which does not belong to the Lie

algebra of H (that is Eκ does not stabilize |λ⟩). Then we have

Σiλ(hi)hi = wκΣiλ(hi)hiw−κ

= Σiλ(hi)hi − Σiλ(hi)κ(hi)hκ

= Σiλ(hi)hi − Σi jλ(hi)κ(hi)κ∨(h j)h j

= Σiλ(hi)hi − Σ j
2(λ, κ)
(κ, κ)

κ(h j)h j

= Σi
(
λ(hi) − (λ, κ∨)κ(hi)

)
hi

= Σi
[
sκ · λ] (hi)hi. (9.8)

This creates a contradiction because we are insisting Eκ does not stabilize |λ⟩, so wκ |λ⟩ =

|sκ · λ⟩ , |λ⟩ and the two sets of coefficients (of the linearly independent Cartan subalgebra

generators h1, . . . , hl) in the above sum must be different. We have proved Σiλ(hi)hi is the
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adjoint Higgs vev, h, which breaks G to H.

Now each embedding wκ · H = wκHw−κ will stabilize a state in the representation labeled

by an extremal weight wκ · |λ⟩ = |µ⟩. By the above argument, the center of the subgroup

wκ ·H which stabilizes |µ⟩ is generated by Σiµ(hi)hi. We have a remarkably easy formula for

reproducing the vevs which break G to all the different embeddings of the subgroup which

stabilizes the highest weight of the lowest dimensional fundamental representation, H, as

a linear combination of the Cartan subalgebra h1, . . . , hl. Notice that wκ must belong to a

non-trivial coset in W/W∆H , because conjugation by wκ only takes us from one embedding

to another when sκ does not fix the highest weight.

We present a systematic method for determining the subgroup H directly from the extended

Dynkin diagram for the Lie group G. Each unmarked node in the extended Dynkin diagrams

is labeled by a simple root. The node with a cross in the center is ζ0. To find the Dynkin

diagram for H we determine which of the simple roots in ∆ are also in ∆H . We also need to

work out if the highest root ζ0 is in ∆H . The subset of {ζ1, . . . , ζ l} ∪ {−ζ0} belonging to ∆H ,

will be the simple roots for ∆H .

First we determine which subset of the simple roots {ζ1, . . . , ζl} belong to ∆H . Take the

highest weight, λ, and write it as a linear combination of the fundamental weights.

λ = a1ω1 + · · · + alωl. (9.9)

We assume this highest weight is dominant, that is, a1, . . . , al ≥ 0. If it is not then it is

always possible to replace λ by one of the extremal weights which is dominant. Construct

a set S λ = { j| a j = 0}. For all j ∈ S λ we have (λ, ζ j∨) = 0. We claim that ζ j ∈ ∆H ,

that is E±ζ
j |λ⟩ = 0, for all j ∈ S λ. Otherwise if E±ζ

j |λ⟩ , 0 consider the norm Nλ±ζ j =

⟨λ| E±ζ j†E±ζ
j |λ⟩. Because λ is the highest weight of the representation Nλ+ζ j = 0 while

Nλ−ζ j = ⟨λ| [Eζ j
, E−ζ

j
] |λ⟩ = ⟨λ|λ⟩(λ, ζ j∨) = 0. For the remaining simple roots labeled by

k < S λ, we have sζ
k · λ , λ, therefore wζk |λ⟩ , |λ⟩ and, from (3.130), we know that one of

E±ζ
k

does not stabilize λ.

The highest root (negated highest root) ±ζ0 does not belong to ∆H . This follows from the

fact that ζ0 is some linear combination of all the simple roots (with positive coefficients),
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therefore if the set S λ is non-empty, then (λ, ζ0) > 0.

So the Dynkin diagram for H can be reconstructed from the connected components of the

Dynkin diagram for G labeled by simple roots {ζ j| j ∈ S λ}. This uniquely defines the non-

Abelian factor H′ of H. The full subgroup H which stabilizes the highest weight is a product

of H′ with one Abelian factor U(1) for each k < S λ. These extra U(1) factors are generated

by the Cartan subalgebra generators hζ
k
, k < S λ, which (by definition) stabilize λ, even

when the associated raising/lowering operators Eζk
do not.

If the Higgs field does not belong to the adjoint representation then the above analysis

generalizes. The Weyl group reflections still give the different embeddings of the subgroup

chain G ⊃ H1 ⊃ · · · ⊃ Hl. Consider a Cartan subalgebra h1, . . . , hl which is defined as the

generators of U(1)Hi factors appearing in the subgroup chain through Hi = H′i × U(1)H1 ×

· · · ×U(1)Hi , where H′i is some product of non-Abelian Lie groups. Equation (9.6) gives the

linear combinations for the equivalent Cartan subalgebra generator for the U(1)wκ·Hi factors

belonging to the differently embedded subgroup chain G ⊃ wκH1w−κ ⊃ · · · ⊃ wκHlw−κ,

where wκ ∈ W/W∆H .

If a subgroup H ⊂ G annihilates a column vector |ν⟩, labeled by a weight ν, then the

differently embedded subgroup wκHw−κ annihilates the column vector wκ |ν⟩. Hence if |ν⟩

breaks G to H, then |sκ · ν⟩ breaks G ⊃ wκHw−κ and it follows directly from (3.136) that

(3.119) gives the coordinates of the new weights as a linear combination of ν (and κ).

9.4 Insight

We wish to firmly ground the above discussion by applying these concepts to physical

systems. We physically contextualize the key concepts in sections 3.9 and 3.11.5 via the

smallest effective example: embeddings of U-spin, I-spin and V-spin within the SU(3)

QCD gauge group. We also tackle the non-trivial problem of finding a full complement

of domain-wall boundary conditions for an adjoint Higgs field which break E6 to different

embeddings of SO(10) × U(1) in order to demonstrate the effectiveness of the techniques

developed in section 9.3.
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9.4.1 A Quantum chromodynamics example

Consider the Weyl group conjugations giving rise to differently embedded copies of the

subgroups SU(2)×U(1) inside SU(3). Following [CKP06] we rewrite the SU(3) pure Yang-

Mills quantum chromodynamics Lagrangian in terms of the off diagonal gluons Zp
µ , p ∈

{1, 2, 3} and the dual potentials to the roots Bp
µ , p ∈ {1, 2, 3} defined in chapter 2:

L = −1
4
GµνGµν = Σp

{
−1

6

(
F p
µν

)2
+

1
2

∣∣∣DpµZ p
ν − DpνZ

p
µ

∣∣∣2 − igF p
µνZ

µ ∗
p Zνp

−1
2

g2
[(

Zp ∗
µ Zp

ν

)2
+

(
Zp ∗
µ

)2 (
Zp
ν

)2
]}
, (9.10)

where

F p
µν = ∂µBp

ν − ∂νBp
µ, DpµW p

ν =
(
∂µ − igBp

µ

)
W p
ν . (9.11)

The Weyl group permutes the roots {±α1,±α2,±α3} of the SU(3) Lie algebra. Hence the

Weyl group action on the above Lagrangian will cause a permutation of the dual poten-

tials Bp
µ, p ∈ {1, 2, 3} spanning the Cartan subalgebra and also will cause a permutation

of the raising and lowering operators Z1
µ ∈ span {Z1,Z−1}, Z2

µ ∈ span {Z2,Z−2}, Z3
µ ∈

span {Z3,Z−3} which is labeled by the roots. The permutation is concordant with the geo-

metric picture of the Weyl group reflections of their root labels. Therefore the invariance

of the above Lagrangian under Weyl group reflections is encapsulated in the sum over the

index p.

The direct interpretation for the Weyl group role in (9.10) arises because the associated

generators ϵ, ρ and Z±p where p ∈ {1, 2, 3} (it is not necessary to include κ in this list

because SU(3) has rank 2, however we can substitute it for either ϵ or ρ if we wish), form a

useful computational basis for the Lie algebra: the Chevalley basis. Here each of the three

subset {κ, Z±1}, {ρ, Z±2} and {ϵ, Z±3} defines an embedding of SU(2) inside SU(3). These

correspond to the closed crystallographic root systems {±α1}whose Weyl group fixes a point

on the hyperplane orthogonal to α1, and to the closed crystallographic root systems {±α2}
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and {±α3}, whose Weyl groups fix analogous points. Cross checking this with chapter 2

we see these are precisely the I-spin, V-spin and U-spin embeddings. Each embedding

commutes with one of the Abelian subgroup generators λ8(= κ′), ρ′ or ϵ′, which now we

can rewrite as Σiµ(hi)hi for any diagonal Cartan subalgebra {h1, h2} for SU(3), (in chapter 2

our Cartan subalgebra was chosen to be λ3 and λ8) and the three extremal weights of the

lowest dimensional fundamental representation for SU(3).

9.4.2 DWB adjoint Higgs field breaking E6 → SO(10) × U(1)

We use the method developed in the previous section to find all the adjoint Higgs vevs which

break E6 to all the different embeddings of SO(10)×U(1); this example is directly motivated

by an extra-dimensional “clash of symmetries” domain-wall brane model [DGK+08]. Our

choice of Cartan subalgebra for E6 is explained in Table 9.1. The entries of this table follow

directly from the branching rules [Sla81]:

E6 ⊃ SO(10) × U(1)h1 ⊃ SU(5) × U(1)h1 × U(1)h2

⊃ SU(3) × SU(2) × U(1)h1 × U(1)h2 × U(1)h3

⊃ SU(3) × U(1)h1 × U(1)h2 × U(1)h3 × U(1)h4

⊃ SU(2) × U(1)h1 × U(1)h2 × U(1)h3 × U(1)h4 × U(1)h5

⊃ U(1)h1 × U(1)h2 × U(1)h3 × U(1)h4 × U(1)h5 × U(1)h6 . (9.12)

As mentioned in section 9.2, our primary motivation for studying this problem arose from

a co-dimension-1 clash-of-symmetries domain-wall brane. The brane originates from an

E6 adjoint Higgs field X which condenses spontaneously to break translational invariance

along the extra dimension of a 4+1-dimensional space-time manifold.

The Lagrangian for this theory is invariant under a Z2 × E6 internal symmetry. It is a linear

combination of the invariant kinetic term Tr
[
DµXDµX

]
, a potential formed from the E6

Casimir invariants I2 = TrX2 and I6 = TrX6, and the powers I2
2 and I3

2 . Casimir invariants

corresponding to odd powers of X, must be omitted due to the imposed Z2, X → −X, sym-

metry. The potential is truncated at 6 th order because the coupling constants of higher order

invariants have negative mass dimensions and therefore are suppressed by powers of the pu-
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60h1 60h2 60h3 60h4 60h5 60h6

1 20 0 0 0 0 0
2 −10 2

√
15 3

√
10 −5

√
6 0 0

3 −10 2
√

15 3
√

10 5
√

6 0 0
4 −10 2

√
15 −2

√
10 0 5

√
2 5

√
6

5 −10 2
√

15 −2
√

10 0 5
√

2 −5
√

6
6 −10 2

√
15 −2

√
10 0 −10

√
2 0

7 −10 −2
√

15 −3
√

10 5
√

6 0 0
8 −10 −2

√
15 −3

√
10 −5

√
6 0 0

9 −10 −2
√

15 2
√

10 0 −5
√

2 −5
√

6
10 −10 −2

√
15 2

√
10 0 −5

√
2 5

√
6

11 −10 −2
√

15 2
√

10 0 10
√

2 0
12 5 −5

√
15 0 0 0 0

13 5 3
√

15 −3
√

10 5
√

6 0 0
14 5 3

√
15 −3

√
10 −5

√
6 0 0

15 5 3
√

15 2
√

10 0 −5
√

2 −5
√

6
16 5 3

√
15 2

√
10 0 −5

√
2 5

√
6

17 5 3
√

15 2
√

10 0 10
√

2 0
18 5 −

√
15

√
10 −5

√
6 5

√
2 5

√
6

19 5 −
√

15
√

10 −5
√

6 5
√

2 −5
√

6
20 5 −

√
15

√
10 −5

√
6 −10

√
2 0

21 5 −
√

15
√

10 5
√

6 5
√

2 5
√

6
22 5 −

√
15

√
10 5

√
6 5

√
2 −5

√
6

23 5 −
√

15
√

10 5
√

6 −10
√

2 0
24 5 −

√
15 −4

√
10 0 −5

√
2 −5

√
6

25 5 −
√

15 −4
√

10 0 −5
√

2 5
√

6
26 5 −

√
15 −4

√
10 0 10

√
2 0

27 5 −
√

15 6
√

10 0 0 0

Table 9.1: The six diagonal generators h1–6 of E6. The diagonal elements of the generator hn are
found by taking the nth column and multiplying it by 1/60. Also the rows give the coefficients f1–6
of these generators that yield a linear combination that breaks E6 → SO(10) × U(1). This table is
reproduced from [Geo09].
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Figure 9.2: A pictorial representation of the twenty seven rearrangements of the diagonal generator
h1 of E6. Each rearrangement can be reconstructed from one of the twenty seven rows (or columns)
of symbols in this picture. To find the diagonal entries of the n−th rearrangement, read along the n−th
row and translate the symbols according to: circles ⃝ correspond to the single 1/3 entry, squares �
to −1/6, and crosses + to 1/12 (note that adjacent crosses are touching). The number in the centre
of each circle tells its row and column number (being the same). Row n of this picture corresponds
precisely to row n of Table 9.1 in the sense that the linear combination

∑6
a=1 faha, where the f1–6 are

chosen from row n of Table 9.1, yields the rearranged version of the generator h1, represented by the
symbols of row n in this picture. This figure comes from [Geo09].
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tative ultraviolet completion scale (see section 9.2). Yet the 4-th order invariants exhibit an

accidental O(78) symmetry, so we must include a TrX6 term. A subset of the local minima

of the Casimir invariants occur at adjoint Higgs vevs which break Z2×E6 → SO(10)×U(1).

If the solution X to the associated Euler-Lagrange equations interpolates between vacuum

expectation values which break Z2 × E6 to a specific pair of differently embedded copies

of SO(10) × U(1) then [DGK+08] postulates a copy of the standard model particles can be

trapped on the 3 + 1-dimensional domain-wall brane. To find X it is necessary to write the

boundary conditions at the two antipodal extremes of the extra dimension as a linear com-

bination of the adjoint Higgs vevs h1, . . . , h6, the generators of the Abelian subgroup factors

given in (9.12).

Because SO(10)×U(1) stabilizes the highest weight of the lowest dimensional fundamental

representation for E6 this is now a trivial problem. Each of the possible boundary conditions

which break E6 → SO(10)×U(1) can be written as a linear combination of h1, . . . , h6 using

Σiµ(hi)hi where µ is one of the 27 extremal weights of the lowest dimensional fundamental

representation for E6. Explicitly the 27 different vevs breaking E6 → SO(10) × U(1) are

⟨X⟩ ∝ Σ6
a=1 faha, (9.13)

where the sextuplet f1,...,6 takes values from one of the rows of the Table 9.1. Figure 9.2

graphically identifies the diagonal entries of each of these 27 vevs breaking E6 → SO(10)×

U(1). The Figure 9.2 comes from [Geo09].

9.5 Conclusions

Symmetry breaking is an ubiquitous idea in particle physics. This is due to the wide range

of applications, and its capacity to act as a powerful tool. Electroweak symmetry breaking

explains the origin of mass in the standard model, while the Frogatt-Nielson mechanism can

explain why some interactions are unnaturally heavily suppressed. A large class of models

such as little Higgs scenarios and left right symmetric models use additional symmetry

breaking fields to extend the standard model and to suggest possible solutions to current

open questions.
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The diverse array of models presented in this chapter, ranging from the clash of symmetries

mechanism to the effects of glueball formation in low energy Yang-Mills theories, demon-

strate how important it is to attain a better understanding of symmetry breaking.

We find it fascinating that there is an alternative representation for the Lie algebra, in terms

of crystallographic root systems. A more general formulation of Yang-Mills gauge theory,

starting from this perspective would be invaluable. In this chapter we have tried to address

one small aspect of breaking Yang-Mills gauge theories. Given a collection of adjoint Higgs

vevs which break G ⊃ H1 ⊃ H2 ⊃ · · · ⊃ Hl we have described how to choose general linear

combinations which break G to differently embedded isomorphic copies of {H1, . . .Hl}.

These copies will belong to a chain G ⊃ gH1g−1 ⊃ gH2g−1 ⊃ · · · ⊃ gHlg−1, for some g ∈ G.

In section 9.3 we have highlighted the simple case when the subgroup we are breaking to

stabilizes the highest weight of the lowest dimensional fundamental representation for G.

We also covered the more general case when the Higgs field is not in the adjoint representa-

tion. Here we discussed the relationship between the weights of vevs breaking G to differ-

ently embedded copies of a particular subgroups. In addition we canvassed the relationship

between the Cartan subalgebra generators h1, . . . , hl which generate the Abelian subgroups

in a chain G ⊃ H1 ⊃ H2 ⊃ · · · ⊃ Hl where each Hi = H′i×U(1)H1×· · ·×U(1)Hi and the Cartan

subalgebra generators from the conjugated chain G ⊃ gH1g−1 ⊃ gH2g−1 ⊃ · · · ⊃ gHlg−1.

We took this formalism and applied it to rewriting the QCD Lagrangian. Here we explained

how Weyl group invariance arises. For the adjoint representation, we considered the eigen-

basis of the Cartan subalgebra action. The Weyl group action permutes the members of this

basis. We found that the QCD Lagrangian possesses a Weyl group symmetry because it

is a permutationally invariant polynomial in this eigenbasis. The three SU(2) embeddings,

I-spin, U-spin and V-spin are related by Weyl group conjugation.

We took the techniques developed in section 9.3 an applied them to an E6 grand unified clash

of symmetries model. Here we gave a comprehensive list of the vevs breaking E6 to Cartan

preserving embeddings of SO(10) × U(1). These vevs furnish a comprehensive set of clash

of symmetries domain-wall boundary conditions. Id est for the E6 × Z2 → SO(10) × U(1)

example they generate the first circle in Figure 9.1. In [DGK+08] the discrete symmetry
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is Z2 and therefore the second vacuum manifold, (G/H)z in Figure 9.1, is the negative

of the first. We provided a remarkably simple formula for recovering all members of the

E6/SO(10), vacuum manifold.



10
Conclusions

This thesis explored new techniques and approaches to field theory. These approaches were

motivated by model building in extra dimensions.

Extra-dimensional models are a leading candidate for “beyond the standard model” physics.

Several of the constructions presented during this thesis demonstrate that extra-dimensional

models can exhibit realistic standard model phenomenology, at low energies. Therefore

we consider that extra-dimensions provide a viable description of the universe, and are a

worthwhile option to investigate. Ultimately new experimental or observational data will

be needed to confirm or exclude their existence. Alternatively new inspiration may be found

in crossover fields like condensed matter physics, or from a more systematic treatment of

current field theories and gravity, starting from a general analysis of Yang-Mills gauge the-

ories and then determining the acceptable gauge groups, interactions and interpretations.

We are less concerned with explicit constructions and more interested in the new ideas and

techniques which arise during our analysis. Because these models are field theory construc-

tions, we find the concept of adaptations of Yang-Mills gauge theory to Lifshitz scaling

scenarios interesting. Also we are motivated to study new approaches to understanding the

internal symmetries and gauge groups, including their breaking.

We summarize the three main topics addressed in this thesis and our contribution to each.

193
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10.1 Thick-brane extra-dimensional models

Extra-dimensional models can be classified into two general varieties: infinite extra dimen-

sions and compact extra-dimensions. In this thesis we adopted the stance that infinite extra-

dimensions are more appealing because they are more “dimensionally democratic” from the

field theory perspective. By dimensionally democratic we mean that the spatial dimensions

are indistinguishable in the fundamental action. In this scenario we investigated explicit

models and mechanisms for recovering standard model physics on a 3 + 1-dimensional

brane.

In chapter 4 we considered a 4+ 1-dimensional model for the universe with a single infinite

extra dimension. Here the most likely field theoretical candidate for generating a 3 + 1-

dimensional brane is a domain-wall topological defect, called the kink. Again we prefer to

introduce a domain-wall brane (thick brane) rather than a fundamental brane because the

former leads to a more dimensionally democratic model. In thick-brane models Poincaré

symmetry is spontaneously broken due to the condensation of the real scalar field topolog-

ical defect, and the origin of the brane is explained. In the fundamental brane scenario, the

presence of a Dirac delta function in the fundamental action, explicitly breaks translational

invariance along the extra dimension as well as dimensional democracy. Furthermore a fun-

damental brane may have string theoretical origins, however we would prefer not to assume

an additional new formalism like string theory.

We systematically described the field theoretical mechanisms for confining the standard

model gauge fields and the first generation of fermions on the brane.

To trap gauge fields we employed an SO(10) grand unified theory and a 4 + 1-dimensional

generalization of the Dvali-Shifman mechanism. This approach has the advantage of pre-

serving gauge coupling constant universality. To implement the Dvali-Shifman mechanism

we introduced an SO(10) adjoint Higgs field with the most general adjoint Higgs field-kink

interaction terms. In addition, we assumed that the bulk gauge theory is in a confining phase

of SO(10), with a mass gap. After solving the equations of motion for the kink and the ad-

joint Higgs field simultaneously, the resulting extra-dimensional profiles effectively trap a

SU(5) pure Yang-Mills gauge theory on the domain-wall brane.
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To trap fermions we used the split fermion mechanism to localize a full complement of

massless left chiral 3 + 1-dimensional fermions belonging to the first generation of the

standard model. As in standard SO(10) models we introduced a right handed neutrino. The

left chiral 3 + 1-dimensional fermions are projected out of the 4 + 1-dimensional theory

using a Kaluza-Klein decomposition of the 4 + 1-dimensional Lorentz spinor.

We recovered the conventional 3 + 1-dimensional relativistic formulation of gravity and

Newtonian 1/r2 gravity by exhibiting a type 2 Randall-Sundrum warped metric solution.

The final component of our model is a pair of Higgs fields ζ(xµ, y) and η(xµ, y), which break

the SU(5) symmetry on the domain-wall down to the standard model, and subsequently

implement electroweak symmetry breaking. We argued that there is sufficient parameter

freedom for the appropriate components of both Higgs fields to condense inside the wall.

The massless 3 + 1-dimensional fermions can now acquire masses by coupling to the elec-

troweak symmetry breaking field. This has strong implications for the observed SU(3) ×

SU(2) × U(1) gauge theory on the domain-wall brane. The mass degeneracies, such as

ms/md = mµ/me, in standard grand unified theories are absent from this model. Proton

decay, mediated by the extra components of the irreducible SO(10) representation for the

electroweak symmetry breaking Higgs field, is suppressed.

Additional Kaluza-Klein modes will modify the coupling constant running. This implies

that for 4 + 1-dimensional SO(10) grand unified theories the coupling constants may meet

and thereby establish a GUT symmetry breaking scale. However calculating the coupling

constant running will require a full phenomenological parameter fitting. Since our model

still requires additional generations of fermions and a realistic mechanism for generating

neutrino mixing angles, a detailed calculation of the coupling constant running is premature.

There are many open questions for this model. The most pressing is a strong appraisal of

the effectiveness of the Dvali-Shifman mechanism in 4 + 1-dimensions. A necessary con-

dition for the Dvali-Shifman mechanism to be operative is confinement in the bulk. Lattice

simulations of 4 + 1-dimensional SU(2) and SU(5) Yang-Mills gauge theories demonstrate

a first order phase transition at finite lattice spacing as a function of the gauge coupling

constant: for coupling strengths above a critical value, the theory appears to be confining
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[Cre79, Geo09]. However the result can not be extended to the continuum limit because

4+ 1-dimensional Yang-Mills is nonrenormalizable. A further open question is the stability

of the model.

In chapter 5 we analyzed the stability of the domain-wall brane model. We addressed

the question of stability by considering the dynamical evolution of classes of perturbations

about the solutions (5.2) to the domain-wall brane equations (5.1). Because the coupling

constants in (5.1) run with energy we considered these perturbations for an open set in

the free parameters space of (5.1). We say the domain-wall brane is unstable, respectively

stable, when there exists a perturbation which grows exponentially with time, respectively

all perturbations are oscillatory with time and remain small.

We established stability and non-stability results for a domain-wall brane model. In partic-

ular, we showed the nonexistence of perturbations which diverge exponentially with time,

for an open set of the free parameter space. Moreover we established the existence of

nontrivial perturbations which diverge exponentially with time, for a hypersurface of the

parameters. We used Fredholm theory for compact linear operators combined with the

Lyapunov-Schmidt method to prove our results. This establishes the stability of the domain-

wall brane, respectively instability, in two distinct free parameter regimes. That is: there

exists a bifurcation point in the phase diagram of (5.1), in one region of the free parameter

space (4.3) is a stable solution.

10.2 Lifshitz field theories

We investigated features of 4 + 1-dimensional and 3 + 1-dimensional Lifshitz field theories

with critical exponent z = 2. We were motivated by recent results that 4 + 1-dimensional

Lifshitz scalar field theories and Yang-Mills gauge theories can be power counting renor-

malizable. Moreover, we were intrigued by the prospect that 3+1-dimensional Lifshitz field

theories with critical exponent, z = 2, support novel topological defects which are forbidden

in relativistic field theories.

Our primary objective was to construct a 4 + 1-dimensional, z = 2, Lifshitz, domain-wall

brane model. In chapters 6 and 7 we established the existence of a topologically stable
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domain-wall brane. We considered the dynamics of a 4 + 1-dimensional Lifshitz fermion

propagating in this background. We found that 3 + 1-dimensional Kaluza-Klein zero mode

solutions do not exist when the four spatial dimensions are treated isotropically. In z > 1,

Lifshitz domain-wall brane models, to recover a candidate 3 + 1-dimensional fermion, it is

necessary to break the 4-dimensional spatial rotational symmetry down to the subgroup of

rotations which fix the extra-dimensional axis.

Again there are open questions for this model. For example we still need to dynamically

localize a 3+1-dimensional graviton. This will first require us to promote the z = 2 Lifshitz

critical exponent to a more realistic z = 4 scenario. In the z = 4 formalism we need a Hořava

Lifshitz generalization of the Randall-Sundrum type 2 warped metric scenario.

An interesting exercise would be to incorporate a renormalizable SU(2) Yang-Mills gauge

theory in the bulk and an adjoint Higgs field which breaks SU(2) → U(1) on the domain-

wall brane. This will hopefully clear the way for a simulation of the Dvali-Shifman mecha-

nism in the limit of infinitesimal lattice spacing.

In chapters 7 and 8 we capitalized on one of the key differences between Lifshitz and rel-

ativistic field theories. Derrick’s theorem forbids finite energy, stable, static solitons in

3 + 1-dimensional, and higher dimensional, relativistic field theories. In Lifshitz theories

the presence of higher spatial derivatives in the action, circumvents Derrick’s theorem.

For 3 + 1-dimensional Lifshitz scalar field theories with critical exponent z = 2, we con-

structed canonical examples of finite energy, stable, static Lifshitz defects. These included

a non topological Lifshitz point-like defect, a Lifshitz hedgehog defect and a string-like

soliton.

We worked primarily with Bogomolnyi-Prasad-Sommerfield (BPS) superpotential scenar-

ios. These scenarios are the simplest from the point of view of the differential equations.

However we established that our results hold independently of the BPS condition by ex-

hibiting a non-BPS Lifshitz hedgehog.

If Hořava Lifshitz quantum point gravity is the ultraviolet regulator for quantum gravity,

then it is natural to assume that the UV limit of quantum field theory also obeys Lifshitz

scaling conventions. Under these circumstances the observation of cosmic relics which
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cannot arise in standard relativistic field theories, would strongly indicate Lorentz invariance

breaks down at short distances.

10.3 Symmetry breaking and Weyl group invariance

The final topic in this thesis is a systematic approach to finding different embeddings of a

subgroup H within a Lie group G. We approached this problem from the perspective of

spontaneous symmetry breaking. Given a vacuum expectation value, in a particular rep-

resentation for G, we developed a formalism which identifies a basis of weights for that

representation, and then described all the states in the vacuum manifold G/H belonging to

the linear vector space spanned by that basis. In the adjoint representation the weights are

the roots and the basis elements are the simple roots which can be pulled back to define

the Cartan subalgebra CG = span {h1, . . . , hl}. Our formalism identifies the points in the

vacuum manifold G/H which belong to the vector space, CG, spanned by the Cartan subal-

gebra. These points are related by a Weyl group symmetry. Given an adjoint Higgs vacuum

expectation value, h, breaking G → H, a full complement of vevs breaking G to different

Cartan preserving embeddings of the subgroup H can be obtained through this method. We

gave an explicit formula for recovering each vev.

We presented a more detailed treatment of the case where H stabilizes the highest weight of

the lowest dimensional fundamental representation. This case admits the simplest formula

for recovering all vevs breaking G → H, when the Cartan subalgebra for H is a subspace of

the Cartan subalgebra for G.

Furthermore we discussed more general cases when the Higgs field is not in the adjoint rep-

resentation. These techniques offer an insight into current research questions such as model

building in extra dimensions and low energy effective models for quantum chromodynam-

ics.

10.4 Prospectus

There is a rich collection of “beyond the standard model” theories; field theories are perhaps

too adaptable. However they are also remarkably successful at describing the known physics
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of this universe. Therefore they are a good place to start looking for new physics. We hope

that, regardless of future developments, the tools and perspectives offered in this thesis will

be valuable.
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A
Root Systems Appendix

In this appendix we give information to complement the root systems picture in sections

3.9-3.11.

A.1 The highest root

Figure A.1 depicts the Dynkin diagrams for each of the crystallographic root systems.

For each Dynkin diagram the highest root in the corresponding crystallographic root system

is the linear combination of the simple roots

ζ0 = Σihiζ
(i), (A.1)

where the coefficients of the simple root ζ(i) is the label of the extended dynkin diagram

node corresponding to ζ(i).

A.2 E8 root system

We include a more detailed version of Figures 3.8 and 3.9. The figures included in this

appendix have explicit expressions for each root; this detail is difficult to find online and

can be invaluable when doing explicit calculations. The roots are difficult to read in the

printed version, however all details are clearly visible in the electronic submission. Again

the lowering operators fi corresponding to a Weyl group reflection in the simple root ζ(i) are

201
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Figure A.1: This figure includes the Dynkin diagram for every viable crystallographic
roots systems. For each diagram, the nodes correspond to the simple roots ζ(i), of the
corresponding crystallographic roots system. Each node is labeled by the coefficient, of
the associated simple root, which appears in an expression for the highest root.

color coded. The key is included in Figure 3.9.
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Figure A.2: The positive roots for E8. This is a detailed description of Figure 3.8, including
an explicit expression for each of the E8 roots, belonging to the root system, ∆ ⊂ R8. Please
see the electronic version of this thesis for a clearer image of the positive root diagram.
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Figure A.3: The corresponding negative roots for E8. Please see the electronic version of
this thesis for a clearer image of the negative root diagram.



B
Stability analysis Appendix

In this Appendix we give information to complement the stability analysis of the SO(10)→

SU(3)C × SU(2)L × SU(2)R × U(1)B−L domain-wall brane (4.34) from section 4.3.

B.1 Stability of the SO(10)→ SU(3)C×SU(2)L×SU(2)R×U(1)B−L

model

Section 4.3 of chapter 4 deals with a sixth order potential for X and ϕ, (4.33), where the

solution to the Euler-Lagrange equations creates a symmetry breaking pattern SO(10) →

SU(3)C ×SU(2)L ×SU(2)R ×U(1)B−L. In this appendix we would like to use the techniques

presented in chapter 5 to analyze the analytic solution, (4.34), for the Euler-Lagrange equa-

tions in section 4.3. Thereby we will have demonstrated a slice of the parameter space

where SO(10) breaks to SU(3)C × SU(2)L × SU(2)R × U(1)B−L stably. While most of the

results for perturbations of the form
(
δX̄, δϕ

)
= (δX + N, δϕ) discussed in the context of the

4th order case can be easily generalized to the 6th order potential, there will be a slight twist

because we can no longer use lemma 5.1.

One way of looking at lemma 5.1 is to make a co-ordinate substitution s = tanhz in equation

(5.9). This will convert the equation (5.9) into a Riemann equation with regular singular

points at s = ±1. The equation is an example of a hypergeometric differential equation for

which the eigenspectrum is well known [NU88]. The associated eigenvectors are orthogonal

205
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polynomials where the inner product is given by

⟨u, l⟩ =
∫ 1

−1
u(s)l(s)ds =

∫ ∞

−∞
u(z)l(z) sech 2zdz. (B.1)

In the case of the 6th order equation if we make the same co-ordinate substitution s = tanhz

in equation (B.2) we find that s = ±1 are no longer regular singular points and we are no

longer able to easily construct a power series solution about these points. Hence we do

not have polynomial solutions associated with eigenvalues which cause the power series to

truncate at a finite degree and the previous ideas will not work under these circumstances.1

We fix this hole in our analysis. Let δXϵ = δX j, j+1 − δXn,n+1 be nontrivial then for m = 1

we have:

((−ω2) − 1)δXϵ = −∂
2δXϵ
∂z2 +

(
λ1A2 +

λ2

2
A2 − κv2 + λ6A2v2 +

λ7

2
A2v2 − 2βv4

)
sech2zδXϵ +(

5λ3

48
A4 +

7λ4

24
A4 +

3λ5

4
A4 − λ6v2A2 − λ7

2
v2A2 + βv4

)
sech4zδXϵ . (B.2)

This is just a 1-dimensional time independent Schrödinger equation with potential

U = 1 +
(
λ1A2 +

λ2

2
A2 − κv2 + λ6A2v2 +

λ7

2
A2v2 − 2βv4)sech2z +

(
5λ3

48
A4 +

7λ4

24
A4 +

3λ5

4
A4 − λ6v2A2 − λ7

2
v2A2 + βv4

)
sech4z. (B.3)

If we impose the conditions featured in (4.36) then the potential will be positive definite and

the only admissible solutions will be bound states with positive energy, hence ω2 ≤ 0 for

all modes, under these conditions.

1For further insight into lemma 5.1 see section 5.2 and in particular the references to the appendix of [Yag99]
and [FG08]
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