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Abstract

In this thesis, the matter accretion onto a conformal gravity black hole (BH), reg-

ular phantom BH, Einstein-power-Maxwell (EPM) BH, noncommutative BH and

Hayward BH is investigated. We have analyzed the general solutions of matter ac-

cretion onto these BHs by employing the isothermal equations of state. The Hamil-

tonian and Michal approaches have been used to study the matter accretion onto

these BHs. We have considered the steady state and spherically symmetric accre-

tion of different test fluids, when they fall onto these BHs. Particularly, the flow

parameters such as critical velocity u(r), energy density ϱ(r), sonic speed c2s and

mass accretion rate Ṁ have been discussed for these BHs by using the isothermal

fluid. We have discussed the physical behavior of family of BHs, when the fluid

radial velocity and energy density are positive. The mass accretion rate increases

for the cases of dust, stiff fluid and quintessence fluid while it decreases for phan-

tom fluid. Further, we have classified the fluid on the basis of flow as ultra-stiff

fluid, ultra-relativistic fluid, radiation-fluid and sub-relativistic fluid by using the

Hamiltonian approach. Additionally, the maximum mass accretion rate occurs n-

ear the universal and Killing horizons and minimum accretion rate occurs in their

annular region. Finally, the results are compared with different cases of BHs avail-

able in literature. The physical validity of our results shows that the parameters of

the BHs play an important role for the maximum accretion rate.
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Chapter 1

Introduction

Einstein theory of gravity was suggested in 1915 and is still the standard frame-

work for the account of chrono-geometrical structure and the gravitational fields

of the spacetime. Even with its certain success to account for a comprehensive ex-

perimental data (Will 2014), the theory is troubled by some major issues that surely

identify the entity of present physics. One of these issues is the existence of space-

time singularity in the physically applicable solutions of Einstein field equations.

At a singularity, capability of prediction is lost and the new physics breaks down.

It has been suggested that the issue of spacetime singularities in the Einstein theory

of gravity can be resolved by the quantum gravity theory. Since, the present under-

standing of physical laws cannot assume a singularity and there are various efforts

to solve the singularity issue (Hayward 2006, Fan and Wang 2016, Toshmatov et al.

2014, Mannheim 2012, Bambi et al. 2018, Horava 2009). One of the efforts to solve

the singularity issue has been proposed by Bambi et al. (2018), where, singularity

free BH solutions have been proposed in conformal theory of gravity.

Latter on, conformal (Weyl) gravity characterized by a pure Weyl squared action

has taken a large amount of curiosity as an alternate theory of Einstein gravity.

Every conformal class of the Einstein field solutions occur genuinely as a solu-

tion of the conformal gravity by the equation of motion and the correspondence

of conformal gravity. Mainly, in case of the Neumann boundary condition, con-

1



formal gravity can single out Einstein solution was confirmed by Anastasiou and

Olea (2016). Further, Mannheim (2011) has investigated that unlike Einstein grav-

ity, conformal gravity is perturbatively renormalizable in four dimensions, on the

basis of this aspect conformal gravity is more attractive alternative to quantum

gravity (Stelle 1977). The effects of electromagnetic fields around compact stars in

conformal gravity have been explored by Turimov et al. (2018). The observational

test of conformal gravity has been done by Zhou et al. (2018) using X-ray observa-

tions of supermassive BHs. Also, Toshmatov et al. (2017) have discussed explicitly,

the energy conditions and scalar perturbations around BHs in conformal gravity.

Recently, Haydarov et al. (2020) have studied the motion of magnetized particle

around BHs in conformal gravity near the external magnetic fields.

Latest astronomical observations point out that our universe is expanding and

its confirmations are supernova type Ia studied by Perlmutter et al. (1999) and

the large scale structure (Eisenstein et al. 2002). By current approximations this

universe consists of dark matter 22%, dark energy 74% and an ordinary matter

4%. In astronomical observations, there are two main components in our Universe,

dark energy and dark matter. Johri (2004) and Lobo (2005) have studied the related

work and analyzed that the dark energy produces the gravitational effects and also

interrupts the week and null energy conditions. In astrophysics, dark energy is the

most inspiring problem and the number of ideas have been suggested to tackle

this problem such as phantom energy, scalar fields, quintessence and cosmological

constant.

The phantom field is an effective field of our universe and it is natural phenom-

ena to seek its clear appearance in many fields of new physics. In this view, the

phantom solutions of regular BH and wormhole with spherical symmetry were

found by Bronnikov (2006). The influence of phantom fields continues to attain

supports from the observational data (Komatsu et al. 2011, Perlmutter et al. 1999,

Blakeslee et al. 2003) and theoretical models (Carroll et al. 2003, Singh 2003). Al-
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l these observations have pointed out the accelerated expansion of the Universe

with an exotic fluid with negative pressure. In this respect, an interest in phantom

fields has been developed and resulted in various phantom BH solutions (Gibbons

and Rasheed 1996, Gao and Zhang 2009, Clement 2009, Ainou al. 2011). In recent

years, various problems pertaining to phantom BHs have been investigated with

thermodynamics stability (Rodrigues and Oporto (2012)) and light paths (Azreg-

Anou 2013, Gyulchev and Stefanov 2013).

The initiative research of accretion onto compact objects was carried out by Hoyle

and Lyttleton (1939). Later on, the study of Hoyle and Lyttleton was extended by

Bondi and Hoyle (1944) for a pressureless gas falling onto a compact object. The

spherically symmetric accretion onto a gravitating body is the simplest case, which

was first studied by Bondi (1952) and is called Bondi accretion. It was shown that

the solution describing such a process is unique and flow becomes transonic cross-

ing the critical (sonic) radius. It is currently accepted that Bondi-type of accretion

occurs in the Universe because all sources of accreting matter (e.g., gas clouds or

stars) have non-zero angular momentum. Michel (1972) derived the general rela-

tivistic model of spherically symmetric flow of a test particle onto Schwarzschild

BH and then this study has been extended by (Begelman 1978, Thorne et al. 1981

and Pandey 1987) in different papers. Abbas and Ditta (2021) have discussed the

Michel accretion near a non-commutative BH. In this work, they have analyzed the

critical velocity, speed of sound and the mass accretion rate.

Martnez et al. (2014) and Karkoski et al. (2006) have stated that accretion is the

process in which BH attain fluid from its locality. Jamil et al. (2008) have shown

that the BH mass does not increase permanently but it could decrease as in the

case of accretion of phantom-like matter. In 2020, Ditta and Abbas have studied

the accretion mechanism for a class of BHs. They have found that the mass rate

must be increases in the stiff-fluid, dust-fluid and quintessence-fluid but it could

decrease for phantom fluid. A few initiatives in higher dimensional BHs have been
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taken by John et al. (2013). From these BHs, it was demonstrated that the matter

accretion rate decreases by increasing the dimension of spacetime. Ganguly et al.

(2014) have studied the accretion onto string cloud background model. This model

shows that the accretion rate increases by increasing the string cloud parameter.

Abbas et al.(2020) have discussed the accretion onto Born-Infled BH. They have

analyzed that the mass accretion rate increases for the stiff-fluid, dust-fluid and

quintessence-fluid but it decreases for phantom fluid.

In modern cosmology, the dark energy is an expressive debate with negative

pressure analyzed by Harko and Mak (2005). Both authors Harko and Mak (2005)

have observed that the theory of GR faces the huge number of challenges that may

need the introduction of the dark matter and dark energy with the ordinary matter.

Accretion of dark energy onto Schwarzschild BH was formulated by Babichev et

al (2005). Latter on, Debnath (2015) has studied the Babichev idea and proposed a

study of spherically symmetrically accretion onto BHs. As spherically symmetri-

cally flows show that the accreting fluid passes through the number of phases, one

of them is the presence of an event horizon at which accreting fluid disappears.

In this respect, Abbas and Ditta (2019) have analyzed the accretion process for

isothermal flow when different test fluids fall onto Einstein-power-Maxwell BH.

Alternative approaches to dark energy are K-essence, phantom and quintessence

as studied by Karkoski et al. (2013). Kiselev formulated the Schwarzschild-like

solution for quintessence model (2003). Jiao and Yang (2017) have examined the

accretion onto a Kiselev BH. Abbas and Ditta (2018) have extended this work

to charged Kiselev BH (which is the Reissner-Nordstrom like BH surrounded by

quintessence field). They have showed that the results for the Kiselev BH can be

recovered by vanishing the charged parameter.

Sharif and his collaborators (2011, 2012, 2016, 2017) have investigated the phan-

tom accretion near a class of BHs. Sharif and Abbas (2011) have studied the phan-

tom energy accretion onto a 5D BH and found that CCH is valid for phantom ac-
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cretion onto a stringy charged BH. The study of circular orbits and accretion disks

in a class of Horndeski/Galileon BHs was done by Salahshoor and Nozari (2018).

Very recently, Ditta and Abbas (2020) have extended this work for a regular phan-

tom BH. The geodesic study of regular Hayward BH was discussed by Abbas and

Sabiullah (2014). Ditta and Abbas (2020) have proposed the astrophysical accretion

model near a regular Hayward BH. They have analyzed the properties of accretion

such as radial velocity, speed of sound and mass accretion rate.

Furthermore, many other researchers (Karkowski and Malec 2013, Mach et al.

2013, Guzman et al. 2011 and Ananda et al. 2015) have been analyzed the radial

flows of perfect fluid and the dark energy onto BHs in modified theories of grav-

ities. The accretion of cyclic and heteroclinic fluid flows near f(R) and f(T ) BHs

was discussed by Ahmad et al. (2016). Jawad and Shahzad (2017) have discussed

the accretion flows near some regular BHs. Using the Hamiltonian approach, the

maximum accretion flows with perfect fluids have been explored by Abbas et al.

(2019). Further, Abbas and Ditta (2020) have analyzed the accretion process for

isothermal flow when different test fluids are falling onto a conformal gravity BH.

This thesis has been organized as follows:

• Chapter two incorporates some vital concepts and basic terminologies which

are related to this thesis.

• The chapter three deals with the accretion of test fluids falling onto a BH.

Particularly, by adopting a dynamical Hamiltonian approach, we have found

the critical points for various cases of BHs in conformal gravity. In these

cases, we have analyzed the general solutions of accretion employing the

isothermal equations of state. The accretion of different test fluids onto the

conformal gravity BH has been considered. The research presented in this

chapter has been published in the impact factor journal European Physical

Journal C (Abbas and Ditta 2020).
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• In chapter four, we investigate the geodesics motion and accretion process

near a regular phantom BH by taking an isothermal fluid with spherically

symmetric BH spacetime. The geodesic motion around the BH during ac-

cretion provide the disc like structure. The results of this chapter has been

published in the impact factor journal General Relativity and Gravitation

(Ditta and Abbas 2020).

• Chapter five includes the general BH spacetime with isotropic fluid for the

generalized expressions of the radial velocity u(r), energy density ϱ(r), speed

of sound c2s and mass accretion rate Ṁ . The results of this chapter has been

published in the impact factor journal Chinese Journal of Physics (Ditta and

Abbas 2020).

• Chapter six addresses the matter accretion onto a NC inspired Schwarzschild

and Hayward BHs for a polytropic fluid and results are compared with Schwarzschild

BH. This research work has been published in the impact factor journal New

Astronomy (Abbas and Ditta 2021, Ditta and Abbas 2020).

• Chapter Seven deals with the conclusion of the thesis and some future re-

search directions.
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Chapter 2

Basic Concepts

This chapter includes some vital concepts and terminologies which are necessary

to understand this thesis.

2.1 General Relativity

Albert Einstein proposed the theory of gravitation in 1915 known as General Rel-

ativity (GR). This theory tells that gravitational effects between the masses come

from the deformation of objects. In beginning of the 20th century, Newton’s law of

universal gravitation had been recognized for more than two hundred years as a

well description of the gravitational force between masses. The Newton’s theory

says that gravity is an outcomes of an attractive force between the compact objects.

Observations and experiments represent that Einstein description of gravitation

accounts for various effects that are undetermined by Newton law, like anomalies

in the orbits of Mercury and some other planets. Einstein GR also predicts the new

effects of gravity, such as gravitational lensing, gravitational waves and gravita-

tional time dilation. General Relativity has become an important tool in modern

physics. It provides the foundation for the understanding of BHs, the region of

spacetime where the gravitational effects are so strong that nothing even light can

not escape.

The important predictions of GR are as follows:
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• It generalizes the special theory of relativity and Newton law of gravitation

in four dimensional spacetime.

• It implies the existence of BHs gravitational waves which have been directly

observed.

• Also it implies the existence of gravitational waves which have been directly

observed by the physics cooperation.

• In addition, it explains the cosmological models.

In order to study the BH solutions in GR, it is essential to begin with Einstein

field equations, which are given by

Gµν = Rµν −
1

2
Rgµν ≡ 8πG

c4
Tµν , (2.1)

where R is the Ricci scaler, Rµν is the Ricci tensor, Tµν represents the stress energy

tensor, which describes the energy density and momentum in a given spacetime,

G is Newton gravitational constant and c is the speed of light. For the vacuum, Eq.

(2.1) reduces to

Gµν = 0. (2.2)

Widely accepted as a theory of extraordinary beauty, GR has been described as

the most remarkable than the other physical theories.

2.2 The Static Spacetime

As our intention is to research for relativistic stellar objects it seems moderate, on

physical grounds, to adopt that spacetime is static and spherically symmetric. It is

surely consistent with models applied to investigation physical processes in stellar

objects. The general line element for static spherically symmetric spacetimes is

given by

ds2 = −A(r)dt2 + 1

B(r)
dr2 + C(r)(dθ2 + sin2 θdϕ2), (2.3)

in Schwarzschild coordinates.
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2.3 The Spacetime Singularity

The research on BHs in GR (Regge 1961) is done applying a variety of coordinate

systems. Several coordinate systems have singularities (point where the spacetime

curvature is mathematically ill-defined). Singularities occurs due to an artefact of

the coordinates system being used. One of the old and most important coordinates

system that was used to study BH was the Schwarzschild coordinates system spec-

ified earlier. This system is authentic in a vacuum region surrounding a spherically

symmetric distribution of mass and can be obtained from the Einstein field equa-

tions (Carroll 2013).

2.4 The Black Holes

The existence of BHs is one of the most surprising phenomena in our Universe.

Black hole is an object of a classical theory. The Einstein theory of gravity which

defines the coupling of matter and geometry of spacetime. Here, one natural ques-

tion to ask is how does the Einstein’s theory of gravity describe spacetime around

a massive object like a star? Schwarzschild found the answer of this question and

it is valid for all static round objects which only depends on its mass. However, the

strange things can happen, when all the mass is closed within a particular radius

named as Schwarzschild radius. Then an event horizon forms at the Schwarzschild

radius. The BH is defined as

The place in spacetime where gravitational pull is so powerful that even light

cannot escape from it, is called BH, which is formed when a massive star endures to

gravitational collapse. Due to dense state of matter, it is steady and external sources

can not destroyed it. Only these sources may cause to change its mass, charge and

angular momentum. A BH can be characterized by only three quantities:

• Mass (when it has no electric charge and no angular momentum, it is called

Schwarzschild BH).
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• Electric Charge (charged BH is called the Reissner-Nordstrom BH).

• Angular Momentum (when it has no charge then it is called the Kerr BH and

a BH with charge and angular momentum is Kerr Newman BH).

There are different types of BHs, depending on their mass.

2.4.1 Conformal Gravity Black Hole

The general action of conformal theory can be developed on the basis of following

four points:

• It is a completely covariant advancement theory of GR.

• It is an additional symmetry principle or local conformal invariance and the

existence of the symmetry principle prevents the Einstein Hilbert action and

cosmological term in the action.

• The conformal transformation of the theory is gµν → Ω2(x)gµν .

• The conformal gravity action is defined in terms of Weyl tensor Cηλµν and

a coupling constant αg, which is a dimensionless constant and this allows

the conformal gravity theory is a quantum theory of gravity. The action of

conformal gravity contributes to fourth order of equation of motion. The

fourth order equations of motion involve more constants of integration and

also solutions contain more parameters.

The action and the field equations are given by

SCG = −αg

∫
d4x(−g)1/2CηλµνC

ηλµν , (2.4)

Cηλµν = Rηλµν −
1

2
(gηµRλν − gηνRλµ + gλνRηµ − gλµRην) (2.5)

+
R

6
(gηµgλν − gηνgλµ),
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The following gravitational field equations are achieved by varying the action (2.4)

with respect to Wµν and the energy momentum tensor Tµν , which are

2αgWµν =
1

2
Tµν . (2.6)

Wµν =
1

3
∇µ∇νR−∇λ∇λRµν +

1

6
(R2 +∇λ∇λR (2.7)

−3RηλR
ηλ)gµν + 2RηλRµηνλ −

2

3
RRµν .

Therefore, the exact vacuum solution is given by the metric (2.3) with

A(r) = B(r) = 1− β(2− 3βγ)

r
− 3βγ + γr − kr2,

C(r) = r2, (2.8)

where β, γ and k are constants of integration.

2.4.2 The Phantom Black Hole

The phantom solutions of regular BH and wormhole with spherical symmetry

were found by Bronnikov and Fabris (2006). There is no singularity inside the

event horizon of a phantom BH as compared to the instance of regular BHs with

nonlinear electrodynamics sources as discussed by Flachi and Lemos (2013). The

properties of a phantom BH are alike to those of a Schwarzschild BH in case of out-

side the event horizon. Phantom regular BH solution has attracted much attention

of the researchers because of absence of the singularity.

The widely accepted and consistent alternative to the GR is the scalar-tensor

gravity proposed by Babichev et al. (2016). The action of this theory was proposed

by Bronnikov and Fabris (2006), as

S =

∫ √
−gd4x

[
R− 1

2
gµν∂µϕ∂νϕ+ V

]
, (2.9)

where R is a scalar curvature and ϕ =
√
2ψ =

√
2 arctan r

b
, V = 3M

b3
[(π

2
− ψ)(3 −

2 cos2 ψ)− 3 sinψ cosψ].
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Therefore, the exact vacuum solution is given by the metric (2.3) with

A(r) = B(r) = 1− 3M

b

[(π
2
− arctan

r

b

)(
1 +

r2

b2

)
− r

b

]
,

C(r) = r2 + b2, (2.10)

where, b is the scalar charge of phantom field which is positive constant, also called

phantom hair and the mass of BH is denoted by M . The theory of scalar-tensor

gravity plays a dominant role at astrophysical scale and also deals with static and

the spherically symmetric solutions.

2.4.3 Einstein Power-Maxwell 3D Black Hole

The authors Hassaine and Martinez (2008) have studied the higher-dimensional

BHs with a conformally invariant Maxwell source. They proposed the action for

an abelian gauge field for which the density is given by the power of the Maxwell

Lagrangian. The action with non-vanishing cosmological constant for the Einstein

power-Maxwell (EPM) theory of gravity in 3D, is given by (Gurtug, et al. (2012))

S =

∫
dx3

√
−g
( 1

16π
(R− 2

3
Λ)− bkF

k
)
, (2.11)

where bk = (−1)1−k is coupling constant. Hassaine and Martinez (2008) have taken

bk = α, where α is an arbitrary constant for nonlinear electromagnetic field in

which k is an arbitrary rational number and F = FµνF
µν is the Maxwell invariant.

The EPM BH solution is given by the metric (2.3) with

A(r) = B(r) = −M +
r2

l2
+

4πQ
4
3

3r2
, l2 =

−1

Λ
> 0, Λ < 0,

C(r) = r2, (2.12)

where M is gravitational mass, Q is charge and Λ is the cosmological constant.

2.4.4 Einstein Power-Maxwell 4D Black Hole

The EPM 4D BH was proposed by Hassaine and Martinez (2008). They proved

that in d dimensions the action (2.11), obeys the conformal invariance if the power
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is chosen as d/4. Therefore EPM 4D BH action is given by

S =

∫
dx4

√
−g
( 1

16π
(R− 2

3
Λ)− bkF

k
)
, (2.13)

using the action, one can find the EPM 4D BH solution, given by the metric (2.3)

with

A(r) = B(r) = 1− µ

r
+

q

r3
,

C(r) = r2, (2.14)

here, the metric parameters µ and q represent the mass and an electric charge of

the metric functions, respectively.

2.4.5 The Hayward Black Hole

It is well known that the singularity at the center in BHs designates collapse of

GR. Since a regular black hole (RBH) solution is obtained from the gravitational

field equations without a singularity inside the event horizon of BH. Therefore,

it is probable to create BHs, which are regular and do not have a singularity at

the center. It has been believed that this singularity can be disconnected in quan-

tum theory of gravity. However, a BH without singularity was first considered by

Bardeen (1968) known as regular BH (nonsingular). The Hayward BH (Hayward,

2006) is kind of such a regular BH, which do not have a singularity at the center

(Halilsoy et al. 2014). Ayn-Beato and Garca (2000) verified that the Bardeen BH

ia an exact solution in a spacetime with nonlinear electrodynamics. Therefore, the

action of nonlinear electrodynamics in curve spacetime is given by

S =

∫
dx4

√
−g
( 1

16π
(R− L(F ))

)
, (2.15)

where R is the scalar curvature, and the L depends on the F = FµνF
µν/4. The

Hayward regular BH is by the metric (2.3) with
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A(r) = B(r) = 1− 2mr2

r3 + 2l2m
,

C(r) = r2. (2.16)

2.4.6 The Non-Commutative Black Hole

Noncommutative background is much important in the specific framework of BH

thermodynamics. Haldar et al. (2018) have studied the Generalized Uncertainty

Principle (GUP) correction of non-thermal radiation spectrum in the background of

NC geometry using the framework of tunneling mechanism. Banerjee and Majhi,

(2009) have discussed the area law and quantum tunneling for the NC BHs. It has

been extensively approved that quantum gravity essential involve an uncertainty

principle which intercepts the area lower than the Planck scale (Snyder, 1947).

The NC geometry is very effective area of research due to its direct significance

in Planck scale physics (Connes, 1994). Besides, the NC geometry has no curva-

ture singularity. Here, we infer to use the spherically symmetric mass distribution

(Nicolini et al., 2006) with Gaussian distribution with minimal width
√
θ, so we

have

ϱθ(r) =
Me−r2/4θ

(4πθ)3/2
. (2.17)

The NC formulation of GR, can be done by replacing Dirac delta function by the

specially growing distribution of the mass density ϱθ(r) (Nicolini et al., 2006).

Therefore, the exact vacuum solution is given by the metric (2.3)

A(r) = B(r) = 1− m(r)

r
,

C(r) = r2,

m(r) =
2M√
π
γ(3/2, r2H/4θ), (2.18)

where γ(3/2, r2/4θ), is the lower incomplete gamma function defined by

γ(3/2, r2/4θ) =

∫ x

0

p3/2−1e−pdp. (2.19)
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2.5 The Event Horizon

The BH region in a spacetime is a boundary from which no light ray can escape

(Hawking 1972). This boundary is called an event horizon. In other words, the

boundary of a region in spacetime that cannot be observed by a far away observer

is called event horizon. According to Hawking and Ellis (1979), event horizon is a

null surface, which can completely describe the causal structure of spacetime. In

case of Schwarzschild BH, event horizon is at r = 2m.

2.6 Accretion Process

A very latest image of a BH established by the Event Horizon Telescope proves that

the accretion onto BHs is a significant issue in today science as observed by Akiya-

ma et al. (2019). Accretion is the process by which massive astronomical objects

apprehend the surroundings matter given in the interstellar medium that shows

an increase in mass (Martnez (2014)). In astrophysics, accretion process is one of

the global processes, in which fluid fall onto massive objects, it is feasible cause

for the formation of active galactic nuclei, quasar and energy of X-rays. During

accretion, the kinetic energy of falling matter raises on the entity of gravitational

energy. Accretion is important because

• It is the way for the objects to grow.

• It is the way for gravitational energy to be released.

2.6.1 The Energy-Momentum Tensor

The energy-momentum tensor is the agent of gravitational field like mass density.

T µν is flow of the µ component of the four-momentum parallel to the ν direction.

The energy-momentum tensor for the arbitrary manifold is defined by

T µν = ϱuµuν + ξαβδµαδ
ν
β (2.20)
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where ϱ is energy density, uµ is four velocity and ξαβ is shear tensor. It is a symmet-

ric tensor of second rank, i.e., T µν = T νµ. The components of energy momentum

have the following key points:

• T 00 represents energy density of matter.

• T 0ω is the flow of energy per unit area along ω direction.

• T ωω is the flow of ω component of momentum in the ω direction.

• T ωl is the flow of ω component of momentum in the l direction.

• T ω0 represents the density of ω component of momentum.

The value of energy-momentum tensor is zero for vacuum.

2.6.2 Perfect Fluid Energy-Momentum Tensor

Perfect fluid is a medium in which heat transport and shear stresses are not present

and pressure remains isotropic in the rest-frame for each fluid element. The energy

momentum tensor for such fluid is given by

T µν = (ϱ+ p)uµuη + pgµν , (2.21)

For pressure equal to zero, above equation becomes

T µν = ϱuµuν . (2.22)

which is the energy-momentum for dust fluid

2.7 General Formalism of Spherical Accretion

We study the curved spacetime corresponding to a general static and spherical-

ly symmetric object which is given by the metric (2.3), where all the coefficients

A(r) > 0, B(r) > 0, C(r) > 0 are the functions of radial distance r. Debnath (2015)
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used this spacetime with C(r) = r2. Now, we are going to extend this procedure

for general formulism of accretion process. We define the four-velocity in the fol-

lowing form

uµ =
dxµ

dτ
= (ut, ur, 0, 0), (2.23)

where τ is the proper time. The four velocity must satisfying the normalization

condition uµuµ = −1, this gives

ut =

√
A(r) + (ur)2

B(r)A(r)
. (2.24)

For inward flow or accretion, the velocity of flow must be negative, so ur < 0. The

following conservation laws are necessary for the accretion process. The energy

conservation is derived as follows

T µν
;µ = 0 ⇒ T µν

;µ =
1√
−g

(
√
−gT µν),µ + Γν

αµT
αµ = 0, (2.25)

which simplifies to

urC(r)(ϱ+ p)
A(r)

B(r)

√
A(r) + (ur)2 = N0, (2.26)

whereN0 is an integration constant. The relation between energy conservation and

four velocity uµT µν
;ν = 0, leads to

(ϱ+ p);νuµu
µuν + (ϱ+ p)uµ;νuµu

ν + (ϱ+ p)uµu
µuν;ν + p,νg

µνuµ + puµg
µν
;ν = 0. (2.27)

Using uµuµ = −1 and gµν;ν = 0, the above relation reduces to

(ϱ+ p)uν;ν + uνϱν = 0. (2.28)

After the manipulations of non-zero components, we get

ϱ′

ϱ+ p
+
u′

u
+
A′

2A
+
B′

2B
+
C ′

C
= 0, (2.29)

after integrating the above equation, we get

urC(r)

√
A(r)

B(r)
exp

∫
dϱ

ϱ+ p
= −N1, (2.30)
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where N1 is the integration constant. As ur < 0, the minus sign should be in the

right hand side. Now, we combine the Eqs. (2.26) and (2.30), to get

(ϱ+ p)
√

(ur)2 +B(r)

√
A(r)

B(r)
exp

(
−
∫

dϱ

ϱ+ p

)
= N2, (2.31)

where N2 represents the integration constant. The mass flux is given by

(ϱuµ);µ ≡ 1√
−g

(
√
−gϱuµ),µ = 0. (2.32)

The above equation simplifies to√
A(r)

B(r)
C(r)ϱur = N3, (2.33)

where N3 is the integration constant. Combining Eqs. (2.26) and (2.33), we get

(ϱ+ p

ϱ

)√
(ur)2 +B(r)

√
A(r)

B(r)
= N4, (2.34)

where N4 represents another arbitrary constant. Now differentiation of Eqs. (2.33)

and (2.34), lead to(
V 2 − u2

u2 +B

)
du

u
+

(
(V 2 − 1)

(
A′

A
− B′

B

)
+
C ′

C
V 2 − B′

2(u2 +B)

)
dr = 0. (2.35)

Now we define

V 2 =
dln(p+ ϱ)

dlnϱ
− 1. (2.36)

For the critical accretion the radial distance will be r = rc, Eq. (2.35) can be written

into two parts and both must would be equal to zero. Hence, we get

V 2
c =

u2c
u2c +B(rc)

, (2.37)

(V 2
c − 1)

(
A′(rc)

A(rc)
− B′(rc)

B(rc)

)
+
C ′(rc)

C(rc)
V 2
c =

B′(rc)

2(u2c +B(rc))
. (2.38)

Here uc is the critical velocity of the flow, we decouple the variables u2c , V 2
c and get

u2c =
B(r)A′(r)C(r)

2A(r)C ′(r)
, (2.39)

V 2
c =

C(r)A′(r)

C(r)A′(r) + 2A(r)C ′(r)
. (2.40)
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The sound speed is obtained from the relation (2.34), which is given by

c2s =
dp

dϱ
|r=rc = N4

√
B(rc)

A(rc)(u2c +B(rc))
− 1. (2.41)

For the result of u2c and V 2
c , we have

A′(r)

C ′(r)
> 0. (2.42)

Using this relation, one can get the dimensionless critical radius in the proposed

metric.

2.8 Equation of State

Equation of state (EoS) is helpful in describing the properties of fluid, solids and

interior of stars. The EoS for perfect fluid is p = ωϱ, where ω is the state parameter

with ω = −1, a cosmological constant, −1 < ω < −1/3, for quintessence and

ω < −1, for phantom models (Nojiri and Odintsov (2011)). The following fluids

are characterized from the equation of state:

• If ω = 1, the stiff fluid.

• If ω = 1/2, the relativistic fluid.

• If ω = 1/3, the radiation fluid.

• If ω = 1/4, the sub-relativistic fluid.

2.9 Hamiltonian Approach

Since, at the constant pressure, the enthalpy is the ratio of density of fluid and the

total energy of the system. So, in fluid dynamics, we may define the enthalpy as

h(ϱ, p, n) = ϱ+p
n

. By this definition, we rewrite the fundamental Eqs. (2.33) and
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(2.34) as

r2nu = N3, (2.43)

h
√
A(r) + (u)2 = N4, (2.44)

Now, we derive the dynamical Hamiltonian system by adopting these funda-

mental equations. We take H be the square of the L.H.S. of Eq. (2.44), so

H = h2
(
A(r) + (u)2

)
, (2.45)

also, we can write

H = h2
(
A(r) + (u)2

)
, (2.46)

where v ≡ dr
A(r)dt

, is three-dimensional speed with radial motion of a particle in

equatorial plan. Thus, we have

v2 =

(
u

A(r)u0

)2

=
u2

u20
=

u2

A(r) + u2
, (2.47)

which simplifies to

u2 =
A(r)v2

1− v2
. (2.48)

Using Eq. (2.48) into Eq. (2.46), we get

H =
h2A(r)

1− v2
. (2.49)

From Eqs. (2.43) and (2.48), we get

N2
3 =

r4n2A(r)v2

1− v2
(2.50)

As from the sonic points and isothermal test fluids, we have v2c = a2c and rc(1 −

v2c )A
′(r) = 4A(r)ca

2
c . If we write Eq. (2.50) as

N2
3 =

r4cn
2
cA(r)cv

2
c

1− v2c
, (2.51)

which simplifies to

N2
3 =

r5cn
2
cA

′(r)c
4

. (2.52)
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Using Eq. (2.50) and Eq. (2.52), we get

r4n2A(r)v2

1− v2
=
r5cn

2
cA

′(r)c
4

, (2.53)

which simplifies to ( n
nc

)2
=
r5cA

′(r)c
4

1− v2

r4A(r)v2
. (2.54)

Now, using enthalpy ϱ+p
n

= h, equation of state p = ωϱ and by second fundamental

equation, we have

h =
(ω + 1)ϱc

nc

(
n

nc

)ω

, (2.55)

using (2.54) and (2.55), we have

h2 =
((ω + 1)ϱc

nc

)2(r5cA′(r)

4

)ω( 1− v2

r4A(r)v2

)ω
, (2.56)

which simplifies to

h2 ∝
( 1− v2

r4A(r)v2

)ω
. (2.57)

Finally, using above relation in Eq. (2.46), we obtain

H =
A1−ω

(1− v2)1−ωv2ωr4ω
. (2.58)

2.9.1 Sonic points

Sonic point (critical point) is a point, where the velocity of the moving gas must

be equal to the local sound speed. By this definition, the maximum accretion rate

occurs, if the flow passes through the critical point. Our aim is to calculate the

critical points of the flow and the sound speed at these points, for this, we assume

the barotropic fluid at constant enthalpy that is h = h(n). Therefore, the equation

of state for this flow becomes (Ficek, 2015),

dh

h
= a2

dn

n
, (2.59)
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where a represents the local sound speed. Also, from above equation we get lnh =

a2 lnn. Using (2.24), (2.34) and (2.59), we acquire[(
u

u0

)2

− a2

]
(lnu),r =

1

r(u0)2

[
2a2(u0)

2 − 1

2
rA′(r)

]
. (2.60)

Now, for critical points, both sides of above relation (2.60) should be equal to zero.

So, the sound speed at the critical point becomes

a2c =

(
uc
u0c

)2

, (2.61)

where the quantities, ac , rc and uc designate the sound speed, distance and velocity

of the fluid from the BH at the critical point, respectively. Therefore, another result

of Eq. (2.60) at critical point is given by

2a2c(u0c)
2 − 1

2
rcA

′
rc = 0. (2.62)

From Eqs. (2.61) and (2.62), one can get the radial velocity at the critical points,

which is given by

(uc)
2 =

1

4
rcA

′
rc . (2.63)

Using Eqs. (2.25), (2.62) and (2.63), we obtain

rcA
′
rc = 4a2c [A(rc) + (uc)

2]. (2.64)

Thus, we have

a2c =
rcA

′
rc

rcA′
rc + 4A(rc)

. (2.65)

Therefore, someone can obtain the critical points as (rc,±uc) using Eqs. (2.63) and

(2.65), if one has the value of sound speed.

2.9.2 Isothermal Test Fluids

After combining p = ωϱ with a2 = dp
dϱ

, consequently, a2 = ω is obtained. Applying

the first law of thermodynamics, we get

dϱ

dn
=
ϱ+ p

n
= h. (2.66)
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Integrating the above Eq. (2.66) from the critical point to any point inside fluid, we

get

n = nc exp

(∫ ϱ

ϱc

dϱ′

ϱ′ + p(ϱ′)

)
. (2.67)

With the help of p = ωϱ, the above Eq. (2.67) gives

n = nc

(
ϱ

ϱc

) 1
ω+1

. (2.68)

Using h(ϱ, p, n) = ϱ+p
n

and the above relation, we obtain

h =
(ω + 1)ϱc

nc

(
n

nc

)ω

. (2.69)

By using Eq. (2.63) and (2.64), we get

(uc)
2 =

1

4
rcA

′
c, (2.70)

(uc)
2 = ω

(
1

4
rcA

′
c + Ac

)
. (2.71)

Consequently, for the classification of fluid flow, the generalized expression (2.71)

can be solved numerically by choosing the any value of ω. In rest of the work,

we assume the four kinds of fluid such as, ultra-stiff fluid, ultra-relativistic fluid,

radiation fluid and sub-relativistic fluid for the accretion onto a class of BHs.

2.9.3 Polytropic Test Fluids

A mathematical form of polytropic equation of state is (Ahmad, et al. (2016))

p = G(n) = Γnα, (2.72)

here α and Γ are constant parameters. One can consider the general constraint α

is greater than 1 for any fluid. Specific enthalpy is given by (Jawad and Shahzad

(2017))

h = m+
Γαnα−1

α− 1
. (2.73)

Three dimensional sound speed is

a2 =
(α− 1)U

m(α− 1) + U
, (2.74)
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where U = γαnα−1. Another useful result can be obtain with the help of speed of

sound, which is given by

h = m
α− 1

α− 1− a2
, (2.75)

and therefore

h = m

(
1 +X

(
1− v2

r4A(r)v2

)(α−1)/2
)
, (2.76)

where

X =
Γαnα−1

c

m(α− 1)

(
r5cA

′(rc)

4

)(α−1
2

)

= constant > 0. (2.77)

From the above result, it is clear that the constant X depends on the BH parame-

ters and also on the test fluids. The final form of the Hamiltonian system can be

obtained by using Eqs. (2.76) and (2.58), which is given by

H =
A(r)

1− v2

(
1 +X

(
1− v2

r4A(r)v2

)(α−1)/2
)2

. (2.78)

2.10 Radial Velocity

The radial velocity of an object with respect to a given point is the rate of change

of the distance between the object and the point. In other words the radial velocity

is the component of the object’s velocity that points in the direction of the radius

connecting the point and the object.

In case of fluid flow, radial velocity depends on EoS of the fluid. Fluid has zero

radial velocity for asymptotic limit, however, these acquire non-vanishing veloci-

ties as they approach to naked singularity. Due to strong gravitational attraction

near the naked singularity, the fluids achieve critical velocities, we observe some

symmetry in the profile of the velocity curves and the location of critical points. Af-

ter passing through critical point, the fluid flow becomes supersonic or transsonic.

From Eq. (2.34), we have

u(r) =

(
1

k + 1

)√
(N4)2

A(r)
− (k + 1)2. (2.79)
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2.11 Mass Accretion Rate

Mass accretion rate is the area times flux on the boundary of BH, it is denoted

by Ṁ . The general formula for accretion rate of fluid around the BH is given by

(Biswas 2011),

Ṁacc = 4πAM2(ρ+ p), (2.80)

where dot represents the derivative with respect to time. We see that the mass of

the BH will increase for any fluid such as ρ+ p > 0, which accretes outside the BH.

On the other hand, if the fluid is phantom dark energy ρ+ p < 0, then the mass of

the BH will decrease.

From the energy momentum tensor of perfect fluid, we have T r
t = (ϱ + p)utu

r.

Since, the dynamical system is conserved, so we have ∇µJ
µ = 0 and ∇νT

µν = 0.

Thus due to this conserved system, Eqs. (2.33) and (2.34) give the following result

(by consideration A(r) = B(r) and C(r) = r2,

r2u(ϱ+ p)
√
A(r) + (u)2 = L0, (2.81)

where L0 denotes an arbitrary constant. Now, using the continuity equation (rela-

tivistic energy flux) and the equation of state p = p(ϱ), we get

dϱ

ϱ+ p
+
du

u
+

2

r
dr = 0. (2.82)

After integrating, we obtain

r2u exp

[∫ ϱ

ϱ∞

dϱ′

ϱ′ + p(ϱ′)

]
= −L1, (2.83)

where L1 is constant of integration and ϱ∞ represents fluid density at infinity. In

the R. H. S. of above equation, the minus is taken due to u < 0. Dividing Eq. (2.83)

with (2.81), we get

L3 = −L0

L1

= (ϱ+ p)
√
A(r) + (u)2 exp

[
−
∫ ϱ

ϱ∞

dϱ′

ϱ′ + p(ϱ′)

]
, (2.84)
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where L3 is constant. At infinity, L3 = ϱ∞+ p(ϱ∞) = −L0

L1
, with L0 = (ϱ+ p)u0ur2 =

−L1(ϱ∞ + p(ϱ∞)). The problem is spherically symmetrically static at equatorial

plane. So, the mass flux equation ∇µJ
µ = 0 is given by

r2un = L2, (2.85)

where L2 represents the integration constant. Dividing the Eqs. (2.81) and (2.85),

we get
ϱ+ p

n

√
A(r) + (u)2 =

L0

L2

≡ L4, (2.86)

where L4 is any constant, which is L4 = (ϱ∞+p∞)
n∞

. Putting Eq. (2.81) in the expres-

sion.

Ṁ = −4πr2u(ϱ+ p)
√
A(r) + (u)2 = −4πL0. (2.87)

Then, it becomes

Ṁ = 4πL1(ϱ∞ + p(ϱ∞)). (2.88)

Thus the Eq. (2.88) gives the valid result for any nature of fluids. Thus, we have

Ṁ = 4πL1(ϱ+ p)|r=rh , (2.89)

assuming the isothermal EoS p = ωϱ, and (ϱ + p) = ϱ(1 + ω). Then, using the Eq.

(2.83), it leads us to

ϱ =

[
− L1

r2u

]1+ω

. (2.90)

By the expression of ϱ, one can obtain the following general equation from (2.81),

which is given by

(u)2 − L2
0L

−2(1+ω)
1

(1 + ω)2
r4ω(−u)2ω + A(r) = 0. (2.91)

It can be solved for fluid velocity u with any value of ω. One can calculate the

energy density ϱ by using u for any values of ω. By assuming ω = 1 in Eq. (2.91),

one can calculate the radial velocity and the energy-density of the ultra-stiff fluids,

that is

u = ±L2
1

√
A(r)

L2
0r

4 − 4L4
1

, (2.92)

26



also the energy density is given by

ϱ =
(L2

0r
4 − 4L4

1)

4L2
1r

4A(r)
. (2.93)

Consequently, using Eq. (2.93) into Eq. (2.89), the mass accretion rate of BH takes

the following form

Ṁ =
2π(L2

0r
4 − 4L4

1)

L1r3A(r)
. (2.94)

The above Eq. (2.94) is the general expression of mass accretion rate for any BH.
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Chapter 3

Matter Accretion onto a Conformal
Gravity Black Hole

The aim of this chapter is to investigate the accretion of test fluids flowing onto a

BH. Particularly, by adopting a dynamical Hamiltonian approach, we are capable

to find the critical points for various cases of BH in conformal gravity. In these

cases, we have analyzed the general solutions of accretion employing the isother-

mal equations of state. Further, we have classified these flows in the context of

equations of state and the cases of conformal gravity BH. The new behavior of

polytropic fluid accretion is also discussed in all three cases of BH. Black hole mass

accretion rate is the most important part of this research in which we have inves-

tigated that the Schwarzschild BH produce a typical signature than the conformal

gravity BH and Schwarzschild de-Sitter BH. The critical fluid flow and the mass

accretion rate have been presented graphically by the impact parameters β, γ, k

and these parameters have great significance. Additionally, the maximum mass

rate of accretion fall near the universal and Killing horizons and minimum rate of

accretion occurs in between these regions. Finally, the results are compared with

the different cases of BH available in the literature. The outcomes of this chapter

have been published in the form of a research article (Abbas and Ditta 2020).

The detail of this chapter is as follows: The conformal gravity BH solution with

different values of parameters has been presented in section 3.1. In section 3.2, we
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have formulated the horizon structure of conformal gravity BH. Section 3.3 is ded-

icated to spherical accretion onto conformal gravity BH. The sound speed at the

critical points is formulated in section 3.4. Further, in the subsequent sections, we

have applied the Hamiltonian approach for the accretion with isothermal equation

of state. In section 3.5, we have analyzed the nature of flow around conformal

gravity BH for various cases of fluids such as ultra-stiff fluid, ultra-relativistic flu-

id, radiation fluid and sub-relativistic fluid. The polytropic fluid accretion has been

discussed explicitly in section 3.6. The mass accretion rate for various BHs is for-

mulated in section 3.7.

3.1 Conformal Gravity Black Hole

From conformal gravity BH given in Eq. (2.8), the choice γ = 0 yields the Schwarzschild-

de Sitter solution and γ = k = 0 recover the Schwarzschild solution. If all three

parameters of BH γ, β and k are not equal to zero, the BH can be termed as case 1,

which is a general case. If we impose γ = 0, thenA(r) = 1− 2β
r
−kr2 (Schwarzschild-

de Sitter solution), which is the case 2. We can get the Schwarzschild solution

A(r) = 1 − 2β
r

for γ = k = 0, which is the case 3. In all these cases β is considered

as mass of BH and k behaves as cosmological constant (Mannheim and Kazanas

(1989, 1991)).

3.2 Horizon Structure

In this section, we study the horizons of the conformal gravity BH. For the metric

function A(r) given in Eq. (2.8), the effect of the parameters β, γ and k is signifi-

cent. It is well known that the conformal gravity BH appears to describe a massive

body fixed in a conformally flat space. The conformally flatness of the spherically

symmetric space is characterized by the absolute influence of the massive body.
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Figure 3.1: The horizon structure of conformal BH displays the behavior of A(r)

versus r. Left panel for various values of γ and others parameters are taken as

fixed k = −1, β = 0.96. In the right panel, β horizons mean, we take various values

of β. In the bottom panel, k horizons mean, we take various values of k.

As aforementioned by the analysis of Weyl tensor, the shattering of conformally

flatness is evident at infinity.

For the radial distance grr = 0 or A(r) = 0, one would have an event horizon.

Figure 3.1 (left panel) has the following key points:

• We have two horizons (green curve) for γ = 0.70.

• We have one horizon (red curve) for γ = 0.84.

• We have no horizons (black curve) for γ = 0.95.

Figure 1 (right panel) has the following key points:

• We have two horizons (green curve) for β = 0.73.
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Figure 3.2: The horizon structure of Schwarzschild-de Sitter BH (left panel) and

Schwarzschild BH (right panel) display the behavior of A(r) versus r. The hori-

zon curves of Schwarzschild-de Sitter BH are obtained for β = 0.10, 0.19, 0.29 and

other parameters are taken as fixed k = −0.0001, γ = 0. The horizon curves of

Schwarzschild BH are obtained for β = 0, 0.15, 0.19, 0.25 and others parameters are

taken as fixed k = 0, γ = 0.
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• We have one horizon (red curve) for β = 0.86.

• We have no horizons (black curve) for β = 0.96.

Figure 1 (bottom panel) has the following key points:

• We have two horizons (green curve) for k = −0.0001.

• We have one horizon (red curve) for k = −0.17.

• We have no horizons (black curve) for k = −1.

Figure 3.2 left panel presents the Schwarzschild-de Sitter BH horizon structure

for γ = 0, there exists only one event horizon with the variations of β. In the right

panel of Fig. 3.2, one gets Schwarzschild solution for γ = 0 and k = 0, there is

only one event horizon. When we take β = 0, the Schwarzschild solution is flat

(see black curve). It is noted that when all parameters appearing from conformal

gravity are set equal to zero then the solution is conformally flat as discussed by

Mannheim and Kazanas (1989).

3.3 Spherically Symmetrically Accretion

The study of spherical accretion onto BHs describes the movement of fluid near

the event horizon. Here, we assume two important laws that fully characterized

the spherically accretion of isotropic perfect fluid. One is the law of conservation of

mass and the other is the law of conservation of energy. We begin by the equation

of continuity defined by Rezzolla and Zanotti (2013) as given in chapter 2.
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3.4 Analysis of Various Cases of Black Holes

3.4.1 Case 1.

The first and general case of the line element is a conformal BH, which is given by

Eq. (2.8). There are four subcases of case 1:

3.4.1.1 Hamiltonian for ultra-stiff fluid (ω = 1):

In this case, we have p = ϱ, from the equation of state and critical point and

event horizon are equal, that is rh = rc, with the condition Ac = 0, which can

be easily obtained by using Eqs. (2.70) and (2.71). The Hamiltonian (2.58) for

this type of fluid takes the form

H =
1

v2rc4
. (3.1)

3.4.1.2 Hamiltonian of ultra-relativistic fluid (ω = 1/2):

In this case, the relation between energy density (ϱ) and pressure (p) is p =

ϱ/2, with ω = 1/2 in the equation of state, it means that the energy density is

grater than the pressure. From Eqs. (2.70) and (2.71), we get rcA′
c − 4Ac = 0,

which gives

2krc
3 − 3γrc

2 + 4(3βγ − 1)rc + 5β(2− 3βγ) = 0. (3.2)

The real solution of above equation is

rc =
γ

2k
− 24k − 72kβγ + 9γ2

3× 22/3kQ
+

Q

6× 21/3k
, (3.3)

where

Q =
(
− 1080k2β + 216kγ + 1620k2β2γ − 648kβγ2 + 54γ3

+

√
4 (−24k + 72kβγ − 9γ2)3 + (−1080k2β + 216kγ + 1620k2β2γ − 648kβγ2 + 54γ3)2

)1/3
.
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Using rc from the above expression, we get vc from Eq. (2.70) and have two

critical points as (rc,±vc). The Hamiltonian (2.58) reduces into the form:

H =

√
A(r)

rc2v
√
1− v2

. (3.4)

The graphical behavior can be seen between v and rc with particular choice

of H = Hc. From the above relation (3.4), we get

v2 =
1±

√
1− 4X(r)

2
, (3.5)

where X(r) = A(r)
Hcr4

.

3.4.1.3 Hamiltonian for radiation fluid (ω = 1/3):

For radiation fluids, the equation of state takes the form p = ϱ/3. Using Eqs.

(2.70) and (2.71), we have rcA′
c − 2Ac = 0, which leads to

γrc
2 − (3βγ − 1)rc − 3β(2− 3βγ) = 0. (3.6)

The critical solutions are

rc± =
2(3βγ − 1)± 2

2γ
. (3.7)

The Hamiltonian (2.58) in this case is given by

H =
A(r)

2
3

rc
4
3v

2
3 (1− v2)

2
3

. (3.8)

3.4.1.4 Hamiltonian for sub-relativistic fluid (ω = 1/4):

For such fluids, the equation of state obeys the form p = ϱ/4. This form shows

the energy density exceeds than the isotropic pressure. Using Eqs. (2.70) and

(2.71), we get 4Ac − 3rcA
′
c = 0, which reduces to

2krc
3 + γrc

2 − 4(3βγ − 1)rc − 7β(2− 3βγ) = 0. (3.9)

rc =
γ

3k
− 21/3 (−3k + 9kβγ − γ2)

3kS
+

S

3 21/3k
(3.10)
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S =
(
P +

√
4 (−3k + 9kβγ − γ2)3 + P 2

)1/3
P = −54k2β + 9kγ + 81k2β2γ − 27kβγ2 + 2γ3.

After determining the critical points, the Hamiltonian is given by

H =
A(r)

3
4

rcv
1
2 (1− v2)

3
4

. (3.11)

3.4.2 Case 2

The second case of the line element is known as Schwarzschild-de Sitter BH, the

Hamiltonian and critical points for such BH can be obtained by taking γ = 0 in

Case 1.

3.4.3 Case 3

The third and final case of the line element is called Schwarzschild solution, the

Hamiltonian and critical points for such BH can be obtained by taking γ = k = 0

in Case 1.

3.4.4 Visualization of results for all cases

This section elaborates the results of ultra-stiff fluids (ω = 1), ultra-relativistic fluid-

s (ω = 1
2
), radiation fluids (ω = 1

3
) and sub-relativistic fluids (ω = 1

4
) for conformal

gravity BH (Case 1), Schwarzschild de-Sitter BH (Case 2) and Schwarzschild BH

(Case 3).

1. Ultra-stiff fluids (ω = 1):

Figure 3.3 signifies the velocity v of moving fluid versus the radius r corre-

sponding to various cases of BH. The fluid motion occurs in the two regions,

upper curves show the region v > 0 whereas the lower curves for the region

v < 0 for the three cases of BH. It is noted here that the critical point is always
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Figure 3.3: The left panel (conformal gravity BH) displays the behavior of Eq. (3.1)

with conformal parameters γ = 0.1, k = −1, β = 1. The critical parameters are

chosen as rc ≈ 0.9738, vc = 1, Hc ≈ 1.112. The right panel (Schwarzschild de-Sitter

BH) displays the behavior of Eq. (3.1) with Schwarzschild de-Sitter BH parameters

γ = 0, k = −1, β = 1. The critical parameters are chosen as rc ≈ 1.001, vc = 1, Hc ≈

1.001. The bottom panel (Schwarzschild BH) displays the behavior of Eq. (3.1)

with Schwarzschild BH parameters γ = 0, k = 0, β = 1. The critical parameters are

chosen as rc = 2, vc = 1, Hc ≈ 0.0625. The representation of colors for H = Hc →

orange, H > Hc → magenta and yellow.
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equal to the critical horizon for ultra-stiff fluid. Moreover, the critical points

are closer in conformal gravity BH and Schwarzschild de-Sitter BH as com-

pare to the Schwarzschild BH. It is observed that the critical points are close

to the singularity in conformal gravity BH and Schwarzschild de-Sitter BH

than the Schwarzschild BH.

2. Ultra-relativistic fluids (ω = 1
2
):

We see the velocity essence of moving fluid v versus the radius r for afore-

mentioned all three cases of conformal gravity BH by putting the correspond-

ing values ofA(r) in Fig. 3.5. The critical values of horizon, radius and veloci-

ty (rh, rc, vc) are nearly equal to (0.974, 1.297, 0.707107), (1.3333, 1.3282, 0.707107)

and (2.0025, 2.524, 0.707107) for the cases 1, 2 and 3, respectively. For H =

Hc = 1.3030 (Case 1), H = Hc = 1.27174 (Case 2) and H = Hc = 0.1431 (Case

3), the behavior of curves is seen through the critical points (rc,±vc). It is

shown that the fluid outflow starts from the horizon and induces by the high

pressure. The curves behaviors shown in Fig. 3.4 are not all physical. For

increasing radius r, the region must be v > 0 (positive), while for decreasing

radius the region must be v < 0 (negative). The flow in the yellow, magenta,

orange and purple curves is unphysical. The fluid flow increases as v > 0

and decreases the radius, so there is neither fluid outflow nor an accretion. It

is also noted here that the fluid elements are closer in Case 1 and Case 2 as

compared to Case 3, respectively. Consequently, it is viewed that the critical

points are closer in Case 1 and Case 2 as compared to Case 3, respectively.

Specially, in Case 3 (Schwarzschild case), only the orange curve represents

the unphysical while the other four color curves show the physical behavior

which is clear as compare to Case 1 and Case 2. Further, Fig. 3.4 shows the

following four key points.

• We notice, the subsonic/supersonic accretion occurs in the ranges −vc <
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v < 0 and −1 < v < −vc, whereas supersonic/subsonic fluid outflows

for vc < v < 1 and 0 < v < vc, respectively.

• The emission of particles for v > vc and thus purely supersonic accretion

for v < −vc.

• The subsonic outflow followed by the subsonic accretion with vc > v >

−vc.

• The upper plot shows the supersonic outflow followed by subsonic mo-

tion, while the lower plot shows the subsonic accretion followed by su-

personic accretion.

Consequently, we observe that the starting point of the fluid outflow is at

horizon due to its very high pressure which influences to divergence and as

a result, the fluid with its high pressure, flows back to infinity as analyzed

by Chakrabarti (2011). We also observe from Fig. 3.4, the supersonic accre-

tion (fluid outflow) followed by subsonic accretion (fluid inflow) stops inside

the horizon (Ahmed at el. 2016). It means that for conformal gravity BH,

Schwarzschild de-Sitter BH and Schwarzschild BH the flow of the fluid is

neither supersonic nor transonic near the horizon as found by Novikov and

Thorne (1973) and Chakrabarti (1990). The analysis of stability can be done

by using Lyapunov’s theorem or linearization of dynamical system as stud-

ied by Nagle (2012) and their variations as defined by Azreg (2013).

3. Radiation fluids (ω = 1
3
):

The rule played by the different parameters for the velocity profile v versus

radius r is important in Fig. 3.5. The settlement of curves corresponding to

H = Hc is colored orange. The Magenta and Yellow curves relate to H < Hc

and the Purple and Red plots to H > Hc. In Fig. 3.5, we see the supersonic

outflows of the fluid in the range vc < v < 1. In this flow, we observe that the

orange curve exactly passes through the critical point (rc = 3.0) as compared
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Figure 3.4: For the accretion flow, the left panel (conformal gravity BH) displays

the behavior of Eq. (3.5) with conformal parameters γ = 0.1, k = −1, β = 1. The

critical parameters involve rc ≈ 1.29701, vc = 0.70716, Hc ≈ 1.30306. Right panel

(Schwarzschild de-Sitter BH) displays the behavior of Eq. (3.5) with Schwarzschild

de-Sitter BH parameters γ = 0, k = −1, β = 1. The values of the critical parameters

are rc ≈ 1.32827, vc = 0.70716, Hc ≈ 1.27174. Bottom panel (Schwarzschild BH)

displays the behavior of Eq. (3.5) with Schwarzschild BH parameters γ = 0, k = 0,

β = 1. The values of the critical parameters are rc = 2.5, vc = 0.70716, Hc ≈

0.143108. The representation of colors in H = Hc → orange, H > Hc → magenta

and yellow, H < Hc → purple and red.
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Figure 3.5: In the physical structure of accretion, left panel (conformal gravity BH)

displays the behavior of Eq. (3.8) with conformal parameters γ = 0.1, k = −1, β =

1. The critical parameters involve rc ≈ 3, vc = 0.5773, Hc ≈ 1.95007. Right panel

(Schwarzschild de-Sitter BH) displays the behavior of Eq. (3.8) with Schwarzschild

de-Sitter BH parameters γ = 0, k = −1, β = 1. The critical parameters involve

rc ≈ 3, vc = 0.5773, Hc ≈ 1.93626. Bottom panel (Schwarzschild BH) displays the

behavior of Eq. (3.8) with Schwarzschild BH parameters γ = 0, k = 0, β = 1. The

critical parameters involve rc = 3, vc = 0.5773, Hc ≈ 0.20998. The representation

of colors in H = Hc → orange, H > Hc → magenta and yellow, H < Hc → purple

and red.

40



rh rc

Case 1

1.0 1.5 2.0 2.5 3.0
r

-0.6

-0.4

-0.2

0.2

0.4

0.6

v

rh
rc

Case 2

1.0 1.5 2.0 2.5 3.0
r

-0.6

-0.4

-0.2

0.2

0.4

0.6

v

rh

Case 3

rc

2 4 6 8 10
r

-0.04

-0.02

0.02

0.04

v

Figure 3.6: In the physical structure of accretion, left panel (conformal gravity BH)

displays the behavior of Eq. (3.11) with conformal parameters γ = 0.1, k = −1,

β = 1. The critical parameters involve rc ≈ 1.54267, vc = 0.5, Hc ≈ 2.38717.

Right panel (Schwarzschild de-Sitter BH) displays the behavior of Eq. (3.11) with

Schwarzschild de-Sitter BH parameters γ = 0, k = −1, β = 1. The critical param-

eters involve rc ≈ 2.25826, vc = 0.5, Hc ≈ 2.6812. Bottom panel (Schwarzschild

BH) displays the behavior of Eq. (3.11) with Schwarzschild BH parameters γ = 0,

k = 0, β = 1. The critical parameters are taken as rc = 3.5, vc = 0.5, Hc ≈ 0.26556.

The representation of colors in H = Hc → orange, H > Hc → magenta and yellow,

H < Hc → purple and red.

41



to other curves. The critical points are very close in Case 1 and Case 2 than

Case 3. So, the orange, magenta and yellow curves are purely supersonic

outflows for (v > vc) and these curves pass through the critical speed Fig. 3.6

in Schwarzschild BH. One can see the similar behavior for conformal gravity

BH and Schwarzschild de-Sitter BH. The vertical lines which are closer to the

horizon are unphysical for H > Hc.

4. Sub-relativistic fluids (ω = 1
4
):

We have analyzed the accretion of the sub-relativistic fluid ω = 1
4

for the con-

formal gravity BH. We have plotted the sub-relativistic fluid motion versus

the radius in Fig. 3.6. This figure shows that all the solution curves are not

passing through the critical velocity, which confirms to the new solution in

Schwarzschild BH. Since, the critical velocity is located at vc ≈ 0.5 but the

maximum speed in case of Schwarzschild BH approaches to v = 0.06. So,

there is no accretion flow around Schwarzschild BH for sub-relativistic fluid.

We have observed the supersonic accretion at v > vc followed by subsonic ac-

cretion at 0 < v < vc which stop at the horizon for conformal gravity BH and

Schwarzschild de-Sitter BH. Furthermore, we have the supersonic accretion

with v < −vc followed by the subsonic accretion at 0 < ν < −νc.

3.5 Polytropic Fluids Accretion

The polytropic EoS was considered by Ahmad et al. (2016) and Jawad and Shahzad

(2017), which is discussed in section 2.6.3. Now by using Eq. (2.78), we find the

Hamiltonian of polytropic fluids for different cases of conformal gravity BH.
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1. Hamiltonian for conformal gravity BH

H =

(
1− β(2−3βγ)

r
− 3βγ + γr − kr2

)
1− v2

[
1 (3.12)

+X
( 1− v2

r4v2
(
1− β(2−3βγ)

r
− 3βγ + γr − kr2

))(α−1)/2]2
.

2. Hamiltonian for Schwarzschild de-Sitter BH

H =

(
1− 2β

r
− kr2

)
1− v2

[
1 +X

( 1− v2

r4v2(1− 2β
r
− kr2)

)(α−1)/2]2
. (3.13)

3. Hamiltonian for Schwarzschild BH

H =
1− 2β

r

1− v2

[
1 +X

( 1− v2

r4v2(1− 2β
r
)

)(α−1)/2]2
. (3.14)

It is analyzed from the Hamiltonian results that dA(r)
dr

> 0 for all r.

Adopting the technique of Ahmad et al. (2016) and Jawad and Shahzad (2017),

one can get the following relation

(α− 1− v2c )

(
1− v2c

r4cA(rc)v
2
c

)α−1
2

=
nc

2X

(
r5cA

′(rc)
) 1

2
v2c , (3.15)

v2c =
rcA

′
rc

rcA′
rc + 4A(rc)

. (3.16)

Figure 3.7 represents the contour plots for conformal BH (left panel), Schwarzschild

de-Sitter BH (right panel) and Schwarzschild BH (bottom panel) with nc = 0.15,

X = 5, α = 5/3. We have presented the behavior of matter by taking the sonic

points rc ≈ 1.9855, vc ≈ 0.56218, H = Hc ≃ 4.2876 for conformal BH, rc ≈ 3.7859,

vc ≈ 0.44216, H = Hc ≃ 2.1377 for Schwarzschild de-Sitter BH and rc ≈ 5.2865,

vc ≈ 0.24211, H = Hc ≃ 1.9374 for Schwarzschild BH. It is analyzed that the

critical flow for conformal BH, Schwarzschild de-Sitter BH and Schwarzschild BH

begins from the region of Killing horizon and ends at the subsonic accretion as r

approaches to infinity. It has been observed that the accretion behavior of various

BHs is different at critical points of polytropic test fluids case. Also, it has been
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Figure 3.7: For the polytropic fluid accretion, left panel (conformal gravity BH)

displays the behavior of (3.12). Right panel (Schwarzschild de-Sitter BH) displays

the behavior of (3.13). Bottom panel (Schwarzschild BH) displays the behavior of

(3.14). (Figure color online).
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observed that at the trajectory of conformal BH, the critical points are closer (see

red curve), for Schwarzschild de-Sitter BH, the critical points are also distant (see

red curve) and for Schwarzschild BH, the critical points are also distant (see red

curve). In all these cases, the trajectories do not pass through the saddle point

(sonic point).

3.6 Black Hole’s Mass Accretion Rate

Exact solution for ultra-stiff fluids ω = 1:

By assuming ω = 1 in Eqs. (2.92) and (2.93), one can calculate the radial velocity

and energy-density of ultra-stiff fluids, that is

u = ±L2
1

√
A(r)

L2
0r

4 − 4L4
1

, (3.17)

also the energy density is given by

ϱ =
(L2

0r
4 − 4L4

1)

4L2
1r

4A(r)
. (3.18)

From Eqs. (2.92) and (3.18), the mass accretion rate of conformal gravity BH can

obtained in the following form

Ṁ =
2π(L2

0r
4 − 4L4

1)

L1r3 [3β2γ − 2β + (1− 3βγ)r + γr2 − kr3]
(Case 1). (3.19)

Similarly, following the same method, we can find the mass accretion rate for

Schwarzschild de-Sitter and Schwarzschild BHs

Ṁ =
2π(L2

0r
4 − 4L4

1)

L1r3 [−2β + r − kr3]
. (Case 2) (3.20)

Ṁ =
2π(L2

0r
4 − 4L4

1)

L1r3 [−2β + r]
. (Case 3) (3.21)

In Fig. 3.8, we plot the mass accretion-rate Ṁ versus the radius r for aforemen-

tion BHs in ultra-stiff fluid, other parameters γ, k and β are taken as fixed. In
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Figure 3.8: In this figure, left panel (conformal gravity BH) displays the behavior

of Eq. (3.19) with conformal parameters γ = 0.1, k = −1, β = 1. Right panel

(Schwarzschild de-Sitter BH) displays the behavior of Eq. (3.20) for Schwarzschild

de-Sitter BH parameters γ = 0, k = −1, β = 1. Bottom panel (Schwarzschild BH)

displays the behavior of Eq. (3.21) for Schwarzschild BH parameters γ = 0, k = 0,

β = 1. Other constants are taken as L0 = 0.90, L1 = 0.5.
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the left panel (conformal gravity BH) the accretion rate is increased by decreas-

ing the parameter γ. It has been noted that the maximum accretion rate occurs

for overlapping the critical radius in the presence of different values of γ. For

the left panel the values of mass accretion rate are: Ṁ = 0.15, 0.235, 0.29, 0.36 for

γ = 12.1, 6.1, 2.1, 0.1, we have the overlapping radius r ≈ 1.931, respectively. The

same critical points are seen in the right panel (Schwarzschild de-Sitter BH) in the

presence of parameter k. The critical values are: Ṁ = 0.15, 0.235, 0.29, 0.36 for

k = −2.5,−2.0,−1.5,−1.0, we have the overlapping radius r ≈ 1.931, respective-

ly. The right panel increases the mass of Schwarzschild de-Sitter BH by increasing

the cosmological constant parameter k. Now, the maximum mass accretion rate of

Schwarzschild BH occurs in bottom panel, such as Ṁ = 15.5, 16.5, 17.5, 18.5 occur

for different values of parameters

• β = 0.7, corresponding to r ≈ 2.536

• β = 0.8, corresponding to r ≈ 2.936

• β = 0.9, corresponding to r ≈ 3.156

• β = 1.0, corresponding to r ≈ 3.956

The mass accretion rate of Schwarzschild BH is increased by increasing the mass,

β). Hence, we conclude that the mass of Schwarzschild BH is larger as compare to

conformal gravity BH and Schwarzschild de-Sitter BH.

Exact solution for ultra-relativistic fluids ω = 1/2:

By assuming ω = 1/2 in Eqs. (2.92) and (2.93), one can calculate the radial velocity
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and energy-density of ultra-relativistic fluids, that is

u =
2r2L2

0 +
√

4r2L4
0 − 81A(r)L6

1

9L3
1

. (3.22)

ϱ = 27

(
L4
1

r2(2r2L2
0 +

√
4r2L4

0 − 81A(r)L6
1)

)3/2

. (3.23)

Ṁ = 216πL1

(
L4
1

r2(2r2L2
0 +

√
4r2L4

0 − 81A(r)L6
1)

)3/2

. (3.24)

1. The mass accretion rate of conformal gravity BH is

Ṁ = 216πL1 (3.25)

×

 L4
1

r2(2r2L2
0 +

√
4r2L4

0 − 81(1− β(2−3βγ)
r

− 3βγ + γr − kr2)L6
1)

3/2

.

2. The mass accretion rate of Schwarzschild de-Sitter BH is

Ṁ = 216πL1 (3.26)

×

 L4
1

r2(2r2L2
0 +

√
4r2L4

0 − 81(1− 2β
r
− kr2)L6

1)

3/2

.

3. The mass accretion rate of Schwarzschild BH is

Ṁ = 216πL1 (3.27)

×

 L4
1

r2(2r2L2
0 +

√
4r2L4

0 − 81(1− 2β
r
)L6

1)

3/2

.

In Fig. 3.9, we plot the mass accretion-rate (Ṁ ) versus the radius (r) for afore-

mention BHs in ultra-relativistic fluid. The left panel (conformal gravity BH) rep-

resents that the mass accretion rate is decreasing for larger value of r, that is Ṁ =
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7000 for r = 0.8 and Killing horizon is at rKH ≈ 0.8 whereas the universal horizon

is at rUH ≈ 0.1. The accretion rate is increasing for smaller values of the radius,

that is Ṁ > 8000 for r ≃ 0.65 and the Killing horizon is at rKH ≈ 0.65 whereas the

universal horizon is at rUH ≈ 0.2. We can say that the mass of the conformal gravi-

ty BH decreases whereas the radius increases, on the other hand the accretion rate

is an increasing function of radius. In this case, the critical points are overlapping

at the universal horizon. This implies that the mass of Schwarzschild de-Sitter BH

decreases whereas the radius increases, on the other hand the accretion rate is an

increasing function of radius in the presence of cosmological constant k.

Now, the maximum mass accretion rate of Schwarzschild BH occurs in bottom

panel for smaller radius. The critical points are overlapping at the universal hori-

zon but these points are away from the killing horizon in the presence of mass

function β. Four key points are observed for the Schwarzschild BH:

• β = 0.7, corresponding to rUH ≈ 0.135, rKH ≈ 0.65.

• β = 0.8, corresponding to rUH ≈ 0.133, rKH ≈ 0.70.

• β = 0.9, corresponding to rUH ≈ 0.131, rKH ≈ 0.75.

• β = 1.0, corresponding to rUH ≈ 0.129, rKH ≈ 0.80.

The accretion rate of Schwarzschild BH is increasing with the decreasing values

of radius. Hence, we conclude that mass of the Schwarzschild BH is larger as

compare to conformal gravity BH and Schwarzschild de-Sitter BH.

Exact solution for radiation fluid ω = 1/3:

By assuming ω = 1/2 in Eqs. (2.92) and (2.93), one can calculate the radial velocity

and energy-density of radiation fluids, that is

u =
[(− 32A(r)L4

1 +
√
1024A(r)2L8

1 − 27r4L6
0

)1/3
4L2

1

(3.28)

+
3r4/3L2

0

4L
2/3
1

(
− 32A(r)L4

1 +
√

1024A(r)2L8
1 − 27r4L6

0

)1/3]2/3.
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Figure 3.9: In the mass accretion rate, left panel (conformal gravity BH) displays

the behavior of Eq. (3.25) with conformal parameters γ = 0.1, k = −1, β = 1.

Right panel (Schwarzschild de-Sitter BH) displays the behavior of Eq. (3.26) with

Schwarzschild de-Sitter BH parameters γ = 0, k = −1, β = 1. Bottom panel

(Schwarzschild BH) displays the behavior of Eq. (3.27) with Schwarzschild BH

parameters γ = 0, k = 0, β = 1. Other constants are taken as L0 = 0.90, L1 = 0.5.
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The energy density of the fluid is given by

ϱ =
[L1

r2

] 4
3
[(− 32A(r)L4

1 +
√
1024A(r)2L8

1 − 27r4L6
0

)1/3
4L2

1

(3.29)

+
3r4/3L2

0

4L
2/3
1

(
− 32A(r)L4

1 +
√

1024A(r)2L8
1 − 27r4L6

0

)1/3 ]−8
9
.

The general form of the mass of BH is given by

Ṁ =
[8πL 7

3
1

r
8
3

][(
− 32A(r)L4

1 +
√

1024A(r)2L8
1 − 27r4L6

0

)1/3(
4L2

1

)−1

(3.30)

+
3r4/3L2

0

4L
2/3
1

×
(
− 32A(r)L4

1 +
√

1024A(r)2L8
1 − 27r4L6

0

)−1/3]−8
9
.

1. The mass accretion rate of conformal gravity BH is

Ṁ =
[8πL 7

3
1

r
8
3

][(
− 32(1− β(2− 3βγ)

r
− 3βγ + γr − kr2)L4

1 (3.31)

+

√
1024

(
1− β(2− 3βγ)

r
− 3βγ + γr − kr2

)2
L8
1 − 27r4L6

0

)1/3(
4L2

1

)−1

+
3r4/3L2

0

4L
2/3
1

×
(
− 32(1− β(2− 3βγ)

r
− 3βγ + γr − kr2)L4

1

+

√
1024

(
1− β(2− 3βγ)

r
− 3βγ + γr − kr2

)2
L8
1 − 27r4L6

0

)−1/3]−8
9
.

2. The mass accretion rate of Schwarzschild de-Sitter BH is

Ṁ =
[8πL 7

3
1

r
8
3

][(
− 32(1− 2β

r
− kr2)L4

1 (3.32)

+

√
1024

(
1− 2β

r
− kr2

)2
L8

1 − 27r4L6
0

)1/3(
4L2

1

)−1

+
3r4/3L2

0

4L
2/3
1

×
(
− 32(1− 2β

r
− kr2))L4

1

+

√
1024

(
1− 2β

r
− kr2

)2
L8

1 − 27r4L6
0

)−1/3]−8
9
.

3. The mass accretion rate of Schwarzschild BH is
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Ṁ =
[8πL 7

3
1

r
8
3

][(
− 32(1− 2β

r
)L4

1 (3.33)

+

√
1024

(
1− 2β

r

)2
L8
1 − 27r4L6

0

)1/3(
4L2

1

)−1

+
3r4/3L2

0

4L
2/3
1

×
(
− 32(1− 2β

r
)L4

1

+

√
1024

(
1− 2β

r

)2
L8
1 − 27r4L6

0

)−1/3]−8
9
.

In Fig. 3.10, we plot mass accretion-rate Ṁ versus the radius r for aforemention

BHs for radiation fluid with the parameters γ, k and β. The left panel (confor-

mal gravity BH) represents the decreasing mass accretion rate for smaller value of

r. The maximum mass accretion rate is noted at the universal, but far from the

Killing horizon. It is the increasing function of the radius in the presence of γ. The

red curve in the right panel depicts the minimum accretion rate at the universal and

the Killing horizon for Schwarzschild de-Sitter BH due to the parameter k. Howev-

er, the accretion rate increases for smaller values of k and we can see the maximum

accretion rate near r ≈ 1.08, 0.82, 0.75, 0.69 for k = −1.0,−1.5,−2.0,−2.5, respec-

tively. It is the decreasing function of radius that is mass increases when radius

decreases.

We note that for Schwarzschild BH, the range of the maximum accretion rate is

between the radius 0.5 to 0.6, for larger value of β = 4. It is also the decreasing

function of the radius that is accretion rate increases whereas the radius decreases.

So, four key points are observed for the Schwarzschild BH:

• β = 1.0, corresponding to rUH ≈ 0.4, rKH ≈ 1.0.

• β = 2.0, corresponding to rUH ≈ 0.4, rKH ≈ 0.90.

• β = 3.0, corresponding to rUH ≈ 0.4, rKH ≈ 0.70.
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Figure 3.10: For the mass accretion rate, left panel (conformal gravity BH) displays

the behavior of Eq. (3.31) with conformal parameters γ = 0.1, k = −1, β = 1.

Right panel (Schwarzschild de-Sitter BH) displays the behavior of Eq. (3.32) with

parameters γ = 0, k = −1, β = 1. Bottom panel (Schwarzschild BH) displays the

behavior of (3.33) with the parameters γ = 0, k = 0, β = 1. Other constants are

taken as L0 = 0.90, L1 = 0.5 .

• β = 4.0, corresponding to rUH ≈ 0.4, rKH ≈ 0.60.

The mass accretion rate of Schwarzschild BH is increasing and the radius de-

creases for increasing values of the mass function. Hence, we conclude that the

mass of Schwarzschild BH is larger as compared to conformal gravity BH and

Schwarzschild de-Sitter BH.

We plot mass accretion-rate (Ṁ ) versus the radius (r) for aforemention BHs in

the case of sub-relativistic fluid with particular values of conformal parameters γ,

k and β, as shown in Fig. 3.11. The left panel (conformal gravity BH) denotes
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Figure 3.11: For the mass accretion rate, left panel displays the behavior of con-

formal gravity BH with conformal parameters γ = 0.1, k = −1, β = 1. Right

panel displays the behavior of Schwarzschild de-Sitter BH with parameters γ = 0,

k = −1, β = 1. Bottom panel displays the behavior of Schwarzschild BH with

parameters γ = 0, k = 0, β = 1. Other constants are taken as L0 = 0.90, L1 = 0.5.
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the decreasing mass accretion rate for larger value of γ. One can see the maxi-

mum accretion rate at r ≈ 0.87 for γ = 0.4, r ≈ 0.82 for γ = 0.3, r ≈ 0.76 for

γ = 0.2, r ≈ 0.69 for γ = 0.1. While, the mass decreases but the radius increases

in this case between the universal and Killing horizon. The red curve in a right

graph depicts the maximum mass accretion rate between the universal and Killing

horizon for Schwarzschild de-Sitter BH. It is noted here that the accretion rate de-

creases for smaller values of k and we can see the maximum accretion rate near

r ≈ 0.69, 0.82, 0.92, 1.0 for k = −1.0,−1.5,−2.0,−2.5, respectively. Now, the maxi-

mum mass accretion rate of Schwarzschild BH occurs in bottom panel for smaller

radius between the universal and Killing horizons (see red curve). The maximum

accretion rate occurs between r ≈ 0.2 to r ≈ 0.4. While, the minimum accretion

rate occurs at the killing horizon in a bottom panel. Therefore, the minimum mass

rate is between r ≈ 0.2 to r ≈ 1.0 for the larger value of β = 4.0. Four key points

are observed for the Schwarzschild BH:

• β = 1.0, corresponding to rUH ≈ 0.22, rKH ≈ 0.40.

• β = 2.0, corresponding to rUH ≈ 0.21, rKH ≈ 0.60.

• β = 3.0, corresponding to rUH ≈ 0.19, rKH ≈ 0.80.

• β = 4.0, corresponding to rUH ≈ 0.18, rKH ≈ 1.0.

The mass accretion rate of Schwarzschild BH decreases with the increases of radius

for the various values of the mass function.
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Chapter 4

Circular Orbits and Accretion Process
Near a Regular Phantom Black Hole

The relativistic accretion onto astrophysical compact objects such as BHs and neu-

tron stars is the natural phenomena for releasing energy, with up to 40% of the

rest-mass energy of the matter accreting on the BH able to be liberated. High lumi-

nosities due to accretion are observed in X-ray binaries, and in active galactic nu-

clei (AGN). An accretion disks are framed due to development of gases and dust

materials that travel in confined orbits by the gravitational force of central mas-

sive objects such as main sequence stars, neutron stars, super massive BHs and

young stellar objects (YSO). Usually, as the orbits of the particles become unstable

an accretion would occur but when the materials orbits are stable there would be

no accretion in such systems. The accelerated particles should pass from a critical

point and this is the point where the velocity of the fluid exceeds the local speed of

sound. In such situation matter falling onto the BH attains a supersonic velocities.

In this chapter, we investigate the geodesics motion and accretion process near

a regular phantom BH by taking an isothermal fluid with spherically symmetric

BH spacetime. The geodesic motion around BH during accretion provide the disc

like structure. Here, we give some reasons for the development of circular orbits

and accretion process for the considered BH. Firstly, we discuss the motion of test

particles with stabilities near the equatorial plane which make the circular orbit-
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s. Then we analyze perturbations via restoring force and oscillations of particles

around the central object. Finally, we discuss the critical speed of the fluid flow

and maximum accretion rate. The physical validity of our results shows that the

phantom parameter b plays an important role for the circular orbits and the maxi-

mum accretion rate. The outcomes of this chapter have been published in the form

of a research article (Ditta and Abbas 2020).

This chapter is organized as follows: In section 4.1, we discuss the horizons

structure of phantom BH. Section 4.2 is devoted the general formulism for geodesic

structure. The circular motion, radiation energy flux and oscillations are inspected

in the subsequent sections 4.2.1, 4.2.2 and 4.2.3, respectively. In section 4.4 and sub-

section 4.4.1, we have obtained the dynamical equations and mass expansion. We

have investigated the critical accretion, circular equatorial geodesics and epicyclic

frequencies in sections 4.5, 4.5.1 and 4.5.2, respectively.

4.1 Horizons Structure of Phantom Black Hole

From Eq. (2.10), if mass of the BH is negative (M < 0), we get a wormhole with the

radius condition r → −∞ which is asymptotic region (anti-de Sitter) and r → ∞

which is also an asymptotic region. WhenM = 0, we obtain an Ellis wormhole, the

connection of two symmetric asymptotically flat regions (Zhang and Jing (2018)).

In this thesis, we take M > 0 and we have a Killing horizon rH parallel to the

single root of A(r) = 0. The occurrence of phantom hair in spacetime gets the

richer properties. For 0 < b < 3πM
2

the range of event horizon rH is 0 < rH < 2M .

When b = 3πM
2

, we have rH = 0 (event horizon does not exist). When b > 3πM
2

,

there exist rH < 0 and wormhole appears.

In this respect, the regular phantom solution has the properties of both BHs and

wormholes (Bronnikov and Fabris (2006), Eiroa and Sendra (2013)). Likewise, it is

manifested that as 0 < b < 3πM
2

, instead of a singularity, an expanding and asymp-
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Figure 4.1: Horizon structure of phantom BH, It is a flat for M = 0 and has an

event horizon for M = 0.38. One can see that curves diverge in the right plot when

b tends to zero.

totically flat de Sitter- Kantowski-Sachs cosmological appears in its internal region

rH > r (Bronnikov and Fabris (2006), Bolokhov et al. (2012)). This especial kind of

the BHs can also be termed as black Universes, which have fascinating cosmological

behavior in their internal locality (Bronnikov et al. (2007)). When b tends to zero,

the phantom scalar ϕ is obtained and it becomes a constant
√
2
2
π and the parallel

potential V → 0, the action turns to the usual action of GR without any material

field and the corresponding BH metric reduces that of the usual Schwarzschild BH

Huang et al. (2016).

However, if the parameter b does not involve into the metric function A(r) then

the one may study the accretion process without phantom field. Let the reader

know how the results of accretion with a phantom field can be compared with

accretion without the parameter b. Now, we study the horizon singularity of men-

tioned phantom BH spacetime, for this, we consider the lapse function

A(r) = 0. (4.1)
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Since, for the radial distance grr = 0 or A(r) = 0, one would has an event horizon.

The locality of an event horizon in the geometry is a radial distance from the center

of the core where the metric is singular, excepting the intrinsic singularity which

cannot be detached through coordinate transformation. Figure 4.1 (left plot) has

the following key points:

• We have a flat curve (black) when M = 0 and b = 0.10.

• We have an event horizon curve (red) when M = 0.38 and b = 0.10.

• While the green and blue curves have no behavior for M = 1.4, 2.4 and b =

0.10.

Figure 4.1 (right plot) shows that the curves of metric function A(r) diverges when

the parameter b tends to zero.

Now using the relationA(r) = 0, we have rsing = 3πMb−2b2

12M
. It is important to note

that for evaluations, the suppositions arctan r
b
= r

b
and r2

b2
≃ 0, for larger value of b

are considered. Therefore, we have done all calculations using these assumptions

also with M = 1 and our main focus is to explore the effects of phantom parameter

b on the accretion of matter.

4.2 Geodesic Structure: General Formulism

This section provides the study of timelike geodesics near a spacetime by two

killing vectors that are ξt = ∂t and ξϕ = ∂ϕ corresponding two constants of mo-

tion E and L. The constants of motion E and L can be defined by

E = −gµνξµt uν ≡ −ut,

L = gµνξ
µ
ϕu

ν ≡ uϕ, (4.2)

where E and L represent preserved energy and angular momentum, respectively.

Also uµ = dxµ

dτ
= (ut, ur, uθ, uϕ) is the four velocity of the fluid and the fluid follows
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the normalization condition uµuµ = −1, hence, we get

[grr(u
r)2 + gθθ(u

θ)2] = [−1− gtt(ut)
2 − gϕϕ(uϕ)

2]. (4.3)

In equatorial plane, we put (θ = π/2), in Eqs. (4.2) and (4.3), and get

ut =
E

A(r)
, (4.4)

uθ = 0,

uϕ =
L

r2 + b2
,

ur =

[
A(r)

(
−1 +

E2

A(r)
− L2

r2 + b2

)] 1
2

.

Also the conserved energy equation can be written as

(ur)2 + Veff = E2, (4.5)

where Veff is an effective potential for the motion of test particle which is given by

Veff = A(r)

[
1 +

L2

r2 + b2

]
. (4.6)

We note that effective potential depends on specific angular momentum of particle,

the metric parameter A(r) and the radial distribution. For the geodesic motion, the

study of effective potential is very helpful such as the local extrema of effective

potential can be used to find out the location of circular orbits.

The physical behavior of the left panel of Fig. 4.2 signify the effective potential

against the radius r for various values of angular momentum L with the fixed val-

ue of phantom parameter b = 4.80. We see the first extremum at L = 5. The red dot

shows the location of innermost stable circular orbits at r = 3.5. It is to be noted

that Veff has two extremum for large values of L, where the maximum location

shows the unstable circular orbits and the minimum shows the stable circular or-

bits. The Veff increases by increasing L and hence maximum points turn to smaller

radii whereas the minimum points go to the larger radii, respectively. The similar

behavior can be seen from the right panel of Fig. 4.2, the effective potential goes to

the larger values as phantom parameter b increases.
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Figure 4.2: Equation (4.35) which is governing from Eq. (4.6), shows the effective

potential behavior (left and right panels) near radial coordinate of BH. The left

panel is for b = 4.80 and with different values of angular momentum. The right

panel represents the effect of the phantom parameter b on effective potential with

L = 5. Note: It is interesting that the results are well matched to Salahshoor and

Nozari (2018), thus the stable circular orbits are at the minimum of Veff .
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Figure 4.3: Equations (4.40) and (4.41) plot the system of figures (left and right

panels) for energy and angular momentum with radial coordinate from the central

mass for different values of the phantom parameter b.

4.2.1 Circular Motions

In the equatorial plane, we have radial component of velocity as constant, so u̇r = 0

must hold. Using this in Eq. (4.5), we get Veff = E2 and so d(Veff )

dr
= 0. With

these relations, we can determine E,L,Ωϕ, l, the specific energy, specific angular

momentum, angular velocity and angular momentum, respectively as follows

E2 =
2rA2(r)

2rA(r)− (r2 + b2)A′(r)
, (4.7)

L2 =
(r2 + b2)2A′(r)

2rA(r)− (r2 + b2)A′(r)
, (4.8)

Ωϕ =
dϕ

dt
≡ uϕ

ut
⇒ Ω2

ϕ =
1

2r
A′(r), (4.9)

l2 =
L2

E2
=

(r2 + b2)2

2rA2(r)
A′(r). (4.10)

We have plotted the physical behavior of the angular momentum and specific

energy against the dimensionless radius r and the phantom parameter b in Fig.
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4.3. In the left panel, the solution curves show the variation of specific energy

against radius with different colors. The solid circles in the right panel show the

position of this radius with innermost stable circular orbits. The energy raises by

increasing b. The reverse behavior is shown for angular momentum, the solution

curves decreases by increasing b in left panel. In right panel, the circles represent

the behavior of the loci of these variables in the innermost stable circular orbits.

For the real values of specific energy and angular momentum, the following

relation must hold

2rA(r)− (r2 + b2)A′(r) > 0. (4.11)

Also the restricted area of the circular orbits can be calculated by solving the above

inequality. The condition E2 < 1 is valid only for bound orbits but for marginally

bound orbits the condition E2 = 1 must be satisfied. From Eq. (4.7), we have

(r2 + b2)A′(r) + 2rA(r)[A(r)− 1] = 0. (4.12)

By solving the above equation, we obtain the marginally bound orbits. Now, from

Eqs. (4.7) and (4.8), we get the following condition

2rA(r)− (r2 + b2)A′(r) = 0. (4.13)

One can obtained the radius of photon sphere by solving the Eq. (4.13).

4.2.2 Radiation Energy Flux

The stable circular orbits exist, when the local minima of the effective potential
d2

dr2
Veff > 0, whereas for marginally stable circular orbits risco the relation d2

dr2
Veff =

0, must be hold. Now, from Eq. (4.6), we have

d2Veff
dr2

= A′′(r)

(
1 +

L2

r2 + b2

)
− 4rA′(r)

L2

(r2 + b2)2
(4.14)

−2(−3r2 + b2)A(r)
L2

(r2 + b2)3
.
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An accretion process is imaginable if r < risco. If the particles accrete onto the BH

from rest to infinity, then they released the gravitational energy after that this en-

ergy can be converted into the radiations and these radiations are the foundation

of the most energetic astrophysical phenomena. The radiant energy flux above the

disk expressed by Kato et al. (2008) under the specific energy E, angular momen-

tum L and the angular velocity Ωϕ. We have

K = − ṀΩϕ,r

4π
√
−g(E − LΩϕ)2

∫
(E − LΩϕ)L,rdr, (4.15)

where K is radiation flux, Ωϕ,r =
dΩϕ

dr
, Ṁ is accretion rate and g is determinant of

the metric, which is given by

g = det(gµν) = −(r2 + b2)2 sin2 θ. (4.16)

As we restrict we our study in equatorial plane, so we use sin θ = 1. Thus, from

Eqs. (4.7)-(4.9), we get

K(r) = −Ṁ
4π

rA′′(r)− A′(r)
√
2r2(r2 + b2)

√
A′(r)
r

(4.17)

×

−2

√√√√ rA2(r)

2rA(r)− (r2 + b2)A′(r)
+

√
A′(r)

r

√
(r2 + b2)A′(r)

2rA(r)− (r2 + b2)A′(r)


−2

×
∫ r

mb

F (r)dr,

where

F (r) =

√
A(r)

2r(r2 + b2)
(4.18)

×

[
4rA′(r) + (r2 + b2)A′′(r)− (r2 + b2)A′(r)(2A(r)− A′′(r))

]
2rA(r)− (r2 + b2)A′(r)

.

Now, we consider the important relation between the radiation flux and the tem-

perature, which is given by K(r) = σT 4(r).
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4.2.3 Oscillations

Now, we explain radial motion with 1
2

(
dr
dt

)2
= V

(r)
eff and vertical motion with 1

2

(
dθ
dt

)2
=

V
(θ)
eff . From Eq. (4.3), we set uθ = 0 and for vertical motion ur = 0. By taking

ur = dr
dτ

= dr
dt
ut and uθ = dθ

dτ
= dθ

dt
ut, we obtain

1

2

(
dr

dt

)2

= −1

2

A3(r)

E2

[
1 +

E2

A(r)
+

L2

(r2 + b2) sin2 θ

]
= V

(r)
eff . (4.19)

1

2

(
dθ

dt

)2

= −1

2

A2

(r2 + b2)E2

[
1 +

E2

A(r)
+

L2

(r2 + b2) sin2 θ

]
= V

(θ)
eff .

The perturbations δr and δθ are required for the radial and vertical epicyclic fre-

quencies near the circular orbit in equatorial plane. We take the time derivative of

radial Eq. (4.19), and get
d2r

dt2
=
dV

(r)
eff

dr
. (4.20)

For small deviation δr = r − r0, the equation of motion is written as

d2(δr)

dt2
=
dV

(r)
eff

dr
(δr) ⇒ (δr̈) + Ω2

r(δr) = 0, (4.21)

where a double dots denote the derivative with respect to time coordinate t and

Ω2(r) = − d2

dθ2
V

(r)
eff . Also, by the same procedure for vertical direction with deviation

δθ = θ − θ0, we get

d2(δθ)

dt2
=
dV

(θ)
eff

dr
(δθ) ⇒ (δθ̈) + Ω2

θ(δθ) = 0, (4.22)

where Ω2(θ) = − d2

dθ2
V

(θ)
eff . From Eq. (4.19) in an equatorial plane, we get the follow-

ing components

Ω2
θ =

h2(r)L2

(r2 + b2)2E2
, (4.23)
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and

Ω2
r =

1

2(r2 + b2)3E2

[
(r2 + b2)2(2(r2 + b2)E2 + 3(r2 + b2 + L2)A2(r))

]
A′′(r) (4.24)

+2(r2 + b2)
[
(r2 + b2)2E2A′(r) + 3(r2 + b2)(r2 + b2 + L2)A(r)− 6L2rA2(r)

]
A′(r)

−2L2(b2 − 3r2)A3(r).

Now, we consider some basic dynamical properties in a regular phantom BH, so

that we can proceed further.

4.3 Dynamical Parameters

From Eq. (2.34), we get the radial velocity u(r) by the help of EoS p = kρ, which is

given by

u(r) =

(
1

k + 1

)√
(N4)2

A(r)
− (k + 1)2, (4.25)

which gives

u(r) =

(
1

k + 1

)√
(N4)2

1− 3M
b

[(
π
2
− arctan r

b

) (
1 + r2

b2

)
− r

b

] − (k + 1)2. (4.26)

From Eq. (2.33), we get the energy density ρ(r) with the help of radial velocity,

which is given by

ρ(r) =
N3

(r2 + b2)

(k + 1)√
(N4)2

A(r)
− (k + 1)2

, (4.27)

which gives

ρ(r) =
N3

(r2 + b2)

(k + 1)√
(N4)2

1− 3M
b

[
(π

2
−arctan r

b )
(
1+ r2

b2

)
− r

b

] − (k + 1)2
. (4.28)
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Figure 4.4: The profile of the radial velocity Eq. (4.26) shows that the solution

curves are very close to each other and we draw their structure which can be seen

explicitly, it is the function of r with EoS parameter k = 1/2 and constant of inte-

gration N4 = 1.5.
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Figure 4.5: The profile of the density Eq. (4.28) shows that the solution curves

are gradually increases by increasing b, it is the function of r with EoS parameter

k = 1/2 and constant of integrations N3 = 1, N4 = 1.5.
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4.3.1 Mass Evolution

By accretion of mass onto the BH and due to Hawking radiation, its mass is changed

step by step. The accretion of mass can be attained by integrating the flux of the

fluid over the surface of BH and generally it is denoted by Ṁ . The expression for

Ṁ is given by

Ṁ = −4π(r2 + b2)ur(ρ+ p)
√
A(r) + (ur)2 ≡ −4πN0, (4.29)

where N0 = −N1N2 and N2 = (p∞ + ρ∞)
√
A(r∞) yields

Ṁ = 4πN1(ρ∞ + p∞)
√
A(r∞)M2. (4.30)

Now, we find the time evolution of mass of BH, for this we write Eq. (4.30), as

dM

M2
= Fdt, (4.31)

where F = 4πN1(ρ∞ + p∞)
√
A(r∞), the integration of above equation leads to

Mt =
Mi

1− FtMi

≡ Mi

1− t
tcr

, (4.32)

where tcr =
[
4πN1(ρ∞ + p∞)

√
A(r∞)Mi

]−1

is the critical accretion time evolution.

The accretion is a perturbative process in this analysis since the back reaction on the

metric is not included. In the case t = tcr, the denominator of Eq. (4.32) vanishes

and the BH mass grows up to infinity in a finite time. Consequently, Eq. (4.32) for

the time rate of change of mass Ṁ can not be viewed as exact, but indicative of the

non-perturbative solution.

The shapes of velocity, density and accretion rate have been plotted in Figs.4.4-

4.6 against the r, with various values of phantom parameter b, the equation of

state parameter k = 1/2 and fixed values of constants of integration N4 = 1.5 and

N3 = 1. Since far from the BH, the fluid flow is subsonic and it has a zero radial

velocity before passing through the critical points. When fluid passes through the
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Figure 4.6: Accretion rate of phantom BH for EoS parameter k = 1/2

shows with three solution curves black, red and green. The mass accretion rate

gradually increases from black to green versus the radial parameter. The other

constants are taken as N3 = 1 and N4 = 1.5.
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critical point in the locality of BH, then speed of flow increases and goes up to

the supersonic flow due to strong gravity. In Fig. 4.4 the velocity is reduces by

increasing b. Therefore, near the BH the speed of dropping particles become equal

to the sound speed.

The energy density of the matter over the BH for several values of b is displayed

in Fig.4.5. The plot shows that by growing the values of b, the density grows. The

mass of BH deviates with time for the isothermal fluids. It has been observed that

the accretion rate is higher in the locality of BH due to the gravitational effect in

Fig.4.6. On increasing the values of phantom parameter b, we get the higher mass

accretion rate.

4.4 Critical Accretion

It has been observed that the fluid is at rest far from the BH, but it accelerates

inward due to the gravitational field of BH. As fluid accretes then it must passed

from the critical point and this is the point where the velocity of the fluid becomes

equal to the sound speed. Therefore, the maximum accretion rate occurs at critical

point. When h = h(ρ) is constant enthalpy, then the fluid becomes barotropic.

Now, we find the critical velocities at the critical points, from Eqs. (2.39) and

(2.40), we get

(uc)
2 =

1

4r
(r2 + b2)cA

′
rc. (4.33)

and

V 2
c =

(r2 + b2)cA
′
rc

(r2 + b2)cA′
rc + 4rA(rc)

. (4.34)

where Vc, rc, uc represent the values for local speed of sound, the distance of fluid

from the central mass and the velocity of fluid at critical point, respectively.
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4.4.1 Circular Equatorial Geodesic

In the structure of circular geodesics, we take the explicit form of the effective po-

tential given by Eq. (4.6) as follows

Veff =

(
1− 3M

b

[(π
2
− arctan

r

b

)(
1 +

r2

b2

)
− r

b

])(
1 +

L2

r2 + b2

)
, (4.35)

where from the condition d2

dr2
Veff > 0, we can see the presence of the innermost

stable circular orbits and also Eq. (4.14) locate the innermost stable circular orbits

at

risco =
3πMb− 2b2

4M
, (4.36)

which denotes the required innermost stable circular orbits radius in equatorial

plane.

Using Eq. (4.13), we get photon sphere, circular orbit and marginally bound

orbit radii rph, rcirc and rmb, respectively as follows

rph =
3πMb− 2b2

6M
, (4.37)

rcirc >
3πMb− 2b2

6M
, (4.38)

rmb =
−3b2 + 6bMπ ±

√
3
√
3b4 − 4b3Mπ

24M
. (4.39)

Figure 4.7 shows the radius of circular orbits versus the phantom parameter b.

The location of these orbits depend on the parameter b in the locality of the BH.

The location of these orbits rsing, rph, rmb and risco increases step by step and will be

close to BH for larger of b. The circular orbits representing the disk will be stretched

close to the BH, by increasing b.

Now, we are going to derive the specific-energy, angular velocity, angular mo-

mentum and specific angular momentum in equatorial plane. These results are
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Figure 4.7: The system of Eqs. (4.36)-(4.39) represent the effective behavior of the

phantom parameter b on the radius r and the relationship between the characteris-

tic radii. Four solution curves with different colors indicate that rsing < rph < rmb <

risco.
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Figure 4.8: Depicts the energy efficiency behavior of the massive particles which

are falling from infinity into the BH against the radial distance r for suitable varia-

tion of the phantom parameter b. Red dots show the maximum efficiency.

obtained for a moving particle in circular orbits. Here,

E2 =
2r
(
1− 3M

b

[(
π
2
− arctan r

b

) (
1 + r2

b2

)
− r

b

])2
2(r − 3M)

. (4.40)

L2 =
(r2 + b2)2

(
3M(2b− πr + 2r arctan r

b
)
)

2b3(r − 3M)
. (4.41)

Ω2
ϕ =

3M(2b− πr + 2r arctan r
b
)

2r
. (4.42)

l2 =
(r2 + b2)2

(
3M(2b− πr + 2r arctan r

b
)
)

2r
(
1− 3M

b

[(
π
2
− arctan r

b

) (
1 + r2

b2

)
− r

b

])2 . (4.43)

The energy efficiency of accretion is defined as η = 1−E, whereas the maximum

efficiency of an accretion is η∗ = 1 − Eisco. In Fig. 4.8, the plotted curves represent

the energy efficiency versus radius for different values of b. This graph shows

that the energy efficiency decreases by increasing b and red solid dots show the

maximum efficiency. For larger value of b the last yellow curve gives the value of
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efficiency at 0.057.

After evaluating E,L and Ωϕ, we are able to discuss the radiation flux on the

surface of accretion disk. From Eqs. (4.17) and (4.18), we obtain the radiation flux

as follows

K(r) =
−2

√
6

r2(r2 + b2)2
√

M(2b−πr+2r∆)
b3r

(4.44)

×
(√r(2b3 + 6bMr − 3b2M(π − 2∆)− 3Mr2(π − 2∆))2

b6 − 3Mr

−3

√
M(2b− πr + 2r∆)

b3r

√
M(r2 + b2)2(2b− πr + 2r∆)

b3(−3M + r)

)−2
∫ r

mb

F (r)dr,

where

F (r) =
(√3

2
M(r2 + b2)(2b3 + 2b(15M − 4r)r − 3b3M(π − 2∆)− (15M − 4r)r2) (4.45)

−

√
r(2b3 + 6bMr − 3b2M(π − 2∆)− 3Mr2(π − 2∆))2

b6(3M − r)

√
(M(r2 + b2)(2b− πr + 2r∆)

b3(3M − r)

)
×
(M(r2 + b2)(2b− πr + 2r∆)

b3(3M − r)

)−1/2

.

The temperature profile can be explained by using the formula K = σT 4. The

comparison between radiation flux and temperature T is shown in Fig. 4.9. The

solution curves show the radiation flux goes to the maximum in the locality of BH

and it goes down for increasing the phantom parameter b at the smaller radii.

4.4.2 Epicyclic Frequencies

Now, we see the effect of perturbation on a moving fluid , the fluid attains a small

oscillations in the direction of radial and vertical frequencies. We can derive these

frequencies as

Ω2
θ =

r3
(
3M(2b− πr + 2r∆)

)
2b3(r2 + b2)2

, (4.46)
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Figure 4.9: The physical behavior (left and right panels) show the emission rate

and temperature T for different values of phantom parameter b. The green curve

depicts the maximum emission rate as well as temperature.

whereas the result of radial epicyclic frequency is so lengthy, therefore we can see

its physical behavior from Fig. 4.10.

Both the left and right panels of Fig.4.10 characterize the epicyclic frequencies

with the radius r for different values of the phantom parameter b. We can see

explicitly the green, red and blue curves coincide and these increase by increasing

b and shifts to the smaller radii.
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Figure 4.10: The system of figures (left and right panels) showing the relation-

ship between epicyclic frequencies. Black solution curve signify vertical frequency

whereas the blue, red and green solution curves indicate the radial frequency for

several values of phantom parameter b in the left panel. The right panel of the

system denotes the ratio of these two frequencies.
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Chapter 5

Relativistic Accretion Mechanism for
Some Black Holes

In this chapter, we have adopted the Michel’s approach to discuss the accretion

onto regular phantom and 4D Einstein-power-Maxwell BHs. For these BHs, we

have formulated the expressions for the radial velocity u, energy density ρ, speed

of sound c2s and mass accretion rate Ṁ . We have discussed the physical behavior

of the radial velocity and energy density and mass accretion rate graphically. It has

been found that mass accretion rate increases for the cases of dust, stiff fluid and

quintessence, while it decreases for the phantom fluid. The results of this chapter

have been published in the form of a research article (Ditta and Abbas 2020).

The arrangement of this chapter is as follows: The equations for the relativistic

accretion, density, speed of sound and the critical accretion rate for phantom and

4D Einstein-power-Maxwell BHs are given in sections 5.1 and 5.2, respectively.

5.1 Critical Accretion onto Phantom Black Hole

In this section, our focus is to study the the critical velocity, energy density, sound

speed and the rate of change of mass of the accreting body.

The action and the metric of phantom BH have already been discussed in Eqs.
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(2.3) and (2.9), again we consider

A(r) = B(r) = 1− 3M

b

[(π
2
− arctan

r

b

)(
1 +

r2

b2

)
− r

b

]
,

C(r) = r2 + b2, (5.1)

Now, from Eq. (2.34), we get the radial velocity u(r) with the help of EoS p = kϱ,

as follows

u(r) =

(
1

k + 1

)√
(N4)2

1− 3M
b

[(
π
2
− arctan r

b

) (
1 + r2

b2

)
− r

b

] − (k + 1)2. (5.2)

From Eq. (2.33), we get the energy density ϱ(r) with the help of radial velocity,

which is given by

ϱ(r) =
N3

(r2 + b2)

(k + 1)√
(N4)2

1− 3M
b

[
(π

2
−arctan r

b )
(
1+ r2

b2

)
− r

b

] − (k + 1)2
. (5.3)

We have plotted the graphs of above relations (6.8) and (6.10) for the accretion

process with different kinds of fluids. Figure 5.1 signifies the velocity contour for

different values of k and we see that the behavior of this plot is different from

previous study by Bahamonde and Jamil (2015). For a phantom black hole, we

have taken the positive values of the state parameter k. These values are 1, 1/2, 1/3

and 1/4 for stiff, relativistic, radiation and sub-relativistic fluids, respectively. The

black, red, green and blue curves depict the negative velocity, whereas the upper

half of the solution curves represent the positive velocity of the fluid for the same

values of k. The energy density contour of the fluid around the phantom BH is

plotted in Fig. 5.1. It can be seen that the energy density increases for all cases

except for k = −1.5 and k = −2. For these cases the energy density decreases as it

approaches the event horizon.

Due to the accretion process, the rate of change of mass of the regular phantom

BH is obtained from Eq. (2.94), which is given by

Ṁ =
4πL2

0M
2(k + 1)

(r2 + b2)
√

−A(r)(k + 1)2 + L2
1

, (5.4)
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Figure 5.1: Velocity and energy graphs versus the radius r for b = 1.055 andM = 2,

with different values of the state parameter k.

which further simplifies to

Ṁ =
4πL2

0M
2(k + 1)

(r2 + b2)

√
−
(
1− 3M

b

[(
π
2
− arctan r

b

) (
1 + r2

b2

)
− r

b

] )
(k + 1)2 + L2

1

. (5.5)

Figure 5.2 explains the rate of change of mass of phantom BH for different values

of k. We have noted that the mass of the regular phantom BH increases in case of

quintessence, dust and stiff fluid and it decreases for phantom case with k < −1.

If phantom dark energy falls on phantom BH, the mass accretion rate is decreased.

5.2 Einstein Power-Maxwell 4D Black Hole

In this section, we have discussed the accretion process onto 4D EPM BH for

isotropic fluid. From (2.14), one can find the horizons of EPM 4D BH, by putting

A(r) = 0, and it can be factorized as A(r) = 1− µ
r
+ q

r3
= (r−ri)(r−rh)(r−r0)

r3
, where rh

and ri represent the event and inner horizons, respectively and obey the condition

ri < rh. The parametrization of charge as well as mass of the BH near the horizons

is as follows µ = ri +
r2h

ri+rh
, and q =

r2i r
2
h

ri+rh
.

For 4D EPM BH, Grigoris (2019) has considered µ = 2 and qmax = 1.185. But, in

our case, we have chosen µ = 2 and qmax = 1.055, for the physical analysis of the
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Figure 5.2: Rate of change of BH mass versus the radius r for b = 1.055 and M = 2,

with different values of k. Upper half of the graph represents the mass increases

while the lower half shows decrease in mass.
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Figure 5.3: Velocity and energy graphs versus radius r for q = 1.055 and M = 2,

with different values of the state parameter k.

result.

From Eq. (2.34) and equation of state p = kϱ, we get the radial velocity u(r),

which is given by

u(r) =

(
1

k + 1

)√
(N4)2

A(r)
− (k + 1)2, (5.6)

which further simplifies to

u(r) =

(
1

k + 1

)√
(N4)2

1− µ
r
+ q

r3

− (k + 1)2. (5.7)

From Eq. (2.33), we get the energy density ϱ(r), which is given by

ϱ(r) =
N3

(r2 + b2)

(k + 1)√
(N4)2

A(r)
− (k + 1)2

, (5.8)

which further simplifies to

ϱ(r) =
N3

(r2 + b2)

(k + 1)√
(N4)2

1−µ
r
+ q

r3
− (k + 1)2

. (5.9)

We have plotted the graphs of above expressions (6.8) and (6.10) for the accretion

of different kinds of fluids. Figure 5.3 signifies the velocity contour for different

values of k and it has been noted that the velocity behavior is same as given in
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Figure 5.4: Rate of change of mass of BH as a consequences of accretion versus

the radius r for q = 1.055 and M = 2, with different values of k. Upper half of

the graph represents the mass increases while the lower half of the graph is for

decrease in mass.
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Bahamonde and Jamil (2015). The black and red curves suggest the negative ve-

locity for phantom case with k < −1, whereas the upper half of the solution curves

represent the positive velocity of quintessence, dust and stiff fluids. The energy

density contour of the fluid in the locality of 4D EPM BH is plotted in Fig. 5.3. The

black and red curves show the energy density decreases for k = −2 and k = −1.5.

The above portion of the graph indicates the energy density increases with differ-

ent curves for k = −0.5, 0, 0.5 and 1. We have noted that if the fluid moves towards

the BH, the energy density decreases in the phantom case while it increases in the

other cases.

The rate of change of mass of EPM 4D BH is obtained from Eq. (2.94), which is

given by

Ṁ =
4πL2

0M
2(k + 1)

r2
√

−
(
1− µ

r
+ q

r3

)
(k + 1)2 + L2

1

. (5.10)

In Fig. 5.4, we have drawn the graph of the rate of change of mass of the BH (Ṁ )

versus radius r and it has been seen that the mass of the BH increases during the

accretion process. Here, k = −1 is the case of cosmological constant, so equation

of state p = −ϱ can not be considered because accretion does not occur in this case.
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Chapter 6

Michel Accretion onto a
Non-Commutative and Hayward
Black Holes

In this chapter, the matter accretion onto NC inspired Schwarzschild and regular

Hayward BHs is addressed for a polytropic fluid and results are compared with

Schwarzschild BH. The flow parameters - critical velocity u(r), sonic speed c2s and

accretion rate Ṁ are derived from the considered BHs and are related to the out-

comes acquired from the standard Schwarzschild BH. Due to the effect of noncom-

mutative parameter θ, the mass accretion rate decreases with the increase of the

strength of θ and vice versa. The same effect is seen for the sound speed and fluid

velocity. The fluid velocity is positive as well as negative for the NC BH corre-

sponding to Schwarzschild BH. The role performed by θ is significant in order to

acquire the lager accretion rate for NC BH than the Schwarzschild BH.

It has been found that the accretion rate of regular Hayward BH differ from

Schwarzschild BH. The graphical results depend on fluid radial velocity u(r), speed

of sound c2s and the mass accretion rate Ṁ . We have seen that the fluid radial ve-

locity stay positive as well as negative. The speed of sound is decreased as we

increase the value of parameter l of regular Hayward BH and also it is an increas-

ing function of the radius r. The similar behavior is seen for the mass accretion

rate. The results of this chapter have been published in the form of two research
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papers (Abbas and Ditta 2021; Ditta and Abbas 2020).

The layout of this chapter is as follows: In section 6.1, we discuss the horizons

structure of non-commutative BH. We have formulated the general results for the

spherical accretion in section 6.1.1. We have compared the accretion process re-

garding the Schwarzschild BH and NC BH in section 6.1.2. Section 6.1.3 is devoted

to the evaluation of critical points and graphical analysis of the results. Further,

the horizons structure of regular Hayward BH has been presented in section 6.2.

The the evaluation of critical points and graphical analysis of the results in section

6.2.1.

6.1 Review of Non-Commutative Black Hole

In this section, we have considered the static spherically symmetric and asymp-

totically flat Schwarzschild solution of the Einstein field equations with the matter

energy density (2.17). We consider from (2.3), the analytical Schwarzschild solu-

tion can be retrieved in the limit r√
θ
→ ∞, further the limit r → ∞, we can recover

the Minkowski spacetime. The density function (2.17) contributes to the mass dis-

tribution m(r) = 2M√
π
γ(3/2, r2H/4θ), where M denotes the total mass of the system.

The fluid density ϱθ depicts the following properties:

• Nearby the region i.e., r <<
√
θ, dϱθ

dr
≃ 0 → ϱθ ≃ constant << ϱθ(0).

• Some deviations from the origin that is r >> 4
√
θ, dϱθ

dr
≃ 0 → ϱθ ≃ constant <<

ϱθ(0).

• Asymptotically far away that is r >> 2M , we have ϱθ = 0.

For the event horizon, the lapse function must satisfy A(rH) = 0, which simpli-

fies to

rH =
2M√
π
γ(3/2, r2H/4θ). (6.1)
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In the presence of non-commutative parameter θ, Fig. 6.1 introduces the new be-

havior around the standard Schwarzschild BH. There are multiple horizons instead

of single one. Figure 6.1, has following properties

• It is found that the horizons can be degenerated by a critical mass M0. The

single horizon comes for M =M0 = 2
√
θ with rH = 3

√
θ.

• Two horizons occur when M > M0 .

• There is no horizon for M < M0.

It is noted that the effects of non-commutativity drop off exponentially and have

comparable significances. The condition rH ≤ 2M hold for non-zero value of non-

commutative parameter θ, it means that the NC inspired BH horizon radius rH

is less than or equal to the conventional BH horizon radius 2M . In view of these

effects, there may be no BH when the original mass is smaller as compared to the

minimal mass M0. Incompatible to the regular case, there may be two horizons for

extensive masses. The inner horizon drop off to zero whereas the outer horizon

approaches to Schwarzschild value rH = 2M for M >> M0.

6.2 Spherical Accretion

In this section, we have extend the relativistic accretion procedure of Michel (1972)

to a NC inspired Schwarzschild BH. Now, we formulate the accretion equations

for the NC BH and study how the non-commutative parameter θ affects the mass

accretion rate Ṁ . Here, we follow the Michel approach (1972), which we have al-

ready discussed in chapter 2. From Eqs. (2.30) and (2.34), we obtain the expression

of mass accretion rate of a BH, which is given by

Ṁ = 4πN(ϱ∞ + p∞). (6.2)

88



However, the mass of BH decreases in phantom case. This is fairly interesting

inference of Babichev et al (2004) that the mass of BH decreases as well as increases

for p+ ϱ < 0 and p+ ϱ > 0, respectively.

The constants appearing in this section are significant in order to find the mass

accretion rate and the fluid velocity with the help of equation of state. In section

6.4, we will take one more EoS rather than p = ωϱ, which exclude non-physical

sound speed and hydrodynamic instabilities in the presence of negative values of

ω and ϱ.

6.3 Comparison Between the Schwarzschild Black Hole

and Noncommutative Black Hole

Here, we have compared the radial velocity of the Schwarzschild metric and the

the NC BH originated by the mass function inspired by the Gauss density function.

In other words, we have to compare the fluid velocity in case of NC BH with the

fluid velocity for the Schwarzschild BH. We get the mass function from Eq. (2.17),

which is given by

m(r) =
2M√
π
γ(3/2, r2H/4θ). (6.3)

Assuming the EoS k = p
ϱ
= 0, the radial velocity of NC BH by using Eq. (6.3),

which is given by

ul =

√
2M

r
√
π
γ(3/2, r2H/4θ). (6.4)

In Schwarzschild BH, we obtain uSch =
√

2M
r
√
π

, in the limit r/
√
θ → ∞. This indi-

cates that fluid velocity of the NC BH is smaller than the Schwarzschild accretion

velocity.

Considering the linear EoS p = kϱ, and Eqs. (2.33) and (2.34), we get the follow-
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ing differential equation for fluid velocity

du

dr
= −A

′(r)

2u
. (6.5)

From uSch =
√

2M
r
√
π

, we obtain duSch/dr = M/r2uSch for the Schwarzschild BH.

Now, for the NC BH, by using Eq. (6.3), we have the following result

dul
dr

=
M

ulr2
− 1

ul4
√
θ
e−r2/4θ. (6.6)

Accordingly, the necessary conditions for the accretion process are u < 0 and

dr < 0, du is positive for deceleration and is negative for acceleration. For the

Schwarzschild BH, one has only a positive term of Eq. (6.5) through the accretion

process. Consequently, for the NC BH, the second term in Eq. (6.6) yields a decel-

eration, it means that the second term is negative. Therefore, the anti-gravitational

feature of the NC BH appears in this case.

6.4 Critical Points and Graphical Analysis

Here, we consider the following form of linear EOS

p = ω(ϱ− ϱ0), (6.7)

where ϱ0 is a constant. Babichev et al. (2004, 2011), have pointed out that above

EoS removes the hydrodynamic instabilities due to −ϱ.

The useful relation between thermodynamics and dynamics variables is obtained

from (2.30) and (6.7), in the following form(
p+ ϱ

p∞ + ϱ∞

)
=

(
− N

ur2

)1+ω

. (6.8)

Now for the radial velocity, we get the following simple expression from Eqs. (2.31)

and (6.8),

A(r) + u2 =

(
p+ ϱ

p∞ + ϱ∞

) 2ω
1+ω

=

(
−ur

2

N

)2ω

. (6.9)
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Figure 6.2 shows the radial velocity depends on ω. The larger ω, the critical point

is very close to the event horizon. It means that the fluid sonic radial velocity is

stretched nearby rH . At that time, the fluid coming from infinity takes extra time

to exceed cs by larger values of ω. Using the EoS (6.7) and Eq. (2.30), the accretion

rate constant N at the critical point is given by

N = r2c

(
ωω

ω + A(rc)

) 1
2ω

. (6.10)

One can get the following general expression for accretion process by assuming

the positivity of the accretion rate constant N for any value of state parameter ω,

N ≃ r2c

(
ωω

ω + 1− 2M
rc
√
π
γ(3/2, r2c/4θ)

) 1
2ω

. (6.11)

The above Eq. (6.11) yield a larger accretion rate for NC BH than the Schwarzschild

BH as we see in Fig 6.2. For θ > 0, the denominator of Eq. (6.11) may be smaller and

then according to Eq. (6.2), mass rate of NC BH is larger than the Schwarzschild

BH mass accretion rate. Similarly, the critical value of rc for NC BH is larger than

Schwarzschild BH case. Another interesting point is that the mass rate is larger for

smaller θ.

Equation (6.9) yields an equation with critical points at r = rc, so, one can obtain

the critical points from Eqs. (6.9) and (6.10) by using the metric function A(r). The

value of ω at r = rc is given by

ω =
M

2
√
πrc

∫ r2c
4θ

θ

p
1
2 e−pdp− r2c

2
√
θ
e−

r2c
4θ

 . (6.12)

Figure 6.2 shows the radial velocity of NC BH and Schwarzschild BH over the

values of the parameter θ. The radial velocity of the Schwarzschild BH comes up

at very small value of (θ = 0.0001). Velocity graphic has two portions, the upper

portion is for the positive velocity while the lower portion represents negative ve-

locity. In the velocity graphic, the black curves represent the fluid velocity for the
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Figure 6.2: These plots show the accretion properties onto Hayward BH with pa-

rameters θ and ω in Eq. (6.12).
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Schwarzschild case while purple, red and green curves depict the fluid velocity for

the NC BH which is smaller than the Schwarzschild BH. It is stimulating to note

that the behavior of fluid opposing the value of parameter θ, the larger the θ, the

smaller the sound speed and hence the sonic point is larger.

The right graphic shows the radial velocity of NC BH and Schwarzschild BH over

the values of the parameter θ. The radial velocity of the Schwarzschild BH comes

up at very small value of (θ = 0.0001). Velocity graphic has two portions, the upper

portion is for the positive velocity while the lower portion represents negative ve-

locity. In the velocity graphic, the black curves represent the fluid velocity for the

Schwarzschild case while purple, red and green curves depict the fluid velocity for

the NC BH which is smaller than the Schwarzschild BH. It is stimulating to note

that the behavior of fluid opposing the value of parameter θ, the larger the θ, the

smaller the sound speed and hence the sonic point is larger.

In Figure 6.2, we have observed that the speed of sound in NC BH increases and

the critical radius decreases towards the singularity for the decreasing values of the

non-commutative parameter θ (see left graph). We note that the speed of sound for

NC BH is smaller as compare to the Schwarzschild BH. So, following three critical

values are observed for the NC BH

• c2s ≈ 0.12, rc ≈ 0.932 corresponding to θ = 0.20.

• c2s ≈ 0.14, rc ≈ 0.732 corresponding to θ = 0.15.

• c2s ≈ 0.175, rc ≈ 0.532 corresponding to θ = 0.10.

We have observed that the fluid velocity in NC BH increases and the critical radius

decreases towards the singularity for the decreasing values of the non-commutative

parameter θ (see right graph). We note that the fluid velocity for NC BH is smaller

than the Schwarzschild BH.

It is noted that the mass accretion rate of NC BH increases and the critical radius

decreases towards the singularity for the decreasing values of the noncommutative
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parameter θ in Fig. 6.2 (see bottom graph). Further, the mass accretion rate for NC

BH is larger as compare to the Schwarzschild BH. So, there are following three

critical values for the NC BH:

• Ṁ ≈ 15000, rc ≈ 4.5 corresponding to θ = 1.40.

• Ṁ ≈ 15900, rc ≈ 3.5 corresponding to θ = 1.20.

• Ṁ ≈ 16000, rc ≈ 2.5 corresponding to θ = 1.00.

From the above discussion, difference in accretion rate constant N is due to the

variation in θ. For the NC geometry, the critical points are larger distance as com-

pared to standard Schwarzschild BH. However, the accretion rate is larger in NC

geometry than the standard Schwarzschild BH but the radial velocity and speed of

sound are smaller as compared to standard Schwarzschild BH. On physical back-

ground Michel approach (1972) contributes to non-physical and physical solutions

but we have studied the physical solutions that is the real accretion process in

which the perfect fluid go away from infinity to rest while its velocity monotoni-

cally increases in the extremal horizon. For such solutions, fluid exerts the subsonic

accretion far from the event horizon and then passes through the sonic point. At

point r = rc, fluid radial velocity becomes equal to the sound speed. On the other

hand, after that point, the fluid radial velocity increased to the supersonic accretion

during the inflow motion of particles. So, we have a sonic sphere centered at sonic

point surrounded by spherically symmetric spacetime. The fluid radial velocity

always equal to the speed of sound at the sonic sphere.

6.5 Horizons of Hayward Regular Black Hole

In the aforementioned Michel procedure, we analyze the accretion process near a

Hayward regular BH. The Hayward BH is given by the following metric coefficient

A(r) = 1− 2mr2

r3 + 2l2m
, (6.13)
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Figure 6.3: Horizons behavior of Hayward BH with different values ofm and fixed

value of l.

in this BH, m denotes mass and l represents a convenient encoding positive energy

density. For asymptotic behavior of the lapse function A(r) i.e. lim r → ∞ moder-

ates to 1 − 2m
r
+ 0( 1

r4
) while at lim r → ∞ moderates to 1 − r2

l2
+ 0(r4). We can see

clearly that at large value of r the Hayward BH develops the Schwarzschild BH

while at small value of r, it becomes de-Sitter BH. Now it is important to see that

the lapse function A(r) develops Schwarzschild BH at l = 0 and it is flat for m = 0.

The graphical behavior of Hayward BH is given in Fig. 6.3.

It is noted that the metric parameters l and m of the lapse function A(r) play the

significant role, as it reduces to the Schwarzschild BH at l = 0 and is flat for m = 0,

it is shown in black solution curve in Fig. 6.3. Also, lapse function 1 − 2mr2

r3+2l2m
,

provides different horizons for the variations of m and fixed value of l = 0.80,

which can be seen in blue, red and green solution curves respectively in the Fig.

6.3. The horizons structure can be explained as follows

• No horizon for m = (3
√
3

4
)l at r > 0.
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• One horizon for m < (3
√
3

4
)l at critical radius r = rc.

• Two horizons for m > (3
√
3

4
)l at r = r±.

6.5.1 Critical Points and Graphical Analysis

The general results for this section have been formulated in the previous section,

therefore the value of ω at r = rc for Hayward BH is given by

ω =
mr2c
2

(
−4l2m+ r3c
(2l2m+ r3c )

2

)
. (6.14)

Alternatively, critical points of Eq. (6.14) can be determined by using Eqs. (2.39)

and (2.40). There exist two critical points, namely the inner rc− and outer rc+, these

are shown in Fig. 6.4. The physically critical points must satisfy the following

relation

rc+ > r+ > rc− > r− > 0. (6.15)

Also, these points have following significance

• Out of two critical solutions only one corresponds to the Schwarzschild BH

that is rc+ = m/2ω.

• In Fig. 2, the BHs present the maximum ω at 1/3 .

• The impact of parameter l is significant for the critical solution.

The plots in Fig. 6.4 provide the following comments:

1. On the top graphic, Eq. (6.14) in order to equality c2s = ω gives the speed of

sound versus the values of critical point rc. As we can see the red dot on the top

solution curve at l = 0.10 shows the maximum speed of sound outside the event

horizon.

2. On the middle, plot shows the radial velocity over some values of the parameter

l and for the Schwarzschild BH (l = 0). The important point is that the graphic
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Figure 6.4: These plots show the accretion properties onto Hayward BH with pa-

rameters l and ω in Eq. (6.14).
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shows two portions, the upper portion represents the positive velocity while the

lower portion is for negative velocity. The larger l, the smaller speed of sound and

consequently the critical point is larger. It means that in the accretion process, for

small value of l fluid’s required the long distance in order to reach the speed of

sound cs.

3. The bottom graphic depicts the accretion rate behavior with the help of Eq.

(6.14). The black solution curve indicates the Schwarzschild BH accretion rate

which is larger than the Hayward BH solution curves (magenta, red, green and

blue). Throughout the graphics, we consider m = 1 and different values of l.
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Chapter 7

Summary and Discussion

This chapter provides the summary and discussion of the results found in the the-

sis. The main theme of the thesis is to investigate the relativistic accretion onto a

conformal gravity BH, regular phantom BH, NC BH and Hayward BH. For these

BHs, we have analyzed how the mass of BHs gradually changes for different kind

of fluid.

In chapter THREE, we have investigated the spherically symmetric accretion

around the conformal gravity BH, with four kinds of fluid such as ultra-stiff fluid,

ultra-relativistic fluid, radiation-fluid and sub-relativistic fluid by using the Hamil-

tonian approach. It is demonstrated that the energy density is always equal to pres-

sure in ultra-stiff fluids. In this case, it has been observed that supersonic as well as

subsonic accretion flow would exist for the particular values of the parameters. The

critical radius in Schwarzschild BH is larger than the conformal gravity BH and

Schwarzschild de-Sitter BH. The energy density is double of the pressure for ultra-

relativistic fluid and there exists a supersonic flow, which is followed by subsonic

flow. The fluid flow around Schwarzschild BH for ultra-relativistic fluid is entirely

different as compared to conformal gravity BH and Schwarzschild de-Sitter BH.

The 3D-speed v is very small but the radial distance is larger for Schwarzschild BH

than the conformal gravity BH and Schwarzschild de-Sitter BH. It is also noted that

the critical radius is very close to the horizon of Schwarzschild BH than the con-
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formal gravity BH and Schwarzschild de-Sitter BH in ultra relativistic fluid. The

nature of radiation-fluid and sub-relativistic fluid (in which the energy density is

greater than the pressure) is similar for v > vc. A very simple behavior has been ob-

served for the radiation-fluid that is only supersonic flow exists for Schwarzschild

BH while subsonic accretion exists for conformal gravity BH and Schwarzschild

de-Sitter BH. Further, for sub-relativistic fluid, the flow around Schwarzschild B-

H is absolutely closer to ultra-relativistic fluid that is the critical radius is closer

to the horizon as compared to conformal gravity BH and Schwarzschild de-Sitter

BH. The 3D speed for radial motion is very small in Schwarzschild BH than the

conformal gravity BH and Schwarzschild de-Sitter BH.

Chapter FOUR provides the accretion process of a test particle in a geodesic

motion onto a regular phantom BH in an equatorial plane. For this, we have inves-

tigated the circular geodesics and their stabilities and oscillations near the stroke

of small perturbations. We have also presented the characteristic radii, effective

potential, energy flux, angular momentum, epicyclic frequencies, dynamical pa-

rameters, emission rate and the mass evolution of the BH in details. Then we have

done some discussions for the general solutions of the regular phantom BH by

adopting an isothermal fluid with EoS p = kρ.

The results of our analysis shows that the phantom parameter b affects each case

of the considerations such as, the effective potential for the unstable and stable

circular orbits. The behavior of Veff shows that the curves black to blue gradually

increases for larger values of the parameter b and this behavior shows that the

unstable orbits at smaller radii but a stable circular orbits at some distance from

central mass. For this BH the circular orbits such as rsing, rph, rmb and risco are

decreasing functions of phantom parameter b. The circular orbits shifts from rsing

to risco for more values of b and finally particles would fall onto BH.

Energy diagram shows that the phantom parameter b increases, the energy in-

creases while decreases the angular momentum, and for large deviations the range
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of orbits will be smaller. The efficiency of an accretion decreases as b increases. The

radiation energy flux is maximum in the locality of BH and decreases in the small-

er radii. As the phantom parameter b increases the flux gradually increases and

its maximum position turns to the smaller radii. One can see the same behaviors

for temperature. Further, the physical behavior of epicyclic frequencies shows that

the vertical epicyclic frequency has no extrema and it is a monotonically decreas-

ing function of r but the radial frequency has a maxima always and the effect of

phantom parameter b on it is considerable. We have investigated the behavior of

epicyclic frequencies, it is clear that Ωr < Ωθ and the ratio Ωθ

Ωr
is decreasing function

of r.

Chapter FIVE deals with the accretion onto a regular phantom BH and Einstein-

power-Maxwell 4D BH by adopting the Michel approach (1972). The critical veloc-

ities and the speed of sound are obtained for the fluid flow around the considered

BHs. We have the EoS to see the behavior of the fluid velocity u(r), energy density

ρ(r) and mass accretion rate Ṁ . These quantities have been explored for the fixed

values of parameters as M = 2, µ = 2, b = 1.055, q = 1.055 and with various values

of state parameter k for regular phantom and Einstein-power-Maxwell 4D BHs. If

we assume µ = 1 and distinct values of the charge parameter q for Einstein-power-

Maxwell 4D BH, then there is non-physical behavior of matter variables with some

values of k. In this analysis, the phantom parameter b and charge parameter q are

fixed for the radial velocity and the density profile for k > −1, k < −1, k = 0 and

k = 1. The radial velocity and the density profile are positive and negative depend-

ing on the metric and equation of state parameter. If the energy density becomes

negative, it violates the energy conditions. However, in absolute value, the fluid

energy density increases for all these cases.

In chapter SIX, we have investigated the accretion of fluids onto NC and Hay-

ward regular BHs. We have adopted Michel approach (1972) for steady-state ac-

cretion onto NC and Hayward regular BHs and compared the results of both BHs
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to the Schwarzschild BH. The sound speed at the critical radius increases by de-

creasing the noncommutative parameter θ. The fluid velocity increases vertically

by decreasing the value of noncommutative parameter θ. The mass accretion rate

near the NC Schwarzschild BH is modified due to noncommutative parameter θ.

Further, it is found that the mass accretion rate increases with decreasing the val-

ues of θ. The radial velocity and speed of sound are smaller for NC BH as com-

pared to Schwarzschild BH. The accretion rate of NC BH is larger than the rate of

Schwarzschild BH. For the regular Hayward BH, it has been observed that a pa-

rameter l plays a central role for modifying the speed of sound, radial velocity and

accretion rate of BHs. For l = 0.10, 0.15, 0.20, 0.25, the sound speed, radial veloc-

ity and accretion rate gradually decrease. Also one can see the converse of this,

that is to say decrease in the values of l results in the increase of the sound speed,

radial velocity and mass accretion rate. The radial velocity is positive as well as

negative for the regular Hayward BH and accretion flow is slower as compared

to the Schwarzschild BH. It has been found that the critical points for the regular

Hayward BH are closer to central singularity than the Schwarzschild BH.
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