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ABSTRACT

Relativistic formulae for the deuteron electromagnetic form factors
are calculated in the impulse approximation retaining terms to all orders
in QZ/M2 = (v/c)z. The formulae are given as double integrals over the
deuteron wave functions in momentum space, and hence can be evaluated
for any deuteron model. We evaluate these formulae numerically for 9
different deuteron models: Reid soft core, two Lomon-Feshbach models,
three Holinde-Machleidt models, and three four-component relativistic
models. All of the models give results for the A structure function
considerably below the experimental results; the effect of the relati-
vistic treatment is to reduce the size of A by a factor of 2 to 5 at Q2
of 100 fm—2 over what it would be in the nonrelativistic approximation.
We discuss breifly the role of exchange currents; the pair terms are
included in our calculation in a completely consistent manner, but the
explicit pmy contributions need to be calculated relativistically. We
discuss in some detail the sensitivity of our calculation to the almost
unknown neutron electric form factor, observing that a GEn roughly twice
GEp in the region of Q2==100 fm._2 would enable us to fit the data even
without any pmy contributions. We discuss the high Q2 limits of our
formulae, obtaining the result that the form factor falls one power of
Q2 faster than that predicted by the dimensional scaling quark model.

We also study the low Q2 limits and give explicit formulae for the

corrections to the deuteron magnetic and quadrupole moments.



I. Introduction and Summary

Recent measurementsl have made it necessary to calculate electron
deuteron elastic scattering without making nonrelativistic approximations
or qZ/M2 expansions. Here we report in some detail on a relativistic
calculation of the deuteron electromagnetic form factors in the impulse
approximation (RIA), retaining terms to all orders in q2/M2. A short
description of our results has been published previously.2

There are two effects that one must take into account in a relativis-
tic calculation, and we have done both.

(i) The kinematics must be relativistic. Our calculation is
covariant, and our final formulae contain kinematic effects to all
orders in (v/c)2 or q2/M2.

(ii) At least one of the nucleons must be off the mass shell. We
include the most important consequences of this by allowing the inter-
acting nucleon to be off shell, while still leaving the spectator on
shell. 1In this way, the covariant diagram of Fig. 1(a) includes the
three-~time ordered diagrams of Fig. 1(b), and important effects such as
the photon splitting into an NN pair (the "pair current" in other
language) are properly included. However, in order to do this, we must
also know about amplitudes for N+d + N, as well as the usual d - NN.
This is best handled in a unified way by considering a covariant
deuteron-nucleon-nucleon vertex function, with one nucleon off shell.
Following Blankenbecler and Cook,3 four invariants must be used to des-
cribe the deuteron-nucleon-nucleon vertex function. (In a nonrelativis-
tic treatment, one makes an approximation by putting both nucleons on

shell so that only two invariants are needed.) The four scalar functions
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that are necessary can be rewritten so that they have the character of
wavefunctions.4 When this is done, two of the functions are the familiar
S and D state wavefunctions of the deuteron, and there are two additional
wavefunctions which are not present in the nonrelativistic case. These
new components of the full wavefunction are associated with the extra
degrees of freedom present when the interacting nucleon is a virtual
Dirac particle, and each has the character of a P-state. They are
numerically small if measured by their contribution to the overall
normalization of the wavefunction, but in momentum space théy and the
S and D wavefunctions have comparable magnitudes at high momenta. (We
should note that although the orbital angular momentum of these small
components is £ =1, they do not represent parity violating effects
because, in common with the small components in the Dirac equation,
the overall parity of a small component is opposite to its spatial parity.)

The formulae that we derive are general and may be evaluated with
any deuteron wavefunctions. In particular, if one chooses to neglect
the P-states, the calculation gives the deuteron form factor correctly
to all orders of (q/M)2 for any choice of u and w, the S and D-state
wavefunctions.

In addition to deriving the formulae, we have evaluated them
numerically for a number of deuteron wavefunctions and have examined
them analytically to determine the behavior of the deuteron form factor
for very high qz(lqzl >> Mz). Also, our formulae may be expanded to
zero and first order in q2, where they agree with known results.

As the description of our calculations is somewhat lengthy, we

shall present our results at the outset. The next subsection gives our
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numerical results and some conclusions; in particular, we show the
deuteron structure functions for several models of the deuteron wave-
function. Section I-B examines the size of the relativistic effects,
and Section I-C discusses the sensitivity of our results to the choice
of nucleon form factor. Section I-D gives some analytic results for
the behavior of the deuteron electromagnetic form factor at ultra-high
q2. Section I-E contains comments upon the role of exchange currents
in intermediate and high energy electron-deuteron elastic scattering,
Section I-F compares our formulae, expanded to first order in qz/Mz,

to previous results, and Section I~G estimates a theoretical uncertainty

in this calculation. The full calculation is outlined in Section II.

A. Numerical results for different deuteron models

The main results are given in Figs. 2 through 11 which show various
combinations of deuteron electromagnetic form factors for several
different choices of the deuteron wavefunctions. In each graph, a solid
line is inserted as a benchmark representing a nonrelativistic calcula-
tion using the Reid soft core wavefunction.>

In Figs. 2 through 6, we use our relativistic equations for the
structure functions with wavefunctions calculated from a wave equation
in which both nucleons were assumeq to be on shell. The wavefunctions
are the Holinde—Machleidt,6 the Lomon—Feshbach,7 and the Reid soft core5
wavefunctions, and the P~state wavefunctions are zero. These will be
referred to collectively as two—-component models.

In Figs. 7 through 11, the wavefunctions were themselves also
calculated from a wave equation in which one of the nucleons is allowed

to be off shell,8 and they are therefore completely comsistent with our



formulae for the structure functions. (These relativistic wavefunctions
are completely described in Ref. 8; briefly they are determined from a
relativistic one boson exchange model with 7, o, p and w exchanges,
adjusted to give the correct deuteron binding energy and quadrupole
moment. The m-NN vertex is a mixture of ys and YSYU couplings, with
the mixing parameter A defined so that the coupling is independent of
) when both nucleons are on shell, and is pure YS when A =1 and pure
YSYu when A =0. The P-state wavefunctions are not zero, but turn out
to increase nearly linearly with A. These will be referred to collec-
tively as four-component models.)

The A function shown in Figs. 2 and 7 and the B function shown in

Figs. 3 and 8 are defined by the familiar equation,

do _ do [A(QZ) + B(Qz) tan® 6/2 ] (1.1)
do dq
NS
where
do| (—“—)2 cos o2 : (1.2)
4@ ys 2E/ qin® 6/2 [1 + —ﬁﬁ sin? e/z]
d

and O = ez/4w =~ 1/137, E is the energy of the incoming electron, 8 thé
laboratory scattering angle of the electron, the deuteron mass is Md =
1.876 GeV, ¢q is the 4-momentum transferred by the electron, and we
define Q2 = —q2 > 0 so that

2 .2
2 4E” sin 6/2 (1.3)

Q- = .
1+ %E-sinz 6/2

d

The data shown on these curves is from Ref. 1,
The charge and quadrupole form factors, GC and GQ’ together with

the magnetic form factor GM are defined in Section II, Eq. (2.9). The
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relations between A and B and G G. and GM are

C> 7qQ

2 4
a@) = 5@ + L5 el@) + 2 6@
6M 18M
d d
2 2
BQH = (1 + 92>G§(Q2) : (1.4)
3Md 4Md

In Figs. 4 and 5 and Figs. 9 and 10, the charge and quadrupole contri-

. 2,.2 4 41.2,.2 .
butions to A, GC(Q ) and {Q /18Md GQ(Q ), are shown separately. Finally,
the tensor polarization of the recoil nuclei when scattering from an

unpolarized target is shown in Figs. 6 and 1l1. When this quantity9

2 5
C. G+ G
75 o2 CQ g% Q
T(Qz) = 2% . 4d (1.5)
My c2+—cl—4 Gé
18M)

is measured, one may be able to experimentally determine GC and GQ
separately.

All curves in Figs. 2 through 16 were evaluated using isoscalar
nucleon form factors given by the empirical dipole formulae with form

factor scaling,

o - 1
ES [1 + q%/0.71]%
0.88
Gyg (1.6)

[1 + q%/0.71]2

where Q2 is in (GeV/c)z. The dependence of our results on the choice of

form factor will be discussed in more detail in Section I-C.
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As Figs. 2 and 7 show, all of the models lie below the data for A
by a factor of 2-10, although the Lomon~Feshbach model gives larger
structure than the other relativistically calculated models. The reason
this model is so much larger than the others can be traced to the dis-
continuity in the S-state wavefunction (see Fig. 12), which introduces
large oscillations in momentum space which keep the wavefunction large
at high momentum.

There are two immediate questions: how has the relativistic calcu-
lation changed the non-relativistic result and why are the results

consistently low? We discuss these questions in turn.

B. Size of the relativistic corrections

One of the major goals of this calculation was to gain some under-
standing of the size and nature of the relativistic effects. This can
be provided by a detailed examination of Figs. 13-16, which we will
discuss now in some detail.

In Figs. 13 and 14, we have displayed the relativistic corrections
for the two-component models presented in Figs. 2-6, while Figs. 15 and
16 display the relativistic corrections for the four-component models
presented in Figs. 7-11.

In Fig. 13, we have displayed the ratio of the relativistic calcu-
lation of A given in Fig. 2 to the non-relativistic calculation for each
of the models considered in Fig. 2. The figure shows that use of the
relativistic formulae tends to reduce the theoretical value of A by a
factor of 2-3 at about 100 F—z, and that except for the Lomon-Feshbach
models, all of the non-relativistic models tend to give abouf the same

correction out to about 60 F_z. In Fig. 14, we have displayed the
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relativistic effects on each of the fundamental form factors individually.
Here we found it more illuminating to display the difference AG between the
relativistic and non-relativistic results, and because the curves vary
considerably, we have shown the differences for all the models in Figs.
14(b), 14(d) and 14(f), but the individual relativisitic and non-rela-
tivistic results from which differences are calculated are displayed

only for the HM3 model6 in Figs. 14(a), 14(c) and l4(e).

Note that both the form factors and the differences tend to oscil-~
late, but in such a way that in all cases the effect of the relativistic
corrections is to shift the diffraction minima to lower Q2 with a
corresponding increase in the following maxima.

In Figs. 15 and 16, we have displayed the relativistic corrections
for the relativistic models of Ref. 8. The principal differences between
the results in these figures and those in Figs. 13 and 14 is due to the
presence of the P-states, which contribute additional corrections. The
final formulae have terms_linear in the P-states (i.e., interference
terms between the P-states and either an S or D state) and quadradic in
the P-states, as well as terms independent of the P-states. Any of the
structure functions could therefore be calculated in four different
ways: (1) non-relativistically using only the u and w wavefunctions
from the 4—-component model, (2) relativistically, but using only the u
and w wavefunctions, (3) relativistically, but excluding the terms
quadradic in the P-states (so that only terms independent of the P-states
or linear in the P~states are included), and (4) the full result obtained
by inserting all four wavefunctions in the relativistic formulae. (In

the first three cases, the u and w wavefunctions must be rescaled to
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satisfy the non-relativistic normalization condition.) For the A struc-
ture function, the first case is called ANR’ the second ANone (for no P-
states), the third is ALin (linear in the P-states) and the fourth AFull’
and information about all of these ways of computing A is presented in
Fig. 15. 1In Fig. 15(a), the ratio RFull:=AFull/ANR is presented for each
of the three models considered in Figs. 7-11; this gives the total result
of including all relativistic effects. Figure 15(b) also includes two
other ratios for the A=1 model: RNOne = ANone/ANR and RLin = ALin/ANR’

The ratio RNone shows that if the P-states are ignored, the rela-
tivistic corrections are very similar to the results obtained from the
two—component models. Comparison RLin and RFull (for the X=1 case) with
RNOne shows that adding the P-states introduces a sizable change in the
results and that the effect of the terms quadratic in the P-states is
somewhat smaller than the linear terms, as one might expect. Comparison
of the RFull ratios for the three models shows considerable model
dependence, reflecting the fact that the P-states are very tiny for
A=0 and increase as X goes from 0 to 1.

Figure 16 shows the relativistic effects on each of the fundamental
form factors. In Figs. 16(a), 16(c) and 16(e), we have presented, for
the A =1 model, each of the four possible cases discussed above, labeled
NR, None, Lin and Full, together with the difference between the Full
result and the NR result. The other parts, Figs. 16(b), 16(d) and 16(f),
show the differences between the Full and NR results for each of the
three models. We can see from these figures that the total effect of
the relativistic corrections is to shift the diffraction minima to lower

values of Q2 (just as we found before) for GC and G. (when A=0 or .4),

Q
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but that for GM (and GQ when A =1) we have the opposite effect -- the
corrections shift the minima to higher Q2. These trends are a result
of two competing effects: the relativistic kinematics, which tends to
shift all diffraction minima to lower Q2 as we observed before, and the
P-states, which tend to have the opposite effect. For the electric
form factors, GC and GQ’ the P-state effects tend to be suppressed, so
that only when they are exceptionally large (A =1) do they have a
significant effect, changing the direction of the shift in GQ (where
the linear and quadradic P-state terms have the same sign) and signifi-
cantly reducing the shift in GC (where the linear and quadradic P-state
terms tend to cancel). In GM’ the P-state contributions are less
suppressed, so that the sign of the shift is opposite for all cases.

We now summarize the observations that can be made from the numeri-
cal results presented in these two parts:

(1) The relativistic corrections to A are significant at large Qz.
The "conventional' two-~component models and the four-component models
with A =0 (pure Ysyu coupling for the pion) tend to give very similar
corrections out to about 60 F-z, and these corrections depress the non-
relativistic results and widen the difference between the data and the
theory. The Lomon-Feshbach models, which are unconventional because
they have discontinuities in the wavefunction, and the four—cémponent
model with A=1 (pure y5 coupling for the pion) give different correc-
tions which are smaller and which can be positive in the intermediate
region of Q2 around 40 F_z.

(ii) Since the four component models with different A give rela-

tivistic corrections to A which differ significantly from each other,
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we conclude that these corrections are sensitive to the form of the pion
nucleon coupling in disagreement with what might be expected on the
basis of a naive application of the equivalence theorem.10 Furthermore,
one should have some confidence in this.conclusion since the three four-
component deuteron models we used are very closely related,8 and because
our calculation includes, in a completely unified manner,11 what other
investigators often calculate separately as relativistic effects,12
renormalization corrections,13 and "pair" current corrections.l4
(iii) Using the dipole formula for the nucleon form factors, none
of the models do a satisfactory job of fitting the data for the A struc-
ture function. The results are systematically low. One explanation for
this is that there are sizable contributions to electron deuteron elastic
scattering from processes that we have not included, such as the iso-
scalar meson exchange process illustrated in Fig. 1(c¢) and scattering
from isobar currents as in Fig. 1(d). Others have found that the con~
tribution from the pwy exchange current, in particular, can be quite

14,15 in this Q2 range, while the contributions from the

significant
isobar currents are predicted to be small.16 Neither of these processes
has been calculated to all orders in q2/M2.

(iv) The meson exchange currents are not necessarily the only ex-
planation for the descrepancy. In particular, GEn is not well knowm.

. . .o _ +
The A structure function is more sensitive to GES GEp GEn than to

, 2 .
GMS = GMp'+GMn’ and goes approximately as GES' We have used GEn-O,
2
but a value of GEn twice as large and of the same sign as GEp at Q° of
3 (_GeV/c)2 is not inconsistent with any data and would enhance A(Qz) by

an order of magnitude. When the meson exchange and isobar current con-



~13-

tributions have been calculated to all orders in qZ/MZ, our theory may
be sufficiently reliable to permit extraction of GEn from the data for A,
Further discussion of the role of the exchange currents appears
below in Section I-E, following the analytic discussion of the behavior
of the structure functions at ultrahigh Q2 in Section I-D. 1In the next
section we discuss the uncertainties introduced by our lack of knowledge

of the nucleon form factors.

C. The nucleon electromagnetic form factors

Thus far, all of the results presented have used dipole nucleon
electromagnetic form factors with form factor scaling as in Eq. (1.6)
with GEn set equal to zero. The nucleon form factors, however, are not
well measured quantities. The proton magnetic form factor GMp is the
best known with uncertainties of 3Z to 5% in the Q2 range up to 10
(GeV/c)z, and there is data17 up to Q2 of 33 (GeV/c)z. Measurements
of GEP extend18 only to 3 (GeV/c)z, where the uncertainty is nearly
100%. The neutron form factors are even less well known. The magnetic
form factor GMn has been measuredlg up to 2 (GeV/c)2 with uncertainties
ranging from 10% to 40%. The neufron electric form factor GEn is the
least well known. It has been deduced in model dependent analyses of
quasielastic and elastic electron scatteringzo from deuterium only out
to Q2 of 1 (GeV/c)z. The errors are large, 307 to 50%, but Gp, seems
to have a positive value of approximately .05 in the Q2 range 0.2 to 1

(GeV/c)z. The slope of GEn at Q2==O, obtained by scattering neutrons

21 s . : o
from atomic electrons, is positive and is known to better than 3%.
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To see how sensitive the deuteron structure functions are to
reasonable choices for the nucleon structure functions, we have prepared
plots in Figs. 17-20 of A and B calculated using five different sets of

nucleon form factors. In Fig. 21 the various curves for G used in

En

this paper are plotted together with the dipole form for GEp'
The curves labeled IJL were calculated using the form factors from

Ref. 22. They were obtained from a fit to the world's data for GE

»

P

GMp and GMn using a vector dominance model. In general, this fits the
proton data well, but it gives results for the neutrom that, in our
judgment, look unreasonable, particularly for GEn (which was not included

in the fit). The IJL parameterization gives a curve for G o that goes

E
negative at Q2 of 1.4 (GeV/c)z. Above approximately 3 (GeV/c)2 GEn has
an absolute value comparable to GEp and thus GES becomes very small.
Therefore, the A and B structure functions show a sharp minimum in that
region of Q2 (see Figs. 17-20) due to this cancellation of the nucleon
form factors in addition to the usual diffraction features in the funda-
mental form factors.

To display results for what we regard as more reasonable neutron
form factors, we have assembled a collection we call "Best Fit", first
used in Ref. 1. While they are not obtained from a comprehensive fit

to all the form factors simultaneously, in each case there is good

agreement with the present limited data. The proton form factors are

1
those of IJL.22 The neutron G, 1is taken from a fit by Hansen et al., 2
and for GEn we use a formula suggested by Galster 95_3;.,20
-Y_T ,
G, = G a.n

En 1 + 5.61 Ep
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where Mo is the neutron magnetic moment, T = Q2/4M§, and for GEp we
have taken the IJL values. (Galster gg_gl.zo used the dipole form for

GEP.)

To display the sensitivity of A and B to GEn we have also plotted
in Figs. 17-20 curves in which the Best Fit form factors were used,
except that GEn was set equal to zero, and the curves are labeled "Best
Fit + GEn = 0." When these curves are compared to the dipole curves,
they also show the effect of possible variations in GEp'

Finally, the curve labeled "Dipole + Fln = 0" is an attempt to
indicate what possible form GEn could take to give agreement with the
data for A(Qz). This curve employs the usual dipole forms, except that
the neutron Dirac form factor is set equal to zero. This assumption is
consistent with the prediction of the symmetric quark model for the

nucleon structure where the valence quarks are all in a spacially

2 .
symmetric ground state 3 and gives:

G = 1 G = U, T G

En Mn (1.8)

Ep *

. 20 .
This parameterization was also considered by Galster et al., and it

gives a value for G, which is about a factor of two higher than the

En

Best Fit value, and is at the upper edge of the large experimental error
bars in the Q2 range up to 1 (GeV/c)z. Therefore, it is a plausible

estimate for GEn and is used here simply to give an idea of the size and

shape of a G n that might be required to explain the discrepancy between

E
the RIA and the data for A(Qz), assuming for the moment that other

possible mechanisms, such as meson exchange currents, are not present.
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If we ignore the IJL curves and consider only the Dipole and the
two Best Fit curves, we see in each case the curves for A(Qz) lie below
the data by as much as a factor of ten. The spread in values, mainly

due to different values for G is less than a factor of two. This

En’®
spread is about the same size as that due to different deuteron models,
excluding the Feshbach-Lomon models, as shown in Figs. 2-11. The dis-
crepancy with the data has been increased by making the calculations
completely relativistic, as pointed out above.

A major task, then, is to explain this rather large disagreement
between the RIA and the data. The favorite mechanism suggested as the
possible source of the extra cross—section needed is the possibility of
scattering from meson exchange currents. It is clear the meson exchange
current processes must also be included and calculated to all orders in
qZ/M2 as are the impulse contributions in our treatment before the com-
parison with the data can be used to deduce information either ahout
deuteron wavefunctions or nucleon form factors. However, in the mean—
time, we can see from Figs. 17 and 19 that it is possible that at least
some of the difference between the RTA and the data might be due to
using values for the neutron form factor GEn which are too small. The
curve where Fln was set to zero are seen to pass nearly through the
data over the entire Q2 range for the HM3 wavefunction and to give much

improved agreement with the data for the A =0.4 wavefunction.

D. Behavior of the form factor at ultrahigh momentum transfer

. 2
In the ultrarelativistic region Q2 = -t >> AMd, our results can be
analytically expanded and the leading term in a power series expansion

Mg/Q2 can be obtained. This is of considerable importance for comparison
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with the quark modelza’25

14,15

and to assess the importance of meson exchange
effects at high Qz.

The actual calculations are in Section II-E, and we shall just make
some comments and state the results here. The high momentum transfer
behavior of the form factor depends upon the high momentum behavior of
the vertex function or wavefunctions. If we assume that the wavefunctions
go like p_N, where p is the magnitude of the relative momentum, and that
the nucleon form factors go like t_z, then the deuteron structure func-
tions go like

A(t) e (3+2N)

t—(24-2N)

B(t) =~ (1.9)

so that if we define an angle dependent form factor by

do _ do}  p20 5y = 990 [a(r) + B(t) tan® 6/2) (1.10)
an do d dQ
NS NS
then at fixed angle,
Fg(_t,e) > 22 (1.11)

and the B(t) or purely magnetic term dominates A(t).

The power N at which the wavefunctions go to zero at large p can be
determined by studying26 the (covariant) wave equation which one uses to
solve for the deuteron vertex function. We use the formulation where
one nucleon is restricted to the mass shell,4 and we suppose that the
binding is given by a series of one boson exchanges with each BNN vertex
having a form factor which goes like (r2 + p% + pz)—e’ where r is the

momentum transfer through the boson and Py and p, are the nucleon four-

momenta. If the BNN couplings include no momentum dependent terms like
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5

v A ,
Y Yu, or oV q,» then it is reasonable to choose s==1,27

while if there
are such momentum dependent terms, €= 3/2 would ensure the same asympto-

tic behavior. In these cases, one would obtain N=4, and

A(t) - t_ll
B(r) + t 0
Fg(t,e) > 10 (1.12)

To compare our results with the quark model, we must be careful to
remember that the quark model results are usually stated for the limit
when t becomes large with s/t fixed. (This was overlooked in Ref. 2

leading us to an erroneous conclusion.) Using the relationship

) —M(zlt G
tan” /2 = ) 5 — = —ifl(t/s) (1.13)
(,s—Md) + (,s—Md)t - Mdt -t

(where the last part is true for s >> Mﬁ and c.m. scattering angle not

directly backward), we obtain

-

s/t fixed

>

P G2 s (1.14)
Since the quark model predicts a t-lO behavior for this quantity, we
see that the RIA falls faster than the quark model at large t. This has

implications for the role of exchange currents, which we will discuss in

the next section.

E. The role of exchange currents

Before the experiment of Ref. l, meson exchange currents were

expected to dominate elastic e-d scattering at momentum transfers above



-19~

1 (GeV/c)z. Since the data turned out much smaller than predicted by
the early meson exchange calculations,15 there has been some confusion
about their ultimate role.

First, we wish to clearly distinguish between the so-called pair
currents, illustrated in the last two diagrams of Fig. 1(b), and terms
in which the photon couples directly to mesons, as shown in Fig. l(c).
When four—component wavefunctions are used this calculation consistently
incorporates all contributions from pair currents, which we find it
helpful to regard as relativistic effects. 1In this part our discussion
will be directed only toward the true exchange currents of the type
shown in Fig. 1(c), not included in this calculation.

Qur discussion should also distinguish between asymptotic Q2 and
currently feasible experimental QZ. At asymptotic Qz, we have seen that
the quark model predicts a different and slower falloff with Q2 than the
RIA. If the quark model result correctly describes ultrahigh.Q2 e~d
scattering, then the impulse approximation cannot play an important role
at those momentum transfers, and one can argue that, in nuclear physics.
terms, the exchange currents dominate. We remind the reader that the
pair currents are properly included in the RIA, and this means that they
cannot be among the dominating terms at asymptotic Qz.

The Q2 region of the American University -- SLAC experiment1 is,
however, not at asymptotic Q2, defined by the condition Q2 >> 4M§ o~
16 (GeV/c)z. However, the exchange currents may already be important,
particularly since our own calculations do not saturate the data. How-
ever, reaching definite conclusions about the size of the exchange

currents by subtracting our calculation from the data should require
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better independent knowledge of the deuteron wavefunction and, especially,
of the neutron charge form factor. While it is now clear that the early
calculationsls were too large because they omitted form factors at the
nucleon vertices and used couplings that were in some cases too large,
recent calculations14 suggest that the pny contribution is nevertheless

large above 2 (GeV/c)Z. However, in the RIA the full calculation differs

2

significantly from a calculation that includes terms only to order QZ/Md,

so we feel that the exchange current calculations also need to be done

fully relativistically.

F. Low Q2 results

In Section II we show that when (Q/M)2 is small, our formulae
reduce to the correct nonrelativistic limit. In addition to the
usual integrals over products of S and D-state wavefunctions, we also
obtain terms corresponding to overlap between these wavefunctions and
the P-state wavefunctions, and terms corresponding to products of P-state
wavefunctions. At Q2==O these terms give corrections to both the magne-
tic moment and the quadrupole moment. Most of these results have been

12,28 but we shall record here

obtained previously by other investigators
the magnetic moment and quadrupole moment formulae since the corrections

due to the extra parts of the wavefunction may be larger than the experi-

mental errors in the measurement:
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Mg = (1+F2)<1"2Pd‘2Pv _Pv>
t s
3 1 1 ~
+ ZPd-i-'ZPv —EPV —V/EszdthVS
t s
0
1
+ ——--’_fder%vi_(‘u—er—W)-vq(»/§u+w)}+l\1I (1.15)
Y ¥ vE = ] M
0

M2 - 2 v2 v2
d 2 2 t
—3 Qd = — r dr |juw - — + - —
4M 10 ¢ /8 /8 /2
(1.16)
+ [2§2+ l] L f E;E{u(vs + L vt) -3 w(th + L Vsﬂ + AQ
3y /2 /2
where F2 = (,pp+un— 1 o up and u, are the proton and neutron magnetic

moments, Au and A, are additional corrections of order pz/Mz, given in

Q
Section II, Eq. (2.77), and

_ 2
Pd- fw dr
0

P = fvz dr
v s
0

J
It

2
v f Ve dr . (1.17)
0
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We can also very easily obtain the corrections to first order in
Q2/M2 to the charge and quadrupole form factors from our formulae, and
these are given in Section II. It is not surprising that the part of
our result for those terms which comes from products of the S and D-
state wavefunctions is identical to that obtained earlier by Gross29
using the same general method that we use here. Friar12 and Coester
and Ostebee28 use a different technique, but the calculation of Coester
and Ostebee and our calculation agree precisely and both have some terms
proportional to the potential not included by Friar. However, it has
recently been shown11 that the extra "potential' terms we obtain corres-—
pond to fenormalization corrections and part of the 'pair" current
corrections if one uses the framework employed by Friar, and that when
one adds the terms linear in the P-states, our corrections to first
order in QZ/M2 agree with the sum of Friar's relativistic corrections,
the renormalization corrections of Gari and Hyuga,l3 and the "pair"
current corrections.14 Hence, it now appears that both approaches agree
to first order in QZ/M2 as long as one is careful to include all of the
effects.

The advantage of our approach, however, is that we automatically
include corrections to all orders in QZ/MZ. In Fig. 22, we have com-
pared our result with the QZ/M2 expanéion for the Reid soft core wave-
function. Note that the '"potential” terms make the largest contributions
(as observed by Coester and Ostebeezs) and that the QZ/M2 expansion
2

follows the full result out to about 80 F The "argument'" shift pro-

posed by Friar some time ago is also shown for comparison.
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We conclude that if one does not require a precise theory, the
first two terms in a Q2/M2 expansion will probably be sufficient for Q2
below about 80 F_2, but that a precise calculation requires the full

theory even at lower Qz.

G. Estimate of a theoretical uncertainty

Our calculation of the RIA makes the approximation that the spec-
tator nucleon is on shell. In this section we will estimate the error
involved in this approximation and will see that the error is about the
size of the terms quadratic in the P-state wavefunctions and small com~
pared to, e.g., the differences that result from using different wave-
functions.

The simplest way to make the estimate is to work with a scalar
deuteron made from two scalar nucleons. In this case, the d-n-p vertex
is described by only one scalar function T', which we shall treat as a
constant. We begin with the triangle diagram as in Fig. 1(a), and allow

the spectator to be off shell, so that

4 2D, ~ pa)
2D0G(Q2) = iF(QZ)f d P4 r2 5 0 5 02 5>
(2m P -M)(D-p)"-M)(D'-p)-M")

(1.18)

where F(Qz) is the isoscalar nucleon form factor, and we work in the

Breit frame
- _l"“) . - L*)
D = <D0, ) Q H D' = <D0,+ 2 Q . (1.19)

Doing the integral in Py by the residue theorem gives three terms, and

after combining the two terms which come from the interacting nucleon
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poles we get

o) - E@ [ 2| Do~ °
2D 3 I 2 2 2 2
0J (am E[,- B -8, ) [0y - B)* - E]

2D, + E, + E
+ —
+ 0 (1.20)

(B, +E) [(,DO+ )2 - EZ][(DO+ E) 2_g?]

where E = E(;) = (M2-+p2)%, and E, = E(gi:%a). The first term comes
from the spectator pole and is the term we have kept in our calculation;
the second term is the correction. The second term is of order p4/M4
compared to the first term.

Finally, it can be seen from the definitions of the wavefunctions
that the P-state parts are typically of order pZ/M2 compared to the
S-state contributions (see Section II). (One might also see this
directly above by decompsoing the interacting nucleon propogators in
the first term above into positive and negative energy propogators in
some appropriate reference frame. The former give the analog of the
usual S-states and the latter give the analog of the P-states and are
clearly smaller by a factor pz/Mz.) Therefore, one expects the correc-
tion or the uncertainty to be of the order of the size of the contribu-
tions quadratic in the P-states. A glance at Fig. 15(b) shows that the
correction is roughly of the size of the difference between (AFull/ANR)
and (ALin/ANR)’ which is not negligible, but which is nevertheless
smaller than other effects at low Qz. The uncertainty is about 107 at

Q2 ~ 4 (GeV)z.
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II. The Calculation

We now turn to a description of the details of the calculation.
This section is divided into 7 parts: (A) Kinematics, (B) The Relativis-
tic Impulse Approximation (RIA), (C) The Matrix Elements of the Current,
(D) The Final Formulae, (E) The Ultrahigh q2 Limit, (F) The Formulae

for Low q2, and (G) Numerical Evaluation of the Integrals.

A. KXinematics

The matrix element of elastic e-d scattering is30

M

- u ->
2 ukD) vy uk)
€ 2

2
G (q7) (2.1)
q U

where u and u are fermion spinors and k and k' are the 4-momenta of the
initial and final electrons; D and D' will be the 4-momenta for the

initial and final deuterons. Alsc

q, = o' - D)u (2.2)

and

_q2 = -(D'-—D)z E Q2 >0 . (2.3)

The interaction of the deuteron with the virtual photon is fully des-
cribed by the vector function Gu, which can be decomposed into 3 scalar

, 3
functions according to

Gu(qz)

—{Gl(qz) €™ @+pH*

+ @A E v - e E - o]

U - 1y M ’
G3(q2) (E+qE™*-qd(@+D") (2.4)

2
2Md
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Here £ and £' are polarization 4-vectors for the incoming and outgoing

deuterons, respectively, and satisfy

E-D = E£'"+«D'" = 0 . (2.5)

It will be convenient to do much of our calculation in the Breit

frame, where

q = (0, 6)
D = (O, -%0
D' = (@, +%0)
2 1.2 g
by = (1 + $¢) (2.6)

and we choose 6 to be in the positive z direction. WNote that because
of the convention (2.3) Q2 is both the negative of the square of the
4-momentum transfer and the square of the 3-momentum transfer in the
Breit frame, and Q will always represent 16\. In this frame, the three

polarization states of the incoming deuteron are

g% (£1) 0,%1,~1,0)/7/2

£¥(0)

(fQ, 0: Os DO)'/Md (2-7)

where the argument of the £ refers to the component of the spin in the
z direction and not to the helicity.

In the Breit frame G" can be rewritten in terms of quantities with
a non-relativistic appearance if we introduce rest frame polarization

vectors
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Eg(xl) = £'GD)
£(0) = (0,0,0,1) . (2.8)
Then, in the Breit frame,
Go(qz) = ZDO{(gé*-go) GC(.qz)
G (qz)
5> > - > ->
s @ DE D -1 RE T
oM
d
- 2 DO > = * > -> %, -+ 2
G(q™) = —ﬁ;—[go(éé Q) - gy gy Q)]GM(q ) (2.9)

where we have used.the charge, magnetic, and quadrupole form factors

- 2
GC = G1 + 3N GQ
Gy = Gy
GQ = Gy - G, + (1+n)G, (2.10)

_ 202 _ . -1 ~
where n = Q /4Md, GC(O) =1, GM(O) =1y in units (2Md) , and GQ(O) = Qd
in units Méz. As we do our calculation, Eq. (2.9) will be useful in
letting us pick out GC’ GM and GQ directly.

Also in this section we will collect a few formulae related to what
we call the relativistic deuteron wavefunction, or, more precisely, the
bound state Bethe-Salpeter wavefunction with one leg on shell. Consider
a deuteron with momentum D and polarization £ breaking into nucleons of
momentum p and D-p, conserving energy and momentum. The momentum p is

to be on shell, p2==M2, forcing the other nucleon to be off shell,
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(D—p)2 # M2. The d-n-p vertex function and the deuteron wavefunction

are defined by

[+y - @] (D) &, CT" (p,9)

Jam3a (v~ ®-p)?)

WwWp, D) £, ) (2.11)

<ps|y(0) |DED>

The first line defines the Blankenbecler—Cook3 d-n-p vertex function,
T', which is a 4 x 4 matrix in dirac space and is a function either of D

and P or equivalently of D and the relative momentum Prol’

1
Prgg = P~ 3D : (2.12)

We will specify the vertex function further only to note that four scalar

functions are imbedded within it:

W g G _<M-Y‘(D—2)>[ p, I u
T Fy' +y Prol m Hy ™ + % Prel (2.13)

F,G,H'and I are functions of Piel’ and our results could be written in
terms of them, but we have chosen instead to use four equivalent func-
tions now to be defined and whose nonrelativistic analogs are obvious.

Equation (2.11) defines the wavefunction,4 which as written above
has two suppressed indices, one dirac index for the off-shell nucleon

and one spin index s for the on-shell nucleon. In the rest frame of

s
>

-
the deuteron D=0, prel==g, and we define

A + > - -+
Ve (e.MEN, = Zr: 0t@) u B + v B v, (B,-1) (2.14)

where Md can be a shorthand for the 4-vector (M, , 6).
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This definition was motivated by the observation that the propaga-
tion of an off-shell particle (momentum -E) can be viewed as a super-
position of positive and negative energy on-shell states. (If D-p could

be on-shell, the second term would be absent.) Using the decomposition

mEy (Md - P < M Z {u(—g,r) G("B’r)
2 —
w2 - My - p) fp T 2Ep Mg

f

> -
v(p,—-r) v(p,-r)
M (2.15)
d
_ o2 . 2k 11
where EP = (M~ + p7) ", we get (still in the rest frame)
— > M -T >
lp+ (;) - M u(—p,r) E;O FU(P’Md) Cu (P’S)
sr
J(Zﬂ)3 Zﬂd Ep(ZEp - Md)
- =) -—
N M v(p,-1) E‘S I (M C 2 (3,9
v (p) = (2.16)

sTr
Jeam)® v, Ep Mg

Now a small amount of manipulation allows us to define the four wavefunc-

tions that we will use in stating our final results. We havel*’8

+ 1 > > 3 > A >
p__(p) = [(u(p) - —-—W(p)>o cE. +——w(p)oDPp-E ](io )
st Vo ) Y L] Ry
- > 1 3 A% A > )
ll)sr(p) = = [—\/;vt(.p) iopxg, + @vs(p) p* Eo}(mz) .
(2.17)

where u and w are the familiar momentum space S and D-state wavefunctions

and V. and v, are the spin triplet and singlet P-state wavefunctions,

respectively. Care should be taken to observed that the matrix indices
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on the RHS of the equation are reversed from those on the left~hand
side. The numerical factors have been chosen to give the momentum

space normalization

-]

f p2 dp(_u2 + w2 + vtz: + vz) = 1 . (2.18)
0

The Fourier transforms are

u(r) 2

p~ dp jo(pr) u(p)

o
Ot~

p* ap iy (pr) w(p)

2
o
N
0
3o
(]
\8

Vt’j(r) - Fflwsen v, o (2.19)
0
and in coordinate space
o
fdr w? + w? +vi +v§) =1 . (2.20)

0

B. The relativistic impulse approximation (RIA)

The calculation is based on the diagram shown in Fig. 1(a). The

full diagram is

4 T _
*(g? = -if d Pz trs ;M“ZS ) cTV(p',p") &' ¥ 5 M+3' —p2
(2m) b -p -de VM- (@'-p) - e

2

e 5 M+P-p ™ (p,D) g, C o (2.21)
M™ - (D~p) " -1ie :
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where C is the Dirac charge conjugation matrix, M the isoscalar nucleon

current

U 2, M icuv 2

F

where FlS and FZS are the Dirac and Pauli isoscalar form factors norma-

lized so that

FlS(O) = 1

FZS(O) = =~0.12 (2.23)

and T is the deuteron-nucleon vertex function for the incoming deuteron.
The vertex function for the outgoing deuteron can be computed from that

for an incoming deuteron by

'>T = vy T ¥ (2.24)

To obtain our starting formula, we perform the integration over Pg»
retaining only the positive energy pole from the spectator. The validity
of this approximation has been discussed elsewhere32 and in Section I-G.
We next substitute the relativistic deuteron wavefunction defined in

Eq. (2.11) to obtain
H 2 = 3 M -v ' 1 1%
GH(q") znofd PR Voo P'sDEY

U A
Flot Veur (@D &y (2.25)

The o and o' are Dirac indices, s is a 2-component spin index, summation

over repeated indices is implied, and

-V v o

sa wSa' Ya

<
]

(2.26)

‘a
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We shall now write each deuteron wavefunction as a rest frame
wavefunction boosted to the Breit frame. Our notation now will be that
p is the spectator momentum in the Breit frame, Py is the spectator
momentum when viewed in the rest frame of the initial deuteron, and Py
will be the same momentum in the rest frame of the final deuteron. 1In
the rest frames, the 3-vector part of the spectator momentum is the same
as the 3-vector part of the relative momentum that we used in defining
the wavefunctions u, w, Ve and Ve

The Lorentz transformation properties of the wza are evident from

its structure. First we note that any spinor is given by

u@,8) = S@) u@,e) (2.27)

->
where Lp is a boost in the p direction, and that

‘b £/2

S(Lp)

cosh & EP/M (2.28)

->
and o are the Dirac matrices (not to be confused with the index a).

Then for any boost Al in the z direction

s wi]B. 9 = w@sn o/ @)
-1 ~T, 1> =T (1/2)%
ST uAyEe ) = s Pt gy (2.29)

where R1 is the Wigner rotation

R, = LA L ©(2.30)



-33~

Therefore the wavefunction in the moving frame is

M
A | A (1/2)
£y Vg (PsD) = D, Saat A1) Egy Yorgr (ProM) DT (Ry)  (2.31)

A . .
where EO are the polarization vectors (2.8) of the deuteron in its rest
frame, and A1 is now the boost from the rest frame of the initial

deuteron to the Breit frame,

Ay Mg =D
Aypy =1
hi &g = & . (2.32)

We now use (2.31) to replace the wavefunctions in (2.25) with rest

system wavefunctions. We obtain

w2, 3. M (/)" & TV
G (q7) = ZMdJ/é D Ep QDSSZ (Rz) Eév wsza(pz,Md)

Fr
Qo

A (1/2)
X F ot Eon wsla'(Pl’Mﬁ) gwssl ®)) (2.33)

where the transformed form factor F is
¥ = S_l(AZ) ' s(ay) (2.34)
and A2 and R2 are the boost and Wigner rotation for the outgoing deuteron

(2.35)

+
Substituting the decomposition of the wavefunction into y~ into

our formulae and remembering that summation over repeated indices is
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implied gives us the result

(g% = dfd3p w:+s ¢ ) F N“H w: N (;1)
252 T2'1 S1T1
Y +2 z(pz) §¥:;1 Slr1(;1)
* Vg 2(p2) Eﬁ;;l S1r1<;1)
+ v rz 2(p2) ngrl w;lrl(pl) é;éi)(R. Ry) (2.36)

where the current matrix elements are

~uH _ -M_ - _+ ~u >

For. = § ulpgery) Foulepy,ry)
271 P

~u—+ _ _}_/[_ - _ ~u -+

Froyp = § VPt T oulopp,ry)
271 P

- M - > oH 7

Fr T = —E_— u(—strz) F V(Pl,"rl)
271 P

o T M -, ~ ->

Frzrl = 5 V(pyry) F v(pp,ory) : (2.37)

P

Equation (2.36) has a structure which can be easily understood.

It gives the form factor as a sum of 3 types of terms

++, 2 +— —
¢ @@ = 7@ +cT @) +eTwWD (2.38)
H u Uy H
where the first term, the (++) term, corresponds to the virtual nucleon
being in a positive energy state both before and after the interaction

and is the relativistic generalization of the usual nonrelativistic

impulse approximation. If the P-states of the deuteron were negligibly
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small, this would be the only term which would contribute. The next
term in (2.38), the (+) term, corresponds to the overlap between posi-
tive and negative energy states. Finally, the last term gives the
contribution from products of negative energy states alone.

The Wigner rotations Rl o are
]

i i i
- 50,0 - F50,w 504 ¢
VD@ ) = e 27 2EH22 (2.39)
where ¢ is the azimuthal angle of 3 and
(E +M) (D . +M,) - &
(1 ) D 0" Md 5 P, Q
cOos Ewl =
\/ZMd (E1+M) (EP+M) (D0+Md)
1
7P Q
sin <%— wl) = . (2.40)
J2My (B, +) (E,+M) (D) +My)
2 »2.1/2

In these formulae, P, = P cos 8, P, = psing, and E1 = (M +Pl)
The rotation R2 has the same form, but with E1 replaced by E2 =

2, 22,1/2

™ +p2) in the denominator and Q replaced by -Q in both numerators.

When these results are combined we obtain

S+ i« (px0/2)

7P @R - (2.41)
MdJ(El +1) (E, +M)
where
,/;{p = MdEp + DM ] (2.42)
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C. The matrix elements of the current

The matrix elements of the current are straightforward, but tedious
to claculate. We will merely list the results here, which can be
expressed as matrices in a 2x 2 spin space.

To calculate the charge and quadrupole form factors we need only
the time component of the current, F°. TEach of these matrices can be
given in terms of two scalar functions:

2E
p

AR Gy O I A
J(E{ +1) (B, +M)
2E ~o— O I T O S ol
P F = O-Q[X +io~(p><Q)]Y . (2.43)
\/(E1+M)(E2+M)

N N_'_l_
The expression for FO~ has the same form as that for F° , and

~o—+ ~o+-—)1'

F = (F
->
The X's and Y's are given in the formulae below, where Q = ‘QI

and p, = pcos 6, p, = psin® and K = Md(E1+M)(E2+M).

2.2
2 2MD PQ
xt = 7, 2o - L F O w + L+ p?
1 " p""p ™ "2 2 P 2 i
M 2M
d d
F 2
++ 2 Q
= —= | M
KY F B+ M< - 2MdEp>
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F
— T 99
KX = Fl ZEP._/fl M Q pl
—_ F,
KY = Fl EP + —ﬁ*o/t{p (2.44)

To calculate the magnetic form factors we need the spatial com-

ponents of the current. We calculate the (+) component defined as

FCH o L [E‘X) + iE(Y)] (2.45)

2

For these components it is convenient to introduce four scalar func-

tions to describe our results:

2F ~ >
2 PO o ox ot Y 42 _3.9+4_¢5-3
\/(El +M) (E2 +M) 2p 2p P
2E ‘ +- - +
p F(+)+—= X4-U++Y_+Z_03+A_ g,;l
V(E; +M) (B, +M) Zp 2p P
(2.46)
h - L (o ~ip.) and 3 = ( 0). The d {tion for th
= = - = . o} o) or e
where p 75 Py 1py and p, px,py, e decomposition

(--) components is the same as for the (++) components, and the decom-
position for the (~+) components is the same as the (+). The functions

are:



2
2D 2D.E M F.E #
. 0 42452y 4 0 _o2| 422
1 2 1 M 1 M
M d
a
2F 2 F
- 2_E<2 9_> “2 2 2
Flpl\:Md Do + ) + M| + 5 E P Q
p D D
2 Y270 0 2
Fy 2p, My - Py PP
2
Py Fy 2
F17 - mPh M
-Qp 2DE'A\
z 07p
F + M
1[ Mg My P
F.Q2
_2_1pp? - E_(D.E +MM)J
20t [P0Pz T Tp0 a
2
FE)—L—[-l +DE]+32— 2D E + MM
13, (2% 7 Do MQPL{Op a
2
Py 2 Fo 92
Flﬁ;—[Q(DOEP+MdM)—2D0pz]—ﬂQ P, P,
2
~F) Dy Py
F
2 2
F
2 2 22
Fpop - 5 O e By
D
0 2
F2“M_pzp.L
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e s Y

b
~
o
~

I

ol (-p)

N
~
el
~

I

Z7Tp) s AT () AT (2.47)

It is now a straightforward matter to combine these matrix elements
with the Wigner rotations and the expressions giving wt in terms of u,
W, Vo and Vg Since the indices for the wavefunctions in matrix form
[Eq. (2.17)] are reversed, the expressions in (2.36) become a trace of
products of Pauli matrices which are not difficult to evaluate. The
terms in GC and GQ can be separated by averaging over ¢. The results

are given in the following sectiom.

D. The final formulae

In this section we quote the final formulae. Each of the form

factors can be written as a sum of three terms

G, = G'!_" + G".’_ + G, (2.48)
1 1 1 1

where i = C,Q, or M for the three form factors. Letting j stand for
++), or (+), or (--), we denote the typical term by Gi.
The Gi's must be computed numerically by double integration over

products of the momentum space wavefunctions:

0 +1
i _ 2 1 |
Gi = fp dp f dz 8DOE ji . (2.49)
0 -1 P
Using the notation
U o= up ) - —=wp, )
1,2 P12 77 TP,

=
|
1
!
~
e}
ot
N
N

1,2
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t 3
1,2 'j; ve(py, o)

<
]

S n—
Vig = \/Evs(,pl’z) (2.50)
the #'s are:
+ 22 4 2 1 9% L L2
JC = (2./t(px —plQ Y )[U1U2+§‘U1W2+-§“2—‘2‘(P1 Pz)
1P2
W.W. E
++ +, 112 "p 2 2.
+ (X +2MHY )3———22MdplQ(p1-p2)
PPy
H 2 22
+ Y Q7] 5V, T,
o 2 S(ZJ{XH_ 2 2yt [ 212 2 2
Q l P Py 2 P2z7 P,
Q Py
W.W
172 » - 1 2
P1P)
3U,W W.W, QE
+ 2.2 1"2 12 %% 12
2 )PLQ[ > Pzt 32 W, P1zP2 ZP_L)]
Py PyP, d
=+ 2 .2
- Y P Q Uleg
+ A 1,4+
S md%(UlU2+U1w2){2e/tlp(x +A) -5 (-2 )]
+ U—ly-gr-(X—H-+2AH)p2(./ﬂ Q0 oy L o, + 3%
pz L 1P 2 P2z P 2z 2°%1
2




. 52 o2 g2
v ow G, 3y £+ =52
p'P1 " P2) 2y 5
4 i

Vt VS
. =, 22412, 1 1y 1
2(2¢/{px +p, QY )LU2 5, P, + 30, 5, P;,0Q
t s
WV E WV
1 M1 22 %1 271 >
3 5 QP [ T3 T2 Py, (P Pz)]
P,P d P,P;
2.2 s t s
p Q" | UV WV, p W,V
& - 2w ¥y 2 21 _ 211 Paz oo, 271 2
P 3 Py 2 M, 2 1
pzpl pzpl
t
UV
~ 222 "21
2" p Q" 3 oy (24, +Qpy,)
s u vt p u.ve p
2 -, 2 2+ 2'1 P1z | "2"1 Pi1g
s Qu X + Y
d[(‘ P T )[ Py Q p; Q
t 2 s
MoV1 Py )+W2V1 P2z _ 1.2,
2 q ‘P2z T 2Pl 2 q P1zP2z” 2P
Pzpl Pzpl
t s
U,V Y
4+ -, 2{3°2°1 1°2'1
X —Z%Y )p_L[2 T2
1 1
t s
WV WV
2'1 1 2'1 12
5 P (Po, ™ 3P T o (Prp Py, Zpl)}
PyPy 2P1
t
UV
o2 21 |

1 —p—l— (Zaﬂp + Qplz)s
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s t
2y (V] oV
4 1 V| e 1.2
o | =+ = )lxC + =
9 l2<p1 %>[ (2p) M, + 5Qp))

+— +~ 1 - 2
Y ./tlp+z (-//lp—-z-Qplz)—A Qpl]

VS Vt
1 1 +- 1 4
U2<P1 ) ﬁ)[—Y (M, 3Qp,) - & ZPlz“”pJ

W szE
2 M P 252z
P1Py d

Z+—QE L9
My ('/”p Py, t —fQP_L)

t 2 2

VW Q" p, p, E

1"2 | A= > . 1.2, 1 P2z
2 {X <2(Pl Py) (A by, + Q) ] >

PP, d

Y ——p—?-E—+— ( )+ AN ( )(«/f( - lQ )
Paz\" Ty Qlpy p2 b~ 24P2y

+ 2 2
A" (py, Py, = P)(2M D, + Qpl)n

t,.t
V.V
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5 2M0% " vyt
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Q d Q?_ PP, 2%1 1z 72z
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sy A2 2oy ey L2 AR
PPy 274 P PPy My
s.,S 1 2
_— . vvy (py P, - SP)
+ (2MX +pr2Y ) 12 1z 2222 1
P PP, Q
+2QHMY  -X ) ﬁ V;U? (p. + ~p.)
P Q P4P, Pig 2 Poy
- ) (Vo[ > Y M py,
= M X + -—P 2z
M 4 l P17, p, ( b Qp;,) 3

- 1.2 - 2
+ Z (plzaﬂp- 5Qp) +A p; (2Jtp + Qplz)}

S¢,S —
b 2| - 102 T My,
P1P,y 2 *P1 Py Q
S
+ ﬁ_"__z_ K By D) - KT8 )b, (M Dy - 3D
PP,y ppl 2 P2y pplz 20
— L 3y 7, (H+L ) 2.51
A R P U PR R S P (2.51)

Recall that -51 and 52 are the relative 3-momentum of the incoming

and outgoing deuteron, respectively. We have

1
N ] DopZ + 'z—Q EP
P M,

> = (’P.L ? plz,Zz) (2.52)
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E. The ultrahigh Q> limit

The ultrahigh Q2 1imit means that Q2 >> 4M§. This is beyond the
range of current experiment, but asymptotic formulae are of particular
interest as discussed in Section I.

As a first step toward determining the power dependence of the

form factors on Q2 in the ultrahigh Q2 region, we study the generic

overlap integral

1@ = [ ue) u'ky) (2.59)

where u and u' stand for any one of the four deuteron wavefunctions,
and Py and p, are the magnitudes of the Lorentz transformed 3-momenta
given in (2.52), i.e., the magnitudes of the internal relative momenta
of the incoming and outgoing deuterons evaluated in their respective

rest frames. We will assume that

u(p) — p N (2.54)

p+w

In order to discuss this integral in a reasonably general way, we
assume that each of the four wavefunctions has a momentum space expan-

sion of the form

c,
u(p) = 2__2”_}——2— (2.55)
i p +8;

which corresponds to a position space expansion in Hulthen functions

of different range

-B.r
e t .
o J@;ijé:: S — (2.56)
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If we define the nth moment of the coefficients as
_ n
Moo= :E: c; By (2.57)

then when the first n moments of the coefficients are zero, the reduced

\ . . -1 -
wavefunction u(r) will go like 27" at the origin, and the momentum

space wavefunction will go like p—(n+2) - (ot+1) if

if n is even and p n
is odd.
The problem has, therefore, been reduced to understanding the

behavior of the typical integral

3 1
I,.(Q = fd P (2.58)
13 (o7 +82) (03 +8D)

where, from (2.52)

2 1 1
pi‘ 5 =P + — (Dopzt 7QEP)2 (2.59)
’ M
d

For comparison, the corresponding momenta in the non-relativistic case

are simply

- o, S0 (2.60)
1 T2 '

The integral (2.58) can be evaluated exactly by first integrating

over p, in the complex p, plane and then doing the P, integration by

standard means. The result is

2.3
2 A ( (v, + v M B, +8, 2D
Iij = g = J '<g-— arctan [;i::;l -—ag
QM D, ZYin , i '3
ly, - v. M B,+8, 2D
- ——%—w—l~—- %-- arctan T = Jl 0 (2.61)
Y4Y5 LA Q

1 J
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where
_ 2 2

It is then a straightforward matter to expand this result in a power
series in Q_l, and obtain the results quoted in Ref. 2.

However, it is useful for our purposes to discuss the behavior of
(2.58) from another point of view. From (2.59) we see that the minimum

value of p% (or pg) occurs when

p, = 0
2, 2 M
p, = tpVM+pt = 2 SL (2.63)
d d

At these two points, which we shall refer to as the "end points," one

wavefunction has p2==0 and the other wavefunction has

4 2

2 M
p° ~ E : (2.64)

Q-+ 4Md

One might expect that the integral would be dominated by contributions
from the end points, as is the case non-relativistically. However,
examination of the full denominator in (2.58) shows that, as Q=+« the

4 . . .
denominator is of order Q over the entire region defined by
< M

p, £ Q (2.65)

z
so that the end points are not specifically favored. (Non-relativisti-
cally, the denominator is of order Q4 everywhere, except at the end
points where it is of order Qz.) Away from the end points,rthe Q4

2 , . .
behavior comes from a Q  behavior from each wavefunction, which means
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that the momentum of each wavefunction is large. Hence, we conclude
that the original integral (2.53) goes at ultrahigh momentum transfer
like

-(2N-1)

IQ -+ Q (2.66)

where the extra power of Q comes from the volume of the region (2.65).
(This can be obtained by expanding (2.61).)

Finally, we turn to the question of how the form factors themselves
behave at ultrahigh Qz. Since the wavefunctions do not peak in any well
defined region, the behavior of the kinematic factors will determine
what region of the p,> P, space dominates the integrand. For example,
if an extra factor of P, can be found in the numerator, it must be
assumed to be of the order Q, and the integrand is dominated by the end
points, whereas a factor of P, in the denominator will tend to restrict
the integrand to small values of p, < M. DNote, however, that a single

power of P, in the denominator will contribute a factor of

-1
z

— Q' mg (2.67)
Q+oo

p

since the integrand will reach large Q before convergence is imposed by
the wavefunction.

Finally, when the kinematic factors are thoroughly examined, we
obtain the following results:

GC . Q—(2N+4) fn Q

Q+uo

G . Q—(.2N+6) a Q

6, — q () 40 g (2.68)
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where we have assumed a Q'_4 falloff for the nucleon electromagnetic form
factors.

The behavior of the A and B form factors follows from Eg. (l.4),
and ignoring the log Q terms we obtain the results given in Eq. (1.9).
The final results depend on N, as discussed in Section I-D.

We turn now to a discussion of our low Q2 results.

F. The formulae for low QE

Formulae for low Q2 have been obtained previously, and so we shall
take the low Q2 limit of our formulae mainly to show our agreement with
the earlier work. By low Q2 we mean that n = Q2/4M§ << 1, so it is
only necessary to retain terms of first order in (Q/M)Z. However, we
will not assume Q2 is so small that it is much less than ;2, a typical
value of the integration variable. Assuming that the dominant contri-
butions come from the (++) parts, we will calculate these to first
order in (Q/M)z, and the remainder only to lowest-order. Furthermore,
we will calculate the magnetic form factor only to lowest-order, since
the leading contribution from this term to A(Qz) is only of order n
anyway.

With these simplifications, the momentum space formulae can be

written (following the standard style for low Q2 results)

- _ so

Gg = 6gg D¢+ (265 ~ Ggg) Dg

SO

Gy = Cgg Dq * (26yg ~ Ggg) D
G. = G o+ ¢ DM (2.69)

M ES M MS "M
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S
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of the nucleon, related to FlS and FZS by

ES

Cys

2

Fig = —7 Fog
1M

Fig * Fog

and GMS are the isoscalar electric and magnetic form factors

(2.70)

and the D's are body form factors involving the deuteron wavefunctions.

We have,

where

2R O oon

= =

ii_d_i_a
0 4y

3

(@]
@]

so++ so+—

> >
[“1“2 Wy Pplpy Pz)]

d’p ~ s s 3
™ [vt+vt_(.p+ p)) +v v  (p, p_)]

w

302 f
16M

d’p
by

Ve 2.0 >
2 9 pl(Pl * Pz)
+5 -

(2.71)



SO+~

o

so++

X

~50-

Vadiiis) J—
i _d_iP. - .g 2 LA 1 - N
M j b 3 UV (Pt @+ 7;‘“-"s+<-1’+ < Q)

|
\ 3 v ~ A ~ A~ A ~
5w <~32i + Vs+) (G 065 - ¢, 0 %H

M 3
d d’p _3
& f Ly [3Vs+vs— 2 Vt+"’t-]

(26, 060 -1 6,-50]

3
dp A A
f e [2u+u_ + V2 uw Pz(p_ Q)

W W

] o o G, 0@ -
%<4P2(P+‘Q) Pz(.P_-Q)+9P2 * 2 2 >]

L



-51-

DM—_ = Q%R Yﬂitl;(_i 2)
M 4w P.P_ 2P,
v, .,V
3 t+ s- > > Al > ~
—_ —— ——— . + . .
7 pp. (ppep_+ (p - Q_-W)
Et++ ‘_iEP_W+W— 91’%—* r o> >
Dy = ~JIm 72 — (_ A, p)
p,p_ Q
oot - 2 £1—3-2-2»/5(“-“) +/6 (p, * Q
M T Q) r Pyt Qv U (), r Qv u
v W
st =({, 3 2> .~ 33 2
T2 (2\/; p_(p, Q) - 2\/—2—QP_L)
v, w
4 - > > > ~ ~
+ — (3V3 (pp*p)(p_*Q - 3 PE(.-I;+' Q))}
P_
SE apl3 Vel o2 .3 Vst g- 2
M 4 | &4 PP_ L 2 P.P_ L
v, .,V
3 t+ g~ > -+ > > ~
o — —_— . -+ . . 2.72
77 o, (p,p_+ (p " Q(p_ Q))} (2.72)

The arguments of the momentum space wavefunctions have been abbreviated
1, 2, +, or —, depending on whether they are Py» Pys Pys OF P_ (cf.
Egs. (2.59) and (2.60)). P, is the Legendre polynomial.
. ++ -+ .
As stated above, in the largest terms DC and DQ , we retain the

integrands accurate to first-order in n. In this case, realizing that

if Q/M << 1 then p/M << 1 also, we expand (2.59) to obtain



N N /> 2, 2\
+ .
’ B 32M 8M
.+

where a=Me and ¢ is the binding energy of the deuteron. 1In all cases X
>

represents a unit vector in the x direction (for any x).

to reduce them to a single integral if we transform them to position space.

(Unfortunately, this is not possible for the exact formulae (2.49).) To

do so we use the identities

>
w(p) YZM(ﬁ) - _ i%_ a3, P T YZM(E) wér)

u(p) Yoo(fa) = Zl? a3 ei; 3 Yoo(f) “]Sr)

v 1,3 = -2 [ & oIP T ¥, L 2.7
w(p) Yy, (p) = - Zl?r'fd3r ei; & Yoo (@) Wér) + 3j dr! i(_‘-:_;)-

0 r

All the angular functions in the formulae (2.72) can be expanded in
Y2 's so that the only combinations needed are those given above in (2.74).
m
It also turns out that terms involving the integral over w cancel.
: + ++
For the more complicated terms DC and DQ , we note that except for the

factor Md/DO all of the (Q/M)2 terms come from the arguments p, and Py>

and, using a Taylor expansion, we can express these terms as:
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0
(2.75a)
2
2 P Q 2, 2
~ Q >Jr 3 [ z d p"+a” 2
-\t oyl + Q £(p, >P_, »P,)
< 3012 TR 2 202 4+z° Pz Py
2 4
S s }fd?’Pf(P sP_,»P)
{ e’ 16M> 3Q° tz? Fez L
2 3 3 pi%—az pE%—az
e )dr 7t |y, P, P) (2.75b)
3Q 2M M

The last term on the RHS of (2.75b), with the Schrodinger operators
pii—az, gives rise to the "potential" corrections included by Coester and
Ostebee28 and also by Gross.29 Only the first set of terms was obtained
by Friar.12 In order to remove the ''potential' terms we would have to
remove also the last term from the previous expression (2.75a), but we
would then lose the other derivative term (obtained by Friar) in (2.75b).
Hence, from the point of view of our calculation fhe "potential" terms are
essentially interrelated with the other corrections.

Next, we give the position space form of these low Q2 results. If

T = Qr/2, and j2 is the spherical Bessel function of order £, then

=]

. 2 2 2 2
c f dr JO(_T) [u +w" + vi + vS]
. 0

o
it

[~

2 4
- <Q2+ . d2>f dr 350 @+ W)
8M l6M™ dQ o
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©

2 2 2 .
” f dr [(Zu -w -V - 272 vtvs) JO(T)
0

o
"

+ (V2 uw + wz - Vi + Y2 Vtvs) jz(T)]
of = [ar[(Z97 - R El) Golo) + 5,0
0

+ %%; (Yt (j%ju-w) - vs(u + j%;w)) (jO(T) + jz(r))
+ VvV /E(zjo(r) - j2(_r))] (2.76)

Finally, we record here the additional contributions to the magnetic
moment and quadrupole moment presented in Egs. (1.15) and (1.16). They are
written as integrals over the full momentum space wave functions and their

derivatives (denoted by a prime).

~ F
A= fpzdpi “(E-M) [(u+/§w)(/'2‘u-w) +—2(/§u-w)2-3v2)]
5 3/2 E : /3 t

A 8v
+ ———(E M)[— ———(/_u w)(v -F———) + v+ —5)
) /2 sz ¢ P

v
. v _t _ P x _
+ 35 (37vy - 16 5 )] EF, v (2u-w)

1
/3

+ p3 <— L uv,_ + l-wv )}
AEEsm?\ sz F T
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P 2
+ f pzdp 32—5‘/—E—p2(u+—1—w)w"- R--(V v"-—2v v")
5 V8
2
+ 115/5 puw' + 9'5/—2—uw+ P 2[ 3'5/—-pw -;—uz———-—sf uw+—13—w2}
(E+M)
+ ——/—E—R— (u+/§w)(pv'+-gv )y + (/Eu-w)( v'+lv )
5(E+M) t 3t PVs T 3%
4 @
+ 3? P 3 uw + FZ f p2 dp {%@ (—puw'+pvsv1':—3uw)
E(E+M) 0

2
p 2.2 22/2 1.2, .2
+ E(E+M) [ 3u + 15 uw + 15W +vt

+ 41‘/53 E+M {(*’_u W) (pvl = v,) + 2(u+ V2w (pv + V )]

+ ——i——z— (V2u-w) v } (2.77)
/" E(E+M)

We now turn to a discussion of the numerical evaluation of the integrals.
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G. Numerical evaluation of the integrals

The two-dimensional integrals in Eq. (2.49) were carried out in a
straightforward manner. For a given value of z, a vector of values of
the integrand were prepared for each Ig on a regularly spaced grid with
spacing Ap and maximum value Poax® The integrals were performed using
a Simpson's rule over the Ap, Az grid. At each Q2 point we first evalu-
ate the integrals using GES = 1.0 (0.0) and GMS = 0.0 (1.0), and then
from the linear Eq. (2.69) we determine the deuteron body structure
functions DC’ DQ’ Dﬁ, Dﬁ, Dgo’ and Déo. The full deuteron structure
functions can then be found quickly for arbitrary nucleon form factors
without costly evaluation of the integrals for each case.

Tests were made to establish that the numerical procedure was
convergent as a function of the grid sizes Ap and Az and for the end
point Prax® The criterion for convergence was that a given decrease
in step size or increase in Prax should change the results for the
charge, quadrupole, and magnetic contributions to A, Eq. (l.4), by less
than 1% over the entire range of Q2 from 0 t07200 fmfz. Each parameter

was tested independently while the other two were set to a convergent

value. The final parameters used were:

- -1
Prax 12 fm
Ap = .04 fm_1
Az = .01

The maximum value of Py 5 for which momentum space wave functions
3

2 2
are required is given by Eq. (2.59) with z=1.0, P=Ppaxs and Q :=Qmax'

For Qiax==200 fm_z, this gives p; 2==24.5 fmfl. A table of regularly
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spaced p-space wave functions with grid size Ap= .04 fm_1 was prepared

in advance of the structure function calculations. Wave functions at
arbitrary p were then obtained by linear interpolation from the table.
Approximately 45 seconds of computer time on an IBM 370/168 were required
to evaluate all the structure functions at one wvalue of Q2 for one choice
of nucleon form factors.

The numerical values for the deuteron wave functions in position and
momentum space for the relativistic models were readily available using
the coefficients for the expansion in hankel functions (of imaginary
argument) given by Buck and Gross.8 The numerical values for the Reid
soft core wave functions in momentum space were obtained here by numerical
Fourier transformation from the values given in r—space.5 For the HM and
LF models, values were obtained from an expansion in hankel function
(idential to that used in Ref. 8) fit to the original points in momentum
space or position space as supplied by the authors. The position space
wave functions used in the non-relativistic formulae were obtained by

analytic Fourier transform of the momentum space functions.
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FIGURE CAPTURES

(a) The relativistic Feymman diagram which describes the impulse
approximation (RIA). (b) Three nonrelativistic time ordered
diagrams included in the RIA. The lines moving backward in

time are anti-particles. (c) and (d) Two examples of processes
that are not included in the RIA, Diagram (c) is a meson
exchange contribution and diagram (d) is an isobar contribution.
Numerical evaluation of the relativistic formulae of this paper
for A(Qz) using various two-component deuteron wave functions.
The models included are: Reid soft core, labeled RSC (Ref. 5);
three Holinde-Macheidt models, labeled HM1, HM2, HM3 (Ref. 6);
and two Lomon-Feshbach models with different percent D states
(Ref. 7). For comparison the solid line labeled RSC-NR, is the
result obtained from the nonrelativistic formulae evaluated with
Reid soft core wave functions. Dipole nucleon form factors were
used in every case. The data for A(Qz) are from Ref. 1.
Numerical evaluation of the relativistic formulae for B(Qz)
using the same wave functioms as in Fig. 2.

The charge form factor contribution to A(QZ) evaluated using

the relativistic formulae and the same wave functions as in

Fig. 2.

The quadrupole form factor contribution to A(Qz) evaluated

using the relativistic formulae and the same wave functions

as in Fig. 2.

The recoil deuteron tensor polarization T(Qz) evaluaﬁed using
the relativistic formulae and the same wave functions as in

Fig. 2.



Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
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Numerical evaluation of the relativistic formulae for A(Qz)
using various relativistic deuteron wave functions given in
Ref. 8. The parameter A which differentiates the models is
described in the text. For comparison, the solid line labeled
RSC~NR, is the result obtained from nonrelativistic formulae
evaluated with Reid soft core wave functions. Dipole nucleon
form factors were used everywhere. The data points for A(QZ)
are from Ref. 1.

Numerical evaluation of the relativistic formulae for B(QZ)
using the same wave functions as in Fig. 7.

The charge form factor contribution to A(QZ) evaluated using
the same wave functions as in Fig. 7.

The quadrupole form factor contribution to A(Qz) evaluated
using the same wave functions as in Fig. 7.

The recoil deuteron tensor polarization T(Qz) evaluated using
the relativistic formulae and the same wave functions as in
Fig. 7.

(a) the S state, (b) the D state, and the two P state deuteron
wave functions, (c) v, and (d) Vs for all the models used in
this paper. ©Note that the vertical scale of the S state wave
functions is different from the scale of the others. The wave
functions are all precisely defined in Section II.
Relativistic corrections to the structure function A(Qz). The
ratio of A calculated with the relativistic formulae of this
paper to A calculated with the usual nonrelativistic formulae
is given for each model shown in Fig. 2. Dipole nucleon form

factors were used.
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Fig. 14. Relativistic corrections to the fundamental form factors GC’
GQ and GM. In parts (a), (¢) and (e) we show the relativistic
and nonrelativistic result as well as the difference between
the relativistic and nonrelativistic result for the HM3 model
only. In parts (b), (d) and (f) the differences for all of
the models of Fig. 2 are shown. Dipole nucleon form factors
were used.

Fig. 15. Relativistic corrections to the structure function A(Qz).

(a) The ratio RFull defined in the text is given for each model
shown in Fig. 7. (b) The three ratios RNone’ RLin and RFull
are compared for the A=1 model of Ref. 8. Dipole nucleon
form factors were used.

Fig. 16. Relativistic corrections to the fundamental form factors GC’

GQ and GM' In parts (a), (¢) and (e) we show for the A=1
model, each of the four possible ways of claculating the form
factor discussed in the text, labeled NR, None, Lin and Full,
together with the difference between the Full result and the
NR result. TIn parts (b), (d) and (f) we show the differences
for each of the relativistic models in Fig. 7. The mixing
parameter A\ which differentiates these models is described

in the text and in Ref. 8. Dipole nucleon form factors were
used.

Fig. 17. Effect of various nucleon form factors on the deuteron struc-
ture functions A(Qz), evaluated using the relativistic formulae
and the two-component Holinde-Machleidt model HM3 (Ref. 6).

The various nucleon form factors are: Dipole from Eq. (1.6);



Fig. 18.

Fig. 19.

Fig. 20.

Fig. 21.

Fig. 22.
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IJL from Ref. 22; Best Fit described in the text; Best Fit +
GEn = (O, same as the Best Fit form factors except the neutron
electric form factors GEn was set to zero; Dipole + Fln = 0,
the same as Eq. (1.6), but with the neutron Dirac form factor
Fln set equal to zero.

Effect of various nucleon form factors on the deuteron struc-
ture function B(Qz) evaluated using the HM3 two-component model
in the relativistic formulae and the same nucleon form factors
as in Fig. 17.

Effect of various nucleon nucleon form factors on the dueteron
structure function A(QZ) evaluated using the relativistic wave
function model for A=0.4 (Ref. 8) and the same nucleon form
factors as in Fig. 17.

Effect of various nucleon form factors on the deuteron struc-
ture function B(Qz) evaluated using the relativistic wave
function model for A=0.4 (Ref. 8) and the same nucleon form
factors as in Fig. 17.

Various estimates for the neutron form factor GEn used in this
paper. The curves are: IJL from Ref. 22; Best Fit described
in the text; Flnf=0 leading to the form given in Eq. (1.8).
For comparison, the dipole curve GEp is also shown.

Comparison of our result with various approximations discussed
in the text. The ratio of A calculated with various approxi-
mate relativistic formulae to A calculated with the usual non-

relativistic formulae is displayed. All curves are for the

Reid soft core wave functions with dipole nucleon form factors.
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