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ABSTRACT

Ziama, Sannah P. Ph.D., Purdue University, August 2013. Wilson loops and Rie-
mann Theta Functions in the Gauge/Gravity Duality. Major Professor: Luis M.
Kruczenski.

One important implication of the AdS/CFT conjecture is that the expectation
value of a Wilson loop operator in a conformally invariant field theory may be com-
puted in the dual string theory by calculating the regularized area of the minimal
area surface that ends on the Wilson loop in the boundary of AdS space. As a con-
sequence, Fuclidean Wilson loops correspond to minimal area surfaces in Euclidean
AdS space. Many examples of Euclidean Wilson loops have been computed including
the parallel lines which give the quark-antiquark energy. We approach the study of
Wilson loops from the point of view of finding Riemann theta function solution to
the cosh-gordon equation. We compute an infinite set of equivalent classes of simple
Wilson loops. Each equivalent class consists of Wilson loops that, though having dif-
ferent shapes and lengths, have the same regularized area of their dual minimal area
surfaces. An analytic formula for the area of their dual surfaces is derived. Further-
more new examples of Wilson loops which consist of multiple curves are calculated.
For instance we compute cases of concentric Wilson loops which may be viewed as
perturbed concentric circular Wilson loops. The trace of their monodromy matrix
which gives information about the conserved charges is determined to be a simple

function of the spectral parameter.



1. Introduction

In the t'Hooft limit, which is defined as a limit of N — oo while keeping g#,, N fixed,
it has been proposed that strongly coupled planar N' = 4 SU(N) super Yang-Mills
gauge theory corresponds to weakly coupled type IIB string theory on AdSsx S® space
[1,2]. This is the so called AdS/CFT correspondence or Holography correspondence
— a duality between gauge theory on one hand and string theory on the other. One
important class of objects that has been studied as an evidence for this duality is
the Wilson loop. In particular, it was shown [3] and recently generalized [4] that the
energy of a static quark-antiquark pair in N' = 4 SY M theory can be determined
by computing the expectation value of Wilson loops. On the string theory side the
problem reduces to finding the area of minimal area surfaces that end in the boundary
of AdS space. The boundary of these surfaces are exactly the Wilson loops on the
gauge theory side.

Many examples of Wilson loops have been studied. They may be classified as
either open or closed curves. In the case of closed Euclidean Wilson loops (with
constant scalar) the most studied one is the circular Wilson loop [5] which is dual
to a half-sphere. The only other closed and simple one we are aware of is the two
intersecting arcs (lens shaped) [6]. For those Wilson loops which occur as multiple
curves, the concentric circles dual to the half-torus were found along with several
interesting properties using integrability [7]. For the open curves, the infinite Wilson
loops such as the parallel lines [3] and the cusp [8] are known. However, all of these
are symmetrically shaped Wilson loops.

In this work a more generalized class of Wilson loops is studied. Their shapes are
not symmetric as those of the known examples. In that sense chapter four of this
work may be seen as a generalization of the already known examples of Wilson loops.

However, the method employed further reveals that many of the previously known



examples of Wilson loops listed above are related to each other. Specifically, it reveals
that these Wilson loops may be obtained from each other by a smooth change of a
certain parameter. The work focuses on flat Euclidean Wilson loops which are dual
to minimal area surfaces in Euclidean AdS3 space.

This work emphasizes the use of special mathematical functions — Riemann theta
functions — because they provide a convenient solution to the cosh-gordon equation
[9,10] which is a highly nonlinear equation that poses a serious challenge to solving.
The cosh-gordon equation is a disguised form of the sigma model in Euclidean AdS
space. Traditionally in string theory one finds a solution to the string equations
of motion which, by the AdS/CFT correspondence, gives the Wilson loop as the
curve describing its intersection with the boundary of AdS space. This is distinct
from our approach in the sense that we begin with a certain Riemann surface and
determine the Riemann theta functions associated with it. The Wilson loops are
then described by those Riemann theta functions which solve the string equation of
motion, thus elevating Riemann theta functions (and by extension their underlying
Riemann surfaces) to a central role in the study of Wilson loops. Therefore in order to
develop a full understanding of how things work it is necessary to study these special
functions and the Riemann surfaces with which they are associated. Although in
general Riemann theta functions do not need to be associated to Riemann surfaces;
those which provide solution to the string equations of motion must.

In chapter 2 we briefly give some background on the conformal (co)invariant nature
of AdS4y1 and its boundary. We also review the sigma model in Euclidean AdSs.
We show that the string equations of motion reduces to the generalized cosh-gordon
equation that is transformed to the standard cosh-gordon equation for which we seek
Riemann theta function solutions.

Since the problem of finding quasi-periodic solutions to the cosh-gordon equation
leads us to Riemann theta functions, in chapter 3 we give a short overview of the
theory of Riemann theta functions and of the hyperelliptic Riemann surfaces which

they parametrize . This chapter is purposely intended for readers who are not familiar



with the theory of Riemann theta function and wish to pursue the study of Wilson
loops based on the proposed method. Many useful references about these functions
and their underlying hyperelliptic Riemann surfaces are provided for the more in-
terested reader who wants to pursue more on these functions. Several well-known
lemmas are given along with their proofs. The proofs are presented as illustration of
the main ideas and in a pedagogically friendly way that doesn’t obscure the concept
in favor of rigor.

Chapters 4 and 5 contain the new examples of Wilson loops computed using the
technique presented here.

Chapter 4 focuses on an infinite class of simple Wilson loops. A simple Wilson
loop is a single smooth curve with a dual minimal area surface. It is shown that
unlike the previously known examples of Wilson loops these have general shapes due
to their flexibility to be continuously deformed. Also shown is the interesting fact that
the deformation is controlled by the spectral parameter that appears in integrability
theory, and that the regularized area of the dual minimal area surface is invariant
under this deformation of the boundary Wilson loop. Perhaps the most important
contribution here is that the (regularized) area of the minimal surface is given by an
analytic formula.

Finally, in chapter 5 more complicated examples of Wilson loops consisting of mul-
tiple curves are computed. The area of their dual surfaces are also computed using
analytic formulas. The concentric circular Wilson loop is generalized to concentric
curves which are not necessarily circular. Furthermore, these concentric Wilson loops
can be viewed as perturbations of the concentric circular Wilson loops. This notion of
perturbation is shown explicitly by studying the behavior of the Wilson loop under a
shrinking of some of the branch cuts of a hyperelliptic Riemann surface. Another type
of Wilson loop computed is the cyclical Wilson loop. These are Wilson loops which
are concentric curves that have a turning number (the winding number of the unit
tangent about the origin) associated with the individual curves. The turning number

can be controlled by imposing conditions on the periodicity of the solutions, which



invariably implies controlling the periodicity of ratios of Riemann theta functions.
The chapter finishes with new examples of n-leaf symmetric Wilson loops which pos-
sess a tunable symmetry. They are named that way because of their resemblance to
clovers. The number of leafs is determined by the periodicity imposed on the solu-
tions. The ubiquitous role that the periodicity of the solutions plays indicates that
many more interesting properties of Wilson loops may be understood by getting a

better understanding of the theory of Riemann theta function.



2. Sigma Model in AdS3; Space

In this chapter we study semiclassical string theory in the AdS3 space. We begin first
by reviewing holography of physical theories in AdSy.; and how it relates to Wilson

loops.

2.1 Wilson loops in AdS/CFT : A brief overview

We review how the notion of Wilson loop emerges in the AdS/CFT conjecture
and the important role it plays.

The AdS/CFT conjecture or Holography conjecture was proposed by Maldacena
[1] and further explained by Witten [2]. The main idea of the proposal is that in the
limit of large N, where N is the rank of the gauge group of a conformally invariant
field theory, this field theory residing on the boundary of d + 1 dimensional anti-de
Sitter space is dual to type IIB string theory on AdS;,; times a compact space.
The most understood example of this conjecture is the 4 dimensional N =4 SU(N)
SY M gauge theory with coupling constant gy,;. According to the conjecture, in the
t’Hooft limit this theory is equivalent to the tree approximation to supergravity in
AdSs x S°. The string coupling constant g, is proportional to g3, and as A = g3, N
gets large but fixed, the superstring theory becomes a weakly coupled theory. This
theory is well approximated by the supergravity which is the dual theory to N' = 4
SY M gauge theory.

Conformal Symmetry and Euclidean AdS Boundary

Recall that the Poincaré upper half-space model of hyperbolic space or sometimes

referred to as the upper half-space model is described as follows: Take the upper half



space HE™ of R with coordinates (z!, 22, --- 2% 2), with z > 0. The quadratic

form on this space is

R? _ ; ,
dSQ:;(derd:z: + (da")? +dz*), i=3,---,d. (1.1)
Setting 27 = 2? +ix! and 2~ = 2% — i 2! leads to the more familiar quadratic form

on Euclidean AdS;,
, R i\2 2 ~
ds :§((da:) +dz%), i=1,---,d. (1.2)

The isometry group of this space is SO(d 4+ 1,1). This can be readily seen by
considering the hyperboloid model of AdSy;;, HL™. Define R4 by the coordinates
{a', .-+ 2?1 7}, Then HL' is the upper sheet of the hyperboloid defined by |x|* —

72 = —R? in R4 Here the metric myg on HZH is given by
mu =i"mp, (1.3)

where mg is the metric on R4*"! and i is the inclusion map 4 : HEH < R4 Thus
it becomes clear that indeed SO(d +1,1) acting on H&'! leaves the metric invariant.

When d = 2 this isometry group becomes the more familiar SL(2, C). This is how
SL(2,C) which is isomorphic to the 2d conformal symmetry group, Con f(R?), may
be viewed as the symmetry group of AdSjs .

The boundary of H%™ is a copy of R? located at z = 0. The quadratic form (1.1)
or (1.2) does not extend over the closure of the Poincaré upper half-space, ﬂiﬂ. To
get a quadratic form that extends over giﬂ we multiply ds by a function g which
is nonnegative on ﬂiﬂ and that has a first order zero on the boundary (¢ = z for

example) and then the restriction of (1.1) to 9HE™ the boundary of H%™ becomes
ds* = g*ds* = R*(dvVdax™ + (d2")?), i=3,---,d. (1.4)

The function g is not unique and using a different function ge? for a real function ¢

7(1 .
on HRH would lead to a new quadratic form

d3? — g% €** ds? (1.5)



on the boundary H%. So the boundary metric is defined up to a conformal factor
and therefore the dual theory has to be conformally invariant. Particularly important
are global conformal transformations of the boundary coordinates which in the bulk
correspond to the SO(d 4 1,1) symmetry group of AdS;.; space.

Note that the boundary R? is not compact. The conformal group acts on a
compact manifold. We can make R? compact by “gluing’’ two copies of R¢ into a
final compact manifold S¢ .

Expectation values of operators in a C'F'T" may be computed in the dual theory
in AdS under the provisions of theAdS/CFT conjecture. One operator that fits
this description is the Wilson loop operator [3]. One way to see this is that due to
the conformal symmetry of both AdS and its boundary, a theory may be viewed
separately as a C'F'T on the boundary of AdS or as a string theory in the bulk of
AdS [2]. Therefore under the conditions of AdS/CFT one should in principle be able
to compute expectation values of gauge theory operators by computing corresponding
quantities in the string theory. So Wilson loops provide an opportunity to test the
conjecture or to give supporting evidence for it. This is why computation of Wilson

loops plays an important role in the AdS/CFT conjecture.

2.2 Sigma Model in Euclidean AdS;

A convenient way to imagine Euclidean AdS; is to consider it as a subspace of

R3>! defined by the equation
X2+ XP+ X2+ XI=-1, (2.6)

with an obvious SO(3,1) = SL(2,C) global invariance. The action of the string in

conformal coordinates is given by

S = ;/(6X#8X”—A(XMX“—1)) do dr

= % / % (0.X0"X + 0,Y Y + 0,20°Z) do dr, (2.7)

1See chapter 4 for a detail explanation of this procedure in the complex setting.



where A is a Lagrange multiplier and the p indices are raised and lowered with the

R*! metric s
(v,w) = Zviwi —vou?. (2.8)
i=1

The complex coordinates z and z are related to the world sheet coordinates, o, =
(0,7) by 2z = o +ir, and z = 0 —ir. X,Y,Z are called Poincaré coordinates (see

(2.26)). The string equations of motion are given by
00X, = AX, , (2.9)
where A, the Lagrange multiplier is given by
A =0X,0X"=(X,,X;). (2.10)
The conformal condition is encoded in the Virasoro constraint
(X, X,)=0=(X;,X;5). (2.11)

The first step to solving the equations of motion is to reduce the problem to an
equation with a single unknown scalar field. In AdS3 space this scalar equation is
the cosh-gordon equation

Oda = 4 cosh o . (2.12)

This reduction mechanism referred to as Pohlmeyer reduction [12] has been used
in the study of many related problems. In the context of Minkowski space-time
this procedure was used by Jevicki and Jin [13] and by Kruczenski [14] to find new
spiky string solutions, and by Alday and Maldacena [15] to compute certain light-like
Wilson loops. In a more geometric guise it was employed [9] to study constant mean
curvature surfaces in hyperbolic space. We review the idea and follow closely what
was done in [9].

In Fuclidean AdSs, form a basis
t=(X,X,, Xz N) (2.13)

where

(X,N) = (X.,N) = (X5, N) = 0,(N,N) = 1 (2.14)



Note that (2.6) and (2.11) imply

(X, X,)=(X,X;)=0 (2.15)
and
(Xe, Xo2) = (X5, Xoz) = (X5, Xzz) = (X5, X)) =0 (2.16)
respectively. Define
(X, Xz) :=2¢", (X.:,N):=2H"", (X..,,N):=A", (2.17)

where A" is the Hopf differential and H" is the mean curvature of the surface described
by the solution to the string equation of motion. Since we are concerned here with
a minimal area surface (described by the string equations of motion) we will have a
vanishing mean curvature and the second equation in (2.17) is equal to zero. We want
to study what happens when the basis undergoes a small motion with the hope that
second derivative quantities will tell us something useful about the sigma model. For
this we write second derivatives as a linear combination of the basic vectors. Thus

we write

X.:=aX +bX,+cX;+dN. (2.18)
Then taking inner product with X gives
—a = (Xv XZE) = _(XZ7X2)

which implies a = 2e* due to (2.17). Doing same for the other vectors in the basis

gives
0=(X,,X.z) =c(X,,X5) = ¢c=0
0 == (Xg,ng) == b(Xg,XZ) — b - O
O - (N,ng) — —d

This shows that
X.;=2e%X, (2.19)
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which is exactly the equation of motion (2.9) taking A = 2e“. Note that without the
minimal area condition, i.e. H" = 0, equation (2.19) will have an additional term

proportional to H"N. Repeating this for the other second derivatives we get

X,, =a,X, — A'N
and
ng = Oéng - AhN

Consider motion of the basic vectors given by

ti z = Ui'tj, ti’g = ‘/ijtj . (220)

)

Note that since second derivatives are expressed entirely in terms of first derivatives,
quantities such as ¢; , and t; .. are all expressible in terms of first derivatives. Con-
sequently, the matrices U and V contain « and its derivatives, and A" (and its com-
plex conjugate). Taking second derivatives and imposing the compatibility condition

ti.z = tiz. leads to
(Uijz = Vij )ty + (Ui Vi — VijUp )ty = 0. (2.21)
This equation may be written in matrix form, after dropping the ¢, as
U: =V, +[U,V]=0 (2.22)

with U and V' determined from (2.20) as

0 1 0 0 0 0 1 0
0 a, 0 Ah 2e” 0 0 0
U - ’ V - <
2e* 0 0 0 0 0 a; Al
0 0 —idre 0 0 —idre 0 0

The compatibility equation implies that A" is a holomorphic function. Furthermore,

it leads to a generalized cosh-gordon equation

1 _
Qys — 2% — 5Amhe—a =0. (2.23)
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If in (2.23) we scale the Hopf differential A* — 2A" and similarly for its conjugate,

the generalized cosh-gordon equation becomes
az — 2e* — 24" Are™ =0 (2.24)

Changing coordinates to w = VA! 2, = VAR % followed by a transformation of the
field « - a = o — %log APA" | the resulting equation is the standard cosh-gordon
equation (2.12). This procedure is equivalent to setting A" = 2 in (2.23).

To connect the scalar field o with the solutions for (2.9) we introduce a hermitian

matrix
Xo+X; Xy —1iX
X — 0T . (2.25)
Xi+iXy Xo— X5
Then construct Poincaré coordinates

Z=—1\ X+iy =22 2.26
X22 XZQ ( )

The final connection is to recognize that (2.23) is also the compatibility condition for

the system of equations [9]

o, =Ud O, =V (2.27)
where U and V are given by
-1 0 2\e?/? - 1 a;  —Ae/?
U= - V== . (2.28)
2\ 2¢a2 Q, 2 %eo‘/Q 0

The parameter )\ is the spectral parameter which emerges in the study of integrable
differential equations. Given a solution for the pair of equations (2.27), the Poincaré

coordinates are related to (2.27) by

b+ d Vdet @ det f
X iy = 2rde 7z =Y 2T (2.29)
bb + dd bb + dd
a
where & = . One advantage of Poincaré coordinates is that the boundary
c d

of AdSs is now a copy of R*.
The rest of the program is to find a solution for the cosh-gordon equation, then

solve the system of equations (2.27) and finally feed the result into (2.29).
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3. Hyperelliptic Riemann Surfaces and their Associated

Riemann Theta Functions

In seeking quasi-periodic solutions to the cosh-gordon equation, we inherently place a
major emphasis on the relevance of Riemann theta functions in this study of Wilson
loops. Therefore it is useful to get an understanding of the origin of these functions.
As we will see later, when the concept of Riemann theta functions have been de-
veloped then the desire solutions in terms of these special functions can be deduced
without much attention to the mathematics of these functions or to the Riemann sur-
faces which give rise to them. For now, as we develop the concept, we study the theory
of Riemann theta functions and their connections to Riemann surfaces as much as is
needed for our purpose. We need to understand the concept of hyperelliptic Riemann
surfaces, which can be attained by gluing together Riemann surfaces. So we begin
with a study of this process of ”gluing” Riemann surfaces. There is vast mathematics
literature on the Algebro-Geometric nature of Riemann theta functions. We review

the basics we need here based on [9,10,16-20]

3.1 Gluing of Riemann Surfaces

A Riemann surface is a complex manifold of dimension one (in the complex sense).
We naturally imagine a Riemann surface as having complex charts and the open
subsets on which these charts are defined being themselves Riemann surfaces. One
may also look at the situation in the reverse by considering a collection of, a priori,
unrelated open sets and patching them together to form a Riemann surface. Indeed,
this process of patching together has to be done in a way that allows for the existence
of a complex structure on the final Riemann surface. Let us describe this in a rigorous

way. First, we need a gluing datum.
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Definition 1 3.1.1 A gluing datum consists of the following:
e an index set [
e Vie I a Riemann surface U;

o Vi, 5 € I open subset U;; C U; where U;; are considered Riemann surfaces
themselves
e Vi, 5 €1 an isomorphism ¢;; : U;j; — U;; of Riemann surfaces, such that
a. U” = Ui; and
b. ¢rjo@ji=¢ri on Uiy MUy, i, j, k € I, with ¢;(Us; NUiy) C Ujyp -
(b) is known as the cocycle condition. In the case i = j = k, it implies that ¢;; = idy,
and in the case i = k, from ¢;; = ¢;; 0 ¢;4, that ¢;; : Uy N U, — U;; N Uy, is an
isomorphism. An isomorphism between Riemann surfaces is a holomorphic bijective

map.

We now define a Riemann surface obtained from a gluing datum.

Definition 2 3.1.1 Suppose ((U;)ier, (Ui;)i, jer, (¢i5)i jer) is a gluing datum of Rie-
mann surfaces. Then the Riemann surface X with injective morphisms v; : Uy — X
is said to be the Riemann surface obtain by gluing (with respect to the gluing datum)

if the following conditions hold:
o 1. Vi the map ¢; : Uy — X gives an isomorphism.
o 2. 1pjopj; = onU;;,Vi,j,
e 3. X =Uphi(Us),
o 4. ¥i(Us) N;(U;) = ¢iUi;) = ¢(Usa), Vi, j € 1.

The Riemann surface constructed this way may or may not be compact; we are

interested in those that are compact.
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The underlying idea in constructing X goes as follows: begin by taking a disjoint
union [ [, U; of the basic Riemann surfaces. Think of [ ], U; as a set consisting of the

following subsets:
o singletons, {CLZ} € {Uz — U”},VZ,j el

e doubletons, {z;, ¢;;(x;)} where z; € U;

Then, let the equivalence relation ~ imply that two points x; € U; and x; € U;, V4,7 €
I are equivalent if and only if ¢;,(z;) = z;, with x; € U;; and z; € U;;. Clearly there
is a surjective morphism ¢ : [[,U; — [, U;/ ~ which sends an element in the set
1, U; to its equivalent class in [[, U;/ ~. Define the desire Riemann surface X as
X = HUi /~ .
iel

We remark that X is endowed with a topology which makes all the injective maps
Y; : Uy — X continuous. Furthermore, we have that v¢;(U; ;) = ¢;(U;) N¢;(U;) and
¥;(U;) are both open in X.

To reenforce the idea, we give perhaps the simplest example of a Riemann surface
constructed this way. Take the index set I = {1,2} which implies we have two
sets Uy := C and U, := C with open subsets Ujp := C* = C\ {0} and Uy := C¥,

respectively. We have an isomorphism ¢ : C* — C* which we define as

¢(z) =1/z,
which is easy to check defines a gluing datum. The resulting Riemann surface X :=
Uy [[Ua/ ~ is the familiar Riemann sphere Cy.
Now that it has been made clear how to construct a Riemann surface from a
given gluing datum, it would now be natural to extend this tool to the concept of

hyperelliptic Riemann surfaces.

3.2 Hyperelliptic Riemann Surfaces

The hyperelliptic Riemann surfaces will be constructed by gluing two curves,

viewed as the zero loci of specified complex polynomials, into a final manifold. Through-
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out we will be restricted to the field C. By the set of zero locus of a complex polyno-

mial, P € C, we mean
V(P) ={(1,\) € C*: P(p,\) = 0} C C*.

So to say a curve X is defined by a polynomial, P, it will mean that X is considered
as the set of zeros, V(P), of P.

Take a polynomial in a single variable, p()) , that has degree 29+ 1+ 9, where g is
an integer and ¢ is either 0 or 1 depending on whether g is odd or even respectively.!
The polynomial is assumed to have distinct roots. Denote by X the smooth curve
defined by the equation p? = p(\) and let Uy = {(u, A\) € X |\ # 0} C X, be an open
subset of X. Form a second Riemann surface Y, to be glued to X, by the equation
w? = q(z) := 229"2p(1/z). The factor 22972 ensures that ¢(z) is a polynomial in z and

because p has distinct roots so does q. Let Uy = {(z,w) € Y|z # 0} C Y be open.

Then there is an isomorphism ¢ : U; — U, given by

B, A) = (/AT 1/A) .

Define
Z:=X[]v/e,

where ¢ denotes the equivalence relation ~ defined via ¢, to be a Riemann surface
of genus g. This Riemann surface admits a degree two covering map to the Riemann
sphere by extending A on X to a holomorphic map 7: Z — C, .

Thus, we refer to hyperelliptic Riemann surface as the surface Z constructed as
described above along with a degree two map to the Riemann sphere.

Indeed, compact hyperelliptic Riemann surfaces can be viewed as the smooth

hyperelliptic curves

N
=T =X), N>3, N#XNeCVij=1.,N. (2.1)
1=1

lg is the topological genus of the Riemann surface X, i.e. the number of handles of X. It is a deep
theorem of Algebraic Geometry that every Riemann surface is an algebraic curve.
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For N = 3,4 they are called elliptic curves. It is clear that for each value of the
independent variable, A, there are, in general, two distinct values of the dependent
variable, u, and these values are said to lie on the two sheets of the Riemann surface.
So such a Riemann surface is said to be two-sheeted and in general, a Riemann surface
given by p" = [, (A — \) is said to be n-sheeted.

There are values of A\, however, for which the two values of p coincide and it
is worth to take note of the behavior of the hyperelliptic Riemann surface at these
points. We will adopt the language of Baker [16] in referring to the point on a
hyperelliptic Riemann surface corresponding to the value of a pair (u, A) as a place.
The Riemann surface behaves in two possible ways at the point where the values of
A coincide. The first possibility is that the two sheets of the hyperelliptic Riemann
surface touch at exactly one point and touch at no where else in the vicinity of the
said point. In this case it is possible to draw two small loops around this point with
each loop lying entirely in only one of the sheets. When this happens we say the point
corresponds to two places of the Riemann surface. The second possibility occurs when
the sheets interwind at the point and any small close loop around the point meets
both sheets. In this case we say the point equally belongs to the two sheets, and
corresponds to one place of the hyperelliptic Riemann surface. Points at which the
second scenario occurs are known as branch points. A branch point is a point, 2 on a
Riemann surface X such that given a covering map (non-constant holomorphic maps
between Riemann surfaces), F : X — X between Riemann surfaces X and X, it is
not possible to find a neighborhood U 3 x such that F|g is injective.

From what has been said above, it can be easily deduced that

Lemma 1 3.2.1 Given a non-constant holomorphic map, F : X — X, between two
compact hyperelliptic Riemann surfaces, the set S, = F~'(y), Yy € X consists of
either one or two places depending on whether the corresponding point is or is not a

branch point.

This implies that S is a discrete set since for any point = € X it is always possible

to find a neighborhood, U 5 x which meets Sy in at most one place Vy € X. Hence
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non-constant holomorphic maps between compact hyperelliptic Riemann surfaces are
discrete.
It is always possible to find local charts near z € X and F(z) € X such that

locally F' may be represented by a power map
z—=2", mels (2.2)

and this integer m is independent of the local charts. The number, mg(x), indicates
the number of times F' takes the value F'(z) and is therefore refer to as the multiplicity
of the map F' at x. In our case for curves described by (2.1), this number is either
one or two. Points on a hyperelliptic Riemann surface for which mpr = 2 are branch

points and the discrete set

B={zeX :mp(x)=2}C X
is finite if X is compact, and the image F(B) € X is also finite. A covering F :
X \B — X is said to be unramified. Topologically, one may describe the number
m as follows: It is possible to find neighborhoods, U > z, U > F(x) such that
F~'(y)NU consists of precisely m points, ¥y € U\F(z). Another significant number
is the branch number of F at x, bp(x) = mp(z) — 1. In general bp(x) > 1 for branch
points and zero for all other points. The degree of a covering map F : X = X is

defined as the number

dy(F)= > (bp(x)+1) (2.3)

zeF~1(y)

and this number is independent of the point y € X. From (2.3) it is clear that, as
stated in the definition for a hyperelliptic Riemann surface, the independent variable,
viewed as a covering map A : X — P! is a degree two map.

Looking back at (2.1) we can readily deduce that the points (0, \;) are branch
points and in general, when N = 2¢g + 1 they consist of the points (0, \;),i = 1,..., N,
and oo whereas for N = 2¢g + 2, they are (0, \;),i =1,...,N.
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There is a prescribed way to give local homeomorphisms near a point on a Riemann
surface. Suppose A has a finite value, say a, then the local coordinate near A = a
may be given by

(1, \) = (A — @) 7OV, (2.4)
and for A at infinity the homeomorphism is

(1) = —— (2.5)

)\bF(A)+1

3.2.1 Basis of Holomorphic One-forms

One distinct feature of hyperelliptic Riemann surfaces is that it is always possible
to explicitly write down a basis of the space H 0()~( , Q') of holomorphic one-forms on
X. We show this but first a few things are in order.

For any hyperelliptic Riemann surface, X, given by (2.1), there is an holomorphic
automorphism o : X — X defined by

(i, A) = (=, A). (2.6)

This automorphism has the property that ¢ o ¢ = id so it is called a hyperelliptic

inwvolution. For the projection map 7 : X — P! we have
TOoO =T. (2.7)

This relation, (2.7), is crucial. It allows us to describe the set, M(X), of all meromor-

phic functions on X and more relevantly it allows to establish a basis for HO(X, Q).

Meromorphic Functions on Hyperelliptic Riemann Surfaces

Suppose f € M(X), then o*f = f o o also belongs to M(X). Any such f may

be written as
f=r+r, (2.8)

a sum of a o*-invariant part f* and an o*-anti-invariant part f~, with

fr=120f+0"f). f =12 - ). (2.9)
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Let g be any o*-invariant function on a hyperelliptic Riemann surface, X, ie.
o*g = g, and let a be a point in P* and b in X such that 7(b) = a. Then there is
a function, r,on P! such that 7(a) = g(b). But this implies that g(b) = r o w(b) =
7*r(b). Since g is o*-invariant, the function r is well defined and it is unique. So this

essentially proves that:

Lemma 2 3.2.1 Let g be a meromorphic function on a hyperelliptic Riemann sur-
face, X, such that o*g = g. Then there is a unique function r € M(PY) such that

g=m'r=rom.

The significance of Lemma 2 (3.2.1) is that it states that the o*-invariant part of
all meromorphic functions on a hyperelliptic Riemann surface are pullbacks of mero-
morphic functions on the Riemann sphere P'. A natural example of a o*-invariant
function on a hyperelliptic Riemann surface is the coordinate A.

To characterize the o*-anti-invariant functions on a hyperelliptic Riemann surface,
it is natural to look at the coordinate p, since by the automorphism (2.6) we have
o* = —pu, it is the readily available example. However, due to (2.8) and (2.9), for
any meromorphic function f on X the rational function f~ /p is o*-invariant. This
implies there exists a unique meromorphic function, R, on P! such that f~ = pR.

Thus.

Lemma 3 3.2.1 If f € M(X) with X defined by (2.1), then f may be uniquely

written as
f=r(z)+pR(2)

where v and R are meromorphic functions on PL.

One-forms on Hyperelliptic Riemann Surfaces

We now extend this idea extends to the case of 1-forms which we are more con-
cerned about. 1-forms are constructed from functions so this is why some effort was

first devoted to understanding the case of meromorphic functions.
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The holomorphic map o : X — X induces a map
o, H(X, Q') — H(X,QY (2.10)

which acts on a holomorphic 1-form, w in either of two ways: (i). w — w or (ii).
w — —w. The first case would inevitably lead to the corresponding situation in Lemma
2 (8.2.1): An w satisfying o,.w = w would have to be a pullback of a holomorphic
1-form on P!. But the space of holomorphic 1-forms on the Riemann sphere is trivial
therefore case (i) is not possible, leaving (ii) as the only possibility.

Since A is o*-invariant and p is o*-anti-invariant, as established in the above
discussions, the simplest example, in view of what has been said, of a holomorphic

1-form, wo on X should be of the form

dA
Wy = —
1
so that o.(wy) = —wyp is satisfied. wy is holomorphic because near points (0, \;) we

have local coordinates ¢ = /A — \; according to (2.4), which implies that wy = k d¢
where k is constant. For A — oo one has to treat the case when N is odd separately
from when N is even. For odd N the local coordinate ¢ = 1/+/X given by (2.5),
leads to wy ~ —d¢. The same result is found for even N, however with ¢ = 1/A\.
Also notice that at points where p vanishes, d\ also vanishes. Therefore wy is indeed
holomorphic on X.

We can get other holomorphic 1 — forms by taking products
w = fuwg.

But since 0, (w) = —w must be satisfied, we must have that o.(f) = f, which implies
the f is a function of A only and not of u. Therefore f is a polynomial in A\. The
total degree of wy is 2(¢g — 1) for both cases of N = 2g+ 1 and N = 2¢ + 2 and we
show this explicitly for the odd case.

When N = 2g + 1, we see that in the vicinity of infinity we have

dA A

YOS T e
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The local homeomorphism is

1
O = . with dgb:—ix?’/%m

1
VA
which gives

@, —2¢*97Vdp. (2.11)
o]

This implies that there are 2g — 2 zeros of wy lying above oo and so the number
of zeros of f cannot exceed this number for f(A)d\/p to be holomorphic. So if the
degree of f is d, then 2d < 2g — 2. Therefore, degree of f cannot exceed g — 1 and a
basis of the space, H*(X,Q'), of holomorphic 1 — forms on X is

d\

{)\0@ A2
ploop

,/\9—1@’}'

i
The case for even N essentially follows the same line of argument except that the
point at infinity is not a branch point and the local homeomorphism is different. This
time there are g — 1 zeros of wy on each sheet of the hyperelliptic Riemann surface

and we get a total of 2g — 2 zeros as before. Again we find the same bound on d.

3.2.2 Basis of Cycles on a Hyperelliptic Riemann Surface

Eventually it will be necessary to give a precise description of what it means to
integrate a differential form around a loop on a hyperelliptic Riemann surface. So
it is important to get a clear understanding of what kind of loops we will integrate
along. We begin by looking at (hyperelliptic) Riemann surfaces through a new lens,
as a polygon with boundary that gives us a crucial insight into the kinds of loops we
will be dealing with.

We take for granted that every compact Riemann surface is homeomorphic to
a sphere with handles. The number of handles is indicated by the number g € Z,
the genus of the Riemann surface. When the Riemann surface is hyperelliptic, then
g=(N—-1)/2if N is odd, and g = N/2 — 1 if N is even.

There is a standard way to represent any sphere with ¢ handles as a 4g-gon in

C, such that the interior of the 4g-gon is (simply) connected domain in the C plane.
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Consider a polygon, P44, with 4g sides labeled in counter clockwise direction in the
following order

/ / / / !/ /
a, by, ay, by, a2.b9, a5, b, ... ag, by, ay, b

Choose orientations of the edges in such a way that the edges a/ has opposite orien-
tation to a; and b, has opposite orientation to b; with respect to P4, The homeo-
morphism to a sphere with ¢ handles is achieved by identifying the edges a; with a
and b; with b, for ¢ = 1,...,g. On the resulting Riemann surface, the identified edges

a; ~ a; and b; ~ b form closed curves labeled a; and b; respectively, for i =1, ..., g.

Figure 3.1. A g = 1 Riemann surface obtained from its P4 representation.

Any closed curve, v, on the Riemann surface may be expressed as
v = (nja;+myb;), nj,m; €L,
J
These closed curves form the basis of an abelian group which we now describe.

A loop or closed curve v on a Riemann surface X is a continuous map 7 : [0,1] —

X such that, v(0) = 4(1) = P, for some P € X. The point P is called the base.

Definition 3 3.2.1 A homotopy of closed curves, vo and 1, is a continuos map -y :
[0,1] x [0,1] = X such that y(s,0) = vo(s), v(s,1) = 71 (s) and ¥(0,t) = ~v(1,t) = P.

The curves vy and v, are said to be homotopic.
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Two curves can be multiplied if the terminal point of one is the initial point of

the other, i.e.

Y(2t); 0 <t <1/2

Yo - i(t) =

m2t—-1);1/2<t<1
if v(1) = 71(0). This concatenation of curves induces a group structure on the
homotopy classes of loops based at a point on a Riemann surface. The notions of
inverse for curves and identity element are well defined. The inverse of a loop is the
curve with opposite orientation; the identity element is the loop which is contractable

to a point. The homotopy class of a loop v is indicated by I' = [7] and the product

of two classes is defined as
Io-T'y = [70'71]-

If P is the terminal and initial point of loops then the homotopy classes of such curves
form a group known as the fundamental group, m ()~( ,P). It is easy to show that
71 (X, P) is isomorphic to m; (X, Q) for a nearby point @ in X. Thus the fundamental
group is independent of the base point and may often be denoted by m ()~( ).

The homotopy classes of the curves ay, by, - , a4, by, on the Riemann surface la-

beled [a4], [b1], ..., [a,], [by] generate the fundamental group of the Riemann surface.

Note that in the Py, representation of the Riemann surface, it holds that

oq-bl-afl-bfl-...-ag-bg-agl-bgl:1. (2.12)

We get the first homology group by taking the quotient of the fundamental group by

the commutative subgroup generated by elements of the form (2.12)

H(X.7) = X P (2.13)
[ (X, m (X))
This is done to make the fundamental group a commutative group.
Another way to look at the first homology group is to introduce the notions of
chains and boundaries. A chain is a finite formal sum with integer coefficients. On

X a 0-chain is a finite formal sum of points P = > pex Mili, and the set of P, with

n; # 0 is discrete, and finite since X is compact. Similarly a 1-chain is a finite formal
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sum of curves v = ) . n;y;, and a 2-chain is of the form D = ), n;D; where each D;
is a domain on X. The n-chains form groups denoted by C,, and a boundary operator,

On, is a map that sends a chain from C,, — C,,_;. In particular we have that
82102—>01, 81201—>Co

and 82 = 0. When a closed chain bounds a domain of X it is called a boundary
chain and they form groups indicated by B,. In particular, B; C (] is the image

d(Co(X)). C, also contains a subgroup, Z,, of -closed-n-chains, i.c.
Zn(X) = {7 € Cp(X) : Op(y) = 0}.

It is clear that B, C Z, and the group Z,(X)/Bn(X) forms the nth-homology group
H,(X,Z).
0 — chains have no boundary so By = ). The first homology group is therefore

o (X 7) = Zl(f() _ kernel 0y : Cy — Cy
BUTBX) T image d(Cy(X))

This view of the first homology group is conceptually easier to understand vis
a vis the P4g representation of a hyperelliptic Riemann surface. It is immediately
clear that since the cycles ay, b1, ..., ag4, by do not bound a domain of the hyperelliptic
Riemann surface as can be seen in the P,g representation, they are exactly the basis
of H\(X, 7).

The next thing to do naturally is to integrate n-forms along n-chains and that is

the subject of the next section.

3.2.3 Riemann Period Matrix and Abel-Jacobi Map

We introduce the notion of integration on a hyperelliptic Riemann surface. In
particular we are concerned with integrating Abelian differentials (of the first and
second kinds) on chains. This will lead to the definition of the Abel-Jacobi map and
eventually to the construction of Riemann period matriz which is the single most

important thing we seek in this chapter.
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Functions, Integrals and the Abel-Jacobi Map

The notion of a holomorphic differential is already familiar to us from previous
discussions. This notion will now be further extended. An Abelian differential is
simply a meromorphic 1-form. There are three kinds of Abelian differentials: An
Abelian differential of the first kind is a holomorphic 1- form w which may be written
locally as f(A)dA with f(A) a holomorphic function. An Abelian differential of the
second kind is a meromorphic 1-form with its residue vanishing at each of its singular
points. An Abelian differential of the third kind is a meromorphic 1-form with general
type of singularities; the sum of residues at all its singular points vanishes, however.
The notion of multiplicity of an Abelian differential is well defined since it is for a
function, f, viewed as a map, F', between a hyperelliptic Riemann surface and the

Riemann sphere P. Near, A € X an Abelian differential w may be written as

w(A) = ei(A = Xo)"dA

7

where m is the multiplicity of w and its residue is
Resy,(w) = c_;.

There is a classical theorem due to Riemann on the existence of Abelian dif-
ferentials for a Riemann surface and it states that the dimension of the space of
holomorphic differentials on X is g, the genus of the Riemann surface. We saw in the

case of hyperelliptic Riemann surface that the basis of Q'(X) is

Sd)
{...)\g_];...} j:1,27,g

Another important property of Abelian differentials on X is that they are d-closed,
ie. dw=0.

This has a significant implication due to the following;

(Poincaré) Lemma 4 3.2.1 Let w be a C* 1-form on a Riemann surface X. Sup-
pose that dw = 0 identically in a neighborhood of a point x € X. Then on some
neighborhood U of x there is a C™ function f defined on U with w = df on U.
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Thus it is always possible to find a function Q on X such that
Qx) = / w (2.14)
Zo

for any point z sufficiently near 25 on X with w = d). The expression (2.14) is known
as an Abelian integral. The classification scheme for Abelian differentials may also
be extended to Abelian integrals: holomorphic Q(z) are Abelian integrals of the first
kind, meromorphic Q(z) are Abelian integrals of the second kind and general Q(x)
are Abelian integrals of the third kind.

The keen reader may have noticed that the function (2.14) is multivalued due to
the dependence of the integral on the path traversed between xy and x on an arbitrary
Riemann surface X. Suppose Q(x) represents the integral along the path ~ from z
to = and ) represents the integral along a second path 7 between xy and z. Then
the difference between between Q(x) and Q(z) is the integral along the closed chain
~ — 4. This is true for any two paths between any two points on a Riemann surface
X. The integrals along closed chains solve the multivalueness problem of (2.14).

Consider the space Q'(X)* dual to the space Q'(X) which consists of linear func-
tionals fv . Q'(X) — C where v is a chain. A linear functional fw is said to be a
period if v belongs to the first homology group, H; (X’7 Z), i.e. v belongs to a homo-

2. The set A of all periods form a subgroup of Q!'(X)* and for any

topy class, [v]

Riemann surface X the Jacobian of X is defined as

Jac(X) = & ([i()*

More explicitly, when X is hyperelliptic then the subgroup A consists of two types

of basis periods, namely the A-periods and the B-periods

Aj:/ 00, Bj:/dﬂ,j=1,...,g.
a; b

J J
And the difference between any two paths between xy and z, 7y := v — 7, can always

be expressed as a chain consisting of a- and b- cycles

0y = (mja; +n;b;), myn; €Z, j=1,...g.
J

2Note that [ = for any v € X.
¥ []
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This means that any two Abelian integrals with endpoints zy and x on X differ by
/ Q=Y "(m;A; +n;B;).

So it makes sense to speak of a well defined single valued function  on X with the

caveat that the value is always modulus periods. For example,
Q(zg) =0 (mod period).

Consider now a map

A X = Jace(X)
which maps a 1-form on X to its class in J ac(X ) and does not depend upon the base
point 2. This map consists of the single valued functions on X and it is known as the
Abel-Jacobi map of X. The functions which will subsequently be dealt with, which
will map points from X to C will be of the Abel-Jacobi type - single valued Abelian

integrals.

Riemann Bilinear Relations

In discussing the Abel-Jacobi map, it was necessary to mention the notion of
periods. Specifically, the a-periods and b-periods were shown to form the basis of the
space A. There exist certain relations among these periods which are important to

us. These relations are known as Riemann bilinear relations.

O, (x) = /w:w

is well defined and single valued on X (mod periods). Given a hyperelliptic Riemann

Recall that the function

surface X, a simply connected 4g-gon representation denoted here by X, may be

obtained by cutting X along the a and b cycles. The simply connectedness of Xy

implies that €(z) is a single valued function for all paths lying entirely in X,,.
Recall also that the a-periods and b-periods are given by
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Suppose w and w’ are two C* 1-forms on X, then the first of the Riemann bilinear

relations is that

g
/ wAwW =Y (A;B)— A\B;). (2.15)
X, =
To see this, one needs to use Stoke’s theorem as follows:

/ wAW = / (dQy A"+ Q,dw')  since dw' =0
X(] Xq

= /X d(9, w")

g9

= / Q.w’ by Stoke’s theorem . (2.16)
aX

Note that, X, is a 2-chain with its boundary chain 0X, given by

g
-1, -1
an = Z(aj+bj+aj +b] )
j=1
To continue it is important to note further that if a point p; lies on a; then there is a

corresponding point p; on a; ! which is identified to a; on X. Then

Qu(pi) — Qu(p) /w—/ w—/ w=-—-B

The last integral is along a path which when viewed on X is homologous, up to
opposite orientation, to the basic cycle b; . Hence the last equality. Similarly, if ¢; is

a point lying on b; and its corresponding point ¢; on b; ! then

ql qi
Q(Qz qz / W_/ W_/ w=A;.
4

We are now prepare to pick up from (2.16);

[ = 5[ / LT

- Z/ ~ ()
" Z / Q) !

g9
= > (- BiAj+ A:B). (2.17)
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This completes the proof of (2.15).
Also, it can be shown that if w is a nonzero Abelian differential of the first kind,
then ,
Im> ~ Aj(w) Bi(w) <0, (2.18)
i=1

and this is the second of Riemann bilinear relations. The proof of this follows closely
that of (2.15). But first it is convenient to write w in a local coordinate as w = f(z)dz,
and consequently @ = f(z)dz. With z = z + iy, then w A w’ = —2i|f|*dz A dy. This
implies

0 > Im wAwW
Xg

= fmz (Ai(w) Bi(@) — A;(@) Bi(w)) by (2.15)

= sz (As(w) Bi(w) — A;(w) Bi(w))

= 2 ImZ (Ai(w) Bi(w)), (2.19)

and (2.18) is proved. As a corollary of (2.18), it holds that there can be no nonzero
Abelian differential of the first kind w which has all of its a-periods and b-periods both
entirely real or entirely imaginary, and if for any such w its A;(w) = 0 (or B;(w) =0),
Vi, then it must be that w = 0.

Recall that the basis of the space of Abelian differential of the first kind on a

hyperelliptic Riemann surface HO(X, Q'(X)) is written as

A
M8 ) =g, (2.20)

Recall also that a canonical basis of the first homology group of X, H 1(5( , Z), consists
of the a- and b-periods.

There can be two nonsingular matrices A and B defined for Abelian differentials
of the first kind w; on a hyperelliptic Riemann surface with entries given by

Aij:/ Wi Bij:/w]', i,jzl,...,g, (221)
a b;

J
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and these are known as the period matrices for X. The non-singularity is a conse-
quence of the previous argument that if Vi, A;(w) =0 or B;(w) = 0, then w = 0.

The first of two important relations satisfied by these matrices is the symmetry
relation

ATB=BTA. (2.22)

This equation follows immediately from the first of Riemann bilinear relations (2.15)

as follows; fix two indexes, i, 7, and compute

0 = / w; Awj, both w; and w; are holomorphic 1-forms
Xy
g
= D (Au(w) Bulwy) = Ax(wy) Bulw))
k=1

which means
g

Z Ak wl Bk w])) ZAk(wj)Bk(wl)) (223)

k=1

Since this is true for all 4, j pair, (2.22) is proved. It is therefore no surprise that
(2.22) is also known as the first of Riemann bilinear relations in some literature.
It is possible to normalize the basis {w;} of H(X,Q'(X)) to a new basis {&;} so
that
/ wj=46j, 4,jij=1..9, (2.24)
a;

in which case we have

wj; = E Cik Wk = E Cj
k=1 k=1

7"797

and
cij = (A7)
with the A and B matrices given by
Aij:/(:)i; Bij:/d)j, Z,]:L,g (225)
aj bi
In this normalized basis {@;} the B matrix is said to be the normalized period matrix

of X. Note that in this basis A = Z is the g x g unit matrix. Using this in (2.22)
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reveals that the normalized period matrix B is symmetric. This brings us to a very

important point [17]:

Lemma 5 3.2.1 With respect to the normalized basis {@;}, the Riemann period ma-

trix B is symmetric and the imaginary part is positive definite.

Proof The symmetry part has been shown above it remains to show the positive

definiteness. Write w =} . c;w;, ¢; € R,V j. Recall from (2.18) that
g _—
Im Z Al(w) BZ(OJ) <0,

i=1

Since by (2.24) we have A;(w;) = ¢;, the inequality above becomes
g —
Im Z cicjBi(wj) < 0.
,J

Considering each ¢; as a component of a g — tuple real number, c, the last expression

becomes
Im(c"Bc) <0
Thus,
Im(cTBec) >0,
which implies that Im(B) > 0. [

The inequality Im(B) > 0 is known as the second Riemann bilinear relations, and

the connection to (2.18) is clear.

3.3 Riemann Theta Functions Associated to a Hyperelliptic Riemann

Surface

There is a vast existent literature on Riemann theta functions [9,10,16-19]. In this
section we review the minimal knowledge necessary for our purpose. We hope that
the ardent reader who may wish to explore more of the subject may find the references

we have listed to be useful, perhaps as they were to us. Most of the mathematical
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foundation has already been laid in the previous sections of this chapter. Now we
introduce the theory of Riemann theta functions and segue in to the previously
established concept of a hyperelliptic Riemann surface.

Consider a hyperelliptic Riemann surface, X, of topological genus g having fun-
damental basis cycles {a;,b;},7 =1,...,g. In general the a; intersect with the b; but
not with themselves. Whenever an a-cycle intersects a b-cycle at a point it is always
possible to consider the cycles as intersecting at right angles at that point. This is
because we are free if necessary to replace a cycle by any member of its homology
class that meets the other cycle involved in a right angle at the said point. If a point
Zo is a point of intersection of two cycles, say a; and by, then the intersection of the
cycles is written as (aj o by),,. There are a possible of two values, 1, assigned to an
intersection. The value is determined by applying the so called right-hand-rule to the
tangents to the curves at the point . For instance, if @/ (x¢) cross 0, (z() points out
of the page then the value is +1 otherwise —1. The value of zero is assigned if the
curves do not intersect at the point, for example (a; 0 a;),, = 0, Vi # j,Vz, € X.
This is because the set of intersection points of a;, and a;, Vi # j is empty. The
intersection number for any two curves a;, b; is the integer

(aiob;) = Y (a;ob)s,

Z()Eaiﬂbj

From what has been said the following can be deduced.

Theorem 1 3.3.1 The intersection number is a skew-symmetric bilinear map
o: H\(X,7Z)x H\(X,Z) = 7.
In the rest of this work we will adopt the basis where
(a;0a;)e =0=(bjob;),, VzelX, (3.26)

and

(a; 0 bj) =y . (3.27)
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The hyperelliptic Riemann surface is the hyperelliptic curve defined by the func-
tion
2g

W) =T = N\). (3.28)

j=1
The projection map from X to the Riemann sphere P has branch points at 0, 0o, and
Aj.

Consider now wj—1. 4 to be the unique basis of Abelian differentials of the first

kind satisfying fa_ w; = d;;, and define the g X g period matrix as *

Qij = % Wy (329)
b;

With this choice of basis for the space of holomorphic differentials Q'(X) on X, it
is a fundamental result in the theory of algebraic curves, which we have shown (see
Lemma 5 (3.2.1)), that the matrix € is symmetric with positive definite imaginary
part. In other words,

Qe H, (3.30)

where H, is the Siegel upper half space. The Siegel upper half space is the space of

symmetric g X g matrices with positive definite imaginary part;
H, = {Q € M, ,(C)| Q2 =7, ImQ > 0}. (3.31)

Not all matrices belonging to H, are those which come from a hyperelliptic Riemann
surface. In fact the problem of characterizing all 2 € H, which come from a Riemann
surface is the exact essence of the Schottky problem. Counting dimensions reveals
that the moduli space of hyperelliptic Riemann surfaces has dimension 3g — 3 for

g > 1, and that of H, is g(g + 1)/2, which indicates a discrepancy when g > 4.

3Sorry for the change of notation from B to §2. This should not be a source of confusion for the
attentive reader.
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Definition 4 3.3.1 Given an Q which is the period matriz of a hyperelliptic Riemann

surface)z' , then the Riemann theta functionassociated to X is

0(C) =)  ertmmiznd, (3.32)

nezy
The arguments of the 6 function are ( = Uz + i 2V, a column vector in C9, and
the period matriz Q (which we consider fixed and therefore do not explicitly write as
an argument). The sum is over all n € 79, that is all ordered g-vectors with integer

components.*

A brief remark on the quantities U and V is in order. Consider the curve v = v\
which defines a Riemann surface W realized by gluing two copies of the complex

plane with branch cuts [0, 00). W is an unramified covering of W defined by
W ={(r,\) e C*|v*=\}. (3.33)

Then the quantities U and V are given by

Uk:%ono, Vk:j[on, k=1,---.,g, (3.34)
by b
where
A
Q0 = / dQ.0 (3.35)

are Abelian differentials of the second kind. Furthermore, the asymptotic behavior

of these quantities are described by

A— o0, dQs — dv (3.36)
and
d
A0, d— _TZ . (3.37)

4All vectors e.g. n, and ¢ are taken to be column vectors (and therefore their transposes nt, ¢t are
row vectors).
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They are also constrained by

?{dQOOyO:O, i1 g, (3.38)

It is common in the literature to find a notation in which €2 explicitly appears
in the parenthesis as in 6(¢;€2); we will not follow such notation here. The only
instances when €2 is written in the parenthesis is when it is being added to the
vector ¢ for example as in ( + Q - a where « is a column vector. Also we will
write €, 5 to denote the quantity o + € - 5" which is a column vector with entries
A+ QB+t + QB i=1,000 g

There is a slightly more general form of Riemann theta function known as Rie-
mann theta function with characteristic. The characteristic is written as a column

vector of two row g-vectors

«Q (a17"'7a9)

B (517"' 7&0)

and the Riemann theta function with characteristic is defined as

0 ) (C) = Q(C, B, Oé) = Z em[("‘f‘a)'ﬁ-(n+a)+2 (C+B)-(n+a)] |
6 nez9
(3.39)

where o, 5 € Z9.

Theta functions exhibit quasi-periodicity in the sense that

O +a +Q-5) = 0(C+ Qo g) = e IR0 gy
(3.40)
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Thus a theta function is not affected by adding the integer vector o’ to its argument.

(3.40) is derived by a direct computation as follows;

R S

nezI

= Zeiﬂ(("+ﬂ')~9-(n+ﬁ')*2"ﬂﬂ'*ﬁ'ﬂ-ﬁ??n‘(C+a’+9-5'))
nez9

— Z e—iﬂ'ﬂ"ﬂ'ﬂ’eiﬁ((n-ﬁ-ﬁ')'ﬂ'(n+ﬁ')+2 (n+8")-(C+a’)—=28"-¢(=2p"-a")
nezI

= Zefiw(ﬂ’-ﬂ-ﬂ’+2ﬂ’~<+2ﬂ“a’)eiw<<n+ﬂ’)'ﬂ~(n+6’>+2<n+ﬁ’)~(<+a’)>
nezI

_ e_iﬂ.([ghn.ﬁq.z B'-¢) Z 6z‘7r(l~ﬂ-l+2l~§) )

lez9

(3.41)

In the last equality we substituted the sum over n for a sum over [ = n + 8’ which
is valid since the original sum is infinite over the integer lattice. We also used that

ei?™mn — 1 for m,n € Z9.

By similar trick it can be shown that

(0%

a . ! ! !
OC+Qu i Bia) =0  |((+Qqg)=e mIRIRICED g1 ()
3 3
(3.42)

Note that the theta function in (3.32) is just a special form of (3.39) with trivial
characteristic, i.e. « = = 0.

Theta functions that are associated with hyperelliptic Riemann surfaces fre-
quently have one half integer characteristic so it is useful to direct our focus to that

case.
Base on what has been said so far we are now in a position to derive few identities
which rely entirely upon the definitions given in both (3.32) and (3.39). It is important

to know when a Theta function is odd or even and for this we have

0~ C5f.50) =G B sa) . (343
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This implies that the evenness or oddness of a theta function having one half multiples
of integer characteristic 1 { ; } depends on whether the quantity 5 -« is even or odd,
respectively. A characteristic 3 { Z } is said to be even (odd) if the quantity 8-« is even

(odd). In particular, for g = 3 the odd characteristic 3 { il } where A; = (0,0,1) and

2

Ay = (1,1,1) plays a crucial role in this work. And the theta function associated to
it will be denoted by é(() = 0((; 502, 3Ay) for the sake of brevity. As a consequence

of (3.43) we have

6(—¢) = —0(¢) . (3.44)
and this implies

0(0) =0, (3.45)

which, as will be shown later, further implies that

9(% QAz,Al) ) (;AQ + %Q - A1> ~0. (3.46)
Quantities such as $Qa, a, for which 0(3Qa, a,) = 0 are known as half periods of a
theta function.

Returning to the identity in (3.43), we can deduce it by a similar trick already
used. By replacing ¢ by —(, and taking care to include the one half in (3.39);

0(—¢; %ﬁ, %a) = Z exp Mr[(n + %Q)QQ —2¢(n+ %a) + B(n+ ;a)} ,
nezI

with the understanding that quantities like n - Q- n = n?Q. Then

rhs = Z expiw{(—n—a-&- %Q)QQ—&-ZC(—n—a—i— %a) +B(—n—a+ %a) —|—2ﬁn+,5a}

) 1 1 1
= @™ Y expin|(—n—a + 5a)?Q+2¢(—n—a+ - n—ata)| .
e expm[( n—a+ 2&) +2¢{(—n—a+ 2&) +8(—n—a+ 2(1)}
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Setting m = —n — «;

. 1 1 1
rhs = ™ ng:g exp iﬂ[(m + ia)zﬂ +2¢(m+ ga) + B(m + 5a)

~ 1 1
Y T =
6 (C? 2/67 2&)7
as was to be shown.

The next one is quite general,;
1 1 . / 1 / /
H(C—i—ﬂmm/;iﬁ, Qa) = expim —2m(§+59m)+(ma—m6)

1 1
0(C:=0,-a). 3.47
< 6(¢: 56, 30) (3.47)
By definition
lhs = Zexpm:(n-i-%a)29+2(c+m+ﬂm/)(n+%a)—i—ﬁ(n—&-%a)}
= > eXpm_(nJr %a)29+2§“(n+ %a) +B(n+ la)}

2
X exp2mn+ma+2Qm' n+Qm q]

1 1 1
= D expin|(n+m' +50)?Q+2((n+m' + Jo) + Bn+m' + 5(1)}
nezI -

X expi7r[2mn—|—mo¢—|—QQm’n—i—Qm'oz—Q(m’2 +2nm' +m' o) —2(m’ —Bm/}
1
= expiﬂ[—? m' (¢ + 59 m') + (ma—m' 5)]

X Z exp T

’I’LGZQ

(n+m’+%a)29+2C(n+m’+%a)+6(n+m'+%a)] .
Setting | = n + m’ and summing over [ gives (3.47).

The next one which is

OC+ 2028, La) = el Crisd o)
2 72072
1 1 1 1
9 . ~ Q- N
(3.48)
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looks very similar to (3.47) and one may, by replacing m by 18’ and m’ by 1/ in
the latter and keenly following the above proof for (3.47), arrive at (3.48). A much
easier alternative way is to do the substitutions in the last line of the above proof
for (3.47). One must be careful though, because by naively substituting quantities in
(3.47) reveals that only the exponential prefactors will agree on the right hand sides

of both identities, the theta functions do not match, however.
A corollary of (3.48) is that

111 i
0 _595@;55» 504) = mCIRg(¢).  (349)

This can be seen by substituting o/ = —a, and ' = —f.

The next identity is of paramount importance;

1 1 : 13.10, 1
0(¢ 50,500 = e/m e 20 >9(<+§Qﬁ,a), (3.50)

in the sense that it gives a relationship between a theta function with one half integer
characteristic to theta function with zero characteristic. It is obtained from (3.48) by
setting a = B = 0. It also shows that for g = 3,5 = Ag,and o = Ay, (3.46) holds as

was promised.

Finally we have

1 1 N imma l l
9(C7 §6+m7 §@+m> = € 9<<7 257204)7 (351>

and its derivation is trivial by now.
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3.4 Fay’s Trisecant Identity

Perhaps the most important identity among the theta functions and certainly the

most important one in this paper is Fay’s trisecant identity:

9(4+/ij+/ij) - 712349<<+/ 9 c+/pj;
+ 713249<C+/ 9 C+/pzw

(4.52)
with 9 - 9 D,
- (a+ [,w)0(a+ [ w)
T Bk [P bla+ [

In these formulas p; are points on the Riemann surface, and a is a non-singular zero

(4.53)

of the Riemann theta function, i.e. at a the function is zero but not its gradient. In
particular cases, for example in genus three a = %AQ + %QAl is a zero as noticed from
(3.49). Also notice that the contour integral [ p’; *w; defines a vector which from now

on, following standard convention, will be abbreviated as

Pb Py
Pa Pa

The function v may be viewed as a generalization of the cross-ratio function on CP!

to functions on Riemann surfaces. Some immediate properties of this function are:

Yi233 = Yz = 1, Vo134 = Viggss V1214 = 0 = Yia30. (4.55)

There is also another important property of Riemann theta functions which comes

handy in many places in the course of our work. We derived this property from the
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Fay’s trisecant identity. The property is that suppose (' is a zero of the Riemann

theta function, i.e. A(¢') = 0, then

(e [)ole [)ute D)rle- )0

A notation has been adopted where each point p; has been set to ¢ and the Abelian
differential in the integrals has been dropped for brevity. To show (4.56), we begin
by explicitly rewriting the Fay’s trisecant identity

9(g)9<g+/21+/34) = ZEZE%?EZ:E;%H/:) 9(<+/:>
)
)

9<a+f21)9<a—|—f43 1 1
S L) )
9<a+f4)9<a+f2 3 2

Since the four points {1, 2, 3,4} are distinct arbitrary points on the Riemann surface
we are free to rearrange them as follows; 2 — 1, 1 — 4, 4 — 4. The point 4 lying on
the lower sheet of the hyperelliptic Riemann surface is the point corresponding to 4

which lies on the upper sheet.
9(()9<C+/14+/:> = ZEZiingZ:ﬁgeeJr/f) 0<<+/j>
9a+f14 (a+ [7 4 i
+ egaJrffgegaJrff’;e(CJr/?))9<C+/1>

Note that the integral f14 is equal to — f14 and the point 1 will be chosen as the base

point for all integrals, i.e. an integral j;j .1, j # 1 should be understood as fil —}—ff

This means we can rewrite the above identity as

corlor [ f) = G hA e e [ )
L YL

+
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Using the relationships among 6 and 6 given in (3.49) we have
0(a+ [~ f7)o(a+ i)
9<a+2f14> H(a — flg)
4 (C+/4> é(g‘—f) inAL (= [} — 32— 1A
1 1
0(a+f)o(at [+ 1)
a1

4 4
(cx [[)ofen [)ermimns
1 1

After further simplifications of the constant terms and cleaning up, the resulting

0(C) Qe ateind) =

X

_l’_

X

expression becomes

i = o WAL g

9<a + 2]{*) 8(0)

et 9<a+f14>9<2a+f14)é <<+/14> 0 (C—/14> (4.57)

9(@ +2 f14> 0(2a)

The constant terms can still be further simplified again by using the relation (3.49)

to arrive at two identities, namely

g Pl ) A1) L5
(oer) i)
and
inagt ! (Z“(;f) _ e(fl)) ’ (4.59)

which when substituted in (4.57) gives
i = YR o [)o(e- ) wo(e- [0l )]

Then (4.56) is proved when ( is (', a zero of 0.
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Note also that another significance of (4.60) is that it states that the quantity on
the left hand side of

o(c+ ) o(c-f)+a(c+n)e(c-n)  8(2h)eo
6(¢) 0(C) i(5)e( )

is independent of (.

3.5 Quasi-periodic Solution to the Cosh-gordon Equation

One important use of the Fay’s Trisecant formula is that it provides a direct way
of obtaining directional derivatives of theta functions or of ratios of them. Suppose

we take the derivative D, of (4.52) and then send p, — p; we get

00 | __ n[e(‘” p’?)}
o¢+ [) "0+ )

T ofos ) Wee) o)
o(at Jr)o(ar ) 0@Qo(cHpm)

Here D,, indicates a directional derivative defined as (summation over j implied):

D, In

yat

(5.62)

IF(C)
¢

and should not be confused with a derivative with respect to p; that, if appears, we

Dy, F () = wj(p1) (5.63)

will denote as 0,,. Also, the final expression is simplified using the identities (4.55).

We can further take D,, and then send p, — ps obtaining:

- m D@Dy O ) (e Sw)
Do 1n9(g)_Dp3p11n9(a+/pS >+0(a+f;1>9<a+f£3) 0 .
(5.64)

(5.64) shows that the second derivative of the logarithm of a theta function con-

tains the theta function. This motivates us to think that solutions of

00a = 4cosha = 2(e* +e79) (5.65)
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should naturally be sought as logs of theta functions.

We rewrite (5.64) more succinctly,

OO (S R VN0 B Gt 0 K G 9 S

0(@—1— pp31> 0(a+ If?)&(a—i— ;3> 62(¢)

This equation is valid for all { so we may shift the argument ¢ — ¢ + [ zi ° obtaining

another equation which we then subtract from (5.66) leaving us with

Dplps lnL)m =
6+ ™)

_ D,0(a)D,,0(a) {9(C+ WO+ L) 00 +2 ;’f)}

(5.67)

Ola+ [5)00a+ [57) 62(¢) ¢+ [,7)
Define
P3 1 1
/ wi==Ag+ -0 Ay, (5.68)
p1 2 2
where Ay, Ay constitute an integer characteristic and (2 is the period matrix in (3.29).
This gives
P
v [ = emareainang | A2 (5.69)
p1 AQ/Q

This identity will help us further simplify (5.67) but first we make a choice of path

from p; to p3 such that A; - A, is odd, i.e. e”™*1"42 = 1. Using these we get a nicer
formula )
0 D,f(a)D,.0 62 62
1O _ D@D @ [0 #Q)] 50
0(¢) 02(a) 02(¢) ~ 62(¢)
It turns out that the coefficient of the quantity in square brackets is unity.
Define
92
o0 PO
62(¢)
then (5.70) becomes
1
D, pyIn© =2 {@ + @] (5.71)

which is a disguised form of the cosh-gordon equation

dda = 4 cosh(a) . (5.72)
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We used that with ( = Uz +iVZ then D,, = 9, D,, = 0 and more importantly we

set,

a=2In eA(O . (5.73)
0(¢)

Therefore, our final expression of the Poincaré coordinates may now be written

é P4 ) pztvz|2
g = | PCED | _o0e@iolet -
04, )0C, ) [ 10(C— [P +10(C— [,
(e — [PY(E o P — Bl — [P = [P
X +iY = €2ﬂ2+2z7z (C plA)e(C—i_pfl) Q(C P;BQ(C—F pl)’ (575)
10(¢C— [, )P+ 10(C = [, )P

with
P4 (s
p=—Dpy In 0(/ ), v=-—D, lnH(/ ). (5.76)

p1 P1
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4. Wilson loops I: Simple curves

The quasi-periodic solutions to the cosh-gordon equation, conveniently expressed in
terms of Theta functions, give rise to many different possibilities of Wilson loops;
some Wilson loops appear as a single piecewise smooth curve and others appear as
multiple piecewise smooth curves. A Wilson loop that belong to the first category is
said to be a simple Wilson loop, and this chapter is devoted to that case. The next

chapter will deal with the latter category.

4.1 Wilson Loops of g=3 Hyperelliptic Riemann Surfaces

The shape of the Wilson loop is determined by the intersection of the minimal
area surface with the boundary of AdS; . The boundary of AdSs3 , in Poincaré
coordinates, is located at Z = 0 which, from Ch3 (5.74) for finite z, z, implies that
either (¢) = 0 or 0(¢) = 0. In this work we focus on the second case so we determine

the shape of the Wilson loop by
0(¢) =0. (1.1)

This equation defines curves in the world-sheet which in turn are mapped to curves in
the Z = 0 plane of the Poincaré patch using the solution to the equations of motion
Ch3 (5.75).

These solutions do not always lead to a simple Wilson loop. In general the Wilson
loops obtained can be very complicated curves; one must select those curves which
give rise to simple Wilson loops. Also a Wilson loop could spiral infinitely. There
are parameters that can be tuned to prevent some of these pathologies, however. We
begin with a study of those Wilson loops that arise from theta functions associated

to hyperelliptic Riemann surfaces of genus three.
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To be more explicit we will illustrate the main ideas of this section by working with
a particular example of a hyperelliptic Riemann surface. First, recall the definition

of a hyperelliptic Riemann surface: Let X be a curve defined by

w=f(\) (1.2)

with f(A) a polynomial having distinct roots. Assume that f(\) has degree 29+ 14§
with ¢ equal to 0 or 1 depending on whether ¢ is odd or even, respectively. Then
there is a degree 2 map A : X — P and the branch points of X are exactly the roots

of f.
With g = 3 let’s take our Hyperelliptic curve to be defined by

= A —a)A+1/a)A=b)A=b)(A+c)(A+¢E), a€R,bceC  (1.3)

The corresponding hyperelliptic Riemann surface with the canonical basis of cycles

is displayed in Figure 4.1

—1lla | |

T
'

ol

v
Figure 4.1. g=3 hyperelliptic Riemann surface along with a choice of basis
cycles.

Take the unique normalized basis of Abelian differentials of the first kind such

that fa‘ w; = 0;;. Furthermore consider the Abelian differentials in this basis to be
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linear combinations of the previously computed basis of holomorphic differential on
a hyperelliptic Riemann surface. That is

3 3 3—k

A
Wi =Y Cir@r =Y ejp——dX,j=1,2,3
k=1 k=1 r
where
Cjk:(Ail)jk, A]k—% (:)j, Bjk—j{wk. (14)
ag bj

It is clear how to compute the matrices A and B.
The next set of quantities which are necessary are the vectors found in the ex-
pression ( = Uz 4 1ZV.
Recall that these are given by
Uk:%de, Vk:jl{on, k=1,2,3, (1.5)
be be
where the Abelian differentials of the second kind are given by
A
Q0 = / dQs. 0 - (1.6)
From the previous chapter, it was established that the holomorphic one forms
on X are of the form )\j% where j < g — 1. This means the quantity df).,, being

meromorphic, goes like

bV
A0 ~ —d\  with j > 3.
W

Furthermore, from the asymptotic behavior of df).,

A — 00, de%dyzlﬂ,

2v/X
it can be deduced that 7 = 3 and

3
a%Nliw,
2 p

because in the A — oo limit, we have g — A7/2. In the general case j will be found

to be equal to g, the genus of the hyperelliptic Riemann surface.
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We are free to add to df,, an holomorphic 1- form without compromising the

meromorphicity. So we add a linear combination of holomorphic 1-forms;

1»
Qe = dA%*E:CMag

1 3
0:7{(1900:]{ /\—d/\—i-a;g,
ag 2 aklu

we determine the constants
= —— j{ —d\.
ak

This allows for the quantity Uy to be given explicitly as

bﬁ—‘(%Aszm (1.7)

J

Using the constraint

By repeating the procedure above for df2 keeping in mind the asymptotic behavior
dv )
A=0, d———, p—iVvA,
v

it can be determined that

:_7{ —d)\—i— ' | (fAuldA) By (1.8)

J

These quantities can now be assembled and substituted into the equations (5.73),
(5.74), (5.75) and (5.76) of Ch3. (5.74) is particlarly crucial in that the Wilson loops
in AdSs are defined by the equation

which can be achieved by setting

0(¢) = 0.

The A which appears in the Abel map A, : X — C that acts on a point in X by

x
x»—)/w
o
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is the so called spectral parameter in the theory of integrability. In this case it provides
some sense of symmetry for the Wilson loops. By changing the value of A while keeping
its absolute value at unity, for the reality of the solutions, we can continuously deform
a single Wilson loop and get many different shapes. This deformation does not affect
the regularized are of the corresponding minimal area surface, however.

In particular, the Wilson loops for two different values of A and the choice of

a=2,b=1/2+1i/2, and ¢ = 1 + i are shown below:

A=1 I+1

Figure 4.2. Shapes of a Wilson loop for different values of X.

4.2 Analytic Formula for the Area of Minimal Area Surface

Using (1.1) and the accompanying choice of basis cycles on the Riemann surface
we found simple Wilson loops in the boundary of AdS3 like the ones shown in Figure
4.2. The shape of these boundary curves depend on the spectral parameter A but
the renormalized area, denoted Ay, does not. So for a given period matrix € the
solution here is a single parameter family and this parameter leaves the renormalized
area invariant. This seems a bit strange at first but perhaps a closer look at the

regularization scheme may offer some clarifications.
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The vanishing of Z at the boundary of the gravity dual surface makes the total
area of these surfaces to blow up. When 6 is zero, the field o goes to infinity. So from

the formula for the area

A= 4/eadod7, (2.9)

it becomes clear why the area diverges.
Using Fay’s trisecant identity, we find an expression for the exponential to be a

sum of a finite term and a term that diverges at the boundary where 6 = 0:;

e = Dp1p3 In 6(0) - Dplps In 9(4) (2'10)
= Dpp In6(0) — 3 O(C). (2.11)

Integrating the second term at the boundary of the surface obviously leads to
divergence so we need to regulate it. In order to do that we observe we may write Z

as a product of a non vanishing function and 0
Z =6(Q)|h(z,2) , (2.12)

with A
62 J,,) 10(0)0(C)] [e#=+2
O200) |16(C— [2)2+16(C— [2)P

Substituting (2.11) into (2.9) and applying Stoke’s theorem we get the expression

h(z,z) = (2.13)

JLAQWMWm/wm+fﬁVMhM—%vaZM. (2.14)

The last integral is divergent and we concentrate now on extracting the leading di-
vergence. The correct AdS/CFT prescription is to cut the surface at Z = € and write
the area as

L
A==+A;, (2.15)
€

where L should be the length of the Wilson loop and Ay is the finite part which is
identified with the expectation value of the Wilson loop through:

(W) = e 5, (2.16)
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where here X is the 't Hooft coupling of the gauge theory (not to be confused with the
spectral parameter). This prescription is equivalent to subtracting the area A = % of
a string ending on the contour of length L and stretching along Z from the boundary
to the horizon. To see that the coefficient of the divergence is indeed the length, let

us compute

€

1 1
Aqi, = — —n-VZdl = - Z 2.1
div. 72:6 7" VZdl ]i:6|v |de , (2.17)
where we observe that the normal is precisely in the opposite direction of VZ because

the contour is a curve of constant Z = € and Z increases toward the inside. On the

other hand the length in the boundary is given by

L= % \/|£.VX|2 + [£.VY|2de (2.18)

where £ is a unit vector tangent to the contour. We can move forward if we write the

equation of motion for X as derived form the action Ch2 (2.7):
2VX -VZ = ZV*X | (2.19)

which, when Z — 0, becomes VX - VZ = 0 namely VX is perpendicular to the

normal and therefore parallel to the tangent ¢. The same is true for VY so we find

L= f VIVXE 1 VY Pdl + O(&), (2.20)
Finally the equation of motion for Z is

(VZ)? = ZV*Z = (VX)? + (VY)?, (2.21)

which for Z — 0 implies that \/|[VX[2 + [VY |2 = |VZ|. Therefore the length of the
Wilson loop is given by

e [ V*Z
L= ¢ |VZ|dl— - 4 2.22
frvziae-§§ ar (2.22)
and the divergent piece of the area is indeed Ag;, = % There is a finite part
remaining:
L
A = —+ A4, (2.23)
€
. 1 [ V*Z
A = 4Dy, In6(0) /dO'dT + %n -Vinh dl+ 2 P w7 de.
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The integrals are performed on the world-sheet parameterized by o, 7. The first
integral is proportional to the area of the world-sheet. The last two integrals are done
over the world-sheet boundary. The final expression can be simplified by rewriting
Z = 0(¢)|h(z, %) and using that 6(¢) vanishes on the boundary where the contour
integral is performed. It is then easy to check that h(z, z) term drops out and the

final formula for the renormalized area is

As = 4D, 1n«9(0)/dod7+; @2;((51 de
Dplpf&é(C)
,Ing dod Zaps 200 gy, .
4D, ,, In (0)/ odr + D00 (2.24)

This gives us an analytical expression for the renormalized area of the minimal sur-
faces.

In illustrative terms, what this all means is that in order to regularize the integral
we cut the surface, as shown in Figure 4.3, at a height ¢ — 0 and then subtract the
leading divergent term. The leading term contains information about the length of

the Wilson loop.
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Figure 4.3. The boundary is determined by the contour Z = 0. However
the area is computed by integrating up to a contour Z = € — 0 and then
the leading divergence % is subtracted. Here L is the length of the contour
in the boundary (not in this (o,7) plane).

We find that the shape of the Wilson loop depends on the spectral parameter \.

For two values

1414
AN =1, Mg = — ) 2.25
! 2 7 (2.25)
we obtained
Li = 13.901, L,=6.449 , (2.26)

Ay = —6.598 for both. (2.27)
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Minimal Area Surface: A = 1 . X I+1
Minimal Area Surface: A = —

Figure 4.4. Minimal area surfaces ending on the contours illustrated in
Figure 4.2. We emphasize that the surfaces are known analytically and
they have the same area.
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5. Wilson loops II: Multiple Curves

We have seen in Ch4 how simple Wilson loops arise from a ¢ = 3 hyperelliptic
Riemann surface. This chapter is devoted to the case in which the Wilson loop
consists of multiple curves in the boundary of AdSs; . Some of these Wilson loops are
open as in the case of the already known examples of the cusp [8], and the double
parallel lines [3]; others are closed as in the cases of the concentric circles [7].

These already known examples can also be attained by applying the proposed
technique in the g = 1 setting. We will demonstrate this before moving on to the
case of g = 3 multiple curve Wilson loops. We see that for this higher genus new

examples of Wilson loops and their minimal area surfaces may be computed.

5.1 Wilson Loops of g=1 Hyperelliptic Riemann surfaces

The study of ¢ = 1 hyperelliptic Riemann surface gives us an opportunity to
study some of the previously known examples of Wilson loop from a new perspective.
It unveils some structure among these seemingly unrelated Wilson loops. It shows
that the story of the cusp Wilson loop segues into that of the concentric circles by
adjusting the branch point. In fact it will be shown that the single line, the cusp, the
parallel lines, and concentric circles are all related to each other.

As before we begin by describing the elliptic curve;
1
u2:)\()\—a)()\+a), aeR. (1.1)

The corresponding Riemann surface along with the choice of basis cycles is shown in
Figure 5.1. The Riemann theta functions in the g = 1 settings are just the slightly
more familiar Jacobi theta functions which can be shown [21] to be related to the
Elliptic theta functions; for consistency we continue to use Riemann theta functions

with the caveat that the arguments have now become complex scalars.
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The g = 1 case is further characterized by the fact that we have an explicit

relationship between the quantities 2., and Qg;
o . _H
Q. .—Qoo—l—zQO—X, (1.2)
and consequently

0. ::Qoo—iQ():QQo—i—g. (1.3)

—1l/a a

~ :

v
Figure 5.1. g=1 hyperelliptic Riemann surface along with a choice of basis
cycles.

The two important determinants of the nature of the Wilson loops obtained are
the spectral parameter A and the branch point a. The cases of interest are A\ = +1.
For each of these values of A we have the choice of taking a > 1 or a < 1. It turns
out that for values of a in these intervals the Wilson loops behave the same for both

values of \:

e )\ =+1; a < 1: The quantities 2, and €)_ are both real and the Wilson loop is
a cusp. The minimal area surface is a half-cone and the angle of cusp 6 is given

by
X>(0)
“X.(0)

where X and X, are the solutions (5.75) along the first and second lines, going

cos(f) =R

(1.4)

counterclockwise from the positive X-axis, that make up the Wilson loop.



Cusp: A =1,a=0.38 Half Cone: A = [,2=0.8

Figure 5.2.

The cusp and its corresponding half-cone.

o8
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e A\ = +1; a > 1: The quantities 2, and €2_ are both imaginary and the Wilson

loop is the concentric circles. The minimal area surface is a half-torus.

Concentric Circles: A=1, a=2 Half Toru}s(: A=1,2=2

Figure 5.3. The concentric circles and its corresponding half-torus.

There are other possibilities and one case of interest is when A = 1 and letting a

take on values for which the hyperelliptic curve becomes singular. These cases are
e a — 0: The curve is becoming singular and the Wilson loop is a straight line.
e a — 1: The Wilson loop is a pair of parallel lines.
e a — oo: The curve is becoming singular and the Wilson loop is a circle.

Note that the cases when a — 0 and ¢ — oo gave simple Wilson loops which
are the subject of the previous chapter. We saw in the previous chapter how the

technique generalizes the concept of the circular Wilson loop.

5.2 Closed Wilson Loops for g = 3 Hyperelliptic Riemann Surface

We are primarily interested in the genus 3 case and here we have 2¢g + 1 finite

branch points (and the point at infinity). Also the number of branch cuts being,
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g + 1, will now increase from two to four. Due to the involution A — —1/X, the
branch point ¢ = —1/b. The points b and ¢ are the complex conjugates of b and c,
respectively (See Figure 4.1).

In the g = 1 case the Wilson loop we get for A = +1 automatically is periodic for
a > 1. In general this is not the case and certainly not for g = 3. The image of the
curves determined by 6 =0in AdSs is typically an infinite spiral. The practical way
to get a periodic Wilson loop is to judiciously select the branch points for |A| = 1.

Even when the Wilson loop is periodic, it is not guaranteed that it is not a
very complex system of curves that intersect with each other or individually self
intersect. For example, suppose the world sheet is a horizontal strip bounded by two
horizontal curves that map to periodic curves in AdS. In addition, suppose between
these horizontal strips there are several closed curves. Then the image of the entire
horizontal strip in the boundary of AdS is in general a complicated system of curves.
For now, we are interested in studying non intersecting periodic Wilson loops.

Since in g = 1 case with a > 1 we obtained periodic Wilson loops, we take the
g = 3 hyperelliptic Riemann surface and make it look as close as possible to the
g = 1 hyperelliptic Riemann surface. The idea then is that as we shrink the bb and c¢
branch cuts we should get results close to the concentric circles. This can be viewed
as a perturbation of the concentric circles and this should be manifested in the shapes
of the Wilson loops we get. We reemphasize that unlike the g = 1 case the solutions
are not automatically periodic; we must work tediously to pick a suitable value of
a > 1 as we move the point b around to get periodic concentric curves.

Along the boundary of the minimal area surfaces the solution may be further

simplified using the Fay’s trisecant formula. In particular we have that

_ o f A
X =X-iYy = ezﬂzwzw. (2.5)
Q(C - fo )
Since at the boundary we have Z = 0 we are concerned with when X becomes

periodic. Theoretically, we know what conditions need to be satisfied for (2.5) to be

periodic and we wish to discuss that in the following section.
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5.3 Excursion: Periodicity of a Ratio of Riemann Theta Functions

We first focus on how to get the ratio of theta functions to be periodic. Once this
is understood it should be obvious how to achieve periodicity in (2.5).

Consider a g dimensional complex vector space V and a discrete subset A C V. A
is a lattice in V' and therefore a subgroup of the additive subgroup of V. The quotient
space X = V/A is a connected compact complex manifold called a complex tori of
dimension g. Also the addition in V' induces an abelian Lie group structure on X
which makes it a complex abelian Lie group. There is a projection map 7 : V — X
such that A = ker(r).

The basic question we want to address here is how to construct meromorphic
functions on X. The answer to this question turns out to have an interesting bearing
on the problem at hand—the problem of periodicity of the Wilson loops.

To get a meromorphic function f on X one may begin with a meromorphic function
h on V such that h = f o« is the pullback of f. Note that a sensible meromorphic
function on X must be A-periodic. Thinking of f as a rational function, one would
demand that both the denominator and numerator transform in a controllable manner
so that the ratio as a whole is A-periodic. It is not difficult to prove that such
meromorphic function on a complex torus occurs as ratios of translated Riemann
theta functions. A translated Riemann theta function is defined as 8@ (¢) = 6(¢ —
€' /2 — 1€/2 — ) with simple zeros at ( = x + A. The quantities € and €' constitute
the usual characteristic of a theta function.

Suppose we have a ratio of product of Theta functions

[T~ 6%
T, 091(C)

It can be shown that for Q € A, R(z + Q) = R(z) if and only if the conditions

R(C) = (3.6)

e m=n and

® > wi— )y y; €L

are satisfied.
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5.4 Back to Periodicity of our Solutions

Since in (2.5) we have m=n=1, we only need to find places z; on the Riemann
surface such that the fraction is periodic. This is exactly what amounts to the problem
of finding values of a and b so that the ratio of g is periodic, namely that ( — ( +m,
for m € Z9.

For the exponential in (2.5) to be periodic it is clear we need the quantity
_ _ P .
w(z,2) = pz + vz = =mi

where p/q € Q. Since we are studying world sheets bounded by horizontal curves,
this means that two points along a boundary curve of the world sheet given in (o, 7)
coordinates that are mapped to the same point in AdS will have the same 7 coordinate
but different o. Writing z = o+i7 and Z = o0 —i7, then w(o+do, 7) = w(o, 7)+d0(u+
v) where do is the difference between the sigma coordinates of the two endpoints along
a curve bounding the world sheet. So although we said earlier that if we know how
to achieve periodicity in the ratio of theta functions then it will be obvious how to
get periodic solutions, that statement is true conceptually, but deceiving in practice.
This is because it is not that simple to achieve the condition do(pu + v) = (p/q)i.
This condition must be complemented by the one coming from the theta function
part of the solution. Also, we want to constrain n periods of the ratio of Riemann
theta function into a single period of the exponential so that the concentric curves
we find will be distorted from the shape of the concentric circles. The distorted figure
will have the same number of sides as n.

We found values for a and b such that we can match several periods of the ratio of
the theta functions into a single period of the exponential function. In each case we
get concentric Wilson loops which deviate from the concentric circular Wilson loops
by deformations that make them appear like they have been pinched in n sides. The
values for the branch points are shown in Table 5.1 and the corresponding Wilson

loops and dual minimal area surfaces are shown in Figures 5.4 and 5.5.



Table 5.1

Positions of the branch points; n corresponds to the number of periods

n=2 n=3 n=4 n=>s
a=1.28088 | a=1.102149 | a =1.035312 | a = 1.0304752
b=05+0.01: | b=054+01: | b=07+0.2¢ | b=0.740.3¢
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Figure 5.4. Wilson loops and minimal area surface for n periods
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05

05

-0.5

-10

-05

n:

04

02

Figure 5.5. Wilson loops and minimal area surface for n periods
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5.5 Surfaces for Concentric Wilson Loops

To get the surfaces ending on the concentric curves we need the full solutions in
Poincaré coordinates. These are given by
PaNp(~ | P4\ P D4\ A P4
0(C — J2)0(C+ [ = B¢ — 2R+ J2)
10(C = [5OPR+10(C = [5)?

X + ZY — 62ﬁ2+292

é(2 P4)

P1

JOKSLITRe

0B ler=*
0(C = [P +10(¢ = 12

We emphasize that in the boundary where Z = 0 the Wilson loop is the image of
the set of points where §(¢) vanishes. The solution (5.7) describes the minimal area
surface ending on the boundary curves described by X in (2.5). These surfaces are
essential in the theory because the regularized area corresponds to the expectation
value of the Wilson loop. So while the the fundamental object in the gauge theory
is the Wilson loop, in the gravity dual the corresponding object is the minimal area
surface extending into the bulk which connects to the Wilson loop in the boundary

of AdS space.

5.6 Stoke’s Theorem and the Area of Concentric Wilson Loops

In Ch4 we showed that the area of the minimal area surfaces may be analytically

expressed as [22]
A=4D, ,, 1n6(0) / dodr + /dadTV2 Inh — /dad7’V2 InZ. (6.8)

In the concentric curve case, the preimage of the curves in the boundary of AdS;
typically looks like a pair of sine-like curves in the world sheet coordinates as shown
in Figure 5.6 below. Stoke’s Theorem tells us that to compute the area of a par-

ticular surface bounded by concentric Wilson loops, we need to integrate along its



66

corresponding sine-like curves and along the two vertical boundaries, one at ¢ = 0

and the other at o = o;. Here oy is the point where the curves end along the o axis.

8.5
8.0
75
70

6.5

Figure 5.6. Wilson loops in world sheet coordinates

We parametrize the sine-like curves by the variable o, so that the lower curve is
now given as 71(0) and the upper one by 75(0). According to Stoke’s Theorem, for
any smooth real-valued functions @ and P on a regular domain D in R?, we have

that
oQ oP
T2 [ P . .
/D (01‘ a9 )dwdy /8D dx + Qdy (6.9)

Let us begin with the first term on the right hand side of (6.8) which we denote
by Aconst- When we apply (6.9) by taking @ = 0/2 and P = —7/2 we get

Aca = ~2D,1, (0) /2 o)(0)—o; /3 dr— A ol (o) do— /2 ro(0)do+ /4 i (o)do)
(6.10)

where the subscripts 1,2,3,4 on the integrals indicate left, top, right, and bottom
boundaries of the domain in the 0 — 7 plane. Of course the simplest thing to do here

is by following elementary calculus and directly write

Aconst = 4Dy, . In6(0) / (12(0) — 1 (0))do (6.11)
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However, we chose to arrive at (6.10) by means of (6.9) because it will turn out that
this approach is very useful for the other two more complicated terms in (6.8) where
the condition that leads to (6.11) is absent.

For the second term in (6.8), denoted by Aj, we may take ) = J,Inh and
P = —0,;Inh. We then obtain

A, = —/dT&,lnhL,O —/da@olnh|7272’(0)+/d7801nh\af
1 2 3

+ /da@o In hl,, 7 (o) —l—/da& Inhl,, —/da& Inhl,, (6.12)
4 2 4

Similarly, the last term in (6.8) indicated by A, becomes,

A, = —(/dr@aan|go—/d7’801HZ|o ) —/daaaanITgré(@
1 3 ! 2

+ /da(?aan]nT{(a) +/da@Tan|T2 —/da@Tan]T1 (6.13)
4 2 4

Since Z vanishes along the sine-like curves parametrized as 71(0) and 7»(o), we see
clearly that only the terms in parenthesis in (6.13) are finite leaving all integrals
along sides 2 and 4 which are the two horizontal curves bounding the world sheet
to diverge. This is one nice thing about the Stoke’s Theorem approach because the
divergent part is exposed in very clear manner. To remedy the divergence, we cut
the surface at a height € very close to the original boundary, and the integrals are
no longer divergent up to the boundary of this cut surface. This is why the string
theory is said to have an infrared divergence, but the corresponding gauge theory has
an ultraviolet divergence. The preimage of the boundary of the cut surface is then
parametrized by two horizontal curves, t1(0),t2(o) that lie very close to the original

ones and on the inside the world sheet. Once, this is done the formula then becomes

t2(0) ta(oy)
A, = —</ dr 9,0 Z|,, — / dr 9, 1nZ|gf)
t1(0) ti(oy)
1
! </da 8, Z| i ty(0) — /da 8, Z| (o) — /da 8. 7, + /da 6TZ|t1)
€NJ2 4 2 4
(6.14)
It turns out that the first term in parenthesis above vanishes and therefore A, = —Ag;,

where Ag;, is the other grouped item along with its coefficient 1/e. Finally, it is clear
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that the total area of the minimal area surface can be written as the sum of a term

that is finite and a term that diverges as 1/¢

A= Acom} + Adiv (615)
with
Aconv = Aconst + Ah ) (616)
and
1
Agiy = —</d080Z|t2t’2(0) - /da@UZ|t1t'1(a) - /alaaTZ\t2 +/d087Z\t1).
€NJ2 4 2 4
(6.17)

5.7 Area Formula and the Length of Boundary Curves

According to the regularization prescription, the divergent part of the total area
of the minimal surface should be equal to L/e where L is the length of the Wilson
loop. This implies that if (6.17) is correct, it should give us the length of the Wilson
loop where in the case of the concentric Wilson loops it is the sum of both the inner
and outer curves.

In [22] and Ch4 of this work we showed that the length of the Wilson loop is

2
Z

L:/ ]vZ\dl—E/ M= (7.18)
2+4 2 Jora [VZ]

According to the regularization scheme the regularized area which is the finite part

of the total area of the surface ending on the Wilson loop may be obtained by

L
Afim'te =A-—. (719)

€

On the other hand we have
A, = / v2log Zdodr = / Vlog Z - dl (7.20)
D oD

where dl = A dl with 7 the outward normal vector. With the tangent vector to the
curve given by (do,dr) we take dl = (dr,—do). Going around the loop as before, we

obtain

vZ - vZ -
AZ:—(/1dTaglonggo—/Sdfaglogzrgf) - (/QZ-dl+/42-dl) (7.21)
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We have seen that the first term in parenthesis vanishes when we cut the surface at

Z = ¢, leaving us with the relation
1
—AZ:AM:/ |VZ|dl, at Z =€
€ Jota

Hence the first term in (7.18) is exactly equal to the € Ay, found in (6.17). So the

formula for the regularized area of the surface ending on the Wilson loop becomes

1 vz
A inite — Acons A = dl 7.22
Or more explicitly,
- 1 viz
Apinite = 4Dp,p, 10g0(0) [ (12(0) — 71(0))do + | Vegh-dl+ 5 di
BD 2 2+4 ’VZ‘
(7.23)

From Z = Oh we can compute that at Z = 0 we have VZ = VOh and V2Z =
V20 h +2v0 - Vh. When substituted into (7.23) we get

Vh -
Afim’te = 4Dy, p, log@(O) / (7-2(0> o Tl(o-))do- +/ h di
oD
1/ 20 / vl Vh
4= 2 A+ — . dl 7.24
2 Jara [VO 2+4 V0| h ( )

Looking at the formula for VZ = VO h it is clear that VZ and V6 are in the same
direction so that the unit normal may be taken to be —v@/|v4|. This further simplifies
the above equation for Ayt giving an expression purely in terms of theta functions

and the parametric curves 7, and 7y;

1 20
Afinite = 4D, 5 10g 0(0) / (12(0) — 11(0))do + / Vo dl. (7.25)
2 Joya VO

In summary, we have a full analytic program (6.10), (6.12) and (6.17) for comput-
ing the regularized area for the minimal area surfaces for the Wilson loops we have
found. We applied Stoke’s Theorem in separating the finite part of the area from the
divergent part and showed that the divergent part is the length of the Wilson loop.
In the table below we show numerical results to bolster the theoretical arguments.

We compute the total area numerically at several different values of € using the

formula A =4 [ do dre® where a = 2log %. We then fit the data to the linear model
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€ A = € Afinite + L and find both the regularized area and the length of the Wilson
loops. The results are in Table 5.2.

Table 5.2
Area of minimal area surfaces computed by both numerical and analytical
methods
Areas n=2 n=3 n=4 n=>5

A by numerical method | —13.80 4 1286 | —20.55 4 1125 | _40.23 4 1223 | _55 48 4 264

A by (6.10),(6.12),(6.17) | —13.80 + 1258 | —20.55 4 1225 | —40.27 4 122 | 5566 4 204

Avinite by (7.25) -13.8 -20.55 -40.27 -55.66

5.8 Some Analytic Aspects

Using integrability properties we can make formula (7.25) a bit simpler. First,

note that the integral in the first term which is equal to [ pdodT may be written as

1 .
/ dodr = —/ odr — tdo = —Z/ zdz (8.26)
D 2 Jop 2 Jop

~

Lfov©Q) [ Dl [ e s 7
2/2+4|vé(g)| _/2+4 EYGI 22/24 1 log0(C) dz (8.27)

with the last equality being true only on the boundary where the integral is performed.

Next, note that

Putting all this together we obtain a new formula for the area of the surface dual to

the Wilson loop as

Afinite = -2 {Dlg IOg 9(0) %de + / D1 log H(C)dZ} . (828)
2—4
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5.8.1 The Monodromy Matrix

In this section we calculate the trace of the monodromy matrix. The trace of the
monodromy matrix gives us the conserved charges in the theory and it should be a
function purely of A.

The monodromy matrix is given by
m=WY, - ‘Ilgl

where ¢ and § represent any two points lying between the horizontal curves which map
to the Wilson loop in the boundary of AdS. ¢, and (s will be the corresponding vectors
at which the theta functions may be evaluated. They are related by (5 = (, +n(2mi).

One importance of the monodromy matrix is that its trace measures the deviation
of the solution from periodicity. In general it is a function of A, the spectral parameter.

Recall [22] that the matrix 1) is given by

U1 Yo
U1 s
which substituted in the expression for m gives

1 (Wolths)  —(Wolts)

m: )
DN Golds) —(dultis)

where the bra and ket notation implies

(olths) = 1125 — oo 15 (8.29)

The solutions for 1) was given [22] as

1 =vV-\ 50 (8.30)

A
— M o2 el tvz

Yy = 500) (8.31)
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A A

Uy = ==X 9(%(— )fo ) e~ e HTVE (8.32)

7 _G(C_f ) S p—HZ—VZ
1y = 50 ez e . (8.33)

Using Ch3 (4.61) we compute the determinant of ¢ to be

02 ;) 000)
detp =/ -\ —=0" 2 (8.34)

00 0(J)

We now have the trace formula

det ) Tr(vh - 5 ") = (Volths) — (Volths) - (8.35)

In expanded form the right hand side becomes

rhs — \/_7)\ é(g, ": fo/\) Q(Cg - fO)\)e%(—ag-&-aa) o 0w
Q(Ca) H(Cﬁ)
AN A A

+ \/j Q(CU + fO )GA(C‘S fO )62((10— as) ,—o0w
0(¢x) 0(Gs)

U 0(¢o - S oG + fo)\)e%(fa”+a5) ex
0((0) 9((5)

+ — (CU — f(])\) ?(C& + fOA)e%(aafozg) e&u ,
0(Co) 0(C)

where dw = ws — w,. With w = pz 4 vz, this means dw = Jo (i + v), where do is the
difference between the points § and . Notice also that dw depends on A since p and
v do.

Further simplification of the rhs and dividing both sides of (8.35) by (8.34) gives

ﬁwe@+ﬁm@ﬁ1
()

Tr(t,-5t) = K(\)e™™ F(CU + Jo) (G

V(6 6(¢) 8
4 K()\)e fo Cﬁ"‘fo ) +0(¢ fo Qs""fo :
\/9 Ca CO 6 5)
(8.36)

where the quantity

K(A) gof fO
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Because the arguments (5 and (, differ by a period of the theta function, (8.36)
can be further simplified to
5 A A 5 A A
iy~ ()= 0) il ) olc1)
r(, - = -
' 6(Gr) 6(Co)
x (e7 +e™) K(N). (8.37)

But the fraction in the equation above is exactly 1/K(\) by Ch3 (4.61) so we have
Tr(vy - b5 ') = 2 cosh(dw) , (8.38)

where dw = do(pu +v) = =200 (D3 In G(fo'\) + D;ln G(fo’\)).

When the trace is evaluated at a value of A for which the solution X (s, \) is
periodic, say a A = %1, the quantity dw being do(u + v) evaluates to mi because that
is exactly the condition imposed on the exponential in X (s, A) necessary for it to be

periodic. In that case the trace computes to -2.

5.9 Cyclical Wilson Loops

Recall that in the genus 3 setting the concentric Wilson loops are obtained by
matching n number of periods of the ratio of theta function to a single period of
the exponential function in (2.5), and by shrinking the bb and c¢ branch cuts. So
it is natural to ask what happens when, alternatively, n periods of the exponential
function is matched with a single period of the ratio of theta functions. It turns out
that we get a boundary curve made of self intersecting curves. Each individual curve
becomes more like a circle ( for some choice of a and b) and the circle goes around n
times, hence the name cyclical Wilson loop.

We emphasize that these Wilson loops are obtained by making the vertical branch
cuts very short and then matching the appropriate periods of the exponential and
Theta functions parts of the solutions. We show in Figure 5.7 an example of a cyclical

Wilson loop computed for n = 2.



74

Figure 5.7.  Cyclical Wilson loop and its dual surface: n = 2,a =
2.412712,b =24 0.051

An interesting thing about the cyclical Wilson loop is that as we shrink the bb
branch cut even further we approach the concentric circles but the Wilson loops are
now becoming n covers of the concentric circles!. Below we show two n = 2 cyclical

Wilson loops that depicts this idea.

'Due to the involution A — —% the ¢¢ branch cut shrinks as we shrink the bb branch cut. The
branch points a and b determine all the finite branch points.
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(a). a =2.4142, b =2 + 0.005]

(b). a = 2.414205,b = 2 + 0.0031

Figure 5.8. Cyclical Wilson loops and their corresponding dual surfaces.
As we shrink the bb branch cut the cycles merge into each other until we

get a double cover of the circle.

It is clear that as we make the imaginary part of b smaller and smaller the the

Wilson loops approach the g = 1 case with @ > 1. In general, there are more situations
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other than these in which we have more than two boundary curves that behave in

more complicated but controllable ways.

5.10 Symmetric n-Leaf Wilson Loops

It is clear by now that so far the Wilson loops that we have discussed which come
from hyperelliptic Riemann surfaces of genus three, namely the concentric Wilson
loops and the cyclical Wilson loops, were motivated by our previously studied Wilson
loops obtained from genus one hyperelliptic Riemann surfaces. In particular, we
showed that in the limit that the branch point b approaches the real axis the periodic
Wilson loop obtained is a generalization of the concentric circular Wilson loop. Now
we are interested in periodic Wilson loops for values of Im(b) > 0.

For these cases the Wilson loop turns out to be much more complicated. To fully
describe these Wilson loops it will be good to begin from their string world sheet
description. The Wilson loops are obtained as the image in AdS; of the zeros of
0(¢) in the string world sheet. So in the world sheet, the curves for this kind of
Wilson loop will appear as either closed or open curves. Since periodicity is ensured,
images of closed or open curves will always be closed. Sometimes the open curves
are horizontal, sometimes they are vertical. Here we focus on cases in which all open
curves are horizontal. The minimal area surface in AdSs; is obtained by mapping
the entire bounded region and its two bounding open curves. The bounding curves
maps to the boundary of the minimal area surface while the bounded region maps
to the surface that extends into the bulk of AdS; . Sometimes the region between
two open curves in the world sheet contains closed curves. This means the image
of entire horizontal strip which now contains closed curves, will consist of a minimal
area surface which ends on more than just the images of the open curves.

Also the images of the two open curves and those of the closed curves will in
general intersect one another and in some instances self intersect in the boundary

of AdS. Although this seemingly gives the impression that the Wilson loop will be
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a system of intersecting curves that meander in a chaotic manner, they amazingly
display a nice symmetric behavior. More interesting is the fact that the symmetry is
governed by the periodicity conditions imposed on the solutions.

Recall that we can match n periods of the exponential function to a period of
the theta function part of the solutions or vice versa and obtain different interesting
properties. We extend the same idea here and we will particularly focus on the case
in which we match n periods of the exponential function to a period of the Theta
function part of the solutions. This gives symmetric Wilson loops that look like n-leaf
clovers. Such Wilson loops are said to be n-leaf symmetric Wilson loops.

We now specifically study the n = 3 example of n-leaf symmetric Wilson loops. In
Figure 5.9 we show the zeros of é({ ) over one period of the solutions. The boundary

of the minimal area surface will be the images of the closed and open curves.
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Figure 5.9. World sheet of 3-leaf symmetric Wilson loop.

We also plot the Z solution over the entire world sheet in order to illustrate that
the solutions do end along the zeros of 6 and also that the portion of the world sheet

between the zeros of 6 actually extend into the bulk. This is depicted in Figure 5.10.



79

The figure also shows that since Z achieves a maximum at some point in the world

sheet the solution is finite since X and Y are already periodic.

Figure 5.10. The behavior of the solution Z shows that the surface ends
along the zeros of 6.
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(b). Bottom sine-like curve

10 0

(a). Lowere 3 closed curves. (b). Upper 3 closed curves

Figure 5.11. The boundary curves of the minimal area surface for a 3-leaf
symmetric Wilson loop. The symmetry is manifest and the images look
like three leaf clovers.

In the boundary of AdS3 these curves self intersect and form a complex network.
This implies a Wilson loop with many self intersections. In the weak 't Hooft coupling
limit of a gauge theory, these intersections give rise to logarithmic divergence in the

perturbative expansion of the expectation value of the Wilson loop.
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To see how the Wilson loop looks like we show a plot of the Wilson loop in the

boundary and the gravity dual minimal area surface.

¥

Figure 5.12. 3-leaf symmetric Wilson loop: a = 2.1868,b = 0.5 4+ 0.51
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Figure 5.13. Zoomed in close to the origin of Fuclidean AdSs
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Figure 5.14. The corresponding minimal area surface is a complex surface
in Fuclidean AdSs space
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6. Conclusion

In this thesis we use existing knowledge of Riemann theta functions to study Eu-
clidean Wilson loops in Euclidean anti de Sitter Space within the context of the
Holography conjecture. Using this technique we are able to compute more general
examples of Euclidean simple Wilson loops whose shapes are not restrictedly sym-
metric as those of the previously studied examples. We show that these Wilson loops
belong to an infinite set of families of Wilson loops, with each family generated by
varying the spectral parameter of any single member of that family. Additionally, it
is shown that the gravity dual minimal area surfaces of all Wilson loops belonging to
the same family have the same reqularized area regardless of the individual shape and
length of the corresponding Wilson loops. The areas of the minimal area surfaces of
the Wilson loops we study are computed using derived analytic formulae.

Furthermore, we look at cases when the Wilson loop consists of multiple curves.
For example we study noncircular concentric Wilson loops and show in a perturbative
sense that they are related to the Drukker-Fiol concentric circular Wilson loop. We
particularly use the periodicity of the solutions to compute examples where the Wilson
loops are controllably deformed. We show also that the trace of their monodromy
matrix is a simple function of the spectral parameter which indicates the existence of
an infinite number of conserved charges.

Finally, other types of Wilson loops consisting of multiple curves that we consider
in this thesis include the cyclical Wilson loop and the n-leaf symmetric Wilson loops.
We emphasize that it is possible to compute these examples because of the quasi
periodic nature of Riemann theta functions which we use to express the solutions of

the sigma model.
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