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ABSTRACT

Ziama, Sannah P. Ph.D., Purdue University, August 2013. Wilson loops and Rie-
mann Theta Functions in the Gauge/Gravity Duality. Major Professor: Luis M.
Kruczenski.

One important implication of the AdS/CFT conjecture is that the expectation

value of a Wilson loop operator in a conformally invariant field theory may be com-

puted in the dual string theory by calculating the regularized area of the minimal

area surface that ends on the Wilson loop in the boundary of AdS space. As a con-

sequence, Euclidean Wilson loops correspond to minimal area surfaces in Euclidean

AdS space. Many examples of Euclidean Wilson loops have been computed including

the parallel lines which give the quark-antiquark energy. We approach the study of

Wilson loops from the point of view of finding Riemann theta function solution to

the cosh-gordon equation. We compute an infinite set of equivalent classes of simple

Wilson loops. Each equivalent class consists of Wilson loops that, though having dif-

ferent shapes and lengths, have the same regularized area of their dual minimal area

surfaces. An analytic formula for the area of their dual surfaces is derived. Further-

more new examples of Wilson loops which consist of multiple curves are calculated.

For instance we compute cases of concentric Wilson loops which may be viewed as

perturbed concentric circular Wilson loops. The trace of their monodromy matrix

which gives information about the conserved charges is determined to be a simple

function of the spectral parameter.
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1. Introduction

In the t’Hooft limit, which is defined as a limit of N ! 1 while keeping g2
YM

N fixed,

it has been proposed that strongly coupled planar N = 4 SU(N) super Yang-Mills

gauge theory corresponds to weakly coupled type IIB string theory on AdS5⇥S5 space

[1,2]. This is the so called AdS/CFT correspondence or Holography correspondence

– a duality between gauge theory on one hand and string theory on the other. One

important class of objects that has been studied as an evidence for this duality is

the Wilson loop. In particular, it was shown [3] and recently generalized [4] that the

energy of a static quark-antiquark pair in N = 4 SYM theory can be determined

by computing the expectation value of Wilson loops. On the string theory side the

problem reduces to finding the area of minimal area surfaces that end in the boundary

of AdS space. The boundary of these surfaces are exactly the Wilson loops on the

gauge theory side.

Many examples of Wilson loops have been studied. They may be classified as

either open or closed curves. In the case of closed Euclidean Wilson loops (with

constant scalar) the most studied one is the circular Wilson loop [5] which is dual

to a half-sphere. The only other closed and simple one we are aware of is the two

intersecting arcs (lens shaped) [6]. For those Wilson loops which occur as multiple

curves, the concentric circles dual to the half-torus were found along with several

interesting properties using integrability [7]. For the open curves, the infinite Wilson

loops such as the parallel lines [3] and the cusp [8] are known. However, all of these

are symmetrically shaped Wilson loops.

In this work a more generalized class of Wilson loops is studied. Their shapes are

not symmetric as those of the known examples. In that sense chapter four of this

work may be seen as a generalization of the already known examples of Wilson loops.

However, the method employed further reveals that many of the previously known
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examples of Wilson loops listed above are related to each other. Specifically, it reveals

that these Wilson loops may be obtained from each other by a smooth change of a

certain parameter. The work focuses on flat Euclidean Wilson loops which are dual

to minimal area surfaces in Euclidean AdS3 space.

This work emphasizes the use of special mathematical functions – Riemann theta

functions – because they provide a convenient solution to the cosh-gordon equation

[9, 10] which is a highly nonlinear equation that poses a serious challenge to solving.

The cosh-gordon equation is a disguised form of the sigma model in Euclidean AdS

space. Traditionally in string theory one finds a solution to the string equations

of motion which, by the AdS/CFT correspondence, gives the Wilson loop as the

curve describing its intersection with the boundary of AdS space. This is distinct

from our approach in the sense that we begin with a certain Riemann surface and

determine the Riemann theta functions associated with it. The Wilson loops are

then described by those Riemann theta functions which solve the string equation of

motion, thus elevating Riemann theta functions (and by extension their underlying

Riemann surfaces) to a central role in the study of Wilson loops. Therefore in order to

develop a full understanding of how things work it is necessary to study these special

functions and the Riemann surfaces with which they are associated. Although in

general Riemann theta functions do not need to be associated to Riemann surfaces;

those which provide solution to the string equations of motion must.

In chapter 2 we briefly give some background on the conformal (co)invariant nature

of AdS
d+1 and its boundary. We also review the sigma model in Euclidean AdS3.

We show that the string equations of motion reduces to the generalized cosh-gordon

equation that is transformed to the standard cosh-gordon equation for which we seek

Riemann theta function solutions.

Since the problem of finding quasi-periodic solutions to the cosh-gordon equation

leads us to Riemann theta functions, in chapter 3 we give a short overview of the

theory of Riemann theta functions and of the hyperelliptic Riemann surfaces which

they parametrize . This chapter is purposely intended for readers who are not familiar
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with the theory of Riemann theta function and wish to pursue the study of Wilson

loops based on the proposed method. Many useful references about these functions

and their underlying hyperelliptic Riemann surfaces are provided for the more in-

terested reader who wants to pursue more on these functions. Several well-known

lemmas are given along with their proofs. The proofs are presented as illustration of

the main ideas and in a pedagogically friendly way that doesn’t obscure the concept

in favor of rigor.

Chapters 4 and 5 contain the new examples of Wilson loops computed using the

technique presented here.

Chapter 4 focuses on an infinite class of simple Wilson loops. A simple Wilson

loop is a single smooth curve with a dual minimal area surface. It is shown that

unlike the previously known examples of Wilson loops these have general shapes due

to their flexibility to be continuously deformed. Also shown is the interesting fact that

the deformation is controlled by the spectral parameter that appears in integrability

theory, and that the regularized area of the dual minimal area surface is invariant

under this deformation of the boundary Wilson loop. Perhaps the most important

contribution here is that the (regularized) area of the minimal surface is given by an

analytic formula.

Finally, in chapter 5 more complicated examples of Wilson loops consisting of mul-

tiple curves are computed. The area of their dual surfaces are also computed using

analytic formulas. The concentric circular Wilson loop is generalized to concentric

curves which are not necessarily circular. Furthermore, these concentric Wilson loops

can be viewed as perturbations of the concentric circular Wilson loops. This notion of

perturbation is shown explicitly by studying the behavior of the Wilson loop under a

shrinking of some of the branch cuts of a hyperelliptic Riemann surface. Another type

of Wilson loop computed is the cyclical Wilson loop. These are Wilson loops which

are concentric curves that have a turning number (the winding number of the unit

tangent about the origin) associated with the individual curves. The turning number

can be controlled by imposing conditions on the periodicity of the solutions, which
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invariably implies controlling the periodicity of ratios of Riemann theta functions.

The chapter finishes with new examples of n-leaf symmetric Wilson loops which pos-

sess a tunable symmetry. They are named that way because of their resemblance to

clovers. The number of leafs is determined by the periodicity imposed on the solu-

tions. The ubiquitous role that the periodicity of the solutions plays indicates that

many more interesting properties of Wilson loops may be understood by getting a

better understanding of the theory of Riemann theta function.
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2. Sigma Model in AdS
3

Space

In this chapter we study semiclassical string theory in the AdS3 space. We begin first

by reviewing holography of physical theories in AdS
d+1 and how it relates to Wilson

loops.

2.1 Wilson loops in AdS/CFT : A brief overview

We review how the notion of Wilson loop emerges in the AdS/CFT conjecture

and the important role it plays.

The AdS/CFT conjecture or Holography conjecture was proposed by Maldacena

[1] and further explained by Witten [2]. The main idea of the proposal is that in the

limit of large N , where N is the rank of the gauge group of a conformally invariant

field theory, this field theory residing on the boundary of d + 1 dimensional anti-de

Sitter space is dual to type IIB string theory on AdS
d+1 times a compact space.

The most understood example of this conjecture is the 4 dimensional N = 4 SU(N)

SYM gauge theory with coupling constant g
YM

. According to the conjecture, in the

t’Hooft limit this theory is equivalent to the tree approximation to supergravity in

AdS5 ⇥ S5. The string coupling constant g
s

is proportional to g2
YM

and as � = g2
YM

N

gets large but fixed, the superstring theory becomes a weakly coupled theory. This

theory is well approximated by the supergravity which is the dual theory to N = 4

SYM gauge theory.

Conformal Symmetry and Euclidean AdS Boundary

Recall that the Poincaré upper half-space model of hyperbolic space or sometimes

referred to as the upper half-space model is described as follows: Take the upper half
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space Hd+1
R of Rd+1 with coordinates (x1, x2, · · · , xd, z), with z > 0. The quadratic

form on this space is

ds2 =
R2

z2
(dx+dx� + (dxi)2 + dz2) , i = 3, · · · , d . (1.1)

Setting x+ = x2 + i x1 and x� = x2 � i x1 leads to the more familiar quadratic form

on Euclidean AdS
d+1

ds2 =
R2

z2
((dxi)2 + dz2) , i = 1, · · · , d . (1.2)

The isometry group of this space is SO(d + 1, 1). This can be readily seen by

considering the hyperboloid model of AdS
d+1, Hd+1

R . Define Rd+1,1 by the coordinates

{x1, · · · , xd+1, ⌧}. Then Hd+1
R is the upper sheet of the hyperboloid defined by |x|2 �

⌧ 2 = �R2 in Rd+1,1. Here the metric mH on Hd+1
R is given by

mH = i⇤mR , (1.3)

where mR is the metric on Rd+1,1 and i is the inclusion map i : Hd+1
R ,! Rd+1,1. Thus

it becomes clear that indeed SO(d+1, 1) acting on Hd+1
R leaves the metric invariant.

When d = 2 this isometry group becomes the more familiar SL(2,C). This is how

SL(2,C) which is isomorphic to the 2d conformal symmetry group, Conf(R2), may

be viewed as the symmetry group of AdS3 .

The boundary of Hd+1
R is a copy of Rd located at z = 0. The quadratic form (1.1)

or (1.2) does not extend over the closure of the Poincaré upper half-space, Hd+1
R . To

get a quadratic form that extends over Hd+1
R we multiply ds by a function g which

is nonnegative on Hd+1
R and that has a first order zero on the boundary (g = z for

example) and then the restriction of (1.1) to @Hd+1
R the boundary of Hd+1

R becomes

ds̃2 = g2 ds2 = R2(dx+dx� + (dxi)2) , i = 3, · · · , d . (1.4)

The function g is not unique and using a di↵erent function ge� for a real function �

on Hd+1
R would lead to a new quadratic form

ds̃2 ! g2 e2� ds2 (1.5)
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on the boundary @Hd+1
R . So the boundary metric is defined up to a conformal factor

and therefore the dual theory has to be conformally invariant. Particularly important

are global conformal transformations of the boundary coordinates which in the bulk

correspond to the SO(d+ 1, 1) symmetry group of AdS
d+1 space.

Note that the boundary Rd is not compact. The conformal group acts on a

compact manifold. We can make Rd compact by “gluing”1 two copies of Rd into a

final compact manifold Sd .

Expectation values of operators in a CFT may be computed in the dual theory

in AdS under the provisions of theAdS/CFT conjecture. One operator that fits

this description is the Wilson loop operator [3]. One way to see this is that due to

the conformal symmetry of both AdS and its boundary, a theory may be viewed

separately as a CFT on the boundary of AdS or as a string theory in the bulk of

AdS [2]. Therefore under the conditions of AdS/CFT one should in principle be able

to compute expectation values of gauge theory operators by computing corresponding

quantities in the string theory. So Wilson loops provide an opportunity to test the

conjecture or to give supporting evidence for it. This is why computation of Wilson

loops plays an important role in the AdS/CFT conjecture.

2.2 Sigma Model in Euclidean AdS3

A convenient way to imagine Euclidean AdS3 is to consider it as a subspace of

R3,1 defined by the equation

�X2
0 +X2

1 +X2
2 +X2

3 = �1 , (2.6)

with an obvious SO(3, 1) ⇠= SL(2,C) global invariance. The action of the string in

conformal coordinates is given by

S =
1

2

Z �
@X

µ

@̄Xµ � ⇤(X
µ

Xµ � 1)
�
d� d⌧

=
1

2

Z
1

Z2
(@

a

X@aX + @
a

Y @aY + @
a

Z@aZ) d� d⌧, (2.7)

1
See chapter 4 for a detail explanation of this procedure in the complex setting.
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where ⇤ is a Lagrange multiplier and the µ indices are raised and lowered with the

R3,1 metric

(v, w) =
3X

i=1

v
i

wi � v0w
0 . (2.8)

The complex coordinates z and z̄ are related to the world sheet coordinates, �
a

=

(�, ⌧) by z = � + i⌧ , and z̄ = � � i⌧ . X, Y, Z are called Poincaré coordinates (see

(2.26)). The string equations of motion are given by

@@̄X
µ

= ⇤X
µ

, (2.9)

where ⇤, the Lagrange multiplier is given by

⇤ = @X
µ

@̄Xµ = (X
z

, X
z̄

). (2.10)

The conformal condition is encoded in the Virasoro constraint

(X
z

, X
z

) = 0 = (X
z̄

, X
z̄

). (2.11)

The first step to solving the equations of motion is to reduce the problem to an

equation with a single unknown scalar field. In AdS3 space this scalar equation is

the cosh-gordon equation

@@̄↵ = 4 cosh↵ . (2.12)

This reduction mechanism referred to as Pohlmeyer reduction [12] has been used

in the study of many related problems. In the context of Minkowski space-time

this procedure was used by Jevicki and Jin [13] and by Kruczenski [14] to find new

spiky string solutions, and by Alday and Maldacena [15] to compute certain light-like

Wilson loops. In a more geometric guise it was employed [9] to study constant mean

curvature surfaces in hyperbolic space. We review the idea and follow closely what

was done in [9].

In Euclidean AdS3, form a basis

t = (X,X
z

, X
z̄

, N) (2.13)

where

(X,N) = (X
z

, N) = (X
z̄

, N) = 0, (N,N) = 1 (2.14)
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Note that (2.6) and (2.11) imply

(X,X
z

) = (X,X
z̄

) = 0 (2.15)

and

(X
z

, X
zz

) = (X
z

, X
zz̄

) = (X
z̄

, X
z̄z̄

) = (X
z̄

, X
zz̄

) = 0 (2.16)

respectively. Define

(X
z

, X
z̄

) := 2e↵ , (X
zz̄

, N) := 2Hhe↵ , (X
zz

, N) := Ah , (2.17)

where Ah is the Hopf di↵erential andHh is the mean curvature of the surface described

by the solution to the string equation of motion. Since we are concerned here with

a minimal area surface (described by the string equations of motion) we will have a

vanishing mean curvature and the second equation in (2.17) is equal to zero. We want

to study what happens when the basis undergoes a small motion with the hope that

second derivative quantities will tell us something useful about the sigma model. For

this we write second derivatives as a linear combination of the basic vectors. Thus

we write

X
zz̄

= aX + bX
z

+ cX
z̄

+ dN . (2.18)

Then taking inner product with X gives

�a = (X,X
zz̄

) = �(X
z

, X
z̄

)

which implies a = 2e↵ due to (2.17). Doing same for the other vectors in the basis

gives

0 = (X
z

, X
zz̄

) = c(X
z

, X
z̄

) =) c = 0

0 = (X
z̄

, X
zz̄

) = b(X
z̄

, X
z

) =) b = 0

0 = (N,X
zz̄

) = �d

This shows that

X
zz̄

= 2e↵X , (2.19)
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which is exactly the equation of motion (2.9) taking ⇤ = 2e↵. Note that without the

minimal area condition, i.e. Hh = 0, equation (2.19) will have an additional term

proportional to HhN . Repeating this for the other second derivatives we get

X
zz

= ↵
z

X
z

� AhN

and

X
z̄z̄

= ↵
z̄

X
z̄

� ĀhN .

Consider motion of the basic vectors given by

t
i,z

= U
ij

t
j

, t
i,z̄

= V
ij

t
j

. (2.20)

Note that since second derivatives are expressed entirely in terms of first derivatives,

quantities such as t
i,z

and t
i,zz

are all expressible in terms of first derivatives. Con-

sequently, the matrices U and V contain ↵ and its derivatives, and Ah (and its com-

plex conjugate). Taking second derivatives and imposing the compatibility condition

t
i,zz̄

= t
i,z̄z

leads to

(U
ij,z̄

� V
ij,z

)t
j

+ (U
ij

V
jk

� V
ij

U
jk

)t
k

= 0 . (2.21)

This equation may be written in matrix form, after dropping the t, as

U
z̄

� V
z

+ [U, V ] = 0 (2.22)

with U and V determined from (2.20) as

U =

0BBBBBB@
0 1 0 0

0 ↵
z

0 Ah

2e↵ 0 0 0

0 0 �1
2A

he�↵ 0

1CCCCCCA , V =

0BBBBBB@
0 0 1 0

2e↵ 0 0 0

0 0 ↵
z̄

Āh

0 �1
2Ā

he�↵ 0 0

1CCCCCCA .

The compatibility equation implies that Ah is a holomorphic function. Furthermore,

it leads to a generalized cosh-gordon equation

↵
zz̄

� 2e↵ � 1

2
AhĀhe�↵ = 0 . (2.23)
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If in (2.23) we scale the Hopf di↵erential Ah ! 2Ah and similarly for its conjugate,

the generalized cosh-gordon equation becomes

↵
zz̄

� 2e↵ � 2AhĀhe�↵ = 0 . (2.24)

Changing coordinates to w =
p
Ah z, w̄ =

p
Āh z̄ followed by a transformation of the

field ↵ ! ↵̃ = ↵ � 1
2 logA

hĀh, the resulting equation is the standard cosh-gordon

equation (2.12). This procedure is equivalent to setting Ah = 2 in (2.23).

To connect the scalar field ↵ with the solutions for (2.9) we introduce a hermitian

matrix

X =

0@ X0 +X3 X1 � iX2

X1 + iX2 X0 �X3

1A . (2.25)

Then construct Poincaré coordinates

Z =
1

X22
, X + iY =

X21

X22
. (2.26)

The final connection is to recognize that (2.23) is also the compatibility condition for

the system of equations [9]

�
z

= Ũ� �
z̄

= Ṽ � (2.27)

where Ũ and Ṽ are given by

Ũ =
1

2

0@ 0 2�e↵/2

2e�↵/2 ↵
z

1A Ṽ =
1

2

0@ ↵
z̄

�Āe�↵/2

2
�

e↵/2 0

1A . (2.28)

The parameter � is the spectral parameter which emerges in the study of integrable

di↵erential equations. Given a solution for the pair of equations (2.27), the Poincaré

coordinates are related to (2.27) by

X + iY =
ab̄+ d̄c

bb̄+ dd̄
Z =

p
det� det�†

bb̄+ dd̄
(2.29)

where � =

0@ a b

c d

1A. One advantage of Poincaré coordinates is that the boundary

of AdS3 is now a copy of R2.

The rest of the program is to find a solution for the cosh-gordon equation, then

solve the system of equations (2.27) and finally feed the result into (2.29).
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3. Hyperelliptic Riemann Surfaces and their Associated

Riemann Theta Functions

In seeking quasi-periodic solutions to the cosh-gordon equation, we inherently place a

major emphasis on the relevance of Riemann theta functions in this study of Wilson

loops. Therefore it is useful to get an understanding of the origin of these functions.

As we will see later, when the concept of Riemann theta functions have been de-

veloped then the desire solutions in terms of these special functions can be deduced

without much attention to the mathematics of these functions or to the Riemann sur-

faces which give rise to them. For now, as we develop the concept, we study the theory

of Riemann theta functions and their connections to Riemann surfaces as much as is

needed for our purpose. We need to understand the concept of hyperelliptic Riemann

surfaces, which can be attained by gluing together Riemann surfaces. So we begin

with a study of this process of ”gluing” Riemann surfaces. There is vast mathematics

literature on the Algebro-Geometric nature of Riemann theta functions. We review

the basics we need here based on [9, 10, 16–20]

3.1 Gluing of Riemann Surfaces

A Riemann surface is a complex manifold of dimension one (in the complex sense).

We naturally imagine a Riemann surface as having complex charts and the open

subsets on which these charts are defined being themselves Riemann surfaces. One

may also look at the situation in the reverse by considering a collection of, a priori,

unrelated open sets and patching them together to form a Riemann surface. Indeed,

this process of patching together has to be done in a way that allows for the existence

of a complex structure on the final Riemann surface. Let us describe this in a rigorous

way. First, we need a gluing datum.
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Definition 1 3.1.1 A gluing datum consists of the following:

• an index set I

• 8 i 2 I a Riemann surface U
i

• 8 i, j 2 I open subset U
i j

⇢ U
i

where U
i j

are considered Riemann surfaces

themselves

• 8 i, j 2 I an isomorphism �
i j

: U
j i

! U
i j

of Riemann surfaces, such that

a. U
i i

= U
i

, and

b. �
k j

� �
j i

= �
k i

on U
i j

\ U
i k

, i, j, k 2 I, with �
j i

(U
i j

\ U
i k

) ✓ U
j k

.

(b) is known as the cocycle condition. In the case i = j = k, it implies that �
i i

= id
Ui

and in the case i = k, from �
i i

= �
i j

� �
j i

, that �
j i

: U
i j

\ U
i k

! U
j i

\ U
j k

is an

isomorphism. An isomorphism between Riemann surfaces is a holomorphic bijective

map.

We now define a Riemann surface obtained from a gluing datum.

Definition 2 3.1.1 Suppose ((U
i

)
i2I , (Ui j

)
i, j2I , (�i j

)
i, j2I) is a gluing datum of Rie-

mann surfaces. Then the Riemann surface X with injective morphisms  
i

: U
i

! X

is said to be the Riemann surface obtain by gluing (with respect to the gluing datum)

if the following conditions hold:

• 1. 8i the map  
i

: U
i

! X gives an isomorphism.

• 2.  
j

� �
j i

=  
i

on U
i j

, 8i, j,

• 3. X = [
i

 
i

(U
i

),

• 4.  
i

(U
i

) \  
j

(U
j

) =  
i

(U
i j

) =  
j

(U
j i

), 8i, j 2 I.

The Riemann surface constructed this way may or may not be compact; we are

interested in those that are compact.
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The underlying idea in constructing X goes as follows: begin by taking a disjoint

union
`

i

U
i

of the basic Riemann surfaces. Think of
`

i

U
i

as a set consisting of the

following subsets:

• singletons, {a
i

} 2 {U
i

� U
i j

}, 8 i, j 2 I

• doubletons, {x
i

,�
j i

(x
i

)} where x
i

2 U
i

Then, let the equivalence relation ⇠ imply that two points x
i

2 U
i

and x
j

2 U
j

, 8 i, j 2
I are equivalent if and only if �

j i

(x
i

) = x
j

, with x
j

2 U
j i

and x
i

2 U
i j

. Clearly there

is a surjective morphism  :
`

i

U
i

!
`

i

U
i

/ ⇠ which sends an element in the set`
i

U
i

to its equivalent class in
`

i

U
i

/ ⇠. Define the desire Riemann surface X as

X :=
a
i2I

U
i

/ ⇠ .

We remark that X is endowed with a topology which makes all the injective maps

 
i

: U
i

! X continuous. Furthermore, we have that  
i

(U
i j

) =  
i

(U
i

) \  
j

(U
j

) and

 
i

(U
i

) are both open in X.

To reenforce the idea, we give perhaps the simplest example of a Riemann surface

constructed this way. Take the index set I = {1, 2} which implies we have two

sets U1 := C and U2 := C with open subsets U12 := C⇤ = C \ {0} and U21 := C⇤,

respectively. We have an isomorphism � : C⇤ ! C⇤ which we define as

�(z) = 1/z ,

which is easy to check defines a gluing datum. The resulting Riemann surface X :=

U1

`
U2/ ⇠ is the familiar Riemann sphere C1.

Now that it has been made clear how to construct a Riemann surface from a

given gluing datum, it would now be natural to extend this tool to the concept of

hyperelliptic Riemann surfaces.

3.2 Hyperelliptic Riemann Surfaces

The hyperelliptic Riemann surfaces will be constructed by gluing two curves,

viewed as the zero loci of specified complex polynomials, into a final manifold. Through-
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out we will be restricted to the field C. By the set of zero locus of a complex polyno-

mial, P 2 C, we mean

V (P) = {(µ,�) 2 C2 : P(µ,�) = 0} ✓ C2 .

So to say a curve X is defined by a polynomial, P , it will mean that X is considered

as the set of zeros, V (P), of P .

Take a polynomial in a single variable, p(�) , that has degree 2g+1+�, where g is

an integer and � is either 0 or 1 depending on whether g is odd or even respectively.1

The polynomial is assumed to have distinct roots. Denote by X the smooth curve

defined by the equation µ2 = p(�) and let U1 = {(µ,�) 2 X |� 6= 0} ⇢ X, be an open

subset of X. Form a second Riemann surface Y , to be glued to X, by the equation

w2 = q(z) := z2g+2p(1/z). The factor z2g+2 ensures that q(z) is a polynomial in z and

because p has distinct roots so does q. Let U2 = {(z, w) 2 Y | z 6= 0} ⇢ Y be open.

Then there is an isomorphism � : U1 ! U2 given by

�(µ,�) = (µ/�g+1, 1/�) .

Define

Z := X
a

Y/�,

where � denotes the equivalence relation ⇠ defined via �, to be a Riemann surface

of genus g. This Riemann surface admits a degree two covering map to the Riemann

sphere by extending � on X to a holomorphic map ⇡ : Z ! C1 .

Thus, we refer to hyperelliptic Riemann surface as the surface Z constructed as

described above along with a degree two map to the Riemann sphere.

Indeed, compact hyperelliptic Riemann surfaces can be viewed as the smooth

hyperelliptic curves

µ2 =
NY
i=1

(�� �
i

), N � 3, �
i

6= �
j

2 C, 8 i, j = 1, ..., N. (2.1)

1
g is the topological genus of the Riemann surface X, i.e. the number of handles of X. It is a deep

theorem of Algebraic Geometry that every Riemann surface is an algebraic curve.
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For N = 3, 4 they are called elliptic curves. It is clear that for each value of the

independent variable, �, there are, in general, two distinct values of the dependent

variable, µ, and these values are said to lie on the two sheets of the Riemann surface.

So such a Riemann surface is said to be two-sheeted and in general, a Riemann surface

given by µn =
Q

N

i=1(�� �
i

) is said to be n-sheeted.

There are values of �, however, for which the two values of µ coincide and it

is worth to take note of the behavior of the hyperelliptic Riemann surface at these

points. We will adopt the language of Baker [16] in referring to the point on a

hyperelliptic Riemann surface corresponding to the value of a pair (µ,�) as a place.

The Riemann surface behaves in two possible ways at the point where the values of

� coincide. The first possibility is that the two sheets of the hyperelliptic Riemann

surface touch at exactly one point and touch at no where else in the vicinity of the

said point. In this case it is possible to draw two small loops around this point with

each loop lying entirely in only one of the sheets. When this happens we say the point

corresponds to two places of the Riemann surface. The second possibility occurs when

the sheets interwind at the point and any small close loop around the point meets

both sheets. In this case we say the point equally belongs to the two sheets, and

corresponds to one place of the hyperelliptic Riemann surface. Points at which the

second scenario occurs are known as branch points. A branch point is a point, x on a

Riemann surface X̃ such that given a covering map (non-constant holomorphic maps

between Riemann surfaces), F : X̃ ! X between Riemann surfaces X̃ and X, it is

not possible to find a neighborhood Ũ 3 x such that F |
Ũ

is injective.

From what has been said above, it can be easily deduced that

Lemma 1 3.2.1 Given a non-constant holomorphic map, F : X̃ ! X, between two

compact hyperelliptic Riemann surfaces, the set S
y

= F�1(y), 8 y 2 X consists of

either one or two places depending on whether the corresponding point is or is not a

branch point.

This implies that S is a discrete set since for any point x 2 X̃ it is always possible

to find a neighborhood, Ũ 3 x which meets S
y

in at most one place 8 y 2 X. Hence
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non-constant holomorphic maps between compact hyperelliptic Riemann surfaces are

discrete.

It is always possible to find local charts near x 2 X̃ and F (x) 2 X such that

locally F may be represented by a power map

z ! zm, m 2 Z+ (2.2)

and this integer m is independent of the local charts. The number, m
F

(x), indicates

the number of times F takes the value F (x) and is therefore refer to as the multiplicity

of the map F at x. In our case for curves described by (2.1), this number is either

one or two. Points on a hyperelliptic Riemann surface for which m
F

= 2 are branch

points and the discrete set

B = {x 2 X̃ : m
F

(x) = 2} ⇢ X̃

is finite if X̃ is compact, and the image F (B) 2 X is also finite. A covering F :

X̃\B ! X is said to be unramified. Topologically, one may describe the number

m as follows: It is possible to find neighborhoods, Ũ 3 x, U 3 F (x) such that

F�1(y)\ Ũ consists of precisely m points, 8 y 2 U\F (x). Another significant number

is the branch number of F at x, b
F

(x) = m
F

(x)� 1. In general b
F

(x) � 1 for branch

points and zero for all other points. The degree of a covering map F : X̃ ! X is

defined as the number

d
y

(F ) =
X

x2F�1(y)

(b
F

(x) + 1) (2.3)

and this number is independent of the point y 2 X. From (2.3) it is clear that, as

stated in the definition for a hyperelliptic Riemann surface, the independent variable,

viewed as a covering map � : X̃ ! P1 is a degree two map.

Looking back at (2.1) we can readily deduce that the points (0,�
i

) are branch

points and in general, when N = 2g+1 they consist of the points (0,�
i

), i = 1, ..., N ,

and 1 whereas for N = 2g + 2, they are (0,�
i

), i = 1, ..., N .
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There is a prescribed way to give local homeomorphisms near a point on a Riemann

surface. Suppose � has a finite value, say a, then the local coordinate near � = a

may be given by

(µ,�) ! (�� a)
1

bF (�)+1 , (2.4)

and for � at infinity the homeomorphism is

(µ,�) ! 1

�
1

bF (�)+1

. (2.5)

3.2.1 Basis of Holomorphic One-forms

One distinct feature of hyperelliptic Riemann surfaces is that it is always possible

to explicitly write down a basis of the space H0(X̃,⌦1) of holomorphic one-forms on

X̃. We show this but first a few things are in order.

For any hyperelliptic Riemann surface, X̃, given by (2.1), there is an holomorphic

automorphism � : X̃ ! X̃ defined by

�(µ,�) = (�µ,�). (2.6)

This automorphism has the property that � � � = id so it is called a hyperelliptic

involution. For the projection map ⇡ : X̃ ! P1 we have

⇡ � � = ⇡. (2.7)

This relation, (2.7), is crucial. It allows us to describe the set, M(X̃), of all meromor-

phic functions on X̃ and more relevantly it allows to establish a basis for H0(X̃,⌦1).

Meromorphic Functions on Hyperelliptic Riemann Surfaces

Suppose f 2 M(X̃), then �⇤f = f � � also belongs to M(X̃). Any such f may

be written as

f = f+ + f�, (2.8)

a sum of a �⇤-invariant part f+ and an �⇤-anti-invariant part f�, with

f+ = 1/2(f + �⇤f), f� = 1/2(f � �⇤f). (2.9)
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Let g be any �⇤-invariant function on a hyperelliptic Riemann surface, X̃, i.e.

�⇤g = g, and let a be a point in P1 and b in X̃ such that ⇡(b) = a. Then there is

a function, r,on P1 such that r(a) = g(b). But this implies that g(b) = r � ⇡(b) =

⇡⇤r(b). Since g is �⇤-invariant, the function r is well defined and it is unique. So this

essentially proves that:

Lemma 2 3.2.1 Let g be a meromorphic function on a hyperelliptic Riemann sur-

face, X̃, such that �⇤g = g. Then there is a unique function r 2 M(P1) such that

g = ⇡⇤r = r � ⇡.

The significance of Lemma 2 (3.2.1) is that it states that the �⇤-invariant part of

all meromorphic functions on a hyperelliptic Riemann surface are pullbacks of mero-

morphic functions on the Riemann sphere P1. A natural example of a �⇤-invariant

function on a hyperelliptic Riemann surface is the coordinate �.

To characterize the �⇤-anti-invariant functions on a hyperelliptic Riemann surface,

it is natural to look at the coordinate µ, since by the automorphism (2.6) we have

�⇤µ = �µ, it is the readily available example. However, due to (2.8) and (2.9), for

any meromorphic function f on X̃ the rational function f�/µ is �⇤-invariant. This

implies there exists a unique meromorphic function, R, on P1 such that f� = µR.

Thus.

Lemma 3 3.2.1 If f 2 M(X̃) with X̃ defined by (2.1), then f may be uniquely

written as

f = r(z) + µR(z)

where r and R are meromorphic functions on P1.

One-forms on Hyperelliptic Riemann Surfaces

We now extend this idea extends to the case of 1-forms which we are more con-

cerned about. 1-forms are constructed from functions so this is why some e↵ort was

first devoted to understanding the case of meromorphic functions.
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The holomorphic map � : X̃ ! X̃ induces a map

�⇤ : H
0(X̃,⌦1) ! H0(X̃,⌦1) (2.10)

which acts on a holomorphic 1-form, ! in either of two ways: (i). ! ! ! or (ii).

! ! �!. The first case would inevitably lead to the corresponding situation in Lemma

2 (3.2.1): An ! satisfying �⇤! = ! would have to be a pullback of a holomorphic

1-form on P1. But the space of holomorphic 1-forms on the Riemann sphere is trivial

therefore case (i) is not possible, leaving (ii) as the only possibility.

Since � is �⇤-invariant and µ is �⇤-anti-invariant, as established in the above

discussions, the simplest example, in view of what has been said, of a holomorphic

1-form, !0 on X̃ should be of the form

!0 =
d�

µ

so that �⇤(!0) = �!0 is satisfied. !0 is holomorphic because near points (0,�
i

) we

have local coordinates � =
p
�� �

i

according to (2.4), which implies that !0 = k d�

where k is constant. For �! 1 one has to treat the case when N is odd separately

from when N is even. For odd N the local coordinate � = 1/
p
� given by (2.5),

leads to !0 ⇠ �d�. The same result is found for even N , however with � = 1/�.

Also notice that at points where µ vanishes, d� also vanishes. Therefore !0 is indeed

holomorphic on X̃.

We can get other holomorphic 1� forms by taking products

! = f !0.

But since �⇤(!) = �! must be satisfied, we must have that �⇤(f) = f , which implies

the f is a function of � only and not of µ. Therefore f is a polynomial in �. The

total degree of !0 is 2(g � 1) for both cases of N = 2g + 1 and N = 2g + 2 and we

show this explicitly for the odd case.

When N = 2g + 1, we see that in the vicinity of infinity we have

!0 =
d�

µ
! d�

�g+1/2
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The local homeomorphism is

� =
1p
�
, with d� = �1

2
��3/2d�

which gives
d�

µ
! �2�2(g�1)d�. (2.11)

This implies that there are 2g � 2 zeros of !0 lying above 1 and so the number

of zeros of f cannot exceed this number for f(�)d�/µ to be holomorphic. So if the

degree of f is d, then 2d  2g � 2. Therefore, degree of f cannot exceed g � 1 and a

basis of the space, H0(X̃,⌦1), of holomorphic 1� forms on X̃ is

{�0d�
µ
,�1

d�

µ
, · · · ,�g�1d�

µ
, }.

The case for even N essentially follows the same line of argument except that the

point at infinity is not a branch point and the local homeomorphism is di↵erent. This

time there are g � 1 zeros of !0 on each sheet of the hyperelliptic Riemann surface

and we get a total of 2g � 2 zeros as before. Again we find the same bound on d.

3.2.2 Basis of Cycles on a Hyperelliptic Riemann Surface

Eventually it will be necessary to give a precise description of what it means to

integrate a di↵erential form around a loop on a hyperelliptic Riemann surface. So

it is important to get a clear understanding of what kind of loops we will integrate

along. We begin by looking at (hyperelliptic) Riemann surfaces through a new lens,

as a polygon with boundary that gives us a crucial insight into the kinds of loops we

will be dealing with.

We take for granted that every compact Riemann surface is homeomorphic to

a sphere with handles. The number of handles is indicated by the number g 2 Z+

the genus of the Riemann surface. When the Riemann surface is hyperelliptic, then

g = (N � 1)/2 if N is odd, and g = N/2� 1 if N is even.

There is a standard way to represent any sphere with g handles as a 4g-gon in

C, such that the interior of the 4g-gon is (simply) connected domain in the C plane.
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Consider a polygon, P4g, with 4g sides labeled in counter clockwise direction in the

following order

a1, b1, a
0
1, b

0
1, a2.b2, a

0
2, b

0
2, ...., ag, bg, a

0
g

, b0
g

Choose orientations of the edges in such a way that the edges a0
i

has opposite orien-

tation to a
i

and b0
i

has opposite orientation to b
i

with respect to P4g. The homeo-

morphism to a sphere with g handles is achieved by identifying the edges a
i

with a0
i

and b
i

with b0
i

for i = 1, ..., g. On the resulting Riemann surface, the identified edges

a
i

⇠ a0
i

and b
i

⇠ b0
i

form closed curves labeled a
i

and b
i

respectively, for i = 1, ..., g.

Figure 3.1. A g = 1 Riemann surface obtained from its P4 representation.

Any closed curve, �, on the Riemann surface may be expressed as

� =
X
j

(n
j

a
j

+m
j

b
j

), n
j

,m
j

2 Z .

These closed curves form the basis of an abelian group which we now describe.

A loop or closed curve � on a Riemann surface X̃ is a continuous map � : [0, 1] !
X̃ such that, �(0) = �(1) = P , for some P 2 X̃. The point P is called the base.

Definition 3 3.2.1 A homotopy of closed curves, �0 and �1, is a continuos map � :

[0, 1]⇥ [0, 1] ! X̃ such that �(s, 0) = �0(s), �(s, 1) = �1(s) and �(0, t) = �(1, t) = P .

The curves �0 and �1 are said to be homotopic.
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Two curves can be multiplied if the terminal point of one is the initial point of

the other, i.e.

�0 · �1(t) =

8<: �0(2t); 0  t  1/2

�1(2t� 1); 1/2  t  1

if �0(1) = �1(0). This concatenation of curves induces a group structure on the

homotopy classes of loops based at a point on a Riemann surface. The notions of

inverse for curves and identity element are well defined. The inverse of a loop is the

curve with opposite orientation; the identity element is the loop which is contractable

to a point. The homotopy class of a loop � is indicated by � = [�] and the product

of two classes is defined as

�0 · �1 = [�0 · �1] .

If P is the terminal and initial point of loops then the homotopy classes of such curves

form a group known as the fundamental group, ⇡1(X̃, P ). It is easy to show that

⇡1(X̃, P ) is isomorphic to ⇡1(X̃,Q) for a nearby point Q in X̃. Thus the fundamental

group is independent of the base point and may often be denoted by ⇡1(X̃).

The homotopy classes of the curves a1, b1, · · · , ag, bg on the Riemann surface la-

beled [a1], [b1], ..., [ag], [bg] generate the fundamental group of the Riemann surface.

Note that in the P4g representation of the Riemann surface, it holds that

↵1 · b1 · a�1
1 · b�1

1 · ... · a
g

· b
g

· a�1
g

· b�1
g

= 1. (2.12)

We get the first homology group by taking the quotient of the fundamental group by

the commutative subgroup generated by elements of the form (2.12)

H1(X̃,Z) = ⇡1(X̃, P )

[⇡1(X̃, ⇡1(X̃)]
. (2.13)

This is done to make the fundamental group a commutative group.

Another way to look at the first homology group is to introduce the notions of

chains and boundaries. A chain is a finite formal sum with integer coe�cients. On

X̃ a 0-chain is a finite formal sum of points P =
P

Pi2X̃ n
i

P
i

, and the set of P
i

with

n
i

6= 0 is discrete, and finite since X̃ is compact. Similarly a 1-chain is a finite formal
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sum of curves � =
P

i

n
i

�
i

, and a 2-chain is of the form D =
P

i

n
i

D
i

where each D
i

is a domain on X̃. The n-chains form groups denoted by C
n

and a boundary operator,

@
n

, is a map that sends a chain from C
n

! C
n�1. In particular we have that

@2 : C2 �! C1, @1 : C1 �! C0

and @2 = 0. When a closed chain bounds a domain of X̃ it is called a boundary

chain and they form groups indicated by B
n

. In particular, B1 ⇢ C1 is the image

@2(C2(X̃)). C
n

also contains a subgroup, Z
n

, of @-closed-n-chains, i.e.

Z
n

(X̃) := {� 2 C
n

(X̃) : @
n

(�) = 0} .

It is clear that B
n

⇢ Z
n

and the group Z
n

(X̃)/B
n

(X̃) forms the nth-homology group

H
n

(X̃,Z).

0� chains have no boundary so B0 = ;. The first homology group is therefore

H1(X̃,Z) = Z1(X̃)

B1(X̃)
=

kernel @1 : C1 ! C0

image @2(C2(X̃))

This view of the first homology group is conceptually easier to understand vis

a vis the P4g representation of a hyperelliptic Riemann surface. It is immediately

clear that since the cycles a1, b1, ..., ag, bg do not bound a domain of the hyperelliptic

Riemann surface as can be seen in the P4g representation, they are exactly the basis

of H1(X̃,Z).

The next thing to do naturally is to integrate n-forms along n-chains and that is

the subject of the next section.

3.2.3 Riemann Period Matrix and Abel-Jacobi Map

We introduce the notion of integration on a hyperelliptic Riemann surface. In

particular we are concerned with integrating Abelian di↵erentials (of the first and

second kinds) on chains. This will lead to the definition of the Abel-Jacobi map and

eventually to the construction of Riemann period matrix which is the single most

important thing we seek in this chapter.
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Functions, Integrals and the Abel-Jacobi Map

The notion of a holomorphic di↵erential is already familiar to us from previous

discussions. This notion will now be further extended. An Abelian di↵erential is

simply a meromorphic 1-form. There are three kinds of Abelian di↵erentials: An

Abelian di↵erential of the first kind is a holomorphic 1- form ! which may be written

locally as f(�)d� with f(�) a holomorphic function. An Abelian di↵erential of the

second kind is a meromorphic 1-form with its residue vanishing at each of its singular

points. An Abelian di↵erential of the third kind is a meromorphic 1-form with general

type of singularities; the sum of residues at all its singular points vanishes, however.

The notion of multiplicity of an Abelian di↵erential is well defined since it is for a

function, f , viewed as a map, F , between a hyperelliptic Riemann surface and the

Riemann sphere P. Near, � 2 X̃ an Abelian di↵erential ! may be written as

!(�) =
X
i

c
i

(�� �0)
md�

where m is the multiplicity of ! and its residue is

Res
�0(!) = c�1.

There is a classical theorem due to Riemann on the existence of Abelian dif-

ferentials for a Riemann surface and it states that the dimension of the space of

holomorphic di↵erentials on X̃ is g, the genus of the Riemann surface. We saw in the

case of hyperelliptic Riemann surface that the basis of ⌦1(X̃) is

{...�g�j

d�

µ
...} j = 1, 2, ..., g.

Another important property of Abelian di↵erentials on X̃ is that they are d-closed,

i.e. d! = 0.

This has a significant implication due to the following;

(Poincaré) Lemma 4 3.2.1 Let ! be a C1 1-form on a Riemann surface X̃. Sup-

pose that d! = 0 identically in a neighborhood of a point x 2 X̃. Then on some

neighborhood U of x there is a C1 function f defined on U with ! = df on U .
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Thus it is always possible to find a function ⌦ on X̃ such that

⌦(x) =

Z
x

x0

! (2.14)

for any point x su�ciently near x0 on X̃ with ! = d⌦. The expression (2.14) is known

as an Abelian integral. The classification scheme for Abelian di↵erentials may also

be extended to Abelian integrals: holomorphic ⌦(x) are Abelian integrals of the first

kind, meromorphic ⌦(x) are Abelian integrals of the second kind and general ⌦(x)

are Abelian integrals of the third kind.

The keen reader may have noticed that the function (2.14) is multivalued due to

the dependence of the integral on the path traversed between x0 and x on an arbitrary

Riemann surface X̃. Suppose ⌦(x) represents the integral along the path � from x0

to x and ⌦̃ represents the integral along a second path �̃ between x0 and x. Then

the di↵erence between between ⌦(x) and ⌦̃(x) is the integral along the closed chain

� � �̃. This is true for any two paths between any two points on a Riemann surface

X̃. The integrals along closed chains solve the multivalueness problem of (2.14).

Consider the space ⌦1(X̃)⇤ dual to the space ⌦1(X̃) which consists of linear func-

tionals
R
�

: ⌦1(X̃) ! C where � is a chain. A linear functional
R
�

is said to be a

period if � belongs to the first homology group, H1(X̃,Z), i.e. � belongs to a homo-

topy class, [�] 2. The set ⇤ of all periods form a subgroup of ⌦1(X̃)⇤ and for any

Riemann surface X̃ the Jacobian of X̃ is defined as

Jac(X̃) =
⌦1(X̃)⇤

⇤
.

More explicitly, when X̃ is hyperelliptic then the subgroup ⇤ consists of two types

of basis periods, namely the A-periods and the B-periods

A
j

=

Z
aj

d⌦, B
j

=

Z
bj

d⌦, j = 1, ..., g.

And the di↵erence between any two paths between x0 and x, �� := �� �̃, can always

be expressed as a chain consisting of a- and b- cycles

�� =
X
j

(m
j

a
j

+ n
j

b
j

), m
j

, n
j

2 Z, j = 1, ..., g.

2
Note that

R
� =

R
[�] for any � 2 ˜X.
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This means that any two Abelian integrals with endpoints x0 and x on X̃ di↵er byZ
��

d⌦ =
X
j

(m
j

A
j

+ n
j

B
j

) .

So it makes sense to speak of a well defined single valued function ⌦ on X̃ with the

caveat that the value is always modulus periods. For example,

⌦(x0) = 0 (mod period).

Consider now a map

A : X̃ ! Jac(X̃)

which maps a 1-form on X̃ to its class in Jac(X̃) and does not depend upon the base

point x0. This map consists of the single valued functions on X̃ and it is known as the

Abel-Jacobi map of X̃. The functions which will subsequently be dealt with, which

will map points from X̃ to C will be of the Abel-Jacobi type - single valued Abelian

integrals.

Riemann Bilinear Relations

In discussing the Abel-Jacobi map, it was necessary to mention the notion of

periods. Specifically, the a-periods and b-periods were shown to form the basis of the

space ⇤. There exist certain relations among these periods which are important to

us. These relations are known as Riemann bilinear relations.

Recall that the function

⌦
!

(x) =

Z
x

x0

!

is well defined and single valued on X̃ (mod periods). Given a hyperelliptic Riemann

surface X̃, a simply connected 4g-gon representation denoted here by X
g

may be

obtained by cutting X̃ along the a and b cycles. The simply connectedness of X
g

implies that ⌦(x) is a single valued function for all paths lying entirely in X
g

.

Recall also that the a-periods and b-periods are given by

A
i

=

Z
ai

!, B
i

=

Z
bi

!, i = 1, ..., g .
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Suppose ! and !0 are two C1 1-forms on X̃, then the first of the Riemann bilinear

relations is that Z
Xg

! ^ !0 =
gX

j=1

(A
j

B0
j

� A0
j

B
j

) . (2.15)

To see this, one needs to use Stoke’s theorem as follows:Z
Xg

! ^ !0 =

Z
Xg

(d⌦
!

^ !0 + ⌦
!

d!0) since d!0 = 0

=

Z
Xg

d(⌦
!

!0)

=

Z
@Xg

⌦
!

!0 by Stoke’s theorem . (2.16)

Note that, X
g

, is a 2-chain with its boundary chain @X
g

given by

@X
g

=
gX

j=1

(a
j

+ b
j

+ a�1
j

+ b�1
j

) .

To continue it is important to note further that if a point p
i

lies on a
i

then there is a

corresponding point p0
i

on a�1
i

which is identified to a
i

on X̃. Then

⌦
!

(p
i

)� ⌦
!

(p0
i

) =

Z
pi

x0

! �
Z

p

0
i

x0

! =

Z
pi

p

0
i

! = �B
i

.

The last integral is along a path which when viewed on X̃ is homologous, up to

opposite orientation, to the basic cycle b
i

. Hence the last equality. Similarly, if q
i

is

a point lying on b
i

and its corresponding point q0
i

on b�1
i

, then

⌦
!

(q
i

)� ⌦
!

(q0
i

) =

Z
qi

x0

! �
Z

q

0
i

x0

! =

Z
qi

q

0
i

! = A
i

.

We are now prepare to pick up from (2.16);Z
@Xg

⌦
!

d!0 =
gX

i=1

⇣Z
ai

+

Z
bi

�
Z
a

�1
i

�
Z
b

�1
i

⌘
⌦

!

d!0

=
gX

i=1

Z
p2ai

�
⌦

!

(p)� ⌦
!

(p0)
�
!0

+
gX

i=1

Z
q2bi

�
⌦

!

(q)� ⌦
!

(q0)
�
!0

=
gX

i=1

�
� B

i

A0
i

+ A
i

B0
i

�
. (2.17)
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This completes the proof of (2.15).

Also, it can be shown that if ! is a nonzero Abelian di↵erential of the first kind,

then

Im
gX

i=1

A
i

(!)B
i

(!) < 0 , (2.18)

and this is the second of Riemann bilinear relations. The proof of this follows closely

that of (2.15). But first it is convenient to write ! in a local coordinate as ! = f(z)dz,

and consequently ! = f(z̄)dz̄. With z = x+ iy, then ! ^ !0 = �2i|f |2dx ^ dy. This

implies

0 > Im

Z
Xg

! ^ !

= Im
gX

i=1

�
A

i

(!)B
i

(!)� A
i

(!)B
i

(!)
�
by (2.15)

= Im
gX

i=1

�
A

i

(!)B
i

(!)� A
i

(!)B
i

(!)
�

= 2 Im
gX

i=1

�
A

i

(!)B
i

(!)
�
, (2.19)

and (2.18) is proved. As a corollary of (2.18), it holds that there can be no nonzero

Abelian di↵erential of the first kind ! which has all of its a-periods and b-periods both

entirely real or entirely imaginary, and if for any such ! its A
i

(!) = 0 (or B
i

(!) = 0),

8 i, then it must be that ! = 0.

Recall that the basis of the space of Abelian di↵erential of the first kind on a

hyperelliptic Riemann surface H0(X̃, ⌦1(X̃)) is written as

{...,�g�i

d�

µ
, ...} , i = 1, ..., g . (2.20)

Recall also that a canonical basis of the first homology group of X̃, H1(X̃, Z), consists

of the a- and b-periods.

There can be two nonsingular matrices A and B defined for Abelian di↵erentials

of the first kind !
i

on a hyperelliptic Riemann surface with entries given by

A
i j

=

Z
aj

!
i

, B
i j

=

Z
bi

!
j

, i, j = 1, ..., g , (2.21)
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and these are known as the period matrices for X̃. The non-singularity is a conse-

quence of the previous argument that if 8 i, A
i

(!) = 0 or B
i

(!) = 0, then ! = 0.

The first of two important relations satisfied by these matrices is the symmetry

relation

AT B = BT A . (2.22)

This equation follows immediately from the first of Riemann bilinear relations (2.15)

as follows; fix two indexes, i , j, and compute

0 =

Z
Xg

!
i

^ !
j

, both !
i

and !
j

are holomorphic 1-forms

=
gX

k=1

(A
k

(!
i

)B
k

(!
j

)� A
k

(!
j

)B
k

(!
i

)) ,

which means
gX

k=1

(A
k

(!
i

)B
k

(!
j

)) =
gX

k=1

A
k

(!
j

)B
k

(!
i

)) . (2.23)

Since this is true for all i, j pair, (2.22) is proved. It is therefore no surprise that

(2.22) is also known as the first of Riemann bilinear relations in some literature.

It is possible to normalize the basis {!
i

} of H0(X̃,⌦1(X̃)) to a new basis {!̃
i

} so

that Z
ai

!̃
j

= �
i j

, i, j = 1, ..., g , (2.24)

in which case we have

!̃
j

=
gX

k=1

c
j k

!
k

=
gX

k=1

c
j k

�g�k

µ
d� , j = 1, .., g ,

and

c
i j

= (A�1)
i j

,

with the A and B matrices given by

A
i j

=

Z
aj

!̃
i

, B
i j

=

Z
bi

!̃
j

, i , j = 1, ..., g . (2.25)

In this normalized basis {!̃
i

} the B matrix is said to be the normalized period matrix

of X̃. Note that in this basis A = I is the g ⇥ g unit matrix. Using this in (2.22)
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reveals that the normalized period matrix B is symmetric. This brings us to a very

important point [17]:

Lemma 5 3.2.1 With respect to the normalized basis {!̃
i

}, the Riemann period ma-

trix B is symmetric and the imaginary part is positive definite.

Proof The symmetry part has been shown above it remains to show the positive

definiteness. Write ! =
P

j

c
j

!̃
j

, c
j

2 R , 8 j. Recall from (2.18) that

Im
gX

i=1

A
i

(!)B
i

(!) < 0 ,

Since by (2.24) we have A
i

(!
j

) = c
i

, the inequality above becomes

Im
gX
i ,j

c
i

c
j

B
i

(!
j

) < 0 .

Considering each c
i

as a component of a g� tuple real number, c, the last expression

becomes

Im(cT Bc) < 0 .

Thus,

Im(cT Bc) > 0 ,

which implies that Im(B) > 0.

The inequality Im(B) > 0 is known as the second Riemann bilinear relations, and

the connection to (2.18) is clear.

3.3 Riemann Theta Functions Associated to a Hyperelliptic Riemann

Surface

There is a vast existent literature on Riemann theta functions [9,10,16–19]. In this

section we review the minimal knowledge necessary for our purpose. We hope that

the ardent reader who may wish to explore more of the subject may find the references

we have listed to be useful, perhaps as they were to us. Most of the mathematical
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foundation has already been laid in the previous sections of this chapter. Now we

introduce the theory of Riemann theta functions and segue in to the previously

established concept of a hyperelliptic Riemann surface.

Consider a hyperelliptic Riemann surface , X̃, of topological genus g having fun-

damental basis cycles {a
i

, b
i

}, i = 1, . . . , g. In general the a
i

intersect with the b
i

but

not with themselves. Whenever an a-cycle intersects a b-cycle at a point it is always

possible to consider the cycles as intersecting at right angles at that point. This is

because we are free if necessary to replace a cycle by any member of its homology

class that meets the other cycle involved in a right angle at the said point. If a point

x0 is a point of intersection of two cycles, say a1 and b2, then the intersection of the

cycles is written as (a1 � b2)x0 . There are a possible of two values, ±1, assigned to an

intersection. The value is determined by applying the so called right-hand-rule to the

tangents to the curves at the point x0. For instance, if a01(x0) cross b02(x0) points out

of the page then the value is +1 otherwise �1. The value of zero is assigned if the

curves do not intersect at the point, for example (a
i

� a
j

)
x0 = 0, 8 i 6= j, 8 x0 2 X̃.

This is because the set of intersection points of a
i

and a
j

, 8 i 6= j is empty. The

intersection number for any two curves a
i

, b
j

is the integer

(a
i

� b
j

) =
X

x02ai\bj

(a
i

� b
j

)
x0

From what has been said the following can be deduced.

Theorem 1 3.3.1 The intersection number is a skew-symmetric bilinear map

� : H1(X̃, Z)⇥H1(X̃, Z) ! Z .

In the rest of this work we will adopt the basis where

(a
i

� a
j

)
x

= 0 = (b
i

� b
j

)
x

, 8 x 2 X̃, (3.26)

and

(a
i

� b
j

) = �
ij

. (3.27)
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The hyperelliptic Riemann surface is the hyperelliptic curve defined by the func-

tion

µ2(�) = �
2gY
j=1

(�� �
j

). (3.28)

The projection map from X̃ to the Riemann sphere P has branch points at 0,1, and

�
j

.

Consider now !
i=1...g to be the unique basis of Abelian di↵erentials of the first

kind satisfying
H
ai
!
j

= �
ij

, and define the g ⇥ g period matrix as 3

⌦
ij

=

I
bi

!
j

. (3.29)

With this choice of basis for the space of holomorphic di↵erentials ⌦1(X̃) on X̃, it

is a fundamental result in the theory of algebraic curves, which we have shown (see

Lemma 5 (3.2.1)), that the matrix ⌦ is symmetric with positive definite imaginary

part. In other words,

⌦ 2 H
g

(3.30)

where H
g

is the Siegel upper half space. The Siegel upper half space is the space of

symmetric g ⇥ g matrices with positive definite imaginary part;

H
g

= {⌦ 2 M
g⇥g

(C)|⌦ = ⌦T , Im⌦ > 0} . (3.31)

Not all matrices belonging to H
g

are those which come from a hyperelliptic Riemann

surface. In fact the problem of characterizing all ⌦ 2 H
g

which come from a Riemann

surface is the exact essence of the Schottky problem. Counting dimensions reveals

that the moduli space of hyperelliptic Riemann surfaces has dimension 3g � 3 for

g > 1, and that of H
g

is g(g + 1)/2, which indicates a discrepancy when g � 4.

3
Sorry for the change of notation from B to ⌦. This should not be a source of confusion for the

attentive reader.
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Definition 4 3.3.1 Given an ⌦ which is the period matrix of a hyperelliptic Riemann

surfaceX̃, then the Riemann theta functionassociated to X̃ is

✓(⇣) :=
X
n2Zg

e⇡i(n·⌦·n+2n·⇣) . (3.32)

The arguments of the ✓ function are ⇣ = Uz + i z̄V, a column vector in Cg, and

the period matrix ⌦ (which we consider fixed and therefore do not explicitly write as

an argument). The sum is over all n 2 Zg, that is all ordered g-vectors with integer

components.4

A brief remark on the quantities U and V is in order. Consider the curve ⌫ =
p
�

which defines a Riemann surface fW realized by gluing two copies of the complex

plane with branch cuts [0,1). fW is an unramified covering of W defined by

W = {(⌫,�) 2 C2 | ⌫2 = �} . (3.33)

Then the quantities U and V are given by

U
k

=

I
bk

d⌦1 , V
k

=

I
bk

d⌦0 , k = 1, · · · , g , (3.34)

where

⌦1, 0 =

Z
�

1
d⌦1, 0 , (3.35)

are Abelian di↵erentials of the second kind. Furthermore, the asymptotic behavior

of these quantities are described by

�! 1 , d⌦1 ! d⌫ (3.36)

and

�! 0 , d⌦0 ! �d⌫

⌫2
. (3.37)

4
All vectors e.g. n, and ⇣ are taken to be column vectors (and therefore their transposes nt, ⇣t are
row vectors).
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They are also constrained byI
aj

d⌦1, 0 = 0 , j = 1, · · · , g . (3.38)

It is common in the literature to find a notation in which ⌦ explicitly appears

in the parenthesis as in ✓(⇣;⌦); we will not follow such notation here. The only

instances when ⌦ is written in the parenthesis is when it is being added to the

vector ⇣ for example as in ⇣ + ⌦ · ↵ where ↵ is a column vector. Also we will

write ⌦
↵

0
,�

0 to denote the quantity ↵0 +⌦ · �0 which is a column vector with entries

↵0
1 +⌦

i,1�0
1 + · · ·+ ↵0

g

+⌦
i,g

�0
g

, i = 1, · · · , g.
There is a slightly more general form of Riemann theta function known as Rie-

mann theta function with characteristic. The characteristic is written as a column

vector of two row g-vectors 24 ↵

�

35 =

24 (↵1, · · · ,↵g

)

(�1, · · · , �g)

35 ,

and the Riemann theta function with characteristic is defined as

✓

24 ↵
�

35 (⇣) := ✓(⇣ ; �,↵) :=
X
n2Zg

e⇡i[(n+↵)·⌦·(n+↵)+2 (⇣+�)·(n+↵)] ,

(3.39)
where ↵, � 2 Zg.

Theta functions exhibit quasi-periodicity in the sense that

✓(⇣ + ↵0 +⌦ · �0) =: ✓(⇣ +⌦↵0,�0) = e�i⇡(�0·⌦·�0+2 �0·⇣) ✓(⇣) .

(3.40)
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Thus a theta function is not a↵ected by adding the integer vector ↵0 to its argument.

(3.40) is derived by a direct computation as follows;

✓(⇣ +⌦↵0,�0
) =

X
n2Zg

ei⇡(n·⌦·n+2n·(⇣+↵0+⌦·�0))

=

X
n2Zg

ei⇡((n+�0)·⌦·(n+�0)�2n·⌦·�0��0·⌦·�0+2n·(⇣+↵0+⌦·�0))

=

X
n2Zg

e�i⇡�0·⌦·�0
ei⇡((n+�0)·⌦·(n+�0)+2 (n+�0)·(⇣+↵0)�2 �0·⇣�2 �0·↵0)

=

X
n2Zg

e�i⇡(�0·⌦·�0+2 �0·⇣+2 �0·↵0)ei⇡((n+�0)·⌦·(n+�0)+2 (n+�0)·(⇣+↵0))

= e�i⇡(�0·⌦·�0+2 �0·⇣)
X
l2Zg

ei⇡(l·⌦·l+2 l·⇣) .

(3.41)

In the last equality we substituted the sum over n for a sum over l = n + �0 which

is valid since the original sum is infinite over the integer lattice. We also used that

ei2⇡mn = 1 for m,n 2 Zg.

By similar trick it can be shown that

✓(⇣+⌦↵0,�0; �,↵) =: ✓

24 ↵

�

35(⇣+⌦↵0,�0) = e�i⇡(�0·⌦·�0
+2�0·(⇣+�) ✓

24 ↵

�

35(⇣) .
(3.42)

Note that the theta function in (3.32) is just a special form of (3.39) with trivial

characteristic, i.e. ↵ = � = 0.

Theta functions that are associated with hyperelliptic Riemann surfaces fre-

quently have one half integer characteristic so it is useful to direct our focus to that

case.

Base on what has been said so far we are now in a position to derive few identities

which rely entirely upon the definitions given in both (3.32) and (3.39). It is important

to know when a Theta function is odd or even and for this we have

✓
�
� ⇣,

1

2
�,

1

2
↵
�
= ei⇡�·↵ ✓

�
⇣,

1

2
�,

1

2
↵
�
. (3.43)
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This implies that the evenness or oddness of a theta function having one half multiples

of integer characteristic 1
2

2

4 ↵

�

3

5 depends on whether the quantity � · ↵ is even or odd,

respectively. A characteristic 1
2

2

4 ↵

�

3

5 is said to be even (odd) if the quantity � ·↵ is even

(odd). In particular, for g = 3 the odd characteristic 1
2

2

4 �1

�2

3

5 where �1 = (0, 0, 1) and

�2 = (1, 1, 1) plays a crucial role in this work. And the theta function associated to

it will be denoted by ✓̂(⇣) := ✓(⇣; 12�2,
1
2�1) for the sake of brevity. As a consequence

of (3.43) we have

✓̂(�⇣) = �✓̂(⇣) , (3.44)

and this implies

✓̂(0) = 0 , (3.45)

which, as will be shown later, further implies that

✓
⇣1
2
⌦�2,�1

⌘
= ✓

✓
1

2
�2 +

1

2
⌦ ·�1

◆
= 0 . (3.46)

Quantities such as 1
2⌦�2,�1 for which ✓(12⌦�2,�1) = 0 are known as half periods of a

theta function.

Returning to the identity in (3.43), we can deduce it by a similar trick already

used. By replacing ⇣ by �⇣, and taking care to include the one half in (3.39);

✓(�⇣; 1
2
�,

1

2
↵) =

X
n2Zg

exp i⇡


(n+

1

2
↵)2⌦� 2 ⇣(n+

1

2
↵) + �(n+

1

2
↵)

�
,

with the understanding that quantities like n ·⌦ · n = n2⌦. Then

rhs =

X
n2Zg

exp i⇡


(�n� ↵+

1

2

↵)2⌦+ 2 ⇣(�n� ↵+

1

2

↵) + �(�n� ↵+

1

2

↵) + 2�n+ �↵

�
= ei⇡�↵

X
n2Zg

exp i⇡


(�n� ↵+

1

2

↵)2⌦+ 2 ⇣(�n� ↵+

1

2

↵) + �(�n� ↵+

1

2

↵)

�
.
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Setting m = �n� ↵;

rhs = ei⇡�↵
X
m2Zg

exp i⇡


(m+

1

2
↵)2⌦+ 2 ⇣(m+

1

2
↵) + �(m+

1

2
↵)

�
= ei⇡�↵ ✓(⇣;

1

2
�,

1

2
↵),

as was to be shown.

The next one is quite general;

✓(⇣ +⌦m,m0;
1

2
�,

1

2
↵) = exp i⇡


�2m0(⇣ +

1

2
⌦m0) + (m↵�m0�)

�
⇥ ✓(⇣ :

1

2
�,

1

2
↵) . (3.47)

By definition

lhs =

X
n2Zg

exp i⇡


(n+

1

2

↵)2⌦+ 2 (⇣ +m+⌦m0
)(n+

1

2

↵) + �(n+

1

2

↵)

�
=

X
n2Zg

exp i⇡


(n+

1

2

↵)2⌦+ 2 ⇣(n+

1

2

↵) + �(n+

1

2

↵)

�
⇥ exp [2mn+m↵+ 2⌦m0 n+⌦m0 ↵]

=

X
n2Zg

exp i⇡


(n+m0

+

1

2

↵)2⌦+ 2 ⇣(n+m0
+

1

2

↵) + �(n+m0
+

1

2

↵)

�
⇥ exp i⇡

⇥
2mn+m↵+ 2⌦m0 n+⌦m0 ↵�⌦(m02

+ 2nm0
+m0 ↵)� 2⇣m0 � �m0⇤

= exp i⇡


�2m0

(⇣ +
1

2

⌦m0
) + (m↵�m0 �)

�
⇥

X
n2Zg

exp i⇡


(n+m0

+

1

2

↵)2 ⌦+ 2 ⇣(n+m0
+

1

2

↵) + �(n+m0
+

1

2

↵)

�
.

Setting l = n+m0 and summing over l gives (3.47).

The next one which is

✓(⇣ +
1

2
⌦�0,↵0;

1

2
�,

1

2
↵) = e�i⇡↵0(⇣+1

2

�+1

2

�0+1

4

⌦↵0)

⇥ ✓(⇣ ;
1

2
� +

1

2
�0,

1

2
↵ +

1

2
↵0)

(3.48)
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looks very similar to (3.47) and one may, by replacing m by 1
2�

0 and m0 by 1
2↵

0 in

the latter and keenly following the above proof for (3.47), arrive at (3.48). A much

easier alternative way is to do the substitutions in the last line of the above proof

for (3.47). One must be careful though, because by naively substituting quantities in

(3.47) reveals that only the exponential prefactors will agree on the right hand sides

of both identities, the theta functions do not match, however.

A corollary of (3.48) is that

✓(⇣ � 1

2
⌦�,↵;

1

2
�,

1

2
↵) = ei⇡↵(⇣�

1

4

⌦↵) ✓(⇣) . (3.49)

This can be seen by substituting ↵0 = �↵, and �0 = ��.

The next identity is of paramount importance;

✓(⇣ ;
1

2
�,

1

2
↵) = ei⇡↵(⇣+

1

2

�+1

4

⌦↵) ✓(⇣ +
1

2
⌦�,↵) , (3.50)

in the sense that it gives a relationship between a theta function with one half integer

characteristic to theta function with zero characteristic. It is obtained from (3.48) by

setting ↵ = � = 0. It also shows that for g = 3, � = �2, and↵ = �1, (3.46) holds as

was promised.

Finally we have

✓(⇣ ;
1

2
� +m,

1

2
↵ +m0) = ei⇡m↵ ✓(⇣ ;

1

2
�,

1

2
↵) , (3.51)

and its derivation is trivial by now.
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3.4 Fay’s Trisecant Identity

Perhaps the most important identity among the theta functions and certainly the

most important one in this paper is Fay’s trisecant identity:

✓(⇣) ✓

✓
⇣ +

Z p1

p2

! +

Z p4

p3

!

◆
= �

1234

✓
⇣
⇣ +

Z p1

p2

!
⌘
✓
⇣
⇣ +

Z p4

p3

!
⌘

+ �
1324

✓
⇣
⇣ +

Z p1

p3

!
⌘
✓
⇣
⇣ +

Z p4

p2

!
⌘
,

(4.52)

with

�ijkl =
✓(a +

R pi
pk
!) ✓(a +

R pj
pl
!)

✓(a +
R pi
pl
!) ✓(a +

R pj
pk
!)

. (4.53)

In these formulas p
j

are points on the Riemann surface, and a is a non-singular zero

of the Riemann theta function, i.e. at a the function is zero but not its gradient. In

particular cases, for example in genus three a = 1
2�2+

1
2⌦�1 is a zero as noticed from

(3.49). Also notice that the contour integral
R

pb

pa
!
j

defines a vector which from now

on, following standard convention, will be abbreviated asZ
pb

pa

!
j

!
Z

pb

pa

. (4.54)

The function � may be viewed as a generalization of the cross-ratio function on CP1

to functions on Riemann surfaces. Some immediate properties of this function are:

�1233 = �1134 = 1, �2134 = ��1
1234, �1214 = 0 = �1232. (4.55)

There is also another important property of Riemann theta functions which comes

handy in many places in the course of our work. We derived this property from the
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Fay’s trisecant identity. The property is that suppose ⇣ 0 is a zero of the Riemann

theta function, i.e. ✓̂(⇣ 0) = 0, then

✓̂

✓
⇣ 0 �

Z 4

1

◆
✓

✓
⇣ 0 +

Z 4

1

◆
+✓̂

✓
⇣ 0 +

Z 4

1

◆
✓

✓
⇣ 0 �

Z 4

1

◆
= 0 .

(4.56)
A notation has been adopted where each point p

i

has been set to i and the Abelian

di↵erential in the integrals has been dropped for brevity. To show (4.56), we begin

by explicitly rewriting the Fay’s trisecant identity

✓(⇣) ✓

✓
⇣ +

Z 1

2

+

Z 4

3

◆
=

✓
⇣
a+

R 1

3

⌘
✓
⇣
a+

R 2

4

⌘
✓
⇣
a+

R 1

4

⌘
✓
⇣
a+

R 2

3

⌘ ✓✓⇣ + Z 1

2

◆
✓

✓
⇣ +

Z 4

3

◆

+
✓
⇣
a+

R 1

2

⌘
✓
⇣
a+

R 3

4

⌘
✓
⇣
a+

R 1

4

⌘
✓
⇣
a+

R 3

2

⌘ ✓✓⇣ + Z 1

3

◆
✓

✓
⇣ +

Z 4

2

◆
Since the four points {1, 2, 3, 4} are distinct arbitrary points on the Riemann surface

we are free to rearrange them as follows; 2 ! 1, 1 ! 4, 4 ! 4̃. The point 4̃ lying on

the lower sheet of the hyperelliptic Riemann surface is the point corresponding to 4

which lies on the upper sheet.

✓(⇣) ✓

 
⇣ +

Z 4

1

+

Z 4̃

3

!
=

✓
⇣
a+

R 4

3

⌘
✓
⇣
a+

R 1

4̃

⌘
✓
⇣
a+

R 4

4̃

⌘
✓
⇣
a+

R 1

3

⌘ ✓✓⇣ + Z 4

1

◆
✓
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Z 4̃

3

!

+
✓
⇣
a+

R 4

1

⌘
✓
⇣
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R 3

4̃

⌘
✓
⇣
a+

R 4

4̃

⌘
✓
⇣
a+

R 3

1

⌘ ✓✓⇣ + Z 4

3

◆
✓

 
⇣ +

Z 4̃

1

!

Note that the integral
R 4̃

1 is equal to �
R 4

1 and the point 1 will be chosen as the base

point for all integrals, i.e. an integral
R

j

i

, i, j 6= 1 should be understood as
R 1

i

+
R

j

1 .

This means we can rewrite the above identity as
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Z 4

1
+

Z 4̃

1
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1

!
=

✓
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R 3
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✓
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a�

R 3
1
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✓
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Z 4

1

◆
✓

✓
⇣ �

Z 4

1
�
Z 3

1

◆

+

✓
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R 4
1

⌘
✓
⇣
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R 4
1 +

R 3
1
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✓
⇣
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R 4
1

⌘
✓
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R 3
1
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✓
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Z 4

1
�
Z 3
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◆
✓

✓
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Z 4
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◆
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Using the relationships among ✓ and ✓̂ given in (3.49) we have

✓(⇣) ✓̂(⇣)ei⇡�1·(⇣� 1
2�2� 1

4⌦·�1) =
✓
⇣
a+

R 4

1 �
R 3

1

⌘
✓
⇣
a+

R 4

1

⌘
✓
⇣
a+ 2

R 4

1

⌘
✓
⇣
a�

R 3

1

⌘
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✓
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Z 4

1

◆
✓̂

✓
⇣ �

Z 4

1

◆
ei⇡�1·(⇣�

R 4
1 � 1
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+
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R 4

1

⌘
✓
⇣
a+

R 4
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R 3
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✓
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1
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✓
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R 3

1

⌘
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✓
⇣ +

Z 4

1

◆
✓

✓
⇣ �

Z 4

1
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ei⇡�1·(⇣+

R 4
1 � 1

2�2� 1
4⌦·�1)

After further simplifications of the constant terms and cleaning up, the resulting

expression becomes

✓(⇣) ✓̂(⇣) = e�i⇡�1·
R 4
1

✓
⇣ R 4

1

⌘
✓
⇣
a+

R 4

1

⌘
✓
⇣
a+ 2

R 4

1

⌘
✓(0)

✓

✓
⇣ +

Z 4

1

◆
✓̂

✓
⇣ �

Z 4

1

◆

+ ei⇡�1·
R 4
1

✓
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a+

R 4

1

⌘
✓
⇣
2a+

R 4

1

⌘
✓
⇣
a+ 2

R 4

1

⌘
✓(2a)

✓̂

✓
⇣ +

Z 4

1
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✓

✓
⇣ �

Z 4

1

◆
(4.57)

The constant terms can still be further simplified again by using the relation (3.49)

to arrive at two identities, namely

e�i⇡�1·
R 4
1

✓
⇣
a+

R 4

1

⌘
✓
⇣
a+ 2

R 4

1

⌘ =
✓̂
⇣R 4

1

⌘
✓̂
⇣
2
R 4

1

⌘ (4.58)

and

e2i⇡�1·
R 4
1

✓
⇣
2a+

R 4

1

⌘
✓ (2a)

=
✓
⇣R 4

1

⌘
✓(0)

, (4.59)

which when substituted in (4.57) gives

✓(⇣) ✓̂(⇣) =
✓̂
⇣ R 4

1

⌘
✓
⇣ R 4

1

⌘
✓̂
⇣
2
R 4

1

⌘
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
✓

✓
⇣ +

Z 4

1

◆
✓̂

✓
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Z 4

1

◆
+ ✓̂

✓
⇣ +

Z 4

1

◆
✓

✓
⇣ �

Z 4

1

◆�
.

(4.60)

Then (4.56) is proved when ⇣ is ⇣ 0, a zero of ✓̂.
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Note also that another significance of (4.60) is that it states that the quantity on

the left hand side of

✓
⇣
⇣ +

R 4

1

⌘
✓̂
⇣
⇣ �

R 4

1

⌘
+ ✓̂

⇣
⇣ +

R 4

1

⌘
✓
⇣
⇣ �

R 4

1

⌘
✓(⇣) ✓̂(⇣)

=
✓̂
⇣
2
R 4

1

⌘
✓(0)

✓̂
⇣ R 4

1

⌘
✓
⇣ R 4

1

⌘ (4.61)

is independent of ⇣.

3.5 Quasi-periodic Solution to the Cosh-gordon Equation

One important use of the Fay’s Trisecant formula is that it provides a direct way

of obtaining directional derivatives of theta functions or of ratios of them. Suppose

we take the derivative D
p1 of (4.52) and then send p2 ! p1 we get

D
p1 ln

"
✓(⇣)

✓(⇣ +
R

p4

p3
)

#
= �D

p1 ln
h✓(a+ R p1

p3
)

✓(a+
R

p1

p4
)

i

�
D

p1✓(a) ✓
⇣
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R
p3

p4

⌘
✓
⇣
a+

R
p1

p4

⌘
✓
⇣
a+

R
p3

p1

⌘ ✓
⇣
⇣ +

R
p1

p3

⌘
✓
⇣
⇣ +

R
p4

p1

⌘
✓(⇣) ✓

⇣
⇣ +

R
p4

p3

⌘ . (5.62)

Here D
p1 indicates a directional derivative defined as (summation over j implied):

D
p1F (⇣) = !

j

(p1)
@F (⇣)

@⇣
j

, (5.63)

and should not be confused with a derivative with respect to p1 that, if appears, we

will denote as @
p1 . Also, the final expression is simplified using the identities (4.55).

We can further take D
p3 and then send p4 ! p3 obtaining:

D
p3p1 ln ✓(⇣) = D

p3p1 ln ✓

✓
a+

Z
p1

p3

◆
+

D
p1✓(a)Dp3✓ (a)

✓
⇣
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⌘
✓
⇣
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R
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⌘ ✓
⇣
⇣ +

R
p1

p3

⌘
✓
⇣
⇣ +

R
p3

p1

⌘
✓2(⇣)

.

(5.64)

(5.64) shows that the second derivative of the logarithm of a theta function con-

tains the theta function. This motivates us to think that solutions of

@@̄↵ = 4 cosh↵ = 2(e↵ + e�↵) , (5.65)
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should naturally be sought as logs of theta functions.

We rewrite (5.64) more succinctly,

D
p3p1 ln

✓(⇣)

✓
⇣
a+

R
p1

p3

⌘ = � D
p1✓(a)Dp3✓ (a)

✓
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a+

R
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p3

⌘
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R
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p1

⌘ ✓
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⇣ +

R
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p3

⌘
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⇣
⇣ +

R
p3

p1

⌘
✓2(⇣)

. (5.66)

This equation is valid for all ⇣ so we may shift the argument ⇣ ! ⇣ +
R

p3

p1
obtaining

another equation which we then subtract from (5.66) leaving us with

D
p1p3 ln

✓(⇣)

✓(⇣ +
R

p3
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)
= (5.67)
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R

p3

p1
)

)
.

Define Z
p3

p1

! :=
1

2
�2 +

1

2
⌦ ·�1 , (5.68)

where �2,�1 constitute an integer characteristic and ⌦ is the period matrix in (3.29).

This gives

✓(⇣ +

Z
p3

p1

) = e�⇡i�1·(⇣+ 1
2�2+

1
4⌦·�1) ✓

24 �1/2

�2/2

35 (⇣). (5.69)

This identity will help us further simplify (5.67) but first we make a choice of path

from p1 to p3 such that �1 ·�2 is odd, i.e. e�i⇡�1·�2 = �1. Using these we get a nicer

formula

D
p3p1 ln

✓(⇣)

✓̂ (⇣)
= �D

p1✓(a)Dp3✓ (a)

✓̂2(a)

"
✓̂2(⇣)

✓2(⇣)
+
✓2(⇣)

✓̂2(⇣)

#
. (5.70)

It turns out that the coe�cient of the quantity in square brackets is unity.

Define

⇥ :=
✓2(⇣)

✓̂2(⇣)
,

then (5.70) becomes

D
p1p3 ln⇥ = 2


1

⇥
+⇥

�
(5.71)

which is a disguised form of the cosh-gordon equation

@@̄↵ = 4 cosh(↵) . (5.72)
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We used that with ⇣ = U z + iVz̄ then D
p1 = @̄, D

p3 = @ and more importantly we

set,

↵ = 2 ln
✓(⇣)

✓̂(⇣)
. (5.73)

Therefore, our final expression of the Poincaré coordinates may now be written

Z =

����� ✓̂(2
R

p4

p1
)

✓̂(
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, (5.74)

X + iY = e2µ̄z̄+2⌫̄z
✓(⇣ �

R
p4

p1
)✓(⇣ +
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R
p4

p1
)

|✓̂(⇣ �
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p1
)|2 + |✓(⇣ �

R
p4

p1
)|2

, (5.75)

with

µ = �D
p3 ln ✓(

Z
p4

p1

), ⌫ = �D
p1 ln ✓̂(

Z
p4

p1

). (5.76)



46

4. Wilson loops I: Simple curves

The quasi-periodic solutions to the cosh-gordon equation, conveniently expressed in

terms of Theta functions, give rise to many di↵erent possibilities of Wilson loops;

some Wilson loops appear as a single piecewise smooth curve and others appear as

multiple piecewise smooth curves. A Wilson loop that belong to the first category is

said to be a simple Wilson loop, and this chapter is devoted to that case. The next

chapter will deal with the latter category.

4.1 Wilson Loops of g=3 Hyperelliptic Riemann Surfaces

The shape of the Wilson loop is determined by the intersection of the minimal

area surface with the boundary of AdS3 . The boundary of AdS3 , in Poincaré

coordinates, is located at Z = 0 which, from Ch3 (5.74) for finite z, z̄, implies that

either ✓(⇣) = 0 or ✓̂(⇣) = 0. In this work we focus on the second case so we determine

the shape of the Wilson loop by

✓̂(⇣) = 0. (1.1)

This equation defines curves in the world-sheet which in turn are mapped to curves in

the Z = 0 plane of the Poincaré patch using the solution to the equations of motion

Ch3 (5.75).

These solutions do not always lead to a simple Wilson loop. In general the Wilson

loops obtained can be very complicated curves; one must select those curves which

give rise to simple Wilson loops. Also a Wilson loop could spiral infinitely. There

are parameters that can be tuned to prevent some of these pathologies, however. We

begin with a study of those Wilson loops that arise from theta functions associated

to hyperelliptic Riemann surfaces of genus three.
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To be more explicit we will illustrate the main ideas of this section by working with

a particular example of a hyperelliptic Riemann surface. First, recall the definition

of a hyperelliptic Riemann surface: Let X̃ be a curve defined by

µ2 = f(�) (1.2)

with f(�) a polynomial having distinct roots. Assume that f(�) has degree 2g+1+�

with � equal to 0 or 1 depending on whether g is odd or even, respectively. Then

there is a degree 2 map � : X̃ ! P and the branch points of � are exactly the roots

of f .

With g = 3 let’s take our Hyperelliptic curve to be defined by

µ2 = �(�� a)(�+ 1/a)(�� b)(�� b̄)(�+ c)(�+ c̄) , a 2 R , b, c 2 C (1.3)

The corresponding hyperelliptic Riemann surface with the canonical basis of cycles

is displayed in Figure 4.1

Figure 4.1. g=3 hyperelliptic Riemann surface along with a choice of basis
cycles.

Take the unique normalized basis of Abelian di↵erentials of the first kind such

that
R
ai
!
j

= �
i j

. Furthermore consider the Abelian di↵erentials in this basis to be
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linear combinations of the previously computed basis of holomorphic di↵erential on

a hyperelliptic Riemann surface. That is

!
j

=
3X

k=1

c
j k

!̃
k

=
3X

k=1

c
j k

�3�k

µ
d� , j = 1, 2, 3

where

c
j k

= (A�1)
j k

, A
j k

=

I
ak

!̃
j

, B⌘ k =

I
bj

!
k

. (1.4)

It is clear how to compute the matrices A and B.

The next set of quantities which are necessary are the vectors found in the ex-

pression ⇣ = Uz + iz̄V.

Recall that these are given by

U
k

=

I
bk

d⌦1 , V
k

=

I
bk

d⌦0 , k = 1, 2, 3 , (1.5)

where the Abelian di↵erentials of the second kind are given by

⌦1, 0 =

Z
�

1
d⌦1, 0 . (1.6)

From the previous chapter, it was established that the holomorphic one forms

on X̃ are of the form �j d�
µ

where j  g � 1. This means the quantity d⌦1, being

meromorphic, goes like

d⌦1 ⇠ �j

µ
d� with j � 3.

Furthermore, from the asymptotic behavior of d⌦1

�! 1 , d⌦1 ! d⌫ =
1

2

d�p
�
,

it can be deduced that j = 3 and

d⌦1 ⇠ 1

2

�3

µ
d� ,

because in the � ! 1 limit, we have µ ! �7/2. In the general case j will be found

to be equal to g, the genus of the hyperelliptic Riemann surface.
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We are free to add to d⌦1 an holomorphic 1- form without compromising the

meromorphicity. So we add a linear combination of holomorphic 1-forms;

d⌦1 =
1

2

�3

µ
d�+

X
j

↵0
j

!
j

.

Using the constraint

0 =

I
ak

d⌦1 =
1

2

I
ak

�3

µ
d�+ ↵0

k

,

we determine the constants

↵0
k

= �1

2

I
ak

�3

µ
d� .

This allows for the quantity U
k

to be given explicitly as

U
k

=
1

2

I
bk

�3

µ
d�� 1

2

X
j

⇣I
aj

�3

µ
d�
⌘
B

k j

. (1.7)

By repeating the procedure above for d⌦0 keeping in mind the asymptotic behavior

�! 0 , d⌦0 ! �d⌫

⌫2
, µ ! i

p
� ,

it can be determined that

V
k

= � i

2

I
bk

��1

µ
d�+

i

2

X
j

⇣I
aj

��1

µ
d�
⌘
B

k j

. (1.8)

These quantities can now be assembled and substituted into the equations (5.73),

(5.74), (5.75) and (5.76) of Ch3. (5.74) is particlarly crucial in that the Wilson loops

in AdS3 are defined by the equation

Z = 0

which can be achieved by setting

✓̂(⇣) = 0 .

The � which appears in the Abel map A
!

: X̃ ! C that acts on a point in X̃ by

x 7�!
Z

x

x0

! ,
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is the so called spectral parameter in the theory of integrability. In this case it provides

some sense of symmetry for theWilson loops. By changing the value of � while keeping

its absolute value at unity, for the reality of the solutions, we can continuously deform

a single Wilson loop and get many di↵erent shapes. This deformation does not a↵ect

the regularized are of the corresponding minimal area surface, however.

In particular, the Wilson loops for two di↵erent values of � and the choice of

a = 2, b = 1/2 + i/2, and c = 1 + i are shown below:

Figure 4.2. Shapes of a Wilson loop for di↵erent values of �.

4.2 Analytic Formula for the Area of Minimal Area Surface

Using (1.1) and the accompanying choice of basis cycles on the Riemann surface

we found simple Wilson loops in the boundary of AdS3 like the ones shown in Figure

4.2. The shape of these boundary curves depend on the spectral parameter � but

the renormalized area, denoted A
f

, does not. So for a given period matrix ⌦ the

solution here is a single parameter family and this parameter leaves the renormalized

area invariant. This seems a bit strange at first but perhaps a closer look at the

regularization scheme may o↵er some clarifications.
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The vanishing of Z at the boundary of the gravity dual surface makes the total

area of these surfaces to blow up. When ✓̂ is zero, the field ↵ goes to infinity. So from

the formula for the area

A = 4

Z
e↵d�d⌧ , (2.9)

it becomes clear why the area diverges.

Using Fay’s trisecant identity, we find an expression for the exponential to be a

sum of a finite term and a term that diverges at the boundary where ✓̂ = 0;

e↵ = D
p1p3 ln ✓(0)�D

p1p3 ln ✓̂(⇣) (2.10)

= D
p1p3 ln ✓(0)� @@̄ ln ✓̂(⇣). (2.11)

Integrating the second term at the boundary of the surface obviously leads to

divergence so we need to regulate it. In order to do that we observe we may write Z

as a product of a non vanishing function and ✓̂

Z = |✓̂(⇣)|h(z, z̄) , (2.12)

with

h(z, z̄) =

����� ✓̂(2
R

p4

p1
)

✓̂(
R

p4

p1
)✓(
R

p4

p1
)

����� |✓(0)✓(⇣)| |eµz+⌫z̄|2

|✓̂(⇣ �
R

p4

p1
)|2 + |✓(⇣ �

R
p4

p1
)|2

. (2.13)

Substituting (2.11) into (2.9) and applying Stoke’s theorem we get the expression

A = 4D
p1p3 ln ✓(0)

Z
d�d⌧ +

I
n̂ ·r lnh d`�

I
n̂ ·r lnZ d`. (2.14)

The last integral is divergent and we concentrate now on extracting the leading di-

vergence. The correct AdS/CFT prescription is to cut the surface at Z = ✏ and write

the area as

A =
L

✏
+ A

f

, (2.15)

where L should be the length of the Wilson loop and A
f

is the finite part which is

identified with the expectation value of the Wilson loop through:

hW i = e�
p
�

2⇡ Af , (2.16)
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where here � is the ’t Hooft coupling of the gauge theory (not to be confused with the

spectral parameter). This prescription is equivalent to subtracting the area A = L

✏

of

a string ending on the contour of length L and stretching along Z from the boundary

to the horizon. To see that the coe�cient of the divergence is indeed the length, let

us compute

Adiv. = �
I
Z=✏

1

Z
n̂ ·rZd` =

1

✏

I
Z=✏

|rZ|d` , (2.17)

where we observe that the normal is precisely in the opposite direction of rZ because

the contour is a curve of constant Z = ✏ and Z increases toward the inside. On the

other hand the length in the boundary is given by

L =

I q
|t̂.rX|2 + |t̂.rY |2d` , (2.18)

where t̂ is a unit vector tangent to the contour. We can move forward if we write the

equation of motion for X as derived form the action Ch2 (2.7):

2rX ·rZ = Zr2X , (2.19)

which, when Z ! 0, becomes rX · rZ = 0 namely rX is perpendicular to the

normal and therefore parallel to the tangent t̂. The same is true for rY so we find

L =

I p
|rX|2 + |rY |2d`+O(✏2). (2.20)

Finally the equation of motion for Z is

(rZ)2 � Zr2Z = (rX)2 + (rY )2 , (2.21)

which for Z ! 0 implies that
p
|rX|2 + |rY |2 = |rZ|. Therefore the length of the

Wilson loop is given by

L =

I
|rZ|d`� ✏

2

I r2Z

|rZ| d` , (2.22)

and the divergent piece of the area is indeed Adiv. = L

✏

. There is a finite part

remaining:

A =
L

✏
+ Af , (2.23)

Af = 4D
p1p3 ln ✓(0)

Z
d�d⌧ +

I
n̂ ·r lnh d`+

1

2

I r2Z

|rZ| d`.



53

The integrals are performed on the world-sheet parameterized by �, ⌧ . The first

integral is proportional to the area of the world-sheet. The last two integrals are done

over the world-sheet boundary. The final expression can be simplified by rewriting

Z = |✓̂(⇣)|h(z, z̄) and using that ✓̂(⇣) vanishes on the boundary where the contour

integral is performed. It is then easy to check that h(z, z̄) term drops out and the

final formula for the renormalized area is

Af = 4D
p1p3 ln ✓(0)

Z
d�d⌧ +

1

2

I r2✓̂(⇣)

|r✓̂(⇣)|
d`

= 4D
p1p3 ln ✓(0)

Z
d�d⌧ +

I
D

p1p3 ✓̂(⇣)

|D
p1 ✓̂(⇣)|

d`. (2.24)

This gives us an analytical expression for the renormalized area of the minimal sur-

faces.

In illustrative terms, what this all means is that in order to regularize the integral

we cut the surface, as shown in Figure 4.3, at a height ✏ ! 0 and then subtract the

leading divergent term. The leading term contains information about the length of

the Wilson loop.
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












Figure 4.3. The boundary is determined by the contour Z = 0. However
the area is computed by integrating up to a contour Z = ✏ ! 0 and then
the leading divergence L

✏

is subtracted. Here L is the length of the contour
in the boundary (not in this (�,⌧) plane).

We find that the shape of the Wilson loop depends on the spectral parameter �.

For two values

�1 = i, �2 = �1 + ip
2
. (2.25)

we obtained

L1 = 13.901, L2 = 6.449 , (2.26)

A
f

= �6.598 for both. (2.27)
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Figure 4.4. Minimal area surfaces ending on the contours illustrated in
Figure 4.2. We emphasize that the surfaces are known analytically and
they have the same area.
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5. Wilson loops II: Multiple Curves

We have seen in Ch4 how simple Wilson loops arise from a g = 3 hyperelliptic

Riemann surface. This chapter is devoted to the case in which the Wilson loop

consists of multiple curves in the boundary of AdS3 . Some of these Wilson loops are

open as in the case of the already known examples of the cusp [8], and the double

parallel lines [3]; others are closed as in the cases of the concentric circles [7].

These already known examples can also be attained by applying the proposed

technique in the g = 1 setting. We will demonstrate this before moving on to the

case of g = 3 multiple curve Wilson loops. We see that for this higher genus new

examples of Wilson loops and their minimal area surfaces may be computed.

5.1 Wilson Loops of g=1 Hyperelliptic Riemann surfaces

The study of g = 1 hyperelliptic Riemann surface gives us an opportunity to

study some of the previously known examples of Wilson loop from a new perspective.

It unveils some structure among these seemingly unrelated Wilson loops. It shows

that the story of the cusp Wilson loop segues into that of the concentric circles by

adjusting the branch point. In fact it will be shown that the single line, the cusp, the

parallel lines, and concentric circles are all related to each other.

As before we begin by describing the elliptic curve;

µ2 = �(�� a)
�
�+

1

a
) , a 2 R . (1.1)

The corresponding Riemann surface along with the choice of basis cycles is shown in

Figure 5.1. The Riemann theta functions in the g = 1 settings are just the slightly

more familiar Jacobi theta functions which can be shown [21] to be related to the

Elliptic theta functions; for consistency we continue to use Riemann theta functions

with the caveat that the arguments have now become complex scalars.
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The g = 1 case is further characterized by the fact that we have an explicit

relationship between the quantities ⌦1 and ⌦0;

⌦+ := ⌦1 + i⌦0 =
µ

�
, (1.2)

and consequently

⌦� := ⌦1 � i⌦0 = 2⌦0 +
µ

�
. (1.3)

Figure 5.1. g=1 hyperelliptic Riemann surface along with a choice of basis
cycles.

The two important determinants of the nature of the Wilson loops obtained are

the spectral parameter � and the branch point a. The cases of interest are � = ±1.

For each of these values of � we have the choice of taking a > 1 or a < 1. It turns

out that for values of a in these intervals the Wilson loops behave the same for both

values of �:

• � = ±1; a < 1: The quantities ⌦+ and ⌦� are both real and the Wilson loop is

a cusp. The minimal area surface is a half-cone and the angle of cusp ✓ is given

by

cos(✓) = Re
X2(0)

X1(0)
, (1.4)

where X1 and X2 are the solutions (5.75) along the first and second lines, going

counterclockwise from the positive X-axis, that make up the Wilson loop.
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Figure 5.2. The cusp and its corresponding half-cone.
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• � = ±1; a > 1: The quantities ⌦+ and ⌦� are both imaginary and the Wilson

loop is the concentric circles. The minimal area surface is a half-torus.

Figure 5.3. The concentric circles and its corresponding half-torus.

There are other possibilities and one case of interest is when � = 1 and letting a

take on values for which the hyperelliptic curve becomes singular. These cases are

• a ! 0: The curve is becoming singular and the Wilson loop is a straight line.

• a ! 1: The Wilson loop is a pair of parallel lines.

• a ! 1: The curve is becoming singular and the Wilson loop is a circle.

Note that the cases when a ! 0 and a ! 1 gave simple Wilson loops which

are the subject of the previous chapter. We saw in the previous chapter how the

technique generalizes the concept of the circular Wilson loop.

5.2 Closed Wilson Loops for g = 3 Hyperelliptic Riemann Surface

We are primarily interested in the genus 3 case and here we have 2g + 1 finite

branch points (and the point at infinity). Also the number of branch cuts being,
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g + 1, will now increase from two to four. Due to the involution � ! �1/�̄ , the

branch point c = �1/b. The points b̄ and c̄ are the complex conjugates of b and c,

respectively (See Figure 4.1).

In the g = 1 case the Wilson loop we get for � = ±1 automatically is periodic for

a > 1. In general this is not the case and certainly not for g = 3. The image of the

curves determined by ✓̂ = 0 in AdS3 is typically an infinite spiral. The practical way

to get a periodic Wilson loop is to judiciously select the branch points for |�| = 1.

Even when the Wilson loop is periodic, it is not guaranteed that it is not a

very complex system of curves that intersect with each other or individually self

intersect. For example, suppose the world sheet is a horizontal strip bounded by two

horizontal curves that map to periodic curves in AdS. In addition, suppose between

these horizontal strips there are several closed curves. Then the image of the entire

horizontal strip in the boundary of AdS is in general a complicated system of curves.

For now, we are interested in studying non intersecting periodic Wilson loops.

Since in g = 1 case with a > 1 we obtained periodic Wilson loops, we take the

g = 3 hyperelliptic Riemann surface and make it look as close as possible to the

g = 1 hyperelliptic Riemann surface. The idea then is that as we shrink the bb̄ and cc̄

branch cuts we should get results close to the concentric circles. This can be viewed

as a perturbation of the concentric circles and this should be manifested in the shapes

of the Wilson loops we get. We reemphasize that unlike the g = 1 case the solutions

are not automatically periodic; we must work tediously to pick a suitable value of

a > 1 as we move the point b around to get periodic concentric curves.

Along the boundary of the minimal area surfaces the solution may be further

simplified using the Fay’s trisecant formula. In particular we have that

X̄ := X � iY = e2µ̄z̄+2⌫̄z ✓̂(⇣ +
R

�

0 )

✓̂(⇣ �
R

�

0 )
. (2.5)

Since at the boundary we have Z = 0 we are concerned with when X̄ becomes

periodic. Theoretically, we know what conditions need to be satisfied for (2.5) to be

periodic and we wish to discuss that in the following section.
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5.3 Excursion: Periodicity of a Ratio of Riemann Theta Functions

We first focus on how to get the ratio of theta functions to be periodic. Once this

is understood it should be obvious how to achieve periodicity in (2.5).

Consider a g dimensional complex vector space V and a discrete subset ⇤ ⇢ V . ⇤

is a lattice in V and therefore a subgroup of the additive subgroup of V. The quotient

space X = V/⇤ is a connected compact complex manifold called a complex tori of

dimension g. Also the addition in V induces an abelian Lie group structure on X

which makes it a complex abelian Lie group. There is a projection map ⇡ : V ! X

such that ⇤ = ker(⇡).

The basic question we want to address here is how to construct meromorphic

functions on X. The answer to this question turns out to have an interesting bearing

on the problem at hand–the problem of periodicity of the Wilson loops.

To get a meromorphic function f onX one may begin with a meromorphic function

h on V such that h = f � ⇡ is the pullback of f . Note that a sensible meromorphic

function on X must be ⇤-periodic. Thinking of f as a rational function, one would

demand that both the denominator and numerator transform in a controllable manner

so that the ratio as a whole is ⇤-periodic. It is not di�cult to prove that such

meromorphic function on a complex torus occurs as ratios of translated Riemann

theta functions. A translated Riemann theta function is defined as ✓(x)(⇣) = ✓(⇣ �
✏0/2 � ⌧✏/2 � x) with simple zeros at ⇣ = x + ⇤. The quantities ✏ and ✏0 constitute

the usual characteristic of a theta function.

Suppose we have a ratio of product of Theta functions

R(⇣) =

Q
m

i=1 ✓
(xi)(⇣)Q

n

j=1 ✓
(yj)(⇣)

. (3.6)

It can be shown that for ⌦ 2 ⇤, R(z + ⌦) = R(z) if and only if the conditions

• m = n and

•
P

x
i

�
P

y
j

2 Zg.

are satisfied.
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5.4 Back to Periodicity of our Solutions

Since in (2.5) we have m=n=1, we only need to find places x
i

on the Riemann

surface such that the fraction is periodic. This is exactly what amounts to the problem

of finding values of a and b so that the ratio of ✓̂ is periodic, namely that ⇣ ! ⇣ +m,

for m 2 Zg.

For the exponential in (2.5) to be periodic it is clear we need the quantity

!(z, z̄) = µz + ⌫z̄ =
p

q
⇡i

where p/q 2 Q. Since we are studying world sheets bounded by horizontal curves,

this means that two points along a boundary curve of the world sheet given in (�, ⌧)

coordinates that are mapped to the same point in AdS will have the same ⌧ coordinate

but di↵erent �. Writing z = �+i⌧ and z̄ = ��i⌧ , then !(�+��, ⌧) = !(�, ⌧)+��(µ+

⌫) where �� is the di↵erence between the sigma coordinates of the two endpoints along

a curve bounding the world sheet. So although we said earlier that if we know how

to achieve periodicity in the ratio of theta functions then it will be obvious how to

get periodic solutions, that statement is true conceptually, but deceiving in practice.

This is because it is not that simple to achieve the condition ��(µ + ⌫) = (p/q)⇡ i.

This condition must be complemented by the one coming from the theta function

part of the solution. Also, we want to constrain n periods of the ratio of Riemann

theta function into a single period of the exponential so that the concentric curves

we find will be distorted from the shape of the concentric circles. The distorted figure

will have the same number of sides as n.

We found values for a and b such that we can match several periods of the ratio of

the theta functions into a single period of the exponential function. In each case we

get concentric Wilson loops which deviate from the concentric circular Wilson loops

by deformations that make them appear like they have been pinched in n sides. The

values for the branch points are shown in Table 5.1 and the corresponding Wilson

loops and dual minimal area surfaces are shown in Figures 5.4 and 5.5.



63

Table 5.1
Positions of the branch points; n corresponds to the number of periods

n=2 n=3 n=4 n=5

a = 1.28088 a = 1.102149 a = 1.035312 a = 1.0304752

b = 0.5 + 0.01i b = 0.5 + 0.1i b = 0.7 + 0.2i b = 0.7 + 0.3i





Figure 5.4. Wilson loops and minimal area surface for n periods
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



Figure 5.5. Wilson loops and minimal area surface for n periods



65

5.5 Surfaces for Concentric Wilson Loops

To get the surfaces ending on the concentric curves we need the full solutions in

Poincaré coordinates. These are given by

X + iY = e2µ̄z̄+2⌫̄z
✓(⇣ �

R
p4

p1
)✓(⇣ +

R
p4

p1
)� ✓̂(⇣ �

R
p4

p1
)✓̂(⇣ +

R
p4

p1
)

|✓̂(⇣ �
R

p4

p1
)|2 + |✓(⇣ �

R
p4

p1
)|2

Z =

����� ✓̂(2
R

p4

p1
)

✓̂(
R

p4

p1
)✓(
R

p4

p1
)

����� |✓(0)✓(⇣)✓̂(⇣)| |eµz+⌫z̄|2

|✓̂(⇣ �
R

p4

p1
)|2 + |✓(⇣ �

R
p4

p1
)|2

. (5.7)

We emphasize that in the boundary where Z = 0 the Wilson loop is the image of

the set of points where ✓̂(⇣) vanishes. The solution (5.7) describes the minimal area

surface ending on the boundary curves described by X̄ in (2.5). These surfaces are

essential in the theory because the regularized area corresponds to the expectation

value of the Wilson loop. So while the the fundamental object in the gauge theory

is the Wilson loop, in the gravity dual the corresponding object is the minimal area

surface extending into the bulk which connects to the Wilson loop in the boundary

of AdS space.

5.6 Stoke’s Theorem and the Area of Concentric Wilson Loops

In Ch4 we showed that the area of the minimal area surfaces may be analytically

expressed as [22]

A = 4D
p1p3 ln ✓(0)

Z
d�d⌧ +

Z
d�d⌧O2 lnh�

Z
d�d⌧O2 lnZ . (6.8)

In the concentric curve case, the preimage of the curves in the boundary of AdS3

typically looks like a pair of sine-like curves in the world sheet coordinates as shown

in Figure 5.6 below. Stoke’s Theorem tells us that to compute the area of a par-

ticular surface bounded by concentric Wilson loops, we need to integrate along its
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corresponding sine-like curves and along the two vertical boundaries, one at � = 0

and the other at � = �
f

. Here �
f

is the point where the curves end along the � axis.

Figure 5.6. Wilson loops in world sheet coordinates

We parametrize the sine-like curves by the variable �, so that the lower curve is

now given as ⌧1(�) and the upper one by ⌧2(�). According to Stoke’s Theorem, for

any smooth real-valued functions Q and P on a regular domain D in R2, we have

that Z
D

⇣@Q
@x

� @P

@y

⌘
dxdy =

Z
@D

Pdx+Qdy . (6.9)

Let us begin with the first term on the right hand side of (6.8) which we denote

by A
const

. When we apply (6.9) by taking Q = �/2 and P = �⌧/2 we get

A
const

= �2D
p1p3 ln ✓(0)

⇣Z
2

�⌧ 02(�)��f
Z
3

d⌧�
Z
4

�⌧ 01(�)d��
Z
2

⌧2(�)d�+

Z
4

⌧1(�)d�
⌘

(6.10)

where the subscripts 1,2,3,4 on the integrals indicate left, top, right, and bottom

boundaries of the domain in the �� ⌧ plane. Of course the simplest thing to do here

is by following elementary calculus and directly write

A
const

= 4D
p1p3 ln ✓(0)

Z
(⌧2(�)� ⌧1(�))d� (6.11)
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However, we chose to arrive at (6.10) by means of (6.9) because it will turn out that

this approach is very useful for the other two more complicated terms in (6.8) where

the condition that leads to (6.11) is absent.

For the second term in (6.8), denoted by A
h

, we may take Q = @
�

lnh and

P = �@
⌧

lnh. We then obtain

A
h

= �
Z
1

d⌧ @
�

lnh|
�0 �

Z
2

d� @
�

lnh|
⌧2⌧

0
2(�) +

Z
3

d⌧ @
�

lnh|
�f

+

Z
4

d� @
�

lnh|
⌧1⌧

0
1(�) +

Z
2

d� @
⌧

lnh|
⌧2 �

Z
4

d� @
⌧

lnh|
⌧1 (6.12)

Similarly, the last term in (6.8) indicated by A
z

becomes,

A
z

= �
⇣Z

1

d⌧ @
�

lnZ|
�0 �

Z
3

d⌧ @
�

lnZ|
�f

⌘
�
Z
2

d� @
�

lnZ|
⌧2⌧

0
2(�)

+

Z
4

d� @
�

lnZ|
⌧1⌧

0
1(�) +

Z
2

d� @
⌧

lnZ|
⌧2 �

Z
4

d� @
⌧

lnZ|
⌧1 (6.13)

Since Z vanishes along the sine-like curves parametrized as ⌧1(�) and ⌧2(�), we see

clearly that only the terms in parenthesis in (6.13) are finite leaving all integrals

along sides 2 and 4 which are the two horizontal curves bounding the world sheet

to diverge. This is one nice thing about the Stoke’s Theorem approach because the

divergent part is exposed in very clear manner. To remedy the divergence, we cut

the surface at a height ✏ very close to the original boundary, and the integrals are

no longer divergent up to the boundary of this cut surface. This is why the string

theory is said to have an infrared divergence, but the corresponding gauge theory has

an ultraviolet divergence. The preimage of the boundary of the cut surface is then

parametrized by two horizontal curves, t1(�), t2(�) that lie very close to the original

ones and on the inside the world sheet. Once, this is done the formula then becomes

A
z

= �
⇣Z

t2(0)

t1(0)

d⌧ @
�

lnZ|
�0 �

Z
t2(�f )

t1(�f )

d⌧ @
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lnZ|
�f
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� 1
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2(�)�

Z
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0
1(�)�

Z
2

d� @
⌧

Z|
t2 +

Z
4

d� @
⌧

Z|
t1

⌘
(6.14)

It turns out that the first term in parenthesis above vanishes and therefore A
z

= �A
div

where A
div

is the other grouped item along with its coe�cient 1/✏. Finally, it is clear
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that the total area of the minimal area surface can be written as the sum of a term

that is finite and a term that diverges as 1/✏

A = A
conv

+ A
div

(6.15)

with

A
conv

= A
const

+ A
h

, (6.16)

and

A
div

= �1

✏

⇣Z
2

d� @
�

Z|
t2t

0
2(�)�

Z
4
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⌘
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(6.17)

5.7 Area Formula and the Length of Boundary Curves

According to the regularization prescription, the divergent part of the total area

of the minimal surface should be equal to L/✏ where L is the length of the Wilson

loop. This implies that if (6.17) is correct, it should give us the length of the Wilson

loop where in the case of the concentric Wilson loops it is the sum of both the inner

and outer curves.

In [22] and Ch4 of this work we showed that the length of the Wilson loop is

L =

Z
2+4

|OZ| dl � ✏

2

Z
2+4

O2Z

|OZ| dl . (7.18)

According to the regularization scheme the regularized area which is the finite part

of the total area of the surface ending on the Wilson loop may be obtained by

A
finite

= A� L

✏
. (7.19)

On the other hand we have

A
z

=

Z
D

O2 logZd�d⌧ =

Z
@D

O logZ · ~dl (7.20)

where ~dl = n̂ dl with n̂ the outward normal vector. With the tangent vector to the

curve given by (d�, d⌧) we take ~dl = (d⌧,�d�). Going around the loop as before, we

obtain

A
z

= �
⇣Z

1

d⌧@
�

logZ|
�0 �

Z
3

d⌧@
�

logZ|
�f

⌘
�
⇣Z

2

OZ
Z

· ~dl +
Z
4

OZ
Z

· ~dl
⌘

(7.21)
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We have seen that the first term in parenthesis vanishes when we cut the surface at

Z = ✏, leaving us with the relation

�A
z

= A
div

=
1

✏

Z
2+4

|OZ| dl , at Z = ✏

Hence the first term in (7.18) is exactly equal to the ✏A
div

found in (6.17). So the

formula for the regularized area of the surface ending on the Wilson loop becomes

A
finite

= A
const

+ A
h

+
1

2

Z
2+4

O2Z

|OZ| dl (7.22)

Or more explicitly,

A
finite

= 4D
p1p3 log ✓(0)

Z
(⌧2(�)� ⌧1(�))d� +

Z
@D

O log h · ~dl + 1

2

Z
2+4

O2Z

|OZ| dl
(7.23)

From Z = ✓̂ h we can compute that at Z = 0 we have OZ = O✓̂ h and O2Z =

O2✓̂ h+ 2O✓̂ · Oh. When substituted into (7.23) we get

A
finite

= 4D
p1p3 log ✓(0)

Z
(⌧2(�)� ⌧1(�))d� +

Z
@D

Oh
h

· ~dl

+
1

2

Z
2+4

O2✓̂

|O✓| dl +
Z
2+4

O✓̂
|O✓̂|

· Oh
h

dl (7.24)

Looking at the formula for OZ = O✓̂ h it is clear that OZ and O✓̂ are in the same

direction so that the unit normal may be taken to be�O✓̂/|O✓̂|. This further simplifies

the above equation for A
finite

giving an expression purely in terms of theta functions

and the parametric curves ⌧1 and ⌧2;

A
finite

= 4D
p1p3 log ✓(0)

Z
(⌧2(�)� ⌧1(�))d� +

1

2

Z
2+4

O2✓̂

|O✓| dl . (7.25)

In summary, we have a full analytic program (6.10), (6.12) and (6.17) for comput-

ing the regularized area for the minimal area surfaces for the Wilson loops we have

found. We applied Stoke’s Theorem in separating the finite part of the area from the

divergent part and showed that the divergent part is the length of the Wilson loop.

In the table below we show numerical results to bolster the theoretical arguments.

We compute the total area numerically at several di↵erent values of ✏ using the

formula A = 4
R
d� d⌧e↵ where ↵ = 2 log ✓

✓̂

. We then fit the data to the linear model
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✏A = ✏A
finite

+ L and find both the regularized area and the length of the Wilson

loops. The results are in Table 5.2.

Table 5.2
Area of minimal area surfaces computed by both numerical and analytical
methods

Areas n=2 n=3 n=4 n=5

A by numerical method �13.80 + 19.86
✏

�20.55 + 17.25
✏

�40.23 + 12.23
✏

�55.48 + 9.64
✏

A by (6.10),(6.12),(6.17) �13.80 + 19.86
✏

�20.55 + 17.25
✏

�40.27 + 12.23
✏

�55.66 + 9.64
✏

A
finite

by (7.25) -13.8 -20.55 -40.27 -55.66

5.8 Some Analytic Aspects

Using integrability properties we can make formula (7.25) a bit simpler. First,

note that the integral in the first term which is equal to
R
D

d�d⌧ may be written asZ
D

d�d⌧ = �1

2

Z
@D

�d⌧ � ⌧d� = � i

2

Z
@D

z dz̄ (8.26)

Next, note that

1

2

Z
2+4

O2 ˆ✓(⇣)

|O✓̂(⇣)|
dl =

Z
2+4

D13✓̂(⇣)

|D1✓̂(⇣)|
dl = �2 i

Z
2�4

D1 log ✓(⇣) dz̄ (8.27)

with the last equality being true only on the boundary where the integral is performed.

Putting all this together we obtain a new formula for the area of the surface dual to

the Wilson loop as

A
finite

= �2=
⇢
D13 log ✓(0)

I
zdz̄ +

Z
2�4

D1 log ✓(⇣)dz̄

�
. (8.28)



71

5.8.1 The Monodromy Matrix

In this section we calculate the trace of the monodromy matrix. The trace of the

monodromy matrix gives us the conserved charges in the theory and it should be a

function purely of �.

The monodromy matrix is given by

m =  
�

· �1
�

where � and � represent any two points lying between the horizontal curves which map

to the Wilson loop in the boundary of AdS. ⇣
�

and ⇣
�

will be the corresponding vectors

at which the theta functions may be evaluated. They are related by ⇣
�

= ⇣
�

+n(2⇡i).

One importance of the monodromy matrix is that its trace measures the deviation

of the solution from periodicity. In general it is a function of �, the spectral parameter.

Recall [22] that the matrix  is given by

 =

0B@  1  2

 ̃1  ̃2

1CA ,

which substituted in the expression for m gives

m =
1
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| ̃
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i �h ̃
�
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�

i

1CA ,

where the bra and ket notation implies

h 
�

| ̃
�

i =  1  ̃2 � �  2�  ̃1 � . (8.29)

The solutions for  was given [22] as

 1 =
p
��

✓̂(⇣ +
R

�

0 )

✓̂(⇣)
e�

↵
2 eµz+⌫z̄ (8.30)

 2 =
✓(⇣ +

R
�

0 )

✓(⇣)
e

↵
2 eµz+⌫z̄ (8.31)
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 ̃1 = �
p
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R
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Using Ch3 (4.61) we compute the determinant of  to be

det =
p
��

✓̂(2
R

�
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We now have the trace formula
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In expanded form the right hand side becomes
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where �! = !
�

� !
�

. With ! = µz + ⌫z̄, this means �! = ��(µ+ ⌫), where �� is the

di↵erence between the points � and �. Notice also that �! depends on � since µ and

⌫ do.

Further simplification of the rhs and dividing both sides of (8.35) by (8.34) gives
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where the quantity
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Because the arguments ⇣
�

and ⇣
�

di↵er by a period of the theta function, (8.36)

can be further simplified to
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But the fraction in the equation above is exactly 1/K(�) by Ch3 (4.61) so we have

Tr( 
�

·  �1
�

) = 2 cosh(�!) , (8.38)

where �! = ��(µ+ ⌫) = �2 ��
⇣
D3 ln ✓(

R
�

0 ) +D1 ln ✓(
R

�

0 )
⌘
.

When the trace is evaluated at a value of � for which the solution X(s,�) is

periodic, say a � = ±1, the quantity �! being ��(µ+ ⌫) evaluates to ⇡i because that

is exactly the condition imposed on the exponential in X(s,�) necessary for it to be

periodic. In that case the trace computes to -2.

5.9 Cyclical Wilson Loops

Recall that in the genus 3 setting the concentric Wilson loops are obtained by

matching n number of periods of the ratio of theta function to a single period of

the exponential function in (2.5), and by shrinking the bb̄ and cc̄ branch cuts. So

it is natural to ask what happens when, alternatively, n periods of the exponential

function is matched with a single period of the ratio of theta functions. It turns out

that we get a boundary curve made of self intersecting curves. Each individual curve

becomes more like a circle ( for some choice of a and b) and the circle goes around n

times, hence the name cyclical Wilson loop.

We emphasize that these Wilson loops are obtained by making the vertical branch

cuts very short and then matching the appropriate periods of the exponential and

Theta functions parts of the solutions. We show in Figure 5.7 an example of a cyclical

Wilson loop computed for n = 2.
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Figure 5.7. Cyclical Wilson loop and its dual surface: n = 2, a =
2.412712, b = 2 + 0.05I

An interesting thing about the cyclical Wilson loop is that as we shrink the bb̄

branch cut even further we approach the concentric circles but the Wilson loops are

now becoming n covers of the concentric circles1. Below we show two n = 2 cyclical

Wilson loops that depicts this idea.

1
Due to the involution � ! � 1

�̄
the cc̄ branch cut shrinks as we shrink the b¯b branch cut. The

branch points a and b determine all the finite branch points.
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(a). a = 2.4142, b = 2 + 0.005I

(b). a = 2.414205, b = 2 + 0.003I

Figure 5.8. Cyclical Wilson loops and their corresponding dual surfaces.
As we shrink the bb̄ branch cut the cycles merge into each other until we
get a double cover of the circle.

It is clear that as we make the imaginary part of b smaller and smaller the the

Wilson loops approach the g = 1 case with a > 1. In general, there are more situations
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other than these in which we have more than two boundary curves that behave in

more complicated but controllable ways.

5.10 Symmetric n-Leaf Wilson Loops

It is clear by now that so far the Wilson loops that we have discussed which come

from hyperelliptic Riemann surfaces of genus three, namely the concentric Wilson

loops and the cyclical Wilson loops, were motivated by our previously studied Wilson

loops obtained from genus one hyperelliptic Riemann surfaces. In particular, we

showed that in the limit that the branch point b approaches the real axis the periodic

Wilson loop obtained is a generalization of the concentric circular Wilson loop. Now

we are interested in periodic Wilson loops for values of Im(b) � 0.

For these cases the Wilson loop turns out to be much more complicated. To fully

describe these Wilson loops it will be good to begin from their string world sheet

description. The Wilson loops are obtained as the image in AdS3 of the zeros of

✓̂(⇣) in the string world sheet. So in the world sheet, the curves for this kind of

Wilson loop will appear as either closed or open curves. Since periodicity is ensured,

images of closed or open curves will always be closed. Sometimes the open curves

are horizontal, sometimes they are vertical. Here we focus on cases in which all open

curves are horizontal. The minimal area surface in AdS3 is obtained by mapping

the entire bounded region and its two bounding open curves. The bounding curves

maps to the boundary of the minimal area surface while the bounded region maps

to the surface that extends into the bulk of AdS3 . Sometimes the region between

two open curves in the world sheet contains closed curves. This means the image

of entire horizontal strip which now contains closed curves, will consist of a minimal

area surface which ends on more than just the images of the open curves.

Also the images of the two open curves and those of the closed curves will in

general intersect one another and in some instances self intersect in the boundary

of AdS. Although this seemingly gives the impression that the Wilson loop will be
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a system of intersecting curves that meander in a chaotic manner, they amazingly

display a nice symmetric behavior. More interesting is the fact that the symmetry is

governed by the periodicity conditions imposed on the solutions.

Recall that we can match n periods of the exponential function to a period of

the theta function part of the solutions or vice versa and obtain di↵erent interesting

properties. We extend the same idea here and we will particularly focus on the case

in which we match n periods of the exponential function to a period of the Theta

function part of the solutions. This gives symmetric Wilson loops that look like n-leaf

clovers. Such Wilson loops are said to be n-leaf symmetric Wilson loops.

We now specifically study the n = 3 example of n-leaf symmetric Wilson loops. In

Figure 5.9 we show the zeros of ✓̂(⇣) over one period of the solutions. The boundary

of the minimal area surface will be the images of the closed and open curves.
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Figure 5.9. World sheet of 3-leaf symmetric Wilson loop.

We also plot the Z solution over the entire world sheet in order to illustrate that

the solutions do end along the zeros of ✓̂ and also that the portion of the world sheet

between the zeros of ✓̂ actually extend into the bulk. This is depicted in Figure 5.10.
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The figure also shows that since Z achieves a maximum at some point in the world

sheet the solution is finite since X and Y are already periodic.

Figure 5.10. The behavior of the solution Z shows that the surface ends
along the zeros of ✓̂.
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Figure 5.11. The boundary curves of the minimal area surface for a 3-leaf
symmetric Wilson loop. The symmetry is manifest and the images look
like three leaf clovers.

In the boundary of AdS3 these curves self intersect and form a complex network.

This implies a Wilson loop with many self intersections. In the weak ’t Hooft coupling

limit of a gauge theory, these intersections give rise to logarithmic divergence in the

perturbative expansion of the expectation value of the Wilson loop.
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To see how the Wilson loop looks like we show a plot of the Wilson loop in the

boundary and the gravity dual minimal area surface.

Figure 5.12. 3-leaf symmetric Wilson loop: a = 2.1868, b = 0.5 + 0.5I
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Figure 5.13. Zoomed in close to the origin of Euclidean AdS3
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Figure 5.14. The corresponding minimal area surface is a complex surface
in Euclidean AdS3 space
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6. Conclusion

In this thesis we use existing knowledge of Riemann theta functions to study Eu-

clidean Wilson loops in Euclidean anti de Sitter Space within the context of the

Holography conjecture. Using this technique we are able to compute more general

examples of Euclidean simple Wilson loops whose shapes are not restrictedly sym-

metric as those of the previously studied examples. We show that these Wilson loops

belong to an infinite set of families of Wilson loops, with each family generated by

varying the spectral parameter of any single member of that family. Additionally, it

is shown that the gravity dual minimal area surfaces of all Wilson loops belonging to

the same family have the same regularized area regardless of the individual shape and

length of the corresponding Wilson loops. The areas of the minimal area surfaces of

the Wilson loops we study are computed using derived analytic formulae.

Furthermore, we look at cases when the Wilson loop consists of multiple curves.

For example we study noncircular concentric Wilson loops and show in a perturbative

sense that they are related to the Drukker-Fiol concentric circular Wilson loop. We

particularly use the periodicity of the solutions to compute examples where the Wilson

loops are controllably deformed. We show also that the trace of their monodromy

matrix is a simple function of the spectral parameter which indicates the existence of

an infinite number of conserved charges.

Finally, other types of Wilson loops consisting of multiple curves that we consider

in this thesis include the cyclical Wilson loop and the n-leaf symmetric Wilson loops.

We emphasize that it is possible to compute these examples because of the quasi

periodic nature of Riemann theta functions which we use to express the solutions of

the sigma model.
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