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Abstract

End-to-end bandwidth estimation tools like Iperf
though fairly accurate are intrusive. In this paper,
we describe how with an instrumented TCP stack
(Web100), we can estimate the end-to-end bandwidth
accurately, while consuming significantly less network
bandwidth and time. We modified Iperf to use Web100
to detect the end of slow-start and estimate the end-to-
end bandwidth by measuring the amount of data sent
for a short period (1 second) after the slow-start, when
the TCP throughput is relatively stable. We obtained
bandwidth estimates differing by less than 10% when
compared to running Iperf for 20 seconds, and savings
in bandwidth estimation time of up to 94% and savings
in network traffic of up to 92%.

1 Introduction

Iperf [16] is a bandwidth measurement tool which is
used to measure the end-to-end achievable bandwidth,
using TCP streams, allowing variations in parameters
like TCP window size and number of parallel streams.
End-to-end achievable bandwidth is the bandwidth at
which an application in one end-host can send data
to an application in the other end-host. Iperf approxi-
mates the cumulative bandwidth (the total data trans-
ferred between the end-hosts over the total transfer
period) to the end-to-end achievable bandwidth. We
need to run Iperf for fairly long periods of time to
counter the effects of TCP slow-start. For example,
while running Iperf from SLAC to Rice University us-
ing a single TCP stream, with a TCP window size of 1
MB set at both ends, only 48.1 Mbps is achieved dur-
ing slow-start (slow-start duration was about 0.9 sec-
onds, the Round Trip Time (RTT) for this path was
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about 45ms), whereas the actual bandwidth achiev-
able is about 200 Mbps. For the cumulative band-
width to get up to 90% of the end-to-end achievable
bandwidth, we need to run Iperf for about 7 seconds.

The other end-to-end bandwidth metric is the bot-
tleneck bandwidth which is the ideal bandwidth of
the lowest bandwidth link on the route between the
two end-hosts [10] [14]. Generally, packet-pair al-
gorithms are used to measure the bottleneck band-
width. Packet-pair algorithms generate negligible net-
work traffic. Bottleneck bandwidth does not vary
rapidly in the timescales over which people make Iperf
measurements, unless there are route changes and/or
link capacity changes in the intermediate links of the
route. In this paper, we are interested only in the
achievable end-to-end TCP bandwidth. Achievable
end-to-end TCP bandwidth (bandwidth from hereon)
depends not only on the network, but also on the
TCP/IP stack, processing power, NIC speed, the num-
ber of parallel streams used and the buffer sizes on
the end-hosts. We assume sufficient processing power,
NIC speed and large enough buffer sizes at the end-
hosts to be available and shall not discuss this further.

Tools like Iperf[16] and TTCP[12] measure band-
width by measuring the amount of data sent for a
fixed period of time. They use TCP streams and can
make use of parallel TCP connections1. Bulk data
tools like Iperf work fairly well and are widely used
[7] [8] [2]. Our endeavor is to reduce the measurement
time and network traffic generated by these tools while
retaining or improving the accuracy of measurement.

Web100 [19], which is currently available for Linux
kernels, exposes the kernel variables for a particular
TCP connection. We can use these variables in Iperf
to estimate the end of slow-start. We can then mea-
sure the amount of data transferred for a short period

1A detailed analysis of end-to-end performance effects of par-
allel TCP streams can be found in [6].
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of time after slow-start, and often dramatically reduce
the total measurement time (and network traffic) to
make a bandwidth estimate.

The rest of the paper is organized as follows. Sec-
tion 2 mentions the motivation for attempting this
work. Section 3 explains the algorithm in detail. Sec-
tion 4 has the implementation details, testing environ-
ment and the results obtained. We finally conclude in
Section 5 with our overall observations and conclusions
and a note on future work.

2 Motivation
The popularity and widespread use of Iperf can also

be partially attributed to its ease of installation and
absence of kernel and/or device driver modifications.
The Web100 application library provides functions to
query and set values for TCP variables for a partic-
ular session. These functions allow an application to
tune and monitor its TCP connections which was pre-
viously possible only for kernel and/or device drivers.

Importantly, Web100 exposes the current conges-
tion window, maximum, minimum and smoothed
RTT, receiver advertised window, maximum segment
size and data bytes out (and many other parameters)
through the life of a particular TCP connection. In
the next section, we show how we can determine the
sampling rate and track these variables to determine
quickly when the connection is out of slow-start.

As mentioned in the Web100 study undertaken
at ORNL [3], the duration of slow-start is roughly
dlog2(ideal window size in MSS)e * RTT. In prac-
tice, it is a little less than twice this value because
of delayed ACKs. For example, the bandwidth-delay
produce for 1 Gbps network with an RTT of 200 ms
is about 16667 1500-byte segments. The slow-start
duration, when a single TCP stream is used, will be
approximately dlog2(16667)e ∗ 2 ∗ 0.2, which is 5.6
seconds. Assuming a stable congestion window after
slow-start, the time for the cumulative bandwidth to
reach 90% of the achievable bandwidth will be about
10∗slow start duration−10∗RTT , which can be ap-
proximated to 10∗slow start duration for high band-
width networks [3]. This means for the 1 Gbps-200ms
network path, it will take over 50 seconds for the cu-
mulative bandwidth to reach 90% of the achievable
bandwidth. Using Iperf in quick mode can cut this
measurement to under 7 seconds while still retaining
the accuracy of measurement. Using parallel TCP
streams can reduce the slow-start duration to a cer-
tain extent, since the bandwidth is shared between the
streams2.

2Using parallel TCP connections has other advantages like
dropping of a random packet affects only the particular stream
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Figure 1: Slow-start times for various bandwidth-
delay products (in theory)

Figure 1 gives the slow-start times (in theory) for
various bandwidth-delay products. This also illus-
trates the importance of detecting the end of slow-
start before starting the bandwidth measurement. For
example, a 10 second measurement (default Iperf mea-
surement time) is not sufficient for a 10 Gbps-200 ms
bandwidth-delay network path, since the slow-start
duration is itself over 5 seconds. But, a 10 second
measurement is more than sufficient for a 1 Mbps-20
ms bandwidth-delay network path.

Varying network conditions like RTT and instanta-
neous bandwidth will alter the slow-start duration (see
[7] for variations in RTT and bandwidth from SLAC
to various nodes across the world with time). If we
can accurately and quickly determine the end of slow-
start for a connection, then by measuring bandwidth
for a very short duration after the end of slow-start, we
can significantly reduce the amount of network traffic
generated and still retain or improve the accuracy.

3 Iperf QUICK mode

Our algorithm works for TCP Reno, which is the
default implementation in most operating systems.
We have our analysis for TCP Reno. Section 3.1
briefly mentions the behavior of congestion windows
in TCP stacks and section 3.2 gives the details of the
algorithm to detect the end of slow-start in Iperf Quick
mode.

which experienced a loss [13]. For example, if only one stream
is used and there is a packet loss, the congestion window and
thus the instantaneous bandwidth reduces to half the previous
value. But, say 8 parallel streams are used and there is a ran-
dom packet loss, only the stream which experienced a loss will
reduce the congestion window to half its previous value and
the instantaneous bandwidth will be about 94% of its previous
value.



3.1 TCP Congestion Windows

TCP Reno doubles the congestion window every
RTT until it reaches the threshold congestion window
size or it experiences a retransmission timeout. After
the slow-start period, Reno sets the threshold window
to half the congestion window where (if) it experienced
a loss. It increases its congestion window at a rate of
one segment per RTT.

Also, the proposal of limited slow-start by Floyd
[5] should result in a congestion-window value nearer
to the ideal congestion window at the end of slow-
start than in TCP Reno. This is due to the slower ac-
celeration of the congestion window in the slow-start
phase than in TCP Reno. Recently, Floyd (HighSpeed
TCP) [4] and the Net100 community (TCP tuning
daemon)[13] have suggested changes to TCP to im-
prove high performance transfers, wherein the conges-
tion window will increase by more than one MSS every
RTT during the congestion avoidance period. With
minor modifications, the algorithm mentioned in sec-
tion 3.2 should be able to work for these variants of
TCP. We expect our algorithm to perform better with
these newer stacks, since the ideal congestion window
is reached faster (in the congestion avoidance phase)
than in Reno3.

3.2 Algorithm to detect the end of slow-
start

A knowledge of the behavior of TCP congestion
windows in different flavors of TCP in section 3.1 is
helpful in determining the sampling rate for kernel
variables (explained below), to determine the end of
slow-start as soon as possible. Our aim is to quickly
and accurately determine the end of slow-start and
to minimize the amount of network traffic generated.
We cannot use the Web100 slow-start indicator, which
will say whether a connection is in or out of slow-start
since this will not work when the congestion window
is restricted by the receiver window size.

Iperf initially gets the value of the smoothed-
RTT(RTT ) for the connection and also the MSS.
We poll the value of RTT every 20 ms until we get

3The algorithm also works for TCP Vegas [1] without any
modifications. Though TCP Vegas is fairer than TCP Reno,
TCP Vegas clients may not receive a fair share of bandwidth
while competing with TCP Reno clients [11] and hence Vegas
clients are not implemented in many practical systems. TCP
Vegas doubles the congestion window only every other RTT so
that a valid comparison of the actual and expected rates can
be made [1]. It calculates the actual sending rate (ASR) and
expected sending rate (ESR). It tries to keep Diff = ASR−

ESR between α and β. It increases the congestion window
linearly if Diff < α and decreases it linearly if Diff > β. It
tries to keep Diff in the range α < Diff < β. The most
common values of α and β are 1 and 3 MSS respectively.

a valid value (value > 0 ms reported by Web100) for
the RTT and also note the value of the congestion
window at that instant. Once we get the value of the
RTT , we poll the value of the congestion window at
an interval of 2 ∗ RTT . We store the values of old
and new congestion window sizes. If the connection is
still in slow-start during the period, TCP Reno would
have doubled its congestion window size twice most
likely (but at least once). If the connection is out of
slow-start, the increase in congestion window would
have been at the most 2 ∗MSS. So, it is safe to say
that if the old value of congestion window was at least
4 ∗ MSS and the difference between the congestion
window sizes is less than 3 ∗MSS for a time interval
of 2 ∗ RTT , the connection is out of slow-start. For
very slow connections, (or connections with extremely
short RTT - like transfer to localhost), the congestion
window size never reaches 4 ∗ MSS. For these kind
of connections, an additional check to see if the con-
gestion window size does not change when it is less
than 4 ∗RTT will ensure that the connection is out of
slow-start4.

The pseudo-code for the above algorithm is given
in the Figure 2.

set slow_start_in_progress <- true

set mss <- web100_get_mss()

set new_cwnd <- 0

while (slow_start_in_progress)

begin

set rtt <- web100_get_smoothed_rtt()

if (rtt is valid)

sleep for twice the rtt

else

sleep for 20 ms

set old_cwnd <- new_cwnd

set new_cwnd <- web100_get_cwnd()

set diff_cwnd <- abs(new_cwnd - old_cwnd);

if (rtt is valid)

if (((old_cwnd >= 4*mss)

and (diff_cwnd < 3*mss))

or ((old_cwnd < 4*mss)

and (diff_cwnd = 0))

slow_start_in_progress <- false;

end

Figure 2: Pseudo-code to determine end of slow-start

4We have also ensured that the RTT does not change dras-
tically between polling times to make our comparisons invalid.



3.3 Analysis of the Quick mode Iperf for
TCP Reno
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Figure 3: CW for link with BW ∗Delay ≈ 300KB for
RTT=10 ms
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Figure 4: CW for link with BW ∗Delay ≈ 300KB for
RTT=50 ms

Assuming constant available bandwidth and a fairly
steady RTT for the period of measurement, we mea-
sure the bandwidth for a second after the end of slow-
start. If the links are lossy and the TCP congestion
window is never stable, Iperf does not enter the quick
mode, but only reports the bandwidth after 10 seconds
or a user specified time5.

Figures 3 and 4 show the traces of congestion win-
dow when RTT is 10 ms and 50 ms respectively
where the bandwidth-delay product is about 300KB.
These figures can be used to relate to the terms (for
TCP Reno) defined below. Let us denote the con-
gestion window reached during slow-start by ss cwnd,

5This never occurred while measuring bandwidth to other
high performance sites, but occurred once while measuring
bandwidth across a dial-up link

the value it drops to immediately after slow start by
cur cwnd and the maximum value the congestion win-
dow reaches during the congestion avoidance period by
m cwnd. If a large enough receive window is set in the
sender side, then the sender will get out of slow-start
due to a congestion signal or a slow receiver throttling
the sender by advertising a smaller window size. In
cases where the receiver throttles the sender by adver-
tising a smaller window size than what the sender as-
sumes to be the ideal congestion window, the conges-
tion window is constant during the congestion avoid-
ance period (does not increase one RTT every MSS).
In cases where the congestion window is very stable
in the congestion avoidance period, Iperf Quick mode
will report near perfect bandwidth values.

If the sender gets out of slow-start due to a conges-
tion signal, then

cur cwnd =
ss cwnd

2
(1)

The congestion window will rise from cur cwnd to
m cwnd by one MSS every RTT . This means
that during the first RTT after slow-start, cur cwnd
amount of data is sent. During the next RTT ,
cur cwnd + MSS amount of data is sent and so on.
This will continue until it reaches m cwnd after which
there will be a congestion signal and the congestion
window will again drop to m cwnd/2. The average
congestion window during this period will be

avg cwnd =
m cwnd− cur cwnd

2
+ cur cwnd (2)

The time taken to reach the m cwnd is

id time after ss =
m cwnd− cur cwnd

MSS
∗RTT (3)

Thus the amount of data sent during this period is

data sent =
avg cwnd ∗ id time after ss

RTT
(4)

The bandwidth achieved during this period is

avg bw =
data sent

id time after ss
(5)

Even if id time after ss is much larger than 1 second,
we will be measuring bandwidth which will be at least
67% of the bandwidth achievable had we allowed the
test to run for id time after ss. Using limited slow-
start [5] will definitely alleviate this problem to a large
extent.

To see that measuring bandwidth for a second af-
ter the end of slow-start is sufficient in most cases, we
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Figure 5: % bandwidth measured 1 second after slow-start (in theory)
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Figure 6: % bandwidth measured 10 seconds after slow-start (in theory)

plot the values of the bandwidth measurable as a per-
centage of the bandwidth achievable for various RTTs
and link bandwidths. Figure 5 shows the bandwidths
measurable by running the tests for 1 second after the
end of slow-start and Figure 6 shows the bandwidths
measurable by running the tests for 10 seconds after
the end of slow-start. We assume that we can mea-
sure the bandwidth very accurately if the time of mea-
surement after slow-start is greater than or equal to
id time after ss. We see that the difference between
the 1 second and 10 second measurements is not very
high. For a bandwidth of about 1 Mbps it makes no
difference at all. Even at a bandwidth of 491 Mbps, it
makes a difference of less than 10%.

4 Implementation and Results

4.1 Implementation

Iperf runs in client-server mode. All the code
changes in Iperf are confined to the client and only
the host running the client needs a Web100-enabled
kernel. The remote hosts, running Iperf servers, can

run the standard Iperf available for various operating
systems. Using the Web100 user-library (userland),
we can read the variables out of the Linux proc file
system. The total changes in code in Iperf is less than
150 lines6. We maintain compatibility with all the
modes in which Iperf previously ran. The Web100
polling was done in a separate thread since Web100
calls were blocking.

4.2 Testing environment

For the testing environment, Iperf servers were
present as a part of the IEPM bandwidth measure-
ment framework [7] to various nodes across the world.
Iperf runs in client-server mode and a version of Iperf
which runs in a secure mode is available as a part of
Nettest[15]. We measured bandwidth from SLAC to
twenty high performance sites across the world. These
sites included various nodes spread across US, Asia
(Japan) and Europe (UK, Switzerland, Italy, France).
The operating systems in the remote hosts were ei-

6The 150 lines only includes Iperf modifications. Scripts
written for data collection are not included here



ther Solaris or Linux. The bandwidths to these nodes
varied from 1 Mbps to greater than 400 Mbps. A
local host at SLAC which ran Linux 2.4.16 (Web100-
enabled kernel) with a dual 1130 MHz Intel Pentium
3 processor was used for the client.

4.3 Results

We measured bandwidth by running Iperf for 20
seconds, since running for 10 seconds (default) would
not be adequate for a few long bandwidth-delay net-
works from SLAC (for example from SLAC to Japan).
We have compared the 20 second measurements with
the bandwidths obtained by running Iperf in Quick
mode (1 second after slow-start). We obtained band-
width estimates in quick mode differing by less than
10% when compared to the 20 second Iperf test for
most cases as shown in Figure 7 7.
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Figure 7: Quick mode measurements v/s 20 second
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We plotted the instantaneous bandwidth (InstBW
in Figures 8,9 and 10), every 20ms averaged over the
last 500 ms, and found that it increases and decreases
with the congestion window as expected. We also
plotted the cumulative bandwidth, which will be the
value reported by standard Iperf at that point of time
(CumuBW in Figures 8,9 and 10). The transfer from
SLAC to Caltech shown in Figure 8 is the behavior
which is expected in most transfers. The maximum
TCP window size at both ends was 16MB which was
greater than the bandwidth-delay product of about
800KB. The RTT is about 24ms (but Linux TCP

7These tests are performed on a regular basis and results
are updated in [17]. We initially obtained a mean difference of
19%, and a standard deviation of 20%. This was later found to
be a window sizing problem on Solaris where if the requested
window size is not available, Solaris sets it to the default size
which is generally 8 or 16KB. Linux is better in the sense that it
defaults to the maximum allowable window size if the requested
size cannot be satisfied.
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Figure 9: Throughput and cwnd (SLAC->Japan)

stack rounds off the RTTs in 10s of milli-seconds).
We have also plotted the transfer across a high la-
tency network, from SLAC to Japan, where the RTT
was 140 ms, the bandwidth-delay product was about
6MB and the maximum TCP window size was 16MB.
In this case, the quick mode measurement gives us
almost the exact value of the bandwidth. Also, we
have plotted the transfer from SLAC to Rice Univer-
sity where the constraining factor is the receive win-
dow size (256KB). The bandwidth-delay product was
1.6 MB. These graphs are available for all the nodes
being monitored at [18].

5 Conclusions and future work

The results obtained by running Iperf in quick mode
for high bandwidth networks are encouraging. Iperf-
generated network traffic has been reduced by up to
92% and the measurement time has been reduced by
up to 94%. Iperf quick mode was deployed to mea-
sure bandwidth from SLAC to various high perfor-
mace sites across the world, and the difference with



Figure 10: Throughput and cwnd (SLAC->Rice)

standard 20 second Iperf measurements was less than
10% in almost all the cases. These results also demon-
strate that the Web100 TCP instrumentation is very
useful.

We plan to modify the tool for TCP stacks sug-
gested by the Net100 community and Floyd and ana-
lyze the same. We expect better results than in TCP
Reno since the congestion window increases to the
ideal value much faster in these newer stacks. Also, we
plan to do some experiments and performance analy-
sis with gigabit networks with latency in the order of
hundreds of milli-seconds. We expect significant sav-
ings in measurement time in these cases. We also plan
to correlate the congestion signals, loss and retrans-
mission information for an Iperf session using Web100
with the bandwidth achieved.
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