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Abstract We reconsider the holographic model featuring
a superconducting dome on the temperature-doping phase
diagram with a modified view on the role of the two charges.
The first type charge with density p4 make the Mott insulator,
and the second one with pp is the extra charge by doping,
so that the complex scalar describing the cooper pair con-
densation couples only with the second charge. We point out
that the key role in creating the dome is played by the three
point interaction —c x> F,,,G*". The T c increases with their
coupling. We also consider the effect of the quantum critical
point hidden under the dome using the geometry of hyper-
scaling violation. Our results show that the dome size and
optimal temperature increase with z whatever is 6, while we
get bigger 6 for larger (smaller) dome depending on z > 2
(z < 2). We also point out that the condensate increases for
bigger value of 6 but for smaller value of z.

1 Introduction

Holographic duality, also known as the gauge/gravity duality
[1-3], has brought many insights in understanding strongly
interacting electron systems, especially for condensed mat-
ter physics. For example, the way to calculate transports and
spectral feature of strongly correlated system has been sug-
gested and new mechanism of superconductivity has been
suggested. See Refs. [4,5] and references therein.

One important problem is to understand the phase dia-
gram of the high 7, superconductivity: various high-7, com-
pounds all fit into a universal phase diagram where normal,
superconducting, anti-ferromagnetic and pseudogap phases
compete [6] and coexist. Recently, a holographic model was
suggested which qualitatively realizes the phase diagram in
the temperature-doping plane [7]. A simplified model was
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proposed in [8] where the non-abelian gauge field is replaced
by a higher power of scalar field that breaks the translation
symmetry. Here metal insulator transition is still realized
although anti-ferromagnetic origin of the insulating phase
is undermined. In this model the metallic phase was charac-
terized by the DC conductivity decreasing with temperature,
and the pseudo-insulator characterized by the DC conduc-
tivity increasing with temperature (see the phase diagram in
Fig. 1b).

In the previous papers [7,8], the mobile carriers density is
pa,and pp = xp4 represents the impurities density. In this
paper, we reinterpret the model such that it is more consistent
with the doped Mott insulator. At zero doping, the lattice is
half filled so that it has a Mott gap. The free electrons can not
move around due to the strong Coulomb repulsion. We will
make sure the p4 electric charges do not move by assuming
that, in the conductivity calculation, the p4 charge does not
respond to the external field while pp charge responds. Then
we dop the system with doping ratio x. For each dopant atom
we can assume there are 1 + 1 valence electrons: one con-
tribute to the non-moving half filled state and the other con-
tribute to itinerant electron whose number is say, N| = x N.
These are the movable electrons. Therefore the density of
the non-movable charge density is always ( before and after
doping,) N/V = pga, and the movable charge density is
pp = N1/V = xN/V = xps. We assume that as illus-
trated in Fig. 1a, p4 only contributes to the electrons in Mott
insulator, so that it does not contribute to conductor or super-
conductor. On the other hand, the doped charges of density
pp contribute to the density of state near the Fermi surface, so
that when x = pp/p4 is large enough, charge from the impu-
rities begins to make the superconductor. With this setup, we
studied the roles of the couplings on the phase diagram and
evaluated parameteric dependence of the critical temperature
at the optimal doping. It turns out that what makes the super-
conducting dome is the three points coupling between the

@ Springer


http://crossmark.crossref.org/dialog/?doi=10.1140/epjc/s10052-021-09313-3&domain=pdf
mailto:whcai@shu.edu.cn
mailto:sjsin@hanyang.ac.kr

565 Page?2of 10

Eur. Phys. J. C (2021) 81:565

To

DOs Xo X1
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Fig. 1 aThe density of the states for doped Mott insulator. The degrees
of freedom in the red region are provided by non-moving charge with
density pa, while those of the blue region is provided by the doped
charges py. b Phase diagram in the temperature-doping plane. The line
connecting (xo, 0), (0, Tp) denotes the phase boundary of the pseudo-
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Fig. 2 Role of ¢. We plot the superconducting phase with different
¢=0,0.01,0.2,0.5,1,1.5,2 a = b = 0. No dome without c. Larger
dome with increasing c¢. Notice that ¢ — 0 is a singular limit

density of cooper pair and two kind of charges, namely
Ling = —cx*Fun G, (1

where x is the amplitude of the complex scalar describing the
cooper pair condensation, and F and G are the field strengths
of the two gauge fields created by the two kinds of charges.
Increasing the coupling ¢ makes the dome higher and bigger,
therefore increasing this coupling is the key to increases the
T.. Also we find that by increasing the coupling b of the
interaction term L;,, = bszwG’”, one can make the
width of the dome smaller to resemble the cuperate case.
Since the superconducting dome is believed to cover a
quantum critical points (QCP), itis very interesting to explore
the effects of dynamical exponents of the QCP. The hyper-
scaling violating geometry is precisely the geometry that real-
izes the symmetry of a general class of QCP. We generalize
the model of [8] to a holographic model with hyperscaling
violating geometry using the solution [9], where a black hole
solution is derived with a dynamic exponent z and a hyper-
scaling violating exponent 6. We investigate the exponent
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insulating phase. (x1, x2) is the interval of the superconducting dome.
(x0, Tp) denotes the optimal 7,. ¢ The metal pseudo-insulator transi-
tion happens when the peak-position 7), is at 0. Here we used @ = 1
andx =3

dependence of the dome size as well as that of the supercon-
ducting condensate. We found that the dome size and optimal
temperature increase with z whatever is 8, while we get larger
dome for bigger 0 if z > 2 and vice versa. We also point out
that the condensate increases for bigger value of 6 but for
smaller value of z.

The paper is organized as follows. In Sect. 2, we first
review the doped holographic superconductors with broken
translational symmetry. Then, we investigate impact of the
coupling on the phase boundary, on the endpoints of the
superconducting dome and on the optimal 7;.. We single out
the key parameter to create the dome: the three points cou-
pling between the density of cooper pair and two different
charge carriers. In Sect. 3, in order to explore the effects
of QCP, we extend Baggioli and Goykhman’s model to the
doped holographic superconductor with hyperscaling viola-
tion. In Sect. 4, we focus on the superconducting condensate
for & = 0and 6 = 1. The Sect. 5 is the summary and discus-
sion. In the Appendix A, we show that two methods to obtain
the superconducting dome are equivalent. In the Appendix
B, we figure out the role of parameters a, b, o in the super-
conducting dome.

2 Coupling dependence of the critical temperature

We first briefly review the doped holographic supercon-
ductors with broken translational symmetry. Baggioli and
Goykhman introduced a doped holographic model with a
momentum dissipation [8], and find the superconducting
dome. There are two U(1) gauge fields A, and B, two neu-
tral scalar q)l = ax!, (I = x,y), the complex scalar field
¥ = xe'?. Ay = (A;(u),0,0,0) is the bulk dual of the den-
sity of the charge carrier. B, = (B;(u), 0, 0, 0) is the bulk
dual of the density of impurity. The neutral and massless
scalars are responsible for the breaking of translational sym-
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Fig. 3 Role of c:a The dome-shaped superconducting phase with the
the coefficient ¢ appearing in the expansion (6). b, ¢ The left end-
point x; and the right endpoint x, of the superconducting region. We

metry. The complex scalar field represents the order parame-
ter for superconducting phase transition. x = pp/p4 is called
as dope parameter. u denotes holographic coordinate which
is dual to the renormalization scale. The action is written as

1 6
§= 1 d*x—g <R+ﬁ+ﬁc+ﬁs> 2)
oo Za) A AP zB4<x> By B
B ZA}.;(X)AWBW 3)
1
-—;%xﬂ—ﬂux%e—ﬂAu—mmmz—wmu)
)
Ly = —2m2V(X). ©)

We consider two interesting choices for (g4, gp): (1, 0) or
(0, 1). However, the density p4 only contributes to the Mott
insulator, so (0, 1) is the better choice for the couplings
between the gauge fields and the complex scalar. Here

2 2
nx ax
Hx)=—7.,Z =1-—,
00 =——-2400 >
b x> cx?
ZB(X)Zl—T,ZAB(X)=T~ (6)
M2X2
Vi (X) = — (N
In this paper, we consider the non-linear Lagrangian
v =X 1 (X)) x= Lemaglag . ®)
“om? T \om2) 0 T 2% e

The corresponding equations of motion are as follows:

Zy

R =

Zp ZaB
Ay A, — 7BWBZ - T(AWB;; + Aus BY)
1
- Efmxavx — H(0,0 —qaAu —qpB)(0v0 —qgaAy —qpBy)
1
_ ngL =0,

(b)left endpoint z1(c)

(c)right endpoint z2(c)

fixa = 10,b = 4/3, ¢« = 0 and choose different ¢. The dashed line
represents (1, 0), and the solid line represents (0, 1)

Vi (ZAAYM + ZpgB"HM) + 24 H(VHO — g4 A" —qpBH) =0,
Vy(ZgB"H 4+ ZppA"") +2qp H(VH0 — o A* —qpBH) =0,

“ 1 1 1
v X_ZaXZAA —13)(233 _EBXZABA'B
- 8)( H(a,,ﬂ - CIAA;L - qBBM)z - ax Vine =0.

We obtain the solutions by solving the background equations
of motion,

2 2
ds? = % (f(u)e—f<">dt2 +dx* +dy? + d") . 9
u Sfu)
= (u —up) (2u2 (aszui — 2>+u33142 (Pi + p%)—4“uh—4”%)
4u;,
(10)
Ar(w) = paup —u), Bi(w) = ppup —u). (1D

We emphasize that we take (g4, gg) = (0, 1) in this paper.
But for the comparison, we also calculate for the (1, 0)
case. There are three phases on the temperature and doping
plane: superconducting, metallic and pseudo-insulating (see
the phase diagram in [6]). As a generalization and compari-
son to the results in [8], it is interesting to discuss how much
impact of the parameters a, b, ¢, « on xq, Ty, x1, X2, X0, To.

The DC conductivity can be calculated analytically fol-
lowing [10,11] and the result is given by:

PBU}
8 8 :
2 up
20 <1 + 5(2m2)4>

Here uy, is the location of the horizon. Notice that we regards
the p4 is not moving degree of freedom and does not con-
tribute the the conductivity. There is other way to introduce
insulator behavior by the coupling X with the field strength
[12,13]. Here, metal insulator transition is not our main con-
cern. Following [14-16], we obtain the DC conductivity.
The pseudo-insulating phase by the change from metallic
(dopc/dT < 0) to pseudo-insulating (dopc/dT > 0)

opc =1+ (12)
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is shown in Fig. lc. We vary the ratio x and evaluate the
movement of the peak-position. Our results imply that 7),
decreases as x increases.

Now, we discuss the instability of a normal phase of the
bulk system to determine whether a boundary system has a
superconducting phase. The effective mass is read off where
BF bound is violated. We first derive instability analytically
in the normal state at zero temperature. Two endpoints x|
and x; can be determined by the violated AdS> BF bound,
namely mefL% < —1/4.

We furthermore study the superconducting dome in a
finite-temperature normal phase background. We begin with
the lineared equation of motion for x. The scalar x represents
the order parameter for superconducting phase transition (see
more details in [7,17]). Then we look for the finite temper-
ature black brane solution to determine the superconducting
dome, which satisfies the two boundary conditions. It is reg-
ular at the horizon, so it demands the expansion as follow

f@) = f'un) @ —up) + O —up)?,
x ) = x(up) + x"(up)(w — up),

T(u) = t(up) + " up)(u — up)

Ay = pa(up —u), By = pp(up —u).

We solve the lineared equation for §x, which is considered
as a probe on the AdS-RN background

” f/("f) 2 ’
Sx (u)+(f(u) - ;) Sx ()

fu) (u4(a + x(bx +2¢)) — 2M2) + 2nu2(u — uh)z(qA + qu)2
i 22702

Sx(u)=0.

(13)

There are five independent parameters uy,, x (i), T(up), pa,
pp- This scaling symmetry can be used to set 7 (u#;,) = 0, and
we also set py = 1, pp = x. Actually, we are left with
two independent parameters x and uj, namely doping and
temperature. By instituting into equations of motion for § x,
we solve background equations of motion numerically out
to large value of r. Based on this initial condition. Then, we
obtain the source free solution from horizon to the boundary.
Afterwards, we keep the doping parameter x fixed, and find
the maximal 7, (see Appendix A for details).

We focus on the three points coupling between the den-
sity of cooper pair and two kind of charges: —cx2F wGHY,
because the coupling c is the key parameter for the supercon-
ducting dome. We first discuss the role of ¢ in the simplified
model

CX2
ZaG0=1.Zp(x) =1.Za(0) = ——- (14)

Our results are presented in Fig. 2. If ¢ is negative, there is no
instability solution. In this paper, we do not need to consider
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Fig. 4 Phase diagram on the temperature-doping plane with different
6 and fixed z = 1. In this figure, solid lines are for (g4, gp) = (1, 0),
and dashed lines are for (g4, gg) = (0, 1). Black and red & = 0, 0.1,
respectively. The critical temperature decreases as 6 increases
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Fig. 5 Phase diagram on the temperature-doping plane with different
z and fixed O = 0. In this figure, solid lines are for (g4, gp) = (1,0),
and dashed lines are for (g4, gp) = (0, 1). Black and red represent z =
1, 1.2, respectively. The critical temperature increases as ¢ increases

the negative c. The superconducting dome occurs if ¢ # 0
and the dome expands as c¢ increases. Our result shows that
the superconducting expands as ¢ increase. If the cross term
vanishes (¢ = 0, Z4p = 0), there is no superconducting
instability. A dome exists even ata = b = 0 if ¢ # 0. Our
result shows that ¢ alone is almost enough to create the dome.
Therefore, the coupling c is crucial to high 7.

Then, we discuss the case of a # 0, b # 0. We find
that the behavior of endpoints is the same for (1, 0) or (0, 1).
Especially, x| moves left and x, moves right when c increase
to make the dome bigger (see Fig. 3).

The optimal temperature Tp with (g4, gp) = (1,0) is
always smaller than the case of (0, 1). This result is not sur-

2
prising because the coupling Zp = 1 — l% is stronger than

the coupling Z4 = 1— % in our choice. By the same reason,
the superconducting dome of (0, 1) theory is bigger than the
one with (1, 0) one. The roles of other parameters are given
in the Appendix B. Perhaps the most interesting result is the
fact that the coupling described by ¢ alone can generate the
superconducting dome and increasing its size, and the roles
of other coupling Z4 Zp are secondary ones for producing
the dome.
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Fig. 6 Phase diagram on the temperature-doping plane with different
6 and fixed z = 2.4. In this figure, solid lines are for (g4, gp) = (1, 0),
and dashed lines are for (g4, gg) = (0, 1). Black and red represent 6 =
0.2, 0.4, respectively. The critical temperature increases as z increases
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3 The doped superconductor with hyperscaling
violation

In the previous section, we studied the doped holographic
superconductor with broken translational symmetry. In order
to explore the effects of the QCP, it would be natural to
extend the present analysis to the case of hyperscaling vio-
lation. We begin with the black hole solutions in Einstein—
Maxwell-axion—dilaton theory with a dynamic exponent z
and a hyperscaling violation exponent 6 [9], where a U (1)
gauge field is considered as an auxiliary gauge field, leading
to a Lifshitz-like vacuum. The neutral and massless scalars
¢! ¢° = ax, ¢ = ay generate momentum relax-
ation. We generalize this model by introducing a perturbative
charge scalar ¢ = ye'? in four-dimensional bulk spacetime.
Now there are three gauge fields. A is the auxiliary gauge
field to support the Lifshitz gravity as usual, while A, and
Az are the physical gauge fields which provide the finite
chemical potentials. A; is the bulk dual of the density of the
charge carrier p4 which describe the Mott insulator while
As is the bulk dual of the density of doped charge pp which
can move and provides the density of state at the Fermi sur-
face. We describe the non-moving nature as the absence of
the coupling of such charge with the electric field. There-
fore our model is gp = 1, g4 = 0. To compare with previ-
ous treatment, we also considered results coming from the
qga=1,q5=0.
The new doping parameter is defined as

y= , X = pB/pa. (15)

1+x

Here 0 < y < 1. Since x is large in the superconducting
dome, we consider y instead of x in the following calculation.
The action is written as

1 6
S=— [ d*x/=g|R+ =
tor ] 7 g[ T
1 s 1 ax2 2
_Z(eM(Zﬁ)Fl - (e)uztﬁ 4 T) F;

1 bx? 1
-3 <e’\3¢+ %) F32 — _in - F3

1
—§<axi)2 + H() (3,0 — qaAs — qpA3)?

~Vine (x) — %(aas)z - %e""’(aqb’)z + vm] (16)

Here we define the following coupling and potential

2 2
ny My
H(x) = - Vine(x) = >

Following [9], we have

G =vV2V2+z+2+0—20
71 = M9 =y O 7 b 0-2242)

Zs = M9 = y0=2+D)

1 1

Y=¢"=—, ¢=y/2-60)2z—2—6)In—,
Z> u

V=0G—-0+Dz+2—0u"’

The matric ansatz is

1 S _ du?
2 _ _ @) 1,2 2 2
ds” = uz-e( 2GD° " +dx"+dy + fw)’

Ay =a1(w)dt, Ay = ax(u)dr
Az = az(u)dt,
x = xu), 6 =0. (17

where u is the radial bulk coordinate. We obtain the solution
as follows,

012

m
f(u) =1- uf—z-2 o ©®—-2)(z — 2)u9—2z
(03 +pp)(60 —2)
200 — 2)u29—2z—2

1
m=———| -1+
u2+z—0<

h

(18)

az
(=2+2)(=2 + )+ — w)

h 2—24+0)uy 2T
u _ @ 1 1
1) =3 R <u2+z—9 - uiJrzG)
ay(u) = pa — pau=?
ay(u) = pp — ppu’, (19)

When z = 1, 6 = 0, f(u) return to the form in [8]. Follow-
ing [7], we fixa =10,b =4/3,c=14/3, n =1, a =
1, M> = —5/4. The superconducting dome survives the
translational symmetry breaking [8]. Our calculation shows

@ Springer
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Table 1 Optimal temperature 7 and SC dome with different z and 6: “—” denotes negative T . “®” denotes the monotonously decreasing 7. “o”
denotes the monotonously increasing 7. “=" denotes that there is no instability solution. Here we fix (1, 0)

z\ 0 1 11/10  12/10  13/10 14/10 15/10 16/10 17/10 19/10  21/10  22/10  24/10 26/10 28/10 3
—1/10  0.051 0.066 0.078 0.088 0.097 = = - - - - - - - -

0 0.038 0.056 0.071 0.083 0.093 0.102 - 0.116  0.127 0.136  0.140 0.146 0.152 0.157 0.161
1/10 0.021 0.044 0.061 0.076 0.093 0.098 - 0.114 0.126 0.136  0.140 0.147 0.153 0.158 0.162
2/10 - 0.028 0.050 0.067 0.081 0.093 - 0.112  0.126  0.136 0.141 0.148 0.154 0.159 0.163
3/10 - 0.008 0.035 0.057 0.074 0.088 - 0.109 0.126  0.137 0.141 0.149 0.156 0.161 0.165
4/10 - - - 0.044 0.065 0.081 0.095 0.093 o o o 0.151  0.158 0.163  0.167
5/10 - - - 0.028 0.053 0.073 0.090 o o o o 0.154 0.161 0.166 0.170
6/10 - - - 0.008 0.039 0.063 0.083 o o o o ) 0.165 0.170 0.173
7/10 - - - - 0.022 0.051 o o o o o ) o 0.174  0.178
8/10 - - - - - 0.037 o o o o o o o o 0.184
9/10 - - - - - 0.023 0.053 o o o o o o o o

1 ° ° 0.028 - - ° 0.043 o o o o o o o o

Z

20

y4

Fig. 7 Relation between the optimal temperature T and z, . The maximum critical temperature defines the optima doping. Left: (¢4, gg) = (1, 0).

Right: (g4, gB) = (0, 1)

the result still holds even for hyperscaling violating back-
ground. When z = 1, 6 = 0, our result could return to the
one in [8]. The phase diagrams with different z and 6 is pre-
sented in Figs. 4, 5 and 6.

The numerical optimal temperatures Tp with different z
and 0 are presented in Table 1.

The relation between the optimal temperature 7o and
dynamical z with different 6 is shown in Fig. 7. It shows that
To increase as z increase. The result is in agreement with the
numerical calculation without the mass of the probed scalar
field in [18]. Tp decrease as 6 increases when z < 2. How-
ever, we have the opposite behavior when z > 2. Figures 4
and 6 also indicate that for z < z. the optimal T, decreases
as 6 increases, while for z > z., Tp increases as 6 increases.
The result is not in agreement with the previous work [18—
20]. The difference is expected because our model is quite
different from their model. There is only one gauge field in
their model, so superconducting dome can not be generated.
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Fig. 8 The cooper pair condensate < O > with fixedae =1, x = 2.
The blue line is for z = 1, 0 = 0. The orange line is forz = 3/2,0 = 0.
The green line is for z = 3/2,6 = 1. The condensate increases for
bigger value of 6, but it is suppressed by z
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4 Condensate for hyperscaling violation

We start with AdS black hole with dynamic exponent and
hyperscaling violation exponent. The Hawking temperature
is determined by

_ f(ro)
T= " (20)

Therefore we define temperature as 7 = rg. Consequently,
we rewrite the equations of motion for A;, B;, x in terms of

the scaled fields: A; — f—O’, B, — %’, P 3(—0, w— %
According to u© — % = %, fixing p by changing T is

equivalent to fixing 7' by changing p. In order to simplify
the following computations, we fix rp = 1. At the horizon,
we demand the following expansion

Ar=aor — D) +a1(r— D> +aa(r — 13,
B =Bor — 1)+ Bi(r — D>+ a(r — 1),
X=Y+r—1D+pnr—17%.

Meanwhile we can impose the boundary condition A; =
B, =0, A} = ap, B/ = Bo, x = 0. The horizon regularity
keeps conditions for equations of motion

Za QA +1' A)+Zag 2B/ +1'B))
qa Ay +qB By

+2x'(Za A+ Zap B) —4qa H 27 =0
2D
Zp 2B+t B) +Zap RQA] + 1" A
o . A +qp B
+2x <ZBB;+ZABA;)—4qBH“;2—]?B’=0,
(22)
f/ 2 'L'/ L2 .
1 /
L _Z__ S A
X +<f u 2 X uzf int
et u? ;- :
7 AR 7 prR2 ; Y
+ 27 (ZAAt +Zp B, +ZZABAtBt>
e" H 2
+? (g4 Ai+qp B;)"=0. (23)

After solving the conditions for o, Bo, 10, @1, B1, V1, &2, B2,
y2, we are left with three independent parameters «g, Bo, Yo-
By integrating out to infinity, these solutions of (21-23) for
given «g, o, Yo behave as

X1 X2
X = + _2 )
r r
X1 =71 x(r), x2 = —r2(r x(r),

4 4
Ay =pp——, B=pup——.
r r

We set x; = 0and ug = 1 to determine a curve. Along this
curve, we can calculate x> and pp at infinity [21]. Some-
where along this curve x» could be zero. To determine critical
point, . is defined by x1 = x2 = 0. Based on the approach
in [22,23], we explore the superconducting condensate with
the dynamic exponent z and the hyperscaling violation expo-
nent 6. Here we vary 1/ instead of varying temperature, and
study the superconducting condensate with & = 0 for bosonic
case and 6 = 1 for fermionic case. The cooper pair conden-
sate < O > presented in Fig. 8 suggests that the couplings
Z 4 and Zp are positive for all radial position in the case of
broken translational symmetry and hyperscaling violation.
The condensate becomes easier for bigger value of 6, but it is
suppressed by z. The behavior is in agreement with the result
in [18,19]. However, the superconducting dome expands and
the optimal temperature increases when z increases in Sect. 3.
The results are not contradictory, since < O > is not only a
function of T, [24] but also the function of z and 6 [18,25,26].
As zincreases, the Fermi surface of cuprates becomes a Fermi
arc, which means that it cannot be in a closed shape [27,28].
So the number of superconducting electrons decrease. Con-
sequently superconducting condensate decreases.

5 Conclusion and discussion

In this paper, we have studied the holographic theory which
has the ability to realize the doped high-temperature super-
conductors. Based on the previous work on pseudo-insulator
and superconducting phases on the doping-temperature
plane, especially instability conditions at zero temperature
and at finite temperature, we further evaluate the impact
of coefficients a, b, c, @ on the corner region of pseudo-
insulator and the superconducting dome with broken transla-
tional symmetry. Our results show the three points coupling
c is the key parameter. Afterwards, we extend our analysis to
the case with a dynamic exponent and a hyperscaling viola-
tion exponent. Besides, we also calculate the superconduct-
ing condensate to verify the region of the couplings Z4 , Zp.

We find which parameter has the most influence on the
boundary of the pseudo-insulating phase (xg, 7p), two end-
points (x1, x2) of the superconducting dome and the optimal
temperature (xp, Tp). As noted in Figs. 10 and 11, we notice
that the left endpoint x| is more sensitive to a, but the right
endpoint x; is more sensitive to b. Furthermore, our result
indicates that the superconducting dome is expanding as the
couplings Z4, Zp, Z 4 increase. The result is an advance in
the research on high-temperature superconductivity.

In our calculation, gp can be chosen to be zero, so pp
can be considered as the density of spin doping. One of the
main progress of this paper is to show that the superconduct-
ing dome-shaped region with (0, 1) is much bigger than the
one with (1, 0), and the three point interaction —c x> F, wGHY
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alone is almost enough to create the dome. Our numerical cal-
culation also shows the superconducting dome survives when
6 # 0. Let us combine our results with [7,8]. The supercon-
ducting phase with hyperscaling violation is in qualitative
agreement with the case of & = 0. The depth of the supercon-
ducting dome increase as the dynamical exponent z increase.
The depth first decrease then increase as the hyperscaling vio-
lation exponent 6 increase. So the other important progress
of this paper is that the superconducting dome-shaped region
built in [7] can be expanded by hyperscaling violation expo-
nent 0 if z is large enough.

However, there are still some issues concerning the insta-
bility of our holographic setup in our calculations. First,
gauge field B, is used to mimic the charge change due to dop-
ing. The rising part of the superconducting dome is attributed
to the increasing of charge. So what about the descend part of
the superconducting dome? Unfortunately, it seems hard to
find out the reason of the descend part, since the Lagrangian
indicates there is a symmetry between A, and B,,. Second,
our numerical results about the superconducting dome shown
in Fig. 4 imply that y = 1% can approach to 0.85, namely
pB > pa.ltsuggests doping charge is dominant in this case.
We leave these issues to a future study.

There are much more generalized form of hyperscaling
violating solutions for black holes with multiple fields in
[29]. It would be interesting to study the consequence of the
such solution along the line we studied here.
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Fig. 9 The dome-shaped region of the superconducting instability. We
use two methods to obtain the critical temperature 7, as a function of
doping parameter x. Here we fix the parameters as M> = —5/4, m =
l,a=—-10,b=-4/3,c=14/3,n=1,p4 = l,a =0, pp = x and
(UBY)

Appendix A: Methods to obtain the superconducting
dome

In this appendix, we verify two methods to obtain the super-
conducting dome are equivalent. There are two methods to
determine the superconducting dome. One is to keep the dop-
ing parameter X fixed. Then we obtain the maximal tempera-
ture indicated by e. The other method is to keep the horizon
uy, fixed. Then we obtain the maximal x indicated by ¢ and
minimal x indicated by A. There is one-to-one match between
the critical temperature 7 and doping x.

Figure 9 shows that these two methods are equivalent.
The endpoints of the superconducting region are x; ~ 1.17
and xp & 7. The result indicates that temperature gradually
approaches to zero when X increases. If Z4, Zp, Zsp are
independent of y, the dome vanish and the critical tempera-
ture always increases. In order to simplify the calculations,
we choose the former method in this paper.

Appendix B: Role of a, b, « in the superconducting dome

In this appendix, we will show the role of a, b, « in Figs. 10,
11, 12 and 13. Most of the calculations are unchanged as we
have calculated in Sect. 2. First, we figure out the role of
a. The left endpoint x; moves right and the right endpoint
x> moves left when a increases. The optimal temperature T
increases as a decreases. The superconducting dome expands
when a decreases.
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Then, we figure out the role of b. x; moves right and x,
moves left to make the dome smaller when b increases. The
dependence on b is similar to that on a, because a and b
are symmetric in our model. As a result, we could conclude
that the superconducting dome is expanding as the couplings

Za) = 1% Zg(0 = 1= 2% Zap() = %
increase. However, Fig. 13 shows that changing o doesn’t
make much difference.

Then, we deal with the superconducting dome with the
coefficient «. We plot the dependence of the boundary of
the pseudo-insulating phase (xg, 7p) with the translational
symmetry broken by the neutral scalars. As illustrated in
Fig. 12, the pseudo-insulating phase occurs only if @ > o,
(e =~ 0.567358).

Notice that the superconducting phase with (g4, gp) =
(1, 0) was already studied in [8], and our result in this case
is consistent with theirs as one can see in Fig. 13.
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