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Abstract

In this paper we establish several sharp existence and uniqueness theorems for some non-Abelian vor-
tex models arising in supersymmetric gauge field theories. We prove these results by studying a family
of systems of elliptic equations with exponential nonlinear terms in both doubly periodic-domain and pla-
nar cases. In the doubly periodic-domain case we obtain some necessary and sufficient conditions, each
explicitly expressed in terms of a single inequality interestingly relating the vortex numbers, to coupling
parameters and size of the domain, for the existence of solutions to these systems. In the planar case we es-
tablish the existence results for any vortex numbers and coupling parameters. Sharp decay estimates for the
planar solutions are also obtained. Furthermore, the solutions are unique, which give rise to the quantized
integrals in all cases.

© 2013 The Authors. Published by Elsevier B.V. 
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1. Introduction

Vortices are important objects in various branches of physics [36] including condensed mat-
ter physics [1,28], particle physics [25], string theory and cosmology [23,29,48]. It is well
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known there admit the Abrikosov–Nielsen–Olesen vortices [1,37] for the classical Abelian
Higgs model, whose static limit is also known as the Ginzburg–Landau model for supercon-
ductivity [17]. The first rigorous existence result for vortex configurations were established
by Taubes [45,46] for the Ginzburg–Landau model [17]. Since then various analytic meth-
ods for studying the existence of vortices and other topological solitons have been developed
[28,44,50].

During the last ten years much attention has been concentrated to vortices in non-Abelian
gauge field theories since they are related to the fundamental puzzle in theoretical physics,
quark confinement or color confinement [18,42]. In fact, in their famous work [38] Seiberg
and Witten use non-Abelian color charged monopoles and vortices to interpret quark confine-
ment. Motivated by the importance of non-Abelian vortices in the understanding of monopole
and quark confinement, a wide class of non-Abelian gauge theories were developed in [3,21,
22,39]. See [4,7–12,15,31,40,43] for more recent progress and [14,30,41,47] for surveys on
this topic. In these theories there arise many interesting and challenging systems of elliptic
partial differential equations. It is interesting to carry out a rigorous analysis for these par-
tial differential equations from both physical and mathematical points of view. In this respect,
we cite the work [6,32–35], where a series of existence and uniqueness results were estab-
lished.

The purpose of this paper is to establish sharp existence theories for the non-Abelian vor-
tex model with product moduli proposed in [7], and for the Yang–Mills–Higgs model with
gauge groups U(1) × SO(2M) and U(1) × SU(N) in [11,12,19]. We recall that, by the
approach of moduli matrix [13,26], a series of systems of non-Abelian BPS vortex equa-
tions were obtained in [7,11,12,19]. For each of these systems we establish sharp exis-
tence, uniqueness, asymptotic behavior and quantized integral results. In particular, for these
models over doubly periodic domain we obtain some necessary and sufficient condition,
each explicitly expressed in a single inequality interestingly relating the vortex numbers,
to coupling parameters and size of the domain, for the existence of solutions. Over the
full plane, we obtain existence and uniqueness results for any vortex numbers and cou-
pling parameters. Furthermore, the explicit decay estimates for planar solutions are estab-
lished. Our approach is based on the direct minimization methods recently developed in
[32,33].

The rest of our paper is organized as follows. In Section 2 we review a system of vortex
equations from the model proposed in [7] and state a sharp existence result Theorem 2.1 for
this problem over a doubly periodic-domain and the full plane. In Sections 3 and 4 we prove
Theorem 2.1 for the doubly periodic-domain and planar cases, respectively. Sections 5 and 6
are devoted to establishing existence results for the BPS vortex equations [11,19] arising in
the Yang–Mills–Higgs model with gauge groups U(1) × SO(2M) and U(1) × SU(N) sepa-
rately.

2. Non-Abelian vortex model with product gauge group

In this section we consider the non-Abelian vortex model proposed in [7] with gauge group G,
where

G = U(1) × SU(n) × SU(r)

Zk

,

and k is the least common multiple of n and r . Following [7], the action density of the model
reads as
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S = 1

4g2
0

(
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4g2
n

(
F (a)
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4g2
r

(
F (b)
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)2 + ∣∣Dμq(1)
∣∣2 + ∣∣Dμq̃(2)

∣∣2

+ g2
0

2

(
λ1

[
q(1)q(1)†] + λ2

[
q̃(2)q̃(2)†] − ξ

)2 + g2
n

2

(
q(1)taq(1)†)2 + g2

r

2

(
q̃(2)tbq̃(2)†)2

,

(2.1)

where

F (0)
μν = ∂μA(0)

ν − ∂νA
(0)
μ , (2.2)

F (a)
μν = ∂μA(a)

ν − ∂νA
(a)
μ + i

[
A(a)

μ ,A(a)
ν

]
,

F (b)
μν = ∂μA(b)

ν − ∂νA
(b)
μ + i

[
A(b)

μ ,A(b)
ν

]
, (2.3)

Dμq(1) = ∂μq(1) − iA(a)
μ q(1), Dμq̃(2) = ∂μq̃(2) − iA(b)

μ q̃(2), (2.4)

λ1 = r√
2nr(n + r)

, λ2 = n√
2nr(n + r)

, (2.5)

A
(0)
μ is the gauge field of U(1); A

(a)
μ (A(b)

μ ) are the gauge fields of SU(n) (SU(r)); ta (tb) are
the standard generators of SU(n) (SU(r)); q(1), q̃(2) are the quark fields; ξ > 0; g0, gn, gr are the
coupling constants with respect to U(1), SU(n) and SU(r), respectively.

Via a Bogomol’nyi reduction [5], one obtains the following BPS equations [7]

D1q
(1) ± iD2q

(1) = 0, (2.6)

D1q̃
(2) ± iD2q̃

(2) = 0, (2.7)

F
(0)
12 ± g2

0

(
λ1 Tr

[
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[
q̃(2)q̃(2)†] − ξ

) = 0, (2.8)

F
(a)
12 ± g2

n

(
q(1)taq(1)†) = 0, (2.9)

F
(b)
12 ± g2

r

(
q̃(2)tbq̃(2)†) = 0. (2.10)

In the following we only consider Eqs. (2.6)–(2.10) with the upper sign, since the lower sign
case can be treated similarly. To simplify the above equations we use the ansatz in [7]

q(1) = S−1
n e−rψH

(n)
0 (z), q̃(2) = S−1

r e−nψH
(r)
0 (z), (2.11)√

2nr(n + r)
(
A

(0)
1 + iA(0)

2

) = −2i∂̄ψ, (2.12)

A
(n)
1 + iA(n)

2 = −2iS−1
n ∂̄Sn, A

(r)
1 + iA(r)

2 = −2iS−1
r ∂̄Sr , (2.13)

where H
(n)
0 (z) and H

(r)
0 (z) are n × n and r × r matrices (called moduli matrices [13,26,27]),

respectively, holomorphic in z, Sn(Sr) are regular SL(n,C)(SL(r,C)) matrices, ψ is a real func-
tion.

Under the above ansatz, the matter equations (2.6)–(2.7) are satisfied naturally. Let

Ωn = SnS
†
n, Ωr = SrS

†
r . (2.14)

Then the gauge field equations (2.8)–(2.10) can be expressed as

∂∂̄ψ = g2
0

8nr(n + r)

(
re−2rψ Tr

[
Ω−1

n H
(n)
0 H

(n)†
0

] + ne−2nψ Tr
[
Ω−1
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0
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− ξ

√
2nr(n + r)

)
, (2.15)

∂
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, (2.16)

∂
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, (2.17)

which are called master equations for vortices [13].
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To reduce Eqs. (2.15)–(2.17) one takes the ansatz in [19],

Ωn = diag
{
e(n−1)χ , e−χ , . . . , e−χ

}
, Ωr = diag

{
e(r−1)χ̃ , e−χ̃ , . . . , e−χ̃

}
, (2.18)

where χ , χ̃ are real functions.
Without loss of generality, we choose the moduli matrices H

(n)
0 (z) and H

(r)
0 (z) as

H
(n)
0 (z) = ρ1

(
3∏

i=1

Pi(z)

)2r
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{(

P2(z)
)n−1

,
(
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, . . . ,

(
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, (2.19)

H
(r)
0 (z) = ρ2
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3∏
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Pi(z)

)2n
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{(

P3(z)
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,
(
P3(z)

)−1
, . . . ,

(
P3(z)

)−1}
, (2.20)

where

Pi(z) =
ni∏

s=1

(z − zis), i = 1,2,3, (2.21)

ρ1, ρ2 ∈C, ρ1ρ2 �= 0, and ni � 0 are integers.
Inserting (2.18)–(2.20) into (2.15)–(2.17) we arrive at

∂∂̄ψ = g2
0

8nr(n + r)

{
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√
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}
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4n

{
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∣∣2[n−1]e−[n−1]χ − ∣∣P2(z)
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)}
, (2.23)

∂∂̄χ̃ = g2
r |ρ2|2
4r

{
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, (2.24)

where

Mr(z) ≡
(

3∏
i=1

∣∣Pi(z)
∣∣2

)2r

, Mn(z) ≡
(

3∏
i=1

∣∣Pi(z)
∣∣2

)2n

,

and the vacuum manifold is given by

|ρ1|2 + |ρ2|2 =
√

2(n + r)

nr
ξ, ξ > 0, ρ1ρ2 �= 0. (2.25)

Letting

u1 ≡ −ψ +
3∑

i=1

ni∑
s=1

ln |z − zis |2, u2 ≡ −χ +
n2∑

s=1

ln |z − z2s |2,

u3 ≡ −χ̃ +
n3∑

s=1

ln |z − z3s |2, (2.26)

we reduce (2.22)–(2.24) into
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u1 = g2
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) + 4π
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, (2.29)

where zis is rewritten as pis .
For the system (2.27)–(2.29), we consider two cases. In the first case we consider the problem

over a doubly periodic-domain Ω , governing multiple vortices hosted in Ω such that the field
configurations are subject to the ’t Hooft boundary condition [24,49,50] under which periodicity
is achieved modulo gauge transformations. In the second case we consider the problem over R2

with the boundary condition

ui → 0, |x| → ∞, i = 1,2,3. (2.30)

Our main results for (2.27)–(2.29) read as follows.

Theorem 2.1. Consider the problem (2.27)–(2.29) with any distribution of points pi1, . . . , pini
,

and ni � 0 are integers, i = 1,2,3. For any ρ1, ρ2 ∈ C and ξ > 0 satisfying (2.25), and any
coupling parameters g0, gn, gr > 0, we have the following conclusion:

Over a doubly periodic-domain Ω , there exists a solution for (2.27)–(2.29) if and only if

2(n + r)(n1 + n2 + n3)
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g2
n
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r

<
ξ |Ω|
4π

√
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Moreover, if a solution exists, it must be unique.
Over R2, there exits a unique solution for the problem (2.27)–(2.29) with the boundary con-

dition (2.30). Furthermore, the solution satisfies the following exponential decay estimate at
infinity
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i=1

(
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i + |∇ui |2
)
� O
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}
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In both cases, there hold the quantized integrals∫ {
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|ρ1|2
∫ (
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dx = −4πnn2
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where the integrals are taken over either the domain Ω or R2.

3. Existence of doubly periodic solutions

In this section we prove Theorem 2.1 for the doubly periodic case. We will use the direct
minimization procedure developed in [32].

Let u0
1 be the solution of the problem (see [2])


u0
1 = 4π

3∑
i=1

ni∑
s=1

δpis
− 4π(n1 + n2 + n3)

|Ω| ,

∫
Ω
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and u0
i be the solution of the problem (see [2])
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Setting ui = u0
i + vi , i = 1,2,3, we may reformulate (2.27)–(2.29) as
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where we use the notation

g̃2
0 ≡ g̃2

0

2nr(n + r)
, ξ̃ ≡ √

2nr(n + r)ξ. (3.4)

Noting (2.25) and (3.4), one has

nr
(|ρ1|2 + |ρ1|2

) = ξ̃ . (3.5)

Our function space is the Sobolev space W 1,2(Ω), which is composed of scalar or vector-
valued Ω periodic L2 functions whose derivatives also belong to L2(Ω). We may easily check
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that Eqs. (3.1)–(3.3) are the Euler–Lagrange equations of the following functional

I (v1, v2, v3) = 1

g̃2
0

‖∇v1‖2
2 + n(n − 1)

2g2
n
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2 + r(r − 1)

2g2
r
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(
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We first show that the condition (2.31) is necessary for the existence of solutions to
(2.27)–(2.29). If (v1, v2, v3) is a solution of (3.1)–(3.3), integrating Eqs. (3.1)–(3.3) over the
domain Ω , we have
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0
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|ρ1|2
∫
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∫
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nr
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0

+ 4πn2

g2
n
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g2
r
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Then all the right-hand sides of (3.7)–(3.10) must be positive, which with (3.4) give the ne-
cessity of the condition (2.31).

In the sequel we show that the condition (2.31) is also sufficient for the existence of solutions
to (2.27)–(2.29). In other words, we prove that under the condition (2.31), the functional I admits
a unique critical point, which solves (3.1)–(3.3).

There is a decomposition for the space W 1,2(Ω)

W 1,2(Ω) =R⊕ Ẇ 1,2(Ω),
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}

is a closed subspace of W 1,2(Ω). Then, for any v ∈ W 1,2(Ω), we have

v = c + w, c ∈R, w ∈ Ẇ 1,2(Ω). (3.11)

By the Trudinger–Moser inequality [2,16]∫
Ω

ew dx � C exp

(
1

16π

∫
Ω

|∇w|2 dx

)
, ∀w ∈ Ẇ 1,2(Ω), (3.12)

we see that the functional I is a C1 functional and weakly lower semi-continuous.
Using the decomposition formula (3.11) for vi ∈ W 1,2(Ω), we have

vi = ci + wi, ci ∈R, wi ∈ Ẇ 1,2(Ω), i = 1,2,3. (3.13)

Then it follows from Jensen’s inequality that

I (v1, v2, v3) − 1

g̃2
0

‖∇w1‖2
2 − n(n − 1)

2g2
n

‖∇w2‖2
2 − r(r − 1)

2g2
r

‖∇w3‖2
2

= |ρ1|2e2rc1+(n−1)c2

∫
Ω

e2r(u0
1+w1)+(n−1)(u0

2+w2) dx

+ (n − 1)|ρ1|2e2rc1−c2

∫
Ω

e2r(u0
1+w1)−u0

2−w2 dx

+ |ρ2|2e2nc1+(r−1)c3

∫
e2n(u0

1+w1)+(r−1)(u0
3+w3) dx
Ω
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+ (r − 1)|ρ2|2e2nc1−c3

∫
Ω

e2n(u0
1+w1)−u0

3−w3 dx

−
(

2ξ̃ |Ω| − 8π [n1 + n2 + n3]
g̃2

0

)
c1 + 4πn(n − 1)n2

g2
n

c2 + 4πr(r − 1)n3

g2
r

c3

� |Ω|{|ρ1|2
(
e2rc1+(n−1)c2 + [n − 1]e2rc1−c2

) + |ρ2|2
(
e2nc1+(r−1)c3 + [r − 1]e2nc1−c3

)}
−

(
2ξ̃ |Ω| − 8π [n1 + n2 + n3]

g̃2
0

)
c1 + 4πn(n − 1)n2

g2
n

c2 + 4πr(r − 1)n3

g2
r

c3

= {|Ω||ρ1|2e2rc1+(n−1)c2 − K1
(
2rc1 + [n − 1]c2

)
+ (n − 1)

(|Ω||ρ1|2e2rc1−c2 − K2[2rc1 − c2]
)

+ |Ω||ρ2|2e2nc1+(r−1)c3 − K1
(
2nc1 + [r − 1]c3

)
+ (r − 1)

(|Ω||ρ2|2e2nc1−c3 − K3[2nc1 − c3]
)}

, (3.14)

where

K1 ≡ ξ̃ |Ω|
2nr

− 2π(n1 + n2 + n3)

nrg̃2
0

− 2π(n − 1)n2

g2
n

− 2π(r − 1)n3

g2
r

, (3.15)

K2 ≡ ξ̃ |Ω|
2nr

− 2π(n1 + n2 + n3)

nrg̃2
0

+ 2π(n + 1)n2

g2
n

− 2π(r − 1)n3

g2
r

, (3.16)

K3 ≡ ξ̃ |Ω|
2nr

− 2π(n1 + n2 + n3)

nrg̃2
0

− 2π(n − 1)n2

g2
n

+ 2π(r + 1)n3

g2
r

. (3.17)

It is worth noting that the rearrangement of the right-hand sides of (3.14) is crucial for the
subsequent treatment of the functional I .

We observe that under the condition (2.31) Ki (i = 1,2,3) defined by (3.15)–(3.17) are all
positive. Then, from (3.14) we obtain

I (v1, v2, v3) � 1

g̃2
0

‖∇w1‖2
2 + n(n − 1)

2g2
n

‖∇w2‖2
2 + r(r − 1)

2g2
r

‖∇w3‖2
2 + K1 ln

|Ω||ρ1|2
K1

+ K1 ln
|Ω||ρ2|2

K1
+ (n − 1)K2 ln

|Ω||ρ1|2
K2

+ (r − 1)K3 ln
|Ω||ρ2|2

K3
.

(3.18)

Therefore, it follows from (3.18) that the functional I is bounded from below and the minimiza-
tion problem

η0 ≡ inf
{
I (v1, v2, v3)

∣∣ (v1, v2, v3) ∈ W 1,2(Ω)
}

(3.19)

is well-defined.
Now choose a minimizing sequence of {(v(k)

1 , v
(k)
2 , v

(k)
3 )} of (3.19). We use the decomposition

formula (3.11) for v
(k)
i to get v

(k)
i = c

(k)
i + w

(k)
i , i = 1,2,3. In view of the fact that the function

f (t) = δet − ηt , with δ, η > 0, satisfies the property f (t) → +∞ as t → ±∞, we conclude
from (3.14) that {c(k)

i } (i = 1,2,3) are all bounded.

Using (3.18) we see that {∇w
(k)
i } (i = 1,2,3) are all bounded in L2(Ω), which with the

Poincaré inequality imply that {w(k)} (i = 1,2,3) are all bounded in W 1,2(Ω). Therefore, the
i
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sequence {v(k)
i } (i = 1,2,3) are all bounded in W 1,2(Ω). Consequently, there exists a subse-

quence of {v(k)
i }, still denoted by {v(k)

i }, such that v
(k)
i → v̂i , weakly in W 1,2(Ω) as k → ∞ for

some v̂i ∈ W 1,2(Ω), i = 1,2,3.
Noting that the functional I is weakly lower semi-continuous, we conclude that (v̂1, v̂2, v̂3) is

a critical point of I . Naturally, (v̂1, v̂2, v̂3) is a weak solution of Eqs. (3.1)–(3.3).
We easily check that the functional I is strictly convex. Then it admits at most one critical

point, which implies the uniqueness of the doubly periodic solutions to Eqs. (3.1)–(3.3).
To get the quantized integrals (2.34)–(2.36) over Ω , we just need to integrate Eqs. (3.1)–(3.3)

over Ω .

4. Existence and asymptotic behavior of planar solution

In this section we prove the existence result for (2.27)–(2.29) over the full plane with the
boundary condition (2.30).

As in [28] we take the background functions

u0
1(x) = −

3∑
i=1

ni∑
s=1

ln
(
1 + λ|x − pis |−2), (4.1)

u0
i (x) = −

ni∑
s=1

ln
(
1 + λ|x − pis |−2), i = 2,3, (4.2)

where λ > 0 is a parameter. Then we see that


u0
1 = −h1 + 4π

3∑
i=1

ni∑
s=1

δpis
, 
u0

i = −hi + 4π

ni∑
s=1

δpis
, i = 2,3, (4.3)

where

h1(x) =
3∑

i=1

ni∑
s=1

4λ

(λ + |x − pis |2)2
, hi =

ni∑
s=1

4λ

(λ + |x − pis |2)2
, i = 2,3. (4.4)

Let

ui = u0
i + vi, i = 1,2,3. (4.5)

Then we recast Eqs. (2.27)–(2.29) into


v1 = g̃2
0

{
r|ρ1|2

[
e2r(u0

1+v1)+(n−1)(u0
2+v2) + (n − 1)e2r(u0

1+v1)−u0
2−v2

]
+ n|ρ2|2

[
e2n(u0

1+v1)+(r−1)(u0
3+v3) + (r − 1)e2n(u0

1+v1)−u0
3−v3

] − ξ̃
} + h1, (4.6)


v2 = g2
n|ρ1|2

n

(
e2r(u0

1+v1)+(n−1)(u0
2+v2) − e2r(u0

1+v1)−u0
2−v2

) + h2, (4.7)


v3 = g2
r |ρ2|2

r

(
e2n(u0

1+v1)+(r−1)(u0
3+v3) − e2n(u0

1+v1)−u0
3−v3

) + h3, (4.8)

where we used the notation (3.4).
Our function space here is W 1,2(R2). It is easy to see that Eqs. (4.6)–(4.8) are the Euler–

Lagrange equations of the following functional



X. Han, C.-S. Lin / Nuclear Physics B 878 [PM] (2014) 117–149 127
I (v1, v2, v3) = 1

g̃2
0

‖∇v1‖2
2 + n(n − 1)

2g2
n

‖∇v2‖2
2 + r(r − 1)

2g2
r

‖∇v3‖2
2

+ |ρ1|2
∫
R2

{
e2ru0

1+(n−1)u0
2
[
e2rv1+(n−1)v2 − 1

] − (
2rv1 + [n − 1]v2

)

+ (n − 1)
(
e2ru0

1−u0
2
[
e2rv1−v2 − 1

] − [2rv1 − v2]
)}

dx

+ |ρ2|2
∫
R2

{
e2nu0

1+(r−1)u0
3
[
e2nv1+(r−1)v3 − 1

] − (
2nv1 + [r − 1]v3

)

+ (r − 1)
(
e2nu0

1−u0
3
[
e2nv1−v3 − 1

] − [2nv1 − v3]
)}

dx

+ 2

g̃2
0

∫
R2

h1v1 dx + n(n − 1)

g2
n

∫
R2

h2v2 dx + r(r − 1)

g2
r

∫
R2

h3v3 dx. (4.9)

We easily check that the functional I is C1 and strictly convex over W 1,2(R2). Then we can
solve Eqs. (4.6)–(4.8) by finding the critical points of the functional (4.9). To this end, we use a
direct approach developed in [32].

Our first step is to show I is coercive. A direct computation gives

(
DI (v1, v2, v3)

)
(v1, v2, v3) − 2

g̃2
0

‖∇v1‖2
2 − n(n − 1)

g2
n

‖∇v2‖2
2 − r(r − 1)

g2
r

‖∇v3‖2
2

= 2
∫
R2

{
r|ρ1|2

(
e2r(u0

1+v1)+(n−1)(u0
2+v2) + [n − 1]e2r(u0

1+v1)−u0
2−v2 − n

)

+ n|ρ2|2
(
e2n(u0

1+v1)+(r−1)(u0
3+v3) + [r − 1]e2n(u0

1+v1)−u0
3−v3 − r

)}
v1 dx

+ (n − 1)|ρ1|2
∫
R2

(
e2r(u0

1+v1)+(n−1)(u0
2+v2) − e2r(u0

1+v1)−u0
2−v2

)
v2 dx

+ (r − 1)|ρ2|2
∫
R2

(
e2n(u0

1+v1)+(r−1)(u0
3+v3) − e2n(u0

1+v1)−u0
3−v3

)
v3 dx

+ 2

g̃2
0

∫
R2

h1v1 dx + n(n − 1)

g2
n

∫
R2

h2v2 dx + r(r − 1)

g2
r

∫
R2

h3v3 dx

= |ρ1|2
∫
R2

(
e2ru0

1+(n−1)u0
2+2rv1+(n−1)v2 − 1 + X1

)(
2rv1 + [n − 1]v2

)
dx

+ (n − 1)|ρ1|2
∫
R2

(
e2ru0

1−u0
2+2rv1−v2 − 1 + X2

)
(2rv1 − v2)dx

+ |ρ2|2
∫
R2

(
e2nu0

1+(r−1)u0
3+2nv1+(r−1)v3 − 1 + X3

)(
2nv1 + [r − 1]v3

)
dx

+ (r − 1)|ρ2|2
∫

2

(
e2nu0

1−u0
3+2nv1−v3 − 1 + X4

)
(2nv1 − v3)dx, (4.10)
R
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where

X1 ≡ 1

2|ρ1|2
(

h1

nrg̃2
0

+ (n − 1)h2

g2
n

+ (r − 1)h3

g2
r

)
, (4.11)

X2 ≡ 1

2|ρ1|2
(

h1

nrg̃2
0

− (n + 1)h2

g2
n

+ (r − 1)h3

g2
r

)
, (4.12)

X3 ≡ 1

2|ρ2|2
(

h1

nrg̃2
0

+ (n − 1)h2

g2
n

+ (r − 1)h3

g2
r

)
, (4.13)

X4 ≡ 1

2|ρ2|2
(

h1

nrg̃2
0

+ (n − 1)h2

g2
n

− (r + 1)h3

g2
r

)
. (4.14)

Then we need to estimate the right-hand side of (4.12). In order to do this, we introduce the
notations

w0
1 = 2ru0

1 + (n − 1)u0
2, w1 = 2rv1 + (n − 1)v2, (4.15)

w0
2 = 2ru0

1 − u0
2, w2 = 2rv1 − v2, (4.16)

w0
3 = 2nu0

1 + (r − 1)u0
3, w3 = 2nv1 + (r − 1)v3, (4.17)

w0
4 = 2nu0

1 − u0
3, w4 = 2nv1 − v3. (4.18)

With the above notations, from (4.10) we obtain(
DI (v1, v2, v3)

)
(v1, v2, v3)

� 2

g̃2
0

‖∇v1‖2
2 + n(n − 1)

g2
n

‖∇v2‖2
2 + r(r − 1)

g2
r

‖∇v3‖2
2

+ |ρ1|2
(
M1(w1) + (n − 1)M2(w2)

) + |ρ2|2
(
M3(w3) + (r − 1)M4(w4)

)
, (4.19)

where

Mi(wi) ≡
∫
R2

(
ew0

i +wi − 1 + Xi

)
wi dx, i = 1,2,3,4. (4.20)

Now we estimate the general term Mi(wi) on the right-hand side of (4.19).
Let w+ = max{w,0}, w− = max{−w,0}. Then, we have the following decomposition

Mi(wi) = Mi(wi+) + Mi(−wi−), i = 1,2,3,4.

In view of the elementary inequality et − 1 � t for t ∈ R and the fact w0
i ,Xi ∈ L2(R2)

(i = 1, . . . ,4), which follows from the definition of u0
j (j = 1,2,3), we have

Mi(wi+) �
∫
R2

(
w0

i + wi+ + Xi

)
wi+ dx � 1

2

∫
R2

w2
i+ dx − C, i = 1, . . . ,4, (4.21)

for some constant C > 0.
Noting the definition of u0

j (j = 1,2,3) and taking λ sufficiently large, we see that Xi < 1
2 for

i = 1, . . . ,4. Then, as λ is suitably large, using the inequality 1 − e−t � t for t � 0, we have
1+t
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Mi(−wi−) =
∫
R2

(
1 − ew0

i −wi− − Xi

)
wi− dx

=
∫
R2

(
1 − ew0

i + ew0
i
[
1 − e−wi−] − Xi

)
wi− dx

�
∫
R2

(
1 − ew0

i + ew0
i

wi−
1 + wi−

− Xi

)
wi− dx

=
∫
R2

{
ew0

i wi− + (
1 − ew0

i − Xi

)
(1 + wi−)

} wi−
1 + wi−

dx

=
∫
R2

(1 − Xi)
w2

i−
1 + wi−

dx +
∫
R2

(
1 − ew0

i − Xi

) wi−
1 + wi−

dx

� 1

2

∫
R2

w2
i−

1 + wi−
dx +

∫
R2

(
1 − ew0

i − Xi

) wi−
1 + wi−

dx

� 1

4

∫
R2

w2
i−

(1 + wi−)2
dx − C, i = 1, . . . ,4, (4.22)

where we have used the fact ew0
i − 1,Xi ∈ L2(R2) (i = 1, . . . ,4). Here and what follows we use

C to denote a generic positive constant, which may take different values at different places.
Hence, combining (4.21) and (4.22), we find that

Mi(wi) � 1

4

∫
R2

w2
i

(1 + |wi |)2
dx − C, i = 1, . . . ,4. (4.23)

Therefore, we conclude from (4.19) and (4.23) that(
DI (v1, v2, v3)

)
(v1, v2, v3)

� 2

g̃2
0

‖∇v1‖2
2 + n(n − 1)

g2
n

‖∇v2‖2
2 + r(r − 1)

g2
r

‖∇v3‖2
2

+ |ρ1|2
4

(∫
R2

w2
1

(1 + |w1|)2
dx + (n − 1)

∫
R2

w2
2

(1 + |w2|)2
dx

)

+ |ρ2|2
4

(∫
R2

w2
3

(1 + |w3|)2
dx + (r − 1)

∫
R2

w2
4

(1 + |w4|)2
dx

)
− C. (4.24)

To proceed further, we need the standard Sobolev inequality∫
R2

v4 dx � 2
∫
R2

v2 dx

∫
R2

|∇v|2 dx, ∀v ∈ W 1,2(
R

2). (4.25)

Using (4.25), we have
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(∫
R2

|wi |2 dx

)2

=
(∫
R2

|wi |
1 + |wi |

(
1 + |wi |

)|wi |dx

)2

�
∫
R2

|wi |2
(1 + |wi |)2

dx

∫
R2

(|wi | + |wi |2
)2 dx

� 4
∫
R2

|wi |2
(1 + |wi |)2

dx

∫
R2

|wi |2 dx

(∫
R2

|∇wi |2 dx + 1

)

� 1

2

(∫
R2

|wi |2 dx

)2

+ C

([ |wi |2
(1 + |wi |)2

dx

]4

+
[∫
R2

|∇wi |2 dx

]4

+ 1

)
,

(4.26)

which implies

‖wi‖2 � C

(∫
R2

|wi |2
(1 + |wi |)2

dx +
∫
R2

|∇wi |2 dx + 1

)
, i = 1, . . . ,4. (4.27)

In view of the notations (4.15)–(4.18), we have

‖v1‖2
2 � ‖w1‖2

2 + (n − 1)‖w2‖2
2, ‖v2‖2

2 � ‖w1‖2
2 + (n − 1)‖w2‖2

2,

‖v3‖2
2 � ‖w3‖2

2 + (r − 1)‖w4‖2
2,

which give

3∑
i=1

‖vi‖2 � C

4∑
j=1

‖wj‖2. (4.28)

Then, from (4.27) and (4.28), we see that

3∑
i=1

‖vi‖2 � C

(
4∑

i=1

∫
R2

|wi |2
(1 + |wi |)2

dx +
3∑

j=1

‖∇vj‖2
2 + 1

)
, (4.29)

where we used the fact
4∑

i=1

‖∇wi‖2
2 � C

3∑
j=1

‖∇vj‖2
2.

Now we conclude from (4.24) and (4.29) that there exist some positive constant C0 and C1
such that

(
DI (v1, v2, v3)

)
(v1, v2, v3) � C0

3∑
i=1

‖vi‖W 1,2(R2) − C1. (4.30)

By the coercive lower bound (4.30), we can show that the functional I admits a critical point
in W 1,2(R2). In view of (4.30), we can take R0 > 0 sufficiently large such that

inf

{(
DI (v1, v2, v3)

)
(v1, v2, v3)

∣∣∣ 3∑
‖vi‖W 1,2(R2) = R0

}
� 1
i=1
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(say). Since I is weakly lower semi-continuous, the minimization problem

η0 ≡ inf

{
I (f,f1, . . . , fM)

∣∣∣ ‖f ‖W 1,2(R2) +
M∑
i=1

‖fi‖W 1,2(R2) � R0

}
(4.31)

admits a solution, say (v̂1, v̂2, v̂3). Then we show that (v̂1, v̂2, v̂3) is an interior point for the
minimization problem (4.31). Otherwise, if

3∑
i=1

‖v̂i‖W 1,2(R2) = R0,

then

lim
t→0

I ((1 − t)(v̂1, v̂2, v̂3)) − I (v̂1, v̂2, v̂3)

t
= d

dt
I
(
(1 − t)(v̂1, v̂2, v̂3)

)∣∣
t=0

= −(
DI (v̂1, v̂2, v̂3)

)
(v̂1, v̂2, v̂3) � −1.

Consequently, for t > 0 sufficiently small, with (vt
1, v

t
2, v

t
3) = (1 − t)(v̂1, v̂2, v̂3), we have

I
(
vt

1, v
t
2, v

t
3

)
< I (v̂1, v̂2, v̂3) = η0,

3∑
i=1

∥∥vt
i

∥∥
W 1,2(R2)

= (1 − t)R0 < R0,

which lead to a contradiction. Hence, we see that (v̂1, v̂2, v̂3) must be an interior critical point for
the problem (4.31). As a critical point of I , (v̂1, v̂2, v̂3) solves Eqs. (4.6)–(4.8). It is easy to check
that the functional I is strictly convex, which implies (v̂1, v̂2, v̂3) is the unique critical point of I .
Then the uniqueness of the solutions to the system (4.6)–(4.8) follows.

Now we study the behavior the solution at infinity. Let us denote the solution of (4.6)–(4.8)
by (v1, v2, v3). In view of the well-known inequality∥∥ev − 1

∥∥2
2 � C exp

(
C‖v‖2

W 1,2(R2)

)
, ∀v ∈ W 1,2(

R
2), (4.32)

we see that the right-hand sides of Eqs. (4.6)–(4.8) belong to L2(R2). Then it follows from the
elliptic L2-estimate that vi ∈ W 2,2(R2), i = 1,2,3, which implies the desired boundary condition
vi → 0, as |x| → ∞, i = 1,2,3. From the fact vi ∈ W 2,2(R2) we see that the right-hand sides of
Eqs. (4.6)–(4.8) also belong to Lp(R2) for any p � 2. Therefore, by the elliptic Lp estimate, we
have vi ∈ W 2,p(R2) for any p � 2, i = 1,2,3. Consequently, |∇vi | → 0, as |x| → ∞, i = 1,2,3.

In what follows we establish the exponential decay rate for this solution. Let (u1, u2, u3) be
the solution of (4.1)–(4.3) obtained above. We have shown that ui → 0 as |x| → ∞. Let

R > max
{|pis |, s = 1, . . . , ni, i = 1,2,3

}
.

When |x| > R, we rewrite Eqs. (2.27)–(2.29) as


u1 = g̃2
0

{
r|ρ1|2

(
eξ1

[
2ru1 + [n − 1]u2

] + [n − 1]eξ2[2ru1 − u2]
)

+ n|ρ2|2
(
eξ3

[
2nu1 + [r − 1]u3

] + [r − 1]eξ4 [2nu1 − u3]
)}

= 2nr
(
r|ρ1|2 + n|ρ2|2

)
g̃2

0u1 + g̃2
0

{(
2r2|ρ1|2

(
eξ1 + [n − 1]eξ2

)
+ 2n2|ρ2|2

(
eξ3 + [r − 1]eξ4

) − 2nr
(
r|ρ1|2 + n|ρ2|2

))
u1

+ r(n − 1)|ρ1|2
(
eξ1 − eξ2

)
u2 + n(r − 1)|ρ2|2

(
eξ3 − eξ4

)
u3

}
, (4.33)
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u2 = g2
n|ρ1|2

n

(
eξ1

[
2ru1 + [n − 1]u2

] − eξ2[2ru1 − u2]
)

= g2
n|ρ1|2u2 + g2

n|ρ1|2
n

{
2r

(
eξ1 − eξ2

)
u1 + ([n − 1]eξ1 + eξ2 − n

)
u2

}
, (4.34)


u3 = g2
r |ρ2|2

r

(
eξ3

[
2nu1 + [r − 1]u3

] − eξ4[2nu1 − u3]
)

= g2
r |ρ2|2u3 + g2

r |ρ2|2
r

{
2n

(
eξ3 − eξ4

)
u1 + ([r − 1]eξ3 + eξ4 − r

)
u3

}
, (4.35)

where ξ1 lies between 2ru1 + [n − 1]u2 and 0, ξ2 between 2ru1 − u2 and 0, ξ3 between 2nu1 +
[r − 1]u3 and 0, ξ4 between 2nu1 − u3 and 0.

Let u = u2
1 + u2

2 + u2
3. Noting that ui → 0 as |x| → ∞ and (4.33)–(4.35), we have


u � 2
3∑

i=1

ui
ui � 2σ 2
0 u − f (x)u, (4.36)

where σ0 is a positive constant defined by

σ 2
0 ≡ min

{
2nr

(
r|ρ1|2 + n|ρ2|2

)
g̃2

0, g2
n|ρ1|2, g2

r |ρ2|2
}
,

and f (x) is a function satisfies f (x) → 0 as |x| → ∞.
Then for any ε ∈ (0,1), there is an Rε > R such that


u � 2

(
1 − ε

2

)
σ 2

0 u as |x| > Rε. (4.37)

Since u → 0 at infinity, by a comparison function argument with (4.37), we conclude that there
exists a constant C(ε) > 0 such that

u � C(ε)e−√
2(1−ε)σ0|x| as |x| > Rε. (4.38)

Now we turn to the decay estimates for the derivatives. Let ∂ be any one of the two partial
derivatives ∂1 and ∂2. When |x| > R, a direct computation gives


(∂u1) = g̃2
0

{(
2r2|ρ1|2

[
e2ru1+[n−1]u2 + [n − 1]e2ru1−u2

]
+ 2n2|ρ2|2

[
e2nu1+[r−1]u3 + [r − 1]e2nu1−u3

])
∂u1

+ r(n − 1)|ρ1|2
(
e2ru1+[n−1]u2 − e2ru1−u2

)
∂u2

+ n(r − 1)|ρ2|2
(
e2nu1+[r−1]u3 − e2nu1−u3

)
∂u3

}
, (4.39)


(∂u2) = g2
n|ρ1|2

n

{
2r

(
e2ru1+[n−1]u2 − e2ru1−u2

)
∂u1

+ ([n − 1]e2ru1+[n−1]u2 + e2ru1−u2
)
∂u2

}
, (4.40)


(∂u3) = g2
r |ρ2|2

r

{
2n

(
e2nu1+[r−1]u3 − e2nu1−u3

)
∂u1

+ ([r − 1]e2nu1+[r−1]u3 + e2nu1−u3
)
∂u3

}
. (4.41)

Let v = (∂u1)
2 + (∂u2)

2 + (∂u3)
2. In view of the fact ui → 0 as |x| → ∞ and (4.39)–(4.41),

we obtain


v � 2
3∑

(∂ui)
(∂ui) � 2σ 2
0 v − f (x)v, (4.42)
i=1
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where σ0 is the same with above and f (x) is a function satisfies f (x) → 0 as |x| → ∞. Then
for any ε ∈ (0,1), there exits an Rε > R such that


v � 2

(
1 − ε

2

)
σ 2

0 v as |x| > Rε. (4.43)

Noting that v → 0 at infinity and by a comparison function argument with (4.43), we infer that
there exists a constant C(ε) > 0 such that

v � C(ε)e−√
2(1−ε)σ0|x| as |x| > Rε. (4.44)

Then from (4.38) and (4.44), we get the desired decay estimates (2.32) for the solutions.
Now we are in a position to compute the quantized integrals for the planar case. By the

definition of u0
i , we see that |∇u0

i | = O(|x|−3) at infinity, which together with (4.44) give
|∇vi | = O(|x|−3) at infinity, i = 1,2,3. Therefore, it follows from the divergence theorem
that ∫

R2


vi dx = 0, i = 1,2,3. (4.45)

By the definition of hi , we have∫
R2

h1 dx = 4π(n1 + n2 + n3),

∫
R2

hi dx = 4πni, i = 2,3. (4.46)

Now using (4.45)–(4.46) and integrating Eqs. (4.6)–(4.8) over R2, we get the desired quantized
integrals (2.34)–(2.36) for the planar case.

5. Yang–Mills–Higgs model with gauge group U(1) × SO(2M)

In this and the following sections we study the Yang–Mills–Higgs model with gauge group
U(1)×G′ introduced in [11,12,19]. The concrete case with G′ = SO(2M) and G′ = SU(N) will
be studied this section and next section, respectively. The Lagrangian density takes the form

L = Tr

(
− 1

2e2
FμνF

μν − 1

2g2
F̂μνF̂

μν +DμH
(
DμH

)† − e2

4

∣∣∣∣2 Tr
(
HH †t0)t0 − ξ

N
1N

∣∣∣∣
2

− g2
∣∣Tr

(
HH †ta

)
ta

∣∣2
)

, (5.1)

where field strength, gauge fields and covariant derivative are defined as

Fμν = F 0
μνt

0, F 0
μν = ∂μA0

ν − ∂νA
0
μ,

F̂μν = ∂μAν − ∂νAμ + i[Aμ,Aν], Aμ = Aa
μta,

Dμ = ∂μ + iA0
μt0 + iAa

μta,

A0
μ is the gauge field of U(1), Aa

μ are the gauge fields of G′, t0 and ta are the standard generators
of U(1) and G′. The matter scalar fields are written as a color-flavor mixed matrix H . Here e

and g are the U(1) and G′ coupling constants, respectively.
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With a Bogomol’nyi reduction [5,28] for static vortex solutions, the following BPS vortex
equations [11,12,19] can be obtained

D̄H = ∂̄H + iĀH = 0, (5.2)

F 0
12 = e2

(
Tr

(
HH †t0) − ξ√

2N

)
, (5.3)

Fa
12 = g2 Tr

(
HH †ta

)
, (5.4)

where D̄ = 1
2 (D1 + iD2).

The above BPS equations (5.2)–(5.4) are still difficult to approach. With the complex variable
z = x1 + ix2 and the ansatz [13,14]

H = S−1H0(z), Ā = −iS−1∂̄S, (5.5)

where S = S(z, z̄) ∈ C
∗ ×G′C (the complexification of the gauge group), and H0(z) is holomor-

phic in z called the moduli matrix [13,26,27]. The BPS equation (5.2) is verified automatically.
Let Ω̃ = SS†. Decompose S as S = sS′, and Ω̃ = ωΩ ′, where ω = |s|2, Ω ′ = S′S′ †. Let us
define Ω0 = H0H

†
0 . Then as G′ = SO(2M) the BPS equations (5.3)–(5.4) become

∂̄∂ lnω = − e2

8M

(
1

ω
Tr

(
Ω0Ω

′ −1) − ξ

)
, (5.6)

∂̄
(
Ω ′∂Ω ′ −1) = g2

8ω

(
Ω0Ω

′ −1 − J †(Ω0Ω
′ −1)T

J
)
, (5.7)

where

J ≡
(

0M 1M

1M 0M

)
.

As in [20], we make the following ansatz to reduce Eqs. (5.6)–(5.7)

Ω ′ = diag
{
eχ1, . . . , eχM , e−χ1 , . . . , e−χM

}
, ω = eψ. (5.8)

Without loss of generality, we take the moduli matrix H0 (2M × 2M matrix) as

H0 = ρ

M∏
i=0

Pi(z)diag
{
P1(z), . . . ,PM(z); (P1(z)

)−1
, . . . ,

(
PM(z)

)−1}
, (5.9)

where

P0(z) =
n0∏

s=1

(z − z0s), Pi(z) =
n∏

s=1

(z − zis), i = 1, . . . ,M, (5.10)

ρ ∈ C, ρ �= 0, and n0, n � 0 are integers.
Then inserting (5.8)–(5.9) into (5.6)–(5.7), we obtain


ψ = e2

2M

(
|ρ|2

M∏
i=0

∣∣Pi(z)
∣∣2e−ψ

M∑
i=1

[∣∣Pi(z)
∣∣2e−χi + ∣∣Pi(z)

∣∣−2eχi
] − ξ

)
, (5.11)


χi = g2

2M
|ρ|2

M∏∣∣Pi(z)
∣∣2e−ψ

(∣∣Pi(z)
∣∣2e−χi − ∣∣Pi(z)

∣∣−2eχi
)
, i = 1, . . . ,M, (5.12)
i=0
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where the vacuum manifold is given by

2M|ρ|2 = ξ. (5.13)

With the notation

u = −ψ +
M∑
i=1

n∑
s=1

ln |z − zis |2, ui = −χi +
n∑

s=1

ln |z − zis |2, i = 1, . . . ,M, (5.14)

and zis = pis , we reduce (5.11)–(5.12) into


u = e2

2M

(
|ρ|2

M∑
i=1

[
eu+ui + eu−ui

] − ξ

)
+ 4π

n0∑
s=1

δp0s
+ 4π

M∑
i=1

n∑
s=1

δpis
, (5.15)


uj = g2|ρ|2
2

(
eu+uj − eu−uj

) + 4π

n∑
s=1

δpjs
, j = 1, . . . ,M. (5.16)

We will consider the system (5.15)–(5.16) for two cases: over a doubly periodic-domain and
over the full plane with the boundary condition

u → 0, ui → 0, as |x| → ∞, i = 1, . . . ,M. (5.17)

For the system (5.15)–(5.16), our main results read as follows.

Theorem 5.1. Consider the problem (5.15)–(5.16) with any distribution of points p01, . . . , p0n0 ,
pi1, . . . , pin, and n0, n � 0 are integers, i = 1, . . . ,M . For any ρ ∈ C and ξ > 0 satisfying (5.13),
and any coupling parameters e, g > 0, we have the following conclusion:

Over a doubly periodic-domain Ω , there exists a solution for (5.15)–(5.16) if and only if

n0 + Mn

e2
+ n

g2
<

ξ |Ω|
8Mπ

. (5.18)

Moreover, if a solution exists, it must be unique.
Over R

2, there exists a unique solution the problem (5.15)–(5.16) satisfying the boundary
condition (5.17). Furthermore, the solution satisfies the following exponential decay estimate at
infinity

|u|2 + |∇u|2 +
M∑
i=1

(
u2

i + |∇ui |2
)
� O

(
e−√

2σ0(1−ε)|x|), (5.19)

where ε ∈ (0,1) is an arbitrary parameter, σ0 is a positive constant defined by

σ 2
0 ≡ min

{
M2e2|ρ|2, g2|ρ|2}. (5.20)

In both cases, there hold the quantized integrals∫ (
|ρ|2

M∑
i=1

[
eu+ui + eu−ui

] − ξ

)
dx = −8Mπ(n0 + Mn)

e2
, (5.21)

|ρ|2
∫ (

eu+uj − eu−uj
)

dx = −πn

g2
, j = 1, . . . ,M, (5.22)

where the integrals are taken over either the domain Ω or R2.
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5.1. Doubly periodic case

In this subsection we will prove Theorem 5.1 for the doubly periodic case. We use the argu-
ment of Section 3. Let u0 be the solution of the problem


u0 = 4π

n0∑
s=1

δp0s
+ 4π

M∑
i=1

n∑
s=1

δpis
− 4π(n0 + Mn)

|Ω| ,

∫
Ω

u0 dx = 0,

and u0
i be the solution of the problem


u0
i = 4π

n∑
s=1

δpis
− 4πn

|Ω| ,

∫
Ω

u0
i dx = 0, i = 1, . . . ,M.

With u = u0 + v, ui = u0
i + vi , i = 1, . . . ,M , we may reformulate (5.15)–(5.16) as


v = e2

2M

(
|ρ|2

M∑
i=1

[
eu0+u0

i +v+vi + eu0−u0
i +v−vi

] − ξ

)
+ 4π(n0 + Mn)

|Ω| , (5.23)


vj = g2|ρ|2
2

(
eu0+u0

j +v+vj − eu0−u0
j +v−vj

) + 4πn

|Ω| , j = 1, . . . ,M, (5.24)

which are the Euler–Lagrange equations of the following functional

I (v, v1, . . . , vM) = M

e2
‖∇v‖2

2 + 1

g2

M∑
i=1

‖∇vi‖2
2 + 8Mπ(n0 + Mn)

|Ω|e2

∫
Ω

v dx

+ 8πn

|Ω|g2

M∑
i=1

∫
Ω

vi dx

+ |ρ|2
M∑
i=1

∫
Ω

[
eu0+u0

i +v+vi + eu0−u0
i +v−vi − 2v

]
dx. (5.25)

We first prove the necessity of the condition (5.18) for the existence of solutions to
(5.15)–(5.16). Let (v, v1, . . . , vM) be a solution of (5.23)–(5.24). Then, integrating Eqs. (5.23)–
(5.24) over the domain Ω , we obtain

|ρ|2
M∑
i=1

∫
Ω

(
eu0+u0

i +v+vi + eu0−u0
i +v−vi

)
dx = ξ |Ω| − 8Mπ(n0 + Mn)

e2
,

|ρ|2
∫ (

eu0+u0
j +v+vj − eu0−u0

j +v−vj
)

dx = −8πn

g2
, j = 1, . . . ,M,
Ω
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which give

|ρ|2
M∑
i=1

∫
Ω

eu0+u0
i +v+vi dx = ξ |Ω|

2
− 4Mπ(n0 + Mn)

e2
− 4Mπn

g2
, (5.26)

|ρ|2
M∑
i=1

∫
Ω

eu0−u0
i +v−vi dx = ξ |Ω|

2
− 4Mπ(n0 + Mn)

e2
+ 4Mπn

g2
. (5.27)

Then both the right-hand sides of (5.26) and (5.27) should be positive, which concludes the
necessity of the condition (5.18).

In what follows we show that the condition (5.18) is also sufficient for the existence of solu-
tions to (5.15)–(5.16). For (v, v1, . . . , vM) ∈ W 1,2(Ω), using the decomposition formula (3.11)
we have v = c + w,vi = ci + wi, i = 1, . . . ,M . Then using Jensen’s inequality we obtain

I (v, v1, . . . , vM) − M

e2
‖∇w‖2

2 − 1

g2

M∑
i=1

‖∇wi‖2
2

= |ρ|2
M∑
i=1

(
ec+ci

∫
Ω

eu0+u0
i +w+wi dx + ec−ci

∫
Ω

eu0−u0
i +w−wi dx − 2c

)

+ 8Mπ(n0 + Mn)

e2
c + 8πn

g2

M∑
i=1

ci

� |ρ|2|Ω|
M∑
i=1

(
ec+ci + ec−ci − 2c

) + 8Mπ(n0 + Mn)

e2
c + 8πn

g2

M∑
i=1

ci

=
M∑
i=1

(|ρ|2|Ω|ec+ci − K1[c + ci] + |ρ|2|Ω|ec−ci − K2[c − ci]
)
, (5.28)

where

K1 ≡ ξ |Ω|
2M

− 4π(n0 + Mn)

e2
− 4πn

g2
, K2 ≡ ξ |Ω|

2M
− 4π(n0 + Mn)

e2
+ 4πn

g2
.

Noting the condition (5.18), we see that K1 > 0, K2 > 0. Then, from (5.28) we obtain

I (v, v1, . . . , vM) � M

e2
‖∇w‖2

2 − 1

g2

M∑
i=1

‖∇wi‖2
2

+ M

(
K1 ln

|ρ|2|Ω|
K1

+ K2 ln
|ρ|2|Ω|

K2

)
. (5.29)

Hence, from (5.29), we see that the functional I is bounded from below and the minimization
problem

η0 ≡ inf
{
I (v, v1, . . . , vM)

∣∣ (v, v1, . . . , vM) ∈ W 1,2(Ω)
}
. (5.30)

is well-defined.
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Using (5.28) and a similar argument in Section 3, we can get a critical point of the prob-
lem (5.30), which is a weak solution to (5.23)–(5.24). The uniqueness of the solution follows
from the strict convexity of the functional I .

The quantized integrals follow from a direct integration. Then the proof of Theorem 5.1 for
the doubly periodic case is complete.

5.2. Planar case

In this subsection we consider (5.15)–(5.16) over the full plane with the boundary condition
(5.17).

Let

u0(x) = −
n0∑

s=1

ln
(
1 + λ|x − p0s |−2) −

M∑
i=1

n∑
s=1

ln
(
1 + λ|x − pis |−2), (5.31)

u0
i (x) = −

n∑
s=1

ln
(
1 + λ|x − pis |−2), i = 1, . . . ,M, (5.32)

where λ > 0 is a parameter. Then we see that


u0 = −h0 + 4π

n0∑
s=1

δpis
+ 4π

M∑
i=1

n∑
s=1

δpis
, 
u0

i = −hi + 4π

n∑
s=1

δpis
,

i = 1, . . . ,M, (5.33)

where

h0(x) =
n0∑

s=1

4λ

(λ + |x − p0s |2)2
+

M∑
i=1

n∑
s=1

4λ

(λ + |x − pis |2)2
,

hi =
n∑

s=1

4λ

(λ + |x − pis |2)2
, i = 1, . . . ,M.

Let u = u0 + v, ui = u0
i + vi , i = 1, . . . ,M . Then we rewrite the system (5.15)–(5.17) into the

following form


v = e2|ρ|2
2M

M∑
i=1

(
eu0+u0

i +v+vi + eu0−u0
i +v−vi − 2

) + h0, (5.34)


vj = g2|ρ|2
2

(
eu0+u0

j +v+vj − eu0−u0
j +v−vj

) + hj , j = 1, . . . ,M, (5.35)

which are the Euler–Lagrange equations of the functional

I (v, v1, . . . , vM)

= M

e2
‖∇v‖2

2 + 1

g2

M∑
i=1

‖∇vi‖2
2 + 2M

e2

∫
R2

h0v dx + 2

g2

M∑
i=1

∫
R2

hivi dx

+ |ρ|2
M∑
i=1

∫
R2

(
eu0+u0

i
[
ev+vi − 1

] − [v + vi] + eu0−u0
i
[
ev−vi − 1

] − [v − vi]
)

dx.

(5.36)
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Since the functional is differentiable and strictly convex, as in Section 4, to get the solution of
(5.34)–(5.35), we need to show that the functional is coercive over W 1,2(R2). Although we can
follow a similar argument as in Section 4 to prove the coerciveness of the functional, here we use
a new direct approach recently developed in [33].

Taking α > 0 such that α2 > max{e2, g2}, we rewrite the functional I as

I (v, v1, . . . , vM) = M

(
1

e2
− 1

α2

)
‖∇v‖2

2 +
(

1

g2
− 1

α2

) M∑
i=1

‖∇vi‖2
2

+ 1

α2

M∑
i=1

{
1

2

∥∥∇(v + vi)
∥∥2

2

+ α2|ρ|2
∫
R2

(
eu0+u0

i
[
ev+vi − 1

] − [v + vi]
)

dx + α2
∫
R2

H 1
i (v + vi)dx

+ 1

2

∥∥∇(v − vi)
∥∥2

2 + α2|ρ|2
∫
R2

(
eu0−u0

i
[
ev−vi − 1

] − [v − vi]
)

dx

+ α2
∫
R2

H 2
i (v − vi)dx

}

= M

(
1

e2
− 1

α2

)
‖∇v‖2

2 +
(

1

g2
− 1

α2

) M∑
i=1

‖∇vi‖2
2

+ 1

α2

M∑
i=1

[
J 1

i (v + vi) + J 2
i (v − vi)

]
, (5.37)

where

H 1
i ≡ h0

e2
+ hi

g2
, H 2

i ≡ h0

e2
− hi

g2
, (5.38)

J 1
i (w) ≡ 1

2
‖∇w‖2

2 + α2|ρ|2
∫
R2

(
eu0+u0

i
[
ew − 1

] − w
)

dx + α2
∫
R2

H 1
i w dx, (5.39)

J 2
i (w) ≡ 1

2
‖∇w‖2

2 + α2|ρ|2
∫
R2

(
eu0−u0

i
[
ew − 1

] − w
)

dx + α2
∫
R2

H 2
i w dx. (5.40)

To show the coerciveness of I , in view of (5.37), we consider a generic functional of the
following form

J (w) = 1

2
‖∇w‖2

2 + α2|ρ|2
∫
R2

(
ew0

[
ew − 1

] − w
)

dx + α2
∫
R2

Hw dx, (5.41)

where w0 (taking the place of u0 ± u0
i ) and H (taking the place of H 1

i and H 2
i ) are defined as

below

w0 =
m∑

s=1

ln
(
1 + λ|x − ps |−2), H =

m∑
s=1

4λ

(λ + |x − ps |2)2
, (5.42)

where m (taking the place of n0 + Mn or n) is a positive integer.
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Let w+ = {w,0}, w− = max{−w,0}. We decompose J as

J (w) = J (w+) + J (−w−), (5.43)

which will be estimated separately in the sequel. Denote by BR a disc centered at the origin with
radius R. From the definition of w0, we may choose R0 > 0 with

R0 > 2 max
{|ps |, s = 1, . . . ,m

}
, (5.44)

such that, for any λ > 1, there exists a positive constant a0 > 1 such that

ew0 � 1

a0λm
as |x| > R0, (5.45)

0 � ew0 � a0

λm
as |x| � R0, (5.46)∫

BR0

ew0 dx � 1

a0λm
. (5.47)

Let

G(w) = ew0
[
ew − 1

] − w. (5.48)

It is easy to see that∫
R2

G(w+)dx =
∫
R2

(
ew0

[
ew+ − 1

] − w+
)

dx

� 1

2

∫
R2

ew0w2+ dx +
∫
R2

(
ew0 − 1

)
w+ dx. (5.49)

When |x| > R0, noting that 1 − ew0 ∈ L2(R2), we have∫
R2\BR0

G(w+)dx � 1

2a0λm
‖w+‖2

L2(R2\BR0 )
+

∫
R2\BR0

(
ew0 − 1

)
w+ dx

� 1

4a0λm
‖w+‖2

L2(R2\BR0 )
− Cλ, (5.50)

where Cλ is a generic positive constant depending only on λ.
When |x| < R0, we decompose w+ as

w+ = ẇ+ + w+, with w+ = 1

|R0|
∫

BR0

w+ dx,

∫
BR0

ẇ+ dx = 0.

Then from (5.49) and Young’s inequality, we have∫
BR0

G(w+)dx = w2+
2

∫
BR0

ew0 dx + 1

2

∫
BR0

ew0ẇ2+ dx +
∫

BR0

ew0ẇ+ dx

+ w+
∫

B

(
ew0ẇ+ + ew0 − 1

)
dx
R0
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�
w2+
4

∫
BR0

ew0 dx + 1

2

∫
BR0

ew0ẇ2+ dx +
∫

BR0

ew0ẇ+ dx

−
( ∫
BR0

ew0 dx

)−1( ∫
BR0

[
ew0ẇ+ + ew0 − 1

]
dx

)2

�
w2+
4

∫
BR0

ew0 dx − 1

2

( ∫
BR0

ew0 dx

)−1( ∫
BR0

ew0ẇ+ dx

)2

+
(

2|BR0 |
( ∫
BR0

ew0 dx

)−1

− 1

)
ew0ẇ+ dx

�
w2+
4

∫
BR0

ew0 dx − 1

2

∥∥ew0
∥∥

L∞(BR0 )
‖ẇ+‖2

L2(BR0 )

− Cλ‖ẇ+‖L2(BR0 ) − Cλ. (5.51)

Using the Poincaré inequality

‖ẇ+‖2
L2(BR0 )

� c0R
2
0‖∇w+‖2

L2(BR0 )
, (5.52)

we obtain

‖w+‖2
L2(BR0 )

� C0R
2
0

(
w2+ + ‖∇w+‖2

L2(BR0 )

)
. (5.53)

By the Hölder and Young inequalities, we have∫
R2

Hw+ dx � − C√
λ

‖w+‖2 � − ε

λm
‖w+‖2

2 − Cλ, (5.54)

where ε > 0 is small. Then we conclude from (5.45)–(5.47) and (5.50)–(5.54) that there exist
positive constants b0, b1 such that

J (w+) �
(

1

2
− b0α

2|ρ|2
λm

)
‖∇w+‖2

2 + b1α
2|ρ|2

λm
‖w+‖2

2 − Cλ. (5.55)

In what follows we estimate J (−v−). In view of the elementary inequality 1 − e−s � s
1+s

for
s � 0, we get

e−t − 1 + t =
t∫

0

(
1 − e−s

)
ds �

t∫
0

s

1 + s
ds � t2

2(1 + t)
, t � 0. (5.56)

Then from the inequality (5.56) and an inequality similar to (4.26), we may obtain∫
R2

G(−w−)dx =
∫
R2

(
ew0

[
e−w− − 1

] + w−
)

dx

=
∫
R2

([
ew0 − 1

][
e−w− − 1

] + e−w− − 1 + w−
)

dx

� 1

2

∫
w2−

1 + w
dx �

‖w−‖2
2

8(1 + ‖∇w ‖2)
. (5.57)
− − 2
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Using Hölder’s inequality again, one has∫
R2

Hw− dx � − C0√
λ

‖w−‖2. (5.58)

Hence we infer from (5.57) and (5.58) that

J (−w−) � 1

2
‖∇w−‖2

2 + α2|ρ|2‖w−‖2
2

8(1 + ‖∇w−‖2
2)

− C0α
2

√
λ

‖w−‖2

� 3

8
‖∇w−‖2

2 + 1

8

(
‖∇w−‖2

2 + α2|ρ|2‖w−‖2
2

1 + ‖∇w−‖2
2

)
− C0α

2

√
λ

‖w−‖2

� 3

8
‖∇w−‖2

2 +
(

α

4
− C0α

2|ρ|2√
λ

)
‖w−‖2 − 1

8
, (5.59)

where we have used the inequality

t + A2

1 + t
� 2A − 1, ∀A � 0, t � 0.

At this point, by taking λ suitably large we infer from (5.55) and (5.59) that there exist positive
constants C1,C2 such that

J (w) � C1‖w‖W 1,2(R2) − C2. (5.60)

Therefore, using the estimate (5.60) on the right-hand side of (5.37), we conclude that

I (v, v1, . . . , vM) � C1

α2

M∑
i=1

(‖v + vi‖W 1,2(R2) + ‖v − vi‖W 1,2(R2)

) − 2MC2

� C′
1

(
‖v‖W 1,2(R2) +

M∑
i=1

‖vi‖W 1,2(R2)

)
− C′

2, (5.61)

where C′
1, C′

2 are two positive constants.
Now using the coercive lower bound (5.61), we can obtain a critical point for the functional I

by a routing argument. The critical point is also unique since the functional I is strictly convex.
To establish the behavior at infinity, decay estimate of the solutions and the quantized inte-

grals, we can use a similar argument as in Section 4. Then the proof of Theorem 5.1 for the planar
case is complete.

6. Yang–Mills–Higgs model with gauge group U(1) × SU(N)

In this section we consider the Yang–Mills–Higgs model introduced last section with gauge
group U(1) × SU(N). In this case the BPS equations (5.3)–(5.4) take the form (see [11,12,19])

∂̄∂ lnω = − e2

4N

(
1

ω
Tr

(
Ω0Ω

′ −1) − ξ

)
, (6.1)

∂̄
(
Ω ′∂Ω ′ −1) = g2 (

Ω0Ω
′ −1 − 1N Tr

(
Ω0Ω

′ −1)). (6.2)

4ω N
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To simplify Eqs. (6.1)–(6.2), we use the ansatz [20]

Ω ′ = diag
{
e(N−1)χ , e−χ , . . . , e−χ

}
, ω = eψ. (6.3)

We take the moduli matrix H0 (N × N matrix) as

H0 = ρ

2∏
i=1

Pi(z)diag
{(

P2(z)
)(N−1)

,
(
P2(z)

)−1
, . . . ,

(
P2(z)

)−1}
, (6.4)

where

Pi(z) =
ni∏

k=1

(z − zik), i = 1,2, (6.5)

ρ ∈C, ρ �= 0 and ni � 0 are integers.
Then Eqs. (6.1)–(6.2) become


ψ = e2

N

(
|ρ|2

2∏
i=1

∣∣Pi(z)
∣∣2e−ψ

[∣∣P2(z)
∣∣2(N−1)e−(N−1)χ + (N − 1)

∣∣P2(z)
∣∣−2eχ

] − ξ

)
,

(6.6)


χ = g2

N
|ρ|2

2∏
i=1

∣∣Pi(z)
∣∣2e−ψ

(∣∣P2(z)
∣∣2(N−1)e−(N−1)χ − ∣∣P2(z)

∣∣−2eχ
)
. (6.7)

With the notation

u1 = −ψ +
2∑

i=1

ni∑
ik=1

ln |z − zik|2, u2 = −χ +
n2∑

k=1

ln |z − z2k|2, (6.8)

Eqs. (6.6)–(6.7) reduce into


u1 = e2

N

{|ρ|2(eu1+(N−1)u2 + [N − 1]eu1−u2
) − ξ

} + 4π

2∑
i=1

ni∑
s=1

δpis
, (6.9)


u2 = g2|ρ|2
N

(
eu1+(N−1)u2 − eu1−u2

) + 4π

n2∑
s=1

δp2s
, (6.10)

where the vacuum manifold is given by

N |ρ|2 = ξ, ρ ∈C, ξ > 0. (6.11)

As previously, we consider the problem over a doubly periodic-domain and over R2 with the
boundary condition

ui → 0, |x| → ∞, i = 1,2. (6.12)

Our main results for (6.9)–(6.10) read as follows.

Theorem 6.1. Consider the problem (6.9)–(6.10) with arbitrary distribution of points
pi1, . . . , pini

, and ni � 0 are integers, i = 1,2. For any ρ ∈ C and ξ > 0 satisfying (6.11),
and any coupling parameters e, g > 0, we have the following conclusion:
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Over a doubly periodic-domain Ω , there exists a solution for (6.9)–(6.10) if and only if

n1 + n2

e2
+ (N − 1)n2

g2
<

ξ |Ω|
4πN

. (6.13)

Moreover, if a solution exists, it must be unique.
Over R

2, there exits a unique solution for (6.9)–(6.10) satisfying the boundary condition
(6.12). Furthermore, the solution satisfies the following exponential decay estimate at infinity

2∑
i=1

(
u2

i + |∇ui |2
)
� O

(
e−√

2σ0(1−ε)|x|), (6.14)

where ε ∈ (0,1) is an arbitrary parameter, σ0 is a positive constant defined by

σ 2
0 ≡ min

{|ρ|2e2, |ρ|2g2}. (6.15)

In both cases, there hold the quantized integrals∫ {|ρ|2(eu1+(N−1)u2 + [N − 1]eu1−u2
) − ξ

}
dx = −4πN(n1 + n2)

e2
, (6.16)∫ (

eu1+(N−1)u2 − eu1−u2
)

dx = −4πNn2

|ρ|2g2
, (6.17)

where the integrals are taken over either the domain Ω or R2.

6.1. Doubly periodic solution

In this subsection we prove Theorem 6.1 for the doubly periodic-domain case. We argue as in
Section 3.

Let u0 be the solution of the problem


u0
1 = 4π

2∑
i=1

ni∑
s=1

δpis
− 4π(n1 + n2)

|Ω| ,

∫
Ω

u0
1 dx = 0,

and u0
2 be the solution of the problem


u0
2 = 4π

n2∑
s=1

δp2s
− 4πn2

|Ω| ,

∫
Ω

u0
2 dx = 0.

As previous section, setting

ui = u0
i + vi, i = 1,2,

we may rewrite (6.9)–(6.10) as
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v1 = e2

N

{|ρ|2(eu0
1+v1+(N−1)(u0

2+v2) + [N − 1]eu0
1+v1−u0

2−v2
) − ξ

} + 4π(n1 + n2)

|Ω| ,

(6.18)


v2 = g2|ρ|2
N

(
eu0

1+v1+(N−1)(u0
2+v2) − eu0

1+v1−u0
2−v2

) + 4πn2

|Ω| . (6.19)

We observe that Eqs. (6.18)–(6.19) are the Euler–Lagrange equations of the following func-
tional

I (v1, v2) = N

2e2
‖∇v1‖2

2 + N(N − 1)

2g2
‖∇v2‖2

2

+ |ρ|2
∫
Ω

[
eu0

1+v1+(N−1)(u0
2+v2) + [N − 1]eu0

1+v1−u0
2−v2 − Nv1

]
dx

+ 4πN(n1 + n2)

e2|Ω|
∫
Ω

v1 dx + 4πN(N − 1)n2

g2|Ω|
∫
Ω

v2 dx. (6.20)

To show the necessity of condition (6.13) for existence of solutions to (6.9)–(6.10), we inte-
grate Eqs. (6.18)–(6.19) over the domain Ω to find

|ρ|2
[∫

Ω

eu0
1+v1+(N−1)(u0

2+v2) + [N − 1]eu0
1+v1−u0

2−v2 dx

]
= ξ |Ω| − 4πN(n1 + n2)

e2
,

|ρ|2
[∫

Ω

eu0
1+v1+(N−1)(u0

2+v2) − eu0
1+v1−u0

2−v2 dx

]
= −4πNn2

g2
,

which conclude

|ρ|2
∫
Ω

eu0
1+v1+(N−1)(u0

2+v2) dx = ξ |Ω|
N

− 4π(n1 + n2)

e2
− 4π(N − 1)n2

g2
≡ K1, (6.21)

|ρ|2
∫
Ω

eu0
1+v1−u0

2−v2 dx = ξ |Ω|
N

− 4π(n1 + n2)

e2
+ 4πn2

g2
≡ K2. (6.22)

Hence, if there exits a solution for (6.9)–(6.10), the right-hand sides of (6.21)–(6.22) should
be positive, which implies the necessity of the condition (6.13).

In what follows we prove that the condition (6.13) is also sufficient for the existence of solu-
tions to (6.9)–(6.10).

We see that the functional I is a C1 functional and weakly lower semi-continuous. As previous
section, to find the critical point of I , we need to show the coerciveness of I .

Decompose vi ∈ W 1,2(Ω) as

vi = ci + wi, ci ∈ R, wi ∈ Ẇ 1,2(Ω), i = 1,2.

Using Jensen’s inequality we find

I (v1, v2) − N

2e2
‖∇v1‖2

2 − N(N − 1)

2g2
‖∇v2‖2

2

= |ρ|2
{

ec1+(N−1)c2

∫
e(u0

1+w1)+(N−1)(u0
2+w2) dx + (N − 1)ec1−c2

∫
eu0

1+w1−u0
2−w2 dx

}

Ω Ω
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−
(

ξ |Ω| − 4Nπ [n1 + n2]
e2

)
c1 + 4πN(N − 1)n2

g2
c2

� |ρ|2|Ω|(ec1+(N−1)c2 + [N − 1]ec1−c2
) −

(
ξ |Ω| − 4πN [n1 + n2]

e2

)
c1

+ 4πN(N − 1)n2

g2
c2

= {|ρ|2|Ω|ec1+(N−1)c2 − K1
(
c1 + [N − 1]c2

)
+ (N − 1)

(|ρ|2|Ω|ec1−c2 − K2[c1 − c2]
)}

, (6.23)

where K1 and K2 are defined by (6.21) and (6.22), respectively.
We see that both K1 and K2 are positive under the condition (6.13). Then, from (6.23) we

obtain

I (v1, v2) � 2N

e2
‖∇w1‖2

2 + 2N(N − 1)

g2
‖∇w2‖2

2 + K1 ln
|ρ|2|Ω|

K1

+ (N − 1)K2 ln
|ρ|2|Ω|

K2
, (6.24)

which implies the functional I is bounded from below and the minimization problem

η0 ≡ inf
{
I (v1, v2)

∣∣ (v1, v2) ∈ W 1,2(Ω)
}

(6.25)

is well-defined.
Now we may use a similar argument as Section 3 to get the existence of a critical point of I ,

which is also unique since I is strictly convex.
To show the quantized integrals over Ω , it is sufficient to integrate Eqs. (6.18)–(6.19) over Ω .

6.2. Planar solution

In this subsection we prove the existence result for (6.9)–(6.10) over the full plane with the
boundary condition (6.12). We use a similar argument as in Section 4.

We introduce the background functions

u0
1(x) = −

2∑
i=1

ni∑
s=1

ln
(
1 + λ|x − pis |−2), u0

2(x) = −
n2∑

s=1

ln
(
1 + λ|x − p2s |−2),

where λ > 0 is a parameter. Then we see that


u0
1 = −h1 + 4π

2∑
i=1

ni∑
s=1

δpis
, 
u0

2 = −h2 + 4π

n2∑
s=1

δp2s
,

where

h1(x) =
2∑

i=1

ni∑
s=1

4λ

(λ + |x − pis |2)2
, h2 =

n2∑
s=1

4λ

(λ + |x − p2s |2)2
.

With ui = u0 + vi , i = 1,2, Eqs. (6.9)–(6.10) can be written as
i



X. Han, C.-S. Lin / Nuclear Physics B 878 [PM] (2014) 117–149 147

v1 = e2

N

{|ρ|2(eu0
1+v1+(N−1)(u0

2+v2) + [N − 1]eu0
1+v1−u0

2−v2
) − ξ

} + h1, (6.26)


v2 = g2|ρ|2
N

(
eu0

1+v1+(N−1)(u0
2+v2) − eu0

1+v1−u0
2−v2

) + h2. (6.27)

Obviously, Eqs. (6.26)–(6.27) are the Euler–Lagrange equations of the following functional

I (v1, v2) = N

2e2
‖∇v1‖2

2 + N(N − 1)

2g2
‖∇v2‖2

2

+ |ρ|2
∫
R2

{
eu0

1+(N−1)u0
2
(
ev1+(N−1)v2 − 1

) − (
v1 + [N − 1]v2

)}
dx

+ [N − 1]|ρ|2
∫
R2

{
eu0

1−u0
2
(
ev1−v2 − 1

) − (v1 − v2)
}

dx

+ N

e2

∫
R2

h1v1 dx + N(N − 1)

g2

∫
R2

h2v2 dx. (6.28)

We observe that the functional I is C1 and strictly convex over W 1,2(R2). To solve
(6.26)–(6.27), as in Section 4, we just need to find the critical points of the functional (6.28).

Then we need to show the coerciveness of I . A simple computation leads to

(
DI (v1, v2)

)
(v1, v2) − N

e2
‖∇v1‖2

2 − N(N − 1)

g2
‖∇v2‖2

2

= |ρ|2
∫
R2

{(
eu0

1+v1+(N−1)(u0
2+v2) + [N − 1]eu0

1+v1−u0
2−v2 − N

)
v1

}
dx

+ (N − 1)|ρ|2
∫
R2

(
eu0

1+v1+(N−1)(u0
2+v2) − eu0

1+v1−u0
2−v2

)
v2 dx

+ N

e2

∫
R2

h1v1 dx + N(N − 1)

g2

∫
R2

h2v2 dx

= |ρ|2
∫
R2

(
eu0

1+(N−1)u0
2+v1+(N−1)v2 − 1 + X1

)(
v1 + [N − 1]v2

)
dx

+ (N − 1)|ρ|2
∫
R2

(
eu0

1−u0
2+v1−v2 − 1 + X2

)
(v1 − v2)dx, (6.29)

where

X1 ≡ 1

|ρ|2
(

h1

e2
+ (N − 1)h2

g2

)
, X2 ≡ 1

|ρ|2
(

h1

e2
− (N − 1)h2

g2

)
.

Now estimating the right-hand side of (6.29) as that in Section 4, we obtain that there exist
some positive constant C0 and C1 such that(

DI (v1, v2)
)
(v1, v2) � C0(‖v1‖W 1,2(R2) + ‖v2‖W 1,2(R2)) − C1. (6.30)
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Then the existence of critical point follows a standard argument. Hence we see that the system
(6.18)–(6.19) admits a solution, which is also unique since I is strictly convex.

The behavior at infinity, the decay estimates of the solution and the quantized integrals can be
established as in Section 4. Then the proof of Theorem 6.1 for the planar case is complete.
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