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Abstract

In this paper we establish several sharp existence and uniqueness theorems for some non-Abelian vor-
tex models arising in supersymmetric gauge field theories. We prove these results by studying a family
of systems of elliptic equations with exponential nonlinear terms in both doubly periodic-domain and pla-
nar cases. In the doubly periodic-domain case we obtain some necessary and sufficient conditions, each
explicitly expressed in terms of a single inequality interestingly relating the vortex numbers, to coupling
parameters and size of the domain, for the existence of solutions to these systems. In the planar case we es-
tablish the existence results for any vortex numbers and coupling parameters. Sharp decay estimates for the
planar solutions are also obtained. Furthermore, the solutions are unique, which give rise to the quantized
integrals in all cases.

© 2013 The Authors. Published by Elsevier B.V. Open access under CC BY license.
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1. Introduction

Vortices are important objects in various branches of physics [36] including condensed mat-
ter physics [1,28], particle physics [25], string theory and cosmology [23,29,48]. It is well
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known there admit the Abrikosov—Nielsen—Olesen vortices [1,37] for the classical Abelian
Higgs model, whose static limit is also known as the Ginzburg—Landau model for supercon-
ductivity [17]. The first rigorous existence result for vortex configurations were established
by Taubes [45,46] for the Ginzburg—Landau model [17]. Since then various analytic meth-
ods for studying the existence of vortices and other topological solitons have been developed
[28,44,50].

During the last ten years much attention has been concentrated to vortices in non-Abelian
gauge field theories since they are related to the fundamental puzzle in theoretical physics,
quark confinement or color confinement [18,42]. In fact, in their famous work [38] Seiberg
and Witten use non-Abelian color charged monopoles and vortices to interpret quark confine-
ment. Motivated by the importance of non-Abelian vortices in the understanding of monopole
and quark confinement, a wide class of non-Abelian gauge theories were developed in [3.21,
22,39]. See [4,7-12,15,31,40,43] for more recent progress and [14,30,41,47] for surveys on
this topic. In these theories there arise many interesting and challenging systems of elliptic
partial differential equations. It is interesting to carry out a rigorous analysis for these par-
tial differential equations from both physical and mathematical points of view. In this respect,
we cite the work [6,32-35], where a series of existence and uniqueness results were estab-
lished.

The purpose of this paper is to establish sharp existence theories for the non-Abelian vor-
tex model with product moduli proposed in [7], and for the Yang—Mills—Higgs model with
gauge groups U(1) x SO2M) and U(1) x SU(N) in [11,12,19]. We recall that, by the
approach of moduli matrix [13,26], a series of systems of non-Abelian BPS vortex equa-
tions were obtained in [7,11,12,19]. For each of these systems we establish sharp exis-
tence, uniqueness, asymptotic behavior and quantized integral results. In particular, for these
models over doubly periodic domain we obtain some necessary and sufficient condition,
each explicitly expressed in a single inequality interestingly relating the vortex numbers,
to coupling parameters and size of the domain, for the existence of solutions. Over the
full plane, we obtain existence and uniqueness results for any vortex numbers and cou-
pling parameters. Furthermore, the explicit decay estimates for planar solutions are estab-
lished. Our approach is based on the direct minimization methods recently developed in
[32,33].

The rest of our paper is organized as follows. In Section 2 we review a system of vortex
equations from the model proposed in [7] and state a sharp existence result Theorem 2.1 for
this problem over a doubly periodic-domain and the full plane. In Sections 3 and 4 we prove
Theorem 2.1 for the doubly periodic-domain and planar cases, respectively. Sections 5 and 6
are devoted to establishing existence results for the BPS vortex equations [11,19] arising in
the Yang—Mills—Higgs model with gauge groups U (1) x SO(2M) and U(1) x SU(N) sepa-
rately.

2. Non-Abelian vortex model with product gauge group

In this section we consider the non-Abelian vortex model proposed in [7] with gauge group G,
where

_U1) xSU(n) x SU(r)

= 7 ,

and k is the least common multiple of n and r. Following [7], the action density of the model
reads as

G
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1 2 2 2 ~ ()12
S= B + 1 () + (o () + [P O + D)
4¢3 dgpt M agt
gg g @ =@t 2, & (1 D2 8 ~(2) b ~(D1)\2
+ 5 0ala PV +22(3P3 ] - )"+ SHa Vg )T+ (@@
2.1)
where
0 0 0
FO =09,A0 —3,A0, (2.2)
F4) =9,AY —9,Al" +i[A®, A@],
FO =09,A" —0,AD +i[AD, AP, (2.3)
Dﬂq(l) _ 8Mq(1) - iAff)q(D, 'Dﬂq(Z) — auq(Z) _ iAbe)é(z), (2.4)
r n
A= (2.5)

\/an(n—i—r)’ A= \/an(n—l—r)’

A,(?) is the gauge field of U(1); Aff’) (Aff’)) are the gauge fields of SU(n) (SU(r)); t* (%) are
the standard generators of SU(n) (SU(r)); q(l), c}(z) are the quark fields; & > 0; go, g,, g- are the
coupling constants with respect to U (1), SU(n) and SU(r), respectively.

Via a Bogomol’nyi reduction [5], one obtains the following BPS equations [7]

DigV £iDygV =0, (2.6)
D1§? £iDyg?® =0, 2.7)
Fl((2)) igé()qTr[ 1) (”T]+k2Tr[ (2) @)t ] 5) —0, 2.8)
Fi$ +g2(g Vg VT) =0, 2.9)
FiY £ 2@ =0. (2.10)

In the following we only consider Egs. (2.6)—(2.10) with the upper sign, since the lower sign
case can be treated similarly. To simplify the above equations we use the ansatz in [7]

gV =5"e"VHP @), §@=s""e"H (2). @11
V2nr(n+r) (A0 + 1A(0)) —2id vy, (2.12)
AW 1Al = 2287155, AV A = —2is715s,, (2.13)

where Hé") (z) and Hé )(z) are n x n and r x r matrices (called moduli matrices [13,26,27]),
respectively, holomorphic in z, S, (S,) are regular SL(n, C)(SL(r, C)) matrices, ¥ is a real func-
tion.

Under the above ansatz, the matter equations (2.6)—(2.7) are satisfied naturally. Let

2,=8,8I,  2,=5.5 (2.14)
Then the gauge field equations (2.8)—(2.10) can be expressed as
2
3 80 -2 —1 ) (T -2 —1 g () (¥
881// = m(l’e ry Tr[.Qn Hon Hon ] + ne ny Tr[.Qr Hor Hor ]
—§\/2nr(n+r ) (2.15)
1
8(2,1902,) = 5:;1 e 2V (Qn'HgmHg")* - ;Tr[sz,,]HémHg””]lm), (2.16)
1
9(27192,) = ir o2V (Q;IHO(”Hg’” - ;Tr[fzr‘lHé’)Hé’”]er,>, (2.17)

which are called master equations for vortices [13].
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To reduce Eqs. (2.15)—(2.17) one takes the ansatz in [19],
2, =diag{e™ Ve e}, 2, =diagle" VX e, ... e, (2.18)

where yx, x are real functions.
Without loss of generality, we choose the moduli matrices Hé") (z) and Hér)(z) as

3 2r
HY"(2) = p1 (]_[ P, (z)> diag{(P>(2))" ", (P2@) s, (P2@) '], (2.19)
i=1
3 2n
H" @) =p ( [~ (z)) diag{(P3(2)) ", (P3@) ", .... (P3(2) '), (2.20)
i=1
where
P =]]e-zs. i=123, 2.21)

s=1

p1, m €C, p1p2 #0, and n; > 0 are integers.
Inserting (2.18)—(2.20) into (2.15)—(2.17) we arrive at

2
a g —2r n— —[n— —
99 = g s o P M @Y (| oo e fn = 11 PaGo)] )
+nlpal* My (2)e” 2mp(|P (z )|2[r He—tr=11x +[r— 1]|P3(Z)|_262)
—£/2nr(n + 1)}, (2.22)
2
30y = g"L‘:' (M, (e (| P 1" e =1 | P2y | Pe)), (2.23)
99 g,L/;zl [My@)e2 (| Pyo) |~ He =107 — | Py (o) PeX) ), (2.24)
where

3 2r 3 2n
Mr(z)z<1"[|Pi<z>|2> , Mn<z>z<H|Pi<z>|2> ,

i=1 i=1
and the vacuum manifold is given by

2(n+r)

nr

§&, &>0, p1p2#0. (2.25)

o112+ o2 =
Letting

3 nm
==Y+ Y Injz—zl% :—X+ZIH|Z—Zzs| ;

i=1s=l1 s=1

n3
us=—F% + Y Injz— 257, (2.26)
s=1

we reduce (2.22)—(2.24) into
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2

80 2(2rui+m—1u 2ru|—u
A = € 1 2 - 1 € ! 2
=5y e +n—1] )
+n|p2|2(62""]+(r_1)u3+[r Je2n uz) é\/an(n——}—r +477223p”,
i=1 s=1
(2.27)
gl S
Auy =2 (62ru1+(n—1)u2 _ leu|—u2) + 47 Zapzs’ (2.28)
n
s=1
ool
Ausy =2 2 (eZnulJr(rfl)u} _62nu17u3)+47[23ms’ (2.29)
r

s=1
where z;¢ is rewritten as pjs.

For the system (2.27)—(2.29), we consider two cases. In the first case we consider the problem
over a doubly periodic-domain 2, governing multiple vortices hosted in §2 such that the field
configurations are subject to the 't Hooft boundary condition [24,49,50] under which periodicity
is achieved modulo gauge transformations. In the second case we consider the problem over R?
with the boundary condition

u; — 0, x| > 00, i=1,2,3. (2.30)
Our main results for (2.27)—(2.29) read as follows.

Theorem 2.1. Consider the problem (2.27)—~(2.29) with any distribution of points p;1, ..., Pin;
and n; > 0 are integers, i = 1,2,3. For any pi, p» € C and & > 0 satisfying (2.25), and any
coupling parameters go, gn, & > 0, we have the following conclusion:

Over a doubly periodic-domain §2, there exists a solution for (2.27)—(2.29) if and only if

2(n+r)(ni +n2+n3) n (n —Dna n (r— Dn3 - §182] [2(n+r)
£ 8 g’ 4 nro
Moreover, if a solution exists, it must be unique.

Over R2, there exits a unique solution for the problem (2.27)—(2.29) with the boundary con-
dition (2.30). Furthermore, the solution satisfies the following exponential decay estimate at

infinity
3
Z(ulz i |Vui|2) < O(efﬁﬂo(lf‘?)lxl)’ (2.32)

i=1

2.31)

where ¢ € (0, 1) is an arbitrary parameter, oy is a positive constant defined by

[ lor)* +nlpal?)gd
o&zmm{ P glel (2.33)

In both cases, there hold the quantized integrals
/{r|pl|2(62ru1+(n71)u2 + [n _ 1]62ru17u2)
+n|p2|2( 2nui+(r—1)uz +r— 2nu1 uz) \/Wg}

_ Snr(n—l—r)n(n] +n2+n3) (2.34)

go
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o1 ? / (et _ g2 g — P2 (2.35)
8n

|,02|2 /(eZnu1+(r—l)u3 _ eZnul—u3) dx = _477"2’/13 ’ (2.36)
8r

where the integrals are taken over either the domain 2 or R?.
3. Existence of doubly periodic solutions

In this section we prove Theorem 2.1 for the doubly periodic case. We will use the direct
minimization procedure developed in [32].
Let ”(1) be the solution of the problem (see [2])

3 ni
: 47 (ny +na +n3)
A”(l) 24”2 Z(Spis T e

i=1 s=1
f”(l) dx =0,
2

and u? be the solution of the problem (see [2])

"

- 4mn;

0 1

Au) =47 "5, — o
s=1

/u?dxzo, i=2,3.
2

Setting u; = u? +v;, i =1,2,3, we may reformulate (2.27)—(2.29) as
Avy =g {rlor |2[le(u?+u.)+<n—1>(u2+vz> +(n— 1)62r<u?+v1)—u2—v2]
+ n|p2|2[e2n(u?+v1)+(r71)(ug+v3) +— I)CZn(u?+v1)7ugfv3] — &)
4m(ny +nz +n3)

; 3.1
T (3.1
A, = SnlP1l S R e e ) Amny (3.2)
n 2]
2| p2|? 0 0 0 0 4mn
Avy = 8rip2 (e2n(ul+v1)+(r—l)(u3+v3) _ e2n(ul+v1)—u3—v3) 3 (3.3)
r 2]

where we use the notation
=2
- 8 =
Go=—0 E=./2nr(n+r)E. (3.4)
2nr(n+r)
Noting (2.25) and (3.4), one has

nr(lp1)? +1m1%) =&

Our function space is the Sobolev space W12(£2), which is composed of scalar or vector-
valued £2 periodic L? functions whose derivatives also belong to L?(£2). We may easily check

(3.5)
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that Egs. (3.1)—(3.3) are the Euler—Lagrange equations of the following functional

1 nn—1) r(r—1)
I (w1, v2,v3) = | Vi[5 + —5— [Vl + ——5—

V33
g 2g2 2g?

n |p1|2/[e2r(u(f+v1)+(n—l)(ug+v2) T (n — Dre -] g
2

+ |,02|2 /[e2n(u(l)+v1)+(r—l)(u(3)+v3) + (l" _ 1)e2n(u?+v1)—ug—v3] dx

2

8t (ny+ny+n -
+< ( R 3)—2$)/v1dx

8;182|
2

dren(n — 1 drr(r—1

+7M(Z )”2/uzdx+7m(; )n3/l}3dx. (3.6)
85182 J g7 |82 J

We first show that the condition (2.31) is necessary for the existence of solutions to

(2.27)-(2.29). If (v1, va, v3) is a solution of (3.1)—(3.3), integrating Eqgs. (3.1)—(3.3) over the
domain §2, we have

r|p1|2|:fezr(”?+”')+(”_1)(“g+”2)dx+(n _ 1)/ezr<u?+v1)—u2—vzdx}
2

+n|p2|2[/e2n(u(1)+v1)+(r—1)(ug+v3) dx + (r — 1)/62’1(14?4-?)1)—”2—1)3 dxi|
2

k]

2
- 47 (ny + ny + n3)
=82 -——
80
o1 |2<fe2r(u?+u1)+(n—1)(ug+v2) dx — /ezr(u?+v1)—ug—v2 dx) _ _4nnn2’
8}
2 2
|p2|z(/ezn<u?+m>+<r1)(u8+v3) dx _/
o 2

e2n(u?+v1)7ugfv3 dx) _ _41‘7‘[1’13
2
8r

which imply

|p]|2/ezr(u?+m>+<n—1><u2+vz> dx+|p2|2/ezn(u?+m)+<r—1)(u2+v3)dx
2 2

£12] 4mn(ni+ny+n3) 4m—Dmny 4(r—1)mns

, 3.7
nr nrg; & g’ 7
|pl|2/62r(u?+vl)+(n71)(ug+v2) dx + |p2|2/62n(u?+ul)7ugfv3 dx
Q 2
£182 dn(ny +ny+n d(n— Dnn dmrn
_ SRl _Artutmtny) 4= Dmny 3 (3.8)

nr nrgs & 87
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|p1|2/e2r(u?+vl)7ugfv2 dx + |p2|2[e2n(u?+vl)+(r71)(ug+v3)dx
2

2
E|R2] 4m(ny+na+n3) 4dmxny 4@ — Drns
_ &2l e 4 - , (3.9)
nr nrgg 8 8r
|p1|2/e2r(u?+v1)fugfv2 dx + |p2|2/e2n(u(l)+vl)7ugfv3 dx
2 2
E12] 4 4 4
_ £|182| B w(ny + no + n3) " TNy n nn3. (3.10)

nr nrg; & &

Then all the right-hand sides of (3.7)—(3.10) must be positive, which with (3.4) give the ne-
cessity of the condition (2.31).

In the sequel we show that the condition (2.31) is also sufficient for the existence of solutions
to (2.27)—(2.29). In other words, we prove that under the condition (2.3 1), the functional 7 admits
a unique critical point, which solves (3.1)—(3.3).

There is a decomposition for the space W'-2(£2)

wh2(2)=Rae W),

where

Wi2(Q) = {w e W) ‘ /wdx =o}
2

is a closed subspace of WL2(£2). Then, for any v € WL2(82), we have
v=c+w, ceR, weW'(R). (3.11)
By the Trudinger—-Moser inequality [2,16]

w 1 2 1,2
/e dxéCexp(F/WM dx>, Yw e W= (£2), (3.12)
T
Q

we see that the functional 7 is a C! functional and weakly lower semi-continuous.
Using the decomposition formula (3.11) for v; € W1’2(Q), we have

vi=ci+wi, cGeR, wieW(),i=12,3. (3.13)
Then it follows from Jensen’s inequality that
1 nn—1) s r(r—1 5
1(v1,v2,03) = 5 IVwi 5 = =5 Vw23 — Vs
I > 2g2 > 2g? 2

= |py Perertnmbe / Q2w+ (=D Ul wn) g
2
+ (n—Dip1 |2e2”'—62/e2r(u?+w1>—u2—w2 dx
2
+ |pa|Perertir=hes / 20w+ =D @ +ws) gy

2
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+ (r — 1)|p2|262nc1*c3 /‘eZn(u?erl)7,4%),1‘}3 dx

2
~ 8m[ny 4+ ny + n3l drn(n — Dny 4rr(r — 1)nj
- (zs|9|—~—2 o+ e B
80 n 8r

2 |~Q|{|Pl |2(62rcl+(n—1)cz 4 [l’l _ I]GZrCI—Cz) + |p2|2(62nc‘1+(r—1)c‘3 + [V _ 1]e2ncl—C3)}
~ 8m[ny 4+ ny + n3 drn(n — Dny drr(r — 1)ng
—(zs|:z|—~—2 o 4 =
80 8n 8r
={12[lp 71T De — Ky (2rer + [n — 1]e2)
+(n = D121, 1712 = Ka[2rei — c2])

+121|paPe? T — Ky (2ner + [ = 1)e3)

c3

+ (r — D(12]| p2?e* 174 — K3[2nc1 — c3])}, (3.14)
where
K= §|.Q| B 2m(ng +i122 + n3) _ 2w (n —2 Dny _ 2 (r —2 1)n3’ (3.15)
2nr nrgy i 87
12 2 2 1 27(r —1
KZE%'I | 7T(nl~|-l~122~l—n3)+ JT(nJ; oy 2m(r g )n3’ (3.16)
2nr nrgy 8 8
£12] 2 2r(n—1 2 1
K3E$| | ﬂ(n1+7~122+n3)_ (n _ ne JT(F-; ns (3.17)
2nr nrgg 8 g

It is worth noting that the rearrangement of the right-hand sides of (3.14) is crucial for the
subsequent treatment of the functional 7.

We observe that under the condition (2.31) K; (i = 1,2, 3) defined by (3.15)—(3.17) are all
positive. Then, from (3.14) we obtain

1 n(n—1) , r(r—1) 5 12211 p11?
I(v1,v2,v3) = = Vw5 + —=—— Vw23 + IVwsl3 + KiIn ——
2 : 2g2 ? 2g? 2 K
121102 12110112 12|12/
+K11n7+(n—1)K21nT+(r—1)K31n7.
! 2 ’3.18)

Therefore, it follows from (3.18) that the functional 7 is bounded from below and the minimiza-
tion problem

no =inf{7 (v, v2,v3) | (U1, v2,v3) € W2 (2)} (3.19)
is well-defined.
Ky (k) (k)

Now choose a minimizing sequence of {(v;"", v, ', v3 ")} of (3.19). We use the decomposition
formula (3.11) for vl.(k) to get vl.(k) = clgk) + wl.(k), i =1, 2,3. In view of the fact that the function
f @) =8¢e' — nt, with §, n > 0, satisfies the property f (1) — 400 as t — 00, we conclude
from (3.14) that {c¢¥'} (i = 1,2, 3) are all bounded.

Using (3.18) we see that {Vw™} (i = 1,2,3) are all bounded in L2(£2), which with the
Poincaré inequality imply that {wl.(k)} (i =1,2,3) are all bounded in W!2(£2). Therefore, the



126 X. Han, C.-S. Lin / Nuclear Physics B 878 [PM] (2014) 117-149

sequence {vi(k)} (i =1,2,3) are all bounded in W2(£2). Consequently, there exists a subse-
quence of {vfk)}, still denoted by {vt.(k) }, such that vfk) — ¥;, weakly in WL2(£2) as k — oo for
some 9; € Wh2(2),i=1,2,3.

Noting that the functional I is weakly lower semi-continuous, we conclude that (01, 02, 03) is
a critical point of 1. Naturally, (01, 02, U3) is a weak solution of Egs. (3.1)—(3.3).

We easily check that the functional / is strictly convex. Then it admits at most one critical
point, which implies the uniqueness of the doubly periodic solutions to Eqs. (3.1)—(3.3).

To get the quantized integrals (2.34)—(2.36) over §2, we just need to integrate Eqgs. (3.1)—(3.3)
over £2.

4. Existence and asymptotic behavior of planar solution

In this section we prove the existence result for (2.27)—(2.29) over the full plane with the
boundary condition (2.30).
As in [28] we take the background functions

3 n
ud(x)=— Z Zln(l +Alx = pis| ), 4.1

i=1 s=1

n;
W) =— (1 + Al —ps|72). =23, @2

s=1

where A > 0 is a parameter. Then we see that

3 n; nj
Aul=—hi+4m )" Y 8. Aul=—hi+4x Y 8y, i=2.3 (4.3)
i=1 s=1 s=1
where
3 n; n; 4
hi(x)= _ h;i = ——— i=2,3. 4.4
Zl 1<x+|x—p )2 ’ g(x+|x—p,~s|2)2
Let
wi=ud +v, i=1,23. 4.5)
Then we recast Egs. (2.27)—(2.29) into
Av; = g%{”pl|2[eZV(u(l)+U1)+(n71)(ug+vz) +(n— 1)62r(u?+v1)7u2702]
+ nlpaP[2HHHEDEE ) (@it ) Ly (46)
215,12
Avy = gn|:01| (e2r(u?+v1)+(n—l)(ug+v2) _ le(u(l)—i-vl)—u(z)—vz) + hy, 4.7
n
gl 0 0 0 0
Avy = &r (e2n(ul+v1)+(r—l)(u3+v3) _ eZn(u1+v1)—u3—v3) + h3, 4.8)
r

where we used the notation (3.4).
Our function space here is WI’Z(RZ). It is easy to see that Eqs. (4.6)—(4.8) are the Euler—
Lagrange equations of the following functional
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nn—1 _ o r@r—=1)

1
I(vy,v2,v3) = —||Vv 2+ Vv + Vv
(v, v2,v3) gé” 13 22 Vvl 20 V33
+ |p1|2/{CZru?+(n—l)ug[Cer1+(n—l)v2 _ 1] _ (2]’1)1 +[n _ 1]1)2)

R2

= D[ - 1] - Ry — ) dx

+ |p2|2/{e2nu?+(r7])ug [e2nv1+(r7])vg . 1] _ (21’11)1 4 [r _ 1]1)3)
R2

+ (= (B[ 1] — [2n0; — v3])} dx

2 | |
+ = | hyvdx + M/hmdx ror - )/h3vg dr.  (4.9)
go

We easily check that the functional 7 is C! and strictly convex over W12(R?). Then we can
solve Egs. (4.6)—(4.8) by finding the critical points of the functional (4.9). To this end, we use a
direct approach developed in [32].

Our first step is to show [ is coercive. A direct computation gives

2 nn—1) r(r—1)
(DI (1,02, v3)) (01,02, v3) = — | Vo1 |15 — ——5—[Vwall3 — —5— Vsl
80 n r
— 2/{r|,01 |2(e2r(u(l)+vl)+(n—1)(ug+v2) +[n— 1]62r(u?+v1)—ug—v2 _ l’l)

R2

0 0 0
+ | pa (XD =DEEF V) 4 [ pje2nitu—ul—us r)Jur dx

40— Dl /(62r(u?+v1)+(n71)(ug+vz) i -d-uyy, gy

R2
o 1)|p2|2f(ezn<u?+v1>+(r—1>(u2+v3> B
R2
2 nn—1 -1
+— h1v1dx+¥/h2v2dx+r(r2 )/h3v3dx
gOR gn gr )

— |p1|2/(62ru(1)+(n71)u3+2rv1+(n71)02 1+ Xl)(2rv1 +ln— 1]v2)dx

R2
o= Dl P [ @R 1 ) - e
R2
+ Ipzlzf( 2l =D 4200+ =Dvs g 4 X2 (20, + [r — 1]v) d
R2
+ (r — 1)|,02|2/(ez’“‘(l)*”fzhfz’”“7”3 -1+ X4)(2nv1 —v3)dx, (4.10)

R2
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where
< (n - 1)h2 (r— 1)h3) @.11)
2|p1|2 nrgo '
+l h —Dh
X, = 2( @ ) 2 4 (r—=1 3) 4.12)
2lp11> \nrg}
— 1 h —Dh
X3 2( (n ) 2 4 (r ) 3) 4.13)
2|p2| nrg0
1 hi (I’l— 1)/’12 (r~|—1)/’lg
= 4.14
2|paf? <nr§(2) g ) (19

Then we need to estimate the right-hand side of (4.12). In order to do this, we introduce the
notations

w?:Zru?—i—(n— l)ug, w) =2rvy + (n — vy, 4.15)
w9 =2ru? — ul, wy =2rvy — vy, (4.16)
wd =2nul + (r — D, w3 = 2nv; + (r — D3, 4.17)
wl =2nu? — ul, wa = 2nv] — v3. (4.18)

With the above notations, from (4.10) we obtain

(DI(v1,v2,v3))(v1, v2, v3)

2 nn—1) r(r—1)
> SVl + ——5— Vel + —5—IVusli3
8

0 n r

+ o1 (M1 (w1) + (n — DMa(w2)) + | o212 (M3(w3) + (r — DMa(ws)),  (4.19)

where

M,-(w,-)s/(ew?J“w" —1+X,~)w,-dx, i=1,2,3,4. (4.20)
R2
Now we estimate the general term M; (w;) on the right-hand side of (4.19).
Let wy = max{w, 0}, w_ = max{—w, 0}. Then, we have the following decomposition
Mi(w;) = M;(wiy) + M;(—w; ), i=1,2,3,4.

In view of the elementary inequality e’ — 1 > ¢ for t € R and the fact w X € L*>(R?)
(i=1,...,4), which follows from the definition of u] (j=1,2,3), we have

1
M; (wit) 2/(w?+wi++Xi)w,-+dx > E/winrdx—C, i=1,...4, 4.21)
R2 R2

for some constant C > 0.
Noting the definition of u(} (j =1, 2,3) and taking A sufficiently large we see that X; < % for

i=1,...,4. Then, as A is suitably large, using the inequality 1 —e™ 1+t for t > 0, we have
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M;(—w;_) 2/(1 —ew Wi _ X,-)w,-_dx

]RZ
= /(1 — e +ew?[1 —e "] — X;)wi—dx
RZ
>/<1—ew?+e“’? Dz —X">wi_dx
I+ w;—
]RZ
0 0 w;—
= /{ewi wi_ + (1 —e¥i — Xi)(l + wi_)} ; +lwi7 dx
RZ
/(1 X;) wi d +/(1 v _ X)) ——d
= - X; x —e¥ —X; x
! 14 w;— ! 1+w;—
R2 R?
1 U)iz_ w0 Wi —
2—/ dx+/(1—ei—X,-) dx
2 1+w;_ 1+w;_
R2 R2
1 w?_ :
- 72dx—C, i=1,...,4, 4.22)
A (I +w;-)
R
where we have used the fact ew? —1,X; e Lz(Rz) (i=1,...,4). Here and what follows we use

C to denote a generic positive constant, which may take different values at different places.
Hence, combining (4.21) and (4.22), we find that

Mi( )>1/ Y e, izl....4 (4.23)
AUY] /4 (1+|wi|)2 y 1=1,...,4. .
RZ

Therefore, we conclude from (4.19) and (4.23) that

(DI(v1,v2,v3))(v1, v2,v3)

2 n(n—1) , r(r—1) 2
> SIVuilli+ ——5—IVul3 + ———[Vusli3
& 82 g?
o1l ( / wi f w) )
+ dx+mn—-1) | —=——=dx
4 s (1+ [wi])? A (1+ w2])?
|p2'2</ e S dx+ (r — 1)f72dx> C. (4.24)
(I + w3 (14 [wa4])
To proceed further, we need the standard Sobolev inequality
fv4dx <2/v2dx/|Vv|2dx, Vo e W2 (R?). (4.25)
R2 R? R?

Using (4.25), we have
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<R/ i) = (/ 0 )

f(1|+w|lw )2 /('“’i'+'w"'2)2dx

]RZ
<4 %dxflwifdx(/WwﬂQ dx+1)
(14 |w;)?
R2 R2 R2
1 >\ |w;[?
<5</'“”" “x) +C<[m /'V"’l' o] +1
RZ

(4.26)

which implies

2

w; | .
willr < dx—}—/ Vw; dx—i—l) i=1,...,4. 4.27
lwill2 < (/(1+|wl|)2 [Vw;| 4.27)

In view of the notations (4.15)—(4.1 8), we have

2
i3 < llwill3 + (= Dwall3, o213 < llwi I3 + (n = DJwall3,

s 13 < llwsll3 + (- = Dllwall3,

which give
3 4
D il <C Y lwjlla- (4.28)
i=1 j=1

Then, from (4.27) and (4.28), we see that

3
|wl
;nviuz (Zf(l dx+Z||Vv,||2+1) (4.29)

where we used the fact

4 3

2 2
E [Vwils <C E IVl
i=1 j=1

Now we conclude from (4.24) and (4.29) that there exist some positive constant Cyp and C
such that

3
(DI(v1,v2,v3)) (v1,v2,v3) = Co Y Ivillyi2m2) — Ci. (4.30)
i=1
By the coercive lower bound (4.30), we can show that the functional / admits a critical point
in W12(R?). In view of (4.30), we can take Ro > 0 sufficiently large such that

3
inf{ (D112, v9) @1 w2, 09) | D i) = Ro} >1

i=1
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(say). Since I is weakly lower semi-continuous, the minimization problem

M
no = inf{l(f, froeees far) [ 1Flwro@ay + 3 1 filwiae) < Ro 4.31)
i=1

admits a solution, say (01, 02, 03). Then we show that (0, U2, 03) is an interior point for the
minimization problem (4.31). Otherwise, if

3
> ldillwize) = Ro.
i=1

then

(1= D)1, 82, 83) — [(D1, 02, 03) _ d o
lim t 1 = 11 =001 2. 83)]

= —(DI (01, 02, 03)) (01, B2, 03) < —1.

Consequently, for 7 > 0 sufficiently small, with (v{, v}, v}) = (1 —1)(D1, D2, D3), we have

3
(v}, v, v4) < 1(b1, Do, 93) = no, > | 122 = (1 =D Ro < Ro,
i=1

which lead to a contradiction. Hence, we see that (0, 05, 93) must be an interior critical point for
the problem (4.31). As a critical point of I, (01, 02, 03) solves Egs. (4.6)—(4.8). It is easy to check
that the functional I is strictly convex, which implies (01, U2, 03) is the unique critical point of 7.
Then the uniqueness of the solutions to the system (4.6)—(4.8) follows.

Now we study the behavior the solution at infinity. Let us denote the solution of (4.6)—(4.8)
by (v1, v2, v3). In view of the well-known inequality

le" =13 < Cexp(ClIvI3iams).  Yve W' (R?), (4.32)

we see that the right-hand sides of Eqgs. (4.6)—(4.8) belong to L2(R2). Then it follows from the
elliptic L2-estimate that v; € W“(Rz), i =1,2,3, which implies the desired boundary condition
v; = 0, as |x| > o0, i =1, 2, 3. From the fact v; € Wz*z(RZ) we see that the right-hand sides of
Eqs. (4.6)—(4.8) also belong to L? (R?) for any p > 2. Therefore, by the elliptic L” estimate, we
have v; € W2 P (R?) for any p > 2,i =1, 2, 3. Consequently, |Vv;| — 0, as |x| - o0,i =1, 2, 3.

In what follows we establish the exponential decay rate for this solution. Let (u1, u2, u3) be
the solution of (4.1)—(4.3) obtained above. We have shown that u; — 0 as |x| — oo. Let

R >max{|pis|, s=1,....,n;, i =1,2,3}.
When |x| > R, we rewrite Eqgs. (2.27)—(2.29) as

Auy = g{rion (¥ [2rur + [n — 1uz] + [n — 1e® [2ru; — uy])
+nlpa|* (€53 2nuy + [r — Nus] + [r — 11e¥[2nu; — u3])}
=2nr (rlp1® +nlpa?) gour + &5 { (2r° 11 (€1 + [n — 11e%)
+20% 22 (€5 + [ — 11e%) = 2nr (rlp1 > + nlp2?) Juy
+r(n— Do — e2)uz +n(r — D]pal* (€% — e*)us}, (4.33)
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gulp1?
Auy = 2 (51 [2ruy + [n — Nuz] — 2 [2ru; — u2])
n

20,12
= 2|1 Pup + ST '5” {2r (e — e2)uy + ([n — 11e®! + €2 — n)us}, (4.34)
2112
Auz = M(e‘?3 [2nu1 +[r — 1]u3] — eé“[Znul — u3])

= g7lp2us + gr"’z' {2n (e — ¥ )uy + ([r — 115 + % —r)us}, (4.35)

where &; lies between 2ru; + [n — 1]up and 0, & between 2ru; — up and 0, &3 between 2nu; +
[ — 1]us and 0, &4 between 2nu; — u3 and 0.
Let u = u} + u3 + u3. Noting that u; — 0 as |x| — oo and (4.33)(4.35), we have

3
w>2> uiAu; >200u — f(Xu, (4.36)
i=1
where oy is a positive constant defined by

o¢ =min{2nr (rlo1 1> +nlpl?) &2, g2lp11?, g2lal*},

and f(x) is a function satisfies f(x) — 0 as |x| — oo.
Then for any ¢ € (0, 1), there is an R; > R such that

Au>2<1 —%)agu as |x| > R.. (4.37)

Since u — 0 at infinity, by a comparison function argument with (4.37), we conclude that there
exists a constant C(g) > 0 such that
u < C(e)e V2=l 45 x| > R,. (4.38)

Now we turn to the decay estimates for the derivatives. Let d be any one of the two partial
derivatives 91 and d>. When |x| > R, a direct computation gives

A(aul) — g%{(2r2|pl |2[62ru1+[n—1]u2 + [l’l _ 1]62}”141—142]
+ 2n2|p2|2[62nu1+[r71]u3 +[r— 1]627!”17”3])3141
+ r(n _ 1)',01 |2(e2ru1+[n—l]u2 _ leul—uz)auz
4 n(r _ 1)|p2|2(62nu1+[r71]u3 _ e2nu17u3)8u3}’ (439)
2 2
Adur) = gn|p]| {2r(e2ru|+[n—1]u2 _ leul—uz)aul
n
+ ([n _ 1]62ru|+[n—1]u2 + leul—uz)auz}7 (440)
2 2
A(au3) — %{zn(CZnu1+[r—l]u3 _ e2nu1—u3)8u1
+ ([r _ 1]621114|+[r—1]u3 + ez’”“_“3)8u3}. (4.41)
Let v = (du1)? + (du2)? + (du3)?. In view of the fact u; — 0 as |x| — oo and (4.39)—(4.41),

we obtain

3
v =2 (u) A@uy) = 2050 — f(x)v, (4.42)

i=1



X. Han, C.-S. Lin / Nuclear Physics B 878 [PM] (2014) 117-149 133

where oy is the same with above and f(x) is a function satisfies f(x) — 0 as |x| — oo. Then
for any ¢ € (0, 1), there exits an R, > R such that

Av > 2(1 — %)00211 as |x| > R,. (4.43)

Noting that v — 0 at infinity and by a comparison function argument with (4.43), we infer that
there exists a constant C(¢) > 0 such that

v < Ce)e V2000 4 x| > R,. (4.44)

Then from (4.38) and (4.44), we get the desired decay estimates (2.32) for the solutions.

Now we are in a position to compute the quantized integrals for the planar case. By the
definition of u?, we see that |Vu?| = O(|x|73) at infinity, which together with (4.44) give
|Vvi| = 0(|x|_3) at infinity, i = 1, 2, 3. Therefore, it follows from the divergence theorem
that

/Avidsz, i=1.2.3. (4.45)
RZ

By the definition of #;, we have

/hldx:47r(n1 +ny +nj3), -/hidx =d4nn;, i=2,3. (4.46)
R2 R2

Now using (4.45)—(4.46) and integrating Egs. (4.6)—(4.8) over R?, we get the desired quantized
integrals (2.34)—(2.36) for the planar case.

5. Yang-Mills—Higgs model with gauge group U (1) x SO2M)

In this and the following sections we study the Yang—Mills—Higgs model with gauge group
U(1) x G’ introduced in [11,12,19]. The concrete case with G’ = SO(2M) and G’ = SU(N) will
be studied this section and next section, respectively. The Lagrangian density takes the form

1 I~ o P e rovo E |
ﬁ:Tr<—2—ezF,wF’“’—@FMFW—FDMH(D“H) -7 2Te(HH'1")t -y

- g2|Tr(HHTt“)t“|2), (5.1)
where field strength, gauge fields and covariant derivative are defined as

F//.v = FSVIO, FBU = BI»LAE)) — 81;A,?L:
ﬁMU:aMAV_avAH' +i[A'u7 Av]a AM:AZZ’“’
Dy =0, +1A%10 +iA4%1°,

Ag is the gauge field of U (1), AY, are the gauge fields of G’, 1" and t* are the standard generators
of U(1) and G’. The matter scalar fields are written as a color-flavor mixed matrix H. Here e
and g are the U(1) and G’ coupling constants, respectively.
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With a Bogomol’nyi reduction [5,28] for static vortex solutions, the following BPS vortex
equations [11,12,19] can be obtained

DH =09H +iAH =0, (5.2)
i 3
F? =e2<Tr HH%) — —> (5.3)
12 ( ) \/2_
Fy=g*Tr(HH1%), (5.4)

where D = %(Dl +1iDy).
The above BPS equations (5.2)—(5.4) are still difficult to approach. With the complex variable
z =Xx1 + ixp and the ansatz [13,14]

H=S""Hy(2), A=—-iS7138, (5.5)

where S = S(z,7) € C* x G'C (the complexification of the gauge group), and Hy(z) is holomor-
phic in z called the moduli matrix [13,26,27]. The BPS equation (5.2) is verified automatically.
Let 2 =SS Decompose S as S = sS’, and Q2 = w2, where w = |s|, 2’ = S'S'". Let us
define £2¢ = HOHOT . Then as G’ = SO(2M) the BPS equations (5.3)—(5.4) become

_ 2 /1

881na)=—;—M<;Tr(S20.Q’1)—$), (5.6)
2

(202 ") = g—(gog/*‘ — I (202’ N ), 5.7)
w

where

_ (O 1y
(o )

As in [20], we make the following ansatz to reduce Eqgs. (5.6)—(5.7)

Q' =diag{e!!, ... M TN, eTM) w= eV, (5.8)
Without loss of generality, we take the moduli matrix Hy (2M x 2M matrix) as

i 1 1

Hyo=p || Pi(2)diag{ P1(2). ... Pu(2); (P1(2)" ... (Pu(2) " }. (5.9)
i=0

where
no n

P@)=[]e-z20. P@=][c-z). i=1...M, (5.10)

s=1 s=1

p eC, p#0,and ng, n > 0 are integers.
Then inserting (5.8)—(5.9) into (5.6)—(5.7), we obtain

2 M M
Ay = 2€_M (IpIZil;I)|Pi(z)|2e_‘/’ Z[‘Pi (Z)|26_Xi + | P; (Z)|_2eXi] — §>, (5.11)

i=1

2 M
Axi=zg—M|p|2H|Pi(z)izeﬂ”(|P,~(z)|2e*Xf—|P,~(z)|*2exl‘), i=1,...M, (512
i=0
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where the vacuum manifold is given by
2M|p|> =E. (5.13)

‘With the notation

M n n
u=—1/f+Z Zlnlz—zmlz, Ui =—Xxi +Zln|z—z,-x|2, i=1,....,M, (5.14)
s=1

i=1 s=1

and z;5 = pis, we reduce (5.11)—(5.12) into

2 M no M n
¢ 2 i —uj
Au=o <|p| Z[em et - g) AT 8y, +4 Z > b (5.15)
i=1 s=1 i=1 s=1
g%lpl? . . .

Auj= T(e“*“} — e ) + 4 Za,,js, j=1,...,M. (5.16)

s=1
We will consider the system (5.15)—(5.16) for two cases: over a doubly periodic-domain and

over the full plane with the boundary condition

u—>0, u;—0, as|x|—>o0,i=1,...,M. 5.17)

For the system (5.15)—(5.16), our main results read as follows.

Theorem 5.1. Consider the problem (5.15)—(5.16) with any distribution of points po1, ..., Pong»
Dils .-+, Pin, and ng,n = 0 are integers,i =1, ..., M. Forany p € C and & > 0 satisfying (5.13),
and any coupling parameters e, g > 0, we have the following conclusion:

Over a doubly periodic-domain S2, there exists a solution for (5.15)—(5.16) if and only if

no+ Mn n £182]
—_— =< —.
2 gr 8Mm
Moreover, if a solution exists, it must be unique.
Over R?, there exists a unique solution the problem (5.15)—(5.16) satisfying the boundary
condition (5.17). Furthermore, the solution satisfies the following exponential decay estimate at

infinity

(5.18)

e

M
e+ 1Vul? + 37 (u? + Vi 2) < 0 (e 2000k, (5.19)
i=l

where ¢ € (0, 1) is an arbitrary parameter, o is a positive constant defined by

o&zmin{M2e2|p|2, g2|p|2}. (5.20)
In both cases, there hold the quantized integrals
M
. i 8Mm(ng+ Mn
/<|p|22[eu+ul Lt ”l]—é)dx:—*, (5.21)
i=1
|p|2/(eu+uj_eu—uj)dx:—g’ j=1,....M, (5.22)
8

where the integrals are taken over either the domain 2 or R?.
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5.1. Doubly periodic case

In this subsection we will prove Theorem 5.1 for the doubly periodic case. We use the argu-
ment of Section 3. Let u° be the solution of the problem

4 (ng + Mn)

Au® —47128,,05 +4nZ Za,,” ST TR

i=1 s=1
/uodxzo,

Q
and u? be the solution of the problem

n
4mn
0
Au) =47 ) "5, — T
s=1

/u?dx=o, i=1,...,M.
2

Withu =u®+ v, u; = u? 4+v;,i=1,..., M, we may reformulate (5.15)—(5.16) as

2 M
e 0,0 , 0_, 04, . 4 (ng + Mn)
Av = |,0|2 eu Fu; +v+v; + eu u;+v—v; _é + — (523)
ZM( E[ ] |$2|
g2|:0|2 uO4u04v4v; u0—ul+v—v; 4mn
AU‘/:T(C J I —e J j)+ﬁ, jzl,...,M, (524)

which are the Euler-Lagrange equations of the following functional

M
M 1 8Mm(ng+ Mn)
I(U,vl,...,vm:€—2||W||%+;§ IVvill5 + o /dx
=1

8mn
TrE Z /”’ dr

i=1l o

M
+ |,O|2Z f 0+u0+v+v, +eu —Uu; +v v 2U] dx. (525)
i=l o

We first prove the necessity of the condition (5.18) for the existence of solutions to
(5.15)—(5.16). Let (v, v1, ..., vy) be a solution of (5.23)—(5.24). Then, integrating Eqs. (5.23)—
(5.24) over the domain 2, we obtain

M
|,0|2 Z/(eu°+u?+v+vi + eu°—u?+v—vi) dx =£|2| — M;—AM’
i=1 Q ¢
|,0|2 /(euO+Ll?+U+U_,‘ . eu0_u(}+v—vj) dx = _87[_2’1’ j= 1,.... M,
8

2
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which give
M
0,0 §|.Q| AMn(no+ Mn) 4Mmnn
IpIZZ/e Huitvt g - = - (5.26)
i=1
M
0_ 040 o E12] 4AMma(no+ Mn) 4Mnn
Iplzzfe” Ry = 2 > A (5.27)
i=l g

Then both the right-hand sides of (5.26) and (5.27) should be positive, which concludes the
necessity of the condition (5.18).

In what follows we show that the condition (5.18) is also sufficient for the existence of solu-
tions to (5.15)—(5.16). For (v, vy, ..., vy) € WH2(£2), using the decomposition formula (3.11)
wehave v=c+ w,v; =c¢; +w;, i =1, ..., M. Then using Jensen’s inequality we obtain

M 1Y
I(v,vy,...,v — Vu|? - = Vw; |2
(v, vy ) = IVl 322” ill3

M
X 0 0 . NP 0_,0 o
SR [t rtrern gy [t 2
i=1 o Q

M
8Mm(ng+ Mn 8 n
n (no ) ch

2 2
e
i=1

M M
e e 8Mm(ng+ Mn 8mn
> o121 ) (e 7 — 2¢) 4 O E TS
i=1 i=1
M
= (IpP121e% = Kile + il + |pP121e5 — Kale — ¢;), (5.28)
i=1
where
E1R2] 4n(ng+ Mn) 4dmn 12 4n(ng+ Mn) 4dmn
K= - - — K, = - +—
2M 2 g2 2M e? g2

Noting the condition (5.18), we see that K; > 0, K> > 0. Then, from (5.28) we obtain

M 1 o
2 § 12
I(U,U],...,UM)> 6‘2 ||Vw||2_g2 . ”sz||2

o182 o182
M| K1 K>l . 5.29
+ < 11n X + K> 1n X ( )

Hence, from (5.29), we see that the functional I is bounded from below and the minimization
problem

no =inf{I(v, v, ..., vp) | (V,v1,...,vm) € WHA ()} (5.30)

is well-defined.
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Using (5.28) and a similar argument in Section 3, we can get a critical point of the prob-
lem (5.30), which is a weak solution to (5.23)—(5.24). The uniqueness of the solution follows
from the strict convexity of the functional 7.

The quantized integrals follow from a direct integration. Then the proof of Theorem 5.1 for
the doubly periodic case is complete.

5.2. Planar case

In this subsection we consider (5.15)—(5.16) over the full plane with the boundary condition

(5.17).
Let
no M n
W0x) ==Y (14l — pos %) = D D In(1+Alx — pis| ™), (5.31)
s=1 i=1 s=1
n
u?(x):—Zln(l—i—Mx—p,-s|_2), i=1,...,M, (5.32)

s=1
where A > 0 is a parameter. Then we see that

n

_—h0+4n25p,3 +4nZ Za,,“, Auf = —h;i +41Y "8,

i=1 s=1 s=1
i=1,..., M, (5.33)

where
no n

M
) = Zmizmu—

i=1s=1

pis|H?*’

n

, i=1,...,M.

; A+ |x - pm|2)2

Letu=u+v,u; = ui 4+ v, i =1,..., M. Then we rewrite the system (5.15)—(5.17) into the
following form

21,2 M
av= ezlg Y (e v ) g, (5.34)
i=1
8ol w00 . 004 y—y; ,
Av;j = ; ( uitugtvtey Uty v_,) +hj, j=1,...,M, (5.35)

which are the Euler-Lagrange equations of the functional

I(v,v,...,vn)

M
1
2||Vv||2 —22 IVvill3 + /hovdx+ i Z/h vi dx

+ 1ol Z/ (e [t — 1] = [w+ ] + e~ [ — 1] = [ — v]) d.
(5.36)
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Since the functional is differentiable and strictly convex, as in Section 4, to get the solution of
(5.34)—(5.35), we need to show that the functional is coercive over W1-2(R2). Although we can
follow a similar argument as in Section 4 to prove the coerciveness of the functional, here we use
a new direct approach recently developed in [33].

Taking o > 0 such that a’> max{ez, gz}, we rewrite the functional I as

1
1<v,v1,...,vM>=M(e—2— )nwnz ( )Zuwlnz
M

1 1
s Iveswl;

i=1
+a?|p)? /(e”o"’“? [ev+”i - 1] —[v+ v,-])dx +012/‘Hi1 (v+v)dx
R2 R2

1
#5103+ eioP [ e < 1] - v - ul)d
2

+a2/Hi2(v — v,-)dx}

RZ
M
11 11
= M(Z - (;) IVoll3 + (; — ;) > vl
i=1
1 M
+— Z [V +v) + TP — )], (5.37)
where
ho  hi ho  hi
1 _ i 2 _ i
H; :e_2+?7 H; :e_z_?’ (5.38)
1
T w) = 5||Vw||§ +a2|p|2/(e"°+“?[ew —1]—w)dx +a2/Hilwdx, (5.39)
R2 R2
1
Ji(w) = §||Vw||%+a2|p|2/(e”0_“?[ew —1]—w) dx+a2/H,-2wdx. (5.40)
R2 R2

To show the coerciveness of I, in view of (5.37), we consider a generic functional of the
following form

1
J(w) = §||Vw||% +a?|p)? /(ewO [e¥ — 1] - w)dx +a2/Hw dx, (5.41)
R2 R2
where wy (taking the place of u® + u?) and H (taking the place of Hl-1 and Hl-z) are defined as

below

m _2 m 4)\_
w0=21n(1+k|x—px| ), H=ZW

, (5.42)
2)2
s=1 s=1 X pS" )

where m (taking the place of ng + Mn or n) is a positive integer.
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Let wy = {w, 0}, w— = max{—w, 0}. We decompose J as

J(w)=J(wy) +J(=w-),

(5.43)

which will be estimated separately in the sequel. Denote by Br a disc centered at the origin with

radius R. From the definition of wg, we may choose Rp > 0 with
Ro > 2max{|ps|, s = 1,...,m},
such that, for any A > 1, there exists a positive constant ag > 1 such that

- apA™

agp
Ogew(’gk—m as |x| < Ry,

1
f e dx > .
apA™

BRO

Let

e as |x| > Ro,

Gw)=e"[e” — 1] —w.

It is easy to see that

/G(w+)dx = /(ewo[e"“r - l] — w+) dx
R2 R2
> %/e“’owi dx —i—/(ewo — 1wy dx.
R2 R2

When |x| > Ry, noting that 1 —e*? e L?(R?), we have

1 2 w
/ G(wy)dx > W”w+”L2(R2\3RO) + / (e 0 — 1)w+ dx
R?\Bg, R?\Bg,

S 2 —
2 4a0)“m ||w+||L2(R2\BRO) C}u

where C), is a generic positive constant depending only on A.
When |x| < Ry, we decompose w4 as

1
u)+=u')++w+, withw+=®/w+dx, /w+dx=0
BR() BRO

Then from (5.49) and Young’s inequality, we have

—2
1
/G(dex:%/ewodx+§/ewou')idx—i—/ewou')+dx

Bg Bpg, Bg, Bg,

0 0

+wy / (e“’“u’;++ew° — l)dx
BR

0 0

0

(5.44)

(5.45)
(5.46)

(5.47)

(5.48)

(5.49)

(5.50)
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=2
w 1
T+/ewodx+§/ew°widx+/ew°w+dx

>
Bry Brg, B,
—1 2
- </ e dx) (/ [e"0uy +e™0 — l]dx)
Bry Bry
2 -1 2
w 1
>T+ ewodx—§</ew0dx) </ew°u')+dx)
Br, Bg, Bg,
-1
+ <2|BRO|(/ e dx) — 1>ew°w+dx
BRO
E wo _ l wo R 2
> 4 e"0dx 2”e ||Loo(BRO)”w+”L2(BRO)
Bg,
- Ck||w+||L2(BR0) - C. (5.51)
Using the Poincaré inequality
41725, ) < ORIV 1720, ) (5.52)
we obtain
lwslZ2 g, ) < CoRG (T + Vw72, )- (5.53)

By the Holder and Young inequalities, we have

C &
wa+dx>—ﬁllw+llz>—wllw+llﬁ—Cx, (5.54)
R2

where ¢ > 0 is small. Then we conclude from (5.45)—(5.47) and (5.50)—(5.54) that there exist
positive constants by, by such that

1 boa?|pl?

bia?|pl?
J(ws) > (— —>||Vw+||%+ —

o lwy |13 — C. (5.55)

2 Am

In what follows we estimate J (—v_). In view of the elementary inequality 1 —e™ > I%LS for
s >0, we get
t 1

2
t
—r_ 1 t=/1——sd>/ Y ds > .10 5.56
lote= [(=e)d > [ md > any 5:30)
0

Then from the inequality (5.56) and an inequality similar to (4.26), we may obtain
/G(—w—)dx = /(ewo[e_w* —1]+w_)dx
R2 R2
_ f([ewo e — 1] e — 14wl )d

R2

1 w? lw_1i3
51 x> - (5.57)
2) T+w_ 8(1+ IVw_|3)
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Using Holder’s inequality again, one has

7

Hence we infer from (5.57) and (5.58) that

C
/ Hw_dx > ——iuw_uz. (5.58)
RZ

1 lplPlw-l3  Coa?
J(—w_) = ~IVw_|3 + —~ lw_Il>
2 2T+ Ive_h)  Va

2,2 2
a”|pl ||w_||2> C00l2”w i
- —l2

3 1
> S ||Vw_|5 + —<||Vw_||2+
8 2T 2T 4 V|3 NG

Coc2|p|? 1
2_ M)IIWID - (5.59)

3 2
> 3 vu_ 3+ (2 L
" w||2+<4 5 .

where we have used the inequality

A2
t+——2>22A—-1, YA>0,t>0.
141¢

At this point, by taking A suitably large we infer from (5.55) and (5.59) that there exist positive
constants C, C; such that
J(w) > Cq ||w||W1,2(R2) — Cs. (5.60)

Therefore, using the estimate (5.60) on the right-hand side of (5.37), we conclude that

M
Cy
[, w1, 0m) 2 =5 > (Il + villwiege) + v = villwi2ge) —2MCa
i=1

M
>C| <||v||wl,2(Rz) +) i ||W|,2(R2)) -Cj, (5.61)

i=1

where C{, C} are two positive constants.
Now using the coercive lower bound (5.61), we can obtain a critical point for the functional /
by a routing argument. The critical point is also unique since the functional / is strictly convex.
To establish the behavior at infinity, decay estimate of the solutions and the quantized inte-
grals, we can use a similar argument as in Section 4. Then the proof of Theorem 5.1 for the planar
case is complete.

6. Yang-Mills—Higgs model with gauge group U(1) x SU(N)

In this section we consider the Yang—Mills—Higgs model introduced last section with gauge
group U (1) x SU(N). In this case the BPS equations (5.3)—(5.4) take the form (see [11,12,19])

391 e (L (202 ") =& 6.1)
n = ——/| — IT — .
@ AN \ w 0 ’

= _ 8 o 1y _
(a2’ 1)=E<[ZOQ’ 1—WTr(QOS2’ 1)). (6.2)
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To simplify Eqgs. (6.1)—(6.2), we use the ansatz [20]
2 = diag{e(N_l)X, e X, ...,e X } w=¢e?.
We take the moduli matrix Hy (N x N matrix) as

2
Ho=p l_[ P;(2) diag{(Pz(Z))(N_l), (Pz(Z))_l, oo (PZ(Z))_I},
i=1
where

P =]]c-zn), i=1.2,

k=1

p €C, p#0and n; >0 are integers.
Then Egs. (6.1)—(6.2) become

143

(6.3)

(6.4)

(6.5)

2 2
Ay =% <|p|21"[|P,- @[V [P Ve N1 4 (v - | Paa)| ] - s),
i=l1

2 2
Ax = %|p|2 T2 Pe (| Pae) PV Ve =0 — | Py 2e).

i=1
With the notation

na

2 n
w=—y+Y > Ilz—zl’,  wr=—x+Y _ Injz—zxl%

i=1ik=1 k=1
Egs. (6.6)—(6.7) reduce into

38

e

AR
Auy = N{|p|2(eu1+(N71)uz +[N — l]em*uz) _s} +47TZZ§P1'S’

i=1s=1

82|P|2 (N—=1) s
_ ur+(N—DHu ur—u
Auz_T(e‘ 2 —e"T") 44 E 8y s

s=1

where the vacuum manifold is given by

Nip>=¢, peC, £>0.

(6.6)

6.7)

(6.8)

(6.9)

(6.10)

6.11)

As previously, we consider the problem over a doubly periodic-domain and over R? with the

boundary condition
u; —> 0, |x|—>o00, i=1,2.

Our main results for (6.9)—(6.10) read as follows.

(6.12)

Theorem 6.1. Consider the problem (6.9)—(6.10) with arbitrary distribution of points
Dils---» Pin;» and n; = 0 are integers, i = 1,2. For any p € C and & > 0 satisfying (6.11),

and any coupling parameters e, g > 0, we have the following conclusion:
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Over a doubly periodic-domain $2, there exists a solution for (6.9)—(6.10) if and only if

ni+ny (N—Dny §|82]
-+ <

. 6.13
e? g2 47 N (©.13)

Moreover, if a solution exists, it must be unique.
Over R?, there exits a unique solution for (6.9)—(6.10) satisfying the boundary condition
(6.12). Furthermore, the solution satisfies the following exponential decay estimate at infinity

(u? + Vi) < 0 (e V2o -)lxl), (6.14)

||MN

where ¢ € (0, 1) is an arbitrary parameter, o is a positive constant defined by

o = min{|p|%e%, |p|*g?}. (6.15)

In both cases, there hold the quantized integrals

4 N(ny + no)

/ {lof? (e F V=D 4 [N — 101 72) — g} dx = - —————, (6.16)
(e H(N =Dz _ gin—uz) g — _4mNm (6.17)
lpl?g? "

where the integrals are taken over either the domain 2 or R>.
6.1. Doubly periodic solution

In this subsection we prove Theorem 6.1 for the doubly periodic-domain case. We argue as in
Section 3.
Let 4 be the solution of the problem

2 n;

’ 4w (ny +na)

Aud =47 "> "5, — — e
i=1 s=1

/ ”(1) dx=0
2
and u(z) be the solution of the problem

n
2 4mny

Aud =47 68, ——=,
2 ;Ph |Q|

/ugdx=o.

2

As previous section, setting
=0y =
up=u; +v;, i=12,

we may rewrite (6.9)—(6.10) as
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2
AUI — e_{|p|2(eu?+vl+(N—l)(ug+U2) 4 [N _ 1]eu?+v1—ug—v2) _%_} 4 47T(nl +I’l2) i
N |$2] 618
(6.18)
2lpl?, o0 NeD) (0 0 4mny
Avy = v (eu1+v1+( — )(”2+”2)_e l+v1 u2—v2)+ |Q| ) (6.19)

We observe that Egs. (6.18)—(6.19) are the Euler—Lagrange equations of the following func-
tional

N(N-1)

2gr 1Vl

N 2
1(v1,v2)=2—62||VU1||2+

i |p|2/[eu?+v1+(Nfl)(ug+v2) +[N — 1]6“(1)“’1*”(2)*“2 — Nvl]dx

4w N(ny +np) 4 N(N — 1)n2/ dr. (6.20)

vy dx +
22| : 2122]
To show the necessity of condition (6.13) for existence of solutions to (6.9)—(6.10), we inte-
grate Egs. (6.18)—(6.19) over the domain £2 to find

|p|2|:/ eu?+v1+(N—1)(u‘2’+v2) 4[N — l]eu?+u.—u3_v2 dxi| —£2| - 47TN(:; +n2)’

|/0|2|:/ eu?+v1+(N71)(u8+v2) _ ell(])‘l’v]*ug*vz d‘x:l — _47TNn2 ,
2 g2

which conclude

2 4 4 (N —1
|p|2/eu?+v1+(N—l)(ug+vz) dx = §152] — 7'[(11124- n2) — 7 5 2 =K, (6.21)
N e 8
Q) 4 4
|p|2/eu?+vl_ug_v2dx — El}v | _ T[(f’l;;“ nz) + 7;;12 =K. (6.22)

Hence, if there exits a solution for (6.9)—(6.10), the right-hand sides of (6.21)—(6.22) should
be positive, which implies the necessity of the condition (6.13).

In what follows we prove that the condition (6.13) is also sufficient for the existence of solu-
tions to (6.9)—(6.10).

We see that the functional 7 is a C' functional and weakly lower semi-continuous. As previous
section, to find the critical point of I, we need to show the coerciveness of /.

Decompose v; € Wl’z(.s?) as

vi=cit+w, ceR weW(Q),i=12.
Using Jensen’s inequality we find

NN = 1)
2g2

. . 0 0 . . 0 0
— |p|2{ec1+(N—l)52/e(u1+w1)+(N—l)(u2+w2) dx + (N — l)ecl—c2/6u1+w1—u2—w2 dx}
2

N p 2
I(UI,UZ)—E”VUIHQ— IVua|l5
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4Nm[n| + ny] A4 N(N — Dny
- <§|‘Q| - 72>Cl + TCZ

4dn N
> |,0|2|.Q|(ecl+(N_l)Cz +[N — 11601—62) _ <%-|Q| _ W)Cl

A4 N(N — 1
+7T( )nzc

g? 2
={Ipl12le TV — Ky (e + [N — 1le2)
+ (N = D(Ipl*12[e“72 = Kaler — e2]) ) (6.23)

where K| and K are defined by (6.21) and (6.22), respectively.
We see that both K| and K3 are positive under the condition (6.13). Then, from (6.23) we
obtain

/ 2N 2 2NN -1 > lo?1£2]
(v1,v2) > = [[Vwil; + s IVwall3+ KiIn
e
lo*1%2]
+ (N —-1DK31In , (6.24)
K>

which implies the functional 7 is bounded from below and the minimization problem

no =inf{1(v1, v2) | (v1,v2) € WH2(2)} (6.25)

is well-defined.

Now we may use a similar argument as Section 3 to get the existence of a critical point of 7,
which is also unique since 7 is strictly convex.

To show the quantized integrals over §2, it is sufficient to integrate Eqgs. (6.18)—(6.19) over £2.

6.2. Planar solution

In this subsection we prove the existence result for (6.9)—(6.10) over the full plane with the
boundary condition (6.12). We use a similar argument as in Section 4.
We introduce the background functions

ny

2 n;
ud(x)=— Z Zln(l +Alx = pis| ), ud(x) = — Zln(l + Alx = pas| 72,

i=1 s=1 s=1

where A > 0 is a parameter. Then we see that

2 n; ny
Auld=—hi+47 Y " 8),.  Aud=—hy+4w ) 5.

i=1 s=1 s=1
where

2 n na

n 42
MW=L Y e T LT

i=1 s=1 s=1

With u; = ud + vi,i=1,2,Eqgs. (6.9)—(6.10) can be written as

]
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2

Avy = S {pP (et (N=D0G+v) 4 [y _ qpeuitui—ug—ua) _ h 6.26
1= lp] + ] §y+h, (6.26)
2,12
Avy = g1l (eu?+v1+(N—1)(ug+vz) _ eu?+v1—ug—vz) +ho. (6.27)
N
Obviously, Egs. (6.26)—(6.27) are the Euler—Lagrange equations of the following functional
N 5, N(N-1) 5
I (v, — ||V —F— || Vv
(vi,v2) = 202 Vuill; + e Vvzllz

+ |p| / +(N 1)u2 v1+(N—l)v2 _ 1) _ (Ul + [N _ 1]1)2)} dx
IV = 162 [ et 8e e 1) - o — )
N N(N —1
+—2/h1v1dx+¥/h2v2dx. (6.28)
e 8
2 2

We observe that the functional I is C! and strictly convex over W12(R2). To solve
(6.26)—(6.27), as in Section 4, we just need to find the critical points of the functional (6.28).
Then we need to show the coerciveness of /. A simple computation leads to

N N(N-1)
(DI(v1,v2))(v1,v2) — e—ZIIVmII% g—nv 2113

— |p|2/{(eu?+vl+(N71)(ug+U2) +[N — l]eu?+vlfu(z)fvz o N)Ul}dx

R2
4 (N _ 1)|p|2 /(eu?-l—vl-l-(N—l)(ug-l-vz) o eu?+vl_Ll(2)_v2)U2d)C
R2
N N(N -1
+ — fh1v1dx ¥fh2v2dx
e2
R2
_ |,0|2 /(eu?+(N—l)ug+v1+(N—l)v2 —1+ X])(vl +[N — l]vz) dx
R2
+ (N = D]p)? /(e“‘?—"3+vl—v2 — 14 X2)(v) — v2)dx, (6.29)
R2
where
1 [(h N — Dh 1 (h N —1Dh
X15—2<—;+( 2)2>’ Xy = 2(1 ( 2)2>.
lol= \ e g o] g

Now estimating the right-hand side of (6.29) as that in Section 4, we obtain that there exist
some positive constant Cy and Cy such that

(DI(v1,v2))(v1.v2) = Collvillwi2gey + [v2llwi2@2) — Ci- (6.30)
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Then the existence of critical point follows a standard argument. Hence we see that the system
(6.18)—(6.19) admits a solution, which is also unique since / is strictly convex.

The behavior at infinity, the decay estimates of the solution and the quantized integrals can be
established as in Section 4. Then the proof of Theorem 6.1 for the planar case is complete.
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