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Abstract

This thesis presents theoretical studies of different aspects of axion physics. First, we

review the origin of axions from the Peccei-Quinn (PQ) solution to the problem of

charge-parity (CP) non-violation in the quantum chromodynamics (QCD) sector of

the standard model (SM) of particle physics. An overview of the most common direct

and indirect detection efforts is then presented before three distinct, new methods are

presented and put in perspective.

Chapter 2 proposes a stimulated version of light shining through wall (LSW) type

searches which utilises the large photon numbers in high power laser beams to achieve

strong bounds around axion masses of ma ∼ 1 eV. The sensitivity is evaluated and

special care is taken to consider stimulation effects stemming from the large number

of photons present. In chapter 3 a new axion-photon parametric decay instability

is found and analysed. The coupling of a strong pump and a weaker probe pulse

is found to result in an exponentially growing axion mode. The prospect for direct

detection experiments is discussed and put into perspective of ongoing searches. The

axion’s coupling to fermions is investigated in chapter 4 in which the decay of axions

to electron-positron pairs in a strong background field is investigated. The chapter

starts with a review of strong field quantum electrodynamics techniques and then

proceeds by applying them to the axion coupling to identify different regimes based

on the axion’s mass and the background field strength.

The second part of the thesis investigates the cosmological implications of includ-

ing axions into the SM. A review of the standard ΛCDM cosmology is followed by a

discussion of the cosmological importance of the axion by an investigation of the en-

ergy density in a coherent axion field throughout the universe which could constitute

the dark matter. An investigation of topological defects formed during the symmetry

breaking stages of the axion then leads to the introduction of the domain wall prob-

lem. Chapter 6 is dedicated to the solution of the domain wall problem and finishes

with a lookout onto avenues for future investigations and attempts at solutions.
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Chapter 1

A brief Axion Review

The Standard Model (SM) of particle physics is among the most successful theories

of fundamental physics and, to date, it has provided explanations for almost all

terrestrial experiments. Yet, despite the copious successes, it is well known that the

SM is incomplete. The strong sector, QCD, does not naturally preserve CP symmetry.

The QCD Lagrangian explicitly violates CP through the vacuum angle θ

LQCD = q̄ (iγµD
µ −Mq) q −

1

4
Ga
µνG

a,µν − θ g2

32π2
Ga
µνG̃

a,µν . (1.1)

Here G̃µν ≡ 1/2εµνρσGρσ stands for the dual field strength. The existence of the term

was known in the early days of QCD. However, it was traditionally ignored because

it can be written as a total derivative [6]. Indeed, a total derivative in the Lagrangian

does not enter to any order in perturbation theory.

Today we know that the term is of topological origin and cannot be ignored [7].

Given the QCD Lagrangian (1.1), the neutron would carry an electromagnetic dipole

moment (edm) directly proportional to the QCD vacuum angle [8, 9, 10]

dn
(
θ̄
)

= 2.4× 10−16θ̄ecm. (1.2)
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Note that here θ̄ sums up all contributions to CP violation in the SM and is defined

in (1.11). The neutron edm can be probed very precisely and the current best bounds

require [11]

θ̄ ≤ 3.3× 10−11. (1.3)

So why do we not just set θ̄ to a small value? After all, it hardly affects any other

piece of physics. Solving the problem in this way is not natural, as the SM does not

gain additional symmetry. We thus would not expect this parameter to be small.

The fine tuning that is required for this solution is, in fact, worse than what an initial

evaluation might indicate. Let us investigate this by a careful analysis of the origin

of the term and the additional contributions to the CP violation.

1.1 The Strong CP problem

The QCD Lagrangian (1.1) admits a set of global symmetry transformations. Re-

ducing our analysis to the two lightest quark flavours q = (u, d) and taking the

massless limit for a second, we find classical QCD to be invariant under global

SU(2)L × SU(2)R × U(1)V × U(1)A. The left- and right-handed quark fields do

not mix in this limit, hence the independent SU(2)L and SU(2)R, respectively. For

later convenience we can write the symmetry transformations in terms of the diagonal

isospin subgroup SU(2)I and axial rotations SU(2)P

q → eiα
a
I τ
a

q, q → eiα
a
P γ

5τaq, q → eiαV q, q → eiαAγ
5

q. (1.4)

Here αx is the charge under the global symmetry group and τa = σa ⊗ I with σa the

SU(2) generators. The usual story of spontaneous chiral symmetry breaking involves

quark condensates 〈q̄q〉 6= 0 which break the SU(2)L×SU(2)R to its diagonal isospin

subgroup resulting in the pions as the Nambu-Goldstone bosons. Being more careful
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we remember that the global SU(2)L × SU(2)R is a symmetry only in the massless

limit and is explicitly broken when quarks get a mass. Since this mass, for the light

quark generations, is small, the symmetry is still approximate and the pions get a

small mass.

The appearance of quark condensates also spontaneously breaks the axial U(1)A

but no corresponding light Nambu-Goldstone exists in the SM. Weinberg named this

the “U(1)-Problem” [12]. A hint to the solution of this puzzle lies in the careful

phrasing that classically, the QCD Lagrangian (1.1) is symmetric under the global

U(1)A. We have concluded this based on the notion that the Lagrangian is invariant.

In a quantum theory observables are calculated via path integrals and the invariance

of the Lagrangian is not sufficient to conclude the invariance of the observable. In

general, the Jacobian J of the transformation has to be taken into account

∫
[dqdq̄] eiS[q,q̄,...] →

∫
[dq′dq̄′] eiS[q′,q̄′,...]J (q′, q̄′, A). (1.5)

It is a well-known fact that the U(1)A is anomalous [13, 14], the Jacobian is non-trivial

[15]

J (q′, q̄′, A) = ei
∫
αAC

g2

32π2G
a
µνG̃

a,µνd4x (1.6)

with anomaly coefficient C = 2 here. Hence, it was never an actual symmetry of the

quantum theory.

This by itself, however, does not solve the U(1)-Problem. A closer investigation

reveals that, despite not being invariant, the transformation of the path integral

measure can be written as a total derivative. Thus, once again, we are inclined to

conclude that the Jacobian is trivial and the symmetry is preserved. In 1976 ’t Hooft

realised that the vacuum structure of QCD is much more interesting than previously

appreciated [7, 16] as the theory allows for multiple vacua. While it remains true

that a total derivative in the Lagrangian does not enter at any order in perturbation
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theory non-perturbative effects can be important.

Requiring our theory to have finite energy restricts the gauge fields to pure gauge

in the limit r → ∞ such that the field strength tensor vanishes. Formally this

condition is

lim
r→∞

Aµ = Ω∂µΩ−1 (1.7)

with Ω ∈ SU(3). Though it might be tempting to put the stronger constraint Aµ → 0,

however we must remember that this choice is not gauge invariant and hence any

gauge transformation of this choice will also be a valid vacuum state

1

2
Aiµλ

i ≡ Aµ → ΩAµΩ−1 +
i

g
Ω∂µΩ−1. (1.8)

Here, λi are the generators of SU(3). For convenience we will work in the A0 = 0

gauge such that only spatial gauge fields remain [17]. If we take definitive boundary

conditions like Ω→ 1 as r →∞, we realise that each field configuration (1.7) defines

a map from the large sphere S3 at infinity to the gauge group SU(3). Such maps

are topologically distinct and differ in the path Ω follows when approaching unity;

Ω→ exp (2πin) with n the winding number of the map. This is a topological quantity

classifying the homotopy groups of the maps and given by

n =

∫
1

32π2
Ga
µνG̃

a,µνd4x. (1.9)

Indeed, we find that our naive choice Aµ → 0 corresponds to n = 0, but other,

nontrivial solutions exist [18] with winding numbers n = 0,±1,±2, ....

Any two field configurations with winding numbers n,m with n 6= m cannot be

trivially transformed into one other without leaving pure gauge. In fact, considering

the transition from our naive n = 0 vacuum Aµ = 0 to the n = 1 soliton of [18], we

find a typical tunnelling amplitude ∝ exp(−8π2/g2). Hence, any perturbation theory
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calculation will miss this effect precisely because small, smooth perturbations of the

Aµ = 0 state never reach the higher winding number states. What is then the true

vacuum state of the theory? By calculating the eigenstates of the Hamiltonian, we

find the true vacuum state as a superposition of the tower of winding number states

|θ〉 ≡
∑
n

einθ |n〉 . (1.10)

Note that any two physical theories with θ 6= θ‘ are orthogonal to each other. Thus,

it is sufficient to pick one θ ∈ [0, 2π) to fully define the theory.

In the language of Lagrangian path integrals, this choice of vacuum states cor-

responds to the addition of the θ term in the Lagrangian (1.1). Therefore, we see

that the term which we introduced merely because it is not forbidden by any sym-

metry of the theory is actually forced upon us by the vacuum structure of SU(3)

gauge theories. Further, we see that this term cannot be ignored despite being a total

derivative. Yet the question persists: why can’t we simply choose the CP conserving

vacuum θ = 0 and move on?

To answer this, we ought to include the weak interactions in the form of the quark

masses into our theory. In general, the quark mass matrix is complex, as the Weak

interactions explicitly violate CP [19, 20]. Without loss of generality we can go to

a basis in which the matrix is diagonal M = diag(mu,mde
i arg det(M)). To go to a

physical basis with real quark masses, we perform a U(1)A rotation of the d quarks.

As discussed before, this introduces the anomaly (1.6), effectively shifting the CP

violating parameter

θ̄ ≡ θ − arg(detM). (1.11)

Here we see clearly that the problem is no longer that of fine tuning θ ∼ 0 but rather

getting two distinct contributions from two separate sectors of physics to cancel better

than 10−10. For excellent reviews see [21, 6, 22, 23].
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1.2 Peccei-Quinn solution

One particularly elegant solution to the strong CP problem was proposed by Peccei

and Quinn (PQ) in 1977 [24, 25]. Here, one effectively introduces a global, chiral,

spontaneously broken U(1)PQ to the SM, which relates the different θ vacua.

Below ΛQCD ∼ O(GeV), QCD undergoes a phase transition and confines. Quark

condensates spontaneously break the global SU(2)L×SU(2)R to its diagonal SU(2)I

and the pions appear as the pseudo-Nambu Goldstone bosons. They generate a θ̄-

dependence of the vacuum energy of QCD of the form

Vπ = −m2
πf

2
π

√
1− 4mumd

(mu +md)2
sin2

(
θ̄

2

)
(1.12)

with mπ the pion mass, fπ the pion decay constant and mu,(d) the up- (down-)quark

mass. It is trivial to see that this potential has a vacuum state at the CP conserving

angle θ̄ = 0. We must remember, however, that θ̄ is not dynamical and thus does not

run down the potential. Conceptually, it is precisely this fact which the PQ solution

addresses; it makes θ̄ dynamic and lets QCD solve the rest for us.

To understand the dynamics of this solution, let us remind ourselves of the relevant

aspects of the theory of pions. As argued above, the QCD Lagrangian (1.1) for the

lightest two quark flavours u and d, in the limit of vanishing mass, has a global

SU(2)I×SU(2)P symmetry group. Quark condensates 〈q̄q〉 = v 6= 0 are not invariant

under the global SU(2)P , which spontaneously breaks SU(2)I × SU(2)P → SU(2)I .

So far, we have only repeated what was already mentioned before. To understand

the dynamics, we can construct an effective Lagrangian for the axial modes of the

fluctuations around the order parameter 〈q̄q〉 = v

Σ(x) = −vU(x) = −v exp

(
2

fπ
iπa(x)σa

)
. (1.13)
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Here we introduced the pion decay constant fπ = 93 MeV. We have ignored the radial

field as it does not transform under the remaining symmetries of the theory and is

hence irrelevant for the following argument. The effective Lagrangian then consists of

any term invariant under the global symmetry. It is sufficient to look at the leading

order term

Lπ ⊃
f 2
π

4
Tr (∂µΣ)

(
∂µΣ†

)
=

1

2
(∂µπ

a) (∂µπa) +O
(
π2

f 2
π

(∂µπ
a)2

)
. (1.14)

The other invariant combination is ΣΣ†, however, due to our neglect of the radial

mode, such terms are trivial and do not appear. As a consequence, all higher order

operators consist of derivatives of pion fields. In particular, no pion mass term is

possible. This is hardly surprising, as in the massless quark limit the global symmetry

is exact, thus leading to massless Nambu-Goldstone bosons.

The latter is no longer true when the quark masses are included, in which case the

global SU(2)I×SU(2)P is only an approximate symmetry to begin with. Nevertheless,

it restricts the dynamics of the pion fields. To find the leading order effect in the

effective Lagrangian, we replace the q̄q in the mass term by its vacuum expectation

value leaving

Lπ ⊃
v

2
Tr
(
MqU +M†

qU
†) = v (mu +md cos (θq))

(
1− πaπa

2f 2
π

)
+O

(
π3

f 3
π

)
(1.15)

with θq = arg detMq the complex phase of the quark mass matrix. As a result of the

small explicit breaking of SU(2)I × SU(2)P the pions get a small mass

m2
π =

v

f 2
π

(mu +md cos (θq)) . (1.16)

The potential (1.12) is found from a minimisation of the mass term (1.15) after a

U(1)A field redefinition which shifts the CP violating parameter θ into the quark

7



mass matrix phase via the anomaly. This shifting happens because of the anomaly

in the U(1)A global symmetry.

It is illuminating to notice that one solution to the strong CP problem would be

an exactly massless quark. If the u quark were massless, then the vacuum energy

(1.12), which is proportional to the mass, would vanish. Hence a U(1)A redefinition

of the massless quark field shifts the CP violating parameter θ without changing

the vanishing vacuum energy. As a result all θ vacuua would be equivalent without

observational consequences. Unfortunately such a solution is excluded by QCD lattice

simulations [26].

To make the θ̄ field dynamical, Peccei and Quinn added a chiral U(1)PQ global

symmetry to the SM. It suffers from the same anomaly as the U(1)A. We further

demand it spontaneously breaks at a scale fa introducing a pseudo Nambu-Goldstone

boson a, the axion, which couples through the anomaly as

L ⊂ − a

fa

g2

32π2
Ga
µνG̃

a,µν . (1.17)

Performing the same analysis as before, we find a potential for the axion field given

by (1.12)

V (a) = −m2
πf

2
π

√
1− 4mumd

(mu +md)2
sin2

(
θ + a

fa

2

)
(1.18)

with the important difference, that the axion field is dynamical and will relax to the

vacuum state of this potential. This vacuum state lies at 〈θ̄〉 = 0 and thus the Strong

CP problem is solved.

1.3 Axion Phenomenology

The first immediate consequence of the axion potential (1.18) is a mass term, which

can, in principle, be extracted by a simple expansion around the vacuum state. A

8



more involved analysis up to next to leading order results in [27, 28]

ma = 5.7 µeV

(
1012 GeV

fa

)
. (1.19)

The axion’s coupling to SM particles depends on the UV completion of the model

and is thus model dependent. The axion effective Lagrangian

La =
1

2
(∂µa)2+

a

fPQ

g2

32π2
Ga
µνG̃

a,µν−(q̄LMqqR+h.c.)+
∂µa

fPQ

q̄c(0)
q γµγ5q+

1

4
g(0)
aγγaFµνF̃

µν

(1.20)

may, in addition to the required QCD anomaly coupling to Ga
µνG̃

a,µν , have an electro-

magnetic anomaly coupling to the electromagentic field strength tensor FµνF̃
µν with

model dependent coupling strength g
(0)
aγγ and a derivative coupling to the quark cur-

rent with coupling c
(0)
q [29, 30, 31]. Here, F̃ µν = 1/2εµνρσFρσ is the dual field strength

tensor. The only non-derivative couplings of the axion are anomaly couplings to the

gauge fields of which only the SU(3) gauge field coupling is required for the PQ so-

lution, the electromagnetic coupling g
(0)
aγγ may in fact be 0. Any other axion coupling

is of derivative nature because of the shift symmetry which, under the assumption of

vanishing anomaly couplings, would be exact.

For simplicity we, again, limit ourselves to the lightest two quark flavours u and

d. We may eliminate the aGG̃ term by an appropriate redefinition of the quark fields

as

q → e
iγ5

a
2fPQ

Qa
q (1.21)

with Qa some 2 × 2 matrix with TrQa = 1. The SU(3) anomaly then cancels the

above term in exchange for an axion dependent quark mass operator. The resulting

Lagrangian is

La =
1

2
(∂µa)2 +

∂µa

fPQ

q̄cqγ
µγ5q +

1

4
gaγγaFµνF̃

µν − q̄LMaqR + h.c. (1.22)

9



In general the quark transformation described above has an electromagnetic anomaly

which redefines the coupling

gaγγ = g(0)
aγγ − (2Nc)

αem

2πfPQ

Tr
(
QaQ2

)
(1.23)

where Nc = 3 is the number of colours, αem is the electromagnetic fine-structure

constant and Q = diag(2/3,−1/3) is the quark charge matrix. Additional terms are

generated from the quark mass operator which now includes

Ma = e
i a
2fPQ

QaMqe
i a
2fPQ

Qa
(1.24)

and the quark kinetic term which lead to a redefinition of the axions coupling to the

quark current

cq = c(0)
q −Qa. (1.25)

We may match these terms to the effective chiral Lagrangian consisting of (1.14) and

(1.15) to get the axion’s coupling to SM particles. Because of the inclusion of U(1)EM,

we replace the derivatives with the appropriate gauge covariant derivatives Dµ and

add the newly introduced electromagnetic and quark coupling. Since we will mostly

make use of the axion’s coupling to photons we simply evaluate (1.23) taking, as is

customary, Qa =M−1
q /TrM−1

q [27]

gaγγ = g(0)
aγγ −

αem

2πfPQ

(
2

3

4md +mu

mu +md

)
=

αem

2πfPQ

(
E

N
− 1.92

)
(1.26)

where E is the electromagnetic and N the colour anomaly coefficient. Depending on

the UV completion of the axion model, the ratio E/N can take different values, the

two most popular models are Kim-Shifman-Vainshtein-Zakharov (KSVZ) [32, 33] and

Dine-Fischler-Srednicki-Zhitnitsky (DSFZ) [34, 35] for which the ratios are E/N = 0

and E/N = 8/3, respectively. A CP conserving axion thus couples to the U(1)EM

10



electromagnetic field strength tensor Fµν via an effective dimension 5 operator

L ⊂ gaγγ
4
aFµνF̃

µν = −gaγγaE ·B. (1.27)

As a direct result of the effective a→ γγ three point vertex (1.27) the axion has

a finite lifetime which is easily calculated to be

Γ−1
a→γγ =

64π

g2
aγγm

3
a

. (1.28)

A CP conserving QCD axion hence has a lifetime exceeding the age of the universe

for ma . 20 eV. As we will be mostly interested in low mass axions with ma . 1 eV

we may treat the axion as a stable asymptotic state.

A second consequence of the coupling (1.27) is axion-photon mixing in electro-

magnetic background fields. Mixing in constant, static magnetic fields B0 is a well

understood phenomenon [36, 37]. The presence of a background field breaks spatial

invariance therefore enabling the mixing between the massless photon and the massive

axion with a probability

Pa→γ =
g2
aγγB

2
0L

2

βa

(
sin qL/2

qL

)2

. (1.29)

The axion’s velocity is βa, the magnetic field length L and q = ωa −
√
ω2
a −m2

a

the momentum transfer necessary to mix between the massless and massive state.

The functional form of the probability is intuitive, a constant magnetic field B0 of

length L has Fourier components given by the sinc function in (1.29) which define the

momentum present in the field. An infinitely long field would carry no momentum

and indeed photon splitting would be forbidden in this setting [38]. However, the

finite spatial extend introduces some momentum. If the momentum transfer q < L−1

the sinc function could be approximated and the resulting probability would become

11



independent of q. This is one way of saying that, in this case, the mixing is coherent

over the entire length L. As indicated by the sinc function, the magnetic field mainly

carries low momentum modes, making the transition efficient. The opposite limit,

q > L−1 requires slightly more care. Here the probability (1.29) oscillates quickly and

many times over the distance L. We must therefore understand the probability as

an average over those oscillations and find a suppression by q−2, again in agreement

with the observation that there is only very little momentum in the large momentum

modes for a constant field.

Axions may also couple to fermions through the interaction Lagrangian

Laff ⊃
Cf

2fPQ

Ψ̄fγ
µγ5Ψf∂µa (1.30)

where Ψf are the fermion fields. In the following we will only be interested in the

electron coupling and the coefficient is [31]

Ce = c(0)
e +

3α2
em

4π2

(
g(0)
aγγ log

(
fPQ

me

)
− 2

3

4md +mu

md +mu

log

(
ΛQCD

me

))
(1.31)

where c
(0)
e is an eventual, model dependent tree level coupling of the electron to the

axion. We see that the coupling to photons and pions generates loop level coupling

to electrons even if the tree-level coupling is absent.

1.4 Ultraviolet completion

The axion theory as set out in this chapter is an effective theory and must thus arise

from an ultraviolet (UV) complete theory at high scales. We already mentioned two

such models, the KSVZ and DFSZ axion, which we will take as popular examples to

review, while also stressing that they are not the only two possibilities [31]. Generally

UV completion of the axion theory requires the addition of new fields which in turn
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affect the axion’s coupling to the SM as will be explained below.

1.4.1 The hadronic axion

The generic hadronic axion model features new heavy quarks charged under U(1)PQ

and leaves the SM quarks without tree-level coupling to the axion. The KSVZ axion

[32, 33] extends the SM by a single heavy quark Q with charges

qc = 3, qL = 1, qH = 0 (1.32)

under colour SU(3)c, SU(2)L and hypercharge, respectively. It also adds a scalar Φ

with

qc = 1, qL = 1, qH = 0. (1.33)

The Lagrangian

LKSVZ ⊃ (∂µΦ) (∂µΦ)† + Q̄i /DQ− (YQQ̄LQRΦ + h.c.)− λΦ

(
|Φ|2 − v2

a

2

)2

(1.34)

then features a PQ symmetry

Φ→ eiαΦ, QL → ei
α
2QL, QR → ei

α
2QR (1.35)

which is spontaneously broken by the potential term for Φ. In the broken phase, both

the quark Q and the radial mode of the complex scalar Φ acquire large masses pro-

portional to va and the axial mode of Φ is the axion. An anomalous field redefinition

Q→ e−iγ5
a

2vaQ (1.36)

then generates the topological gluon coupling (1.17) after identification va = fa. This

specific realisation does not feature tree-level couplings to photons such that the
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electromagnetic anomaly coefficient is E = 0.

1.4.2 The DFSZ axion

The DSFZ axion [34, 35] requires two Higgs doublets Hu and Hd with PQ charges

−1/2 and 1/2, respectively. The complex PQ scalar field Φ has charge 1. The general

potential assuming vanishing bare mass of the Higgs doublets is then

V (Hu, Hd,Φ) =
λu
2

(H†uH
2
u +

λd
2

(H†dHd)
2 + λ1(H†uHu)(H

†
dHd) + λ2(H†uHd)(H

†
dHu)

+ |Φ|2
(
κu(H

†
uHu) + κd(H

†
dHd)

)
−
(
κΦ2H†dHu + h.c.

)
+ λΦ

(
|Φ|2 − v2

Φ

)2
(1.37)

giving the fields vevs we parametrize as

Φ = vΦe
i
aΦ
vΦ , Hu = vue

iau
vu , Hd = vde

i
ad
vd . (1.38)

We require vΦ � vu,d and then make the assumption κ� 1 such that the electroweak

scale for the Higgs is preserved. In DSFZ type axion models the SM quarks and

leptons carry U(1)PQ charges −1/2, −1/2 and −1/2 for up-type quarks u, down-

type quarks d and charged leptons E respectively. This then leads to a PQ invariant

Yukawa Lagrangian

LY ⊃ −iYuQ̄σ2H
∗
uu− YdQ̄Hdd− YEL̄HdE + h.c. (1.39)

with Yi the Yukawa couplings. The physical axion is a linear combination of the

phases in (1.38)

a =
1

va

(
vΦaΦ −

1

2
(vuau − vdad)

)
, v2

a ∼ v2
Φ (1.40)

14



which we may invert to find the axion’s couplings to the SM fields. Under the anoma-

lous field redefinition

u→ eiγ5
a

4va u, d→ eiγ5
a

4va d, E → eiγ5
a

4vaE (1.41)

the axion field is removed from the mass-terms introducing

δL =
αs
8π

a

fPQ

Ga
µνG̃

a,µν +
αem

8π

E

N

a

fPQ

FµνF̃
µν (1.42)

where E = 8 is the electroamgentic anomaly coefficient, N = 3 is the colour anomaly

coefficient and fPQ = va/2N was chosen. Interestingly we see that the axion field lives

on the interval [0, 2πva) while the QCD induced potential from the topological gluon

coupling is 2πfPQ periodic. Hence, in general we find NDW = 2N degenerate vacuum

states. We call NDW the domain wall number which will play a role in cosmology as

discussed in section 5.4.

1.5 Axion Searches

Significant experimental and observational effort is undertaken to look for axions. It

is worth noting that the techniques described in this section apply to any pseudoscalar

particle coupling to electromagentism via the effective dimension 5 operator (1.27).

Such particles generically arise in BSM theories like String Theory where axions

are a result of low energy compactification and generically populate the low energy

spectrum [39, 40]. From now, we will use the term axion to label both the CP

conserving QCD axion and any other pseudoscalar which couples to electrodynamics

via the aE ·B coupling except for in chapters 5 and 6.

The axion-electrodynamics coupling implies a range of well-studied phenomena.

Pierre Sikivie quickly realised that this can be exploited to search for axions despite
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Figure 1.1: An exclusion plot showing the light axion parameter space with the

current best bounds. The plot was taken from the review of particles physics [42].

For an explanation of the different bounds on the plot read section 1.5.

making them “invisible”, meaning weakly coupled [36, 41]. Many current and ongoing

searches are based on Sikivie-style detectors. The results of previous axion searches

are documented on an exclusion plot, figure 1.1, which lists the free parameters of the

theory, the axion mass ma and the photon coupling gaγγ, and colours all parameter

space in which no axion was found. It also shows the theoretical prediction for the

CP conserving QCD axion for which the two parameters gaγγ and ma are no longer

independent. The yellow band running from the upper right to the lower centre on

the exclusion plot shows the parameter space and the width indicates a range of

possible UV completions of the effective axion theories. The KSVZ and DFSZ axion

are shown as reference.

We shall classify searches into three categories based on the underlying assump-

tions required for their interpretation: cosmological searches, astrophysical searches,

and laboratory searches. An excellent review of axion search techniques by Sikivie
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can be found here [43].

1.5.1 Cosmological Searches

Usually, those searches probing up to the smallest couplings are of cosmological type.

Here the assumption is that axions make up the entire dark matter content of the

universe (or a fraction of it in which case the bounds generally become weaker). This

creates the possibility to build a detector aiming to measure the flux of dark matter

here on earth. ADMX is one such search exploiting the axion-photon mixing [44, 45,

46, 47]. The detector is a microwave cavity with a very sharply defined frequency and

a low loss rate. A dark matter axion with mass matching the cavities frequency may

convert into an electromagnetic excitation of said cavity thereby depositing energy

in the cavity and supplying a detectable signal [41, 48, 49]. There are several other

cavities operating like RBF and UF [50, 51, 52], HAYSTAC [53] and ORGAN [54].

Their results are shown in green on the exclusion plot fig. 1.1. Range in mass is

generally limited due to the cavity size, but the excellent quality factor enables the

measurement of very weakly coupled axions at the appropriate masses.

DM axions also produce an alternative signal which detectors like the Cosmic

Axion Spin Precession Experiment (CASPEr) [55, 56] are looking to exploit, that

is, an oscillating nucleon EDM. A closer look at the dynamical PQ solution of the

Strong CP problem reveals that the neutron EDM only vanishes in an averaged sense

〈dn(θ̄)〉 ∝ 〈θ̄〉 = 0. The coherent oscillation of the axion field induces fluctuations in

the neutron EDM on the order of [57]

dn(θ̄) = 9× 10−35 ecm cos (mat) (1.43)

for a QCD axion which constitutes the dark matter. An oscillating EDM will cause

spin precession in nucleon spin polarized samples within an electric field. Such precess-
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ing spins are generally measured with nuclear magnetic resonance (NMR) detectors

which are very sensitive to low oscillation frequencies. Therefore ma ≤ µeV axion

masses can be probed.

A similar approach is taken by the A Broadband/Resonant Approach to Cosmic

Axion Detection with an Amplifying B-field Ring Apparatus (ABRACADABRA) col-

laboration [58, 59]. They exploit cooled LC cirquits to look for axions of slightly higher

masses in the ma ∼ µeV range. A small scale prototype version, ABRACADABRA-

10 cm has recently placed the first bounds depicted in green on figure 1.1.

There are many other DM detection experiments looking for general DM including

axions. When looking in the light axion mass range, the above-mentioned techniques

are the best performing and offer a good overview of the techniques used for axion DM

detection. We would like to mention, however, the Xenon1T detector which recently

reported excess scattering with low momentum transfer which might be explained

by the existence of an axion [60, 61]. Xenon1T is a tank filled with liquid xenon

which measures scintillation resulting from collisions of DM particles with xenon in

the detector. Interpreting the signal as produced by an axion, the parameter space

crosses the QCD band at around ma = 0.1− 3 eV. However, this interpretation is in

tension with astrophysical limits and subject to uncertainties in the background rate

which will be addressed in a follow up experiment Xenon10T under commission.

It should be quite obvious that interpretation of experimental results is highly

model dependent. Not only does it require knowledge of the fraction of DM con-

stituted by axions, but also the local distribution of DM. The latter is actually not

known very well [62]. Additionally, even a possible detection signal would only reveal

information about a convolution of the axion-photon coupling strength and the local

DM density. Untangling those two quantities is challenging; nonetheless, it is likely

to become an important question in the near future. If axion DM exists, then the

cosmological type searches are most likely to detect a signature first in which case
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the aforementioned ambiguity between DM density and coupling strength must be

addressed.

1.5.2 Astrophysical Searches

Typically, astrophysical searches follow a simple logic. With the inclusion of axions

into the SM, we have an additional light degree of freedom, which should be pro-

duced in astrophysical objects. Production happens either via photon axion mixing

as described in section 1.3 or in the field of nuclei via Primakoff production [63, 64].

Because of the weak coupling they should escape and produce a flux of axions from

astrophysical objects. There are now two usual lines of argumentation, either we

point a detector at such object and detect the flux, or we take the effect of the addi-

tional energy flux leaving the object on known physical properties and constrain the

coupling strength in this way [65, 66].

Pointing a detector at the nearest and probably best understood object is the

approach chosen by the CERN Axion Solar Telescope (CAST) collaboration. Their

detector is a helioscope consisting of a supercooled magnetic field which converts solar

axions into photons via the previously discussed interaction with probability (1.29).

The axion flux from the sun is dominated by Primakoff production and peaked at

E = 3 keV with average energy 〈E〉 = 4.2 keV [67]. The total solar flux of axions is

[68]

Φa = 3.75× 10−9 cm−2s−1
( gaγγ

GeV−1

)2

(1.44)

after integration over the solar model. The detector is pointed at the sun and follows

its motion over the sky measuring the flux of reconverted photons. Coherent conver-

sion over the field covers the mass range up to ma < 0.02 eV above which the bounds

drop. CAST limits the coupling strength to gaγγ < 6.6× 10−11 GeV−1 in this mass

range. The limitation to low masses because of the momentum mismatch between
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axions and photons can be overcome by filling the magnet with gas, thereby giving

the photon a plasma mass. The CAST collaboration used Helium to probe masses

up to ma ≤ 1.17 eV [69, 70, 71, 72]. The CAST exclusion region is shown in light

blue in figure 1.1.

The sun is capable of producing axions up to masses of a few keV. To measure

a flux of such high mass axions, converting into x-ray photons, a crystal is used to

enhance the flux by Bragg scattering. Similar to regular Bragg scattering, massive

axions mixing into photons also fulfil a Bragg condition, leading to an enhancement

of flux at the appropriate angle, which can then be measured with a photon detector.

Such a search was undertaken by [73]; the bounds are not indicated on the exclusion

plot 1.1, but exclude couplings above gaγγ ≥ 1.7× 10−9 GeV−1.

The second line of argument can be applied to a variety of astrophysical objects.

In terms of stars, the best bounds come from Horizontal Branch (HB) stars. These

have masses similar to the sun’s and their cores are burning He. This stage in the

stellar evolution follows immediately after the Red Giant (RG) phase, during which

the star is still burning H. The ratio of HB to RG stars, the R parameter, is sensitive

to the lifetime of these stages. The inclusion of a light axion degree of freedom into the

SM does significantly affect the HB stars while leaving RGs virtually unchanged [74].

Analysis of 39 Galactic Globular Clusters leads to the exclusion of axion couplings

gaγγ ≥ 0.66× 10−10 GeV−1, indicated by a horizontal dashed line in figure 1.1.

Primakoff production of axions also takes place in core collapse supernovae and

multiple observational signatures in Supernova SN1987A therefore place bounds on

the available axion parameter space. Weakly-coupled axion stream out of the super-

nova and mix into gamma rays in the galactic magnetic field of the Milky Way. The

absence of a gamma ray burst at the same time as the neutrino flash from the super-

nova can hence be interpreted as bounds [75]. Neutrino escape is the main source of

cooling of the core collapse supernova and the resulting neutrino flash is observable on
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earth. According to standard core collapse supernova models, the collapse of a mas-

sive star results in the generation of a proto neutron star. Typically, such an object is

of solar mass, but has the density of nuclei and temperatures of tens of MeV [76, 77].

In these extreme conditions even neutrinos are trapped and their escape happens on

timescales set by the diffusive transport resulting in a burst lasting for tens of s in

agreement with observation. The inclusion of light and weakly coupled axions not

trapped in the proto neutron star enhances the cooling rate thereby shortening the

neutrino burst [78]. The bounds derived from observations of SN1987A are depicted

in grey on the exclusion plot in figure 1.1.

For small masses the magnetic field in galaxy clusters becomes efficient at inducing

axion-photon mixing in the x-ray energies. Measuring the spectra of luminous x-ray

sources interposed by galaxy clusters therefore puts bounds on the coupling strength.

These bounds, as most astrophysical bounds mentioned in this section, highly depend

on the model assumptions used for the magnetic field within the interposing galaxy

cluster. The spectra are measured by Chandra telescope and the resulting bounds are

indicated in grey on the exclusion plot [79]. Also indicated in grey are bounds from

the Fermi LAT collaboration using six years of spectral data to scan for irregularities

stemming from axion-photon conversion in the spectrum of the radio galaxy NGC

1275 [80].

The high surface temperature of a young neutron star supernova remnant in HESS

J1731-347 with rather weak magnetic field implies constraints on the coupling strength

of axions such that axion bremstrahlung not be too effective [81]. The weak magnetic

field allows for the assumption that neutrinos, and possibly axions, dominate the

thermal evolution rather than the strong magnetic field, as is the case in young

magnetars. This specimen, being the youngest and hottest neutron star with weak

magnetic field discovered, therefore puts bounds which are indicated in grey on the

exclusion plot 1.1.
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All the above searches and associated bounds in the mass-coupling parameter

space rely on a set of key assumptions which significantly weaken the reliability of

the interpretation. For example, all of them require very good knowledge of the

physics inside the particular astrophysical object under investigation. Supernovae

in particular are computationally challenging as well as observationally sparse. For

this reason, precision observations might be questionable. Even a well-studied object

like the sun, however, poses some challenges and different models are not always in

agreement with each other [82]. An additional source of uncertainty lies in the axion

production environment. Within such hot objects the non-zero plasma frequency

and high temperature conditions may affect the effective axion-photon coupling and

consequentially alter the inferred limits [83].

1.5.3 Laboratory Searches

Laboratory searches trade the distinct advantage of model independence against

generically weaker limits compared with the above searches. The reason for un-

favourable performance can be found in the bounds dependence on the interaction

strength g4
aγγ. A possible axion must be produced, thereby interacting once and then

reconverted into a detectable signal, generally requiring two vertex interactions in-

stead of a single one when measuring a background flux. Arguably the same is true for

stellar bounds. However astrophysical objects have the natural advantage of large size

and extreme conditions. Full control over both the production and reconversion stage

also allows for individual tests of the axion-photon coupling and coupling to other

particles, thus eliminating a further source of uncertainty in the data interpretation.

Laboratory experiments searching for the axion-photon coupling usually exploit

a Sikivie-style detector exploiting the axion-photon mixing explained in the previous

section [36]. Light shining through wall searches (LSW) fire a laser into a strong, con-

stant magnetic field thereby facilitating axion production [84]. An interposing wall
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then blocks the laser light from entering the detector which consists of yet another

identical magnetic field in front of a photon detector. Axions which were produced

within the first field traverse the wall because of their weak interaction which makes

the wall transparent to such particles. Any axion propagating into the second mag-

netic field may then be reconverted into a photon which is subsequently measured

by the detector. A positive signal therefore looks like light which passed through

the wall, hence the name LSW. There are several LSW searches operating, like the

Any Light Particle Search (ALPS) [85, 86] and the Optical Search for QED Vacuum

Birefringence, Axions, and Photon Regeneration (OSQAR) experiment [87], which

produced the current best bounds as indicated in yellow on fig. 1.1. The shape of

the exclusion region is easily obtainable from the transition probability (1.29) which

is constant for low axion masses and drops like q−2 once the transition is no longer

coherent. LSW detectors are conceptually very similar to helioscopes, in fact they

exploit the same physics simply replacing the solar source by a laser shining into a

magnetic field.

An alternative detection technique relies on the polarization-dependent axion-

photon coupling and on the axion having mass. A polarised beam of photons travers-

ing a magnetic field suffers from Birefringence and Dichroism [88]. Dichroism is a

small rotation of the polarisation plane of the beam, which is due to a depletion of

photons with polarisation in the direction of the magnetic field, while photons po-

larised in the orthogonal plane propagate unaffected. Birefringence in contrast leads

to elipticity in the polarisation when the appropriately polarised photons mix with

massive axions, thereby acquiring a phase factor relative to the unaffected orthogo-

nal mode. Both effects were measured by the Polarizzazione del Vuoto con LASer

(PVLAS) collaboration [89] and their non-observation placed bounds indicated in

pink on fig. 1.1.

Not shown on the exclusion plot are higher axion masses which are investigated
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using different techniques. At very low masses, the axion mediates long range forces

and fifth force bounds apply. The present thesis is primarily interested in axion

masses around eV and below, and therefore will not review these techniques here.
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Chapter 2

Stimulated Light Shining Through

Wall Search For Axion Detection

Traditional light shining through wall type searches, as described in 1.5.3, utilise com-

paratively low power continuous lasers to seed the axion field, accumulating data over

a long time-span. This is possible because the axion photon transition is facilitated

by an external, strong and constant magnetic field B through which the continuous

laser can propagate for extended periods of time. Also, the detection region, which

we will refer to as the detector in the following unless otherwise specified, consists

of an identical magnetic field guaranteeing conversion at all times. The transition

probability was given in (1.29)

Pa→γ =
g2
aγγB

2L2

βa

(
sin qL/2

qL

)2

(2.1)

with q the momentum transfer, βa the axion’s velocity, B the magnetic field strength

and L the magnetic field’s length. The number of axions produced in the conversion

stage, and similarly the number of signal photons, depends on the flux of photons

from the seed pulse. As a reference we will use the seed pulse utilised for the ALPs

experiment [90, 85], a laser producing 800 mW after frequency doubling to ω = 2.4 eV,
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resulting in a flux of ΦALPs ' 1018 s−1 photons. With this information we may trivially

find the axion flux onto the detector Φa = ΦALPsPa→γ. For the signal photons entering

the photon detector we simply repeat to find Φs = ΦALPsP
2
a→γ. From here we conclude

that the signal in such a setup grows linearly in exposure time and initial seed flux.

It is the latter that we aim to improve upon by utilising two high power laser pulses

with large photon flux.

Additionally, traditional LSW searches generally perform well for low mass axions

but quickly lose sensitivity when the axion mass increases and the momentum transfer

required for an axion-photon transition becomes too large, qL/2 > 1. This can be

seen in the transition probability (2.1) whose momentum transfer dependence arises

from a spatial Fourier transform of the magnetic background field and is indicative

of the momentum which is present in the background. A laser beam consists of

coherent real photons of frequency ωj and momentum kj, we will say the field carries

momentum kj in the following. In contrast the static, constant magnetic field B only

carries limited momentum due to its finite size. Axions with small mass require little

momentum transfer q = ωa −
√
ω2
a −m2

a and their transition is coherent over the

full length of the magnetic field. Large momentum modes are suppressed and so is

any transition probability for large momentum transfer. In this limit, the sin2 qL/2

oscillates very rapidly and many times over the magnetic field length. It can hence

be replaced by its average and the probability decays like q−2 [91].

Replacing the static magnetic background field by a second laser beam, carrying

momentum, we aim to improve the bounds placed on axions in the ma ∼ eV mass

range by both, overcoming the momentum transfer suppression and a favourable

scaling in the photon number, N2 [3]. It is worth pointing out that the Xenon1T

collaboration has recently reported an excess scattering in their low momentum bin

[60] which, if real and interpreted as axions, would hint at a coupling strength crossing

the QCD axion band at eV masses [61] (see the green band in fig. 2.2 It is necessary to
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mention however that the statistical significance is not sufficient for strong claims and

the axion interpretation of the signal is in strong tension with astrophysics. A follow-

up experiment Xenon10T is under construction and will be capable of investigating

the excess.

The set-up under investigation follows the same principle as other LSW searches;

It is divided into three main components, the generation region, the wall and the

detector. The generation region is on the left hand side and consists of two col-

liding high power laser beams which lead to axion production. We investigate this

stage in section 2.1. In the centre an interposing wall blocks the seed pulses from

entering the detector. We will assume that the wall’s thickness, which can be chosen

appropriately, grants perfect absorption, and the weak axion coupling will ensure its

transparency to axions for the parameters under consideration here. We also mention

that a 10 cm distance between the generation region and the detector is assumed later

on, which will provide a sizeable spatial offset between the reconverted photons and

the seed beams additional to the temporal delay due to the massive axion’s propaga-

tion speed. For detection we consider a traditional constant magnetic field detector

in [3] and detection through a stimulating laser beam in [5]. Perhaps unsurprisingly,

the latter performs favourably due to overcoming the momentum transfer suppres-

sion and the favourable scaling with photon number N3. Hence, we concentrate on

stimulated detection in section 2.2. Using stimulation to detect dark matter axions

was investigated in [92, 93].

If we assume for now that all three beams are identical in frequency and pho-

ton number, then the range of couplings gaγγ testable in the aforementioned scheme

scales like N−3/4 as a result of the three incoming laser beams and the two interaction

vertices. The geometry of the colliding plane waves results in a dependence on the

collision angle ∝ sin(α/2)−1 because of the effective coupling E · B. Utilising the

kinematics at the three point vertices of axion production and reconversion, we may
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recast this as a mass dependence ∝ (ma/ωa)
−2. The bounds we achieve after calcu-

lation of the process indeed scale like expected, compare (2.35), with the additional

factors arising from the volume integrations, as explained in the following.

It is worth noting that one could devise schemes in which the reconverted measur-

able signal are other SM particles, like electron-positron pairs [2] which we investigate

in chapter 4. For now we choose to limit ourselves to the reconversion into photons

insofar as, this way, the final signal only depends upon a single coupling of the axion,

the axion-photon coupling gaγγ and interpretation is simple.

The equations of motion of this system consisting of photons and axions are

Maxwell’s equations modified by the axion coupling (1.27). They are known in the

literature as axion-electrodynamics and arise from the Lagrangian [36]

L = −1

4
FµνF

µν +
gaγγ

4
aFµνF̃

µν +
1

2
(∂µa) (∂µa) +

1

2
m2
aa

2. (2.2)

The Gauss law for magnetism is unchanged

∇ ·B = 0, (2.3)

and so is the Maxwell-Faraday law of induction

∇× E = −∂tB. (2.4)

The electric Gauss’s law however gets a source from the axion field

∇ · E = gaγγ (∇a) ·B (2.5)

and Ampère’s law includes an axion current

∇×B = ∂tE + gaγγ (E×∇a−B∂ta) . (2.6)
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The axion field itself is described by a Klein-Gordon type equation

(
∂2
t −∇2 +m2

a

)
a = −gaγγE ·B. (2.7)

From the modified Maxwell’s equations we may derive the wave equations for the

electric and magnetic fields and find

(
∂2
t −∇2

)
E = −gaγγ (∂t (E×∇a−B∂ta) +∇ ((∇a) ·B)) (2.8)

for the electric and

(
∂2
t −∇2

)
B = gaγγ∇× (E×∇a−B∂ta) (2.9)

for the magnetic field.

2.1 Axion Field Production

The set-up under investigation is shown in figure 2.1 where, as anticipated, we have

replaced the constant magnetic field in the detector with a third, stimulating laser

beam. As we will argue below, this substantially increases the sensitivity, exploiting

the large energies which current day lasers can deliver onto target. As a direct con-

sequence of the large energy per laser pulse, and the corresponding very high photon

occupation number of the laser mode, the electromagnetic fields are well described

as being classical and effectively external. The latter aspect precludes the treatment

of any back-reaction which is justified by the smallness of the coupling gaγγ. We

are interested in the lowest order effect in a perturbation series in gaγγ or, to put it

differently, we are only interested in the tree-level amplitude and need not concern

ourselves with higher order effects. Therefore, we take the incoming beams to be
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plane waves of the form

Ej =
1

2

(
Ejeiωjt−ikj ·x + c.c.

)
, Bj =

1

2

(
Bje

iωjt−ikj ·x + c.c.
)
. (2.10)

We justify this assumption by noting that the pulselength and spatial extend of the

lasers we consider later on are large when compared with their wavelength, τωj � 1.

Let us further make the simplifying assumption that the two colliding laser beams

are identical, except for the polarisation and propagation direction. This introduces a

symmetry into the collision system and leads to a simple form of the geometry factors.

We will drop this assumption and quote the resulting more complicated equations

in Appendix A. The two colliding lasers define a plane of collision which we take

without loss of generality to be the x1, x3 plane and we work in coordinates centred

on the production region. Using the last freedom to fix the final axion momentum

ka = k1 + k2 along x3 we may write

k1

ω1

=


− sin α

2

0

cos α
2

 ,
E1

|E1|
=


0

1

0

 ,
B1

|B1|
= −


cos α

2

0

sin α
2

 (2.11)

and for the second beam

k2

ω2

=


sin α

2

0

cos α
2

 ,
E2

|E2|
=


cos α

2

0

− sin α
2

 ,
B2

|B2|
=


0

1

0

 . (2.12)

The angle at which the two beams collide is α.

Having concluded that the laser beams are indeed classical, we find that the axion

field, sourced by a classical source, is also classical and we assume it to be of the form
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Figure 2.1: A diagram of the experimental setup. The collision of two lasers results

in the production of any hypothetical axions. Such weakly coupled particles pass

through a central wall blocking the laser photons from entering the detector region.

An appropriately timed third laser facilitates the reconversion into photons behind

the wall. Those reconverted photons are measured with a detector.

a =
1

2

(
ã(x)eiωat + c.c.

)
. (2.13)

Once again, it must be noted that we assume that τωa � 1. However, we may not

make the same assumption about the spatial dependence. The axion is a massive

particle and thus its momentum ka may, for all we know, be small compared to the

energy. To find the axion field we must solve equation (2.7) with the initial beams

(2.10)

(
−ω2

a −∇2 +m2
a

)
ã(x)eiωat = −gaγγ|E1||E2| sin2 α

2
ei(ω1+ω2)t−i(k1+k2)·x. (2.14)

In writing down equation (2.14) we have dropped terms with phases i(±ω1 ∓ ω2)t
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as we are only interested in the scattering process resulting in the sum frequency

ωa = ω1 + ω2. To solve for the axion field, we find the fundamental solution

G(x) =

∫
d3k

(2π)3

eik·x

−ω2
a + k2 +m2

a

=
e−i
√
ω2
a−m2

a|x|

4π|x|
(2.15)

where we neglected the advanced solution and only keep the retarded one. The axion

field is then obtained via an integration over the beam overlap V

ã(x)eiωat = −gaγγ
4π
|E1||E2| sin2 α

2
eiωat

∫
V

d3ye−ika·y
e−i
√
ω2
a−m2

a|x−y|

|x− y|
. (2.16)

We want to evaluate the axion field at the reconversion region which is separated from

the origin by a macroscopic distance d. In particular d� ` where ` is the side-length

of the beam overlap which, for simplicity, we assume to be a cube. Hence, we may

approximate

∫
V

d3ye−ika·y
e−i
√
ω2
a−m2

a|x−y|

|x− y|
∼ e−ikad

d

∫
V

d3ye
ika
(
x̂−k̂a− y

2d
+ x̂·y

2d
x̂+O( |y|d )

2)
·y

(2.17)

where x̂ = x/|x| denotes the direction in which we are evaluating the field and we

limit d� |y|,
√
ka|y|3. We also took ka =

√
ω2
a −m2

a as appropriate for an on-shell

axion. Limiting ourselves to an observation direction along the axion momentum,

x̂− k̂a ∼ 0, we may readily evaluate the resulting integral

1

V

∫
V

d3ye−ika(
y

2|x|−
x̂·y
2|x| x̂)·y =

√π(1− i)√
ka`2

|x|

Erf

[
(1 + i)

4

√
ka`2

|x|

]2

. (2.18)

As we increase the spotsize of the two incoming lasers, therefore increasing l and

the interaction volume, the axion field amplitude grows linear in volume as long as

l2 ≤ d/ka. Further increase of the spotsize will only result in a growth of the axion

field amplitude proportional to `. The scaling above is of course only true if we assume
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the laser fields |Ej| to be constant. In a real laser, rather than the field’s amplitude,

its energy per pulse is fixed and the amplitude therefore drops like |Ej| ∝ `−2 resulting

in a larger axion field amplitude up to `2 ∼ d/ka above which the decrease in the

field amplitudes starts beating the increase from the volume overlap. We therefore

conclude that `2 ∼ d/ka is the ideal size for the interaction region and in the following

we make the assumption that the beam overlap is small enough such that the integral

(2.18) trivialises. Thence the axion field at large distances from the beam overlap is

ã(x) = −gaγγ
4π

V |E1||E2| sin2 α

2

e−ika|x|

|x|
. (2.19)

Note that the apparent spherical symmetry is merely an artefact of our assumptions

which break when looking far enough from x̂ − k̂a ∼ 0. In this case the volume

integral is highly oscillatory and effectively vanishes leaving an axion field which is

highly peaked around k̂a. Our assumptions hold for a cone around this direction and

amount to taking the axion field amplitude constant over this cone. Because the axion

field divergence is small, the reconversion region will have size of the same order as

the beam overlap V . Thus, we only need the field within a narrow cone around k̂a.

For later use we calculate the time derivative which is trivial

∂tã(x)eiωat = iωaã(x)eiωat (2.20)

and the gradient at a distance d from the beam overlap V

∇ã(x) = −ka
1 + ikad

kad
ã(x) (2.21)

which is also oriented along k̂a.
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2.2 Axion Field Detection

To detect the axion field (2.19), we collide a third laser beam with the axion flux

sourcing an electromagnetic field via the right hand side of (2.8) and (2.9). Again, we

write the laser beam like in (2.10) with label “s” for stimulating beam. The electric

field which is sourced by the axion field is defined as

E =
1

2

(
Ẽ(x)eiωt + c.c.

)
B =

1

2

(
B̃(x)eiωt + c.c.

)
. (2.22)

A simple perturbation series in gaγγ reveals that the relevant equations are

(
−ω2 −∇2

)
Ẽ(x)eiωt−ik·x = −gaγγ

2
ei(ωa−ωs)t (2.23)[

i(ωa − ωs) (E∗s ×∇ã− iωaB∗sã) eiks·x +∇
(
(∇ã) ·B∗seiks·x

)]
(2.24)

for the electric field, while the magnetic field satisfies

(
−ω2 −∇2

)
B̃(x)eiωt =

gaγγ
2
∇×

(
E∗seiks·x ×∇ã− iωB∗seiks·xã

)
ei(ωa−ωs)t. (2.25)

This time, in contrast to the generation process, we are interested in the stimulated

decay which corresponds to ω = ωa − ωs and drop all other terms. In fact there

is a rather straightforward argument why only the stimulated decay of axions will

contribute when turning to the vacuum energy momentum conservation of the process.

At the three point vertex of axion production, we had effectively three degrees of

freedom, we can change the energy of either laser beam ωj and the collision angle

α. The choice of laser frequency fixes the resulting axion energy ωa = ω1 + ω2 and

the angle fixes its momentum ka = k1 + k2. Only on-shell axions propagate the

macroscopic distance to the reconversion region, therefore only axions of mass

m2
a = 4ω1ω2 sin2 α

2
(2.26)
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may be produced. Ignoring the final axion momentum direction, the choice of laser

energies and collision angle determines the axion parameters. Now, assume the signal

photons is produced via scattering such that ω = ωa + ωs and k = ka + ks. Both

photons involved in the process are on-shell and thus their momenta satisfy |k2| = ω2

and |k| = ω. The massive axion has |ka| = (ω2
a−m2

a)
1/2 < ωa. Energy and momentum

cannot be conserved at the same time because |ka + ks| ≤ |ka|+ |ks| < |k|.

The stimulated decay of the axion may only happen into specific combinations

of photon energies and collision angle. This is most easily seen when going to the

rest-frame of the axion. The decay to two photons in this frame may only happen into

two photons with equal but opposite momentum. Boosting to the laboratory frame

may change the energies of the two photons and their angle, however the parameters

are not independent. Thus, the simplest possible decay channel is via stimulated

decay through a copy of either beam 1 or 2. Note that in principle we could change

the polarisation of the stimulating beam, resulting in a signal photon with rotated

polarisation relative to whichever beam we did not choose for stimulation. We take

this as further justification for single photon counting to be possible as this allows us

to discriminate between background and signal photons. In the following we choose

to use as stimulating beam a copy of beam 2, the reason being that for this beam

ka · Bs = 0 and the electric field source simplifies. As it turns out, the bounds are

unaffected by this choice.

The source on the right hand side of (2.23), after substitution of the axion field

(2.19), can be written as

j(x) = −gaγγj0ã(x)eiks·(x)eiωt (2.27)
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where

j0 = ω

(
(E∗s × ka)

i− kad
kad

+ ωaB∗s
)

+

(
ka

(
1 + ikad

kad

)2

− ks
i− kad
kad

)
(B∗s · ka) .

(2.28)

With the specific choice of stimulating beam we made, (B∗s · ka) = 0 and the second

term in j0 vanishes. The fundamental solution of the wave equation is identical to

(2.15) in the limit ma → 0 and the axion sourced electric field is thence

Ẽ(x) ' −gaγγ
∫
V ′
d3y

e−iω|x−y|

8π|x− y|
j0ã(y)e−ik·y. (2.29)

Once again we approximate the overlap of axion flux and stimulating laser beam

as a cube of sidelength ` because of the minimal axion field divergence. Increasing

the volume of the stimulating beam further will not lead to any enhancement as all

axions are contained within V ′ ∼ V . We further assume the envelope of the axion field

constant over the volume V ′, as d� `. Detection of the electric field will happen at a

photon detector placed at a distance D away from V ′. Once again assuming D � k`2

we may make the simplification

Ẽ(x) ' −gaγγ
e−iω|x|

8π|x|
j0ã(d)

∫
V ′
d3ye−iω(k̂−x̂)·y. (2.30)

The volume integral is equivalent to the Fourier transformation of a constant function

with compact support over V and readily evaluated to be

1

V ′

∫
V ′
d3ye−iω(k̂−x̂)·y = sinc

(
`′ω

2
(1− x̂ · ŷ1)

)
sinc

(
`′ω

2
x̂ · ŷ2

)
sinc

(
`′ω

2
x̂ · ŷ3

)
.

(2.31)

In the evaluation of the integral above we chose the alignment of the cube approxi-

mating the interaction region such that k̂ is a unit vector pointing to the face of the

cube. As expected, we find the maximum of this function when x̂ = ŷ1, precisely
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when looking in the direction of signal photon momentum. Contrary to before, how-

ever, we are interested in maximising the solid angle over which we detect photons

as there is no penalty in increasing the detector size. Therefore, we may not limit

ourselves to k̂ − x̂ ∼ 0. Any other orientation of the cube V ′ should not change the

result appreciably.

To estimate the signal strength and subsequently project the bounds an experi-

ment following this set up might produce, we find the electric fields power

P =

∫
dϑdϕ sin(ϑ)D2

∣∣∣Ẽ(D,ϑ, ϕ)⊥

∣∣∣2 cos2 (ωt) . (2.32)

The cos2(ωt) dependence arises from the c.c. terms in (2.22). As we are integrating

over a sphere of radius D to find the power, the spatial phase does not enter. In

general an electromagnetic wave sourced by an axion field is no longer well described

by only the vector potential and the electric field may have components along the

momentum k. This is a result of the modified Maxwell’s equations and Poisson’s

equation being non-trivial ∇2Φ = −gaγγ(∇a) ·B with Φ the scalar potential. In the

presence of an axion field there is no residual gauge freedom to set Φ = 0. For our

choice of stimulating beam, at least to lowest order in gaγγ we do retain this gauge

freedom as (∇a) · B = 0, however in general we must project the electric field onto

an orthogonal coordinate plane relative to the photon momentum k as any parallel

component may not propagate in vacuum and does not reach the detector.

Because of the strongly peaked distribution, we may extend the solid angle integral

to an integral over the entire sphere and evaluate the resulting integral to leading order

in (`′ω)−1

∫
sinc2

(
`′ω

2
(1− sin(ϑ) cos(ϕ))

)
sinc2

(
`′ω

2
sin(ϑ) sin(ϕ)

)
sinc2

(
`′ω

2
cos(ϑ)

)
d2Ω

' 4π2

(`′ω)2
. (2.33)
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We thus find the energy in the electromagnetic field

E =
g4
aγγ

64π2

`2

d2
ω2
aE1E

2
2 sin4 α

2

(
1− ka

ωa
cos

α

2

)2

(2.34)

where we assumed the incoming beams focused such that the beams are cubes of

sidelength ` and hence the laser energy contained in the matching interaction volume

Ej =
∫
Pjdτ = |Ej|2`3/2 is simply the laser energy per pulse. Inverting the expression

to find the testable parameter space is now trivial and it extends up to

gaγγ ≥

32π2d

√
1−

(
ma
ωa

)2

(
m2
a

4ω2

)4 E−3


1
4

(2.35)

as long as both beams are identical and we assume the interaction volume to have

optimal sidelength `2 = d/ka.

2.3 Projected Bounds

To assess the performance of the proposal above, we evaluate the projected bounds

utilising the specifications of the Aton 4 laser at ELI beam lines. This laser system

operates at optical frequencies ω = 1.55 eV with E = 1.5 kJ energy per pulse and

has pulselengths of τ = 150 fs up to τ = ns. The optimal beam overlap V was found

earlier and thus we choose to focus the beam to a cube with matching pulselength

τ =
√
d/ka. The number of signal photons incident onto the photon detector is

then approximated as Nγ ∼ E/ω. The Aton 4 laser has a repetition rate of 1 min−1

resulting in 1440 shots per day. Under the assumption that single photon counting is

possible, the projected bounds for square interaction volume ` = `′ = τ and maximal
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testable ma ∼ 3.08 eV are found

gaγγ ≥ 1.5× 10−7 GeV−1

(
E

1.5 kJ

)− 3
4
(

d

10 cm

) 1
4

(2.36)

and are shown as red region in the exclusion plot 2.2. The maximal mass arises

from the requirement that the two colliding lasers be at least 1° off perfect counter-

propagation, which is necessary to avoid damaging an actual laser.

As was discussed in (2.26) the laser frequencies and the collision angle sets the

mass of the axion we probe. To exclude the whole region shown in the exclusion

plot 2.2 we consider a realistic laser field with spectral width modelled as a Gaussian

around the central frequency ωj with width ∆ωj. As long as ∆ωj/ωj � 1 our earlier

calculation still applies but the axion mass under investigation will no longer be single

valued but have a Gaussian distribution around the mass corresponding to the central

frequencies. Indeed we find

δma

ma

' ∆ω1

ω1

+
∆ω1

ω1

(2.37)

to be the mass interval over which the bounds vary by less than
√

2. We may

thus probe the depicted mass region continuously by scanning through appropriately

spaced collision angles with angle increments given by

δα = 2
δma

ma

(cscα− cotα) . (2.38)

The angular step size and mass interval are shown in figure 2.3. Putting a limit of 1°

from parallel and anti-parallel propagation of the two lasers for practical reasons, we

conclude that the mass region indicated in the exclusion plot may be covered in ∼ 30

steps. In principle we may extend the region down to lower masses by exploiting the

collision of two photons in a converging laser beam at arbitrarily small angles similar
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Figure 2.2: Exclusion plot for axion parameter space. The light blue region shows

existing bounds from the OSQAR experiment [87]; the orange region is excluded by

PVLAS [89]; the dashed blue line depicts CAST constraints [94]; the lower horizontal

dashed line comes form stellar cooling lifetimes [95] and the upper from solar Bragg

diffraction experiments [73]. The green region shows the Xenon1T anomaly inter-

preted as QCD axion signal [60, 61]. The red region on the left indicates the reach

of the set-up described in the main text using three optical lasers. This region is

extended in mass by combinations of frequency doubled beams, also indicated by the

additional peaks in red. The dashed red line indicates the improvement for a 15 kJ

laser. The purple region on the right shows the projected bounds for the collision of

an optical 1.5 kJ laser and an X-ray laser like the European X-FEL. The frequency is

tunable between ω = 1−25 keV allowing us to probe anything between the two purple

extremes. The QCD axion region, shown in yellow, indicates particular theoretical

predictions for where the axion might be, if it constitutes the dark matter [96].
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Figure 2.3: The orange curve plots the angular step size δα against the chosen angle

α for each shot. On the left axis, the black curve indicates the central mass probed

for a given α and ω0
1 = ω0

2 = 1.55 eV, the shaded region indicates the width ±δma.

Assuming a minimum possible step-size δα & 1°, the full mass range can be scanned

in ∼ 30 shots. This step size imposes a lower bound on α & 0.4 rad corresponding to

ma & 0.6 eV.

to [97], however the bounds fall below the PVLAS bounds and do not probe new

parameter space.

By exploiting frequency doubled beams we can extend the mass interval to larger

masses. The red region directly to the right of the red projected bound in figure 2.2

is a projection for a frequency doubled beam under the assumption of 10% energy

loss in the conversion. While just an estimate, techniques are efficient enough, that

the bounds do not deviate significantly from the indicated ones.

To extend the mass interval to still higher masses we may exchange one optical

generation laser with an x-ray beam. In general, substituting both beams would fur-
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ther extend the mass interval, however the substantially smaller energies per pulse of

x-ray sources render this approach sub-optimal. The European X-FEL operates at

ω = keV with a pulse length τ = 228 eV−1 and energy per pulse of E = 0.5 mJ. The

shorter pulselength limits the interaction region to a cube of sidelength τ and the

resulting bounds are shown in purple in figure 2.2. Note that due to the asymmetric

beams the simple expressions from before no longer apply, we quote the appropriate

expressions in Appendix A. Note, also that the shape of the exclusion region varies

because of the altered geometry. For a pair of symmetric beams the maximal bounds

are found for ka → 0, when the two beams collide head on. In this case, the electric

and magnetic field of both beams perfectly align and |Ei ·Bj| is maximal. For asym-

metric beams the situation becomes more difficult and the maximum may no longer

simply lie at the smallest ka.

Having obtained the results for asymmetric beams, we may now fill out part of

the parameter space in between by combinations of frequency multiplied beams. The

same is true for the collision of an optical and a x-ray beam because the latter is

tunable up to 25 keV. The achievable region is indicated in fig 2.2 by the purple

region.

42



Chapter 3

Parametric co-linear Axion photon

instability

Parametric instabilities are common in laser plasma interactions resulting in the ex-

ponential growth of a coupled secondary wave at the expense of a strong pump pulse.

We aim to investigate the coupling of axions to a strong pump laser, identifying a

similar parametric instability, which we then aim to derive a measurable signal from

to complement other laboratory axion searches.

The physical process leading to an instability is a positive feedback loop which

transfers energy from a seed into the unstable mode. The latter will already be

populated, either from a probe beam or the instability grows from noise. In the

case of Raman instability, which is very reminiscent to the process described in the

remainder of this section, a laser beam incident on a plasma excites plasma waves

which become unstable [98]. Microscopically what happens is that the incident wave

pµi decays into a plasma wave pµl and a secondary photon, the sideband, pµs satisfying

pµi = pµl + pµs . (3.1)

The initial laser beam displaces electrons in the plasma, leading to a plasma wave.
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The moving plasma electrons emit radiation, the scattered sideband mode. This

sideband mode in turn increases the ponderomotive force on the electrons expelling

them further resulting in a positive feedback loop under which the plasma wave grows

exponentially for early times [99]. A similar situation appears for an axion-photon

system with the axion-photon coupling (1.27) taking the role of the ponderomotive

force. An electromagnetic seed beam decays into a scattered sideband and an expo-

nentially growing axion mode. The results described in this chapter were published

in [4] and the arguments closely follow the arguments therein.

We envisage a set-up involving a strong laser beam, the pump, propagating in a

vacuum. In the following the terms pump and seed are used interchangeably. We also

consider the case in which the beam propagates in a plasma but it turns out that for

our purposes limiting ourselves to the vacuum case is superior. By having a probe

beam propagating parallel to the pump we start the parametric decay instability and

feed energy from the pump into the probe and an axion mode. To achieve coupling

between the beams, the probe pulse is polarised orthogonal compared to the pump

and therefore the transfer in energy is accompanied by a change in polarisation of the

combined electromagnetic field of pump and probe. We aim to measure this change

in polarisation. As such the set-up shows similarities to [100] and the PVLAS search

[89] but uses a different mechanism. The set-up is shown in figure 3.1 with pump and

probe co-propagating from the left and a polarisation detector on the right.

Previous considerations of the axion-photon coupling were mostly limited to static,

constant fields as in [37, 91] which break the spatial invariance of the background and

therefore allow photon axion mixing. This is the starting point of LSW type exper-

iments or searches like CAST. Previous work on axion photon coupling in electro-

magnetic waves focused on the scattering processes as in [100, 3] but did not account

for parametric instabilities. The situation in plasmae is less well researched, however

some work was done assuming electromagnetic duality symmetry [101, 102], a sym-
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Figure 3.1: A cartoon of the set-up described in the text. A strong pump pulse

co-propagates with a weaker probe of orthogonal polarisation. They couple via the

parametric instability found in this chapter and energy is transferred from the pump

into the probe and an axion mode. Because of the orthogonal polarisation, there is a

change in polarisation of the combined electromagnetic wave which can be measured.

metry low energy electromagnetism does not posses. Parametric decay instabilities in

axion photon systems was investigated in [103] where the authors consider dispersion

relations close to the vacuum ones and simplify their system to first order differential

equations. This effectively assumes that the growth rate Γ � ω the energy of the

axion, an assumption which does not hold in our analysis.

3.1 Instability growth rate

The system of axions and photons is again described by Axion electrodynamics as

in the previous chapter. We now also include electric charges but ignore the axion’s

coupling to fermions. Including electromagnetic charges, the Gauss law for magnetism

∇ ·B = 0 (3.2)
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and the Maxwell-Faraday law of induction

∇× E = −∂tB (3.3)

are unchanged, however, Gauss’s law gets an additional source from the axion field

∇ · E = 4πρ+ gaγγ (∇a) ·B (3.4)

and Ampère’s law includes an additional current

∇×B = 4πJ + ∂tE + gaγγ (E×∇a−B∂ta) . (3.5)

Here, ρ is the electromagnetic charge density and J the electromagnetic charge cur-

rent. The observable fields are defined by the gauge fields Aµ = (Φ,A)

E = −∂tA−∇Φ (3.6)

and

B = ∇×A. (3.7)

To close the description of our system we take the plasma to be a simple fluid,

an assumption which should generally be acceptable given that our axions do not

couple to the charged fermions directly but only through the electromagnetic fields.

Therefore the charge conservation equation is unaltered after we gauge fix ∇·A = 0

∂tρ+∇ · J = 0. (3.8)
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The fluid motion follows a Vlasov equation

∂tu + (u · ∇) u = − e

me

(E + u×B)− ∇P
neme

(3.9)

with P the pressure.

Newton’s law is simple to apply after two simplifying assumptions. We first assume

that any density fluctuations are orthogonal to A, an assumption which amounts to

ignoring pressure effects. The density fluctuations stem from the seed beams electric

field expelling electrons from regions of high field to regions of lower field. The result is

a pressure wave which runs along the seed pulse wave. As long as we ignore edge effects

this assumption is justified. The second assumption concerns the electron motion.

We will assume non-relativistic motion to neglect the influence of the magnetic field.

Note that in the end the electron motion plays a small role in deriving the limits under

consideration here, which makes this assumption relatively unimportant. Under these

assumptions

∂tut = − e

me

∂tA (3.10)

with ut the transverse electron velocity and me the electron mass. Thence the trans-

verse current

Jt ≡ −eneut = −e
2ne
me

A (3.11)

where ne is the electron density. The ions are considered stationary.

From Gauss’s law (3.4) we find Poisson’s equation

∇2Φ = −4πρ− gaγγ (∇a) · (∇×A) . (3.12)

Assuming appropriate boundary conditions of vanishing currents at spatial infinity,
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Poisson’s equation and charge conservation fix the longitudinal part of the current

Jl = ∂t∇Φ− gaγγ∂t (a∇×A) = 0. (3.13)

We are then ready to find the wave equation governing the gauge field evolution from

Ampère’s law and the above assumptions. We find

(
∂2
t −∇2 + ω2

pl

)
A = gaγγ (∇× (a∂tA) + (∇a)× (∇Φ)) . (3.14)

Here we defined the plasma frequency ω2
pl = 4πe2ne/me, the natural oscillation fre-

quency of a plasma.

The axion field is described by a Klein-Gordon equation

(
∂2
t −∇2 +m2

a

)
a = −gaγγE ·B. (3.15)

We proceed by performing a linear stability analysis of the coupled equations for

the plasma response (3.9), the gauge potentials (3.12), (3.14) and the axion field

(3.15). We will assume the presence of a strong pump pulse, the seed and linearise

the system around such pump. We define for this purpose a set of background fields

and fluctuation fields evolving in those backgrounds. Take

A ≡ A0 + δA, ne ≡ n0 + δn, Φ ≡ 0 + δΦ, a ≡ 0 + δa (3.16)

and make the assumption that δA, δΦ, δa, δn� A0, n0, all fluctuation fields are small.

Note that here we are assuming that the initial seed beam is still well described by only

the vector potential, an assumption which only holds for early times. Nonetheless,

this should be enough, insofar as we are mainly interested in the early stages of

the instability and due to the weak coupling gaγγ the growth rate will be too slow
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for back-reaction onto the seed to become significant. We will also find that the

high degree of accuracy in polarisation measurements allows for the detection of

this instability well before this assumption breaks down. Therefore, we linearise the

equations by dropping higher order terms in the fluctuation fields. In the following

we are concerned with situations in which equilibrium is not reached and the above

assumption continues to be true throughout the duration of the experiment.

We find a set of linearised equations

(
∂2
t + ω2

pl − 3v2
e∇2

)
δn =

e2n0

m2
e

∇2 (A0 · δA) + gaγγ
en0

me

(∇δa) · (∇×A0) (3.17)

with ve the electrons thermal velocity entering through the pressure term,

∇2δΦ = 4πeδn− gaγγ (∇δa) · (∇×A0) (3.18)

and (
∂2
t + ω2

pl −∇2
)
δA = −4πe2

me

δnA0 + gaγγ∇× ((∂tA0)δa) (3.19)

for the Gauge fields and

(
∂2
t −∇2 +m2

a

)
δa = gaγγ [(∂tδA +∇δΦ) · (∇×A0) + (∇× δA) · ∂tA0] (3.20)

for the axion field. To solve these coupled equations we perform a spatial Fourier

analysis

f (k, t) ≡
∫
f (x, t) e−ik·x

d3x

(2π)3/2
. (3.21)

Taking the seed background field to be A0 ≡ A0 cos (k0.x) we are then left with

(
−∂2

t − k2 − ω2
pl

)
δA(k, t) =

ω2
pl

2

(
δn+

n0

eiω0t +
δn−
n0

e−iω0t

)
A0 (3.22)

− gaγγ
ω0

2
(k×A0)

(
δa−e

−iω0t − δa+e
iω0t
)
,
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k2δΦ(k, t) = −4πeδn+
gaγγ

2
k · (k0 ×A0)

(
δa−e

−iω0t − δa+e
iω0t
)
, (3.23)

(
−∂2

t − ω2
ek

) δn(k, t)

n0

=
k2e2

2m2
e

A0 ·
(
δA−e

−iω0t + δA+e
iω0t
)

(3.24)

− gaγγ
2

e

me

k · (k0 ×A0)
(
δa−e

−iω0t − δa+e
iω0t
)

and

(
−∂2

t − k2 −m2
a

)
δa(k, t) =

gaγγ
2

[
k · (k0 ×A0)

(
δΦ−e

−iω0t − δΦ+e
iω0t
)

(3.25)

+A0 ·
(
eiω0t (ω0k+ − ik0∂t)× δA+ − e−iω0t (ω0k− − ik0∂t)× δA−

) ]
.

We have used shorthand notation f± to mean f(k ± k0). Looking at the coupled

equations we can see that only such fields couple whose momenta satisfy the mode

matching condition

k0 = ka + kγ. (3.26)

Because there is both, ±k0 in the seed pulse, both the sum and difference sideband

modes contribute.

To proceed, we now make another simplifying assumption, we will work in the

co-linear limit where all waves propagate in parallel. Hence, k ∝ k0 for all modes,

which simplifies the situation substantially. Dividing the gauge field δA into two

components, one parallel and one orthogonal to the seed field δA|| and δA⊥, we find

that only the orthogonal piece couples to the axion field. Remembering that the

axion-photon coupling is polarisation dependent and vanishes for parallel polarised

fields, this is to be expected. We can also see this in the equations where now

k · (k0 ×A0) ≡ 0 and A0 ·
(
k× δA||

)
= 0. In fact the whole system splits into two

separate subsystems, the parallel gauge field couples to the density waves through
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the following system of equations

(
−∂2

t − k2 − ω2
pl

)
δA||(k, t) =

ω2
pl

2

(
δn+

n0

eiω0t +
δn−
n0

e−iω0t

)
A0, (3.27)

k2δΦ(k, t) = −4πeδn (3.28)

and (
−∂2

t − ω2
ek

) δn(k, t)

n0

=
k2e2

2m2
e

A0 ·
(
δA
||
−e
−iω0t + δA

||
+e

iω0t
)
. (3.29)

This system is identical to that describing the Raman instability, which was mentioned

at the beginning of this chapter. For this reason, and because it is decoupled from

the axion field, we will not go into further detail.

The interesting bit is the remaining coupled system describing the perpendicular

field

(
−∂2

t − k2 − ω2
pl

)
δA⊥(k, t) = −gaγγ

ω0

2
(k×A0)

(
δa−e

−iω0t − δa+e
iω0t
)

(3.30)

closed with

(
−∂2

t − k2 −m2
a

)
δa(k, t) =

gaγγ
2

A0 ·
(
eiω0t (ω0k+ − ik0∂t)× δA⊥+

− e−iω0t (ω0k− − ik0∂t)× δA⊥−
)
. (3.31)

As we are specifically interested in the perpendicular fluctuation field we will from

now on suppress the label ⊥ when referring to this field. We then proceed to solve

the equations by making an ansatz for the time dependence

f(k, t) = f(k)e−iω(k)t (3.32)
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reducing the set of coupled differential equations to a set of algebraic equations in

ω(k). We attempt to solve the equations by substitution of (3.30) into (3.31) to

eliminate the fields δA. In principle we are left with an infinite tower of coupled

axion fields a(k± jk0), j ∈ Z which arises from (3.26). An axion with momentum k

propagating in the seed pulse couples to a photon with momentum k ± k0. Such a

photon then interacts with a seed photon to form axions of momentum k± k0 + k0.

Each of those axions then starts the same process again, hence a whole cascade of

axions modes is produced. In reality, however, the production of all higher harmonic

modes is heavily suppressed. Such terms can generally arise in two distinct ways,

by cascading as described before or from the spectral width of the seed pulse. In

the former case their appearance is generally higher order in the coupling gaγγ as is

apparent from the fact that a(k± (j + 1)k0) only appears after a(k± jk0) is already

present and decayed. In the second case, a photon away from the central momentum

of the beam with jk0 seeds the instability and immediately generates an axion with

a(k ± jk0). Modelling the beam as Gaussian with a very narrow spectral width we

can also ignore this effect based on the suppression of photons in the tails of the

distribution. We will thus proceed by dropping all fields of momentum k ± 2k0 and

higher.

The system of algebraic equations is then solved for axion fields a(k) and photon

fields δA± with frequencies ω(k) satisfying the dispersion relation

Da (ω(k), k) =
g2
aγγA

2
0

4
(ω0k − ω(k)k0)

(
ω0(k − k0)

Dγ (ω(k)− ω0, k − k0)

+
ω0(k + k0)

Dγ (ω(k) + ω0, k + k0)

)
. (3.33)

For notational convenience we have defined the bare dispersions in the decoupling

limit gaγγ → 0

Da (ω(k), k) = ω(k)2 − k2 −m2
a (3.34)
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and

Dγ (ω(k)± ω0, k ± k0) ≡ (ω(k)± ω0)2 − (k ± k0)2 − ω2
pl. (3.35)

Note that despite the decoupling of the plasmons from the axions in the chosen

co-linear limit, the plasma changes the photon’s dispersion relation and gives it an

effective mass ωpl. As we will see, this mass plays an interesting role in the axion-

photon instability we find.

To solve the dispersion relation we first proceed numerically to get an idea of

the hierarchies involved. The numerical solution of the dispersion relation (3.33) is

straight forward: it is a polynomial of 6th order, which, as such has 6 solutions. We

are interested in any complex solution. If such a solution exists, we will conclude that

the system is unstable and grows exponentially with time, as can be seen from (3.32)

e−iω(k)t = e−i<(ω(k))t+=(ω(k))t. (3.36)

This exponential growth will only be present as long as the assumptions we made

above hold, especially the hierarchy between seed field and sideband mode only holds

in the early stages and eventually stops the exponential growth. Figure 3.2 shows

the numerical solution to the dispersion relation (3.33) exhibiting an instability. The

dotted green curve shows the bare axion dispersion (3.34) for comparison. In blue we

see the axion’s energy, the real part of the frequency ω(k) and the dashed yellow line

indicates the imaginary part, the growth rate. Some interesting behaviour emerges,

which should be explained in the following.

The first observation we make is that the growth rate is essentially constant in

axion momentum when the momentum is low and sharply drops off at a cut-off value

above which no instability is found. We also find that the axion’s energy <(ω(k)) is

orders of magnitude smaller than the seed pulse frequency. It is in fact much smaller

than the growth rate which will later complicate the analytic calculation. The fact
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Figure 3.2: The plot shows the growing solution to the dispersion relation (3.33).

The blue solid curve shows the real part w(k) corresponding to the modes’ frequency

while the dashed yellow curve depicts the growth rate Γ. Note that here we included

the O(k2) contributions to show the cutoff. As a reference we include the vacuum

dispersion relation for an axion with the same mass in dotted green. For illustration

purposes, we have chosen ma/ω0 = 10−2 and gaγγA0 = 10−3. We see that even for

such large values, the axion frequency is negligibly small. The plasma frequency

ωpl = 0 here, see the main text for discussion on the effect of the plasma.

that it is much smaller than the bare dispersion in vacuum makes the mode evanescent

[104]. In essence this means that the propagating axion mode cannot propagate out

into vacuum as it does not have enough energy to support its mass. This is fully

analogous to a light wave incident on a supercritical plasma, a plasma with density

such that ωγ < ωpl. The electromagnetic wave cannot propagate into the plasma and

is reflected. Note that not every unstable axion mode we find is necessarily evanescent,
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but for sufficiently large axion mass they are. Generally a mode is evanescent if its

energy is below its vacuum mass.

We can make two further observations when scanning the plasma density and

axion mass. We find that there is a cutoff mass above which we can no longer find

an instability. This is to be expected, as in the co-linear limit, only very light axions

with negligible mass fulfil energy-momentum conservation at the three point vertex

between axion and two photons. It should be noted that in the vacuum limit, the

decay of a massless particle to a massive one is forbidden, however in our case the

background is a strong electromagnetic field. The energy momentum conservation

condition is modified due to the presence of the strong laser fields and plasma density.

A toy example was investigated in [105] where a similar observation was made; while

a perturbative calculation around the vacuum state suggests the decay of a massless

to a massive particle is forbidden, non-perturbative analysis reveals that the process

can take place in sufficiently strong fields for small enough masses ma/ω0 � 1. We

will find the precise condition later on in this section. Further, we may notice that

changing the plasma frequency affects the growth rate only marginally but changes

the axion’s energy significantly. It is changed so significantly that the unstable axion

mode travels backwards for sufficiently dense plasmas and forward in the vacuum

limit. A backwards propagating mode is characterised by a relative sign between

frequency ω(k) and momentum k.

In the following we will use the above observations to solve the dispersion relation

(3.33) analytically. We will then use this solution to make the above statements

concerning cutoffs and relative sizes precise. For simplicity we begin by considering

the vacuum limit ωpl → 0. The dispersion relation is a 6th-order polynomial in ω(k).

As they are stable, the two real roots ω(k) = k can be discarded. If there exists an

instability in the system, eventually the unstable mode, growing exponentially, will

dominate, hence we are justified in dropping the other modes. We proceed by working
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with the remaining 4th-order polynomial and splitting ω(k) into its real and imaginary

parts ω(k) = w(k) + iΓ(k) for w(k),Γ(k) ∈ R. The resulting real and imaginary

equations are linearly independent and therefore must be satisfied individually.

The remaining imaginary equation is a cubic polynomial in the growth rate Γ(k)

with one trivial solution Γ(k) = 0 and two non-trivial ones

Γ = ±

√
3kw2 + 2w3 − 4wω2

0 − k3 −m2
a(w + k) +

g2
aγγA

2
0

4
kω2

0

k − 2w
. (3.37)

We know that, with the ansatz (3.32), only a positive Γ(k) corresponds to growth,

hence we focus on the positive root only. After substituting Γ(k) into the real part

of the equation, we are then left with a single algebraic equation for w(k). Figure 3.2

shows that in our case, the frequency w(k) is very small, thus motivating an expansion

in w(k), which we find to be

w(k) = k
(gaγγA0)2

64

((
gaγγA0

2

)2

−
(
ma

ω0

)2
)
. (3.38)

Here we dropped terms of order 6 in (gaγγA0), (ma/ω0) and k as being small. The

growth rate can then be expressed as

Γ(k) = ω0

√(
gaγγA0

2

)2

−
(
ma

ω0

)2

−
(
k

k0

)2

, (3.39)

where we have again dropped higher order terms in (gaγγA0), (ma/ω0) and (k/k0).

Upon a closer look at (3.39), the qualitative behaviour of the numerical solution

depicted in fig 3.2 is recovered. We find growth below a cutoff in k, which is defined

by

kcutoff = k0

√(
gaγγA0

2

)2

−
(
ma

ω0

)2

. (3.40)

For larger k, Γ(k) becomes imaginary and our solution, which intimately relies upon
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the linear independence of the equations for the imaginary and real part we split

earlier, breaks down. We had already found before that the growth rate is essentially

constant in k < kcutoff, a behaviour which is obvious here and allows us to suppress

the dependence of Γ in the following. (3.39) also reveals a second cutoff for ma/ω0 >

gaγγA0 above which no instability is found.

From (3.38) we can calculate the phase velocity of the unstable modes

va =
∂w(k)

∂k
=

(gaγγA0)2

64

((
gaγγA0

2

)2

−
(
ma

ω0

)2
)
, (3.41)

which can be much slower than the speed of light even for massless ma = 0 axions.

Surprisingly, the axions’ velocity appears to vanish in the decoupling limit gaγγ → 0.

Upon closer inspection we realise that in fact our method of solution breaks down

in this limit. The growth rate (3.39) becomes imaginary in this case and the two

equations we got by splitting ω(k) into a real and an imaginary part are no longer

linearly independent. In fact, we can see that, in the decoupling limit, the bare

dispersion is recovered already from the dispersion relation (3.33).

The inclusion of a plasma in our set up does not alter our method for solving the

equation. In this case, however, the solution becomes less tractable. Reproducing

the full result leaves only little insight. On the other hand, finding the lowest order

correction stemming from the plasma frequency will reveal interesting behaviour. The

frequency of the axion field to lowest order in this circumstance is

wpl(k) = −1

2

ω2
pl

ω2
0

(
gaγγA0

2

)2

(
gaγγA0

2

)2

− m2
a

ω2
0

k +O(ω4
pl) (3.42)

with special attention to the sign of the solution. The presence of a plasma changes

the relative sign between w(k) and k, the wave propagates in the opposite direction.

While the axion wave was co-propagating with the seed beam before, it is now back-
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scattered. Compared to the frequency in (3.38) it is also revealed that the frequency

is significantly larger in a background plasma alongside the axion velocity

vpl
a =

∂wpl(k)

∂k
= −1

2

ω2
pl

ω2
0

(
gaγγA0

2

)2

(
gaγγA0

2

)2

− m2
a

ω2
0

. (3.43)

This makes the inclusion of a plasma inferior to the vacuum case. In a plasma, the

effective time for which the instability grows is set by the crossing time of the axions

because they can no longer be assumed stationary as was clearly possible in the

vacuum case (3.38). As was already suggested by the numerical solution, the growth

rate does not change significantly

Γpl(k) = Γ(k)

1− 1

2

ω2
pl

ω2
0

(
gaγγA0

2

)2

(
gaγγA0

2

)2

− m2
a

ω2
0

 . (3.44)

In addition to that, the cut-off momentum (3.40) does not change substantially. When

considering a real experiment, the addition of a plasma also adds to the background

signal and complicates the analysis. To this end, we conclude that the optimal set-up

is in vacuum, ωpl → 0 and adopt this limit in the following.

3.2 Experimental signal and projected bounds

There is a plethora of possible signatures to measure the existence of axions by means

of the instability discussed above. Unfortunately, the smallness of the axion frequen-

cies w(k) which become unstable renders most of them unobservable. Physically, the

seed pulse breaks into an axion and a sideband photon, hence depleting the energy

of the pump. This, however, is not detectable for two reasons: first, our calculation

makes the assumption that the seed beam is a background field and does not sig-

nificantly change. This is ensured by the hierarchy between the seed field and the
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fluctuation fields. Further, the axion’s frequency is so small, w(k) � ω0, that any

sideband mode will be within the spectral width of any realistic seed laser. Therefore,

the laser beam only loses the energy going into axion radiation, which is negligible

for the same reason: the frequency is small.

Upon closer inspection, it becomes apparent that while the frequency of the side-

band modes is essentially indistinguishable from the seed laser frequency, the polari-

sation is different. The coupling (1.27) ensures that the two photons are orthogonally

polarized; thus, while the energy of the seed beam decreases like w(k)Na, the polari-

sation changes much faster.

The set-up we have in mind consists of a pump pulse polarised in x̂ and a weaker

probe with polarisation in ŷ. We require the presence of the probe such that the

instability can commence. The first axions are created via stimulated decay of a laser

photon at ω0 into a photon of the probe laser and an axion. Once present the axion

field grows through the E ·B source term, which takes the role of the ponderomotive

force in the Raman instability. The large hierarchy between the pump pulse and the

other modes ensures that together with the axion field, the probe beam field also

grows while the pump is depleted [99, 106]. Because of the slow growth rate at hand

we need not concern ourselves with the termination of the growth once the fluctuation

fields become comparable to the pump pulse.

We define the initial polarisation of the combined seed and probe wave as

P(0) =
A · x̂− δA · ŷ

A0

≡ 1− ε. (3.45)

Here, ε ≡ δA/A0 < 1. For early times, the pump pulse is unaffected and only the

probe grows alongside the axion mode through the

gaγγA0

2
δae−iω0t+γt (3.46)
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source term on the right hand side of (3.30) where we ignore the small shift in fre-

quency as w(k) � ω0. Since the growth rate does not depend on k, the Fourier

transform is trivial. Thus, the polarisation has a time dependence given by

P(t) = 1− ε− (gaγγA0)ξeΓt. (3.47)

We need not know ξ very well as it will eventually only enter the sensitivity in a log

and not play a significant role. Change in the polarisation of lasers can be measured

to astonishing accuracy as was demonstrated by e.g. the PVLAS collaboration [89].

It should definitely be possible to measure polarisation changes on the order of ∆P ∼

0.001 and probably better. Taking this as a reference value we are ready to project

the reach of an experiment utilising the above instability to search for axions.

Straightway, we appreciate that the most important part in the signal calculation

is the exponential. The timescale of growth t will be set by the laser pulse length τ .

The growth rate (3.39) depends on the laser parameters

Γ = 9.4× 10−5 s−1
( gaγγ

10−8 GeV−1

)( I
W/cm2

) 1
2

. (3.48)

Here we calculate the laser intensity from the energy per pulse E0, the pulse length τ

and the focal spot size `

I ≡ E0

τ`2
=

A2
0

ω0τ`2
. (3.49)

The very small axion momentum requires the focus to be maintained for long

distances > k−1. This has a simple explanation: when calculating the dispersion

relation, we have effectively assumed infinite extent of the modes involved. For this

assumption to hold, the axion wavelength must be shorter than the laser pulse spatial

size. Once this assumption breaks down, the axion no longer fits into the pulse and

such long wavelength modes are not present in the spectrum. This is equivalent to
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quantising the system in a box whose spatial extend sets an upper bound on the

wavelength of any mode inside. We thus find a lower bound on the axion wavelength

λa ≥ k−1
cutoff and estimate that distance

λa ≥ 3.2× 1012 m
( gaγγ

10−8 GeV−1

)−1
(

I
W/cm2

)− 1
2

. (3.50)

At this point, two problems become apparent. First, the wavelength is very long and

the lower bound is intensity dependent and therefore depends on the focal spotsize

through (3.49). We hence need to minimise the focal spot size such that the intensity

is maximised while at the same time keeping the focus over macroscopic distances.

The highest laser intensity currently operating systems can generate is around

I = 1023 W/cm2 and this lasts for τ ∼ 10 fs [107]; for a review of current laser

technology see [108]. Such intensities would correspond to a wavelength of λa = 9 m.

Generating and maintaining long laser focuses might be possible with a variety of

approaches in the future. For example, the latest plasma-waveguides are capable of

maintaining a laser focus over 10 m scales [109, 110]. It is also worth pointing out

that the required focus length decreases mildly with laser power, hence the problem

will become marginally simpler in the future. Nonetheless, the scaling is not sufficient

to expect a solution to the problem simply from improving laser technology. In fact,

the Schwinger limit, sometimes called the critical field strength of QED, corresponds

to intensities Icrit ∼ 1029 W/cm2. At higher intensities, pair production becomes

efficient. Schwinger limit fields would correspond to axion wavelengths λa > 1 cm

still much larger than optical wavelengths of the seed beam and therefore continues

to pose a challenge for the length of the focus. We conclude that an increase in laser

intensity does help to bring the axion wavelength down to sizes which fit into the

target vacuum chambers of high power laser systems, but is not sufficient to reach

couplings as low as the current best bounds of alternative searches like LSW. Note
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that the situation worsens when trying to go beyond those bounds, as can be seen in

(3.50).

Another challenge is the generally slow growth rate requiring long pulses in time.

The e-folding time is readily found from (3.48) and must be compared to the pulse-

length of a I = 1023 W/cm2 pulse which lasts for τ ∼ 10 ps. This restricts the

couplings we can probe. Assuming we are capable of measuring a polarisation change

∆P , by inverting (3.47) we find

gaγγ ≥ 3.4× 10−2 GeV−1

(
I

1023 W/cm2

)− 1
2 ( τ

10 fs

)−1

ln

[
∆P

(gaγγA0)ξ

]
. (3.51)

The log gives a small contribution, it is not inconceivable to measure ∆P . 0.01. For

the laser parameters quoted here, gaγγA0 ∼ 8.

As we can see, currently operating laser systems are only capable to probe cou-

plings well below the current best laboratory limits set by LSW type searches. It is

conceivable to perform the search we envisaged above, since for couplings that small,

the axion wavelength lower limit is only λa > 3µm which is close to the wavelength of

the optical seed laser. Maintaining a focus over such length-scales is indeed possible.

Above, we have taken the timescale of the experiment to be equal to the laser’s

pulselength τ . This warrants closer investigation, as there is a second timescale

in the problem, that is the time required by the axions to leave the focal region.

Fortunately, the phase velocity (3.41) is negligible and we may thus take the axions

to be effectively stationary over the course of the interaction. This, however, changes

significantly when a plasma is included.

The instability cuts off at large masses, hence our bounds only extend to

ma ≤ 6.8× 10−2 eV

(
gaγγ

3.4× 10−2 GeV−1

)(
I

1023 W/cm2

) 1
2

(3.52)
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Figure 3.3: Axion exclusion plot indicating past experiments and the current work.

The coloured regions correspond to purely laboratory-based experiments, while in

grey-scale we indicate astrophysical and dark matter bounds. Results from light-

shining through wall experiments are shown in yellow [85, 87]. The dark grey region is

excluded by the ABRACADABRA collaboration [58] looking for dark matter axions.

The dashed black line indicates CAST constraints [94]. The lighter grey regions are

excluded by the Chandra telescope [79], observations made on the SN1987A supernova

[75], the Fermi LAT collaboration [80] and considerations of a Hot Neutron Star in

HESS J1731-347 [81]. The solid red line indicates the reach of an experiment as

described in the main text with laser intensities of I = 1023 W/cm2 with pulselength

τ = 10 ps. The dashed and dotted red lines indicate the laser requirements to reach

bounds similar to LSW and CAST respectively.

and drop off above that. The drop off is calculated according to

gaγγ = 3.4× 10−2 GeV−1

(
ma

6.8× 10−2 eV

)
. (3.53)

63



We thus find that the above discussed approach can probe couplings as indicated

by the solid red line in fig. 3.3. For reference, the plot also shows laser parameters

necessary to reach the current best laboratory bounds and CAST limits. In general

better sensitivity can be obtained by both, increasing intensity or longer pulses. While

the scaling of (3.51) with pulselength τ is favourable over the scaling with intensity

I, we have to point out that only increasing the pulse length is not enough. The

problem of focal length must also be addressed.

It is worth mentioning that this approach can, unfortunately, not be used to probe

the QCD axion. Here, the coupling and mass are no longer independent but rather

gaγγ ∝ ma. To reach this, we would need A0 ≥ 1018 eV, which is above the Schwinger

critical field limit.

There are two canonical routes to extend upon the results in this chapter. We can

move away from the laboratory setting and aim to apply this instability in astrophys-

ical settings in which the long axion wavelength is less of a problem. The challenge

remains to find suitable conditions in which we have intense beams of radiation with

well defined polarisation in this case.

Another possibility which we aim to investigate in the future lies in the assump-

tions we made to simplify the calculation. Dropping the co-linear limit is one obvious

improvement, but perhaps more interesting would be to allow for a phase mismatch

in (3.26). The idea is the following: By allowing a small phase mismatch ∆k such

that k0 = ka + kγ + ∆k we may get to a situation in which ka, the momentum of

the axion mode no longer needs to be as negligible as in the perfect phase matching

case above. Effectively because we can trade the smallness of ka to a cancellation

between ka and ∆k. The detailed behaviour of this system will have to be analysed

in a future investigation to ascertain whether such a system still exhibits instabilities

and whether the postulated increase in axion momentum holds.

We conclude that in its current state, the here proposed set-up is inferior to
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alternative searches like [3], however, further interesting avenues are to be explored.
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Chapter 4

Axion-like-particle decay in strong

electromagnetic backgrounds

With the discovery of the laser and the steady increase in peak power [111] elec-

tromagnetic fields approach getting strong enough to observe electron-positron pair

production [112, 113, 114]. The decay of photons in a laser background has already

been seen in [115, 116]. At fields above the critical field of quantum electrodynamics

(QED)

FQED =
m2
e

|e|
= 1.3× 1018 V/m, (4.1)

in the literature also known as the Schwinger critical field, the decay of an elec-

tromagnetic field quantum into an electron-positron pair is no longer exponentially

suppressed. The work done on an electron (positron) per Compton length corresponds

to more than the electron’s (positron’s) rest-mass. Hence, real, on-shell pairs may be

created.

Pair creation is a non-linear process and typically involves the interaction of many

electromagnetic field quanta to transfer sufficient energy. The parameter governing

the importance of multi-photon interactions is the classical non-linearity or intensity
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parameter

ξ =
eA

me

(4.2)

with A the amplitude of the electromagnetic wave potential. If ξ ≥ 1 an electron

becomes relativistic from rest within one laser cycle by absorbing many photons.

Multi-photon processes are suppressed and perturbation theory can be performed for

ξ � 1 but cannot be ignored once ξ ≥ 1. Note that (4.2) is not Lorentz invariant,

however an invariant formulation was found in [117]

ξ2 =
〈kµT µν(φ)kν〉φ
m2
e(κ.k)2

=

〈
kµ
(
(F 2)µν − 1

4
ηµν TrF 2

)
kν
〉
φ

m2
e(κ.k)2

(4.3)

where kµ and κµ are the massive seed-particles and background fields four-momenta,

T µν is the stress-energy tensor, F µν the electromagnetic field strength tensor and 〈.〉φ

is a cycle-average over the phase.

A third governing invariant can be defined as

χ =

√
|(F µνpν)2|

meFQED(κ.p)2
(4.4)

commonly known as the quantum non-linearity parameter [118]. It indicates the

strength of quantum effects an electron with momentum pν experience in a field with

amplitude F µν .

As mentioned, pair production from seed-photons has been widely studied in the

literature [119, 120, 118]. The axion’s coupling to fermions (1.30) allows for axion

seeded pair production, which can be used as a complimentary axion search to the di-

photon regeneration experiments, probing a different SM coupling gae. Axion seeded

pair production differs from the corresponding photon seeded process because of the

pseudoscalar nature of the axion and the finite axion mass. The latter reduces the

energy gap between the initial axion state and the final electron positron pair, thereby
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lowering the strength requirement of the electromagnetic field for unsuppressed pair

production. By having the axion have an appreciable Lorentz boost, the field in the

rest-frame can be further enhanced. The decay of an axion into a pair in a plane

wave background was investigated in [121], while axion production in the interaction

of electrons and high intensity laser beams was studied previously in [121, 122, 123,

124]. We will review the standard strong field QED techniques (see [125, 126, 127,

128, 129]) in section 4.1 and then calculate the axion seeded pair production rate

in 4.2. We then aim to investigate the detection capabilities of a LSW type set-up

where the axions are produced via bremsstrahlung steming from the interaction of

an energetic electron beam with a solid target. The resulting axions then propagate

into a detection region, shielded from any SM background produced in the collision

and enter a strong magnetic field in which they decay into electron positron pairs.

The magnetic field lowers the axion masses for which unsuppressed decay is possible

to below ma = 2me. With the above set-up the signal depends solely on the axion’s

coupling to electrons gae and is hence truly complimentary to the traditional di-photon

LSW searches. Relatively heavy axions ma > 1 MeV are constrained by beam dump

experiments [130, 131], however going below ma . 1 MeV, laboratory searches are

needed.

4.1 Furry Picture

The wavefunction of an electron in an electromagnetic field satisfies the Dirac equation

(γµ (i∂µ − eAµ)−me) Ψ = 0 (4.5)

with e the U(1)em charge and me the mass of the electron. Aµ is the U(1)em gauge

field. Restricting ourselves to plane wave fields, the Dirac equation can be solved
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exactly [132]

Ψp =

(
1 + e /κ

/A(φ)

2κ.p

)
√

2p0V
exp

(
ip.x+ i

∫ φ

0

2ep.A(φ̃)− e2A2(φ̃)

2κ.p
dφ̃

)
up (4.6)

with φ = κ.x the phase, A(φ) the background field potential (only dependent on φ

for a plane wave) and up the electron spinor. The slash stands for contraction with

a Dirac matrix /κ = γµκµ and ’.’ is the Minkowski connection κ.p = κµpµ. For

photons κ2 ≡ 0 and the electron momentum is on-shell p2 ≡ m2. This wave-function

describes a dressed electron on which one can perform perturbation theory in the small

radiation field given by the emission of photons or axions. Acting with the kinetic

four momentum operator Πmu = i∂µ − eAµ we may find the kinetic momentum of

the Wolkow state (4.6)

Ψ∗pΠµΨq = pµ − eAµ + κµ

(
2ep.A− e2A2

2κ.p

)
− κµ

e/κ /A

2κ.p
. (4.7)

After time averaging eliminates the linear terms in the gauge field Aµ we find the

time averaged kinetic momentum

p̄µ ≡ pµ −
e2Ā2

2κ.p
κµ. (4.8)

From here it is natural to assign an effective mass to the state

m2
∗ = p̄2 = m2

e

(
1− e2Ā2

m2
e

)
. (4.9)

This mass is known in the literature as the dressed mass of an electron in a plane

wave field. As long as the photon field is weak eA � me the electron’s dressed

mass is equal the rest-mass. In this limit we may calculate perturbatively in eA

because the dominant process will be the one involving least photons. Each additional
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photon interaction comes with a factor eA/me making it progressively less likely.

This is the standard perturbation expansion into Feynman diagrams. If, however,

the field becomes strong, eA ≥ me, such a perturbative expansion breaks down,

as additional photon interactions are no longer suppressed. The electron is now no

longer well described by the vacuum wave-function and the Wolkow states are used.

The electron’s mass is re-normalised by many photon interactions and in this sense

is dressed by the photon field. Describing the electron ground state in a background

plane wave field then allows us to do perturbation theory on the radiation field which

is once again small [118]. Formally we split the photon field into a background field

Aµ and a perturbation field, the radiation field, Ãµ. The background field is absorbed

into the free field Lagrangian of the electron and the radiation field may be treated

perturbatively

L = Ψ̄
(
i/∂ −me

)
Ψ− eΨ̄γµΨ

(
Aµ + Ãµ

)
= Ψ̄

(
i/∂ − e /A−me

)
Ψ− eΨ̄γµΨÃµ. (4.10)

The free electron wavefunction then satisfies (4.5) and has the form of the Wolkow

states (4.6) which form an orthonormal basis [133]. This is known as the Furry picture

[134].

4.2 Pair creation probability

The coupling of axions to fermions takes the form

Lae ⊃ gaeaΨ̄pγ5Ψ+
q (4.11)

where the free field electron states are now full Wolkow states (4.6). Because of the

smallness of gae we are free to perform a perturbative expansion in the axion electron
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coupling and terminate the Dyson series at tree-level. The S-matrix element is then

S = igae

∫
d4xaΨ̄pγ5Ψ+

q . (4.12)

We take the axion field to be a plane wave with momentum k

a(x) =
1√

2k0V
e−ik.x (4.13)

which results in

S =
igae√

8k0p0q0V 3

∫
Ξe

i(p+q−k).x+i
∫ φ
0

(
2ep.A(φ̃)−e2A2(φ̃)

2κ.p
+

2eq.A(φ̃)+e2A2(φ̃)
2κ.q

)
dφ̃
d4x (4.14)

where

Ξ = ūp

(
1 +

e /A(p)/κ

2κ.p

)
γ5

(
1 +

e/κ /A(q)

2κ.q

)
vq. (4.15)

We may simplify the analysis by changing to light-front coordinates in which [135]

x± ≡ x0 ± x3, x⊥ = (0, x1, x2, 0). (4.16)

By choosing κ = κ+/2(1, 0, 0, 1), the plane wave phases are now φ = κ0x−, indepen-

dent of the other coordinates. We may thus perform most of the integrals in (4.12)

by decomposing

d4x =
1

2
dx+dx−d2x⊥ =

dx+d2x⊥dφ

2κ0
(4.17)

which leaves the only dependence on x+ and x⊥ in the phase and results in

S =
igae(2π)3√
8k0p0q0V 3κ0

δ−,⊥ (p+ q − k)

∫
Ξe

irφ+i
∫ φ
0

(
2ep.A(φ̃)−e2A2(φ̃)

2κ.p
+

2eq.A(φ̃)+e2A2(φ̃)
2κ.q

)
dφ̃
dφ.

(4.18)
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where r = p++q+−k+

2κ0 . For convenience we have transformed all co-vectors to vectors

by the relations

x± =
1

2
x∓, x⊥ = −x⊥. (4.19)

From the S-matrix element we get the transition probability as

Pa→e+e− = V 2

∫ ∑
spin

Tr |S|2 d
3pd3q

(2π)6
(4.20)

The trace and spin sum are simply evaluated to be

T

4
≡ 1

4

∑
spin

Tr |Ξ|2 (4.21)

= m2
e + p.q + e

[A(φ) + A(φ′)]

2
.

(
p
κ.k

κ.p
− qκ.k

κ.q

)
− e2A(φ).A(φ′)

2

(κ.k)2

κ.pκ.q

where we used the on-shell condition q2 = m2
e. The integral is again expanded in

light-front coordinates

d3p

2p0
=
dp−d2p⊥

2p−
θ
(
p−
) ∣∣∣∣∣

p+p−=m2
a+(p⊥)2

(4.22)

and we may perform the d3p integral because of the momentum conserving delta

functions. We readily find

Pa→e+e− =
g2
ae

8(κ0)2k−

∫
dp−d2p⊥

(2π)3p−q−
θ(p−)θ(q−)

∫
dσdθTe

i
∫ σ+ θ

2

σ− θ2

[
ep.A
κ.p
− eq.A

κ.q
− e

2A2

2
κ.k

κ.pκ.q

]
dφ+iθr

(4.23)

where we have defined the average and difference phases

σ ≡ φ+ φ′

2
, θ ≡ φ− φ′. (4.24)
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We can now use the identity

r =
k.p

κ.q
− m2

a

2κ.q
(4.25)

and definition of the plane wave momentum

Π = p− eA+ κ
2eA.p− e2A2

2κ.p
(4.26)

to write

Pa→e+e− =
g2
ae

4(2π)3(κ0)2k−

∫
d2p⊥dp−

p−q−
θ(p−)θ(q−)

∫
dσdθTe

i
∫ σ+ θ

2

σ− θ2

k.Π
κ.q

dφ−iθ m
2
a

2κ.q
. (4.27)

Let us remove the dependence on q by noting that the momentum absorbed from

the background field is

p+ q − k = λκ ⇔ λ =
2k.p−m2

a

2κ.q
. (4.28)

To find λ we used the on-shell conditions p2 = q2 = m2
e and κ2 = 0. This results in

the identity

m2
e + p.q = k.p

κ.k

κ.q
− m2

a

2

κ.p

κ.q
(4.29)

which we use to rewrite the trace (4.21)

T

4
= k.p

κ.k

κ.q
− m2

a

2

κ.p

κ.q
+
e [A(φ) + A(φ′)]

2
.

(
p
κ.k

κ.p
− qκ.k

κ.q

)
− e2A(φ).A(φ′)

2

(κ.k)2

κ.pκ.q
.

(4.30)

The exponent is

e
iθ

(
k.p
κ.q
− m2

a
2κ.q

)
+i
∫ σ+ θ

2

σ− θ2
( κ.k

2κ.pκ.q
(2eA.p−e2A2)− ek.A

κ.q )dφ
(4.31)

which resembles parts of the expression for the trace. Indeed we may make the
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substitution

κ.p
κ.k

κ.q
→ −iκ.k∂θ +

m2
a

2

κ.k

κ.q
+
κ.k

κ.q

ek.(A(φ) + A(φ′))

2

+
(κ.k)2

2κ.qκ.p

(
e2A2(φ) + e2A2(φ′)

2
− ep.(A(φ)− A(φ′))

)
(4.32)

resulting in

T

4
ei(...) =

(
m2
a

2
+

(κ.k)2

κ.qκ.p

e2(a(φ)− a(φ′))2

4
− iκ.k∂θ

)
e
i
∫ σ+ θ

2

σ− θ2

k.Π
κ.q

dφ−iθ m
2
a

2κ.q
. (4.33)

The integral over the derivative term results in contributions from the boundary at

the infinite past/future. Demanding that the probability not depend on the boundary

term, we may drop the term. We can now perform the d2p⊥ integral trivially because

the only dependence is in the exponent. We can see that noting the identity

k.p =
m2
e + (p⊥)2

2

κ.k

κ.p
− p⊥k⊥ +

m2
a + (k⊥)2

2

κ.p

κ.k
(4.34)

to write the exponent as

e
−iθ κ.k

2κ.pκ.q 〈e2A2〉−iθ m2
a

2κ.k
+ iθ
κ.q

(
m2
e

2
κ.k
κ.p

+
(k⊥)2

2
κ.p
κ.k
−〈ek.A〉

) ∫
d2p⊥e

iθ
κ.q

(
(p⊥)2

2
κ.k
κ.p
−p⊥(k⊥−κ.kκ.p e〈A〉)

)
.

(4.35)

The Gaussian integral results in

∫
d2p⊥e

iθ
κ.q

(
(p⊥)2

2
κ.k
κ.p
−p⊥(k⊥−κ.kκ.p eA)

)
=

2πi

θ

κ.pκ.q

κ.k
e−iθ

κ.p
2κ.qκ.k(k⊥−

κ.k
κ.p

e〈A〉)
2

(4.36)

which leaves the probability

Pa→e+e− = i
g2
ae

16π2ηk

∫
dσdt

dθ

θ

(
δ2 +

e2(A(φ)− A(φ′))2

2t(1− t)

)
e
i θ
2ηk

( µ(θ)
t(1−t)−δ

2). (4.37)
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We have defined the mass fraction δ2 = m2
a/m

2
e, the lightfront momentum fraction

t = p−/k− and the energy parameter ηk = κ.k/m2
e. The Kibble mass factor is [136]

µ(θ) = 1 +

〈
eA

me

〉2

−

〈(
eA

me

)2
〉

(4.38)

with the minus coming from A2 = −(A⊥)2 and we have used the identity

(κ.k)2

κ.pκ.q
=

1

t(1− t)
. (4.39)

We may perform the t integral analytically [137, 138]

Pa→e+e− =
g2
ae

32π2ηk

∫
dσ
dθ

θ

(
h(θ)δ2K1(h(θ)) (4.40)

+
(
h(θ)δ2 + ie2(A(φ)− A(φ′))2

)
K0 (ih(θ))

)
e
−ih(θ)−iθ δ2

2ηk

where Kn(x) is the modified Bessel function of second kind.

4.2.1 Local constant field approximation

If the intensity parameter of the background field ξ � 1 motion is generally ultra-

relativistic and the plane wave field is approximately that of a constant crossed field

in the electrons rest-frame [118, 139]. A constant crossed field has E ·B = 0. In this

regime we can approximate the field as locally constant, which amounts to represent-

ing the probability in an arbitrary plane wave by an integral over the laser phase of

the probabilities at the local field values [140, 141, 142]. To extract the local constant
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field approximation (LCFA), we expand the probability to O(θ3)

θµ = θ +
1

θ

(∫ σ+ θ
2

σ− θ
2

eA

me

dφ

)2

−
∫ σ+ θ

2

σ− θ
2

(
eA

me

)2

dφ (4.41)

' θ +
1

θ

(
e

me

∫ σ+ θ
2

σ− θ
2

(
A0 +

dA

dφ
φ

)
dφ

)2

− e2

m2
e

∫ σ+ θ
2

σ− θ
2

(
A0 +

dA

dφ
φ

)2

dφ. (4.42)

Making use of the fact that the field is approximately constant, dA/dφ ' const., we

find

θµ = θ +
1

12

e2

m2
e

(
dA

dσ

)2

θ3 (4.43)

where the + arises from A.A = −(A⊥)2 ≡ −A2. Analogously we find

(A(φ)− A(φ′))2 = −θ2 e
2

m2
e

(
dA

dσ

)2

. (4.44)

Using the standard integrals

∫ ∞
−∞

dθ

θ + iε
ei(rθ+c3θ

3) = −2πiAi1

(
r

(3c3)
1
3

)
(4.45)

and ∫ ∞
−∞

dθθei(rθ+c3θ
3) = − 2πi

(3c3)
2
3

Ai′

(
r

(3c3)
1
3

)
(4.46)

we may write the LCFA probability

P LCFA
a→e+e− =

g2
ae

4πηk

∫
dσdt

[
δ2

2
Ai1(z)− χk(σ)

√
z0Ai′(z)

]
(4.47)

with

z0 =

(
χk(σ)

χp(σ)χq(σ)

) 2
3

; z = z0 −
δ2

χk(σ)
√
z0

. (4.48)

Here χk = ηk(−ε.a′)/m where ε is the laser polarisation 4 vector εµ = (0, ε⊥, 0).
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Assuming a constant crossed field, we can write the exponent of (4.37) as

i
θ

2ηk

(
µ(θ)

t(1− t)
− δ2

)
=

iϑ

χkt(1− t)

(
1 +

ϑ2

3
− δ2t(1− t)

)
(4.49)

where we defined ϑ = χkθ/2. In the centre of mass frame the maximal momentum

fraction t = p−/k− = 1/2 and we identify a threshold value δ2 = 4.

4.2.2 Below threshold

If δ2 < 4 then 1 − δ2t(1 − t) > 0 and we call the situation below threshold if also

χk � 1. We can then evaluate

P LCFA,δ2<4
a→e+e− ∼ g2

ae

4π

me

k−
L

λC
χk

√
3

4
√

2

(
1 +

δ2

8

)− 1
2
(

1 +
χk
2

δ2

4− δ2

)
e
− 8

3χk

(
1− δ

2

4

) 3
2

. (4.50)

Intuitively the form of the exponent can be understood by energy momentum con-

servation [143], the energy of the produced electron is

Ep(τ) =
√

p2 + e2E2τ 2 +m2
e (4.51)

where τ is the time. The energy difference between the states is

∆E(τ) = Ep(τ)+Ek−p(τ)−Ek(τ) ' 2m2
e

k

[(
1 +

(eEτ)2

m2
e

)
k2

4p · (k− p)
− δ2

4

]
(4.52)

which for weak fields χk � 1 approximates to

∆E(τ) =
2m2

e

k

(
1− δ2

4

)
> 1 (4.53)

below threshold. Making use of the WKB method we find the form of the exponent

Pa→e+e− ∝ ei
∫ τ
0 ∆E(τ ′)dτ ′ = e

− 8
3χk

(
1− δ

2

4

) 3
2

(4.54)
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where we made use of the saddle-point method to evaluate the integral to the smallest

τ∗ for which ∆E(iτ∗) = 0. This time is

τ∗ =
me

e|E|

√
1− δ2

4
. (4.55)

The production probability (4.50) has the usual exponential suppression expected

for a tunnelling amplitude. The field here is too weak to bridge the gap between the

threshold pair creation energy of 2me despite the fact that the axion has a small mass

which lowers this gap. Below threshold, the latter effect is too weak and quantum

tunnelling is the only option.

4.2.3 Above threshold

If δ2 > 4 then at least some region of the t integral will fall into the 1− δ2t(1− t) < 0

regime. This leads to a modified structure of the integral which we evaluate to find

P LCFA,δ2>4
a→e+e− ∼ g2

ae

4π

me

k−
L

λC

1

2

√
δ2(δ2 − 4)− χk

√
3

8

(
4 + δ2

4−δ2

)
(
1 + δ2

8

) 1
2

cos

[
8

3χk

(
δ2

4
− 1

) 3
2

] .

(4.56)

Here we see that despite the weak background field, pair creation is no longer

exponentially suppressed because the large axion mass bridges the gap to the pair

creation threshold energy. Indeed we find a non-zero probability for decay even in

the A→ 0 limit

P LCFA,δ2>4,A=0
a→e+e− ∼ g2

ae

4π

me

∫
dt

2

√
δ2(δ2 − 4). (4.57)

4.2.4 Strong field

The last remaining part of parameter space to explore is when the fields becomes

strong, χk � 1. In this case the simplest way to get the probability is to realise that
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the arguments of the Airy functions in (4.47)

|z| = 1

χ
2
3
k

(
1

t(1− t)

) 2
3 ∣∣1− δ2t(1− t)

∣∣� 1. (4.58)

To keep the expansion consistent we must also demand δ2 � χ
2
3
k . Integration then

results in

P LCFA
a→e+e− ∼

g2
ae

4π

me

k−
L

λC

2
4
3πχ

2
3
k

3
1
3 Γ
(

1
6

)
Γ
(

7
6

) . (4.59)

To cross-check the functional dependence we once again turn to the intuitive picture

based on momentum conservation [143]. In the strong field limit (4.52) approximates

to

∆E(τ) =
2e2E2

k
τ 2 (4.60)

and we find the relevant timescale of the process via τq = ∆E−1 from the uncertainty

relation. Then, the rate is proportional to g2
ae/τq, the classical timescale of motion

does not play any role here, as the field is strong enough to provide the electrons

with enough energy over the quantum time to allow for pair production without

exponential suppression. The quantum time is found

τq =
1

∆E(τq)
⇔ τq '

(
k

e2E2

) 1
3

(4.61)

resulting in P LCFA
a→e+e− ∝ χ

2
3
k as found above.

In this limit, there is no longer the concept of a threshold for the axion mass as the

field is strong enough to provide the necessary energy for pair creation independent

of the axion’s mass.
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4.3 Constant magnetic field

Most laboratory experiments implement constant magnetic fields to reconvert axions

into detectable SM particles. A constant magnetic field in the lab frame may not

be described as a crossed field. However, in the frame of the ultrarelativistic seed-

particles k−/me � 1, the field is well approximated by a constant crossed field with

eA1(φ)→ me
k0

k−
L

λC

F0

FQCD

φ (4.62)

where the nominal frequency of the constant field is defined as κ0 = 2π/L where L

is the spatial extend of the magnetic field. The Compton wavelength is λC = 2π/me

and F0 is the amplitude of the field strength. From here we find

χk(σ)→ F0

FQCD

k−

me

;
1

ηk

∫
dσ → m

k−
L

λQ
(4.63)

and we can now use the above calculated probabilities to estimate the produced pairs.

Let us envisage an experimental set-up utilising the 17.5 GeV electron beam driv-

ing the European x-fel incident on a thin foil target to produce Bremsstrahlung similar

to the LUXE experiment [144]. We estimate the rate of axionic Bremsstrahlung for

a thin target [145]

k−
dN(k−)

dk−
∼ g2

ae

e2

X

X0

(
4

3
− 4

3

k−

p−
+

(
k−

p−

)2
)

(4.64)

from which we may find the number of regenerated axions

Nφ = NeNshots

(
g2
ae

4π

)2
X

X0

L

2γeλC

∫ 1

0

dx

x2

(
4

3
− 4

3
x+ x2

)∫ 1

0

dt
∂R

∂t

∣∣∣∣∣
χk=2γe

B
BQED

x

(4.65)

Here, X/X0 is the number of radiation lengths in the foil, γe is the relativistic gamma
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factor of the electrons and x = k−/p−. We have also defined the rate

P LCFA
a→e+e− =

g2
ae

4π

L

λC

me

k−
(4.66)

to make the gae dependence in (4.65) explicit. When applying the analysis to a

B = 5 T magnet of length L = 4.21 m as is used in the ALPs experiment at DESY

[85] we find that only a small parameter range outside of the above threshold scenario

ma > 2me can be explored. Already for axion masses ma < (2− 10−2)me the signal

is exponentially suppressed, see [2]. We conclude that such LSW type set-ups are

more suitable for di-photon regeneration like described in the previous chapters and

significant improvement in field strength would be required to make this set-up probe

significantly lower masses than ma = 2me where vacuum pair production from heavy

axions becomes possible. Nevertheless, the reduction of the threshold mass by the

field and the above calculated rate can be of interest in for example astrophysical

contexts where much stronger fields can be found around compact objects.
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This concludes the first part of the thesis about novel direct axion detection ex-

periments. There are many complementary avenues to explore. We saw in chapter 2

that replacing the static magnetic fields of traditional LSW type searches with strong

laser beams leads to interesting phenomena and ultimately results in an enhanced

sensitivity for intermediate axion masses around ma ∼ 1 eV. This type of search

scales favourably with laser energy due to the inclusion of a third, regenerating beam

on the detection side of the interposing wall. Because the axion mass can be selected

through the beam frequencies and the collision angle, this method is well suited for

cross-validation of a positive signal should it fall within the mass parameter range.

Chapter 3 introduced a complementary search strategy for very low mass axions which

utilises the newly found axion-photon parametric decay instability to induce a rota-

tion in the polarisation of the laser pulses. While currently operating laser systems

fall short on probing new parameter space, the shortcomings might be overcome in

the future. Finally, in chapter 4 the axion-photon coupling gaγγ was replaced with the

axion-electron coupling gae to investigate axion regeneration through pair creation in

strong background fields. This approach is capable of probing a distinct SM coupling

and therefore is complementary to the above two.

In the second part of the thesis the axion’s role in the early universe cosmology is

investigated. From here on on-wards the term “axion” refers only to the QCD axion

as reviewed in chapter 1.
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Chapter 5

Axion Cosmology

Multiple stages of spontaneous symmetry breaking and a low mass result in non-

trivial cosmological impact of the axion. To understand the significance we set the

scene by a short review of the relevant aspects of the “standard cosmology”. Note

that in this chapter, as well as in chapter 6, we use the term axion to mean only the

QCD axion as described in the beginning of chapter 1.

5.1 Standard ΛCDM cosmology

The standard cosmological model starts with the cosmological principle, the postu-

late that the universe as a whole is homogeneous and isotropic when viewed on large

enough scales. That is to say that while on small scales it undeniably is inhomo-

geneous, these inhomogeneities will average out on cosmological scales. One line of

argument for the cosmological principle relies on the isotropy of the cosmic microwave

background (CMB) [146, 147]. While recent studies put the standard cosmological

model in question [148, 149], in the following, we will assume it. Invoking the cosmo-

logical principle drastically simplifies the geometry, allowing us to specify the metric

of the universe in terms of two parameters only: the radius of curvature k and the

dynamical scale factor R(t). The latter may only depend on time because of the
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assumption of isotropy and homogeneity. The metric is then of Friedman-Lemaitre-

Robertson-Walker (FLRW) type

ds2 = gµνdx
µdxν = dt2−R2(t)

(
dr2

1− kr2
+ r2dΩ2

)
= R2(η)

(
dη2 − dr2

1− kr2
+ r2dΩ2

)
(5.1)

with conformal time η =
∫ t

0
dt′/R(t′). Without loss of generality we are free to

rescale the radial coordinate such that k = ±1, 0. We can see here the power of the

cosmological principle, which almost entirely fixes the geometry of the universe. We

are left with three distinct choices, the universe can either be closed (k = 1), it can

be flat (k = 0) or open k = −1. Observation seems to suggest a flat universe with

k = 0, which we adopt in the remainder of the chapter. For a review see [150, 42].

A FLRW type universe is dynamical with a single dynamical parameter, the scale

factor R(t) describing the expansion of space. What drives the expansion is the energy

content of the universe as can be seen by the Einstein equations

Rµν −
1

2
Rgµν + Λgµν = 8πGTµν (5.2)

which link the curvature of space as parametrized by the Riemann tensor Rµν to

the energy-momentum tensor Tµν . G is Newtons constant and Λ is the cosmological

constant. The energy momentum tensor is highly constrained due to the symmetries

we imposed onto the metric of space-time and for now we make the further assumption

that it only contains perfect fluids with energy density ρ and pressure P

Tµν = −Pgµν + (P + ρ)uµuν (5.3)

where uµ = δµ,0 is the fluid velocity in co-moving coordinates.

The Einstein equations (5.2) together with the FLRW metric (5.1) yield the Fried-
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mann equations for the scale factor

1

R(t)2

(
∂R(t)

∂t

)2

=
8πG

3
ρ+

Λ

3
(5.4)

and

1

R(t)

∂2R(t)

∂t2
= −4πG

3
(ρ+ 3P ) +

Λ

3
. (5.5)

The types of perfect fluids we are concerned with have an equation of state of the

form P = wρ with constant w. Relativistic matter or radiation has w = 1/3 and

non-relativistic matter w = 0. For these types of fluids solving the above equations

when Λ is negligible is simple and results in

R(t) = R0t
2

3(w+1) . (5.6)

By convention, we choose R0 such that R(t0) = 1 where t0 is today. This form of

the scale factor describes the universe well over long periods of its evolution and only

at transition periods from domination of one form of matter to the other more care

must be taken. Note that the cosmological constant Λ as measured has only recently

begun to play an appreciable role and is unimportant for our discussion of early

cosmology here. We will therefore not delve into the substantial body of literature

and debate about it and include it only in the Einstein equations for the sake of

completeness. The standard cosmological model is also called ΛCDM indicating the

two types of additional energy density included on top of the SM, cold dark matter

and the cosmological constant.

Defining the normalised expansion rate to describe the expansion of space

H(t) ≡ 1

R(t)

∂R(t)

∂t
, (5.7)

the Hubble parameter as first discovered by Hubble [151], we may recast the first
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Friedman equation (5.4) as a cosmological sum rule. We first define the critical energy

density of the universe, the amount required to make it flat, ρcrit = 3H2/8aG and

then use it to define the density parameters Ωx ≡ ρx/ρcrit. The Friedman equation

then reads

H(t)2

H(t0)2
=

ΩR(t0)

R(t)4
+

ΩM(t0)

R(t)3
+ ΩΛ(t0) (5.8)

where ΩR(t0) is the energy density of radiation today, ΩM(t0) that of matter and

ΩΛ(t0) the energy density of the cosmological constant. Thus, specifying a cosmolog-

ical model reduces to the specification of the energy density content which then fixes

the metric completely, at least as long as the cosmological principle is invoked. Note

that by construction ΩR(t0) + ΩM(t0) + ΩΛ(t0) = 1. In principle we are now ready

to specify the different density parameters and retrace the evolution of the universe,

however, one essential complication arises in our real universe due to particle inter-

actions. We must therefore first give a very brief overview of Thermodynamics in

FLRW universes [152, 153, 150].

We firstly classify particle species based on their equilibrium with the background

plasma. A particle species typically establishes equilibrium if its interaction rate is

faster than the expansion rate of the underlying spacetime Γ ≥ H−1. When this

is fulfilled, any scattering transforming the particles in question to background con-

stituents happens fast enough to be reversed before the expansion is noticeable there-

fore equilibrium may be established. In the very early universe, when temperatures

were very large and, due to the steepest dependence radiation dominated the uni-

verses evolution, the expansion rate was slow; H−1 ∝ T−2 and all species were in

equilibrium. As the temperature drops and the universe expands, particle densities

drop like n ∝ R(t)−3 and eventually become so low that the scattering rate Γ ∝ n

drops too low to maintain equilibrium. We say that the particle species has frozen

out.
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If in equilibrium at temperature T , the particles distribution will be

f(p) =
1

eE(p)/T ± 1
(5.9)

with +1 for fermions and −1 for bosons. The particles 3-momentum satisfies E(p)2 =

m2 + p2. We then find the equilibrium number density [154, 155]

ni =
gi

(2π3)

∫
fi(p)d3p =


ξ(3)
π2 giT

3 ·


1 boson

3
4

fermion

T � mi

gi
(
miT
2π

)3/2
e−mi/T T � mi

(5.10)

the equilibrium energy density

ρi =
gi

(2π3)

∫
E(p)fi(p)d3p =


π2

30
giT

4 ·


1 boson

7
8

fermion

T � mi

mini T � mi

(5.11)

and the equilibrium pressure

Pi =
gi

(2π3)

∫
p2

3E(p)
fi(p)d3p =


1
3
ρi T � mi

niT T � mi

(5.12)

as functions of the number of spin states of species i, gi and the temperature.

ξ(3) = 1.202 is the Riemann Zeta function. We will call fields with T � mi rel-

ativistic and T � mi non-relativistic since the former have energy much larger than

their mass and the latter mainly contribute their restmass to the energy density of

the universe. A particle species which starts out relativistic, so contributes to the ra-

diation density parameter ΩR(t0) may become non-relativistic during the universe’s
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evolution when the temperature drops below its mass. It then contributes to the

matter content ΩM(t0). Note that the labels radiation and matter are in this sense

equivalent to relativistic and non-relativistic, respectively. We may use these equa-

tions to determine the relation between temperature and time in the early, radiation

dominated universe

t(T ) = 2.42 s
1
√
g∗

(
T

MeV

)−2

(5.13)

with g∗ the effective number of relativistic spin degrees of freedom

g∗ =
∑
boson

gi +
7

8

∑
fermion

gi (5.14)

which itself is temperature dependent as can easily be inferred from our discussion

above. The effective degrees of freedom of the SM are calculated on the lattice [28]

which is accurate to a temperature around T ∼ 100 GeV above which we introduce

dependence onto the BSM model under investigation. Note that relation (5.13) is

only accurate away from changes to g∗ due to freeze out. In the following we will use

the terms time and temperature interchangeably.

When a species becomes non-relativistic while in equilibrium, its abundance plum-

mets which is expected because pair production of such particle is exponentially sup-

pressed at low energies. The universe as of today has vanishing radiation ΩR(t0) =

8.24× 10−5 and much larger matter content ΩM(t0) = 0.27 [156]. Due to the different

scaling, however, the early universe was radiation dominated. Utilising the sum rule

(5.8) we may infer the cosmological constant contribution ΩΛ(t0) = 0.73, dominating

the evolution of the universe today. This concludes the very basics of the standard

ΛCDM model. Having specified the energy density content we are now ready to

sketch the cosmic history of the universe to put the axion’s role into perspective.

Let us very briefly sketch the evolution of the universe as long as accurately

described by the SM below temperatures of T ∼ 100 GeV. The temperature of
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the photon bath today is T0 = 2.7 K, the temperature of the CMB. Going up in

temperature, or equivalently back in time, we encounter the period of recombination

and photon decoupling at temperatures T ∼ 10−9 GeV. At this point the temperature

is low enough that stable, neutral hydrogen atoms form and the photons no longer

have enough energy to ionise them into a plasma. Their mean free path as a result

increases drastically and they begin effectively free streaming leading to the formation

of the CMB. Going to even higher temperatures, we find the universe to be radiation

dominated above temperatures of around T10−8 GeV. At T ∼ 10−3 GeV Big Bang

Nucleosynthesis (BBN) occurred and protons and neutrons combined into heavier

nuclei setting the abundances of such heavier elements up to Lithium. As this epoch

is dominated by very well understood atomic physics and good quality data is readily

available, BBN is an excellent test ground for BSM theories [153]. Before the heavier

elements could be formed, at temperatures around T ∼ GeV, the quark-gluon plasma

hadronised and protons and neutrons formed. Going even higher we find that at

temperatures T ∼ 100 GeV the electroweak symmetry broke marking the onset of

model dependence on BSM theories.

The PQ symmetry breaking, at least for the QCD axion under current cosmolog-

ical constraints, occurred at much higher energies T = va ∼ 1012 GeV, however the

axion mass only turns on at the QCD scale around T ∼ GeV. As we will argue in

section 5.4, this is the time at which dangerous topological defects form which may

then be around during BBN. This may impose serious constraints on possible axion

models.

5.2 Horizon Problem and Inflation

The discovery of the CMB and its remarkable isotropy not only provides a seem-

ingly powerful argument for the cosmological principle, but also results in a rather
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interesting puzzle. The CMB originates in the early universe from the temperature

at which photons fell out of equilibrium with the electron-proton plasma and the

universe became transparent. As a result photons suddenly started free streaming

and we see an imprint of this in form of the CMB on the sky. But why is the CMB

so isotropic and why should we expect the universe to be FLRW in the first place?

After all, we believe the universe to be causal and hence two CMB photons arriving

on the earth from opposite directions would never have been in causal contact, yet

their temperature agrees up to δT/T = 10−5 [157].

To make this statement more precise, we first define the particle horizon as the

largest distance any signal may have travelled from the initial singularity at t = 0.

The physical size of the horizon is given by

D(t) = R(t)

∫ t

0

dt′

R(t′)
∼


3t matter dominated

2t radiation dominated

. (5.15)

At the time of recombination tr the present universe consisted of many causal patches

of size D(tr) ∼ tr. Two points p and q on the spatial hypersurface at tr are causally

connected iff they lie within each other’s past light-cone. In the FLRW universe we

live in this should only be true for two points on the sky separated by less then ∼ 2°

on the sky. We would therefore not expect the CMB to be isotropic on larger scales,

yet we observe it to be correlated over the entire sky.

One possible solution is to invoke a period of inflation, or quasi deSitter expansion.

A deSitter universe is characterised by constant Hubble parameter H(t) ≡ Hi and

has metric

ds2 = R(t)ηijdx
idxj. (5.16)

Constant expansion rate Hi implies that the scale factor R(t) ∝ eHit and the universe

expands exponentially fast. The two points p and q may now very well have been
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in causal contact because the period of exponential expansion inflates each causal

patch such that, if inflation had lasted long enough, our entire Hubble patch may

have originated within a single causal patch before inflation. We therefore have an

explanation for the remarkable homogeneity of the CMB. Achieving inflation in a

natural way appears to be rather challenging but exact models of inflation go beyond

the scope of this work. We will, in the following, simply assume that, some time after

the initial singularity, the universe underwent a period of inflation. Once inflation

ends the inflaton, the field driving inflation, decays and reheats the universe which

got super-cooled T ∝ R(t)−1 as the universe rapidly expanded. This is what we call

the big bang. Subsequently recombination happens and the CMB is formed with

causal horizons much larger than naively expected [158, 159].

5.3 Axion Dark Matter

Soon after the discovery of the PQ solution to the strong CP problem, it was re-

alised that the anomalous, spontaneously broken U(1)PQ results in a pseudo-Nambu

Goldstone, the axion. By making this light particle weakly coupled, the axion can

be made “invisible” and is a natural candidate for dark matter with an interesting

cosmological history.

At high scales the complex PQ field Φ has a Higgs-like Lagrangian density which

for the purposes of this chapter may be parametrized as

La =
1

2

(
∂µΦ†

)
(∂µΦ)− λa

4

(
Φ†Φ− v2

Φ

)2
. (5.17)

Below a temperature T ∼ va the vacuum expectation value of the field changes from

〈Φ〉 = 0 to |〈Φ〉| = va thereby spontaneously breaking the U(1)PQ. The axion field is

the Nambu Goldstone boson of this broken symmetry living on the circle of radius va
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in field space

Φ = vae
i
a(x)
va (5.18)

where we ignore radial fluctuations, justified by their large mass. Hence the complex

PQ field quickly relaxes to its radial minimum while the axion field stays without

potential until the QCD quark condensate forms at much lower temperature, as de-

scribed in chapter 1. Hence without a potential the initial value for the radial axion

field is chosen at random. Regions of the universe which are in causal contact at the

moment of U(1)PQ breaking will end up choosing the same initial value effectively

breaking the universe up into causal regions with randomly chosen axion field value.

The equations of motion of the axion field in a FLRW universe can then easily be

obtained [(
∂

∂t

)2

+ 3H(t)
∂

∂t
− 1

R(t)2
∇2

]
a(x) + V ′(a(x)) = 0 (5.19)

where for later convenience we have already included a potential V (a). Taking the

simplest axion model this potential is V = 0 above the QCD scale, however the

introduction of additional BSM fields may in principle lead to a non-zero potential

even above that scale.

There are now two qualitatively different scenarios, the PQ symmetry can either

break before the period of inflation or after.

5.3.1 Pre-inflational PQ breaking

In the former case, the axion is homogenised over vast distances and we may drop the

term in (5.19) proportional to ∇2. We will make the assumption that the universe

is radiation dominated, an assumption which is backed by the relative scaling of

radiation and matter discussed in the previous sections. We may then find the axion
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field satisfying the equations of motion as

a(t) = a0 + a1/2
1√
t

(5.20)

with a0 and a1/2 some constants. Hence, the axion field evolves towards a constant

as the universe expands, the Hubble drag term 3H(t)∂ta(x) freezes the axion field.

Once the temperature drops below the QCD scale, 〈q̄q〉 6= 0 and the axion acquires

a potential (1.18). The Hubble drag now acts against the potential gradient which

eventually will come to dominate and cause the axion field to start oscillating coher-

ently at t1. This happens when 3H(t1) ∼ ma, which defines t1. Including the full

potential (1.18) requires numerical solution of the equation of motion (5.19) however,

to illustrate the physics we make the assumption that the initial axion field is small

such that we may approximate sin (a/va) ∼ a/va and solve the equation explicitly

a(t) = αfPQ

(
t1
t

) 3
4

cos

(∫ t

t1

(
m2
a +

3

16t2

)
dt′
)
. (5.21)

αfPQ is the initial, randomly chosen axion field value, α is what is called the missalign-

ment angle in the literature. The number density of axions is then

na(t) =
1

2
ma|a(x)|2 =

1

2
ma(αfPQ)2

(
R(t1)

R(t)

)3

. (5.22)

Note that the number of axions per co-moving volume is conserved. Technically this

is only true when the axion mass has reached its zero temperature value as it itself is

temperature dependent, however the dependence is steep and we will therefore make

the assumption that the mass switches on abruptly [27, 28].

The energy density in axions is then readily found

ρa = mana(t1)

(
R(t1)

R(t)

)3

. (5.23)
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Two important points should be addressed. First, the collective axions do indeed

scale like matter, as is required from a suitable DM candidate. Secondly, the amount

of energy density depends on the initial misalignment angle and is therefore not

precisely calculable. This unfortunately will not be resolved for U(1)PQ breaking

before inflation, however we may still get a reasonable estimate of the DM contribution

of axions by adopting the natural assumption that α ∼ O(1). Then

Ωa ∼ 0.15

(
fPQ

1012 GeV−1

) 7
6
(

0.7

h

)2

α2 (5.24)

with h parametrizing the present day Hubble constant H0 = h100 km/s Mpc.

5.3.2 Post-inflation PQ breaking

If inflation happens before PQ symmetry breaking, the situation changes substan-

tially. We no longer have the axion field homogenised over large distances and there-

fore on top of the zero momentum mode of the section above there are higher mo-

mentum modes contributing. To give an estimate equivalent to above, we perform a

Fourier analysis of the equation of motion prior to the axion field acquiring mass

((
∂

∂t

)2

+
3

2t

∂

∂t
+

k2

R(t)2

)
ã(k, t) = 0. (5.25)

The wavelength of the axion modes 2πR(t)/k divides the spectrum into sub-horizon

modes fitting within the causal horizon and the super-horizon modes stretching be-

yond. The zero momentum solution k = 0 is identical to above with the exception

that the expansion of the universe brings more and more Hubble patches into causal

contact which effectively replaces the arbitrary initial misalignment angle with an

average over many Hubble volumes. Therefore, the contribution of the axion field’s

coherent oscillation to the energy density of the universe is fully calculable in the
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post-inflation scenario. Solutions can be found for the higher momentum cases

a(k, t) =


a0(k) + a1/2(k) 1√

t
super-horizon

αfPQ
R(tPQ)

R(t)
cos
(∫

k2

R(t′)2dt
′
)

sub-horizon

(5.26)

indicating that all super-horizon modes evolve towards a momentum dependent con-

stant, they are frozen. The sub-horizon modes have energy ω2 ∼ k2/R(t)2 and there-

fore the number density of axions in higher momentum modes per co-moving volume

is conserved mode by mode. Their contribution to the energy density is found to be

ρa =
1

2
m2
af

2
PQ(1 +N2

DW)

(
R(t1)

R(t)

)3

(5.27)

where the first term comes from the zero momentum modes and the second term

from the higher momentum ones. We also made use of the fact that the axions will

be non-relativistic after t1 to calculate the contribution today

Ωa ∼ 0.15
(
1 +N2

DW

)( fPQ

1012 GeV−1

) 7
6
(

0.7

h

)2

. (5.28)

An additional complication, however, arises in the post-inflation PQ breaking

scenario. Topological defects may form (see section 5.4) and their contribution must

be taken into account. There is however debate over the contribution arising from

axion strings and domain walls. To estimate the contribution coming from axion

strings, we must first understand the spectrum of axions radiated off such strings

when they collapse. There are two basic arguments debated in the literature: the

string can either oscillate many times at a frequency set by the size of the string

loop L before collapsing, in which case the spectrum is concentrated around 2π/L

[160, 161, 162]. Alternatively, the string collapses almost instantaneously, resulting

in a spectrum dE/dk ∝ k−1 with cut-offs set by the loop size and 2πva [163, 164].
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Recent computer simulations seem to support the former scenario [165]. Another

contribution stems from axion domain walls. Again the spectrum is difficult to obtain

and computer simulations are challenging because of the large separation of scales

between the walls thickness m−1
a and the Hubble size H−1 [166]. We will conclude

by mentioning that the question of topological defect decay to the axion abundance

remains a matter of debate [167]. By specifying a mechanism of decay, we hope to

shed some light onto this question in the future.

In this most simple set-up we may now find a bound on the axion decay constant

fPQ by demanding its contribution not overclose the universe; fPQ . 1012 GeV. There

is a large body of literature which extends this axion window. We will only mention

[168, 169], which aims to find an explanation for relaxing the initial misalignment

angle to small values by a mechanism similar to our approach discussed in section

5.5.

5.4 Topological defects

Once U(1)PQ breaks the universe consists of causal patches in which the PQ field

ran down the wine bottle potential in a random angular direction. Because of the

topology of the vacuum manifold there exist closed paths in real space which map

onto a non-trivial path in field space, a path which winds around the circle n times,

see figure 5.1. Such field configuration can arise whenever the vacuum manifold is

connected but not simply connected. The field in real space must then have a region

within the closed path where a = 0, thus leaving the vacuum manifold [170]. This

field configuration is known as a cosmic string because the region of space in which

the field is not in vacuum shrinks to a quite thin string. Its thickness is O(m−1
a ) and

its effective mass is set by the string tension µs = πv2
a ln (va/H) where we used the

cut-off H−1, the effective inter-string distance [171, 172]. It has topological charge
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Figure 5.1: Cartoon of cosmic string production. On the left-hand side a path in

real space, depicted in orange, is mapped onto a loop in field space, shown on the

left. The path in field space is non-trivial, it cannot be smoothly deformed to a point

without leaving the vacuum manifold, hence somewhere within the loop in real space

lies a cosmic string where the field lies on top of the central peak of the potential.

given by the winding number, the number of times a closed loop around the string in

real space winds around the circle in field space. This mechanism of production was

discovered by Kibble and Zureck [170, 173, 174, 175].

It is believed that the interactions between axion strings is quite effective and

rather quickly the network of strings is in the scaling regime where on average one

has a single string per causal horizon. Two strings which encounter each other can

either annihilate if their topological charges are equal and opposite or they cut each

other up thereby eventually one one string remains per Hubble volume. In the scaling

regime the energy density in strings scales like

ρstring = µsH(t)2. (5.29)

Once the universe cools below the QCD scale, each of those cosmic axion strings
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is attached to NDW domain walls [176]. Domain walls are a field configuration arising

when the vacuum manifold consists of disconnected manifolds therefore a continuous

path in real space may map onto a path in field space interpolating between two

vacuum states - (in our case the vacuum “manifold” is simply a set of points, however

the following argument still applies.) The field then necessarily leaves the vacuum

in between the two end points of the path. The domain wall is usually thin, simply

because a thick wall would come with a large energy density whereever the field is not

in its vacuum state. The thickness is set by the scale in the problem, the axion mass

m−1
a [176]. Each cosmic string must now be connected to NDW DW as the field does a

full 2π change around the string and therefore passes through all NDW vacuum states

with DW interpolating between them. The domain walls effective mass is given by

the wall tension σDW = 8.97maf
2
PQ [177, 27].

The string wall network behaves qualitatively different if NDW = 1 or NDW > 1. In

the former case, for topological reasons, each wall connects a string with its anti-string

and the wall tension pulls the two together. Once they come close they annihilate.

Thus, the string wall network with NDW = 1 is unstable and annihilates almost

instantly. This changes once each string is attached to more than 1 DW and the

network is in principle stable. It enters a scaling regime dominated by the domain

wall energy density and contributes

ρDW = ξσDWH(t) (5.30)

to the universes energy density where ξ ∼ O(1) is the number of domain walls per

Hubble patch during the scaling regime. The slow scaling of DW energy density

makes it dominate the energy density of the universe quite quickly

td ≤
3

32πGσDW

. (5.31)
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A universe dominated by domain walls undergoes accelerated expansion

∂R(t)

∂t
=

√
8πG

3
ρDWR(t) → R(t) ∝ t2 (5.32)

and is inconsistent with observation. We therefore must find a mechanism to collapse

the network before domination [178]. This is known as the axion domain wall problem

and chapter 6 will be dedicated to it. An excellent review can be found in [179].

5.5 Bias

Let us define a second type of horizon, the Hubble horizon. It divides an expanding

universe into a region in which particles are moving slower than the speed of light

and one where they move faster relative to an observer. The latter happens because

of the expansion of space and is not a violation of relativity. During inflation the

comoving Hubble horizon shrinks and, as a result, large scales transition from being

within the Hubble patch to lying outside of it, we say those scales exit the horizon.

Modes which have exited the horizon are frozen by causality. This division suggests

a natural basis to expand fields obeying the equation of motion

∂2a

∂t2
− ∇

2a

e2Hit
+ 3Hi

∂a

∂t
+
∂V

∂a
= 0 (5.33)

as a mode expansion for sub-horizon modes and a course grained fluctuation field χ

for super horizon modes around a mean over many horizon sizes χ̄ [180, 181, 182]

a(x, t) =

∫
Θ
(
p− εHie

Hit
) [
âpap(t)eip·x + h.c.

]
+ χ(x, t)− χ̄. (5.34)
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The fluctuation field obeys a Langevin type equation

∂a

∂t
=

1

3Hi

(
∇2a

e2Hit
− ∂V

∂a

)
+ η(x, t) (5.35)

with η(x, t) acting as white noise sourced by the modes leaving the horizon, essentially

causing the averaged field to random walk. The Langevin type equation can be

translated into a Fokker-Planck equation for the normalized probability distribution

of the field P (χ, χ̄, t)

∂P (χ, χ̄, t)

∂t
=

∂

∂χ

(
1

3Hi

∂V

∂χ
P (χ, χ̄, t)

)
+
H3
i

8π2

∂2P (χ, χ̄, t)

∂χ2
. (5.36)

The solution to this equation may be calculated as an infinite series [183]

P (χ, χ̄, t) = exp

(
− 4π2

3H4
i

V (χ)

) ∞∑
n=0

anΦn(χ)e−Λn(t−ti) (5.37)

with Φn(χ) the eigenfunctions of

−1

2

∂2Φn

∂χ2
+

1

2

((
4π2

3H4
i

∂V

∂χ

)2

− 4π2

3H4
i

∂2V

∂χ2

)
Φn =

4π2Λn

H3
i

Φn (5.38)

and the coefficients an are given by the initial condition at t = ti as

an =

∫
P (χ, χ̄, t)Φn(χ) exp

(
4π2

3H4
i

∂V

∂χ

)
dχ. (5.39)

The distribution (5.37) eventually, for late enough times, evolves towards the static

limit

P (χ̄) =
exp

(
− 4π2

3H4
i
V (χ̄)

)
∫

exp
(
− 4π2

3H4
i
V (χ′)

)
dχ′

(5.40)

the timescale of this evolution depends on the details of the potential. Each individual

Hubble patch starts out with a randomly chosen average axion field drawn from
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the distribution (5.40) and, as the universe expands and more and more scales exit

the horizon, the distribution function for said Hubble patch becomes Gaussian with

increasing width. We are effectively neglecting the effects of the potential for the

random walk of each individual section of space. The solution of (5.36) in this limit

is then

P (χ, χ̄, t)V=0 =

√
8π3

H3
i t
e
− 2π2

H3
i
t
(χ−χ̄)2

(5.41)

which is indeed a Gaussian with growing width

∆χ =
H3
i t

4π2
. (5.42)

The effect of the potential enters into the average over many patches drawn each

drawn from distributions (5.41). Since each Random walk is slightly biased towards

the vacuum states of the potential, eventually the distribution of the average value

over many Hubble patches accumulates around the vacuum states [182] and evolves

towards (5.40). We thus end up with a universe divided into Hubble patches, each

with a mean axion value drawn from (5.41) where the mean field over many patches χ̄

satisfies (5.40). Thus, when the temperature of the universe drops below the potential

barrier between the different vacuum states and DW form, the field is no longer equally

likely to be anywhere in field space. Adopting for a second NDW = 2 we may then

define a bias in the population of one vacuum over the other as

b(χ̄) =

∫
f(χ)P (χ, χ̄, t)V=0dχ (5.43)

where f(χ) is ±1 depending on which vacuum state the field ends up in. Inflation

gives access only to the probability distribution of χ̄, hence it is natural to translate
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this into a probability of finding a bias [184]

P (|b| < x) =
∑

χ̄; b=b(χ̄)

∫ b(χ̄)=x

b(χ̄)=−x
P (χ̄)dχ̄. (5.44)

Having established a statistical bias in the vacuum state populations, the co-moving

DW network energy density decays exponentially like [185, 186, 187, 188]

ρDW ∝
σDW

η
e
−|b|2

(
η

ηform

)3

(5.45)

where ηform is the conformal time at which the DW are formed. This can be under-

stood intuitively when thinking about the actual physical implication of a statistical

bias. In a 3 + 1 dimensional universe, the introduction of a large bias in the distri-

bution results in a universe with one percolating domain in the vacuum with higher

occupation interrupted by bubbles of the other vacuum. The threshold probability

bias to get only one vacuum percolating is p = 0.3. The size of those bubbles will

roughly be proportional to the horizon size at formation and a function of the bias

with which they are produced. Hence, when the scale of the universe becomes large

enough for the bubbles to be contained within one causal patch, they will shrink and

collapse due to the large surface tension. Note that, in our case, it is not false vacuum

as the two states are still degenerate and we have not specified which of the NDW

vacuum states will eventually be chosen and indeed this mechanism chooses one at

random. The situation for a small statistical bias is slightly different in that both

vacuum states initially percolate, but eventually the disfavoured one will evolve into

pockets which then again collapse due to their surface tension [185].
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Chapter 6

Biased Axion Domain walls

The domain wall problem, described in section 5.4, constitutes a significant cosmolog-

ical problem for many axion models. Any model with NDW > 1 quarks charged under

U(1)PQ whose PQ symmetry breaking takes place after inflation (or with sufficiently

high reheat temperature) leads to cosmological disaster i.e. the universe undergoes

rapid expansion driven by domain walls and is incompatible with observation. While

recognised since work by Sikivie in the 1980’s [176], the domain wall problem remains

an interesting problem to study and there have been many attempts at its solution.

The trivial solution, rather than solving the problem, circumnavigates it by having

a high energy scale at which U(1)PQ spontaneously breaks, well above the scale of

inflation. We will call this scenario the pre inflational PQ breaking. In this case our

universe started off well within a Hubble patch at the scale of PQ breaking and any

domain walls are trivially inflated away. That is to say that the patches of vacuum are

much larger than our current horizon and play no role in the cosmological evolution

after inflation. We conclude that in case the PQ symmetry spontaneously breaks

before inflation and is not restored during the period of reheating, there exists no

axion domain wall problem. Once we change the succession of these cosmological

events however, the domain wall problem returns. For sufficiently high scale inflation
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the domain wall problem even exists in the pre inflation scenario because the deSitter

temperature Tds ∼ Hi/2π causes fluctuations in the PQ field to generate domain walls

at the horizon scale [189]. This mechanism is efficient for fPQ . Tds.

Assuming for now that U(1)PQ breaks after inflation, we are faced with the task

to find a solution to the domain wall problem. As was discussed in chapter 5 the

domain wall network is only stable when NDW > 1. Technically, we could assume the

problem to be solved if we limit ourselves to axion models in which there is only a

single quark charged under U(1)PQ. While not suffering from cosmological disaster,

it is unsatisfying to exclude any model with NDW 6= 1. Note however that there is a

case for doing so in a related but different context [190]. The argument there is that

a deSitter vacuum is not consistent in a quantum theory and therefore there must not

be any positive energy vacuum states [191, 192, 193]. Applied to the axion potential

this excludes any NDW 6= 1 theory as higher dimensional operators will always break

the degeneracy between the vacuum states and therefore leave positive energy vacuum

states or deSitter vacua. There is still room for NDW 6= 1 axion UV completions if we

find a mechanism under which the true vacuum is chosen fast enough, another way

of saying that the domain walls must disappear fast enough.

6.1 Explicit PQ breaking

If we go beyond NDW = 1 (e.g. the DFSZ axion has NDW = 6), the traditional

solution to the domain wall problem as discovered by Sikivie [176], involves a small

explicit breaking of the PQ symmetry. This is accomplished by adding a term

δV = −ξ
(
φe−iδ + h.c.

)
(6.1)

to the axion potential (1.18). The usual argument to get around the unnaturalness

of adding such term by hand is to invoke higher order operators. These operators are
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suppressed by the Planck scale Mpl ∼ 1019 GeV and lead to terms [194]

δVpl =
|g| eiδ

M2m+n−4
pl

|φ|2m φn + h.c.+ c. (6.2)

The constant c is chosen such that minV = 0 and a great deal of fine tuning is

necessary to avoid having large vacuum energy. The coupling can in general be

complex introducing a phase δ with coupling strength |g|. The above term stems

from a 2m+n dimensional operator with a U(1)PQ charge n; Under U(1)PQ the |φ|2m

stays invariant and φn changes by n. The whole operator is suppressed by M2m+n−4
pl

to guarantee its sub-dominance to lower order operators and save the perturbative

expansion. We see that the inclusion of this term has indeed a similar effect like

the originally proposed (6.1) and leads to a potential after spontaneous symmetry

breaking of U(1)PQ with φ acquiring a vev va = NDWfPQ

δVpl = |g|M2
pl

(
fPQ√
2Mpl

)2m+n−2

f 2
PQ (1− cos (na+ δ)) (6.3)

such that the axion field lives in the combined potential

V (a) = m2
af

2
PQ (1− cos(NDWa)) + |g|M2

pl

(
fPQ√
2Mpl

)2m+n−2

f 2
PQ (1− cos (na+ δ)) .

(6.4)

Interestingly, there are tight constraints on such operators which bound them from

above and below.

Explicitly breaking U(1)PQ is necessarily bounded from above because in the limit

of very strong breaking there was no U(1)PQ in the first place therefore reintroducing

the original strong CP problem. To avoid spoiling the PQ solution, we cannot have

arbitrarily strong breaking. This is related to the axion quality problem. We can

find this upper bound from the potential above. We consider the strong CP problem

solved when the axion field’s vacuum expectation value is smaller than the current
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limit on the QCD vacuum angle θ < 10−10. We may find the vev as V (a) = 0 and

obtain

〈θ〉 =
|g|M2

pl

(
fPQ√
2Mpl

)2m+n−2
n
N

sin δ

m2
a + |g|M2

pl

(
fPQ√
2Mpl

)2m+n−2

n2 cos δ
∼ |g|

(
Mpl

ma

)2(
fPQ√
2Mpl

)2m+n−2
n

N
sin δ

(6.5)

where we made use of the fact that the potential generated by the higher order

operators is much smaller than the QCD potential. It is natural to assume the phase

introduced from the coupling to be δ ∼ O(1). Thence

|g|
(

fPQ√
2Mpl

)2m+n
n

NDW

< 1.6× 10−91 (6.6)

where we made use of the equivalence between axion mass ma and PQ scale fPQ for

the QCD axion (1.19).

To find a lower bound on the explicit PQ breaking we look at the DW problem.

After appearance it takes only a short time before the walls dominate the universe’s

energy density, leading to accelerated expansion (5.32), incompatible with observa-

tion. Therefore, they must decay quickly enough and never come to dominate. We

can set a conservative upper bound on the timescale of decay be requiring the domain

walls to disappear at the latest when big bang nucleosynthesis (bbn) starts around

tbbn = 1 s. Having a small explicit breaking lifts the degeneracy of the NDW vacuum

states leaving, in general, only one true vacuum and NDW− 1 false ones. A bubble of

false vacuum surrounded by the true vacuum experiences a pressure causing the do-

main wall shell to shrink. This pressure arises due to the difference in energy density.

The domain wall contributes

EDW = σDWR
2 (6.7)
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for a bubble of size R and the energy density of the contained volume is

Evol = δV R3. (6.8)

The work done by the energy difference between the volume of false vacuum and the

true vacuum at V = 0 is ∆E ∼ δV R3. Then we may find the force acting on the DW

FDW = δV R2 and hence its acceleration

a =
δV

σDW

' 2.8× 1058 GeV |g|
(

fPQ√
2Mpl

)2m+n−1

(6.9)

where again we used (1.19) and estimated the potential difference δV to be the maxi-

mum of the potential generated by higher order operators. The true difference will be

slightly smaller. This, however, does not greatly affect the argument made here. We

can estimate the time of collapse to be roughly when the acceleration is fast enough

to accelerate the DW close to the speed of light thereby overcoming the expansion of

space leading to collapse. This leads to the requirement

|g|
(

fPQ√
2Mpl

)2m+n−1

≥ 1.2× 10−83. (6.10)

We may combine (6.6) and (6.10) to constrain the dimension of Planck operators

which would solve the DW problem while not spoiling the PQ solution

8.5× 10−91

(
fPQ

1012 GeV

)
< |g|

(
fPQ√
2Mpl

)2m+n

< 1.6× 10−91NDW

n
. (6.11)

The window for solving both problems is very narrow indeed. There does only exist

a solution to the above equation if

fPQ < 1.9× 1011 GeV
NDW

n
(6.12)
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which sets a convenient upper bound on the PQ scale. This bound is, assuming

NDW/n ∼ O(1) which seems natural, close to the upper bound coming from cosmol-

ogy, above which axion DM overcloses the universe. Having done this rough estimate

we may use the right inequality of (6.11) to find

2m+ n < 1 +
log (1.2× 10−83)

log
(

fPQ√
2Mpl

) (6.13)

as an upper bound on the dimension of Planck-suppressed operators. The left in-

equality leads, after minimal algebra, to

2m+ n >
log
(
1.6× 10−91NDW

n

)
log
(

fPQ√
2Mpl

) . (6.14)

Figure 6.1 shows the available parameter space for the operator dimension as a func-

tion of fPQ for NDW/n ∼ O(1). A larger value makes the problem worse while a

lower value is marginally better. We would generally not expect this value to be very

far from 1. While for reasonable fPQ there do exist operator dimensions for which

both aforementioned problems are solved the solution is very unnatural. To leave

the PQ solution to the strong CP problem unspoiled we must suppress lower order

operators. However, in order to still have fast enough decay we must basically guar-

antee that the lowest dimensional operator which is allowed within the PQ solution

does exist. We therefore would be tasked with having to explain how to suppress

all Planck operators up to the specific order we require. We therefore are forced to

conclude that explicitly breaking U(1)PQ to get around the domain wall problem is

unsatisfying. Additionally, improvement in neutron EDM measurements will tighten

the constraints eventually closing the parameter space completely.
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Figure 6.1: The plot shows the dimension of the Planck suppressed higher order

operators as a function of PQ scale fPQ. The grey region is the allowed region based

on the inequalities (6.13) and (6.14) derived in the main text. The plot ends at

fPQ ∼ 1011 GeVNDW/n above which there is no parameter space available.

6.2 Statistical bias

There are a number of other attempts at solving the domain wall problem and while

we will mention some later on in the chapter, the list provided here is not exhaustive.

We mentioned above that inflation can, provided that PQ breaks before, solve the

problem. It turns out that there is another possible mechanism with which one can

hope to solve the problem namely a ’bias’ generated by light field dynamics during

inflation as described in section 5.5. This was first proposed for Z2 symmetries [186,

187, 184, 188] and shown to lead to exponential decay of the domain wall network.

We will show how the mechanism applies to the axion potential in the rest of the

chapter.

The set-up for statistical bias generation in the distribution of vacuum occupation

111



throughout the universe involves a few key features, as described in the introduction.

The field in question must be light compared to the deSitter temperature and have

a potential. The former ensures that fluctuations in the field are generated and

the latter allows for accumulation of non-Gaussianity. Naturally the axion is light

and therefore trivially fulfils the first requirement, the potential however limits the

applicability as the axion only gets mass below the QCD scale ΛQCD. This could in

principle be circumvented with the addition of other fields coupling the the axion and

we will revisit this case at the end of the chapter. For now, we focus on the pure

axion case.

Suppose the universe is in a deSitter stage characterised by a approximately con-

stant Hubble parameter Hi and with metric given by

ds2 = a(t)ηijdx
idxj. (6.15)

The factor a(t) is the scale factor of the universe and ηij is the diagonal Minkowski

metric with negative signature. Constant Hubble parameter by definition leads to

exponential expansion, a(t) ∝ exp(Hit). The axion field’s equation of motion was

already established in chapter 5 but is repeated for convenience

[(
∂

∂t

)2

+ 3Hi
∂

∂t
− 1

a(t)2
∇2

]
a(x) + V ′ (a(x)) = 0. (6.16)

Following the same procedure as in section 5.5 we may divide the axion field into

sub-horizon modes and a course grained fluctuation field χ of super-horizon modes

around a mean value χ̄ which is obtained by averaging over many horizon sizes. In full

analogy to the discussion before we find a Fokker-Planck equation for the normalized

probability distribution of the field P (χ, χ̄, t)

∂P (χ, χ̄, t)

∂t
=

∂

∂χ

(
1

Hi

∂V

∂χ
P (χ, χ̄, t)

)
+
H3
i

8π2

∂2P (χ, χ̄, t)

∂χ2
(6.17)
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whose solution is given by (5.37). For late times t → ∞ the distribution evolves

towards a static solution and thus we take for the average field

Pstatic(χ̄) = exp

(
− 4π2

3H4
i

V (χ̄)

)
/

∫
exp

(
− 4π2

3H4
i

V (χ)

)
dχ. (6.18)

To make further progress we must specify the potential of our axion field. For the

pure axion case without addition of other degrees of freedom to the SM the axion’s

potential is flat down to the scale of QCD and then acquires the usual QCD potential

(1.18) which, for now, we approximate, as is customary, by

V (a(x)) = m2
af

2
PQ

(
1− cos

(
NDW

a(x)

fPQ

))
. (6.19)

With this form of the potential, the above equations can be solved analytically. Start-

ing with equation (5.38) we find a reduction to a Schrödinger type equation when

dropping terms of order (ma/Hi)
4. Those terms are necessarily small by our initial

assumption of negligible mass compared to the Hubble scale. The resulting equation

∂2Φn

∂χ2
+

[
4π2

3

N2
DWm

2
a

H4
i

cos

(
NDW

χ

fPQ

)
+

8π2Λn

H3
i

]
Φn = 0 (6.20)

is solved by a Mathieu Function

Φn ∝MC

(
32π2f 2

PQ

N2
DWH

3
i

Λn,
8π2f 2

PQm
2
a

3H4
i

, NDW
χ

2fPQ

)
≈ cos

√8π2f 2
PQ

H3
i

Λn
χ

fPQ

 (6.21)

where we used the smallness of (ma/Hi)
2 to approximate the function as a cos. Having

made this approximation it is a trivial task to find the eigenvalues

Λn ≈
n2

8π2

(
Hi

fPQ

)2

Hi. (6.22)
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We thus find that the static solution (6.18) is reached after

Nefold ≥ 8π2

(
fPQ

Hi

)2

(6.23)

when the first temporal correction in the sum (5.37) is exponentially suppressed. We

begin to see a problem namely, the required number of e-folds is very large if fPQ � Hi

and we will show below that in fact in this case we recover the pre-inflational PQ

breaking scenario. In the opposite limit, while the static solution is reached almost

instantly, we run into problems with the axion potential. The deSitter temperature

in this scenario induces fluctuations in the PQ field of order Hi/2π larger than the

central potential hill of the wine bottle potential. We therefore recover 〈Φ〉 ∼ 0 and

PQ symmetry is restored in this sense. The situation gets even worse when looking at

the axion potential, the generation of which relies on the formation of quark bilinears.

Those can only form when the timescale of QCD interactions Λ−1
QCD is fast enough to

overcome the universes expansion H−1
i . Another way of saying is that QCD should

not see the curvature of space, ΛQCD > Hi. This is obviously a tight constraint and

impossible to fulfil when Hi � fPQ.

We must therefore conclude that introduction of a statistical bias into the proba-

bility distribution, at least in the pure axion case, is limited to Hi ≤ ΛQCD � fPQ in

which case the static limit is only approached after an enormous number of e-folds,

effectively requiring eternal inflation. Assuming inflation lasts sufficiently long, we

may calculate a measure for the DW size via the two point correlation function of the

axion field [183]. Points which are correlated are in causal contact and in the same

vacuum state.

The correlation length diverges for large Nefold which simply means that in this

limit the domain walls are inflated away and the problem is circumvented. This

is equivalent to the pre-inflational PQ breaking and probably not very surprising

114



when thinking about the large separation of scales involved. PQ breaks at a scale

of fPQ and the axion field rolls down the potential hill. The universe continues to

expand with the deSitter fluctuations, making the axion field random walk around

the potential resulting in an effectively flat distribution after ∼ fPQ/Hi steps. The

temperature during inflation evolves like T ∝ a(t)−1, thus it takes on the order of

ln(fPQ/ΛQCD) ∼ 30 e-folds to drop down to the QCD scale. After such few e-folds the

random walk process has not taken the field very far away from its initial point but

the size of previously causally connected regions already hugely increased. Waiting

even longer until the static distribution is reached or the random walk takes the field

away from its initial point by an appreciable amount will take much longer and make

the domain size exponentially bigger. Hence, the problem here is really one of scales.

What worked well for a Z2 symmetry fails with the introduction of a compact field

with large radius compared to the random walk step size.

We are continuing investigations of the domain wall problem, for example the

inclusion of additional degrees of freedom coupling to the axion field can change the

potential and might alter the conclusions.

6.3 Future direction - monopole mass

We are currently investigating the inclusion of a magnetic monopole of some dark

gauge group. For example a dark SUD(3) which is broken to a dark UD
em(1) can

result in t’Hooft-Polyakov monopoles [195, 196]. In the absence of charged particles,

the Lagrangian describing the coupling of the axion to this dark version of electro-

magnetism is

L ⊃ 1

2
(∂µa) (∂µa)− 1

4
FµνF

µν +
e2

32π2

a

va
FµνF̃

µν , (6.24)
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analogous to the axion’s coupling to SM electrodynamics described in (1.20). Here, e

is the dark electric charge of the dark UD
em(1). For convenience we will in the following

omit the word “dark” when referring to electric and magnetic quantities.

The presence of magnetic monopoles results in a potential for the axion field

through the Witten effect [197]. A theory with a dark electron of charge e and a

monopole of magnetic charge g must satisfy the Dirac quantisation condition [198]

eg = 2πm, m ∈ N. (6.25)

If the theory features two or more dyons, the condition is modified to [199, 200, 201]

q1g2 − q2g1 = 2πm. (6.26)

Gauss’s law for the electric field including the axion coupling reads

∇ ·
(

E +
e2

8π2

a

va
B

)
= 0. (6.27)

Here va = NDWfPQ is the vacuum expectation value of the PQ field. A magnetic

monopole of charge g produces a coulomb field B = gr/r3 and, in the presence of a

non-zero axion field, it also produces an electric field

E = − e2

8π2

a

va
B = − e

2g

8π2

a

va

r

r3
. (6.28)

Be Λ(x) a gauge transformation of the electromagnetic potential Aµ then the action

of the generator of the gauge transformation must be trivial and we find

Qλ =

∫
d3x

δL
δ∂0Aµ

δAµ =

∫
d3x

(
E +

e2

8π2

a

va
B

)
· ∇Λ(x) (6.29)
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which, for exp(iQΛ) ≡ 1, implies the Witten condition [197]

q

e
+

eg

8π2

a

va
= n ∈ N. (6.30)

Hence, in the presence of an axion field, a t’Hooft-Polyakov magnetic monopole with

charge g = 4π/e becomes a dyon with axion field dependent charge

q = ne− 1

2π

a

va
. (6.31)

We thus see that an axion field will be repelled by the monopole because of the

large cost in electrostatic field energy

EE ≡
1

2

∫
E2d3x =

∫
e4g2

32π3r2

(
a

va

)2

dr (6.32)

where we assumed radial symmetry for the axion field a(r). The energy in the com-

bined axion-monopole system for a single monopole in a static axion background is

then

V =
1

2

∫ (
(∇a)2 + E2

)
d3x = va

e2g

4π

∫ r0
rM

0

((
∂xa

va

)2

+

(
a

va

)2
)
dx (6.33)

with r0 = e2g/8π2va and rM the size of the monopole. The axion field far from

the monopole must approach the randomly chosen angle θ0 and should minimise the

potential energy (6.33). This is fulfilled for

a

va
= θ0 exp

[
−r0

r

]
, → V0 = va

e2g

4π
θ2

0

(
1− exp

[
−2

r0

rM

])
. (6.34)

In the limit of a large monopole size rM →∞ we recover the self energy of a charged

sphere of size rM . If there are light fermions charged under the dark UD(1)em , they

screen the charge of the monopole to a size rM ∼ m−1
e where me is the mass of the
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lightest charged fermion [202, 203].

Assuming a number density of monopoles and antimonopoles nM = nM+ + nM−

the axion ground state energy (6.34) in a plasma of monopoles is

U ' nMV0 ∼
e4g2

16π3

nM
rMv2

a

(vaθ0)2 (6.35)

which is equivalent to the axion having a monopole induced mass [204]

(mM
a )2 ≡ e4g2

8π3

nM
rMv2

a

. (6.36)

Note that if the monopoles were SM magnetic monopoles instead of originating from

some dark sector and the lightest quark was massless, then mM
a ∝ m

1/2
q → 0 as is

expected since in this case the θ vacua of QCD are equivalent and no longer physical

observables.

The axion field vacuum state of this potential will be such that the dyon’s electric

charge is cancelled, hence

q = ne− 1

2π

a

va
≡ 0 ⇔ a

va
= 2πne. (6.37)

This corresponds to a single axion field value and therefore solves the domain wall

problem. The axion acquires mass well before the QCD transition and gets a poten-

tial with effective domain wall number NDW = 1. Once this mass is cosmologically

important, the axion field accumulates around this single vacuum state. Therefore,

even if the monopoles then disappear, for example via a Higgs mechanism similar

to [205, 206] where the breaking of the remaining U(1) results in the connection

of monopoles and antimonopoles by strings which pull the monopoles together un-

der their tension, the axion field is localised around a single vacuum state when the

temperature drops below ΛQCD.
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If we allow higher charged dyons with magnetic charge Zm and electric charge Ze,

then the potential is modified to

U = 4πe2nM
∑
Zm,Ze

((
Zm

θ0
2π
− Ze

)2

rM

nZe,ZmM

nM

)
. (6.38)

If we ignore the dependence of rM on the charge, we see that the potential has

infinite local minima θ = 2πZe/Zm but unless the fraction nZe,ZmM /nM conspires to be

the same for different charge combinations, we only expect one global minimum and

the domain wall problem is still principally solved.

To fully test the viability of this idea, further investigation of the monopole pa-

rameter space is necessary in order to understand the requirements on the monopole

density and properties to solve the domain wall problem and compare those to the

constraints they are subjected to. In order to justify the assumption of a single global

minimum of the potential when allowing multiple dyons we must further investigate

the monopole production and stability of higher charged states. Depending on the

cosmological epoch during which the monopole mass of the axion becomes relevant,

other signals like gravitational waves from the phase transition may also be identified.
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Appendix A

Asymmetric Beams

With the definition of the geometry (2.11), (2.12) we exploited the symmetry between

the two beams present in the collision of two optical beams. This allowed the direc-

tions to be specified in a very simple manner. When quoting the bounds achievable

by the collision of two beams at different frequencies we must drop this assumption.

We may choose to fix the geometry such that the axion again propagate in the ẑ

direction. This is the case for

k1

|k1|
=

1√
ω2

1 + ω2
2 + 2ω1ω2 cosα

(
ω2

√
sin2 α, 0,

√
ω2

2 cos2 α + ω2
1 + 2ω1ω2 cosα

)
(A.1)

and

k2

|k2|
=

1√
ω2

1 + ω2
2 + 2ω1ω2 cosα

(
ω1

√
sin2 α, 0,

√
ω2

1 cos2 α + ω2
2 + 2ω1ω2 cosα

)
.

(A.2)

The electric and magnetic field of the electromagnetic waves are found from the

requirement that they be mutually orthogonal and have Ei ·Bj 6= 0. We choose

E1

|E1|
= (0, 1, 0), (A.3)
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B1

|B1|
=

−1√
ω2

1 + ω2
2 + 2ω1ω2 cosα

(√
ω2

2 cos2 α + ω2
1 + 2ω1ω2 cosα, 0, ω2

√
sin2 α

)
(A.4)

for the first laser and for the second laser

E2

|E2|
=

1√
ω2

1 + ω2
2 + 2ω1ω2 cosα

(√
ω2

1 cos2 α + ω2
2 + 2ω1ω2 cosα, 0,−ω2

√
sin2 α

)
,

(A.5)

B2

|B2|
= (0, 1, 0). (A.6)

We then evaluate F = E1 ·B2 + B1 · E2 to find

F2

|E1|2|E2|2
=

(
ω1ω2 sin2 α + 2ω1ω2 cosα−

√
(ω1 cosα + ω2)2(ω2 cosα + ω1)2 + ω2

1 + ω2
2

ω2
1 + ω2

2 + 2ω1ω2 cosα

)2

.

(A.7)

For the reconversion to the electric signal field the geometry results in a source

|j0|2

ω2
φω

2
1|E2|2

=

(1− kφ
ωφ

√
(ω1 cosα + ω2)2

ω2
1 + ω2

2 + 2ω1ω2 cosα

)2

+
k2
φ

ω2
φ

(ω1 cosα + ω2)2

(ω2
1 + ω2

2 + 2ω1ω2 cosα)

1

(kφd)2


(A.8)

where again, we chose beam 2 to be the stimulating one. This results in energy of

the signal field

E =
g4
aγγ

256π2

l2

d2
ω2
φE1E

2
2

F2

|E1|2|E2|2
|j0|2

ω2
φω

2
1|E2|2

(A.9)

from which we may trivially find the bounds on gaγγ as indicated in 2.2.
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