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Abstract

This thesis presents theoretical studies of different aspects of axion physics. First, we
review the origin of axions from the Peccei-Quinn (PQ) solution to the problem of
charge-parity (CP) non-violation in the quantum chromodynamics (QCD) sector of
the standard model (SM) of particle physics. An overview of the most common direct
and indirect detection efforts is then presented before three distinct, new methods are
presented and put in perspective.

Chapter [2[ proposes a stimulated version of light shining through wall (LSW) type
searches which utilises the large photon numbers in high power laser beams to achieve
strong bounds around axion masses of m, ~ 1eV. The sensitivity is evaluated and
special care is taken to consider stimulation effects stemming from the large number
of photons present. In chapter 3| a new axion-photon parametric decay instability
is found and analysed. The coupling of a strong pump and a weaker probe pulse
is found to result in an exponentially growing axion mode. The prospect for direct
detection experiments is discussed and put into perspective of ongoing searches. The
axion’s coupling to fermions is investigated in chapter |4/ in which the decay of axions
to electron-positron pairs in a strong background field is investigated. The chapter
starts with a review of strong field quantum electrodynamics techniques and then
proceeds by applying them to the axion coupling to identify different regimes based
on the axion’s mass and the background field strength.

The second part of the thesis investigates the cosmological implications of includ-
ing axions into the SM. A review of the standard ACDM cosmology is followed by a
discussion of the cosmological importance of the axion by an investigation of the en-
ergy density in a coherent axion field throughout the universe which could constitute
the dark matter. An investigation of topological defects formed during the symmetry
breaking stages of the axion then leads to the introduction of the domain wall prob-
lem. Chapter [6]is dedicated to the solution of the domain wall problem and finishes

with a lookout onto avenues for future investigations and attempts at solutions.
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Chapter 1

A brief Axion Review

The Standard Model (SM) of particle physics is among the most successful theories
of fundamental physics and, to date, it has provided explanations for almost all
terrestrial experiments. Yet, despite the copious successes, it is well known that the
SM is incomplete. The strong sector, QCD, does not naturally preserve CP symmetry.

The QCD Lagrangian explicitly violates CP through the vacuum angle

2

(7 1 a a,uv g a /va,uv
Lacp = q (i D" — Mg) q — 1O G = 025 GG (1.1)

Here G* = 1/2¢"77 @ ,, stands for the dual field strength. The existence of the term
was known in the early days of QCD. However, it was traditionally ignored because
it can be written as a total derivative [6]. Indeed, a total derivative in the Lagrangian
does not enter to any order in perturbation theory.

Today we know that the term is of topological origin and cannot be ignored [7].
Given the QCD Lagrangian (1.1)), the neutron would carry an electromagnetic dipole

moment (edm) directly proportional to the QCD vacuum angle [8, 9] [10]

dy, (0) = 2.4 x 10 "°fecm. (1.2)



Note that here § sums up all contributions to CP violation in the SM and is defined
in . The neutron edm can be probed very precisely and the current best bounds
require [11]

0 <33x107M. (1.3)

So why do we not just set 6 to a small value? After all, it hardly affects any other
piece of physics. Solving the problem in this way is not natural, as the SM does not
gain additional symmetry. We thus would not expect this parameter to be small.
The fine tuning that is required for this solution is, in fact, worse than what an initial
evaluation might indicate. Let us investigate this by a careful analysis of the origin

of the term and the additional contributions to the CP violation.

1.1 The Strong CP problem

The QCD Lagrangian admits a set of global symmetry transformations. Re-
ducing our analysis to the two lightest quark flavours ¢ = (u,d) and taking the
massless limit for a second, we find classical QCD to be invariant under global
SU(2)p x SUR2)g x U(1)y x U(1)a. The left- and right-handed quark fields do
not mix in this limit, hence the independent SU(2), and SU(2)g, respectively. For
later convenience we can write the symmetry transformations in terms of the diagonal

isospin subgroup SU(2); and axial rotations SU(2)p

g™ g g g g e™q (14)
Here a, is the charge under the global symmetry group and 7¢ = ¢* ® I with o® the
SU(2) generators. The usual story of spontaneous chiral symmetry breaking involves
quark condensates (gq) # 0 which break the SU(2), x SU(2)g to its diagonal isospin

subgroup resulting in the pions as the Nambu-Goldstone bosons. Being more careful



we remember that the global SU(2);, x SU(2)g is a symmetry only in the massless
limit and is explicitly broken when quarks get a mass. Since this mass, for the light
quark generations, is small, the symmetry is still approximate and the pions get a
small mass.

The appearance of quark condensates also spontaneously breaks the axial U(1)4
but no corresponding light Nambu-Goldstone exists in the SM. Weinberg named this
the “U(1)-Problem” [12]. A hint to the solution of this puzzle lies in the careful
phrasing that classically, the QCD Lagrangian is symmetric under the global
U(1)a. We have concluded this based on the notion that the Lagrangian is invariant.
In a quantum theory observables are calculated via path integrals and the invariance
of the Lagrangian is not sufficient to conclude the invariance of the observable. In

general, the Jacobian J of the transformation has to be taken into account

/ [dqdg) e+ — / [dg'dq ) 717 (¢, 7, A). (1.5)

It is a well-known fact that the U(1) 4 is anomalous [13, [I4], the Jacobian is non-trivial
[15]

. 2 o Aoy
T(d, 7, A) = ¢ ] 2aCsEzChnterrite o

with anomaly coefficient C' = 2 here. Hence, it was never an actual symmetry of the
quantum theory.

This by itself, however, does not solve the U(1)-Problem. A closer investigation
reveals that, despite not being invariant, the transformation of the path integral
measure can be written as a total derivative. Thus, once again, we are inclined to
conclude that the Jacobian is trivial and the symmetry is preserved. In 1976 't Hooft
realised that the vacuum structure of QCD is much more interesting than previously
appreciated [7, [16] as the theory allows for multiple vacua. While it remains true

that a total derivative in the Lagrangian does not enter at any order in perturbation



theory non-perturbative effects can be important.
Requiring our theory to have finite energy restricts the gauge fields to pure gauge
in the limit » — oo such that the field strength tensor vanishes. Formally this

condition is

lim A, = Q9,07! (1.7)

=00

with Q € SU(3). Though it might be tempting to put the stronger constraint A, — 0,
however we must remember that this choice is not gauge invariant and hence any

gauge transformation of this choice will also be a valid vacuum state

1 . . )
SAX = 4, = 04,07 + 298#91. (1.8)

Here, ' are the generators of SU(3). For convenience we will work in the Ay = 0
gauge such that only spatial gauge fields remain [I7]. If we take definitive boundary
conditions like €2 — 1 as r — oo, we realise that each field configuration defines
a map from the large sphere S® at infinity to the gauge group SU(3). Such maps
are topologically distinct and differ in the path € follows when approaching unity;
) — exp (2min) with n the winding number of the map. This is a topological quantity

classifying the homotopy groups of the maps and given by

1 a va,uv
n:/32W2GWG M, (1.9)

Indeed, we find that our naive choice A, — 0 corresponds to n = 0, but other,
nontrivial solutions exist [I8] with winding numbers n = 0, £1,+2, ....

Any two field configurations with winding numbers n, m with n # m cannot be
trivially transformed into one other without leaving pure gauge. In fact, considering
the transition from our naive n = 0 vacuum A, = 0 to the n = 1 soliton of [1§], we

find a typical tunnelling amplitude o< exp(—87?/g?). Hence, any perturbation theory



calculation will miss this effect precisely because small, smooth perturbations of the
A, = 0 state never reach the higher winding number states. What is then the true
vacuum state of the theory? By calculating the eigenstates of the Hamiltonian, we

find the true vacuum state as a superposition of the tower of winding number states

0) =) e |n). (1.10)

Note that any two physical theories with 6 # 6° are orthogonal to each other. Thus,
it is sufficient to pick one 6 € [0, 27) to fully define the theory.

In the language of Lagrangian path integrals, this choice of vacuum states cor-
responds to the addition of the 6 term in the Lagrangian (1.1)). Therefore, we see
that the term which we introduced merely because it is not forbidden by any sym-
metry of the theory is actually forced upon us by the vacuum structure of SU(3)
gauge theories. Further, we see that this term cannot be ignored despite being a total
derivative. Yet the question persists: why can’t we simply choose the CP conserving
vacuum # = 0 and move on?

To answer this, we ought to include the weak interactions in the form of the quark
masses into our theory. In general, the quark mass matrix is complex, as the Weak
interactions explicitly violate CP [19, 20]. Without loss of generality we can go to

iargdet(/\/l))‘ To go to a

a basis in which the matrix is diagonal M = diag(m,,, mqe
physical basis with real quark masses, we perform a U(1)4 rotation of the d quarks.
As discussed before, this introduces the anomaly ([1.6)), effectively shifting the CP

violating parameter

0 = 0 — arg(det M). (1.11)

Here we see clearly that the problem is no longer that of fine tuning 6 ~ 0 but rather
getting two distinct contributions from two separate sectors of physics to cancel better

than 10710, For excellent reviews see [21, 6], 22, 23].



1.2 Peccei-Quinn solution

One particularly elegant solution to the strong CP problem was proposed by Peccei
and Quinn (PQ) in 1977 [24], 25]. Here, one effectively introduces a global, chiral,
spontaneously broken U(1)pq to the SM, which relates the different 6 vacua.

Below Aqep ~ O(GeV), QCD undergoes a phase transition and confines. Quark
condensates spontaneously break the global SU(2)., x SU(2)g to its diagonal SU(2),
and the pions appear as the pseudo-Nambu Goldstone bosons. They generate a 6-

dependence of the vacuum energy of QCD of the form

V, = —mifﬁ\/l - %SW <g) (1.12)

My + mg)

with m, the pion mass, f; the pion decay constant and m,, g the up- (down-)quark
mass. [t is trivial to see that this potential has a vacuum state at the CP conserving
angle § = 0. We must remember, however, that 6 is not dynamical and thus does not
run down the potential. Conceptually, it is precisely this fact which the PQ solution
addresses; it makes # dynamic and lets QCD solve the rest for us.

To understand the dynamics of this solution, let us remind ourselves of the relevant
aspects of the theory of pions. As argued above, the QCD Lagrangian for the
lightest two quark flavours u and d, in the limit of vanishing mass, has a global
SU(2); x SU(2)p symmetry group. Quark condensates (gq) = v # 0 are not invariant
under the global SU(2)p, which spontaneously breaks SU(2); x SU(2)p — SU(2);.
So far, we have only repeated what was already mentioned before. To understand
the dynamics, we can construct an effective Lagrangian for the axial modes of the

fluctuations around the order parameter (gq) = v

N(z) = —oU(z) = —vexp (flma(x)aa) | (1.13)

™



Here we introduced the pion decay constant f, = 93 MeV. We have ignored the radial
field as it does not transform under the remaining symmetries of the theory and is
hence irrelevant for the following argument. The effective Lagrangian then consists of
any term invariant under the global symmetry. It is sufficient to look at the leading

order term

LrD ;Tr (8,%) (0rEh) = % (0,m®) (O*7%) + O (7}—; (8,m“)2) : (1.14)
The other invariant combination is XX, however, due to our neglect of the radial
mode, such terms are trivial and do not appear. As a consequence, all higher order
operators consist of derivatives of pion fields. In particular, no pion mass term is
possible. This is hardly surprising, as in the massless quark limit the global symmetry
is exact, thus leading to massless Nambu-Goldstone bosons.
The latter is no longer true when the quark masses are included, in which case the
global SU(2);xSU(2)p is only an approximate symmetry to begin with. Nevertheless,
it restricts the dynamics of the pion fields. To find the leading order effect in the

effective Lagrangian, we replace the gq in the mass term by its vacuum expectation

value leaving

v T 3
L:D 5 Tr (MU + MIUY) = v (m, + mgcos (6,)) (1 - 2—]62) +0 (ﬁ) (1.15)
with 0, = arg det M, the complex phase of the quark mass matrix. As a result of the

small explicit breaking of SU(2); x SU(2)p the pions get a small mass

m2:

- % (1, + mgcos (6,)) . (1.16)

The potential (1.12)) is found from a minimisation of the mass term ((1.15)) after a

U(1),4 field redefinition which shifts the CP violating parameter 6 into the quark



mass matrix phase via the anomaly. This shifting happens because of the anomaly
in the U(1)4 global symmetry.

It is illuminating to notice that one solution to the strong CP problem would be
an exactly massless quark. If the u quark were massless, then the vacuum energy
(1.12), which is proportional to the mass, would vanish. Hence a U(1)4 redefinition
of the massless quark field shifts the CP violating parameter # without changing
the vanishing vacuum energy. As a result all § vacuua would be equivalent without
observational consequences. Unfortunately such a solution is excluded by QCD lattice
simulations [26].

To make the 6§ field dynamical, Peccei and Quinn added a chiral U(1)pq global
symmetry to the SM. It suffers from the same anomaly as the U(1)4. We further
demand it spontaneously breaks at a scale f, introducing a pseudo Nambu-Goldstone

boson a, the axion, which couples through the anomaly as

2
a g
LC——

. fa 3272

Ga, G (1.17)

Performing the same analysis as before, we find a potential for the axion field given

by (C12)

4 0+ +
Via) = —mifﬁ\/l . Mﬁ‘)? sin’ (Tf> (1.18)

(mu + mgq
with the important difference, that the axion field is dynamical and will relax to the
vacuum state of this potential. This vacuum state lies at (§) = 0 and thus the Strong

CP problem is solved.

1.3 Axion Phenomenology

The first immediate consequence of the axion potential (1.18]) is a mass term, which

can, in principle, be extracted by a simple expansion around the vacuum state. A



more involved analysis up to next to leading order results in [27, 2§]

(1.19)

1 12
mg = 5.7peV < 0 GeV) )

Ja
The axion’s coupling to SM particles depends on the UV completion of the model

and is thus model dependent. The axion effective Lagrangian

2

1 a g a Ya,pr — 9 e 1 [
La=3 (m)ﬁg 3273 O G = @Myt he) 2 Gey v+ g0 0P P

(1.20)
may, in addition to the required QCD anomaly coupling to waé“”‘”, have an electro-
magnetic anomaly coupling to the electromagentic field strength tensor F, ,“,F H ywith
model dependent coupling strength g((l% and a derivative coupling to the quark cur-
rent with coupling c{(lo) 129, 30, B1]. Here, F** =1/ 2etP? F,, is the dual field strength
tensor. The only non-derivative couplings of the axion are anomaly couplings to the
gauge fields of which only the SU(3) gauge field coupling is required for the PQ so-
lution, the electromagnetic coupling g,(lg,)y may in fact be 0. Any other axion coupling
is of derivative nature because of the shift symmetry which, under the assumption of
vanishing anomaly couplings, would be exact.

For simplicity we, again, limit ourselves to the lightest two quark flavours v and
d. We may eliminate the aGG term by an appropriate redefinition of the quark fields

as

q— emﬁgaq (1.21)

with Q, some 2 x 2 matrix with Tr @, = 1. The SU(3) anomaly then cancels the
above term in exchange for an axion dependent quark mass operator. The resulting

Lagrangian is

1 d.a 1 ~
Ly, = 2 (aua)Q + J'{:_Qch”)/u%q + ZgawaFWFW — qrMagr + hec. (1.22)



In general the quark transformation described above has an electromagnetic anomaly

which redefines the coupling

aem
27‘(’pr

oy = 952 — (2IN) Tr (Q,9%) (1.23)

where N, = 3 is the number of colours, «., is the electromagnetic fine-structure
constant and Q = diag(2/3, —1/3) is the quark charge matrix. Additional terms are

generated from the quark mass operator which now includes

LQ&

i i572—Qq
M, = e'ra =" M e'ra

(1.24)

and the quark kinetic term which lead to a redefinition of the axions coupling to the
quark current

g =" —Q,. (1.25)

We may match these terms to the effective chiral Lagrangian consisting of and
to get the axion’s coupling to SM particles. Because of the inclusion of U(1)gy,
we replace the derivatives with the appropriate gauge covariant derivatives D, and
add the newly introduced electromagnetic and quark coupling. Since we will mostly
make use of the axion’s coupling to photons we simply evaluate taking, as is
customary, Q, = M /TrM;* [27]

2 4mg +m a L
_ (0 _ Qem 4 d L em — —1.92 1.26
sor =~ e (3 mems) = 2o (v -

where E is the electromagnetic and N the colour anomaly coefficient. Depending on
the UV completion of the axion model, the ratio E/N can take different values, the
two most popular models are Kim-Shifman-Vainshtein-Zakharov (KSVZ) [32, 33] and
Dine-Fischler-Srednicki-Zhitnitsky (DSFZ) [34] [35] for which the ratios are £/N =0

and E/N = 8/3, respectively. A CP conserving axion thus couples to the U(1)gym

10



electromagnetic field strength tensor F},, via an effective dimension 5 operator

LcC g‘zvaFw,F“” = —garraE - B. (1.27)

As a direct result of the effective a — 7 three point vertex ([1.27)) the axion has

a finite lifetime which is easily calculated to be

r,L. = %. (1.28)

A CP conserving QCD axion hence has a lifetime exceeding the age of the universe

for m, < 20eV. As we will be mostly interested in low mass axions with m, < 1eV
we may treat the axion as a stable asymptotic state.

A second consequence of the coupling is axion-photon mixing in electro-

magnetic background fields. Mixing in constant, static magnetic fields By is a well

understood phenomenon [36], B7]. The presence of a background field breaks spatial

invariance therefore enabling the mixing between the massless photon and the massive

axion with a probability

2 B2L2 . L/9 2
P, = Jon0 (qu / ) . (1.29)
Ba qL
The axion’s velocity is f,, the magnetic field length L and ¢ = w, — /w? — m?2

the momentum transfer necessary to mix between the massless and massive state.
The functional form of the probability is intuitive, a constant magnetic field By of
length L has Fourier components given by the sinc function in ([1.29)) which define the
momentum present in the field. An infinitely long field would carry no momentum
and indeed photon splitting would be forbidden in this setting [38]. However, the
finite spatial extend introduces some momentum. If the momentum transfer ¢ < L1

the sinc function could be approximated and the resulting probability would become

11



independent of ¢. This is one way of saying that, in this case, the mixing is coherent
over the entire length L. As indicated by the sinc function, the magnetic field mainly
carries low momentum modes, making the transition efficient. The opposite limit,
q > L' requires slightly more care. Here the probability oscillates quickly and
many times over the distance L. We must therefore understand the probability as
an average over those oscillations and find a suppression by ¢~2, again in agreement
with the observation that there is only very little momentum in the large momentum
modes for a constant field.

Axions may also couple to fermions through the interaction Lagrangian

Cy -
W s U 0,0 (1.30)

Lors D
=5 fra

where W are the fermion fields. In the following we will only be interested in the

electron coupling and the coefficient is [31]

3a? fr 24mg +m Aqep
O, = 0 4 2em [ (0) JPQ ) 27 T Ty Q 1.31
Cel dm2 \Jorr 08 M 3 mg + my o8 Me (131)

where c£0> is an eventual, model dependent tree level coupling of the electron to the

axion. We see that the coupling to photons and pions generates loop level coupling

to electrons even if the tree-level coupling is absent.

1.4 Ultraviolet completion

The axion theory as set out in this chapter is an effective theory and must thus arise
from an ultraviolet (UV) complete theory at high scales. We already mentioned two
such models, the KSVZ and DFSZ axion, which we will take as popular examples to
review, while also stressing that they are not the only two possibilities [31]. Generally

UV completion of the axion theory requires the addition of new fields which in turn

12



affect the axion’s coupling to the SM as will be explained below.

1.4.1 The hadronic axion

The generic hadronic axion model features new heavy quarks charged under U(1)pq
and leaves the SM quarks without tree-level coupling to the axion. The KSVZ axion

[32, B3] extends the SM by a single heavy quark @) with charges
qe = 3, qr, = 1, qg =0 (1.32)

under colour SU(3)., SU(2); and hypercharge, respectively. It also adds a scalar @
with

Gc = 17 qr = 17 qH = 0. (133)

The Lagrangian
_ _ U2 2
EKSVZ D (8H<I>) ((‘LCI))T + QZIDQ — (YQQLQR(I) + hC) — Ao <|(I)|2 — Ea) (1.34)
then features a PQ) symmetry
P — 6m(13, QL — ei%QL, QR — 61%623 (135)

which is spontaneously broken by the potential term for ®. In the broken phase, both
the quark ) and the radial mode of the complex scalar ® acquire large masses pro-

portional to v, and the axial mode of ® is the axion. An anomalous field redefinition

Q = 7 (1.36)

then generates the topological gluon coupling ((1.17)) after identification v, = f,. This

specific realisation does not feature tree-level couplings to photons such that the

13



electromagnetic anomaly coefficient is E' = 0.

1.4.2 The DFSZ axion

The DSFZ axion [34, 35] requires two Higgs doublets H, and H,; with PQ charges
—1/2 and 1/2, respectively. The complex PQ scalar field ® has charge 1. The general

potential assuming vanishing bare mass of the Higgs doublets is then

Au A
V(Huy, Ha, @) =5 (HUHG + 5 (HHG)® + M () (HyHy) + do(H [ Ho) (H)H,)

101 (ku(HLH,) + ka(H Ha) ) = (kO2HLH, + h.c.)

+ e (|0 = 02) (1.37)

giving the fields vevs we parametrize as

a ;o

-2 j Su i
D = vpe o H, = v,e"vu Hy = vge va. 1.38
bl )

We require vy > v, ¢ and then make the assumption x < 1 such that the electroweak
scale for the Higgs is preserved. In DSFZ type axion models the SM quarks and
leptons carry U(1)pq charges —1/2, —1/2 and —1/2 for up-type quarks u, down-
type quarks d and charged leptons E respectively. This then leads to a PQ invariant

Yukawa Lagrangian
Ly D —iY,QoyHu — Y,;QHyd — Yy LH4E + h.c. (1.39)

with Y; the Yukawa couplings. The physical axion is a linear combination of the

phases in ((1.38))

1 1
a=— (vq,aq) — §(vuau — vdad)> , V2~ g (1.40)
Vg

14



which we may invert to find the axion’s couplings to the SM fields. Under the anoma-

lous field redefinition
u — eIy, d — e had, E — "1 E (1.41)

the axion field is removed from the mass-terms introducing

S ~ em E ~
& 2 ga Gomw 4 2 R o (1.42)

oL = e
8 fPQ wy 8 prQ "

where F = 8 is the electroamgentic anomaly coefficient, N = 3 is the colour anomaly
coeflicient and fpq = v,/2N was chosen. Interestingly we see that the axion field lives
on the interval [0, 27v,) while the QCD induced potential from the topological gluon
coupling is 27 fpq periodic. Hence, in general we find Npw = 2N degenerate vacuum
states. We call Npw the domain wall number which will play a role in cosmology as

discussed in section [5.4]

1.5 Axion Searches

Significant experimental and observational effort is undertaken to look for axions. It
is worth noting that the techniques described in this section apply to any pseudoscalar
particle coupling to electromagentism via the effective dimension 5 operator .
Such particles generically arise in BSM theories like String Theory where axions
are a result of low energy compactification and generically populate the low energy
spectrum [39, 40]. From now, we will use the term axion to label both the CP
conserving QCD axion and any other pseudoscalar which couples to electrodynamics
via the «E - B coupling except for in chapters [5| and [6]

The axion-electrodynamics coupling implies a range of well-studied phenomena.

Pierre Sikivie quickly realised that this can be exploited to search for axions despite
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Figure 1.1: An exclusion plot showing the light axion parameter space with the
current best bounds. The plot was taken from the review of particles physics [42].

For an explanation of the different bounds on the plot read section .

making them “invisible” , meaning weakly coupled [36] 41]. Many current and ongoing
searches are based on Sikivie-style detectors. The results of previous axion searches
are documented on an exclusion plot, figure 1.1, which lists the free parameters of the
theory, the axion mass m, and the photon coupling g, and colours all parameter
space in which no axion was found. It also shows the theoretical prediction for the
CP conserving QCD axion for which the two parameters g,,, and m, are no longer
independent. The yellow band running from the upper right to the lower centre on
the exclusion plot shows the parameter space and the width indicates a range of
possible UV completions of the effective axion theories. The KSVZ and DFSZ axion
are shown as reference.

We shall classify searches into three categories based on the underlying assump-
tions required for their interpretation: cosmological searches, astrophysical searches,

and laboratory searches. An excellent review of axion search techniques by Sikivie
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can be found here [43].

1.5.1 Cosmological Searches

Usually, those searches probing up to the smallest couplings are of cosmological type.
Here the assumption is that axions make up the entire dark matter content of the
universe (or a fraction of it in which case the bounds generally become weaker). This
creates the possibility to build a detector aiming to measure the flux of dark matter
here on earth. ADMX is one such search exploiting the axion-photon mixing [44] 145
40, 47]. The detector is a microwave cavity with a very sharply defined frequency and
a low loss rate. A dark matter axion with mass matching the cavities frequency may
convert into an electromagnetic excitation of said cavity thereby depositing energy
in the cavity and supplying a detectable signal [41], 48] [49]. There are several other
cavities operating like RBF and UF [50, 51} 52], HAYSTAC [53] and ORGAN [54].
Their results are shown in green on the exclusion plot fig. Range in mass is
generally limited due to the cavity size, but the excellent quality factor enables the
measurement of very weakly coupled axions at the appropriate masses.

DM axions also produce an alternative signal which detectors like the Cosmic
Axion Spin Precession Experiment (CASPEr) [55, 56] are looking to exploit, that
is, an oscillating nucleon EDM. A closer look at the dynamical PQ solution of the
Strong CP problem reveals that the neutron EDM only vanishes in an averaged sense
(d,(0)) o< {#) = 0. The coherent oscillation of the axion field induces fluctuations in

the neutron EDM on the order of [57]

d,(0) = 9 x 107% ecm cos (mqt) (1.43)

for a QCD axion which constitutes the dark matter. An oscillating EDM will cause

spin precession in nucleon spin polarized samples within an electric field. Such precess-
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ing spins are generally measured with nuclear magnetic resonance (NMR) detectors
which are very sensitive to low oscillation frequencies. Therefore m, < peV axion
masses can be probed.

A similar approach is taken by the A Broadband/Resonant Approach to Cosmic
Axion Detection with an Amplifying B-field Ring Apparatus (ABRACADABRA) col-
laboration [58,[59]. They exploit cooled LC cirquits to look for axions of slightly higher
masses in the m, ~ peV range. A small scale prototype version, ABRACADABRA-
10 cm has recently placed the first bounds depicted in green on figure [I.1}

There are many other DM detection experiments looking for general DM including
axions. When looking in the light axion mass range, the above-mentioned techniques
are the best performing and offer a good overview of the techniques used for axion DM
detection. We would like to mention, however, the XenonlT detector which recently
reported excess scattering with low momentum transfer which might be explained
by the existence of an axion [60, 6I]. XenonlT is a tank filled with liquid xenon
which measures scintillation resulting from collisions of DM particles with xenon in
the detector. Interpreting the signal as produced by an axion, the parameter space
crosses the QCD band at around m, = 0.1 — 3eV. However, this interpretation is in
tension with astrophysical limits and subject to uncertainties in the background rate
which will be addressed in a follow up experiment Xenonl0T under commission.

It should be quite obvious that interpretation of experimental results is highly
model dependent. Not only does it require knowledge of the fraction of DM con-
stituted by axions, but also the local distribution of DM. The latter is actually not
known very well [62]. Additionally, even a possible detection signal would only reveal
information about a convolution of the axion-photon coupling strength and the local
DM density. Untangling those two quantities is challenging; nonetheless, it is likely
to become an important question in the near future. If axion DM exists, then the

cosmological type searches are most likely to detect a signature first in which case
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the aforementioned ambiguity between DM density and coupling strength must be

addressed.

1.5.2 Astrophysical Searches

Typically, astrophysical searches follow a simple logic. With the inclusion of axions
into the SM, we have an additional light degree of freedom, which should be pro-
duced in astrophysical objects. Production happens either via photon axion mixing
as described in section [1.3|or in the field of nuclei via Primakoff production [63], 64].
Because of the weak coupling they should escape and produce a flux of axions from
astrophysical objects. There are now two usual lines of argumentation, either we
point a detector at such object and detect the flux, or we take the effect of the addi-
tional energy flux leaving the object on known physical properties and constrain the
coupling strength in this way [65] [66].

Pointing a detector at the nearest and probably best understood object is the
approach chosen by the CERN Axion Solar Telescope (CAST) collaboration. Their
detector is a helioscope consisting of a supercooled magnetic field which converts solar
axions into photons via the previously discussed interaction with probability .
The axion flux from the sun is dominated by Primakoff production and peaked at
E = 3keV with average energy (F) = 4.2keV [67]. The total solar flux of axions is
[68]

2
®, = 3.75 x 107 cm 2~ (Gi‘;jg) (1.44)

after integration over the solar model. The detector is pointed at the sun and follows
its motion over the sky measuring the flux of reconverted photons. Coherent conver-
sion over the field covers the mass range up to m, < 0.02eV above which the bounds
drop. CAST limits the coupling strength to g, < 6.6 x 107 GeV~! in this mass

range. The limitation to low masses because of the momentum mismatch between
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axions and photons can be overcome by filling the magnet with gas, thereby giving
the photon a plasma mass. The CAST collaboration used Helium to probe masses
up to m, < 1.17eV [69, [70, [71, [72]. The CAST exclusion region is shown in light
blue in figure [1.1]

The sun is capable of producing axions up to masses of a few keV. To measure
a flux of such high mass axions, converting into x-ray photons, a crystal is used to
enhance the flux by Bragg scattering. Similar to regular Bragg scattering, massive
axions mixing into photons also fulfil a Bragg condition, leading to an enhancement
of flux at the appropriate angle, which can then be measured with a photon detector.
Such a search was undertaken by [73]; the bounds are not indicated on the exclusion
plot [1.1] but exclude couplings above gg, > 1.7 x 1079 GeV L.

The second line of argument can be applied to a variety of astrophysical objects.
In terms of stars, the best bounds come from Horizontal Branch (HB) stars. These
have masses similar to the sun’s and their cores are burning He. This stage in the
stellar evolution follows immediately after the Red Giant (RG) phase, during which
the star is still burning H. The ratio of HB to RG stars, the R parameter, is sensitive
to the lifetime of these stages. The inclusion of a light axion degree of freedom into the
SM does significantly affect the HB stars while leaving RGs virtually unchanged [74].
Analysis of 39 Galactic Globular Clusters leads to the exclusion of axion couplings
Garyy > 0.66 x 10712 GeV~?, indicated by a horizontal dashed line in figure [1.1]

Primakoff production of axions also takes place in core collapse supernovae and
multiple observational signatures in Supernova SN1987A therefore place bounds on
the available axion parameter space. Weakly-coupled axion stream out of the super-
nova and mix into gamma rays in the galactic magnetic field of the Milky Way. The
absence of a gamma ray burst at the same time as the neutrino flash from the super-
nova can hence be interpreted as bounds [75]. Neutrino escape is the main source of

cooling of the core collapse supernova and the resulting neutrino flash is observable on

20



earth. According to standard core collapse supernova models, the collapse of a mas-
sive star results in the generation of a proto neutron star. Typically, such an object is
of solar mass, but has the density of nuclei and temperatures of tens of MeV [76), [77].
In these extreme conditions even neutrinos are trapped and their escape happens on
timescales set by the diffusive transport resulting in a burst lasting for tens of s in
agreement with observation. The inclusion of light and weakly coupled axions not
trapped in the proto neutron star enhances the cooling rate thereby shortening the
neutrino burst [78]. The bounds derived from observations of SN1987A are depicted
in grey on the exclusion plot in figure [1.1]

For small masses the magnetic field in galaxy clusters becomes efficient at inducing
axion-photon mixing in the x-ray energies. Measuring the spectra of luminous x-ray
sources interposed by galaxy clusters therefore puts bounds on the coupling strength.
These bounds, as most astrophysical bounds mentioned in this section, highly depend
on the model assumptions used for the magnetic field within the interposing galaxy
cluster. The spectra are measured by Chandra telescope and the resulting bounds are
indicated in grey on the exclusion plot [79]. Also indicated in grey are bounds from
the Fermi LAT collaboration using six years of spectral data to scan for irregularities
stemming from axion-photon conversion in the spectrum of the radio galaxy NGC
1275 [80].

The high surface temperature of a young neutron star supernova remnant in HESS
J1731-347 with rather weak magnetic field implies constraints on the coupling strength
of axions such that axion bremstrahlung not be too effective [81]. The weak magnetic
field allows for the assumption that neutrinos, and possibly axions, dominate the
thermal evolution rather than the strong magnetic field, as is the case in young
magnetars. This specimen, being the youngest and hottest neutron star with weak

magnetic field discovered, therefore puts bounds which are indicated in grey on the

exclusion plot [I.1]
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All the above searches and associated bounds in the mass-coupling parameter
space rely on a set of key assumptions which significantly weaken the reliability of
the interpretation. For example, all of them require very good knowledge of the
physics inside the particular astrophysical object under investigation. Supernovae
in particular are computationally challenging as well as observationally sparse. For
this reason, precision observations might be questionable. Even a well-studied object
like the sun, however, poses some challenges and different models are not always in
agreement with each other [82]. An additional source of uncertainty lies in the axion
production environment. Within such hot objects the non-zero plasma frequency
and high temperature conditions may affect the effective axion-photon coupling and

consequentially alter the inferred limits [83].

1.5.3 Laboratory Searches

Laboratory searches trade the distinct advantage of model independence against
generically weaker limits compared with the above searches. The reason for un-
favourable performance can be found in the bounds dependence on the interaction
strength gﬁw. A possible axion must be produced, thereby interacting once and then
reconverted into a detectable signal, generally requiring two vertex interactions in-
stead of a single one when measuring a background flux. Arguably the same is true for
stellar bounds. However astrophysical objects have the natural advantage of large size
and extreme conditions. Full control over both the production and reconversion stage
also allows for individual tests of the axion-photon coupling and coupling to other
particles, thus eliminating a further source of uncertainty in the data interpretation.

Laboratory experiments searching for the axion-photon coupling usually exploit
a Sikivie-style detector exploiting the axion-photon mixing explained in the previous
section [36]. Light shining through wall searches (LSW) fire a laser into a strong, con-

stant magnetic field thereby facilitating axion production [84]. An interposing wall
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then blocks the laser light from entering the detector which consists of yet another
identical magnetic field in front of a photon detector. Axions which were produced
within the first field traverse the wall because of their weak interaction which makes
the wall transparent to such particles. Any axion propagating into the second mag-
netic field may then be reconverted into a photon which is subsequently measured
by the detector. A positive signal therefore looks like light which passed through
the wall, hence the name LSW. There are several LSW searches operating, like the
Any Light Particle Search (ALPS) [85, 86] and the Optical Search for QED Vacuum
Birefringence, Axions, and Photon Regeneration (OSQAR) experiment [87], which
produced the current best bounds as indicated in yellow on fig. [I.I} The shape of
the exclusion region is easily obtainable from the transition probability which

2 once the transition is no longer

is constant for low axion masses and drops like ¢~
coherent. LSW detectors are conceptually very similar to helioscopes, in fact they
exploit the same physics simply replacing the solar source by a laser shining into a
magnetic field.

An alternative detection technique relies on the polarization-dependent axion-
photon coupling and on the axion having mass. A polarised beam of photons travers-
ing a magnetic field suffers from Birefringence and Dichroism [88]. Dichroism is a
small rotation of the polarisation plane of the beam, which is due to a depletion of
photons with polarisation in the direction of the magnetic field, while photons po-
larised in the orthogonal plane propagate unaffected. Birefringence in contrast leads
to elipticity in the polarisation when the appropriately polarised photons mix with
massive axions, thereby acquiring a phase factor relative to the unaffected orthogo-
nal mode. Both effects were measured by the Polarizzazione del Vuoto con LASer
(PVLAS) collaboration [89] and their non-observation placed bounds indicated in
pink on fig. [1.1]

Not shown on the exclusion plot are higher axion masses which are investigated
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using different techniques. At very low masses, the axion mediates long range forces
and fifth force bounds apply. The present thesis is primarily interested in axion

masses around eV and below, and therefore will not review these techniques here.
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Chapter 2

Stimulated Light Shining Through

Wall Search For Axion Detection

Traditional light shining through wall type searches, as described in[1.5.3] utilise com-
paratively low power continuous lasers to seed the axion field, accumulating data over
a long time-span. This is possible because the axion photon transition is facilitated
by an external, strong and constant magnetic field B through which the continuous
laser can propagate for extended periods of time. Also, the detection region, which
we will refer to as the detector in the following unless otherwise specified, consists
of an identical magnetic field guaranteeing conversion at all times. The transition

probability was given in (|1.29)

Poy = gngQLQ (sin qL/2)2 2.1)
Ba qL

with ¢ the momentum transfer, 3, the axion’s velocity, B the magnetic field strength

and L the magnetic field’s length. The number of axions produced in the conversion

stage, and similarly the number of signal photons, depends on the flux of photons

from the seed pulse. As a reference we will use the seed pulse utilised for the ALPs

experiment [90} 85], a laser producing 800 mW after frequency doubling to w = 2.4V,
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resulting in a flux of ®51ps ~ 108 s~ photons. With this information we may trivially
find the axion flux onto the detector ®, = ®a1psF,—,-. For the signal photons entering
the photon detector we simply repeat to find &, = ¢ ALPSPaz . From here we conclude
that the signal in such a setup grows linearly in exposure time and initial seed flux.
It is the latter that we aim to improve upon by utilising two high power laser pulses
with large photon flux.

Additionally, traditional LSW searches generally perform well for low mass axions
but quickly lose sensitivity when the axion mass increases and the momentum transfer
required for an axion-photon transition becomes too large, ¢L/2 > 1. This can be
seen in the transition probability whose momentum transfer dependence arises
from a spatial Fourier transform of the magnetic background field and is indicative
of the momentum which is present in the background. A laser beam consists of
coherent real photons of frequency w; and momentum k;, we will say the field carries

momentum k; in the following. In contrast the static, constant magnetic field B only

carries limited momentum due to its finite size. Axions with small mass require little

2

momentum transfer ¢ = w, — /w2 —m2 and their transition is coherent over the
full length of the magnetic field. Large momentum modes are suppressed and so is
any transition probability for large momentum transfer. In this limit, the sin® ¢L/2
oscillates very rapidly and many times over the magnetic field length. It can hence
be replaced by its average and the probability decays like ¢=2 [91].

Replacing the static magnetic background field by a second laser beam, carrying
momentum, we aim to improve the bounds placed on axions in the m, ~ eV mass
range by both, overcoming the momentum transfer suppression and a favourable
scaling in the photon number, N? [3]. It is worth pointing out that the XenonlT
collaboration has recently reported an excess scattering in their low momentum bin

[60] which, if real and interpreted as axions, would hint at a coupling strength crossing

the QCD axion band at eV masses [61] (see the green band in fig. 2.2]It is necessary to
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mention however that the statistical significance is not sufficient for strong claims and
the axion interpretation of the signal is in strong tension with astrophysics. A follow-
up experiment XenonlOT is under construction and will be capable of investigating
the excess.

The set-up under investigation follows the same principle as other LSW searches;
It is divided into three main components, the generation region, the wall and the
detector. The generation region is on the left hand side and consists of two col-
liding high power laser beams which lead to axion production. We investigate this
stage in section 2.1} In the centre an interposing wall blocks the seed pulses from
entering the detector. We will assume that the wall’s thickness, which can be chosen
appropriately, grants perfect absorption, and the weak axion coupling will ensure its
transparency to axions for the parameters under consideration here. We also mention
that a 10 cm distance between the generation region and the detector is assumed later
on, which will provide a sizeable spatial offset between the reconverted photons and
the seed beams additional to the temporal delay due to the massive axion’s propaga-
tion speed. For detection we consider a traditional constant magnetic field detector
in [3] and detection through a stimulating laser beam in [5]. Perhaps unsurprisingly,
the latter performs favourably due to overcoming the momentum transfer suppres-
sion and the favourable scaling with photon number N3. Hence, we concentrate on
stimulated detection in section 2.2l Using stimulation to detect dark matter axions
was investigated in [92 03].

If we assume for now that all three beams are identical in frequency and pho-
ton number, then the range of couplings g, testable in the aforementioned scheme
scales like N=3/* as a result of the three incoming laser beams and the two interaction
vertices. The geometry of the colliding plane waves results in a dependence on the
collision angle o< sin(a/2)~! because of the effective coupling E - B. Utilising the

kinematics at the three point vertices of axion production and reconversion, we may
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recast this as a mass dependence o (m,/w,) 2. The bounds we achieve after calcu-
lation of the process indeed scale like expected, compare , with the additional
factors arising from the volume integrations, as explained in the following.

It is worth noting that one could devise schemes in which the reconverted measur-
able signal are other SM particles, like electron-positron pairs [2] which we investigate
in chapter [} For now we choose to limit ourselves to the reconversion into photons
insofar as, this way, the final signal only depends upon a single coupling of the axion,
the axion-photon coupling g, and interpretation is simple.

The equations of motion of this system consisting of photons and axions are
Maxwell’s equations modified by the axion coupling . They are known in the

literature as axion-electrodynamics and arise from the Lagrangian [30]

1 a - 1 1
L= _ZFWFW + %GFWF‘“’ +3 (Oua) (0"a) + §m3a2. (2.2)

The Gauss law for magnetism is unchanged
V-B =0, (2.3)
and so is the Maxwell-Faraday law of induction
V x E = -9,B. (2.4)
The electric Gauss’s law however gets a source from the axion field
V-E = g4, (Va)-B (2.5)
and Ampere’s law includes an axion current

VxB= @tE + Garyy (E x Va — B@ta) . (26)
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The axion field itself is described by a Klein-Gordon type equation

(0} = V*+m2)a=—g.E-B. (2.7)

From the modified Maxwell’s equations we may derive the wave equations for the

electric and magnetic fields and find

(02 = V) E = —guyy (0 (E x Va — Bdya) + V ((Va) - B)) (2.8)

for the electric and

(0} = V) B = g4,V x (E x Va — Bd,a) (2.9)

for the magnetic field.

2.1 Axion Field Production

The set-up under investigation is shown in figure 2.1] where, as anticipated, we have
replaced the constant magnetic field in the detector with a third, stimulating laser
beam. As we will argue below, this substantially increases the sensitivity, exploiting
the large energies which current day lasers can deliver onto target. As a direct con-
sequence of the large energy per laser pulse, and the corresponding very high photon
occupation number of the laser mode, the electromagnetic fields are well described
as being classical and effectively external. The latter aspect precludes the treatment
of any back-reaction which is justified by the smallness of the coupling g4,. We
are interested in the lowest order effect in a perturbation series in g4, or, to put it
differently, we are only interested in the tree-level amplitude and need not concern

ourselves with higher order effects. Therefore, we take the incoming beams to be
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plane waves of the form

Ej = (gjeiwjtiikj-x + C.C.) , Bj = (Bjeiwjtiikj.x + C.C.) . (210)

N| —
N —

We justify this assumption by noting that the pulselength and spatial extend of the
lasers we consider later on are large when compared with their wavelength, Tw; > 1.
Let us further make the simplifying assumption that the two colliding laser beams
are identical, except for the polarisation and propagation direction. This introduces a
symmetry into the collision system and leads to a simple form of the geometry factors.
We will drop this assumption and quote the resulting more complicated equations
in Appendix [A] The two colliding lasers define a plane of collision which we take
without loss of generality to be the xy, x3 plane and we work in coordinates centred
on the production region. Using the last freedom to fix the final axion momentum

k, = k; + ky along x5 we may write

—sin § 0 cos §
k; 81 Bl
SR N .S T SN 2.11
" €] B (21
cos 2 0 sin &

2

and for the second beam

sin% cos% 0
k2 82 BQ
A 0 . = 0 , —— = 2.12
o 3 B) 212
COS% —sin% 0

The angle at which the two beams collide is a.
Having concluded that the laser beams are indeed classical, we find that the axion

field, sourced by a classical source, is also classical and we assume it to be of the form
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Figure 2.1: A diagram of the experimental setup. The collision of two lasers results
in the production of any hypothetical axions. Such weakly coupled particles pass
through a central wall blocking the laser photons from entering the detector region.
An appropriately timed third laser facilitates the reconversion into photons behind

the wall. Those reconverted photons are measured with a detector.

(a(x)e™" + c.c.). (2.13)

a =

N | —

Once again, it must be noted that we assume that 7w, > 1. However, we may not
make the same assumption about the spatial dependence. The axion is a massive
particle and thus its momentum k, may, for all we know, be small compared to the
energy. To find the axion field we must solve equation with the initial beams
(2.10)

(—wg —Vi4+ mz) a(x)e™ " = —gq|E1||E2| sin® %ei(‘“ﬁm)t_i(kﬁk”'x. (2.14)
In writing down equation (2.14]) we have dropped terms with phases i(dw; F wo)t
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as we are only interested in the scattering process resulting in the sum frequency

we = w1 + wo. To solve for the axion field, we find the fundamental solution

= 2.15
27m)3 —w? + k2 4+ m2 Ar|x| (2.15)

A3k elikx efi\/wgfmg\)d
6= | |

where we neglected the advanced solution and only keep the retarded one. The axion

field is then obtained via an integration over the beam overlap V'

joN

—iy/ w2 —m2|x—

. ) ) 2 2| yl

(x)e"’ = —%I&Hfﬂ sin? —3€W‘1t/ d3ye_’ka~y€ © ‘
7r

(2.16)
1%4 \X - y!

We want to evaluate the axion field at the reconversion region which is separated from
the origin by a macroscopic distance d. In particular d > ¢ where ¢ is the side-length
of the beam overlap which, for simplicity, we assume to be a cube. Hence, we may

approximate

—iy/w2—m2|x— —ikqd oo By -
/dSye—ika~ye Gt Ne /d3y€1ka<x—ka_2);1+2gz+o(§)2>'y (217)
% Vv

x —y] d

where & = x/|x| denotes the direction in which we are evaluating the field and we

limit d > |y|, /ka|ly|?. We also took k, = y/w2 — m2 as appropriate for an on-shell

axion. Limiting ourselves to an observation direction along the axion momentum,

~

T — k, ~ 0, we may readily evaluate the resulting integral

2

(2.18)

L[ gz - (VR gy
Vv

ko t?
x|

As we increase the spotsize of the two incoming lasers, therefore increasing [ and

4 |

(1+41) kaezl

the interaction volume, the axion field amplitude grows linear in volume as long as
I < d/k,. Further increase of the spotsize will only result in a growth of the axion

field amplitude proportional to £. The scaling above is of course only true if we assume
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the laser fields |€;| to be constant. In a real laser, rather than the field’s amplitude,
its energy per pulse is fixed and the amplitude therefore drops like |€;| o< £~2 resulting
in a larger axion field amplitude up to £* ~ d/k, above which the decrease in the
field amplitudes starts beating the increase from the volume overlap. We therefore
conclude that £ ~ d/k, is the ideal size for the interaction region and in the following
we make the assumption that the beam overlap is small enough such that the integral

(2.18]) trivialises. Thence the axion field at large distances from the beam overlap is

—ikq |x]|

~ YGaryy . g Qe
— 2y g ||E =
a(x) 47T | ]-H 2’SIH 2 ’X|

(2.19)

Note that the apparent spherical symmetry is merely an artefact of our assumptions
which break when looking far enough from & — ko ~ 0. In this case the volume
integral is highly oscillatory and effectively vanishes leaving an axion field which is
highly peaked around k,. Our assumptions hold for a cone around this direction and
amount to taking the axion field amplitude constant over this cone. Because the axion
field divergence is small, the reconversion region will have size of the same order as
the beam overlap V. Thus, we only need the field within a narrow cone around ko

For later use we calculate the time derivative which is trivial
Ora(x)e™ ! = iw,a(x)e™e! (2.20)
and the gradient at a distance d from the beam overlap V'
14 ikad .

Va(x) = —kawa(x) (2.21)

which is also oriented along ko
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2.2 Axion Field Detection

To detect the axion field (2.19)), we collide a third laser beam with the axion flux
sourcing an electromagnetic field via the right hand side of (2.8) and (2.9)). Again, we
write the laser beam like in (2.10)) with label “s” for stimulating beam. The electric

field which is sourced by the axion field is defined as

E= (E(x)em + c.c.) B = (B(X)ew + c.c.) . (2.22)

DN | —
DO | —

A simple perturbation series in g, reveals that the relevant equations are

(—w? = V) B(x)e k= T il (2.23)

[i(wa — ws) (€% x Vi — iw,Biad) e™* + V ((Va) - Bie™™)]  (2.24)
for the electric field, while the magnetic field satisfies

(—w? — V?) B(x)e™! = g"%v x (Ere™* x Vi — iwBie™q) e@em) (2.25)

This time, in contrast to the generation process, we are interested in the stimulated
decay which corresponds to w = w, — w, and drop all other terms. In fact there
is a rather straightforward argument why only the stimulated decay of axions will
contribute when turning to the vacuum energy momentum conservation of the process.
At the three point vertex of axion production, we had effectively three degrees of
freedom, we can change the energy of either laser beam w; and the collision angle
a. The choice of laser frequency fixes the resulting axion energy w, = w; + ws and
the angle fixes its momentum k, = k; + ky. Only on-shell axions propagate the

macroscopic distance to the reconversion region, therefore only axions of mass

m? = 4w w, sin® % (2.26)
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may be produced. Ignoring the final axion momentum direction, the choice of laser
energies and collision angle determines the axion parameters. Now, assume the signal
photons is produced via scattering such that w = w, + ws and k = k, + k,. Both
photons involved in the process are on-shell and thus their momenta satisfy |ks| = wo
and |k| = w. The massive axion has |k,| = (w?—m?)"/? < w,. Energy and momentum
cannot be conserved at the same time because |k, + k| < |k,| + |ks| < [k]|.

The stimulated decay of the axion may only happen into specific combinations
of photon energies and collision angle. This is most easily seen when going to the
rest-frame of the axion. The decay to two photons in this frame may only happen into
two photons with equal but opposite momentum. Boosting to the laboratory frame
may change the energies of the two photons and their angle, however the parameters
are not independent. Thus, the simplest possible decay channel is via stimulated
decay through a copy of either beam 1 or 2. Note that in principle we could change
the polarisation of the stimulating beam, resulting in a signal photon with rotated
polarisation relative to whichever beam we did not choose for stimulation. We take
this as further justification for single photon counting to be possible as this allows us
to discriminate between background and signal photons. In the following we choose
to use as stimulating beam a copy of beam 2, the reason being that for this beam
k, - B, = 0 and the electric field source simplifies. As it turns out, the bounds are
unaffected by this choice.

The source on the right hand side of , after substitution of the axion field
(2.19), can be written as

J(X) = —Garrjoa(x)e it (2.27)
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where

| — kod 1+ ikod\” | — kod
jo=w ((S: X ka)lk_daeraBj) + (ka <%> —kSZ . da ) (B - k,).

(2.28)

With the specific choice of stimulating beam we made, (B - k,) = 0 and the second
term in jo vanishes. The fundamental solution of the wave equation is identical to
(2.15) in the limit m, — 0 and the axion sourced electric field is thence

Z‘ -y
~ e WX .
E(x) ~ —g, /d?’—'&ye’k’). 2.29

Once again we approximate the overlap of axion flux and stimulating laser beam
as a cube of sidelength ¢ because of the minimal axion field divergence. Increasing
the volume of the stimulating beam further will not lead to any enhancement as all
axions are contained within V/ ~ V. We further assume the envelope of the axion field
constant over the volume V', as d > £. Detection of the electric field will happen at a
photon detector placed at a distance D away from V’. Once again assuming D > k(>

we may make the simplification
—iw|x| .
- € . —iw(k—2)-
E(x) = _gawWJoa(d) / (dPyem Y (230)

The volume integral is equivalent to the Fourier transformation of a constant function

with compact support over V and readily evaluated to be

1 e 4 Vi Vi

il dBye~w*-DY _ gine (7”(1 vy gl)) sinc (7% : g;2> sinc (7% - gg) .
(2.31)

In the evaluation of the integral above we chose the alignment of the cube approxi-

mating the interaction region such that k is a unit vector pointing to the face of the

cube. As expected, we find the maximum of this function when & = g, precisely
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when looking in the direction of signal photon momentum. Contrary to before, how-
ever, we are interested in maximising the solid angle over which we detect photons
as there is no penalty in increasing the detector size. Therefore, we may not limit
ourselves to k — & ~ 0. Any other orientation of the cube V' should not change the
result appreciably.

To estimate the signal strength and subsequently project the bounds an experi-

ment following this set up might produce, we find the electric fields power

P = /dﬁdgp sin(0)) D? )E(D, 9,0) 1 : cos? (wt) . (2.32)

The cos?(wt) dependence arises from the c.c. terms in . As we are integrating
over a sphere of radius D to find the power, the spatial phase does not enter. In
general an electromagnetic wave sourced by an axion field is no longer well described
by only the vector potential and the electric field may have components along the
momentum k. This is a result of the modified Maxwell’s equations and Poisson’s
equation being non-trivial V?® = —g,.(Va) - B with ® the scalar potential. In the
presence of an axion field there is no residual gauge freedom to set & = 0. For our
choice of stimulating beam, at least to lowest order in g,,, we do retain this gauge
freedom as (Va) - B = 0, however in general we must project the electric field onto
an orthogonal coordinate plane relative to the photon momentum k as any parallel
component may not propagate in vacuum and does not reach the detector.

Because of the strongly peaked distribution, we may extend the solid angle integral

to an integral over the entire sphere and evaluate the resulting integral to leading order

in (('w)™!

/ sinc? (%“’(1 — sin(?) cos(<p))> sinc? (%‘” sin(¥) sin(gp)) sinc? (%M COS(ﬁ)) d*Q
~ (;22)2. (2.33)
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We thus find the energy in the electromagnetic field

4 2 2
Yoy € 5 2 . 4@ ka o
= —w:E F5sin® — | 1 — —cos— 2.34

6am2 g2 @ T2 2 Wa 2 (2:34)
where we assumed the incoming beams focused such that the beams are cubes of
sidelength ¢ and hence the laser energy contained in the matching interaction volume
E; = [ P;dr = |&;|*¢?/2 is simply the laser energy per pulse. Inverting the expression

to find the testable parameter space is now trivial and it extends up to

Garyy > 327T2d—E (235)

as long as both beams are identical and we assume the interaction volume to have

optimal sidelength (% = d/k,.

2.3 Projected Bounds

To assess the performance of the proposal above, we evaluate the projected bounds
utilising the specifications of the Aton 4 laser at ELI beam lines. This laser system
operates at optical frequencies w = 1.55eV with £ = 1.5kJ energy per pulse and
has pulselengths of 7 = 150fs up to 7 = ns. The optimal beam overlap V' was found
earlier and thus we choose to focus the beam to a cube with matching pulselength
T = \/% The number of signal photons incident onto the photon detector is
then approximated as N, ~ E/w. The Aton 4 laser has a repetition rate of 1 min™*

resulting in 1440 shots per day. Under the assumption that single photon counting is

possible, the projected bounds for square interaction volume ¢ = ¢’ = 7 and maximal
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testable m, ~ 3.08 eV are found

3
7 E 1 a 4

and are shown as red region in the exclusion plot 2.2 The maximal mass arises
from the requirement that the two colliding lasers be at least 1° off perfect counter-
propagation, which is necessary to avoid damaging an actual laser.

As was discussed in the laser frequencies and the collision angle sets the
mass of the axion we probe. To exclude the whole region shown in the exclusion
plot we consider a realistic laser field with spectral width modelled as a Gaussian
around the central frequency w; with width Aw;. As long as Aw;/w; < 1 our earlier
calculation still applies but the axion mass under investigation will no longer be single
valued but have a Gaussian distribution around the mass corresponding to the central

frequencies. Indeed we find

Awy A
oMy B | Awy (2.37)

me w1 w1

to be the mass interval over which the bounds vary by less than /2. We may
thus probe the depicted mass region continuously by scanning through appropriately

spaced collision angles with angle increments given by

omy

Mg

da =2 (ecsca — cot ) . (2.38)

The angular step size and mass interval are shown in figure [2.3] Putting a limit of 1°
from parallel and anti-parallel propagation of the two lasers for practical reasons, we
conclude that the mass region indicated in the exclusion plot may be covered in ~ 30
steps. In principle we may extend the region down to lower masses by exploiting the

collision of two photons in a converging laser beam at arbitrarily small angles similar
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Figure 2.2: Exclusion plot for axion parameter space. The light blue region shows
existing bounds from the OSQAR experiment [87]; the orange region is excluded by
PVLAS [89]; the dashed blue line depicts CAST constraints [94]; the lower horizontal
dashed line comes form stellar cooling lifetimes [95] and the upper from solar Bragg
diffraction experiments [73]. The green region shows the XenonlT anomaly inter-
preted as QCD axion signal [60} 61]. The red region on the left indicates the reach
of the set-up described in the main text using three optical lasers. This region is
extended in mass by combinations of frequency doubled beams, also indicated by the
additional peaks in red. The dashed red line indicates the improvement for a 15kJ
laser. The purple region on the right shows the projected bounds for the collision of
an optical 1.5kJ laser and an X-ray laser like the European X-FEL. The frequency is
tunable between w = 1—25keV allowing us to probe anything between the two purple
extremes. The QCD axion region, shown in yellow, indicates particular theoretical

predictions for where the axion might be, if it constitutes the dark matter [96].
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Figure 2.3: The orange curve plots the angular step size da against the chosen angle
a for each shot. On the left axis, the black curve indicates the central mass probed
for a given o and w) = w) = 1.55eV, the shaded region indicates the width +dm,.
Assuming a minimum possible step-size da = 1°, the full mass range can be scanned

in ~ 30 shots. This step size imposes a lower bound on « 2 0.4rad corresponding to

mg 2, 0.6eV.

to [97], however the bounds fall below the PVLAS bounds and do not probe new
parameter space.

By exploiting frequency doubled beams we can extend the mass interval to larger
masses. The red region directly to the right of the red projected bound in figure
is a projection for a frequency doubled beam under the assumption of 10% energy
loss in the conversion. While just an estimate, techniques are efficient enough, that
the bounds do not deviate significantly from the indicated ones.

To extend the mass interval to still higher masses we may exchange one optical

generation laser with an x-ray beam. In general, substituting both beams would fur-
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ther extend the mass interval, however the substantially smaller energies per pulse of
x-ray sources render this approach sub-optimal. The European X-FEL operates at
w = keV with a pulse length 7 = 228 eV~! and energy per pulse of £ = 0.5mJ. The
shorter pulselength limits the interaction region to a cube of sidelength 7 and the
resulting bounds are shown in purple in figure [2.2] Note that due to the asymmetric
beams the simple expressions from before no longer apply, we quote the appropriate
expressions in Appendix [A] Note, also that the shape of the exclusion region varies
because of the altered geometry. For a pair of symmetric beams the maximal bounds
are found for k, — 0, when the two beams collide head on. In this case, the electric
and magnetic field of both beams perfectly align and |E; - B;| is maximal. For asym-
metric beams the situation becomes more difficult and the maximum may no longer
simply lie at the smallest k,.

Having obtained the results for asymmetric beams, we may now fill out part of
the parameter space in between by combinations of frequency multiplied beams. The
same is true for the collision of an optical and a x-ray beam because the latter is
tunable up to 25keV. The achievable region is indicated in fig by the purple

region.
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Chapter 3

Parametric co-linear Axion photon

instability

Parametric instabilities are common in laser plasma interactions resulting in the ex-
ponential growth of a coupled secondary wave at the expense of a strong pump pulse.
We aim to investigate the coupling of axions to a strong pump laser, identifying a
similar parametric instability, which we then aim to derive a measurable signal from
to complement other laboratory axion searches.

The physical process leading to an instability is a positive feedback loop which
transfers energy from a seed into the unstable mode. The latter will already be
populated, either from a probe beam or the instability grows from noise. In the
case of Raman instability, which is very reminiscent to the process described in the
remainder of this section, a laser beam incident on a plasma excites plasma waves
which become unstable [98]. Microscopically what happens is that the incident wave

pt’ decays into a plasma wave p)* and a secondary photon, the sideband, p# satisfying

Py =p P (3.1)

The initial laser beam displaces electrons in the plasma, leading to a plasma wave.
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The moving plasma electrons emit radiation, the scattered sideband mode. This
sideband mode in turn increases the ponderomotive force on the electrons expelling
them further resulting in a positive feedback loop under which the plasma wave grows
exponentially for early times [09]. A similar situation appears for an axion-photon
system with the axion-photon coupling taking the role of the ponderomotive
force. An electromagnetic seed beam decays into a scattered sideband and an expo-
nentially growing axion mode. The results described in this chapter were published
in [4] and the arguments closely follow the arguments therein.

We envisage a set-up involving a strong laser beam, the pump, propagating in a
vacuum. In the following the terms pump and seed are used interchangeably. We also
consider the case in which the beam propagates in a plasma but it turns out that for
our purposes limiting ourselves to the vacuum case is superior. By having a probe
beam propagating parallel to the pump we start the parametric decay instability and
feed energy from the pump into the probe and an axion mode. To achieve coupling
between the beams, the probe pulse is polarised orthogonal compared to the pump
and therefore the transfer in energy is accompanied by a change in polarisation of the
combined electromagnetic field of pump and probe. We aim to measure this change
in polarisation. As such the set-up shows similarities to [100] and the PVLAS search
[89] but uses a different mechanism. The set-up is shown in figure with pump and
probe co-propagating from the left and a polarisation detector on the right.

Previous considerations of the axion-photon coupling were mostly limited to static,
constant fields as in [37, O1] which break the spatial invariance of the background and
therefore allow photon axion mixing. This is the starting point of LSW type exper-
iments or searches like CAST. Previous work on axion photon coupling in electro-
magnetic waves focused on the scattering processes as in [100} 3] but did not account
for parametric instabilities. The situation in plasmae is less well researched, however

some work was done assuming electromagnetic duality symmetry [101), T02], a sym-
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Figure 3.1: A cartoon of the set-up described in the text. A strong pump pulse
co-propagates with a weaker probe of orthogonal polarisation. They couple via the
parametric instability found in this chapter and energy is transferred from the pump
into the probe and an axion mode. Because of the orthogonal polarisation, there is a

change in polarisation of the combined electromagnetic wave which can be measured.

metry low energy electromagnetism does not posses. Parametric decay instabilities in
axion photon systems was investigated in [103] where the authors consider dispersion
relations close to the vacuum ones and simplify their system to first order differential
equations. This effectively assumes that the growth rate I' < w the energy of the

axion, an assumption which does not hold in our analysis.

3.1 Instability growth rate

The system of axions and photons is again described by Axion electrodynamics as
in the previous chapter. We now also include electric charges but ignore the axion’s

coupling to fermions. Including electromagnetic charges, the Gauss law for magnetism

V-B=0 (3.2)
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and the Maxwell-Faraday law of induction

VxE=-9B (3.3)

are unchanged, however, Gauss’s law gets an additional source from the axion field

V-E=41p+ goyy (Va) - B (3.4)

and Ampere’s law includes an additional current

V x B =471J + O,E + g4y, (E x Va — Boa). (3.5)

Here, p is the electromagnetic charge density and J the electromagnetic charge cur-

rent. The observable fields are defined by the gauge fields A* = (®, A)

E=-0A—Vd (3.6)

and

B=VxA. (3.7)

To close the description of our system we take the plasma to be a simple fluid,
an assumption which should generally be acceptable given that our axions do not
couple to the charged fermions directly but only through the electromagnetic fields.

Therefore the charge conservation equation is unaltered after we gauge fix V- A =0
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The fluid motion follows a Vlasov equation

P
du+ (- V)u=—(BE+uxB)— -

Me TeMle

with P the pressure.

Newton’s law is simple to apply after two simplifying assumptions. We first assume
that any density fluctuations are orthogonal to A, an assumption which amounts to
ignoring pressure effects. The density fluctuations stem from the seed beams electric
field expelling electrons from regions of high field to regions of lower field. The result is
a pressure wave which runs along the seed pulse wave. Aslong as we ignore edge effects
this assumption is justified. The second assumption concerns the electron motion.
We will assume non-relativistic motion to neglect the influence of the magnetic field.
Note that in the end the electron motion plays a small role in deriving the limits under
consideration here, which makes this assumption relatively unimportant. Under these

assumptions

(9tut = —iatA (310)
Me

with u, the transverse electron velocity and m, the electron mass. Thence the trans-

verse current

e’n,

A (3.11)

J; = —enu, = —
me

where n, is the electron density. The ions are considered stationary.

From Gauss’s law ([3.4)) we find Poisson’s equation

V20 = —47p — goyry (Va) - (V X A) (3.12)

Assuming appropriate boundary conditions of vanishing currents at spatial infinity,
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Poisson’s equation and charge conservation fix the longitudinal part of the current
Jl = 8tVCI> — gawat (CLV X A) =0. (313)

We are then ready to find the wave equation governing the gauge field evolution from

Ampere’s law and the above assumptions. We find
(07 = V> + wl) A = gary (V X (ad,A) + (Va) x (VP)). (3.14)

Here we defined the plasma frequency wgl = 4me’n./m., the natural oscillation fre-
quency of a plasma.

The axion field is described by a Klein-Gordon equation
(0} = V*+m2)a=—gu,E-B. (3.15)

We proceed by performing a linear stability analysis of the coupled equations for
the plasma response , the gauge potentials , and the axion field
. We will assume the presence of a strong pump pulse, the seed and linearise
the system around such pump. We define for this purpose a set of background fields

and fluctuation fields evolving in those backgrounds. Take
A=Ay +0A, Ne = Ng + on, O=0+69, a=0+da (3.16)

and make the assumption that dA, 0P, da, dn < Ay, ng, all fluctuation fields are small.
Note that here we are assuming that the initial seed beam is still well described by only
the vector potential, an assumption which only holds for early times. Nonetheless,
this should be enough, insofar as we are mainly interested in the early stages of

the instability and due to the weak coupling g,,, the growth rate will be too slow
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for back-reaction onto the seed to become significant. We will also find that the
high degree of accuracy in polarisation measurements allows for the detection of
this instability well before this assumption breaks down. Therefore, we linearise the
equations by dropping higher order terms in the fluctuation fields. In the following
we are concerned with situations in which equilibrium is not reached and the above
assumption continues to be true throughout the duration of the experiment.

We find a set of linearised equations

e%ny

2
me

V2 (Ag - 0A) + guyy -2 (Voa) - (V x Ag)  (3.17)

(07 + wgl — 3v2V?) én = -

with v, the electrons thermal velocity entering through the pressure term,
V250 = 4medn — gary (Vda) - (V x Ag) (3.18)

and
4mre?

(7 + w2 — V2) 6A = —

Ay + gayy V X ((01Ag)da) (3.19)

e

for the Gauge fields and
(07 — V> +m2) 6a = Garr [(00A + VD) - (V x Ag) + (V X §A) - O, Ag]  (3.20)

for the axion field. To solve these coupled equations we perform a spatial Fourier

analysis

d*x

Fk 1) = / PO e (3.21)

Taking the seed background field to be Ag = Agcos (ko.z) we are then left with

2
“pl on W on. —1iw
(—07 —k* —w}) 6A(k,t) = —210 (—n;e of 4 ol Ot) A (3.22)

— ga'yry% (k X Ao) (5a_e—iw0t _ 5a+eiw0t) 7
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k?0®(k,t) = —4medn + %k- (ko x Ag) (da_e ™" — fa ™), (3.23)

2.2
(—af _ wzk) 5’[’L(k,t) o ke A() ) (5A_e—7jw0t + 6A+€iwot) (324)

no 2m?

ga'V'Y € —iwpt iwot
2 " k- (k A da_ ot _ § 0
5 m. ( o X 0) ( a_e ae )

and

(—83—-k2—-wﬁ)5aﬂst)::@§l k- (ko X Ag) (§_e ™0 — 5@, ¢0t) (3.25)

+A0 . (eint <W0k+ - Zkoat) X (5A+ — e_int (Wok_ - Zkoat) X (SA_) .

We have used shorthand notation fi to mean f(k + kj). Looking at the coupled
equations we can see that only such fields couple whose momenta satisfy the mode
matching condition

ko =k, + k.. (3.26)

Because there is both, 4k in the seed pulse, both the sum and difference sideband
modes contribute.

To proceed, we now make another simplifying assumption, we will work in the
co-linear limit where all waves propagate in parallel. Hence, k o k( for all modes,
which simplifies the situation substantially. Dividing the gauge field dA into two
components, one parallel and one orthogonal to the seed field 0A| and 0A |, we find
that only the orthogonal piece couples to the axion field. Remembering that the
axion-photon coupling is polarisation dependent and vanishes for parallel polarised
fields, this is to be expected. We can also see this in the equations where now
k- (koxAp) =0and Ay - (k X 5AH) = 0. In fact the whole system splits into two

separate subsystems, the parallel gauge field couples to the density waves through
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the following system of equations

2
wor [(Ony 4, om— ..
(=07 =K — wpy) 0AN(K, 1) = =~ <n—oe e ot) Ao, (3.27)
k?0®(k,t) = —4medn (3.28)
and
on(k,t) kZe? , ,
(=07 — wai) nf,to’ ) 27:;2 Ay <5A!€_W +5A16W0t>. (3.29)

This system is identical to that describing the Raman instability, which was mentioned
at the beginning of this chapter. For this reason, and because it is decoupled from
the axion field, we will not go into further detail.

The interesting bit is the remaining coupled system describing the perpendicular

field
(=07 —k*— wﬁl) At (k,t) = —gaw% (k x Ag) (da_e ™" — dae™") (3.30)
closed with

(=07 — k> —m2) da(k,t) = 9‘% Ay - (eiwot (woky — iko0;) x 6A}

— e (k. — ikody) X 5A£>. (3.31)

As we are specifically interested in the perpendicular fluctuation field we will from
now on suppress the label 1 when referring to this field. We then proceed to solve

the equations by making an ansatz for the time dependence

f(k,t) = f(k)e (3.32)
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reducing the set of coupled differential equations to a set of algebraic equations in
w(k). We attempt to solve the equations by substitution of into (3.31)) to
eliminate the fields 0A. In principle we are left with an infinite tower of coupled
axion fields a(k £ jko), 7 € Z which arises from . An axion with momentum k
propagating in the seed pulse couples to a photon with momentum k + k. Such a
photon then interacts with a seed photon to form axions of momentum k + kg + k.
Each of those axions then starts the same process again, hence a whole cascade of
axions modes is produced. In reality, however, the production of all higher harmonic
modes is heavily suppressed. Such terms can generally arise in two distinct ways,
by cascading as described before or from the spectral width of the seed pulse. In
the former case their appearance is generally higher order in the coupling g, as is
apparent from the fact that a(k + (j + 1)kg) only appears after a(k £ jkg) is already
present and decayed. In the second case, a photon away from the central momentum
of the beam with jk; seeds the instability and immediately generates an axion with
a(k £ jko). Modelling the beam as Gaussian with a very narrow spectral width we
can also ignore this effect based on the suppression of photons in the tails of the
distribution. We will thus proceed by dropping all fields of momentum k + 2k, and
higher.

The system of algebraic equations is then solved for axion fields a(k) and photon

fields A4 with frequencies w(k) satisfying the dispersion relation

2 A? Wo K — Ko
D* (w(k), k) = ga% (wok — w(k)ko) (D7 (w(k;k— w(]i Ii — ko)
wo(k + ko)
) rakTR) O

For notational convenience we have defined the bare dispersions in the decoupling
limit g4y, — 0

D (w(k), k) = w(k)* — k* —m? (3.34)

a
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and

D" (w(k) £ wo, k £ ko) = (w(k) £ wp)® — (k£ ko)” — w2 (3.35)

Note that despite the decoupling of the plasmons from the axions in the chosen
co-linear limit, the plasma changes the photon’s dispersion relation and gives it an
effective mass wp. As we will see, this mass plays an interesting role in the axion-
photon instability we find.

To solve the dispersion relation we first proceed numerically to get an idea of
the hierarchies involved. The numerical solution of the dispersion relation is
straight forward: it is a polynomial of 6th order, which, as such has 6 solutions. We
are interested in any complex solution. If such a solution exists, we will conclude that

the system is unstable and grows exponentially with time, as can be seen from (|3.32])

oW}t _ ,—iR(w(k)tH+S(w (k) (3.36)

This exponential growth will only be present as long as the assumptions we made
above hold, especially the hierarchy between seed field and sideband mode only holds
in the early stages and eventually stops the exponential growth. Figure [3.2] shows
the numerical solution to the dispersion relation exhibiting an instability. The
dotted green curve shows the bare axion dispersion for comparison. In blue we
see the axion’s energy, the real part of the frequency w(k) and the dashed yellow line
indicates the imaginary part, the growth rate. Some interesting behaviour emerges,
which should be explained in the following.

The first observation we make is that the growth rate is essentially constant in
axion momentum when the momentum is low and sharply drops off at a cut-off value
above which no instability is found. We also find that the axion’s energy R(w(k)) is
orders of magnitude smaller than the seed pulse frequency. It is in fact much smaller

than the growth rate which will later complicate the analytic calculation. The fact
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Figure 3.2: The plot shows the growing solution to the dispersion relation .
The blue solid curve shows the real part w(k) corresponding to the modes’ frequency
while the dashed yellow curve depicts the growth rate I'. Note that here we included
the O(k?) contributions to show the cutoff. As a reference we include the vacuum
dispersion relation for an axion with the same mass in dotted green. For illustration
purposes, we have chosen m,/wy = 1072 and g,,,A40 = 1073, We see that even for
such large values, the axion frequency is negligibly small. The plasma frequency

wpl = 0 here, see the main text for discussion on the effect of the plasma.

that it is much smaller than the bare dispersion in vacuum makes the mode evanescent
[T04]. In essence this means that the propagating axion mode cannot propagate out
into vacuum as it does not have enough energy to support its mass. This is fully
analogous to a light wave incident on a supercritical plasma, a plasma with density
such that w, < wp,. The electromagnetic wave cannot propagate into the plasma and

is reflected. Note that not every unstable axion mode we find is necessarily evanescent,
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but for sufficiently large axion mass they are. Generally a mode is evanescent if its
energy is below its vacuum mass.

We can make two further observations when scanning the plasma density and
axion mass. We find that there is a cutoff mass above which we can no longer find
an instability. This is to be expected, as in the co-linear limit, only very light axions
with negligible mass fulfil energy-momentum conservation at the three point vertex
between axion and two photons. It should be noted that in the vacuum limit, the
decay of a massless particle to a massive one is forbidden, however in our case the
background is a strong electromagnetic field. The energy momentum conservation
condition is modified due to the presence of the strong laser fields and plasma density.
A toy example was investigated in [105] where a similar observation was made; while
a perturbative calculation around the vacuum state suggests the decay of a massless
to a massive particle is forbidden, non-perturbative analysis reveals that the process
can take place in sufficiently strong fields for small enough masses m,/wy < 1. We
will find the precise condition later on in this section. Further, we may notice that
changing the plasma frequency affects the growth rate only marginally but changes
the axion’s energy significantly. It is changed so significantly that the unstable axion
mode travels backwards for sufficiently dense plasmas and forward in the vacuum
limit. A backwards propagating mode is characterised by a relative sign between
frequency w(k) and momentum k.

In the following we will use the above observations to solve the dispersion relation
(3.33) analytically. We will then use this solution to make the above statements
concerning cutoffs and relative sizes precise. For simplicity we begin by considering
the vacuum limit w, — 0. The dispersion relation is a 6""-order polynomial in w(k).
As they are stable, the two real roots w(k) = k can be discarded. If there exists an
instability in the system, eventually the unstable mode, growing exponentially, will

dominate, hence we are justified in dropping the other modes. We proceed by working
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with the remaining 4**-order polynomial and splitting w(k) into its real and imaginary
parts w(k) = w(k) + i['(k) for w(k),['(k) € R. The resulting real and imaginary
equations are linearly independent and therefore must be satisfied individually.

The remaining imaginary equation is a cubic polynomial in the growth rate I'(k)

with one trivial solution I'(k) = 0 and two non-trivial ones

2
r— j:\/3k:w2 + 2w — dwwd — k3 — m2(w + k) + 2220 (3.37)

We know that, with the ansatz (3.32)), only a positive I'(k) corresponds to growth,
hence we focus on the positive root only. After substituting I'(k) into the real part
of the equation, we are then left with a single algebraic equation for w(k). Figure
shows that in our case, the frequency w(k) is very small, thus motivating an expansion

in w(k), which we find to be

wik) = k(gavgfo)z ( (gm;Ao)? ) (%)2> | 5

Here we dropped terms of order 6 in (gay,4o), (Mmq/wo) and k as being small. The

growth rate can then be expressed as

(k) = wo\/<g‘”T”Ao)2 - (Z—O)Q — <k£0)2 (3.39)

where we have again dropped higher order terms in (gsy,A4o), (Ma/wo) and (k/ko).

Upon a closer look at (3.39), the qualitative behaviour of the numerical solution

depicted in fig is recovered. We find growth below a cutoff in k, which is defined

Ao\ ma\ 2
kcutoﬂ = kO (ga’g 0) - (w_a> . (340)
0

For larger k, I'(k) becomes imaginary and our solution, which intimately relies upon

by
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the linear independence of the equations for the imaginary and real part we split
earlier, breaks down. We had already found before that the growth rate is essentially
constant in k£ < keuofr, @ behaviour which is obvious here and allows us to suppress
the dependence of I' in the following. also reveals a second cutoff for m, /wy >
GaryyAo above which no instability is found.

From (3.38) we can calculate the phase velocity of the unstable modes

o= 200) _ (gen o)’ <<92A> . (7;1_)) | (3.41)

which can be much slower than the speed of light even for massless m, = 0 axions.

Surprisingly, the axions’ velocity appears to vanish in the decoupling limit g,,, — 0.
Upon closer inspection we realise that in fact our method of solution breaks down
in this limit. The growth rate becomes imaginary in this case and the two
equations we got by splitting w(k) into a real and an imaginary part are no longer
linearly independent. In fact, we can see that, in the decoupling limit, the bare
dispersion is recovered already from the dispersion relation .

The inclusion of a plasma in our set up does not alter our method for solving the
equation. In this case, however, the solution becomes less tractable. Reproducing
the full result leaves only little insight. On the other hand, finding the lowest order
correction stemming from the plasma frequency will reveal interesting behaviour. The
frequency of the axion field to lowest order in this circumstance is

1w (%)2
wy (k) = —=—4 k+ O(wy) (3.42)

o 2 2
2 Wo (9%“/140) _mg
2

with special attention to the sign of the solution. The presence of a plasma changes
the relative sign between w(k) and k, the wave propagates in the opposite direction.

While the axion wave was co-propagating with the seed beam before, it is now back-
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scattered. Compared to the frequency in (3.38) it is also revealed that the frequency

is significantly larger in a background plasma alongside the axion velocity

2
gayy Ao
Owp (k) 1w? ( 2 >
pl _ p _ ___p 4
VP 5% 2w <9a'w140>2 o (3.43)
2 wg

This makes the inclusion of a plasma inferior to the vacuum case. In a plasma, the
effective time for which the instability grows is set by the crossing time of the axions
because they can no longer be assumed stationary as was clearly possible in the
vacuum case . As was already suggested by the numerical solution, the growth

rate does not change significantly

]_(UQ (ga'y'yAO)
1 2
(k) =T(k) 1= 55 —— | (3.44)
0 (L) _ Mg
2 wg

In addition to that, the cut-off momentum ((3.40)) does not change substantially. When
considering a real experiment, the addition of a plasma also adds to the background
signal and complicates the analysis. To this end, we conclude that the optimal set-up

is in vacuum, wp — 0 and adopt this limit in the following.

3.2 Experimental signal and projected bounds

There is a plethora of possible signatures to measure the existence of axions by means
of the instability discussed above. Unfortunately, the smallness of the axion frequen-
cies w(k) which become unstable renders most of them unobservable. Physically, the
seed pulse breaks into an axion and a sideband photon, hence depleting the energy
of the pump. This, however, is not detectable for two reasons: first, our calculation
makes the assumption that the seed beam is a background field and does not sig-

nificantly change. This is ensured by the hierarchy between the seed field and the
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fluctuation fields. Further, the axion’s frequency is so small, w(k) < wp, that any
sideband mode will be within the spectral width of any realistic seed laser. Therefore,
the laser beam only loses the energy going into axion radiation, which is negligible
for the same reason: the frequency is small.

Upon closer inspection, it becomes apparent that while the frequency of the side-
band modes is essentially indistinguishable from the seed laser frequency, the polari-
sation is different. The coupling ensures that the two photons are orthogonally
polarized; thus, while the energy of the seed beam decreases like w(k)N,, the polari-
sation changes much faster.

The set-up we have in mind consists of a pump pulse polarised in & and a weaker
probe with polarisation in y. We require the presence of the probe such that the
instability can commence. The first axions are created via stimulated decay of a laser
photon at wy into a photon of the probe laser and an axion. Once present the axion
field grows through the E - B source term, which takes the role of the ponderomotive
force in the Raman instability. The large hierarchy between the pump pulse and the
other modes ensures that together with the axion field, the probe beam field also
grows while the pump is depleted [99] 106]. Because of the slow growth rate at hand
we need not concern ourselves with the termination of the growth once the fluctuation
fields become comparable to the pump pulse.

We define the initial polarisation of the combined seed and probe wave as
poy=AE-AG_ (3.45)

Here, ¢ = §A/Ay < 1. For early times, the pump pulse is unaffected and only the

probe grows alongside the axion mode through the

ga'y'yAO

5 Sae~ ottt (3.46)
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source term on the right hand side of (3.30)) where we ignore the small shift in fre-
quency as w(k) < wy. Since the growth rate does not depend on k, the Fourier

transform is trivial. Thus, the polarisation has a time dependence given by

P(t) =1 —¢ — (garsAg)ée". (3.47)

We need not know £ very well as it will eventually only enter the sensitivity in a log
and not play a significant role. Change in the polarisation of lasers can be measured
to astonishing accuracy as was demonstrated by e.g. the PVLAS collaboration [89].
It should definitely be possible to measure polarisation changes on the order of AP ~
0.001 and probably better. Taking this as a reference value we are ready to project
the reach of an experiment utilising the above instability to search for axions.

Straightway, we appreciate that the most important part in the signal calculation
is the exponential. The timescale of growth ¢ will be set by the laser pulse length 7.
The growth rate depends on the laser parameters

_ -5 —1 Garyy 7 ?
D= 94x 1077 () (W/Cmg) . (3.48)

Here we calculate the laser intensity from the energy per pulse &, the pulse length 7

and the focal spot size ¢
& A2
7="2 -9 (3.49)

702 woTh?

The very small axion momentum requires the focus to be maintained for long
distances > k~!'. This has a simple explanation: when calculating the dispersion
relation, we have effectively assumed infinite extent of the modes involved. For this
assumption to hold, the axion wavelength must be shorter than the laser pulse spatial
size. Once this assumption breaks down, the axion no longer fits into the pulse and

such long wavelength modes are not present in the spectrum. This is equivalent to

60



quantising the system in a box whose spatial extend sets an upper bound on the
wavelength of any mode inside. We thus find a lower bound on the axion wavelength

Ag = kc_ultoﬁ and estimate that distance

[NIES

Ao >3.2x10%m (A)l I\ (3.50)
‘= 1078 GeV~! W /cm?

At this point, two problems become apparent. First, the wavelength is very long and
the lower bound is intensity dependent and therefore depends on the focal spotsize
through . We hence need to minimise the focal spot size such that the intensity
is maximised while at the same time keeping the focus over macroscopic distances.
The highest laser intensity currently operating systems can generate is around
Z = 102 W/cm? and this lasts for 7 ~ 10fs [107]; for a review of current laser
technology see [10§]. Such intensities would correspond to a wavelength of A\, = 9m.
Generating and maintaining long laser focuses might be possible with a variety of
approaches in the future. For example, the latest plasma-waveguides are capable of
maintaining a laser focus over 10m scales [109, 110]. It is also worth pointing out
that the required focus length decreases mildly with laser power, hence the problem
will become marginally simpler in the future. Nonetheless, the scaling is not sufficient
to expect a solution to the problem simply from improving laser technology. In fact,
the Schwinger limit, sometimes called the critical field strength of QED, corresponds
to intensities Zui ~ 1022 W /cm?. At higher intensities, pair production becomes
efficient. Schwinger limit fields would correspond to axion wavelengths A\, > 1cm
still much larger than optical wavelengths of the seed beam and therefore continues
to pose a challenge for the length of the focus. We conclude that an increase in laser
intensity does help to bring the axion wavelength down to sizes which fit into the
target vacuum chambers of high power laser systems, but is not sufficient to reach

couplings as low as the current best bounds of alternative searches like LSW. Note
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that the situation worsens when trying to go beyond those bounds, as can be seen in
(13.50)).

Another challenge is the generally slow growth rate requiring long pulses in time.
The e-folding time is readily found from and must be compared to the pulse-
length of a Z = 10 W/cm? pulse which lasts for 7 ~ 10ps. This restricts the

couplings we can probe. Assuming we are capable of measuring a polarisation change

AP, by inverting (3.47)) we find

T 3, o1 AP
> 3.4 x 1072 N e o) W ol
Jaryy = 3.4 X 1077 GeV (1023 W/CmQ) <1O fs> ! {(gawAO)f} (351)

The log gives a small contribution, it is not inconceivable to measure AP < 0.01. For
the laser parameters quoted here, gq, A ~ 8.

As we can see, currently operating laser systems are only capable to probe cou-
plings well below the current best laboratory limits set by LSW type searches. It is
conceivable to perform the search we envisaged above, since for couplings that small,
the axion wavelength lower limit is only A, > 3 um which is close to the wavelength of
the optical seed laser. Maintaining a focus over such length-scales is indeed possible.

Above, we have taken the timescale of the experiment to be equal to the laser’s
pulselength 7. This warrants closer investigation, as there is a second timescale
in the problem, that is the time required by the axions to leave the focal region.
Fortunately, the phase velocity is negligible and we may thus take the axions
to be effectively stationary over the course of the interaction. This, however, changes
significantly when a plasma is included.

The instability cuts off at large masses, hence our bounds only extend to

_ Ja A 3
0 < 6.8x1072eV ki 3.52
Ma =58 ¢ (3.4 x 1072 GeV_l) (1023 W/Cm2) (3:52)
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Figure 3.3: Axion exclusion plot indicating past experiments and the current work.
The coloured regions correspond to purely laboratory-based experiments, while in
grey-scale we indicate astrophysical and dark matter bounds. Results from light-
shining through wall experiments are shown in yellow [85],87]. The dark grey region is
excluded by the ABRACADABRA collaboration [58] looking for dark matter axions.
The dashed black line indicates CAST constraints [94]. The lighter grey regions are
excluded by the Chandra telescope [79], observations made on the SN1987A supernova
[75], the Fermi LAT collaboration [80] and considerations of a Hot Neutron Star in
HESS J1731-347 [81]. The solid red line indicates the reach of an experiment as
described in the main text with laser intensities of Z = 10> W /cm? with pulselength
7 = 10ps. The dashed and dotted red lines indicate the laser requirements to reach

bounds similar to LSW and CAST respectively.

and drop off above that. The drop off is calculated according to

o =34%x1072GeV T [ — e ) 353
Gary % © (6.8><102ev) (3.53)
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We thus find that the above discussed approach can probe couplings as indicated
by the solid red line in fig. (3.3l For reference, the plot also shows laser parameters
necessary to reach the current best laboratory bounds and CAST limits. In general
better sensitivity can be obtained by both, increasing intensity or longer pulses. While
the scaling of with pulselength 7 is favourable over the scaling with intensity
Z, we have to point out that only increasing the pulse length is not enough. The
problem of focal length must also be addressed.

It is worth mentioning that this approach can, unfortunately, not be used to probe
the QCD axion. Here, the coupling and mass are no longer independent but rather
Gary X Mq. To reach this, we would need Ay > 10'8 eV, which is above the Schwinger
critical field limit.

There are two canonical routes to extend upon the results in this chapter. We can
move away from the laboratory setting and aim to apply this instability in astrophys-
ical settings in which the long axion wavelength is less of a problem. The challenge
remains to find suitable conditions in which we have intense beams of radiation with
well defined polarisation in this case.

Another possibility which we aim to investigate in the future lies in the assump-
tions we made to simplify the calculation. Dropping the co-linear limit is one obvious
improvement, but perhaps more interesting would be to allow for a phase mismatch
in (3.26]). The idea is the following: By allowing a small phase mismatch Ak such
that ky = k, + k, + Ak we may get to a situation in which k,, the momentum of
the axion mode no longer needs to be as negligible as in the perfect phase matching
case above. Effectively because we can trade the smallness of k, to a cancellation
between k, and Ak. The detailed behaviour of this system will have to be analysed
in a future investigation to ascertain whether such a system still exhibits instabilities
and whether the postulated increase in axion momentum holds.

We conclude that in its current state, the here proposed set-up is inferior to
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alternative searches like [3], however, further interesting avenues are to be explored.
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Chapter 4

Axion-like-particle decay in strong

electromagnetic backgrounds

With the discovery of the laser and the steady increase in peak power [111] elec-
tromagnetic fields approach getting strong enough to observe electron-positron pair
production [I12) 113, 1T4]. The decay of photons in a laser background has already

been seen in [115, [I16]. At fields above the critical field of quantum electrodynamics

(QED)
m2
Fqrp = \7| =1.3 x 10" V/m, (4.1)
in the literature also known as the Schwinger critical field, the decay of an elec-
tromagnetic field quantum into an electron-positron pair is no longer exponentially
suppressed. The work done on an electron (positron) per Compton length corresponds
to more than the electron’s (positron’s) rest-mass. Hence, real, on-shell pairs may be
created.
Pair creation is a non-linear process and typically involves the interaction of many

electromagnetic field quanta to transfer sufficient energy. The parameter governing

the importance of multi-photon interactions is the classical non-linearity or intensity
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parameter

g=A (42)

Me
with A the amplitude of the electromagnetic wave potential. If £ > 1 an electron
becomes relativistic from rest within one laser cycle by absorbing many photons.
Multi-photon processes are suppressed and perturbation theory can be performed for
¢ < 1 but cannot be ignored once £ > 1. Note that is not Lorentz invariant,
however an invariant formulation was found in [117]
o _ BT Ok, _ (b (P~ T ) k), "

m2(k.k)? m2(k.k)?

where k, and &, are the massive seed-particles and background fields four-momenta,
T* is the stress-energy tensor, F*” the electromagnetic field strength tensor and (.)4
is a cycle-average over the phase.

A third governing invariant can be defined as

. \/M o

meFqep(K-p)?

commonly known as the quantum non-linearity parameter [118]. It indicates the
strength of quantum effects an electron with momentum p, experience in a field with
amplitude F*.

As mentioned, pair production from seed-photons has been widely studied in the
literature [119, 120, 118]. The axion’s coupling to fermions allows for axion
seeded pair production, which can be used as a complimentary axion search to the di-
photon regeneration experiments, probing a different SM coupling g,.. Axion seeded
pair production differs from the corresponding photon seeded process because of the
pseudoscalar nature of the axion and the finite axion mass. The latter reduces the

energy gap between the initial axion state and the final electron positron pair, thereby
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lowering the strength requirement of the electromagnetic field for unsuppressed pair
production. By having the axion have an appreciable Lorentz boost, the field in the
rest-frame can be further enhanced. The decay of an axion into a pair in a plane
wave background was investigated in [121], while axion production in the interaction
of electrons and high intensity laser beams was studied previously in [121], 122, 123,
124]. We will review the standard strong field QED techniques (see [125, 1206, 127,
128] [129]) in section and then calculate the axion seeded pair production rate
in [4.2l We then aim to investigate the detection capabilities of a LSW type set-up
where the axions are produced via bremsstrahlung steming from the interaction of
an energetic electron beam with a solid target. The resulting axions then propagate
into a detection region, shielded from any SM background produced in the collision
and enter a strong magnetic field in which they decay into electron positron pairs.
The magnetic field lowers the axion masses for which unsuppressed decay is possible
to below m, = 2m,.. With the above set-up the signal depends solely on the axion’s
coupling to electrons g,. and is hence truly complimentary to the traditional di-photon
LSW searches. Relatively heavy axions m, > 1MeV are constrained by beam dump
experiments [130, [131], however going below m, < 1MeV, laboratory searches are

needed.

4.1 Furry Picture

The wavefunction of an electron in an electromagnetic field satisfies the Dirac equation

(7" (10, — eAy) —me) ¥ =0 (4.5)

with e the U(1)em charge and m, the mass of the electron. A, is the U(1)em gauge

field. Restricting ourselves to plane wave fields, the Dirac equation can be solved
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exactly [132]

A(¢) ~ -
v, = —<1 i egn'p > exp (z’p.x +1 /d) 2epA(9) — 2 A%(9) dq~§> Uy (4.6)
V20V 0 2K.p
with ¢ = k.z the phase, A(¢) the background field potential (only dependent on ¢
for a plane wave) and wu, the electron spinor. The slash stands for contraction with
a Dirac matrix # = 4"k, and ’.” is the Minkowski connection k.p = k*p,. For
photons k2 = 0 and the electron momentum is on-shell p? = m?2. This wave-function
describes a dressed electron on which one can perform perturbation theory in the small
radiation field given by the emission of photons or axions. Acting with the kinetic
four momentum operator I, u = i9, — eA, we may find the kinetic momentum of

the Wolkow state ({4.6])

2ep. A — e A?
WAL, W, = p, — €A, + 5, (u) ef A

— Ky—. 4.7
2K.p 4 2K.p (47)

After time averaging eliminates the linear terms in the gauge field A, we find the

time averaged kinetic momentum

2 12
N e’ A
Py =Pu— 2 K- (48)
From here it is natural to assign an effective mass to the state
2 12
e’ A
m? = p* = m? <1— 5 ) (4.9)
me

This mass is known in the literature as the dressed mass of an electron in a plane
wave field. As long as the photon field is weak eA < m, the electron’s dressed
mass is equal the rest-mass. In this limit we may calculate perturbatively in eA

because the dominant process will be the one involving least photons. Each additional
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photon interaction comes with a factor eA/m, making it progressively less likely.
This is the standard perturbation expansion into Feynman diagrams. If, however,
the field becomes strong, eA > m,, such a perturbative expansion breaks down,
as additional photon interactions are no longer suppressed. The electron is now no
longer well described by the vacuum wave-function and the Wolkow states are used.
The electron’s mass is re-normalised by many photon interactions and in this sense
is dressed by the photon field. Describing the electron ground state in a background
plane wave field then allows us to do perturbation theory on the radiation field which
is once again small [I18]. Formally we split the photon field into a background field
A, and a perturbation field, the radiation field, flu. The background field is absorbed
into the free field Lagrangian of the electron and the radiation field may be treated

perturbatively
L=U (2@ - me) v — e\TJ’yM\II (Au + flu> =0 (z(}? —ed — me) v — e\Il’yu\IbZlu. (4.10)

The free electron wavefunction then satisfies (4.5) and has the form of the Wolkow
states (4.6 which form an orthonormal basis [I33]. This is known as the Furry picture

[134].
4.2 Pair creation probability
The coupling of axions to fermions takes the form
Lae D GacWyys U7 (4.11)

where the free field electron states are now full Wolkow states (4.6). Because of the

smallness of g,. we are free to perform a perturbative expansion in the axion electron
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coupling and terminate the Dyson series at tree-level. The S-matrix element is then
S= igae/d‘lxa\lfpvg,\llg. (4.12)

We take the axion field to be a plane wave with momentum k&
a(r) = ————e " (4.13)

which results in

) ) 3 g 2ep. AP —e2A2(d) | 2eq. A(D)+e2A2() | 1
= / SRRt (GG ARG (g1

/8k0p0qov3

where

E=a, (1 + ﬁi—?f) Vs (1 + %?) Vg. (4.15)

We may simplify the analysis by changing to light-front coordinates in which [135]
x* =20 4 23, xt = (0,2%,2%,0). (4.16)

By choosing k = x1/2(1,0,0,1), the plane wave phases are now ¢ = %z~ indepen-
dent of the other coordinates. We may thus perform most of the integrals in (4.12)

by decomposing

1 detd?z+d
dr = —drTda~d*x* = de”d’a”dg (4.17)
2 2k0
which leaves the only dependence on 7+ and z* in the phase and results in
oo (277)? irdai [© [ 2e2:A@)=e?A%(d) | 2eq. A(9)+e%A%(@) | 47
§ = el 5o <p+q—k)/ae e )
/8K0p0g01/3 0
(4.18)

72



+ gt —kt

where r = P—=—_ For convenience we have transformed all co-vectors to vectors

by the relations

1
Ty = §x$, T, = —xT. (4.19)

From the S-matrix element we get the transition probability as

d*pd3q
Pyt =V? / > Tr|sP e (4.20)

spin

The trace and spin sum are simply evaluated to be

T 1 —
T3 S%Tr ER (4.21)
S JA@) + A (pf”»_-k N q/f_-k‘) _ 2A)A(Y) (mK)?
2 Kp K. 2 K.pK.q

2

where we used the on-shell condition ¢ = m2. The integral is again expanded in

light-front coordinates

d3p B dpfdzpj‘

250 = 0 (p”) (4.22)

ptp~=m2+(pt)?

and we may perform the d3p integral because of the momentum conserving delta

functions. We readily find

2 — 72,1 . ”+g ep. A eq A e2A% k.k .
g dp~d’p~ o\, - P77 |-l o ek g ior
Piyete- = S 0 0 dodfTe 73 P ¢ pr-4

- 8<n0>2k/ rypg P JRE

(4.23)

where we have defined the average and difference phases

0=¢— . (4.24)
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We can now use the identity
kp m?

=L e 4.25
" K.Q  2K.q ( )

and definition of the plane wave momentum

2eA.p — e A?
M=p—eAtrP"C2 (4.26)
2K.p
to write
P, Jae dszdpfe “\ola~ dod0T ifﬁeg ’:—qdmm% L7
- = o—§ r e )
a—ete 4(271.)3(,{0)2]{;— / P (p ) (q )/ g e ( )

Let us remove the dependence on ¢ by noting that the momentum absorbed from
the background field is

_ 2kp—m}

p+q—k=>Xk & (4.28)

2Kk.q

To find A we used the on-shell conditions p? = ¢*> = m? and x? = 0. This results in
the identity

m: + p.q = k.p? -2 = (4.29)

T kk  m2rp elA(p) +A(¢’)]' ( K.k /i.k) _ 2A(9)A(¢) (k.k)

Lt TP kR RR '
4 p/-f.q 2 K.q * 2 p/ﬁ.p q/@q 2 K.pK.q
(4.30)
The exponent is
i0( k2 ma i o+% 0wk A p—e2A2)_ ek-A
(855 )+l (i enmcrat) st ao (4.31)

which resembles parts of the expression for the trace. Indeed we may make the
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substitution

K p—k s —inkdy 4 Matik |k ek(A(9) + A(¢))
K.q 2 K.g K.q 2
(kk)* (A7) + e A%(¢) :
* 2K.qK.p ( 2 —ep.(A(g) — A(¢ ))) (4.32)
resulting in
T iy (ma | (k) €(a(g) —a(@))’ I st
1© T < 2 N K.qK.p 4 — K-k . (4.33)

The integral over the derivative term results in contributions from the boundary at
the infinite past/future. Demanding that the probability not depend on the boundary
term, we may drop the term. We can now perform the d?p* integral trivially because
the only dependence is in the exponent. We can see that noting the identity

2 142 2 142
mz; + (p) ﬁ.k_plkL_i_ma—l—(k )’ k.p (4.34)

to write the exponent as

2 . 2 142 . 152
- r.k 222 -0 Ma 60 Me k. (k—)“ k. 60 ( ) K.k 1 1 k.k
6_202mpmq <e A >_192mk+mq( 2 wpl 3 Kﬁ—(ek.A)) /d2 1 mq( p2 rp P (k _nAp€<A>>)

The Gaussian integral results in

pLQH' K.
/ (S ) A ) g
K

which leaves the probability

. gae do 2 62(14((;5) — A(¢,))2 ;-0 ( () _52)
P, = — Zng, \T0-10) _ 4.
a—ete™ 167T27]k / dodt 0 (5 + Qt(l — t) (& ( 37)
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We have defined the mass fraction §° = m2/m?, the lightfront momentum fraction

t = p~/k~ and the energy parameter n;, = k.k/m?. The Kibble mass factor is [130]

u®) =1+ <;—“:>2 - <(;—A>2> (4.38)

with the minus coming from A? = —(A1)? and we have used the identity
k) 1
(k)" _ . (4.39)
k.pr.q  t(1—1)
We may perform the ¢ integral analytically [137, [138)]
2
9 de 2
P, yetre- = =—%— [ do— | h(6)0“Ki(h(d 4.40
- 3%%/09(() A(h(0) (4.40)

2
—if2

+ (h(0)8% +ie*(A(9) — A(¢))?) Ko (ih(0)) ) e MO~

where K,,(z) is the modified Bessel function of second kind.

4.2.1 Local constant field approximation

If the intensity parameter of the background field £ > 1 motion is generally ultra-
relativistic and the plane wave field is approximately that of a constant crossed field
in the electrons rest-frame [I18], [139]. A constant crossed field has E - B = 0. In this
regime we can approximate the field as locally constant, which amounts to represent-
ing the probability in an arbitrary plane wave by an integral over the laser phase of

the probabilities at the local field values [140, [141], 142]. To extract the local constant

76



field approximation (LCFA), we expand the probability to O(6?)

2
1 2 eA 5 feA\?
Q[L = 9+ 5 (/ag m—edgb) — /Ug (E) d¢ (441)
1 e 0'"1‘%
~ 0+ ] (Ee /a_g (Ao + _¢¢) d¢) - _/ <A0 + _¢) do. (4.42)

Making use of the fact that the field is approximately constant, dA/d¢ ~ const., we
find

1 e [dA\? "
— R i 4.4
Ou =06+ 3 (da) 6 (4.43)

where the + arises from A.A = —(A+)? = —A2. Analogously we find

(o) — a7 =5 () (4.44)

Using the standard integrals

/ ety — g, [T . (4.45)
oo O+ i€ (3c3)3
and
/ dogeitroest®) — _ T g (T (4.46)
—00 (303)5 (363)§
we may write the LCFA probability
LCFA 92 6 . y
Pt = 2 [ doan | S ain(e) — walo) vt 2 (1.47)
with
Xk(0) >3 02
. . gz — 4.48
: (xp<a>xq<a> AN (4.48)

Here 1, = np(—e.a’)/m where ¢ is the laser polarisation 4 vector e# = (0,e,0).
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Assuming a constant crossed field, we can write the exponent of (4.37)) as

ZQ% (t(lf(f)t) - 52) - ﬁﬁ_ﬂ (1 + %2 — 8%(1 — t)) (4.49)

where we defined ¥ = y,0/2. In the centre of mass frame the maximal momentum

fraction t = p~ /k~ = 1/2 and we identify a threshold value § = 4.

4.2.2 Below threshold

If 42 < 4 then 1 — 6% (1 —t) > 0 and we call the situation below threshold if also

Xr < 1. We can then evaluate

2 T 3 52\ 73 82\ _s (1)}
PEE ~ Z_Q;Z_A_in\/\/_i (”?) (Hﬁ ) % (20) . (450)
C

Intuitively the form of the exponent can be understood by energy momentum con-

servation [I43], the energy of the produced electron is

E,(1) = \V/P? + e2E272 4+ m?2 (4.51)

where 7 is the time. The energy difference between the states is

AE(r) = Ey(7)+ Ey_y(7) — Ey(r) = 2’;@ {(1 + (62? ) - (l; — —% (4.52)

which for weak fields y; < 1 approximates to

AE(r) = 27:3 (1 - %2> > 1 (4.53)

below threshold. Making use of the WKB method we find the form of the exponent

P o T MBI _ (1) (4.54)
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where we made use of the saddle-point method to evaluate the integral to the smallest

7, for which AE(ir,) = 0. This time is

me | 0?2
= ——/1 = —. 4.55
! e|El 4 (4.55)

The production probability has the usual exponential suppression expected
for a tunnelling amplitude. The field here is too weak to bridge the gap between the
threshold pair creation energy of 2m, despite the fact that the axion has a small mass
which lowers this gap. Below threshold, the latter effect is too weak and quantum

tunnelling is the only option.

4.2.3 Above threshold

If 62 > 4 then at least some region of the ¢ integral will fall into the 1 —§%¢(1—¢) < 0

regime. This leads to a modified structure of the integral which we evaluate to find

Njw

promstst St L (1 oy s (i ﬁ> cos [ 8 (5_2 - 1)]
a—ere dr k= Ao | 2 8 (1+52)§ 3xk \ 4

(4.56)

Here we see that despite the weak background field, pair creation is no longer

exponentially suppressed because the large axion mass bridges the gap to the pair

creation threshold energy. Indeed we find a non-zero probability for decay even in

the A — 0 limit
pLOFAS?>4.4=0 g_geme—fdt 62(02 — 4). (4.57)

a—ete~ A 2

4.2.4 Strong field

The last remaining part of parameter space to explore is when the fields becomes

strong, xr > 1. In this case the simplest way to get the probability is to realise that
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the arguments of the Airy functions in (4.47))

\z\:i?(t(ll_t>>3}1—52t(1—t)]<<1. (4.58)

2
To keep the expansion consistent we must also demand §* < ;. Integration then

results in

4 2
proea  Gaeme L 2imyi (4.59)

amete” T = Ao 35T (HT (D)

6
To cross-check the functional dependence we once again turn to the intuitive picture
based on momentum conservation [I43]. In the strong field limit (4.52)) approximates
to

2¢*E?
= ek 72 (4.60)

AE(T)

and we find the relevant timescale of the process via 7, = AE™! from the uncertainty
relation. Then, the rate is proportional to g2, /7,, the classical timescale of motion
does not play any role here, as the field is strong enough to provide the electrons
with enough energy over the quantum time to allow for pair production without

exponential suppression. The quantum time is found

_ & ~ () (4.61)
"7 AE(r,) 1= 2R '

pLCFA

2
3
et~ 0C X as found above.

resulting in
In this limit, there is no longer the concept of a threshold for the axion mass as the
field is strong enough to provide the necessary energy for pair creation independent

of the axion’s mass.
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4.3 Constant magnetic field

Most laboratory experiments implement constant magnetic fields to reconvert axions
into detectable SM particles. A constant magnetic field in the lab frame may not
be described as a crossed field. However, in the frame of the ultrarelativistic seed-
particles k= /m. > 1, the field is well approximated by a constant crossed field with

K L F,

eA — Me——
() k= Ac Facp

(4.62)

where the nominal frequency of the constant field is defined as k° = 27/L where L
is the spatial extend of the magnetic field. The Compton wavelength is A\¢ = 27/m,
and Fj is the amplitude of the field strength. From here we find

Fy k= 1 m L

: — [ do —» —— 4.63
Focp me Mk k= Aq (4.63)

Xk(o) =

and we can now use the above calculated probabilities to estimate the produced pairs.

Let us envisage an experimental set-up utilising the 17.5 GeV electron beam driv-
ing the European x-fel incident on a thin foil target to produce Bremsstrahlung similar
to the LUXE experiment [144]. We estimate the rate of axionic Bremsstrahlung for

a thin target [145]

p

dAN(ET) A X (4 4k (k)

from which we may find the number of regenerated axions
2\ 2 1 1
g X L de (4 4 9 / OR
Ng = NeNghots == ~ — |\ dt—
¢ hot (47r) X02%AC/0 22 (3 3P ) ),

Here, X/Xj is the number of radiation lengths in the foil, 7, is the relativistic gamma
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factor of the electrons and z = k= /p~. We have also defined the rate

2
PLCFA . gae L me (466)

a—ete™ — 47 )\C k_

to make the g, dependence in (4.65) explicit. When applying the analysis to a
B = 5T magnet of length L = 4.21m as is used in the ALPs experiment at DESY
[85] we find that only a small parameter range outside of the above threshold scenario
mq > 2m, can be explored. Already for axion masses m, < (2 — 10_2) m. the signal
is exponentially suppressed, see [2]. We conclude that such LSW type set-ups are
more suitable for di-photon regeneration like described in the previous chapters and
significant improvement in field strength would be required to make this set-up probe
significantly lower masses than m, = 2m, where vacuum pair production from heavy
axions becomes possible. Nevertheless, the reduction of the threshold mass by the
field and the above calculated rate can be of interest in for example astrophysical

contexts where much stronger fields can be found around compact objects.
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This concludes the first part of the thesis about novel direct axion detection ex-
periments. There are many complementary avenues to explore. We saw in chapter
that replacing the static magnetic fields of traditional LSW type searches with strong
laser beams leads to interesting phenomena and ultimately results in an enhanced
sensitivity for intermediate axion masses around m, ~ 1eV. This type of search
scales favourably with laser energy due to the inclusion of a third, regenerating beam
on the detection side of the interposing wall. Because the axion mass can be selected
through the beam frequencies and the collision angle, this method is well suited for
cross-validation of a positive signal should it fall within the mass parameter range.
Chapter 3] introduced a complementary search strategy for very low mass axions which
utilises the newly found axion-photon parametric decay instability to induce a rota-
tion in the polarisation of the laser pulses. While currently operating laser systems
fall short on probing new parameter space, the shortcomings might be overcome in
the future. Finally, in chapter 4| the axion-photon coupling g,,, was replaced with the
axion-electron coupling g,. to investigate axion regeneration through pair creation in
strong background fields. This approach is capable of probing a distinct SM coupling
and therefore is complementary to the above two.

In the second part of the thesis the axion’s role in the early universe cosmology is
investigated. From here on on-wards the term “axion” refers only to the QCD axion

as reviewed in chapter [I}
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Chapter 5

Axion Cosmology

Multiple stages of spontaneous symmetry breaking and a low mass result in non-
trivial cosmological impact of the axion. To understand the significance we set the
scene by a short review of the relevant aspects of the “standard cosmology”. Note
that in this chapter, as well as in chapter [6] we use the term axion to mean only the

QCD azion as described in the beginning of chapter [1}

5.1 Standard ACDM cosmology

The standard cosmological model starts with the cosmological principle, the postu-
late that the universe as a whole is homogeneous and isotropic when viewed on large
enough scales. That is to say that while on small scales it undeniably is inhomo-
geneous, these inhomogeneities will average out on cosmological scales. One line of
argument for the cosmological principle relies on the isotropy of the cosmic microwave
background (CMB) [146], [147]. While recent studies put the standard cosmological
model in question [148], 149], in the following, we will assume it. Invoking the cosmo-
logical principle drastically simplifies the geometry, allowing us to specify the metric
of the universe in terms of two parameters only: the radius of curvature k£ and the

dynamical scale factor R(t). The latter may only depend on time because of the
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assumption of isotropy and homogeneity. The metric is then of Friedman-Lemaitre-

Robertson-Walker (FLRW) type

2

-
1—kr?

2 v 12 p2 r
ds® = g datdx” = dt*—R*(t) ( 1 2

+ r2d92> = R*(n) (dn2 — + 7"de2>
(5.1)
with conformal time n = f(f dt'/R(t"). Without loss of generality we are free to
rescale the radial coordinate such that k£ = £1,0. We can see here the power of the
cosmological principle, which almost entirely fixes the geometry of the universe. We
are left with three distinct choices, the universe can either be closed (k = 1), it can
be flat (k = 0) or open k = —1. Observation seems to suggest a flat universe with

k = 0, which we adopt in the remainder of the chapter. For a review see [150], 42].
A FLRW type universe is dynamical with a single dynamical parameter, the scale

factor R(t) describing the expansion of space. What drives the expansion is the energy

content of the universe as can be seen by the Einstein equations

1
R — §ngj + Ag = 87GT), (5.2)

which link the curvature of space as parametrized by the Riemann tensor R, to
the energy-momentum tensor 7. G is Newtons constant and A is the cosmological
constant. The energy momentum tensor is highly constrained due to the symmetries
we imposed onto the metric of space-time and for now we make the further assumption

that it only contains perfect fluids with energy density p and pressure P
Ty = —Pgu + (P+ p)uuuy (5.3)

where u,, = 0,0 is the fluid velocity in co-moving coordinates.

The Einstein equations (5.2) together with the FLRW metric (j5.1)) yield the Fried-
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mann equations for the scale factor

1 (OR®1)\> &G A
R<t>2< at ) ] (5.4)
and
R}t) ot = pear) 5 >

The types of perfect fluids we are concerned with have an equation of state of the
form P = wp with constant w. Relativistic matter or radiation has w = 1/3 and
non-relativistic matter w = 0. For these types of fluids solving the above equations

when A is negligible is simple and results in
R(t) = Ryt (5.6)

By convention, we choose Ry such that R(ty) = 1 where ty is today. This form of
the scale factor describes the universe well over long periods of its evolution and only
at transition periods from domination of one form of matter to the other more care
must be taken. Note that the cosmological constant A as measured has only recently
begun to play an appreciable role and is unimportant for our discussion of early
cosmology here. We will therefore not delve into the substantial body of literature
and debate about it and include it only in the Einstein equations for the sake of
completeness. The standard cosmological model is also called ACDM indicating the
two types of additional energy density included on top of the SM, cold dark matter
and the cosmological constant.

Defining the normalised expansion rate to describe the expansion of space

H(t) = ———7, (5.7)

1 OR(t)
R(t) ot

the Hubble parameter as first discovered by Hubble [I5I], we may recast the first
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Friedman equation (5.4) as a cosmological sum rule. We first define the critical energy
density of the universe, the amount required to make it flat, pei; = 3H?/8aG and
then use it to define the density parameters Q. = p,/peris- The Friedman equation

then reads
H(t)? B Qr(to)  Qulto)
H(t)>  R(t)*  R(t)?

+ Qa(to) (5.8)

where Qg(to) is the energy density of radiation today, Qy(ty) that of matter and
Qa(to) the energy density of the cosmological constant. Thus, specifying a cosmolog-
ical model reduces to the specification of the energy density content which then fixes
the metric completely, at least as long as the cosmological principle is invoked. Note
that by construction Qg(to) + Qm(to) + Qa(to) = 1. In principle we are now ready
to specify the different density parameters and retrace the evolution of the universe,
however, one essential complication arises in our real universe due to particle inter-
actions. We must therefore first give a very brief overview of Thermodynamics in
FLRW universes [152] [153] [150].

We firstly classify particle species based on their equilibrium with the background
plasma. A particle species typically establishes equilibrium if its interaction rate is
faster than the expansion rate of the underlying spacetime I' > H~!. When this
is fulfilled, any scattering transforming the particles in question to background con-
stituents happens fast enough to be reversed before the expansion is noticeable there-
fore equilibrium may be established. In the very early universe, when temperatures
were very large and, due to the steepest dependence radiation dominated the uni-
verses evolution, the expansion rate was slow; H~! oc T2 and all species were in
equilibrium. As the temperature drops and the universe expands, particle densities
drop like n oc R(t)™® and eventually become so low that the scattering rate I' o< n
drops too low to maintain equilibrium. We say that the particle species has frozen

out.
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If in equilibrium at temperature 7', the particles distribution will be

1

fp) = CE®)/T £ 1 (5.9)

with +1 for fermions and —1 for bosons. The particles 3-momentum satisfies F(p)? =

m? + p2. We then find the equilibrium number density [154] 155]

. 1 boson
n; = (27;3) /fi(P)dSP = % fermion (5.10)
9 ()™ et T < m;
the equilibrium energy density
) 1  boson
gi 3 59T T > m;
= s [ B - © fermion (5.11)
and the equilibrium pressure
2 Lo, T >my
gi p 3 3 !
P — (p)d®p = 5.12
209 / 3E(p)f (p)d’p (5.12)

as functions of the number of spin states of species i, g; and the temperature.
€(3) = 1.202 is the Riemann Zeta function. We will call fields with 7" > m; rel-
ativistic and 7' < m,; non-relativistic since the former have energy much larger than
their mass and the latter mainly contribute their restmass to the energy density of
the universe. A particle species which starts out relativistic, so contributes to the ra-

diation density parameter Qg (tg) may become non-relativistic during the universe’s
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evolution when the temperature drops below its mass. It then contributes to the
matter content Qy(fp). Note that the labels radiation and matter are in this sense
equivalent to relativistic and non-relativistic, respectively. We may use these equa-
tions to determine the relation between temperature and time in the early, radiation

dominated universe

1 T \ 2
{(T) = 2.428\/9_* (Me\/) (5.13)

with g, the effective number of relativistic spin degrees of freedom

9= gﬁg > a (5.14)

boson fermion

which itself is temperature dependent as can easily be inferred from our discussion
above. The effective degrees of freedom of the SM are calculated on the lattice [28§]
which is accurate to a temperature around 7" ~ 100 GeV above which we introduce
dependence onto the BSM model under investigation. Note that relation is
only accurate away from changes to g, due to freeze out. In the following we will use
the terms time and temperature interchangeably.

When a species becomes non-relativistic while in equilibrium, its abundance plum-
mets which is expected because pair production of such particle is exponentially sup-
pressed at low energies. The universe as of today has vanishing radiation Qg(tg) =
8.24 x 107® and much larger matter content Qy;(ty) = 0.27 [I56]. Due to the different
scaling, however, the early universe was radiation dominated. Utilising the sum rule
(5.8)) we may infer the cosmological constant contribution Q4 (ty) = 0.73, dominating
the evolution of the universe today. This concludes the very basics of the standard
ACDM model. Having specified the energy density content we are now ready to
sketch the cosmic history of the universe to put the axion’s role into perspective.

Let us very briefly sketch the evolution of the universe as long as accurately

described by the SM below temperatures of 7" ~ 100 GeV. The temperature of
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the photon bath today is Ty = 2.7K, the temperature of the CMB. Going up in
temperature, or equivalently back in time, we encounter the period of recombination
and photon decoupling at temperatures T ~ 1072 GeV. At this point the temperature
is low enough that stable, neutral hydrogen atoms form and the photons no longer
have enough energy to ionise them into a plasma. Their mean free path as a result
increases drastically and they begin effectively free streaming leading to the formation
of the CMB. Going to even higher temperatures, we find the universe to be radiation
dominated above temperatures of around 71078 GeV. At T ~ 1073 GeV Big Bang
Nucleosynthesis (BBN) occurred and protons and neutrons combined into heavier
nuclei setting the abundances of such heavier elements up to Lithium. As this epoch
is dominated by very well understood atomic physics and good quality data is readily
available, BBN is an excellent test ground for BSM theories [I53]. Before the heavier
elements could be formed, at temperatures around 7" ~ GeV, the quark-gluon plasma
hadronised and protons and neutrons formed. Going even higher we find that at
temperatures T" ~ 100 GeV the electroweak symmetry broke marking the onset of
model dependence on BSM theories.

The PQ symmetry breaking, at least for the QCD axion under current cosmolog-
ical constraints, occurred at much higher energies T = v, ~ 102 GeV, however the
axion mass only turns on at the QCD scale around 7' ~ GeV. As we will argue in
section [5.4] this is the time at which dangerous topological defects form which may
then be around during BBN. This may impose serious constraints on possible axion

models.

5.2 Horizon Problem and Inflation

The discovery of the CMB and its remarkable isotropy not only provides a seem-

ingly powerful argument for the cosmological principle, but also results in a rather
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interesting puzzle. The CMB originates in the early universe from the temperature
at which photons fell out of equilibrium with the electron-proton plasma and the
universe became transparent. As a result photons suddenly started free streaming
and we see an imprint of this in form of the CMB on the sky. But why is the CMB
so isotropic and why should we expect the universe to be FLRW in the first place?
After all, we believe the universe to be causal and hence two CMB photons arriving
on the earth from opposite directions would never have been in causal contact, yet
their temperature agrees up to 67/T = 10~° [157].

To make this statement more precise, we first define the particle horizon as the
largest distance any signal may have travelled from the initial singularity at ¢ = 0.

The physical size of the horizon is given by

t gy 3t matter dominated
D(t) = ()/O (5.15)

R() N,
2t radiation dominated
At the time of recombination ¢, the present universe consisted of many causal patches
of size D(t,) ~ t.. Two points p and ¢ on the spatial hypersurface at ¢, are causally
connected iff they lie within each other’s past light-cone. In the FLRW universe we
live in this should only be true for two points on the sky separated by less then ~ 2°
on the sky. We would therefore not expect the CMB to be isotropic on larger scales,
yet we observe it to be correlated over the entire sky.

One possible solution is to invoke a period of inflation, or quasi deSitter expansion.
A deSitter universe is characterised by constant Hubble parameter H(t) = H; and
has metric

ds® = R(t)n;;dx'da’. (5.16)
H:

Constant expansion rate H; implies that the scale factor R(t) o i and the universe

expands exponentially fast. The two points p and ¢ may now very well have been
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in causal contact because the period of exponential expansion inflates each causal
patch such that, if inflation had lasted long enough, our entire Hubble patch may
have originated within a single causal patch before inflation. We therefore have an
explanation for the remarkable homogeneity of the CMB. Achieving inflation in a
natural way appears to be rather challenging but exact models of inflation go beyond
the scope of this work. We will, in the following, simply assume that, some time after
the initial singularity, the universe underwent a period of inflation. Once inflation
ends the inflaton, the field driving inflation, decays and reheats the universe which
got super-cooled T oc R(t)~! as the universe rapidly expanded. This is what we call
the big bang. Subsequently recombination happens and the CMB is formed with

causal horizons much larger than naively expected [I58], [159].

5.3 Axion Dark Matter

Soon after the discovery of the P(Q solution to the strong CP problem, it was re-
alised that the anomalous, spontaneously broken U(1)pq results in a pseudo-Nambu
Goldstone, the axion. By making this light particle weakly coupled, the axion can
be made “invisible” and is a natural candidate for dark matter with an interesting
cosmological history.

At high scales the complex PQ field ¢ has a Higgs-like Lagrangian density which

for the purposes of this chapter may be parametrized as

L, == (0,0 (") — % (®fd —02)". (5.17)

1
2

Below a temperature T' ~ v, the vacuum expectation value of the field changes from
(®) =0 to |(P)| = v, thereby spontaneously breaking the U(1)pq. The axion field is

the Nambu Goldstone boson of this broken symmetry living on the circle of radius v,
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in field space

O = vei e (5.18)

where we ignore radial fluctuations, justified by their large mass. Hence the complex
PQ field quickly relaxes to its radial minimum while the axion field stays without
potential until the QCD quark condensate forms at much lower temperature, as de-
scribed in chapter 1 Hence without a potential the initial value for the radial axion
field is chosen at random. Regions of the universe which are in causal contact at the
moment of U(1)pqg breaking will end up choosing the same initial value effectively
breaking the universe up into causal regions with randomly chosen axion field value.

The equations of motion of the axion field in a FLRW universe can then easily be

obtained

[(%> " SH(t)% a R(lt)zv2 a(z) +V'(a(x)) =0 (5.19)

where for later convenience we have already included a potential V' (a). Taking the
simplest axion model this potential is V' = 0 above the QCD scale, however the
introduction of additional BSM fields may in principle lead to a non-zero potential
even above that scale.

There are now two qualitatively different scenarios, the PQ symmetry can either

break before the period of inflation or after.

5.3.1 Pre-inflational PQ breaking

In the former case, the axion is homogenised over vast distances and we may drop the
term in (5.19) proportional to V2. We will make the assumption that the universe
is radiation dominated, an assumption which is backed by the relative scaling of

radiation and matter discussed in the previous sections. We may then find the axion
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field satisfying the equations of motion as

1
a(t) =ag+ CL1/2— (520)

Vit

with ap and a;/, some constants. Hence, the axion field evolves towards a constant
as the universe expands, the Hubble drag term 3H (t)0;a(z) freezes the axion field.
Once the temperature drops below the QCD scale, (gq) # 0 and the axion acquires
a potential . The Hubble drag now acts against the potential gradient which
eventually will come to dominate and cause the axion field to start oscillating coher-
ently at ¢;. This happens when 3H(t;) ~ m,, which defines t;. Including the full
potential requires numerical solution of the equation of motion however,
to illustrate the physics we make the assumption that the initial axion field is small

such that we may approximate sin (a/v,) ~ a/v, and solve the equation explicitly

a(t) = afpq (%) % cos (/tj (mz + %) dt’) : (5.21)

a fpq is the initial, randomly chosen axion field value, « is what is called the missalign-

ment angle in the literature. The number density of axions is then

1

lt) = @) = gmulasea)? () (5.22)

Note that the number of axions per co-moving volume is conserved. Technically this
is only true when the axion mass has reached its zero temperature value as it itself is
temperature dependent, however the dependence is steep and we will therefore make
the assumption that the mass switches on abruptly [27) 28].

The energy density in axions is then readily found

R(t1)>3. (5.23)

o= mantt) (i
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Two important points should be addressed. First, the collective axions do indeed
scale like matter, as is required from a suitable DM candidate. Secondly, the amount
of energy density depends on the initial misalignment angle and is therefore not
precisely calculable. This unfortunately will not be resolved for U(1)pq breaking
before inflation, however we may still get a reasonable estimate of the DM contribution

of axions by adopting the natural assumption that o ~ O(1). Then

7
f, 5 0.7\
Qa ~ 0.15 <ﬁ T 062 (524)

with h parametrizing the present day Hubble constant Hy = h100km/s Mpc.

5.3.2 Post-inflation PQ breaking

If inflation happens before PQ symmetry breaking, the situation changes substan-
tially. We no longer have the axion field homogenised over large distances and there-
fore on top of the zero momentum mode of the section above there are higher mo-
mentum modes contributing. To give an estimate equivalent to above, we perform a

Fourier analysis of the equation of motion prior to the axion field acquiring mass

((%) + 2%% + %) a(k,t) = 0. (5.25)

The wavelength of the axion modes 2rR(t)/k divides the spectrum into sub-horizon
modes fitting within the causal horizon and the super-horizon modes stretching be-
yond. The zero momentum solution k£ = 0 is identical to above with the exception
that the expansion of the universe brings more and more Hubble patches into causal
contact which effectively replaces the arbitrary initial misalignment angle with an
average over many Hubble volumes. Therefore, the contribution of the axion field’s

coherent oscillation to the energy density of the universe is fully calculable in the
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post-inflation scenario. Solutions can be found for the higher momentum cases

(k.0 ao(k) + (11/2(1{)\%z super-horizon (5.26)
a(k,t) = ‘
afrq Rg(i‘f’ cos ( f Réﬁ)g dt’) sub-horizon

indicating that all super-horizon modes evolve towards a momentum dependent con-
stant, they are frozen. The sub-horizon modes have energy w? ~ k?/R(t)? and there-
fore the number density of axions in higher momentum modes per co-moving volume

is conserved mode by mode. Their contribution to the energy density is found to be

= gmfia(1+ M) () (5.27)

where the first term comes from the zero momentum modes and the second term
from the higher momentum ones. We also made use of the fact that the axions will

be non-relativistic after ¢; to calculate the contribution today

feq )\ 0.7\
Qa ~ 015 (1 + N]%W) (W) (T) . (528)

An additional complication, however, arises in the post-inflation PQ breaking
scenario. Topological defects may form (see section and their contribution must
be taken into account. There is however debate over the contribution arising from
axion strings and domain walls. To estimate the contribution coming from axion
strings, we must first understand the spectrum of axions radiated off such strings
when they collapse. There are two basic arguments debated in the literature: the
string can either oscillate many times at a frequency set by the size of the string
loop L before collapsing, in which case the spectrum is concentrated around 2w /L
[160, 161], 162]. Alternatively, the string collapses almost instantaneously, resulting

in a spectrum dE/dk o k™! with cut-offs set by the loop size and 2mv, [163, 164].
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Recent computer simulations seem to support the former scenario [165]. Another
contribution stems from axion domain walls. Again the spectrum is difficult to obtain
and computer simulations are challenging because of the large separation of scales
between the walls thickness m_! and the Hubble size H~! [166]. We will conclude
by mentioning that the question of topological defect decay to the axion abundance
remains a matter of debate [I67]. By specifying a mechanism of decay, we hope to
shed some light onto this question in the future.

In this most simple set-up we may now find a bound on the axion decay constant
frq by demanding its contribution not overclose the universe; fpq < 10'? GeV. There
is a large body of literature which extends this axion window. We will only mention
[168, 169], which aims to find an explanation for relaxing the initial misalignment
angle to small values by a mechanism similar to our approach discussed in section

2.0l

5.4 Topological defects

Once U(1)pq breaks the universe consists of causal patches in which the PQ field
ran down the wine bottle potential in a random angular direction. Because of the
topology of the vacuum manifold there exist closed paths in real space which map
onto a non-trivial path in field space, a path which winds around the circle n times,
see figure 5.1} Such field configuration can arise whenever the vacuum manifold is
connected but not simply connected. The field in real space must then have a region
within the closed path where a = 0, thus leaving the vacuum manifold [I70]. This
field configuration is known as a cosmic string because the region of space in which
the field is not in vacuum shrinks to a quite thin string. Its thickness is O(m, ') and
its effective mass is set by the string tension pu, = mv2In (v,/H) where we used the

cut-off H~!, the effective inter-string distance [I71, 172]. It has topological charge
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Field space real space

cosmic string

Figure 5.1: Cartoon of cosmic string production. On the left-hand side a path in
real space, depicted in orange, is mapped onto a loop in field space, shown on the
left. The path in field space is non-trivial, it cannot be smoothly deformed to a point
without leaving the vacuum manifold, hence somewhere within the loop in real space

lies a cosmic string where the field lies on top of the central peak of the potential.

given by the winding number, the number of times a closed loop around the string in
real space winds around the circle in field space. This mechanism of production was
discovered by Kibble and Zureck [170], [173] 174l [175].

It is believed that the interactions between axion strings is quite effective and
rather quickly the network of strings is in the scaling regime where on average one
has a single string per causal horizon. Two strings which encounter each other can
either annihilate if their topological charges are equal and opposite or they cut each
other up thereby eventually one one string remains per Hubble volume. In the scaling

regime the energy density in strings scales like

Pstring = ,usH(t)Q- (529)

Once the universe cools below the QCD scale, each of those cosmic axion strings
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is attached to Npw domain walls [I76]. Domain walls are a field configuration arising
when the vacuum manifold consists of disconnected manifolds therefore a continuous
path in real space may map onto a path in field space interpolating between two
vacuum states - (in our case the vacuum “manifold” is simply a set of points, however
the following argument still applies.) The field then necessarily leaves the vacuum
in between the two end points of the path. The domain wall is usually thin, simply
because a thick wall would come with a large energy density whereever the field is not
in its vacuum state. The thickness is set by the scale in the problem, the axion mass
m; ! [I76]. Each cosmic string must now be connected to Npw DW as the field does a
full 27 change around the string and therefore passes through all Npyw vacuum states
with DW interpolating between them. The domain walls effective mass is given by
the wall tension opw = 8.97mq f3q [177, 27].

The string wall network behaves qualitatively different if Npw = 1 or Npw > 1. In
the former case, for topological reasons, each wall connects a string with its anti-string
and the wall tension pulls the two together. Once they come close they annihilate.
Thus, the string wall network with Npw = 1 is unstable and annihilates almost
instantly. This changes once each string is attached to more than 1 DW and the
network is in principle stable. It enters a scaling regime dominated by the domain

wall energy density and contributes

pow = EopwH (t) (5.30)

to the universes energy density where £ ~ O(1) is the number of domain walls per
Hubble patch during the scaling regime. The slow scaling of DW energy density

makes it dominate the energy density of the universe quite quickly

3

g < —. 5.31
4 = 327TGUDW ( )
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A universe dominated by domain walls undergoes accelerated expansion

m;it) = 87;G pow R(t) — R(t) o t* (5.32)

and is inconsistent with observation. We therefore must find a mechanism to collapse
the network before domination [178]. This is known as the axion domain wall problem

and chapter [6] will be dedicated to it. An excellent review can be found in [I79).

5.5 Bias

Let us define a second type of horizon, the Hubble horizon. It divides an expanding
universe into a region in which particles are moving slower than the speed of light
and one where they move faster relative to an observer. The latter happens because
of the expansion of space and is not a violation of relativity. During inflation the
comoving Hubble horizon shrinks and, as a result, large scales transition from being
within the Hubble patch to lying outside of it, we say those scales exit the horizon.
Modes which have exited the horizon are frozen by causality. This division suggests

a natural basis to expand fields obeying the equation of motion

?a Via da OV
ﬁ—erBHiEJr%:O (5.33)

as a mode expansion for sub-horizon modes and a course grained fluctuation field x

for super horizon modes around a mean over many horizon sizes y [180, [181] [182]

a(x,t) = /@ (p — eHie™") [apap(t)e™> + h.c.] + x(x,t) — X. (5.34)
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The fluctuation field obeys a Langevin type equation

@ L Via 0OV
ot 3H;

m - %> + U(X, t) (535)

with 7(x, t) acting as white noise sourced by the modes leaving the horizon, essentially
causing the averaged field to random walk. The Langevin type equation can be

translated into a Fokker-Planck equation for the normalized probability distribution

of the field P(x, x,t)

H} 0°P(x, X, 1)

IP(x, X, 1) 0 1 oV _
— = — —P t . 5.36
ot Ox \3H; Ox boxit) | + 82 02 (5.36)
The solution to this equation may be calculated as an infinite series [183]
P(x, % 1) = T 00) S an®n (e 01 5.37
(X, X t) = exp “3H7 () nzzoan n(x)e (5.37)
with @,,(x) the eigenfunctions of
10%0, 1 ( (47 0V\* 4rn? 0%V Am2A,,
_Z Z l4_ _ i4_ = 7T_3q>n (5.38)
2 0x% 2\ \3H; 0x 3H} 0x? H;
and the coefficients a,, are given by the initial condition at t = t; as
_ 472 OV

The distribution ([5.37) eventually, for late enough times, evolves towards the static
limit
472 Sy
) exp (—@V(X))
P(x) = =
Jexp (~4mvx))

the timescale of this evolution depends on the details of the potential. Each individual

(5.40)

Hubble patch starts out with a randomly chosen average axion field drawn from
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the distribution and, as the universe expands and more and more scales exit
the horizon, the distribution function for said Hubble patch becomes Gaussian with
increasing width. We are effectively neglecting the effects of the potential for the
random walk of each individual section of space. The solution of in this limit

_ V=0 83 *ZL;(X*X)Q
P(XvXut) = me ¢ (541>

which is indeed a Gaussian with growing width

is then

H3t
Ay = . 5.42

The effect of the potential enters into the average over many patches drawn each
drawn from distributions . Since each Random walk is slightly biased towards
the vacuum states of the potential, eventually the distribution of the average value
over many Hubble patches accumulates around the vacuum states [182] and evolves
towards . We thus end up with a universe divided into Hubble patches, each
with a mean axion value drawn from ([5.41)) where the mean field over many patches y
satisfies . Thus, when the temperature of the universe drops below the potential
barrier between the different vacuum states and DW form, the field is no longer equally
likely to be anywhere in field space. Adopting for a second Npw = 2 we may then

define a bias in the population of one vacuum over the other as

b(x) = / FOOP(x. %, 1)V ="dx (5.43)

where f(x) is £1 depending on which vacuum state the field ends up in. Inflation

gives access only to the probability distribution of y, hence it is natural to translate
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this into a probability of finding a bias [184]

P(b| < 7) = Z/ | (5.44)

X; b=b(x

Having established a statistical bias in the vacuum state populations, the co-moving

DW network energy density decays exponentially like [185] [186), (187, [18§]
(5.45)

where 7grm is the conformal time at which the DW are formed. This can be under-
stood intuitively when thinking about the actual physical implication of a statistical
bias. In a 3 + 1 dimensional universe, the introduction of a large bias in the distri-
bution results in a universe with one percolating domain in the vacuum with higher
occupation interrupted by bubbles of the other vacuum. The threshold probability
bias to get only one vacuum percolating is p = 0.3. The size of those bubbles will
roughly be proportional to the horizon size at formation and a function of the bias
with which they are produced. Hence, when the scale of the universe becomes large
enough for the bubbles to be contained within one causal patch, they will shrink and
collapse due to the large surface tension. Note that, in our case, it is not false vacuum
as the two states are still degenerate and we have not specified which of the Npw
vacuum states will eventually be chosen and indeed this mechanism chooses one at
random. The situation for a small statistical bias is slightly different in that both
vacuum states initially percolate, but eventually the disfavoured one will evolve into

pockets which then again collapse due to their surface tension [185].
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Chapter 6

Biased Axion Domain walls

The domain wall problem, described in section[5.4] constitutes a significant cosmolog-
ical problem for many axion models. Any model with Npw > 1 quarks charged under
U(1)pq whose PQ symmetry breaking takes place after inflation (or with sufficiently
high reheat temperature) leads to cosmological disaster i.e. the universe undergoes
rapid expansion driven by domain walls and is incompatible with observation. While
recognised since work by Sikivie in the 1980’s [176], the domain wall problem remains
an interesting problem to study and there have been many attempts at its solution.

The trivial solution, rather than solving the problem, circumnavigates it by having
a high energy scale at which U(1)pq spontaneously breaks, well above the scale of
inflation. We will call this scenario the pre inflational PQ breaking. In this case our
universe started off well within a Hubble patch at the scale of PQ breaking and any
domain walls are trivially inflated away. That is to say that the patches of vacuum are
much larger than our current horizon and play no role in the cosmological evolution
after inflation. We conclude that in case the P symmetry spontaneously breaks
before inflation and is not restored during the period of reheating, there exists no
axion domain wall problem. Once we change the succession of these cosmological

events however, the domain wall problem returns. For sufficiently high scale inflation
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the domain wall problem even exists in the pre inflation scenario because the deSitter
temperature Tys ~ H;/2m causes fluctuations in the PQ field to generate domain walls
at the horizon scale [I89]. This mechanism is efficient for fpq < Tis.

Assuming for now that U(1)pq breaks after inflation, we are faced with the task
to find a solution to the domain wall problem. As was discussed in chapter [5| the
domain wall network is only stable when Npw > 1. Technically, we could assume the
problem to be solved if we limit ourselves to axion models in which there is only a
single quark charged under U(1)pg. While not suffering from cosmological disaster,
it is unsatisfying to exclude any model with Npw # 1. Note however that there is a
case for doing so in a related but different context [190]. The argument there is that
a deSitter vacuum is not consistent in a quantum theory and therefore there must not
be any positive energy vacuum states [191], 192, 193]. Applied to the axion potential
this excludes any Npw # 1 theory as higher dimensional operators will always break
the degeneracy between the vacuum states and therefore leave positive energy vacuum
states or deSitter vacua. There is still room for Npw # 1 axion UV completions if we
find a mechanism under which the true vacuum is chosen fast enough, another way

of saying that the domain walls must disappear fast enough.

6.1 Explicit PQ breaking

If we go beyond Npw = 1 (e.g. the DFSZ axion has Npw = 6), the traditional
solution to the domain wall problem as discovered by Sikivie [176], involves a small

explicit breaking of the PQ symmetry. This is accomplished by adding a term
SV ==& (e + h.c.) (6.1)

to the axion potential (1.18). The usual argument to get around the unnaturalness

of adding such term by hand is to invoke higher order operators. These operators are
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suppressed by the Planck scale My ~ 10! GeV and lead to terms [194]

9] e’ 2m
SV = e |6|™" @™ + h.c. + c. (6.2)
pl
The constant ¢ is chosen such that minV = 0 and a great deal of fine tuning is
necessary to avoid having large vacuum energy. The coupling can in general be
complex introducing a phase § with coupling strength |g|. The above term stems
from a 2m -+ n dimensional operator with a U(1)pq charge n; Under U(1)pq the |¢|*"
stays invariant and ¢™ changes by n. The whole operator is suppressed by Msl’"+"_4
to guarantee its sub-dominance to lower order operators and save the perturbative
expansion. We see that the inclusion of this term has indeed a similar effect like
the originally proposed and leads to a potential after spontaneous symmetry

breaking of U(1)pq with ¢ acquiring a vev v, = Npw fpq

2m—+n—2
Vo = |g| M§1 <\/];L]S[> ng (1 —cos (na+9)) (6.3)
pl

such that the axion field lives in the combined potential

2m4n—2
V(a) =m?fiq (1 — cos(Npwa)) + |g| M2 <\/f§i\(3[p1> fpo (1 = cos (na +46)).
(6.4)
Interestingly, there are tight constraints on such operators which bound them from
above and below.

Explicitly breaking U(1)pq is necessarily bounded from above because in the limit
of very strong breaking there was no U(1)pq in the first place therefore reintroducing
the original strong CP problem. To avoid spoiling the P(@Q solution, we cannot have
arbitrarily strong breaking. This is related to the axion quality problem. We can

find this upper bound from the potential above. We consider the strong CP problem

solved when the axion field’s vacuum expectation value is smaller than the current
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limit on the QCD vacuum angle § < 107°. We may find the vev as V(a) = 0 and

obtain
b
) lg| M2 ( rQ ) —sm(5 MO\ [ foq \T 20
(0) = 2m+n—2 ~ |g| VM N sin 9
m?2 + |g| M, <\/Ji]§ > n? cos ¢ pl

(6.5)
where we made use of the fact that the potential generated by the higher order
operators is much smaller than the QCD potential. It is natural to assume the phase

introduced from the coupling to be d ~ O(1). Thence

9] ( e )MM I 16x107 (6.6)
V2My, Npw

where we made use of the equivalence between axion mass m, and PQ scale fpq for
the QCD axion .

To find a lower bound on the explicit PQ breaking we look at the DW problem.
After appearance it takes only a short time before the walls dominate the universe’s
energy density, leading to accelerated expansion , incompatible with observa-
tion. Therefore, they must decay quickly enough and never come to dominate. We
can set a conservative upper bound on the timescale of decay be requiring the domain
walls to disappear at the latest when big bang nucleosynthesis (bbn) starts around
tybn = 1s. Having a small explicit breaking lifts the degeneracy of the Npw vacuum
states leaving, in general, only one true vacuum and Npw — 1 false ones. A bubble of
false vacuum surrounded by the true vacuum experiences a pressure causing the do-
main wall shell to shrink. This pressure arises due to the difference in energy density.
The domain wall contributes

EDW = UDWRQ (67)
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for a bubble of size R and the energy density of the contained volume is
Eio = 6VR?. (6.8)

The work done by the energy difference between the volume of false vacuum and the
true vacuum at V = 0is AE ~ §V R3. Then we may find the force acting on the DW

Fpw = 0V R? and hence its acceleration

SV 2m—+n—1
a=—~28x10"®GeV]|g| <fP—Q> (6.9)
0DpwW V2My,

where again we used and estimated the potential difference V' to be the maxi-
mum of the potential generated by higher order operators. The true difference will be
slightly smaller. This, however, does not greatly affect the argument made here. We
can estimate the time of collapse to be roughly when the acceleration is fast enough
to accelerate the DW close to the speed of light thereby overcoming the expansion of

space leading to collapse. This leads to the requirement

f 2m4n—1
lq] (\/;j\‘z ) >1.2x 107, (6.10)
pl

We may combine and (6.10) to constrain the dimension of Planck operators

which would solve the DW problem while not spoiling the PQ solution

8.5 % 100 [ —JPQ__ <lg| Jrq 2m+n<16><10—91M (6.11)
| 102Gev ) =\ Vo, | n ‘

The window for solving both problems is very narrow indeed. There does only exist

a solution to the above equation if

N
frq < 1.9 x 10" GeVY (6.12)

n
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which sets a convenient upper bound on the P(Q scale. This bound is, assuming
Npw/n ~ O(1) which seems natural, close to the upper bound coming from cosmol-
ogy, above which axion DM overcloses the universe. Having done this rough estimate

we may use the right inequality of (6.11]) to find

log (1.2 x 10783)

frq
log <\/§FJ)MPI>

2m4+n <1+ (6.13)

as an upper bound on the dimension of Planck-suppressed operators. The left in-

equality leads, after minimal algebra, to

log (1.6 x 10791 Apw)
log (Jgi‘(jpl)

Figure [6.1] shows the available parameter space for the operator dimension as a func-

2m +n > (6.14)

tion of fpq for Npw/n ~ O(1). A larger value makes the problem worse while a
lower value is marginally better. We would generally not expect this value to be very
far from 1. While for reasonable fpq there do exist operator dimensions for which
both aforementioned problems are solved the solution is very unnatural. To leave
the PQ solution to the strong CP problem unspoiled we must suppress lower order
operators. However, in order to still have fast enough decay we must basically guar-
antee that the lowest dimensional operator which is allowed within the PQ solution
does exist. We therefore would be tasked with having to explain how to suppress
all Planck operators up to the specific order we require. We therefore are forced to
conclude that explicitly breaking U(1)pqg to get around the domain wall problem is
unsatisfying. Additionally, improvement in neutron EDM measurements will tighten

the constraints eventually closing the parameter space completely.
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Figure 6.1: The plot shows the dimension of the Planck suppressed higher order
operators as a function of PQ scale fpq. The grey region is the allowed region based

on the inequalities (6.13|) and (6.14) derived in the main text. The plot ends at

frq ~ 10" GeV Npw/n above which there is no parameter space available.

6.2 Statistical bias

There are a number of other attempts at solving the domain wall problem and while
we will mention some later on in the chapter, the list provided here is not exhaustive.
We mentioned above that inflation can, provided that PQ breaks before, solve the
problem. It turns out that there is another possible mechanism with which one can
hope to solve the problem namely a ’bias’ generated by light field dynamics during
inflation as described in section . This was first proposed for Z; symmetries [180],
187, 184, 188] and shown to lead to exponential decay of the domain wall network.
We will show how the mechanism applies to the axion potential in the rest of the
chapter.

The set-up for statistical bias generation in the distribution of vacuum occupation
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throughout the universe involves a few key features, as described in the introduction.
The field in question must be light compared to the deSitter temperature and have
a potential. The former ensures that fluctuations in the field are generated and
the latter allows for accumulation of non-Gaussianity. Naturally the axion is light
and therefore trivially fulfils the first requirement, the potential however limits the
applicability as the axion only gets mass below the QCD scale Agcp. This could in
principle be circumvented with the addition of other fields coupling the the axion and
we will revisit this case at the end of the chapter. For now, we focus on the pure
axion case.

Suppose the universe is in a deSitter stage characterised by a approximately con-

stant Hubble parameter H; and with metric given by

ds® = a(t)njdx'da’. (6.15)

The factor a(t) is the scale factor of the universe and n;; is the diagonal Minkowski
metric with negative signature. Constant Hubble parameter by definition leads to
exponential expansion, a(t) o exp(H;t). The axion field’s equation of motion was

already established in chapter [5| but is repeated for convenience

[@) 3G aé)sz a(z) + V' (a(z)) = 0. (6.16)

Following the same procedure as in section [5.5| we may divide the axion field into
sub-horizon modes and a course grained fluctuation field y of super-horizon modes
around a mean value Y which is obtained by averaging over many horizon sizes. In full
analogy to the discussion before we find a Fokker-Planck equation for the normalized

probability distribution of the field P(x, X, t)

OP(x,x,t) 0 ([ 10V ~
gt 2 (2% p
a1 oy \I oy L eXet) |+ o5
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whose solution is given by ([5.37)). For late times ¢ — oo the distribution evolves

towards a static solution and thus we take for the average field

Panie) = 0 (—o7v )/ e (50 ) de - (61s)

To make further progress we must specify the potential of our axion field. For the
pure axion case without addition of other degrees of freedom to the SM the axion’s
potential is flat down to the scale of QCD and then acquires the usual QCD potential

(1.18) which, for now, we approximate, as is customary, by

V(a(z)) = m fiq (1 — cos (NDWM>) : (6.19)

frq

With this form of the potential, the above equations can be solved analytically. Start-
ing with equation (5.38) we find a reduction to a Schrodinger type equation when
dropping terms of order (m,/H;)*. Those terms are necessarily small by our initial

assumption of negligible mass compared to the Hubble scale. The resulting equation

920, {47?2 N2 ym2

Ix2 — cos (NDW

X) 812N,
3 H

o e } ®, =0 (6.20)

is solved by a Mathieu Function

327‘(2]61;2, 87‘(‘2](% m? X 87T2f1;2, X
®,, o« Mo ( QAn, Q 2. Npw ) ~ oS Qp, 2 6.21
NiwH? 3H} 2frq i} Irq (6:21)

where we used the smallness of (m,/H;)? to approximate the function as a cos. Having

made this approximation it is a trivial task to find the eigenvalues

2 N\ 2
A~ (BN (6.22)
871'2 pr
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We thus find that the static solution (6.18)) is reached after
2 (fea)’
Nefola > 87 I (6.23)

when the first temporal correction in the sum is exponentially suppressed. We
begin to see a problem namely, the required number of e-folds is very large if fpq > H,;
and we will show below that in fact in this case we recover the pre-inflational PQ
breaking scenario. In the opposite limit, while the static solution is reached almost
instantly, we run into problems with the axion potential. The deSitter temperature
in this scenario induces fluctuations in the PQ field of order H;/27m larger than the
central potential hill of the wine bottle potential. We therefore recover (®) ~ 0 and
PQ symmetry is restored in this sense. The situation gets even worse when looking at
the axion potential, the generation of which relies on the formation of quark bilinears.
Those can only form when the timescale of QCD interactions AééD is fast enough to
overcome the universes expansion H; '. Another way of saying is that QCD should
not see the curvature of space, Aqcp > H;. This is obviously a tight constraint and
impossible to fulfil when H; > fpq.

We must therefore conclude that introduction of a statistical bias into the proba-
bility distribution, at least in the pure axion case, is limited to H; < Agcp < fpq in
which case the static limit is only approached after an enormous number of e-folds,
effectively requiring eternal inflation. Assuming inflation lasts sufficiently long, we
may calculate a measure for the DW size via the two point correlation function of the
axion field [I83]. Points which are correlated are in causal contact and in the same
vacuum state.

The correlation length diverges for large Nggiq which simply means that in this
limit the domain walls are inflated away and the problem is circumvented. This

is equivalent to the pre-inflational PQ breaking and probably not very surprising
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when thinking about the large separation of scales involved. PQ breaks at a scale
of fpq and the axion field rolls down the potential hill. The universe continues to
expand with the deSitter fluctuations, making the axion field random walk around
the potential resulting in an effectively flat distribution after ~ fpq/H; steps. The
temperature during inflation evolves like T o a(t)~!, thus it takes on the order of
In(fpq/Aqep) ~ 30 e-folds to drop down to the QCD scale. After such few e-folds the
random walk process has not taken the field very far away from its initial point but
the size of previously causally connected regions already hugely increased. Waiting
even longer until the static distribution is reached or the random walk takes the field
away from its initial point by an appreciable amount will take much longer and make
the domain size exponentially bigger. Hence, the problem here is really one of scales.
What worked well for a Z symmetry fails with the introduction of a compact field
with large radius compared to the random walk step size.

We are continuing investigations of the domain wall problem, for example the
inclusion of additional degrees of freedom coupling to the axion field can change the

potential and might alter the conclusions.

6.3 Future direction - monopole mass

We are currently investigating the inclusion of a magnetic monopole of some dark
gauge group. For example a dark SUP(3) which is broken to a dark U2 (1) can
result in t’Hooft-Polyakov monopoles [195] [196]. In the absence of charged particles,
the Lagrangian describing the coupling of the axion to this dark version of electro-

magnetism is

62 a

53 U—FWFW, (6.24)

Lo %(aua) (0a) — }1 W
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analogous to the axion’s coupling to SM electrodynamics described in . Here, e
is the dark electric charge of the dark U (1). For convenience we will in the following
omit the word “dark” when referring to electric and magnetic quantities.

The presence of magnetic monopoles results in a potential for the axion field
through the Witten effect [197]. A theory with a dark electron of charge e and a

monopole of magnetic charge g must satisfy the Dirac quantisation condition [19§]
eg = 2wm, m € N. (6.25)
If the theory features two or more dyons, the condition is modified to [199} 200} 20T]

0192 — G291 = 27m. (6.26)
Gauss’s law for the electric field including the axion coupling reads

v (E + iﬁB) = 0. (6.27)

812 v,

Here v, = Npw fpq is the vacuum expectation value of the PQ field. A magnetic
monopole of charge g produces a coulomb field B = gr/r® and, in the presence of a

non-zero axion field, it also produces an electric field
E=————B=——2"__ (6.28)

Be A(x) a gauge transformation of the electromagnetic potential A, then the action

of the generator of the gauge transformation must be trivial and we find

2
Q) = / d3x5§—£A§AM = / Px (E+ %EB) - VA(x) (6.29)
04

T2 v,
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which, for exp(iQ,) = 1, implies the Witten condition [197]
1, 9% _peN. (6.30)

Hence, in the presence of an axion field, a t’Hooft-Polyakov magnetic monopole with

charge g = 4w /e becomes a dyon with axion field dependent charge
qg=mne———. (6.31)

We thus see that an axion field will be repelled by the monopole because of the

large cost in electrostatic field energy

i = & / E2d3 / g’ (a\’, (6.32)
== Xx= [ —— | — r .
E=9 32m3r2 \ v,

where we assumed radial symmetry for the axion field a(r). The energy in the com-
bined axion-monopole system for a single monopole in a static axion background is

then

v—l/((v )+ B?) dPx = g [ (0", (@), (6.33)
2 “ ~ % 0 Vg Vg o '

with ro = e%g/8m%v, and r); the size of the monopole. The axion field far from

the monopole must approach the randomly chosen angle 6, and should minimise the

potential energy (|6.33]). This is fulfilled for

2
vg = 0 exp [—%} , — Vo = vag% (1 — exp {—ZE]) . (6.34)

a 47 I8V

In the limit of a large monopole size ry; — oo we recover the self energy of a charged
sphere of size ). If there are light fermions charged under the dark U” (1), , they

screen the charge of the monopole to a size ry; ~ me_1 where m, is the mass of the
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lightest charged fermion [202] 203].
Assuming a number density of monopoles and antimonopoles ny; = ny+ + na-

the axion ground state energy (/6.34]) in a plasma of monopoles is

elg? ny
3 2
1672 rarvg

U~ nyVy ~ (vabo)? (6.35)

which is equivalent to the axion having a monopole induced mass [204]

Ny
’I“MUg .

s
=
i

(6.36)

etq?
873

Note that if the monopoles were SM magnetic monopoles instead of originating from
some dark sector and the lightest quark was massless, then m o mfl/ 50 asis
expected since in this case the 6 vacua of QCD are equivalent and no longer physical
observables.

The axion field vacuum state of this potential will be such that the dyon’s electric

charge is cancelled, hence

1
q=ne— 2—1 =0 & 2~ omne. (6.37)
T Vg Vg

This corresponds to a single axion field value and therefore solves the domain wall
problem. The axion acquires mass well before the QCD transition and gets a poten-
tial with effective domain wall number Npw = 1. Once this mass is cosmologically
important, the axion field accumulates around this single vacuum state. Therefore,
even if the monopoles then disappear, for example via a Higgs mechanism similar
to [205], 206] where the breaking of the remaining U(1) results in the connection
of monopoles and antimonopoles by strings which pull the monopoles together un-
der their tension, the axion field is localised around a single vacuum state when the

temperature drops below Agcp.
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If we allow higher charged dyons with magnetic charge Z,, and electric charge Z,,

then the potential is modified to

T e — 7,)% e m
U =dre’ny > <( mar — Ze) maj ) (6.38)

If we ignore the dependence of rj); on the charge, we see that the potential has
infinite local minima 6 = 277, /Z,, but unless the fraction nfj’z’”’ /mas conspires to be
the same for different charge combinations, we only expect one global minimum and
the domain wall problem is still principally solved.

To fully test the viability of this idea, further investigation of the monopole pa-
rameter space is necessary in order to understand the requirements on the monopole
density and properties to solve the domain wall problem and compare those to the
constraints they are subjected to. In order to justify the assumption of a single global
minimum of the potential when allowing multiple dyons we must further investigate
the monopole production and stability of higher charged states. Depending on the
cosmological epoch during which the monopole mass of the axion becomes relevant,

other signals like gravitational waves from the phase transition may also be identified.
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Appendix A

Asymmetric Beams

With the definition of the geometry , we exploited the symmetry between
the two beams present in the collision of two optical beams. This allowed the direc-
tions to be specified in a very simple manner. When quoting the bounds achievable
by the collision of two beams at different frequencies we must drop this assumption.
We may choose to fix the geometry such that the axion again propagate in the 2

direction. This is the case for

ki _ 1 in2 2 noa2 2
= waVsin® a;, 0, 4/ wj cos* a + wi + 2wiws cos «
kil \Jw?+ w?+ 2wiwy cosa
(A.1)
and
ks 1

(w1 sin? a, 0, \/wf cos? o + w% + 2wiws cos a) .
(A.2)

ko| Vw? + w? + 2wws cosa

The electric and magnetic field of the electromagnetic waves are found from the

requirement that they be mutually orthogonal and have E; - B; # 0. We choose

E
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B -1
! (\/wg cos? o + wf 4+ 2wqwy cos a;, 0, wa V sin® a)

1By Vw? + w? + 2wiwy cos a
(A.4)

for the first laser and for the second laser

& 1 .
\/w% cos? a + w3 + 2wiws cos a, 0, —wp Vsin® a |

Ea] Vw? + w2 + 2wiwy cos a

(A.5)
B,
T2 1 07 170 . A6
B~ 0 h0 (4.6)
We then evaluate F = &, - By + By - €, to find
F? [ wiwe sin® o + 2wiws cos @ — y/(wy cos @ + wa)?(wa cos a + wy)? + w? + w3
E12|Ea W? + w2 + 2wiws COS o
(A.7)

For the reconversion to the electric signal field the geometry results in a source

2
ldol? _ kg (w1 cos o + wo)? N k_i (w1 cos a + ws)? 1
wiwi|Ea|? we \| wi + w3 + 2wiws cos a w3 (Wi + Wi + 2wiws cos a) (kgd)?
(A.8)

where again, we chose beam 2 to be the stimulating one. This results in energy of

the signal field
gg’yw l2 2 2 ‘F2 |j0|2

25612 g2 0! 2|E12|E )2 wiwi|Eql? (A9

from which we may trivially find the bounds on g, as indicated in 2.2
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