UNIVERSITA DI NAPOLI FEDERICO 11
FACOLTA DI SCIENZE MM.FF.NN.

CORSO DI LAUREA IN INFORMATICA

Anno accademico 2001/2002

Tesi di Laurea

Realizzazione di un
sistema computazionale distribuito
ad alte prestazioni
nell’ambito del progetto VIRGO

Relatore:
Prof. Eliana Minicozzi

Candidato:
Rosario Esposito

INDICE

1

Motivazioni e obiettivi del lavoro di stageccccceeeeeen. 5
1.1 INtrOAUZIONEcvvveeiieeeeeeettee e naae e 5
1.2 Il progetto VIRGOcooieiciiieiiiceecteceesteecee et eee e 7
1.3 Il problema del calcolo in VIRGO.........cccccuerevercriencrencneenen. 10

1.3.1 Potenza di Calcolo richiesta.........ccccoevuveeeeeivieeeceineneeennns 13

1.3.2 Analisi Dati in Coincidenzacccceeveeeevveecveeeccveenenneen. 13

1.3.3 Distribuzione Daticcoeoveeieeeeereiecinieeecceeeeeccireeeeenns 14

Architettura proposta per i processi di computazione

in locale: farm di macchine LinuxXc.cccceeeeececeecececeecenes 16
2.1 INrOAUZIONE....ccvvieeirieeeeeeeeteeeetee e eeere e ee e e eere e e are e 16
2.2 Descrizione della farm: Hardware...........cccceeeveeerveeveeeneeennen. 16
2.3 Descrizione della farm: Software........ccoceeevveeeviveeenveeensnneenns 18
2.4 Limitazioni dovute all’allocazione statica dei processi....... 23
2.5 Allocazione dinamica dei processi: MOSIX..........cccceeeuuenee. 24

2.5.1 COS’€ MOSIX ...ttt e cecrrreeceerereeeessseeeeesssaneeeas 24

2.5.2 Componenti di MOSIXcccceeeieivieerieeieeeieeceeeieesnens 25

2.5.3 Preemptive Process Migrationccecceeevveeceeencvennnnens 25

2.5.4 Algoritmi di condivisione delle risorse...........ccecu....... 27

2.5.4.1 Algoritmo di load-balancing dinamico..................... 27
2.5.4.2 Algoritmo di ottimizzazione dell’utilizzo della
memoria (Memory ushering)cccceeceeeeeevveeceeennen. 28
2.5.5 MFS - MOSIX File System.......cccceeeeevueeeeenceenceenneennn. 29
2.5.6 Monitoring dei processi, userland-tools e MOSIXview
30
2.6 Test preliminari sulla farm VIRGO di Napoli.............c......... 31

2.6.1 INtrOAUZIONEuvveeeiciiieeeceeee et 31

2.6.2 TESE LECIICT cuuvvreeeeiireeecccrteee et ceeaaeee e e enees 31

2.6.3 Test di analisi dei dati di VIRGO........ccccouvveieenveeeeennneen. 37

2.6.4 Test generali di analisi dei dati.........ccccceevveeevueireennnnee. 39

[€2 23 1 D J N 40
RS 75 SR 0916 4016 1012 10) s < OSSR 40
3.2 COS€ UNA GIid ..cccuveerieeieiiieeieecieeceeece e eeee e e e ae s eae e s sae e 40
3.3 Legrid nel mondo.......coceeeoiieiiicieniiicieeceeeeecre e 43

3.3.1 EDG (European DataGrid)ccccceeeveerceeecierceesniennnenns 43

3.3.2 Il progetto INFN-GTid......ccccceevriervrerceeeceeeresceeeieesnens 44

3.3.3 Virgo & Grid....ccoceeeieeciiicieeeecieeseeceecee e seee e 45

3.4 Organizzazione delle risorse della grid.........cccceeeuereurennnenee. 46

3.4.1 | 0 1TSS USRI 47
3.4.2 I1 tool-Kit globUsSccocueeeiiiieeeeeeeeceec e, 49
3.4.2.1 GSI (Grid Security Infrastructure).........ccccoeeeveeuenenns 51
3.4.2.2 GASS (Globus Access to Secondary Storage) 56
3.4.2.3 GRAM (Globus Resource Allocation Manager) 58
3.4.2.4 MDS (Metacomputing Directory Service) 60
3.4.2.5 GIIAFTP ..ottt 61
3.4.3 Architettura e componenti del middleware di

| DF:17: (€3 v (s TS S 62
3.4.3.1 Gli elementi di partenza.........ccccceeecveeeeerceervneeneennnen. 62
3.4.3.2 User Interface e Worker Node........cccocvvevvreevnveennnen. 64
3.4.3.3 Estensione della grid: requisiti........cccceeeeervueiereennnen. 66

3.4.3.4 Indipendenza dalla locazione del’'ambiente di
ESECUZIONIE ...vveeenrrreeerreeeerreeeereeeesreeeseesesssesssssesesssesennes 66
3.4.3.5 Indipendenza dalla locazione dei dati....................... 70
3.4.3.0 SICUTCZZA....uceieeureeeeiereeeeceteeeeceeteeeeeerereecesnseeecensnnens 74
3.4.3.7 Installazione e management dei grid-elements....... 76
3.4.4 Test di analisi dei dati di VIRGO con GRID................. 79
3.4.4.1 Realizzazione dell'infrastruttura iniziale.................. 79
3.4.4.2 Layout geografico dei grid-elements............ccccuu....... 81
3.4.4.3 Sottomissione dei job di analisi dei dati................... 83
3.4.4.4 Un’interfaccia user-friendly per ’accesso alla grid.. 93
yZ B 0703 4 el 11 £55 10 1 1 (N 95
GlOSSATIO cueuuuineeeencecececcececececcncaceccscscscescscscscessscscssessssscscesens 97
3310 1002 2 1 i £ L 105

Elenco delle tabelle

Tabella 1-1 Flusso dei Raw e Processed Data per differenti scale

(4 (S T (3111 o) ESUO TSROSO 10
Tabella 1-2 Potenza di calcolo richiesta per ’analisi dati in

relazione al tipo di sorgente gravitazionale.................... 13
Tabella 2-1 Potenza di calcolo per ogni nodoccccceeeeeveeceeennnennee. 32
Tabella 2-2 Velocita di accesso ai dischi locali per ogni nodo......... 32
Elenco delle figure
Figura 1-1 Veduta aerea dell'interferometro di Cascina..................... 9
Figura 2-1 Architettura della farm VIRGO di Napoli............ccceeuue... 17
Figura 2-2 Meccanismo remote-deputy.........ccceeeveeeveeeseeecresneennnen. 26
Figura 2-3 Velocita di accesso alla memoria in lettura per un

SINZOI0 NOAO...c.eviiiiieiiiieeteceece e 34
Figura 2-4 Velocita di accesso alla memoria in scrittura per un

SINZOI0 NOAO...c.uiieiiictieteetece e 34
Figura 2-5 Velocita di trasferimento dati tra 2 nodi usando il

Protocollo TCP/IP ...ccueevieeieiieeeeeciecceee e 35

Figura 2-6 Velocita di trasferimento dati tra 2 nodi usando MPI .. 36
Figura 2-7 Speed-up dell’algoritmo Matched Filter parallelo......... 38

Figura 2-8 Speed-up del codice PWSCFccccecevviirvirnernennieneenneens 39
Figura 3-1 Schema di base di DataGrid........c.cccceevuerernervernicneennn. 63
Figura 3-2 Schema esteso di DataGrid con WN e Ul....................... 64

Figura 3-3 Schema di base del Workload Management System..... 67
Figura 3-4 Workload Management System con Information

INAEX.eiiiiiiiieeieeteteeeeeteet ettt sttt 68
Figura 3-5 Workload Management System con Logging &
BOOKKEEDINGeeeviireiiieeteicieceeeece e eve e e ne e 69
Figura 3-6 Meccanismo di accesso ai dati via Replica Catalogue....71
Figura 3-7 Replica dei file con GDMP........ccccocererirveenenerierneenrennenns 73
Figura 3-8 Generazione automatica del grid-mapfile....................... 75
Figura 3-9 Architettura client/server di LCFG........c.cccceecveruercunennnen. 77
Figura 3-10 Layout geografico dell'infrastruttura grid usata
da VIRGO ...cueiiiiieieeetetesieneet e et saesae e esaesaenaas 81
Figura 3-11 Accesso alla grid attraverso GENIUS............ccceeuvenneen. 94

1 Motivazioni e obiettivi del lavoro di stage

1.1 Introduzione

Il lavoro presentato nelle seguenti pagine ¢ frutto di un’attivita

di stage svolta, principalmente, presso il laboratorio VIRGO! della
Sezione INFN2 di Napoli.
Gli obiettivi principali dello stage sono i seguenti:

1)

2)

Lo studio di wun’architettura hardware/software e
I'implementazione di un prototipo di Linux farm3 ad alte
prestazioni per l’esecuzione e il test, in locale, di procedure di
analisi dei dati acquisiti dall’interferometro di VIRGO.

Le definizioni e i dettagli di questa prima parte del la-
voro sono discussi nell'intero capitolo 2. In particolare, i para-
grafi 2.2, 2.3 e 2.4 contengono la descrizione hardware e
software della farm inizialmente realizzata e le motivazioni per
la sua successiva modifica. Tale modifica ¢ illustrata nel para-
grafo 2.5 mentre, nel paragrafo 2.6, sono descritti i test effet-
tuati sull’architettura proposta.

L’estensione della farm al modello di “griglia computazionale™
geograficamente distribuita, nelllambito del progetto
INFN-Grids. Tale attivita, illustrata nell’intero capitolo 3, ha
come scopo la realizzazione di un’infrastruttura di base su cui
effettuare test di analisi dei dati di VIRGO in un ambiente
“grid-oriented”4. In particolare, il paragrafo 3.4.4 contiene la
descrizione della realizzazione di tale infrastruttura e dei test
effettuati su di essa; in tale paragrafo, quindi, é riferita la se-
conda parte del lavoro originale svolto.

1 Nei paragrafi 1.2 e 1.3 viene presentata una descrizione del progetto VIRGO e delle
problematiche di calcolo distribuito da dover affrontare

2 INFN: Istituto Nazionale di Fisica Nucleare

3 Per “Linux farm” si intende un insieme di calcolatori con sistema operativo Linux
che collaborano per 'esecuzione di processi di calcolo

41 termini “griglia computazionale” e “ambiente grid-oriented” saranno introdotti e
descritti in dettaglio nell’intero capitolo 3

5 La descrizione del progetto INFN-Grid € presentata nel paragrafo 3.3.2

5

Questi due obiettivi, strettamente correlati, sono finalizzati
alla realizzazione di un sistema di calcolo ad alte prestazioni
“multi-purpose” da utilizzare, in locale, come un potente strumento
per l'analisi dei dati e, in un contesto di calcolo distribuito, come ri-
sorsa disponibile all'interno di una griglia computazionale.

1.2 Il progetto VIRGO

Obiettivo principiale del progetto VIRGO e quello della prima
rivelazione diretta di onde gravitazionali emesse da sorgenti astrofisi-
che mediante tecniche interferometriche. Tale progetto, formalmente
approvato nel 1994 come collaborazione scientifica tra due enti di ri-
cerca, l'italiano INFN (Istituto Nazionale di Fisica Nucleare) e il fran-
cese CNRS (Centre National de la Recherche Scientifique), € attual-
mente in fase di realizzazione presso Cascina (Pisa). Il completa-
mento di tale progetto € previsto per la fine del 2002 ed i primi run
sono previsti per I'inizio del 2003, anno in cui comincera la fase di
Commissioning di VIRGO, necessaria per la messa a punto del rive-
latore. [1]

L’antenna VIRGO é sostanzialmente un interferometro laser di
tipo Michelson costituito da due bracci ortogonali, ciascuno lungo 3
chilometri, costituito da una cavita Fabry-Perot di finesse 50. Tali ca-
vita servono per realizzare un braccio di un Michelson equivalente di
lunghezza pari a 150 km, mediante riflessioni multiple. La funzione
di tali cavita Fabry-Perot & duplice: hanno la funzione di aumentare
la potenza laser in cavita migliorando la sensibilita
dell'interferometro, e, contemporaneamente, la funzione di adattare
la banda di misura dell'interferometro ad una banda di emissione di
sorgenti di onde gravitazionali in cui € elevata la probabilita di rive-
lare segnale gravitazionale. Questa banda, nel caso di VIRGO, e pari a
4 Hz — 6 kHz.

Infatti, in questa banda dovrebbe essere possibile rivelare se-
gnali gravitazionali emessi da diverse classi di sorgenti astrofisiche:
burst, segnali gravitazionali emessi a seguito di esplosioni di
supernovae; chirp, segnali gravitazionali emessi da binarie
coalescenti; quasi-sinusoidi, segnali gravitazionali emessi da Pulsar.

[1]

La rivelazione di onde gravitazionali da parte di interferometri
richiede un’estrema sensibilita. In particolare, VIRGO e stato pro-
gettato per raggiungere sensibilita di 1022 m/sqrt(Hz) a 10 Hz. Il rag-
giungimento sperimentale di questa sensibilita richiede notevoli qua-
lita e accuratezza nella progettazione dei diversi componenti

dell'interferometro. Infatti solo abbassando notevolmente le sorgenti
di rumore interne (ottico, meccanico, elettronico, ecc.) e quelle
esterne (sismico, elettromagnetico, acustico, etc.) o comunque con-
trollandole e misurandole in modo continuativo e possibile pensare
di rivelare tali onde gravitazionali. Gli scienziati italiani e francesi si
sono prefissi di raggiungere questo difficile obiettivo e stanno svilup-
pando delle tecniche molto avanzate nel campo dei laser ultrastabili
ad alta energia, nel campo della realizzazione di specchi ad alta ri-
flettivita, nel campo dell'isolamento sismico ed ambientale in gene-
rale e nel campo dei controlli digitali di posizione ed allineamento
ottico.

VIRGO, infatti, utilizza una nuova generazione di laser ultra-
stabili e gli oscillatori piu stabili mai costruiti. Per evitare movimenti
dei componenti ottici indotti da rumore sismico che mimerebbero se-
gnali gravitazionali, gli specchi dell'interferometro sono isolati me-
diante un elaborato sistema di pendoli compositi, alto 10 metri
(superattenuatore). Poiché la presenza di gas residui potrebbe per-
turbare le misure, il raggio di luce deve propagarsi sotto vuoto spinto.
I due tubi, lunghi 3 km e con un diametro di 1.2 m, sono tra i piu
grandi sistemi da vuoto spinto mai realizzati al mondo.

VIRGO svolgera la sua attivita giorno e notte e sara in ascolto
di tutti i segnali gravitazionali provenienti da qualsiasi parte
dell’'universo. I segnali saranno rilevati, registrati e pre-analizzati at-
traverso un complesso sistema di acquisizione e calcolo on-line. Si
prevede un flusso continuo di 5 Mbyte/sec di dati che dovranno es-
sere archiviati, su disco e su nastro, ed analizzati sia on-line che
off-line. Tutti questi dati verranno poi successivamente collezionati e
resi disponibili alla comunita scientifica per ulteriori analisi. [1]

Figura 1-1 Veduta aerea dell'interferometro di Cascina

1.3 Il problema del calcolo in VIRGO

I rivelatori interferometrici di Onde Gravitazionali pongono
significativi problemi nei riguardi dell’analisi dei dati. Il volume di
dati prodotti e la potenza di calcolo necessaria per la loro elabora-
zione raggiungono ordini di grandezza tali da richiedere necessaria-
mente uno sforzo di ricerca e di sperimentazione indirizzati verso
nuove soluzioni tecnologiche.

Come quadro generale di riferimento, € opportuno ricordare
che VIRGO viene sviluppato in parallelo ai progetti anglo-tedesco
(GEO), americano (LIGO) e giapponese (TAMA). La collaborazione
tra i vari progetti e strettissima. A tale scopo si € gia raggiunto un ac-
cordo sulla omogeneizzazione del formato dei dati che coinvolge pra-
ticamente tutti i gruppi sopra citati ed € in corso di formalizzazione
l’'accordo di scambio completo dei dati stessi tra VIRGO e LIGO. Per
ciascun esperimento il volume dei dati prodotti continuativamente si
misura in Tbytes (con un rate stimabile in diversi Mbytes/s) e le po-
tenze di calcolo necessarie per I'analisi in Tflops.

I dati prodotti dall’interferometro centrale di VIRGO devono
essere analizzati sia a fini diagnostici della macchina sia allo scopo di
testare e raffinare gli algoritmi di analisi. I dati dell'interferometro
completo sono previsti a partire dal 2003. Entro questa data, le pro-
cedure d’analisi devono essere mature ed un forte nucleo delle risorse
di calcolo necessarie deve essere disponibile.

Attualmente VIRGO ¢ ancora nella fase di Commissioning
dell'Interferometro Centrale (CITF), un interferometro a bracci corti
realizzato nella zona centrale dell'interferometro, necessario per una
prima messa a punto dei sistemi di controllo, acquisizione, ecc.. Il si-
stema d’acquisizione dati di VIRGO genera un flusso di dati che puo
essere sintetizzato nella Tabella 1-1 [2]:

Raw Data| Processed Data
Flow/s 4.0 MB .3 MB
Flow/day 350 GB 26 GB
Flow/year 126 TB 9.5 TB
Tapes/year (50 GB DLT) 2500 190

Tabella 1-1 Flusso dei Raw e Processed Data per differenti scale dei tempi

10

I dati sono raccolti in strutture chiamate “frame” che costituiscono
I'insieme dei “Raw Data”. Vista la natura ed il livello di frontiera del
rivelatore, questi flussi sono destinati a variare per eccesso o per di-
fetto in funzione dell’abilita degli sperimentatori nel comprendere e
modellare tutte le sorgenti di rumore proprie dell’antenna. Il numero
dei nastri magnetici che deve essere utilizzato in un anno € stato va-
lutato assumendo nastri del tipo DLT di 50 GB di capacita. I
“Processed Data”, ottenuti con una elaborazione on-line, sono imma-
gazzinati sui dischi di un cluster di computer e sono accessibili tra-
mite un sistema di distribuzione dati. [3]

Per non danneggiare irreversibilmente i dati nel momento ini-

ziale dell’elaborazione e della qualificazione del segnale, non sara mai
possibile utilizzare per calcolo off-line le risorse di calcolo della
struttura dedicata all’elaborazione on-line dei dati; € anzi un obbligo
evitare interferenze tra le due strutture computazionali di on-line ed
off-line.
Riportiamo qui di seguito una lista [2], necessariamente parziale, re-
lativa alle attivita di calcolo off-line per VIRGO. Alcune di esse sono
gia in pieno svolgimento, come quella relativa alla simulazione stru-
mentale, altre sono in fase di sviluppo, come la scrittura di algoritmi
relativi alla ricerca delle varie categorie di segnali. Vediamo di elen-
carle almeno in modo sommario, cercando di metterne in luce il ri-
spettivo peso in termini di richiesta di risorse necessarie ai fini del
calcolo:

- Simulazione dati di VIRGO. Questa attivita e basata
sull’elaborazione di dati simulati. Il flusso dati, cosi come il
formato, ¢ analogo a quello dei dati reali. La simulazione &
fondamentale per definire I'efficienza dei vari passi di analisi
previsti lungo la catena d’elaborazione dei dati.

- Caratterizzazione delle sorgenti di rumore
dell’interferometro. L’analisi ¢ strettamente connessa con
lo sviluppo della simulazione ed ¢ attualmente in corso da due
anni per il Commissioning dell’interferometro centrale (CITF).
Essa implica un pesante lavoro di rielaborazione dei Raw Data.

11

- Ricerca off-line di segnali da binarie coalescenti. Le
necessita di calcolo si riferiscono essenzialmente alla ricerca di
possibili candidati per sistemi binari in coalescenza. Questa
attivita richiede un ampio spazio disco per lo storage dei dati e
notevoli risorse di elaborazione.

- Ricerca di segnali continui da stelle di neutroni asim-
metriche in rapida rotazione. La ricerca ¢ basata sullo
sviluppo di tecniche di analisi “sub ottimali” che consentono di
affrontare la ricerca in tutto cielo di sorgenti di frequenza di
rotazione sconosciuta, limitando la potenza di calcolo necessa-
ria nel range di qualche Tflops.

- Network Analysis. Lo scambio dati con altri rivelatori ¢ fon-
damentale per questo tipo di esperimenti. VIRGO scambiera
dati con i due interferometri americani di LIGO e con altri ri-
velatori distribuiti nel mondo per effettuare analisi dati in
coincidenza al fine di aumentare il livello di confidenza rela-
tivo alla rivelazione. Questa esigenza richiede di definire nuovi
protocolli per i quali sono previsti dei test, basati soprattutto
sullo scambio di dati del sistema di monitoraggio ambientale.
La ricerca dei chirp, ad opera di gruppi di persone geografica-
mente distribuiti, concorrera certamente ad aumentare le ne-
cessita di calcolo e di velocita di trasmissione dei dati
dell’esperimento.

Dallo scenario appena descritto emerge la forte necessita di
realizzare dei sistemi di calcolo ad alte prestazioni capaci di elaborare
in maniera efficiente I'enorme quantita di dati prodotta
dall'interferometro.

In particolare, il gruppo VIRGO della Sezione INFN di Napoli,
che ha la responsabilita della ricerca off-line di segnali provenienti da
binarie coalescenti, sta studiando tecniche e metodologie per la rea-
lizzazione di sistemi di calcolo distribuito ad alte prestazioni basati su
farm di computer.

Per riassumere i principali problemi che devono essere presi in
considerazione sono:

12

1) Potenza di Calcolo richiesta
2) Analisi dati in coincidenza con altri esperimenti
3) Distribuzione dati

1.3.1 Potenza di Calcolo richiesta

Dalla Tabella 1-2 [2] si evince che per un’analisi completa rela-
tiva alla rivelazione del segnale gravitazionali emessi da binarie coa-
lescenti € necessaria una notevole potenza di calcolo (>300 Gflop)
mentre ancora maggiore potenza di calcolo € necessaria per la rivela-
zione di segnale gravitazionali emessi da pulsar (>1 Tflop).

Sorgente Potenza richiesta
Burst 10 GFlop
Binarie Coalescenti > 300 GFlop
Pulsar > 1 TFlop

Tabella 1-2 Potenza di calcolo richiesta per 'analisi dati in relazione al tipo di sor-
gente gravitazionale

Queste richieste pongono seri problemi alla realizzazione di un
sistema di calcolo efficiente in quanto e difficile pensare che attual-
mente tale potenza possa essere concentrata in un unico posto e co-
munque dedicata interamente ad un’unica attivita di analisi. E’ per-
tanto logico e necessario pensare sia di utilizzare nelle diverse sedi
partecipanti al progetto VIRGO macchine capaci di effettuare calcolo
distribuito sia di utilizzare risorse computazionali distribuite in sedi
diverse. Questo tipo di scelta si rende necessaria al fine di facilitare la
gestione e I'adattabilita dei sistemi alle esigenze che man mano do-
Vessero porsi.

1.3.2 Analisi Dati in Coincidenza

L’analisi dati in coincidenza fra rivelatori assume un ruolo im-
portante soprattutto nell’ottica di una prima rivelazione di onde gra-
vitazionali. Infatti, data la debolezza intrinseca del segnale gravita-
zionale e la presenza di numerose possibili sorgenti rumore, peraltro
interpretabili come segnali gravitazionali, un elemento che potrebbe
aumentare considerevolmente la certezza di una rivelazione e

13

senz’altro quello di effettuare analisi in coincidenza con altre antenne
della stessa classe di VIRGO in una prima fase, ma di estendere tale
analisi anche ad antenne di classe diversa in un prossimo futuro,
come ad esempio le antenne a barra, la cui banda di rivelazione e
all'interno della banda di rivelazione degli interferometri.

Per realizzare tale obiettivo sono necessari dei solidi supporti
informatici che garantiscano, da un lato, meccanismi per la condivi-
sione delle informazioni (con protocolli standard ed efficienti) e,
dall’altro, lo sviluppo di algoritmi e procedure di analisi per il con-
fronto e il controllo sull’affidabilita dei dati provenienti da fonti di-
verse. [2]

1.3.3 Distribuzione Dati

Un ultimo aspetto da tenere in considerazione € che la nume-
rosa comunita di ricercatori, geograficamente distribuita, deve poter
accedere efficientemente al grande volume di dati prodotto
dall’esperimento.

A fronte di questa esigenza e considerato il rapido e continuo
aumento della velocita di interconnessione delle reti di computer, €
stato proposto a livello internazionale di sviluppare un sistema tra-
sparente di distribuzione dell’onere computazionale e di memoria,
basato su centri di elaborazione di vari gradi di potenza, fortemente
interconnessi tra loro.

In tale ottica si inserisce il progetto GRID che nasce con lo
scopo di realizzare griglie computazionali di nodi geograficamente di-
stribuiti. GRID ¢ oggetto di grande attenzione e si sta concretizzando
in proposte operative di ricerca e sviluppo che coinvolgono enti quali
la NASA e la NSF negli USA, 'ESA, il CERN, 'INFN e le agenzie di ri-
cerca dei piu grandi paesi europei (CNRS, Ppark, MaxPlanck). Grid,
infatti, € un’architettura distribuita che, in modo innovativo, affronta
il problema della condivisione di risorse su larga scala e per le sue ca-
ratteristiche facilita lo sviluppo di nuove applicazioni.

II termine “GRID-computing” identifica, in generale,
un’infrastruttura di elaborazione distribuita nata per rispondere alle
esigenze poste da studi avanzati nel campo della scienza,

14

dell'ingegneria, della fisica, della biologia e di qualsiasi campo dove vi
sia la necessita di elaborare grandissime quantita di dati.

L’infrastruttura Grid si occupa del coordinamento delle risorse
condivise, in un ambiente sicuro, dalle cosiddette Virtual
Organization (VO), gruppi di persone ed entita geograficamente di-
stribuite, multi-istituzionali, in dinamica evoluzione e con interessi
comuni (scientifici, economici, amministrativi, etc.). La condivisione
diventa cosi accesso diretto a computer, dati, software ed altre risorse
e non piu un semplice scambio di file. La sicurezza integrata garanti-
sce 'autenticazione e l'autorizzazione dei partecipanti, il monitoring
delle risorse e policy tra organizzazioni differenti.

Infine, un’architettura Grid lavora in assenza di locazione e
controllo centralizzati, esistenza di relazioni di fiducia preesistenti e
configurazioni omogenee.

15

2 Architettura proposta per i processi di
computazione in locale:
farm di macchine Linux

2.1 Introduzione

In questa sezione verra descritta 'architettura hardware e
software del prototipo di farm realizzata nel laboratorio VIRGO di
Napoli come strumento di test per ’analisi di binarie coalescenti.

2.2 Descrizione della farm: Hardware

Il prototipo della farm [18][21] consiste in 12 macchine
(SuperMicro 6010H). Ogni macchina e dotata di 2 processori
Pentium III — 1 GHz, 512 Mbyte di ram, 2 schede Fast Ethernet e un
disco SCSI da 18 Gbyte.

Uno dei nodi della farm, configurato come master, & dotato di

una scheda Gigabit Ethernet. I nodi della farm sono interconnessi
attraverso 2 switch 100baseT/X a 24 porte. La comunicazione tra i
nodi avviene su 2 reti private indipendenti, realizzate utilizzando i 2
collegamenti Fast Ethernet presenti su ogni macchina. La connes-
sione con la rete esterna e invece garantita dal collegamento Gigabit
sul nodo master.
Le applicazioni e i dati necessari alla farm sono forniti da un Alpha
Server 4100. Tale server € dotato di 2 processori Alpha a 500Mhz,
256 Mbyte di RAM, un set di dischi SCSI per un totale di 144 Gbyte e
2 schede Fast Ethernet. Il server usa uno di questi collegamenti Fast
Ethernet per comunicare con la rete privata della farm e l'altro per
laccesso alla LAN pubblica attraverso lo switch del laboratorio
VIRGO. La Figura 2-1 riassume l'architettura hardware appena de-
scritta:

16

VIRGO Lab Switch

SM 6010H |18 GB
SM 6010H |18 GB
SM 6010H |18 GB
SM 6010H |18 GB
SM 6010H |18 GB
SM 6010H |18 GB
SM 6010H |18 GB
SM 6010H |18 GB
SM 6010H |18 GB
SM 6010H |18 GB
SM 6010H |18 GB
SM 6010H |18 GB 144GB

Figura 2-1 Architettura della farm VIRGO di Napoli

17

2.3 Descrizione della farm: Software

Il sistema operativo installato sulla farm VIRGO di Napoli €
Linux (distr. RedHat 7.2 con kernel 2.4.17). Sull’Alpha Server gira in-
vece il sistema operativo Compaq Tru64 (ver. 5.0a). Le librerie
installate sulla farm sono le seguenti: Grasp 1.9.8, Numerical Recipes
e MPICH 1.2.1.

- Grasp® ¢ una libreria per I'analisi dei segnali gravitazionali,
scritta in C;

- Numerical Recipes’ € una libreria di funzioni matematiche
utilizzate nella scrittura di algoritmi di analisi. Una parte di
questa libreria € usata da Grasp;

- MPICHS® é un’implementazione di MPI (Message Passing
Interface), un set di librerie standard per ambienti di cal-
colo parallelo;

La scelta di Linux come sistema operativo della farm ¢ dettata
da diverse motivazioni. Linux € un sistema operativo opensource effi-
ciente, stabile, affidabile ed estremamente potente, dotato di un com-
pleto ambiente di sviluppo e supportato da una comunita di utilizza-
tori estremamente vasta. La sua versatilita e la sua rapida e continua
evoluzione lo hanno reso, nel corso degli ultimi anni, uno dei sistemi
operativi piu utilizzati, soprattutto negli ambienti di ricerca.

I cluster [4] Linux possono essere usati per:

- garantire affidabilita e disponibilita dei servizi (High
Availability).

- ottimizzare I'utilizzo delle risorse attraverso la distribu-
zione del carico sui nodi costituenti il cluster (Load
Balancing)

6 http://trantor.bioc.columbia.edu/grasp/
7 http://www.nr.com/
8 http://www-unix.mcs.anl.gov/mpi/mpich/

18

- affrontare problemi che, per dimensione e risorse di calcolo
necessarie (come il caso di VIRGO), non possono essere
trattati da un singolo calcolatore (High Performance
Computing).

Con l'espressione HPC (High Performance Computing) si
identifica un sistema in cui le risorse di calcolo hanno prestazioni
particolarmente elevate. Tradizionalmente i sistemi HPC sono stati
implementati su macchine monolitiche capaci di alloggiare piu CPU e
con bus dati estremamente veloci ed efficienti. Piu recentemente,
grazie all’elevata potenza di calcolo raggiunta dai sistemi a basso co-
sto (i comuni personal computer) e alla disponibilita di sistemi ope-
rativi come Linux, € stato possibile realizzare dei cluster HPC di co-
muni PC interconnessi da una rete locale, con molti vantaggi quali:

- costi decisamente inferiori rispetto ai sistemi monolitici;

- utilizzo di tecnologie comuni e componenti disponibili
attraverso la grande distribuzione (COTS: Commodity Off
The Shelf);

- architettura scalabile dei sistemi;

Generalmente la configurazione di una farm di PC presenta al-

cune difficolta dovute principalmente all’elevato numero di elementi
hardware da gestire e tenere sotto controllo.
Il setup di una farm puo essere talvolta un processo lungo e laborioso
e la probabilita che 'amministratore di sistema commetta degli errori
di configurazione cresce all’aumentare dei nodi da installare e gestire.
Inoltre, la manutenzione del software installato su una farm puo ri-
sultare molto complicata quando il numero di workstation da gestire
e elevato. L'installazione di un nuovo pacchetto, 'update di una libre-
ria o la rimozione di un’applicazione software possono diventare dei
compiti onerosi quando devono essere replicati su tutti i nodi della
farm.

Una farm, infine, si puo presentare come uno strumento diffi-
cile da utilizzare, poiché spesso 'esecuzione di job paralleli richiede

19

una conoscenza degli host disponibili in un determinato momento e
un’allocazione manuale delle risorse da parte degli utenti.
L’architettura software della farm di VIRGO tenta di risolvere i pro-
blemi appena descritti facilitando i compiti di installazione, manu-
tenzione e utilizzo delle risorse di calcolo disponibili.

L’architettura e basata sull’utilizzo di nodi “diskless” (privi di
disco di sistema). Uno dei nodi, che svolge il ruolo di master, esporta
agli altri nodi il sistema operativo e le applicazioni.

Una delle due reti private della farm € usata per il boot remoto dei
nodi e lo scambio di dati con il master. Dal punto di vista del
management della farm, tutti i nodi (eccetto il master) possono es-
sere visti come unita prive di disco rigido. Di fatto, i nodi utilizzano il
proprio disco locale soltanto come area di spool per salvare dati tem-
poranei in fase di elaborazione, se necessario.

Questa soluzione offre diversi vantaggi: l'installazione e l'upgrade
software della farm diventa molto facile in quanto tutte le modifiche
vengono fatte su una sola macchina, il master, e diventano visibili
istantaneamente da tutti i nodi. Cio riduce drasticamente i tempi di
amministrazione dei nodi slave. Inoltre I’assenza di un disco sui nodi
comporta una sensibile riduzione dei costi di sistema.

Il boot da rete dei nodi diskless e realizzato con l'ausilio di
Etherboot9 [5], un tool opensource che consente di creare una ROM
(Read Only Memory) contenente un codice di startup (dipendente dal
tipo di scheda Ethernet installata su una macchina) leggibile da un
qualsiasi dispositivo di boot (un floppy, un disco rigido, la EEPROM
di una scheda di rete...).

Esaminiamo in dettaglio la sequenza di boot di un generico nodo
diskless:

- Il codice di startup generato da Etherboot viene letto ed ese-
guito all’accensione

- Il nodo invia sulla rete una richiesta utilizzando il protocollo
Bootp (o DHCP) per ottenere un indirizzo IP da un server (il
nodo master)

9 http://www.etherboot.org

20

- Una volta ottenuto I'indirizzo IP il nodo esegue il download
del kernel di Linux dal server utilizzando il protocollo TFTP

- Il kernel di Linux viene caricato in memoria e sul nodo inizia
la vera sequenza di bootstrap del sistema operativo

- Il kernel, precedentemente compilato con l'opzione “root
filesystem over NFS”, fa si che il nodo esegua un mount del
suo root filesystem da un server NFS (il nodo master)

- Una volta montato il root filesystem, il nodo completa la sua
sequenza di boot montando il proprio disco locale in una
directory “/scratch” e inizializzando i vari servizi di sistema.

Poiché ogni nodo diskless deve avere un root filesystem da
montare via NFS, il nodo master dovrebbe avere tante immagini di
root filesystem (una per ogni client) da esportare agli altri nodi. Non
e possibile esportare uno stesso root filesystem a tutti i client per ovvi
motivi (ad esempio i file di configurazione e i file di log e sono diversi
per ogni client).

Sul nodo master della farm di VIRGO, quindi, € stato installato
ClusterNFS© [11][12], una versione modificata del’NFS server
standard. ClusterNFS € un prodotto opensource che risolve
I'increscioso inconveniente di avere tante immagini di root filesystem
da esportare ai nodi della farm. Con ClusterNFS tutti i nodi (com-
preso il master) possono condividere lo stesso root filesystem utiliz-
zando le seguenti convenzioni:

- Tutti i file sono condivisi per default

- Un file di nome xxx comune a tutti i client NFS (ma non al
server) deve essere rinominato come xxx$$CLIENT$ $

- Un file xxx specifico per un certo client deve essere rinomi-
nato come xxx$$HOST=nomehost.dominio$$ oppure

10 http://clusternfs.sourceforge.net/

21

xxx$$IP=aaa.bbb.ccc.ddd$$ dove “nomehost.dominio” € il
nome del client oppure “aaa.bbb.ccc.ddd” e I'indirizzo IP del
client.

22

2.4 Limitazioni dovute all’allocazione statica
dei processi

La configurazione della farm con nodi diskless facilita di gran
lunga l'installazione e la manutenzione dei nodi. Resta comunque il
problema dell’allocazione statica dei nodi in fase di sottomissione dei
job da parte degli utenti.

Il crescente interesse per i cluster di workstation, sia per il cal-
colo parallelo che per quello sequenziale, induce, inevitabilmente,
alla creazione e alla revisione degli algoritmi di migrazione dei pro-
cessi tra nodi al fine di garantire alte performance e un utilizzo in-
tenso delle "idle workstation" (macchine la cui CPU e inattiva ma di-
sponibile per I'esecuzione di job).

Attualmente quasi tutti i tools utilizzati per il calcolo parallelo
non prevedono la migrazione dei processi verso le workstation piu
scariche; I'allocazione processo-CPU ¢ di tipo statico. Gli svantaggi
sono evidenti: dopo 'allocazione iniziale dei processi su varie CPU, il
carico della farm inizia ad essere non uniforme (delle CPU sono idle
poiché hanno appena terminato i loro processi, mentre altre sono
utilizzate, in maniera concorrente, da piu processi).

23

2.5 Allocazione dinamica dei processi: MOSIX

2.5.1 Cos’é MOSIX

MOSIX" [14][15] é un’estensione dei kernel Unix-like, come
Linux, ed € costituito da una serie di algoritmi per la condivisione
adattiva delle risorse. Questi algoritmi sono progettati in modo da ri-
spondere, in tempo breve, alle variazioni di utilizzo delle risorse, bi-
lanciando il carico computazionale all'interno di un cluster di
workstation.

MOSIX (Multicomputer OS for UnIX) nasce nei primi anni 80

su PDP-11/70 all'universita di Gerusalemme. La sua prima imple-
mentazione viene realizzata su un sistema Unix BSD per PDP-11/70.
Negli anni successivi MOSIX viene implementato anche su VAX
11/780 e su Motorola / bus VME con il supporto economico
dell’esercito israeliano.
Nel 1994 viene rilasciata una versione di MOSIX per BSD su piatta-
forma Intel e nel 1997 MOSIX diventa un progetto GNU per Linux.
Dal 1997 ad oggi gli sviluppatori di MOSIX lavorano a stretto contatto
con quelli del kernel di Linux, contribuendo al continuo rilascio di
patch e all’evoluzione di questo sistema operativo. Nel Novembre
2001 il progetto MOSIX ha subito uno split dovuto a motivi commer-
ciali ma la parte opensource del progetto, che prende il nome di
OpenMOSIX2, continua ad essere supportata da validi sviluppatori
ed evolve di pari passo con il kernel di Linux.

MOSIX e progettato in modo da garantire il load-balancing tra

le workstation di un cluster allo scopo di fornire un supporto effi-
ciente per I'esecuzione di task paralleli o sequenziali.
Questo obiettivo € raggiunto implementando la migrazione di pro-
cessi, eventualmente in esecuzione, da un nodo all’altro, in modo tra-
sparente, prevenendo la drastica diminuzione (trashing)
dell’efficienza delle applicazioni in caso di continui trasferimenti di
blocchi di dati tra la RAM e la memoria di massa (memory
swapping). Il compito di MOSIX e quello di garantire alte prestazioni
globali e di creare un ambiente multi-user e time-sharing.

1t http://www.mosix.org/
12 http://www.openmosix.org

24

2.5.2 Componenti di MOSIX

L’implementazione corrente di MOSIX [19][20] ne consente
I'utilizzo su cluster di workstation x86/Pentium-based con architet-
tura UniProcessor (UP) o Symmetrical Multi Processor (SMP), con-
nesse attraverso una rete locale standard. Le configurazioni possibili
vanno da piccoli cluster di PC connessi con una rete Ethernet a
10Mbit fino a cluster di sistemi ad altissime prestazioni costituiti da
migliaia di server SMP interconnessi da LAN Gigabit, ATM o
Myrinet.

L’architettura di MOSIX si basa su due componenti:

- un meccanismo per la migrazione di processi eventualmente
in esecuzione (Preemptive Process Migration)

- un set di algoritmi per la condivisione adattiva delle risorse

2.5.3 Preemptive Process Migration

Il modulo PPM (Preemptive Process Migration) € in grado di
far migrare ogni processo, in qualsiasi momento, verso uno qualsiasi
dei nodi disponibili del cluster. Di solito le migrazioni vengono decise
in maniera automatica dal sistema operativo, sulla base delle infor-
mazioni fornite da algoritmi di condivisione delle risorse. Gli utenti
pero possono forzare manualmente i propri processi a migrare verso
altri nodi. Tali migrazioni manuali possono essere utili per garantire
una particolare politica di gestione dei processi o per testare diffe-
renti algoritmi di scheduling. L’amministratore di sistema
(superutente) puo inoltre definire delle politiche generali e stabilire
quali nodi sono disponibili per la migrazione dei processi.

A ciascun processo viene associato un UHN (Unique Home
Node) che identifica il nodo in cui € stato creato (in genere rappre-
senta il server al quale sono collegati gli utenti).

Nel modello SSI (Single System Image) di MOSIX ogni processo
sembra essere in esecuzione sul proprio UHN e tutti i processi di una
sessione utente condividono I'ambiente e le risorse del’'UHN.

25

In realta i processi vengono creati sul server al quale sono collegati gli
utenti, ma, successivamente, migrano in maniera trasparente verso i
nodi meno carichi. II PPM ¢ lo strumento principale per gli algoritmi
di gestione delle risorse. La granularita della distribuzione del carico
in un cluster MOSIX e a livello di processo.

Gli utenti possono eseguire le loro applicazioni inizializzando
pitl processi su un solo nodo (gateway), sara compito di MOSIX far
migrare questi processi verso i nodi del cluster. Se durante
Pesecuzione dei vari task vengono rese disponibili nuove risorse, al-
lora gli algoritmi di condivisione delle risorse provvederanno alla ri-
distribuzione dei processi sui nodi della farm. La capacita di smistare
dinamicamente i processi all'interno del cluster ¢ particolarmente
importante nella creazione di ambienti di esecuzione multi-user e
time-sharing.

Un processo in fase di migrazione viene diviso in due contesti;
lo “user context”, che puo essere migrato a tutti gli effetti, e il “system
context” che € dipendente dall'UHN e non puo essere migrato.

Lo user context, chiamato “remote”, contiene il codice del pro-
gramma, lo stack, i dati, le mappe di memoria e i registri del pro-
cesso. Il system context, chiamato “deputy” contiene una descrizione
delle risorse a cui il processo € legato e uno stack per I'esecuzione di
codice di sistema per conto del processo.

Usar-leval User-laval

Link
ayer

Link
layer

Keamel Kernel

Figura 2-2 Meccanismo remote-deputy

26

Uno degli svantaggi dell’approccio remote-deputy e I'overhead
dovuto all’esecuzione di system call via rete. Per questo motivo, ad
esempio, i processi che creano dei socket sul proprio UHN o utiliz-
zano shared memory non vengono fatti migrare, altrimenti si avrebbe
un overhead eccessivo di chiamate di sistema dal remote verso il
deputy.

Questo problema sara comunque superato nelle versioni fu-
ture di MOSIX, in quanto il team di sviluppatori sta implementando
un supporto per la migrazione dei socket e per I'utilizzo di shared
memory distribuita.

MOSIX non prevede un controllo di tipo centralizzato oppure
delle relazioni master-slave tra i nodi; ciascun nodo puo operare
come un sistema autonomo e indipendente. La configurazione di una
MOSIX farm € molto dinamica: ciascun nodo puo entrare a far parte
o uscire dalla farm senza creare particolari problemi alle altre
workstation.

2.5.4 Algoritmi di condivisione delle risorse

I principali algoritmi di MOSIX per la condivisione delle risorse sono:
- lalgoritmo di load-balancing dinamico
- lalgoritmo di ottimizzazione dell’utilizzo della memoria.
2.5.4.1 Algoritmo di load-balancing dinamico

Questo algoritmo cerca continuamente di ridurre le differenze
di carico tra coppie di nodi, migrando i processi dal nodo piu carico
verso quello piu scarico. L’esecuzione ¢ totalmente decentralizzata:
ciascun nodo esegue lo stesso algoritmo e la riduzione di carico ¢é ef-
fettuata in maniera indipendente per coppie di workstation. Il nu-
mero di processori di ciascun nodo e la loro velocita sono dei fattori
presi in considerazione nelle scelte che vengono effettuate da questo
algoritmo.

L’algoritmo di scheduling dei processi € basato su un modello
matematico che riflette alcuni principi dell’economia e dell’analisi

27

competitiva. L’idea € quella di associare dei costi di utilizzo alle varie
risorse, come CPU, memoria, dischi, etc. e di assegnare dinamica-
mente i processi ai nodi minimizzando continuamente questi costi.

2.5.4.2 Algoritmo di ottimizzazione dell’utilizzo della
memoria (Memory ushering)

I processi vengono fatti migrare verso i nodi che hanno una
maggiore memoria disponibile per prevenire il trashing dovuto a
continue operazioni di swap su disco. A seguito di un memory
swapping causato da poca memoria disponibile da parte di un nodo,
questo algoritmo fa migrare il processo verso un nodo con memoria
libera sufficiente.

L’algoritmo di memory ushering ha priorita rispetto a quello di
load-balancing quindi i processi vengono migrati verso i nodi con piu
memoria disponibile anche a scapito del corretto bilanciamento del
carico all'interno del cluster.

28

2.5.5 MFS - MOSIX File System

MOSIX ¢ molto efficiente nell’eseguire in maniera distribuita
processi CPU-bound.
Per gestire in maniera efficiente anche i casi di processi I/O-bound si
possono utilizzare dei filesystem con supporto DFSA (Direct File
System Access)

In un file system che supporta le specifiche DFSA le operazioni
di I/O vengono effettuate da un processo in locale, sul nodo in cui € in
esecuzione e non via rete, per evitare un overhead.
Inoltre un filesystem con supporto DFSA gode delle seguenti caratte-
ristiche:

- Vi € uno stesso mount point su tutti i nodi

- File consistency. L’accesso ad uno stesso file puo avvenire
contemporaneamente dai vari nodi e le modifiche che il file
subisce devono presentarsi nello stesso ordine in cui sono
state realmente effettuate

- Time-stamp consistency. Se un file A ¢ modificato dopo un
file B allora A deve avere un time-stamp maggiore del
time-stamp di B

Attualmente pochissimi file system supportano le specifiche
DFSA; MOSIX ¢ dotato di un proprio filesystem: MFS (MOSIX File
System), conforme al tali specifiche. [17]

L’algoritmo di load-balancing di MOSIX consente ai processi di mi-
grare verso i nodi su cui devono fare operazioni di I/O.

Con NFS i dati seguono le applicazioni mentre con MFS sono le ap-
plicazioni che migrano verso i dati.

MFS é un file system simile a “/proc” di Linux e fornisce ad
ogni nodo una visione completa di tutti i file system montati fisica-
mente su tutti i nodi. MFS inoltre garantisce una consistenza della
cache su uno stesso file nel caso di accessi concorrenti (la cache e
mantenuta sul nodo in cui risiede fisicamente il file)

29

2.5.6 Monitoring dei processi, userland-tools e
MOSIXview

MOSIX pubblica le informazioni relative allo stato del cluster

(utilizzo di cpu, memoria, velocita dei processori...) all'interno del
“/proc file system” standard di Linux.
Esistono delle utility , chiamate “userland-tools”, che leggono il con-
tenuto di “/proc/hpc/info” e consentono un monitoraggio in tempo
reale dei processi che girano sul cluster. Le userland-tools consen-
tono, tra l’altro, di effettuare il tuning dell’intero cluster e la migra-
zione manuale dei processi.

E’ disponibile, inoltre, una interfaccia grafica (MOSIXview)
molto user-friendly che fa da front-end per le userland-tools e forni-
sce uno strumento veloce ed intuitivo per il monitoraggio e la ge-
stione dei processi, facilitando i compiti di gestione del cluster
allamministratore di sistema.

30

2.6 Test preliminari sulla farm VIRGO di
Napoli

2.6.1 Introduzione

In questa sezione verranno descritti i test preliminari effettuati
sulla farm, necessari ad avere delle indicazioni di base sulle presta-
zioni e sui tempi di elaborazione per 'analisi dei dati.

2.6.2 Test tecnici

L’obbiettivo di questi test € quello di valutare la capacita com-
putazionale di ogni nodo della farm, sia in termini di potenza di cal-
colo che in termini di velocita di accesso ai dati su RAM, dischi e rete
locale. A tale scopo sono stati utilizzati dei tool di benchmark dispo-
nibili su internet e comunemente usati da molti laboratori e centri di
calcolo.

Nella Tabella 2-1 e nella Tabella 2-2 sono riportate le potenze
di calcolo e le velocita di accesso al disco per ogni nodo della farm. I
tool utilizzati per questi test sono rispettivamente glibench3 0.2.5 [7]
e bonnie++4 1.02. [6]

I risultati dei test sulla potenza di calcolo dei nodi sono rile-
vanti per il dimensionamento delle farm usate per 'analisi on-line dei
dati di VIRGO e per l'analisi off-line sulle binarie coalescenti. Forni-
scono, infatti, un limite inferiore sul numero di nodi necessari a so-
stenere il flusso di dati proveniente dall’esperimento.

La velocita di accesso ai dischi, in un certo senso, € un para-
metro meno critico in quanto sono possibili delle configurazioni in
cui i dati distribuiti da un nodo master non vengono mai salvati sul
disco dei nodi di calcolo ma piuttosto vengono mantenuti nella RAM
dei nodi per tutto il tempo di elaborazione. Se i nodi sono dotati di
una notevole quantita di memoria RAM una simile configurazione
consente di eseguire un algoritmo alla massima velocita disponibile
su un nodo. La velocita di accesso ai dischi € comunque un parametro
importante da tenere in considerazione nello studio di nuove configu-
razioni di calcolo.

13 http://glibench.sourceforge.net/
14 http://www.coker.com.au/bonnie++/

31

CPU (glibench 0.2.5)
Dhrystones?s Whetstones©
(MIPS) (MFLOPS)
1867 602

Tabella 2-1 Potenza di calcolo per ogni nodo

DISK (bonnie++ 1.02)
Block read (Kbyte/s) | Block write (Kbyte/s)
28968 32629

Tabella 2-2 Velocita di accesso ai dischi locali per ogni nodo

Nella Figura 2-3 e nella Figura 2-4 sono riportate le velocita di
accesso alla memoria In lettura e scrittura, per ogni nodo. Nelle fi-
gure citate la “block size” e la quantita di memoria occupata da un
blocco di dati, gli “strides” rappresentano la distanza (misurata in pa-
gine di memoria) tra due blocchi di dati e la terza dimensione rappre-
senta la velocita di trasferimento. Il tool di benchmark usato per ot-
tenere questi dati € memperf” 0.9e [8].

Dalle figure citate € possibile osservare che la velocita di tra-
sferimento dei dati dipende fortemente dalla dimensione dei blocchi
di dati trasferiti. I trasferimenti sono piu efficienti quando la dimen-
sione dei blocchi varia tra 16 e 128 Kbyte. In questo caso € possibile
ottenere una velocita di trasferimento di circa 2000 Mbyte/s. Questo
valore ¢ molto importante se la memoria viene utilizzata per eseguire
gli algoritmi alla loro massima velocita, come descritto in precedenza.
E’ inoltre importante notare che quando la dimensione dei blocchi
supera la dimensione della memoria cache del processore, la velocita
di trasferimento dei dati decresce rapidamente. Questo € un pro-
blema serio per la gestione di grandi flussi di dati, situazione che puo

15 Dhrystone € un test di benchmark che misura la velocita con cui un processore
effettua operazioni su numeri interi. I risultati del test sono espressi in unita
chiamate “dhrystones” (Milioni di operazioni intere al secondo).

16 Whetstone ¢ un test di benchmark che misura la velocita con cui un processore
effettua operazioni in virgola mobile. I risultati del test sono espressi in unita
chiamate “whetstones” (Milioni di operazioni in virgola mobile al secondo).

17 http://www.cs.inf.ethz.ch/cops/software/

32

verificarsi ad esempio nel caso della ricerca di onde gravitazionali
provenienti da una stella con una massa piccola.

33

Memory read throughput

3500
+3000
+2500
+2000
+1500
+1000
+500

MByte/s
Strides

Block size
@b 0-500 @ 500-1000 [1000-1500 [11500-2000
W 2000-2500 [@2500-3000 m 3000-3500

Figura 2-3 Velocita di accesso alla memoria in lettura per un singolo nodo

Memory write throughput

Strides

Block size

00-1000 B1000-2000 O2000-3000 O03000-4000 M 4000-5000 ‘

Figura 2-4 Velocita di accesso alla memoria in scrittura per un singolo nodo

34

Nel test successivo abbiamo considerato la velocita di trasfe-
rimento dei dati su LAN Fast Ethernet.
La Figura 2-5 mostra la velocita di trasferimento dei dati tra due nodi
usando il protocollo TCP/IP. Come € possibile osservare dalla figura,
la velocita massima di circa 9o Mbit/s e raggiunta quando la dimen-
sione dei blocchi € maggiore o uguale a 1 Mbyte. Il tool di benchmark
utilizzato per questo test € netpipe!® 2.4 [9].

Fast Ethernet throughput (netpipe 2.4)
100,00 -

90,00 /.._-6—— ®
80,00

70,00
60,00 //
50,00

40,00 4

30,00

20,00

10,00

0,00 w \ \ \ \ \ \ \ \
1 2 4 8 16 32 64 128 256 512 1024 2048 4096

block size [KBytes]

bandwith [Mbit/s]

Figura 2-5 Velocita di trasferimento dati tra 2 nodi usando il protocollo
TCP/IP

Nell'implementazione di algoritmi che usano MPI come proto-
collo di comunicazione tra i nodi € importante misurare la velocita di
trasferimento su rete di blocchi di dati inviati utilizzando questo
protocollo. La Figura 2-6 mostra i risultati di un test di comunica-
zione MPI ottenuti con il tool di benchmark pallas®9 2.2 [10].

Dalla Figura 2-6 si puo notare che la velocita raggiunta usando
MPI & massima per valori intermedi della block size ma, per con-
fronto con la Figura 2-5, € inferiore a quella ottenuta col protocollo

18 http://www.scl.ameslab.gov/netpipe/
19 http://www.pallas.com/e/products/pmb/index.htm

35

TCP/IP. Cio ¢ in accordo col fatto che i blocchi di dati trasferiti con
MPI non devono essere di grandi dimensioni.

Network - MPI communication (pallas 2.2)

20 1

PN
/ N

12 ~~— o _
10 / =

bandwith [Mbytes/s]

o N b O

1 2 4 8 16 32 64 128 256 512 1024 2048 4096
block size [KBytes]

Figura 2-6 Velocita di trasferimento dati tra 2 nodi usando MPI

36

2.6.3 Test di analisi dei dati di VIRGO

Il prototipo della farm VIRGO di Napoli & stato usato per
testare alcune procedure di analisi dei dati. Il primo passo e stato
quello di valutare le prestazioni della farm con algoritmi di ricerca di
binarie coalescenti. L’algoritmo usato ¢ il “Matched Filter”, una pro-
cedura per la ricerca di forme d’onda conosciute, all’interno di un se-
gnale affetto da rumore di fondo; esso € ottimale ma richiede un ele-
vato costo computazionale. Questo algoritmo, infatti, € basato su un
confronto esaustivo tra il segnale di origine e tutte le possibili forme
d’onda prese in considerazione, chiamate “templates”.

Al crescere del numero di templates aumenta la qualita con cui viene
identificato il segnale ma un numero sempre maggiore di operazioni
sono richieste in fase di elaborazione.

L’implementazione dell’algoritmo Matched Filter usata per i

test si basa su MPI per parallelizzare su piu processori il carico com-
putazionale.
I test di esecuzione dell’algoritmo Matched Filter su dati di prova
hanno mostrato un progressivo aumento della velocita di elabora-
zione all’aumentare del numero di processori utilizzati. La figura 6
mostra la curva di speed-up osservata rilevata sperimentalmente:

37

30,00

25,00

20,00

15,00

speed-up

10,00 //‘i'//./.
5,00
0,00 \ ‘

1 4 8 12 16 20 24

Numero di processori ®— speed-up misurato
—@— speed-up teorico

Figura 2-7 Speed-up dell’algoritmo Matched Filter parallelo

L’aumento della velocita non segue un andamento lineare ri-
spetto al numero di processori utilizzati. Quest’effetto di saturazione
€ comunque presente in tutti i sistemi di calcolo paralleli basati su
rete locale. [22]

38

2.6.4 Test generali di analisi dei dati

La farm e stata anche testata con procedure di calcolo parallelo utiliz-
zate in altri campi della fisica. In particolare, € stato testato un pro-
gramma (PWSCF2° Plane-Wave Self-Consistent Field), basato su
MPI, per l'analisi della struttura di un cluster di atomi. Una sintesi
dei risultati ottenuti in questo caso € mostrata in Figura 2-8.

18,00
16,00
14,00
12,00
10,00
8,00
6,00
4,00
2,00
0,00

speed-up

2 4 6 8 10 12 14 16

Numero di processori speed-up misurato
—&— speed-up teorico

Figura 2-8 Speed-up del codice PWSCF

Dalla figura si puo osservare che, in questo caso, la potenza di
calcolo della farm cresce quasi linearmente allaumentare del numero
di processori. [22]

20 http://www.pwscf.org/

39

3 GRID

3.1 Introduzione

Qualcuno potrebbe pensare che I'enorme potenza di calcolo
generata da un moderno sistema di computer configurati in cluster
potrebbe essere sufficiente a soddisfare i requisiti di ogni applica-
zione umanamente concepibile, ma non € sempre cosi.

Esistono gia delle applicazioni (come ad esempio quelle di
VIRGO) e altre se ne stanno pensando, che necessitano di risorse di
calcolo superiori (a volte per ordini di grandezza) a quelle odierna-
mente fornite dagli attuali strumenti di calcolo.

Nasce quindi I'esigenza di andare oltre quella che & stata fino
ad oggi la comune struttura di un sistema di calcolo.

Una delle strade recentemente intraprese per far fronte a tutto
questo e 'implementazione delle cosiddette "griglie computazionali
distribuite", pitt comunemente chiamate "grid".

3.2 Cos’e una grid

Le grid [24] sono infrastrutture che mirano a collegare su larga
scala risorse di calcolo che possono essere eterogenee, distanti tra
loro, nonché gestite da persone ed enti diversi.

Il termine griglia computazionale, "computational grid", e
stato scelto perché in inglese presenta una forte analogia con il ter-
mine atto a designare la rete elettrica: "electric power grid"; € infatti
al modello delle reti di distribuzione dell’energia elettrica che il pro-
getto delle grid si ispira. Una rete elettrica rende oggigiorno ampia-
mente disponibili e collega fonti di energia eterogenee (vi sono cen-
trali elettriche di innumerevoli tipi diversi, che sfruttano le piu sva-
riate tecnologie), distanti, gestite da persone ed enti diversi: basti
pensare al fatto che intere nazioni comprano e vendono costante-
mente energia elettrica. Allo stesso modo si puo pensare a dei proto-
tipi di grid quando si guarda alle reti di comunicazione stradali, fer-
roviarie, marittime e aeree, alle reti telefoniche, ai servizi di trasporto
e distribuzione delle merci e cosi via. Una cosa importante ¢ pero il

40

fatto che gli esempi citati sono realizzazioni diverse di una stessa
struttura astratta.

Allo stesso modo una griglia computazionale dipende da altre
infrastrutture, senza le quali sarebbe impensabile; in un certo senso
si puo addirittura pensare che ne sia la naturale evoluzione e il com-
pletamento: ci riferiamo alle strutture di calcolo classiche (personal
computer, macchine multiprocessore, cluster di PC...) e alla rete
Internet.

Le applicazioni che maggiormente necessitano della potenza di
calcolo e della versatilita messa a disposizione da una infrastruttura
di questo tipo e sono le seguenti:

- Supercalcolo distribuito. Questo tipo di applicazione puo
usare le grid per unire le risorse di calcolo di alcuni, o molti,
supercomputer per risolvere problemi inaffrontabili con
lausilio di un unico calcolatore, per quanto potente, tra
quelli attualmente disponibili.

- High Throughput computing. In questo tipo di applica-
zioni, una grid puo essere utilizzata per organizzare il lavoro
di un grande numero di programmi, che siano tra loro poco
o per nulla collegati. Lo scopo di questo sistema e general-
mente quello di sfruttare il tempo macchina inutilizzato.

- On demand computing. Le applicazioni on demand (a ri-
chiesta) si appoggiano sulle grid per rendere disponibili, una
tantum, risorse di calcolo che, per il loro saltuario utilizzo,
non sarebbe pratico, né economicamente conveniente, avere
a disposizione in locale.

- Data intensive computing. Nelle applicazioni di questo
tipo, il cui scopo € la gestione di gigantesche quantita di dati
distribuiti geograficamente, si riscontrano sovente problemi
legati all’alto carico di calcolo e all'ingente trasferimento di
dati. In questo caso il modello di griglia computazionale si
presenta come una valida soluzione per lo scheduling e la ge-
stione di flussi di dati complessi e di notevoli dimensioni.

41

Calcolo collaborativo. Le applicazioni di questo tipo mi-
rano soprattutto a favorire le comunicazioni e le collabora-
zioni tra le persone, pertanto sono spesso pensate in termini
di spazi virtuali. Molte di queste applicazioni devono rendere
disponibili risorse di calcolo condivise, cosi come archivi di
dati.

42

3.3 Le grid nel mondo

Attualmente, in tutto il mondo, molti istituti di ricerca stanno
implementando dei prototipi di grid, ciascuno rivolto alla soluzione
dei particolari problemi che maggiormente interessano gli sviluppa-
tori. Molto probabilmente quella in futuro che sara la Grid nel suo
stadio definitivo verra proprio dall'unione di alcune di queste parti-
colari implementazioni.

Negli Stati Uniti, ad esempio, la National Partnership for
Advanced Computational Infrastructure (NPACI) e la National
Computer Science Alliance (NCSA) stanno sviluppando il prototipo di
una National Technology Grid2!, che mira a collegare le risorse di
molti centri di supercalcolo, laboratori di ricerca, college e campus
universitari. Il loro obiettivo principale e costruire la base di una grid
su scala nazionale il cui utilizzo sia diffuso quanto quello di Internet
oggigiorno.

Un altro progetto di questo tipo ¢ in fase di implementazione
alla NASA, si tratta della Information Power Grid (IPG22), essa mira a
unire tutte le risorse di calcolo della NASA in un unico
supercomputer da utilizzare per la risoluzione di problemi di calcolo
nella ricerca aerospaziale e per quelli del monitoraggio delle condi-
zioni climatiche.

3.3.1 EDG (European DataGrid)

In Europa 6 partner maggioritari e 15 minoritari hanno deciso
di unire le proprie risorse umane e tecnologiche per lo sviluppo di
una grid europea con lo scopo di risolvere i problemi di calcolo della
fisica delle alte energie, il progetto € denominato EDG23 (European
DataGrid). [27]

Questo progetto nasce dall’esigenza di trattare 'enorme quan-
tita di dati che verranno generati dagli esperimenti di fisica delle alte
energie, in programma nei prossimi anni presso il CERN.

Presso i laboratori del CERN é infatti attualmente in costru-
zione un nuovo acceleratore di particelle, denominato LHC, presso il

21 http://access.ncsa.uiuc.edu/
22 http://www.ipg.nasa.gov/
23 http://www.eu-datagrid.org/

43

quale saranno attivi quattro esperimenti denominati: ATLAS, CMS,
ALICE, LHCb.

La grid che il progetto EDG intende realizzare per gestire ed
analizzare i dati prodotti da questi esperimenti sara costituita ini-
zialmente da un insieme ridotto di risorse di calcolo geograficamente
distribuite che fornisca i servizi e le funzionalita di base: il testbed.

Il testbed servira a dimostrare la reale fattibilita del progetto,
contribuendo a sviluppare le tecnologie non ancora disponibili e a ri-
solvere i problemi, sia teorici che pratici, che si presenteranno du-
rante questa fase mista di sviluppo e test. Oltre a fornire un ambiente
dimostrativo, il testbed dovra poter essere usato come strumento di
produzione per qualche vera applicazione, usando dati reali, ad
esempio nei processi di simulazione di alcuni esperimenti. La strut-
tura di base fornita dal testbed, una volta consolidata, sara ampliata
fino a costituire la vera e propria grid di produzione.

3.3.2 Il progetto INFN-Grid

L’INFN, da sempre interessato alle problematiche del calcolo
distribuito, € uno dei maggiori partecipanti nello sviluppo delle atti-
vita inerenti a LHC, in particolare di quelle legate alla realizzazione di
infrastrutture per il Grid-computing. Il progetto INFN-Grid24 [28] ha
come obiettivo primario l'installazione e lo sviluppo, su scala nazio-
nale, di una griglia computazionale in grado di gestire e utilizzare ef-
ficacemente sia i supercomputer che i cluster di personal computer
distribuiti sui vari nodi della rete italiana per la ricerca: Garr-b. Que-
ste risorse di calcolo, distribuite geograficamente e finora utilizzate
normalmente dalle singole Sezioni INFN, dovranno poter essere in-
tegrate utilizzando la grid nazionale per formare un sistema coerente
di High Throughput Computing, accessibile in modo trasparente ai
ricercatori.

Questa grid nazionale dovra inoltre essere integrata con quella
del progetto europeo EDG e con infrastrutture simili, attualmente in
fase di sviluppo in altre nazioni europee, in Giappone e negli USA.

24 http://www.infn.it/grid

44

Come per il progetto europeo EDG, anche il progetto INFN-
Grid ha come obiettivo primario la realizzazione di un testbed che
dovra convalidare il modello adottato e servire come piattaforma di
test per lo sviluppo delle applicazioni.

3.3.3 Virgo & Grid

Oltre agli esperimenti legati a LHC, il progetto INFN-Grid e
stato pensato anche per fornire a VIRGO l'infrastruttura necessaria a
gestire ed analizzare i dati prodotti dall'interferometro di Cascina in
un ambiente “grid-oriented” (che si avvale cioé di un’infrastruttura
Grid).

Il testbed che il progetto INFN-Grid si propone di realizzare,
verra utilizzato come piattaforma di test su cui effettuare inizialmente
Panalisi dei dati di VIRGO per la ricerca di segnali provenienti da si-
stemi di binarie coalescenti e da stelle Pulsar.

45

3.4 Organizzazione delle risorse della grid

La grid proposta da EDG e da INFN-GRID ¢ organizzata sfrut-
tando il cosiddetto modello a centri regionali, denominazione che sta
a indicare un sistema di organizzazione gerarchico delle risorse di
calcolo geograficamente distribuite.

I vantaggi di questa soluzione sono molteplici; innanzitutto una
struttura distribuita su ampia scala geografica minimizza la necessita
di spostamenti per il personale tecnico e per gli sperimentatori e
massimizza, al contempo, la possibilita di coinvolgimento attivo nelle
varie fasi dei lavori.

Un’organizzazione regionale ¢ la soluzione migliore anche dal
punto di vista della velocita di trasmissione dati: ¢ un dato di fatto
che le reti su corta distanza saranno sempre piu economiche e effi-
cienti rispetto a reti su lunga distanza. Pertanto una gerarchia di
centri di calcolo, ciascuno con un adeguato spazio di archiviazione,
che puo servire sia da cache sia da repository dei dati per gli speri-
mentatori locali, permette di ottimizzare il rapporto
costo/prestazioni della rete, un po’ come avviene per il sistema di
proxy gerarchico per I'http. Inoltre € spesso oggettivamente difficile,
per motivi logistici o di reperibilita del know-how, concentrare in un
unico luogo tutte le risorse necessarie, mentre distribuirle geografi-
camente risulta molto piu semplice.

Una ricaduta secondaria di questo modello organizzativo € la
capacita di poter decidere di elaborare i dati dove sono, piuttosto che
dove si disponga di una maggior potenza di CPU, oppure vicino allo
sperimentatore, potendo cosl ottimizzare lefficienza
dell’elaborazione a seconda delle circostanze.

46

3.4.1 ITier

Il modello gerarchico appena descritto puo essere schematiz-
zato in una serie di tier2s, centri regionali, con cinque livelli decre-
scenti di complessita e capacita operative:

Il tier o ¢ il livello piu alto della catena gerarchica ed e costi-
tuito da tutta quella parte della struttura di calcolo e acquisizione dati
che non puo, per evidenti ragioni pratiche, essere replicata altrove.
Un esempio di questo genere e 'archivio dei Raw Data prodotto nella
fase di acquisizione di un esperimento.

I tier 1 forniscono tutti i servizi tecnici e i set di dati speri-
mentali necessari per le procedure di analisi e simulazione. Al livello
1 della gerarchia di tier sono anche definite le politiche di accesso alle
risorse. Il sistema di autenticazione assegna a seconda dei casi prio-
rita diverse di accesso, discriminando gli utenti secondo vari para-
metri, come il gruppo di ricerca di appartenenza, la vicinanza geo-
grafica alle risorse o il tempo macchina richiesto.

I tier 2 sono centri di calcolo piu piccoli, rispetto a quelli del
livello superiore, generalmente dipendenti da un tier 1. Un tier di
questo livello ¢ in grado di fornire la maggior parte dei servizi di ana-
lisi, anche se non allo stesso livello di completezza di un tier 1. Il ba-
cino di utenza di questo tier € molto ristretto, principalmente compo-
sto da utenti locali. L'uso dei tier 2 da parte di utenza remota € visto
come un evento eccezionale, ad esempio causato da un guasto in un
altro tier 2 o 1.

I tier 3 e 4 sono gli ultimi due livelli di questa scala gerarchica
e possono essere considerati, in un certo senso, elementi satelliti di
tier 1 o 2, costituiti prevalentemente da piccole risorse di calcolo o di
storage temporaneo, ad esempio una piccola farm di istituto per
quanto riguarda il livello 3, o i PC usati come client dai ricercatori per
il livello 4. Questi livelli sono totalmente dipendenti dai livelli

25 Dall’inglese tier: fila

47

superiori, sia per quanto riguarda la disponibilita dei dati, sia per il
collegamento agli altri tier.

Per quanto riguarda il progetto INFN-Grid il tier 0 degli espe-
rimenti legati a LHC e il CERN, dov’e situato I’acceleratore di parti-
celle e dove verranno svolte le operazioni di acquisizione dei dati.
VIRGO, invece, avra come tier o I'interferometro di Cascina.

L’INFN ha deciso di implementare un unico tier 1 al CNAF2¢ di
Bologna, punto di accumulazione verso cui convergeranno i dati pro-
venienti dal CERN e da Cascina.

In fase di sviluppo del testbed, i tier 2 di VIRGO saranno si-
tuati nelle Sezioni INFN di Napoli e Romat, in cui saranno sviluppate
delle procedure di analisi, rispettivamente, su sistemi di binarie
coalescenti e su stelle Pulsar utilizzando delle farm locali.

I tier 3 di VIRGO, responsabili della rielaborazione dei dati e
di specifiche procedure di analisi in astrofisica e astronomia, saranno
situati nelle Sezioni di Firenze/Urbino e Perugia

26 T, CNAF & un Centro Nazionale dell'INFN il cui scopo € la ricerca e lo sviluppo
nel campo delle discipline informatiche applicate agli esperimenti di fisica nucleare
e delle alte energie.

48

3.4.2 1l tool-kit globus

Una grid e una struttura eterogenea, tenuta insieme da un
certo numero di applicazioni, ciascuna delle quali si occupa di un
particolare aspetto, avendo cura di gestire i necessari scambi di in-
formazioni con le altre applicazioni. Per descrivere I'infrastruttura di
una grid € quindi opportuno concentrarsi, volta per volta, sull’analisi
di un particolare aspetto del problema (e quindi su una particolare
applicazione), piuttosto che tentare di descrivere I'architettura nel
suo complesso, cosa che risulterebbe indubbiamente dispersiva. Il
modello a centri regionali, precedentemente presentato, fornisce una
descrizione logica della composizione di una grid su larga scala; non
permette pero di analizzare la struttura da un punto di vista piu
tecnico e dettagliato.

Nel seguito, invece, saranno descritti i protocolli principali e i
sottosistemi software su cui si basano le funzionalita di una grid. Per
I'implementazione del prototipo iniziale di grid all'interno del pro-
getto europeo EDG e di INFN-Grid e stato scelto di utilizzare il
tool-kit globus?7. [23]

Il software globus ¢ definito “tool-kit” (collezione di utensili) in
quanto ¢ costituito da numerose piccole parti interagenti tra loro, ma
utilizzabili anche singolarmente. Proprio la natura granulare di que-
sto software ¢ risultata la principale motivazione della sua scelta:
questo tipo di struttura permette infatti di dover riscrivere solo
porzioni molto limitate del codice, qualora sia necessario modificarne
il comportamento. Globus, inoltre, si puo facilmente estendere con
delle componenti personalizzate, in modo da creare una propria
“versione” del tool-kit, senza dover apportare sostanziali modifiche
alla distribuzione originaria.

Il tool-kit, fornisce le funzioni di security, di accesso ai dispo-
sitivi di memorizzazione, di allocazione delle risorse e di gestione
delle informazioni relative allo stato della grid. Il trasporto dei dati,
oltre che agli strumenti interni di globus, ¢ stato affidato anche a un
altro software, GridFTP, che € una versione estesa del protocollo FTP

27 11 progetto globus (http://www.globus.org) e sviluppato alla Mathematics and
Computer Science Division dei Laboratori Nazionali di Argonne, all'Information
Science Institute dell'Universita della Southern California’s e ai Distributed
Systems Laboratory dell'Universita di Chicago.

49

capace di interfacciarsi con il sistema di security della grid e di risol-
vere alcuni problemi, legati alla scarsa efficienza del protocollo FTP
standard.

Globus serve essenzialmente come collante dell’intera grid e
come strato software intermedio (middleware) su cui si appoggiano le
applicazioni e le interfacce utente.

Esamineremo in dettaglio, nei prossimi paragrafi, i sottosistemi che
compongono il tool-kit globus.

50

3.4.2.1 GSI (Grid Security Infrastructure)

La Grid Security Infrastructure [25] € quella parte della grid su
cui si basano le procedure di autenticazione degli utenti e delle ri-
sorse. Essa ¢ pertanto la struttura fondamentale su cui si appoggiano
tutte le altre. Ogni volta che due entita, siano esse persone o risorse di
calcolo, vogliono comunicare utilizzando la grid come infrastruttura,
dovranno mutuamente autenticarsi, per essere sicure ciascuna
dell'identita dell’altra. Questo € necessario per garantire che solo il
personale autorizzato possa utilizzare le risorse di calcolo condivise.

Ogni singola comunicazione all'interno della grid deve essere
autenticata, cosa che impone un notevole sforzo nello stabilire una
policy di sicurezza adeguata. Non € invece strettamente necessario
che le comunicazioni siano sempre crittografate, cosa che comporte-
rebbe un notevole aumento delle dimensioni dei dati, basti pensare ai
dati grezzi degli esperimenti; ¢ evidente che non vi e nessuna neces-
sita di crittografarli.

Il sistema di autenticazione di globus segue le direttive ratifi-
cate nello standard denominato X.509 della International Standards
Organization (ISO). In questo standard sono definite le specifiche ne-
cessarie per un’autenticazione basata sul sistema dei certificati. I cer-
tificati, anche detti Digital ID, sono I'equivalente elettronico di un
passaporto, in pratica servono a provare che qualcuno sia effettiva-
mente chi sostiene di essere; inoltre essi permettono di effettuare
comunicazioni riservate tramite I'utilizzo della tecnica di crittazione
in chiave pubblica. Grazie allo standard X.509, i certificati sono un
sistema di autenticazione indipendente dal software utilizzato, cosa
che ne ha favorito una larga diffusione.

Il sistema di certificazione X.509 viene utilizzato per due scopi
distinti:

- garantire la sicurezza della comunicazione, impedire cioe che
qualcuno possa decifrare o alterare i dati trasferiti tra le due
parti;

- verificare l'identita dei corrispondenti, ovvero, garantire

all’'utente di una transazione elettronica che I'entita all’altro

51

capo della comunicazione sia la persona giusta e non
qualcun’altro, magari con intenzioni non proprio onorevoli.

Nel sistema di certificazione X.509 I'implementazione di que-
ste due funzionalita avviene tramite 1'utilizzo di una tecnica chiamata
crittografia (asimmetrica) in chiave pubblica. Questa prevede che
ogni utente possegga due chiavi che servono per criptare o decriptare
i messaggi. Una € chiamata chiave pubblica e viene distribuita a
chiunque voglia comunicare in modo sicuro con l'utente. La seconda
chiave e detta chiave privata ed € custodita dall'utente e mantenuta
segreta. Tipicamente la chiave privata € conservata sulla macchina
personale dell'utente ed e criptata con una password. Questa chiave e
necessaria tutte le volte che 'utente usa il suo certificato per una co-
municazione sicura.

La chiave pubblica e quella privata sono parti complementari
di una funzione matematica. Qualsiasi dato criptato con una delle
due chiavi puo essere decifrato soltanto dall’altra chiave. Una chiave
puo, inoltre, decriptare soltanto informazioni criptate dalla sua
chiave complementare.

I certificati vengono rilasciati da enti appositi, chiamati
Certification Authorities e comunemente abbreviati in CA, i quali go-
dono della fiducia delle parti coinvolte nello scambio di informazioni.
Una Certification Autorithy ha il compito di verificare, al momento
del rilascio del certificato, la veridicita delle informazioni ivi conte-
nute, cioe I'identita della persona per cui il certificato viene rilasciato.
La CA riceve dall’'utente, generalmente via e-mail, una copia della
chiave pubblica, generata con un apposito software, e la usa per com-
pilare il certificato, inserendovi le seguenti informazioni:

- una stringa (detta “subject” del certificato) che identifica la
persona o la risorsa certificata;

- la chiave pubblica appartenente al proprietario;

- la data di scadenza del certificato;

52

- Iidentita della Certificate Authority (CA) che ha firmato il
certificato;

- la firma digitale della CA;

Una CA puo emettere un certificato anche per un’altra CA, in
questa maniera si possono creare delle catene gerarchiche di CA.
Controllare la validita di un certificato significa quindi risalire la sua
catena di autorizzazioni fino a raggiungere quella di una CA “fidata”.
In cima alla catena gerarchica c’¢ una “RootCA” che ha un certificato
auto-firmato (root certificate).

Il GSI di globus si basa sul sistema di certificazione appena de-
scritto e ne estende le funzionalita per soddisfare le esigenze deri-
vanti dall’utilizzo in un sistema di calcolo distribuito. Queste infatti
differiscono, sotto alcuni aspetti, da quelle nate con il trasferimento
di informazioni riservate.

Nell’ambito di una grid, infatti, non si ha a che fare con la ne-
cessita di stabilire una comunicazione sicura tra un client e un server,
ma tra un numero non definito a priori di entita distribuite su molti
domini, amministrati in modo eterogeneo. Questo rende indispensa-
bile I'uso di un’infrastruttura di autenticazione che si appoggi sui si-
stemi di sicurezza locali, senza la necessita di doverli sostituire.

Le problematiche da tenere in considerazione sono diverse:

- popolazione di utenti variegata e distribuita tra varie
organizzazioni;

- risorse eterogenee inserite in un ambiente in evoluzione
continua e pressoché imprevedibile;

- un processo di calcolo, durante la sua esecuzione, puo avere
la necessita di iniziare altri processi e allocare risorse in
modo dinamico;

- le varie componenti di un processo di calcolo possono avere

la necessita i comunicare tra loro;

53

- le risorse possono trovarsi in ambienti in cui le policy di
sicurezza sono molto diverse le une dalle altre;

- sulle varie risorse lo stesso utente puo trovarsi ad avere
userID, variabili di ambiente e credenziali completamente
diversi;

- risorse e utenti si trovano in nazioni diverse, con legislazioni
diverse e a volte incompatibili tra loro (vedi il problema
dell’esportazione di codici crittografici dagli USA);

La struttura stessa della grid e le problematiche legate al suo sviluppo
hanno poi posto le seguenti condizioni al contorno:

- “one time login”: Un utente dovrebbe potersi autenticare
un’unica volta (ad esempio all’inizio della giornata o al mo-
mento di lanciare il calcolo) e poter lanciare programmi che
acquisiscono risorse in tutta la grid senza doversi autenticare
nuovamente;

- protezione delle credenziali: le credenziali personali
(password, chiavi private, . . .) dell’'utente devono rimanere
al sicuro in ogni momento;

- esportabilita del codice: € necessario che il codice utilizzato
non contrasti con le legislazioni dei paesi che collaboreranno
al progetto;

- sistema di credenziali/certificazione uniforme: ¢ necessario
utilizzare uno standard comune, almeno per il sistema di
mutua identificazione tra domini diversi;

Il GSI offre un sistema uniforme per la gestione delle creden-
ziali adottando lo standard ISO X.509. Per I'esportabilita del codice il
problema é risolto utilizzando il software di crittografia SSLeay?8, svi-
luppato al di fuori degli Stati Uniti.

28 http://www.openssl.org/

54

Il problema del “one time login” e della protezione delle cre-
denziali viene affrontato nel GSI con l'introduzione del meccanismo
dei certificati proxy [29]. Per usare le risorse della GRID € necessario
avere un certificato personale rilasciato dalla propria CA.

Un certificato proxy non € altro che un nuovo certificato (con
una nuova chiave pubblica) e una nuova chiave privata. Il nuovo cer-
tificato e firmato dall'utente (e non dalla CA). Il certificato proxy ha
una validita temporale limitata (di default 12 ore).

Il certificato proxy autofirmato, insieme al vero certificato
dell’'utente (contenente la chiave pubblica) viene mandato al soggetto
che possiede la risorsa. Quest’ultimo puo verificare la veridicita delle
informazioni associate all'utente richiedente, ripercorrendo a ritroso
la catena gerarchica di firme dei certificati. La chiave pubblica del ri-
chiedente (estratta dal certificato inviato) viene usata per validare il
certificato proxy. La chiave pubblica della CA viene usata per validare
il certificato dell’utente.

Il certificato proxy viene memorizzato nell’area dell’'utente e
puo essere usato (senza ulteriori procedure di autenticazione) per
tutta la durata del certificato stesso. L’amministratore di un host
della GRID (gatekeeper) per consentire agli utenti di usare le risorse
della macchina, deve abilitarne ’accesso. Per fare cio € necessario co-
noscere il subject del certificato dell'utente remoto che si vuole abili-
tare, e mapparlo su un utente locale dell’host in modo che 'utente
remoto possa accedere alle risorse con i permessi dell'utente locale.

Questa operazione viene effettuata aggiungendo una entry in
un file di configurazione dell’host, detto “grid-mapfile”, in cui viene
specificata la corrispondenza tra il subject del certificato dell’'utente
remoto e lo username locale.

55

3.4.22 GASS (Globus Access to Secondary Storage)

Il Globus Access to Secondary Storage ¢ il sistema principale
utilizzato da globus per fornire, ad utenti e programmi, gli strumenti
necessari per accedere ai dispositivi di memorizzazione di massa
delle risorse. Esso fornisce essenzialmente due funzionalita. La prima
consiste nel mettere a disposizione dell'utente un protocollo, deno-
minato “x-gass”, tramite il quale accedere ai file sulla macchina re-
mota. Questo puo avvenire tramite 1'utilizzo di appositi programmi
forniti nel tool-kit, oppure, all'interno del software creato dall’'utente
tramite apposite chiamate di libreria, che sostituiscono le chiamate
classiche di lettura e scrittura su file. Questo ¢ analogo a quanto e of-
ferto da altri protocolli basati su tecnologia client/server come, ad
esempio, http o ftp. La seconda funzionalita fornisce al sistema la
possibilita di creare e gestire in modo trasparente, sia per 'utente che
per lapplicazione, un sistema di cache remota dei dati. In questo
modo, un’applicazione lanciata dall'utente tramite la grid registrera
temporaneamente sia i dati in input che il proprio output sul disco
della macchina che esegue I’elaborazione. In questo modo il processo
non sara appesantito durante l’elaborazione dal problema di tra-
sportare i dati attraverso la rete. Al momento della sottomissione del
job, 'utente puo comunicare (tramite il linguaggio RSL29) al sistema
le proprie preferenze in merito alla gestione della cache, specificando
se l'output debba essere restituito durante I’esecuzione del pro-
gramma, nel qual caso si parla di modalita interattiva, oppure se
debba essere conservato nella cache fino a una successiva richiesta da
parte dell’'utente. In quest’ultimo caso si parla di modalita batch.
Questo sistema di cache fornisce i seguenti vantaggi:

- velocizza le operazioni di I/O;

- rende trasparenti le operazioni di gestione dei file remoti;

- permette I'implementazione di un efficace sistema di tra-
sporto degli eseguibili;

- rende uniforme la gestione dei processi batch o interattivi;

- permette di controllare gli eventi disastrosi.

29 RSL (Resource Specification Language): linguaggio strutturato utilizzato per
descrivere i job da sottomettere al manager delle risorse della grid

56

Naturalmente vi sono degli effetti collaterali indesiderati, piu
precisamente si ha che questo sistema:

aggiunge un overhead nelle operazioni di I/0;
- comporta la necessita di fornire sufficiente spazio disco sulle
macchine che eseguono le elaborazioni.

Il primo ¢ dovuto al fatto che, sostanzialmente, i file vengono
scritti un numero maggiore di volte rispetto a quelle strettamente in-
dispensabili in un sistema senza cache. Questo non € un controsenso
rispetto a quanto detto in precedenza perché, se € vero che un si-
stema di questo tipo rende piu lenta I'esecuzione di un programma
rispetto a quello che si avrebbe in un’esecuzione locale, € anche vero
che i benefici che si ottengono tramite I’elevata distribuzione del cal-
colo superano di gran lunga 'entita dell’overhead accumulato.

57

3.4.2.3 GRAM (Globus Resource Allocation Manager)

Il Globus Resource Allocation Manager e il livello piu basso
dell’architettura preposta alla gestione delle risorse, esso rende di-
sponibile la possibilita di eseguire job in remoto, fornendo un'API3°
per la sottomissione, il monitoraggio e la conclusione dei job.

Quando un job viene sottomesso la richiesta viene inoltrata al
“gatekeeper”, situato sul computer remoto. Il gatekeeper € una parte
di GRAM che risiede sulla risorsa di calcolo (tecnicamente un server).
Esso interpreta la richiesta ricevuta dal cliente remoto e la passa ad
un “jobmanager”. Il jobmanager € un sottosistema software che ese-
gue e tiene sotto controllo il programma remoto comunicandone i
cambiamenti di stato all'utente che ha sottomesso il job. Quando
l’applicazione remota finisce, sia normalmente, sia generando un er-
rore, il jobmanager segue la stessa sorte.

I1 GRAM si occupa inoltre di:

- interpretare le richieste in linguaggio RSL, che contengono
la descrizione delle risorse necessarie all'esecuzione di un
job. Questo compito € svolto creando uno o piu processi per
soddisfare la richiesta, oppure rifiutando il permesso di ese-
guire il job;

- abilitare la possibilita di controllare e monitorare da remoto
lo stato dei job appena creati;

- aggiornare il Metacomputing Directory Service (un compo-
nente di globus, descritto nel prossimo paragrafo) con le in-
formazioni relative alla disponibilita delle risorse che ammi-
nistra;

Il GRAM tecnicamente € un sistema di tipo client/server. In
generale le risorse della grid hanno un server GRAM, detto
gatekeeper, che rimane in ascolto delle richieste su una porta TCP/IP

30 API: Application Programming Interface, set di librerie che permettono di
includere particolari funzionalita in un programma

58

(normalmente la 2119). Tutte le macchine, che in qualche modo
debbono poter effettuare delle richieste di sottomissione dei job, di-
spongono invece del client, che si occupa di comunicare le richieste al
server utilizzando il linguaggio RSL.

59

3.4.24 MDS (Metacomputing Directory Service)

L’MDS, acronimo di Metadirectory Data Structure [26], anche
detto GIS (Grid Information Service), € il servizio che si occupa di
mantenere un database con informazioni sullo stato delle risorse
della grid. Questo servizio si basa su un sistema di database di tipo
LDAP3,

Il servizio MDS ha un carattere prettamente gerarchico; in
esso, infatti, i dati collezionati dalle singole risorse risalgono una ca-
tena piramidale di server LDAP fino a giungere al database di livello
piu alto. Lo schema di funzionamento € abbastanza semplice: ogni ri-
sorsa dispone di un software chiamato GRIS (Grid Resource
Information Service), che si occupa di reperire le informazioni rela-
tive allo stato della risorsa e inviarle periodicamente a un server di li-
vello superiore detto GIIS (Grid Index Information Service), ad inter-
valli di tempo stabiliti (ad esempio ogni 5 minuti). Un GIIS si com-
porta essenzialmente come una cache per le informazioni relative alle
risorse, ma svolge anche il compito di organizzare un gruppo di GRIS
in modo coerente, secondo gli standard del database in uso (LDAP).
Normalmente non esiste un unico GIIS che riceve le informazioni da
tutti i GRIS esistenti; ¢ infatti notevolmente piu efficiente una strut-
tura in cui esista una gerarchia di GIIS di livello diverso, dove ognuno
di questi provveda periodicamente a inviare le informazioni raccolte
a un server di livello superiore. Ad esempio, nell’ambito del progetto
INFN-Grid si e deciso di avere un GIIS per ogni sezione dell' INFN,
che raccoglie le informazioni locali; ne esiste poi uno di livello supe-
riore, sito a Bologna, che colleziona le informazioni inviategli dai
GIIS di sezione. In futuro probabilmente vi saranno anche dei GIIS
intermedi che collezioneranno le informazioni relative ai GRIS delle
risorse appartenenti a un singolo esperimento.

3t Lightweight Directory Application Protocol, protocollo standard per la
consultazione di grossi database distribuiti.

60

3.4.25 GridFTP

Il tool-kit globus comprende un potente strumento per il tra-
sferimento dei dati all'interno di una griglia, il protocollo GridFTP
(detto anche GSIFTP).

GridFTP e una versione estesa del protocollo FTP standard ed ¢ do-
tato delle seguenti caratteristiche:

- Integrazione nativa con la Globus Security Infrastructure.
Cio consente di sfruttare in maniera “trasparente” i meccani-
smi di autenticazione basati su certificati X.509 durante il
trasferimento di dati da un nodo all’altro della griglia;

- Supporto di canali multipli per trasferimenti paralleli. A
differenza dell’FTP standard, GridFTP puo effettuare un tra-
sferimento di file tra due host utilizzando pitt connessioni
(socket TCP/IP) in parallelo, garantendo un utilizzo effi-
ciente di tutta la banda disponibile;

- Trasferimenti parziali di file. Questa caratteristica ¢ utile
quando si ha a che fare con file di grandi dimensioni e si
vuole accedere soltanto ad alcune informazioni contenute al
loro interno, senza dover necessariamente trasferire 'intero
set di dati.

- Trasferimenti di tipo “Third-party” (server-to-server).
Utilizzando questa modalita, un utente puo eseguire un tra-
sferimento di dati tra due host remoti, senza che le informa-
zioni passino dall’host su cui € collegato, con una conse-
guente diminuzione del traffico di rete ed un notevole in-
cremento delle prestazioni;

- Possibilita di recupero di trasferimenti interrotti. Questa &
una caratteristica molto importante che consente, a seguito
di errori in fase di trasmissione dati, di non dover ritra-
smettere un intero file ma soltanto quella parte che non &
stata ancora trasmessa.

61

3.4.3 Architettura e componenti del middleware di
DataGrid

Una Grid puo essere descritta in vari modi. Da un punto di
vista funzionale puo essere rappresentata come un insieme di servizi
disponibili per le comunita di utenti. Un servizio € un programma
che e continuamente in esecuzione in attesa di ricevere richieste dai
client. I client fanno le loro richieste attraverso una connessione
internet standard. Ci sono vari tipi di servizio; ognuno puo essere
composto da vari sottosistemi.

Il progetto European DataGrid propone un modello [30],
adottato anche da INFN-Grid, costituito da un insieme di
“grid-elements” [31], computer connessi a una rete che forniscono al-
cuni servizi grid.

3.4.31 Gli elementi di partenza

In questo modello, i “mattoni” di base che costituiscono una
grid sono:

- Computing Element (CE): € una risorsa grid in grado di
fornire cicli di CPU per I’esecuzione di job. Un CE puo anche
essere il gateway di un cluster di PC, un supercomputer per
I'esecuzione di job paralleli, o una postazione standard di
calcolo interattivo in grado di gestire applicazioni grafiche e
I/0 verso dispositivi di storage.

- Storage Element (SE): ¢ un nodo di una grid che fornisce
le facilities di accesso ai dati. Fornisce i servizi necessari a
immagazzinare, localizzare e replicare i dati. Un SE, inoltre,
fornisce ad altri nodi della grid le informazioni relative alla
disponibilita dei dati.

- Network: la rete, in questo modello, € una risorsa fonda-
mentale ed € intesa come un insieme di collegamenti, dotati
di certe caratteristiche (tipologia, capacita di banda, traffico
medio...), che interconnettono i vari grid-elements.

62

Questa prima immagine del modello di DataGrid ¢ schematiz-
zata in Figura 3-1:

Figura 3-1 Schema di base di DataGrid

63

3.4.3.2 User Interface e Worker Node

Ai grid-elements di base si aggiungono altre risorse per otte-
nere uno schema di grid piu esteso:

- User Interface (UI): &€ un nodo di una grid a cui gli utenti
si collegano per sottomettere i propri job. Una UI offre agli
utenti un set di comandi e un ambiente testuale, grafico o di
tipo web per la sottomissione e il management dei job;

- Worker Node (WN): € un nodo generico che offre potenza
di calcolo. Un WN puo essere considerato ad esempio come
un elemento di una farm locale, o un computer che puo of-
frire, come unico servizio, la sua cpu per I'esecuzione di job.

Il nuovo schema e rappresentato in Figura 3-2:

Figura 3-2 Schema esteso di DataGrid con WN e Ul

L’assegnazione di un job al nodo di una farm viene effettuata
da un sottosistema software detto jobmanager. Il piu semplice
jobmanager a cui si puo pensare ¢ quello di tipo “fork”. Tale
sottosistema ¢ costituito dalle sole chiamate di sistema fork() che

64

creano un nuovo processo in corrispondenza di ogni job da eseguire
sulla farm. Un jobmanager di tipo “fork” non gestisce il caso di una
farm composta da piu computer (CE + diversi WN) in quanto i pro-
cessi generati dalle chiamate fork() rimangono confinati al CE. Per
sfruttare la potenza di calcolo di tutti i nodi di una farm si possono
utilizzare altri jobmanager. Quello che viene utilizzato di default &
PBSs32 (Portable Batch System). PBS si occupa dello scheduling e
dell’allocazione (statica) dei processi in un cluster locale di macchine
fornendo degli strumenti per la gestione di code, accounting delle ri-
sorse di calcolo ed elaborazioni di tipo batch.

32 http://www.openpbs.org

65

3.4.3.3 Estensione della grid: requisiti

Una grid deve essere dotata di altri grid-elements in grado di
garantire tre requisiti fondamentali:

1) Indipendenza dalla locazione dell’ambiente di esecu-
zione. Un utente non deve avere alcuna conoscenza, a priori,
di quale CE (o WN) eseguira il proprio job;

2) Indipendenza dalla locazione dei dati. Gli utenti devono
essere in grado di accedere ai propri dati senza conoscere in
quale SE essi sono realmente memorizzati.

3) Sicurezza. Gli utenti devono poter accedere ai propri dati in
maniera sicura, nel rispetto delle policy stabilite all'interno
delle loro organizzazioni virtuali.

Nei prossimi paragrafi saranno descritti in dettaglio questi tre
aspetti, fornendo una visione della grid progressivamente estesa con
nuove funzionalita e meccanismi di controllo.

3.4.34 Indipendenza dalla locazione dell’ambiente di esecu-
zione

L’indipendenza dalla locazione dell’ambiente di esecuzione
viene realizzata introducendo un nuovo grid-element: il Resource
Broker (RB). L'RB ¢ il perno su cui si basa il sottosistema di ge-
stione del carico di lavoro (Workload Management System)
all'interno della grid. Una delle attivita principali di un RB ¢ quella di
trovare una corrispondenza tra i requisiti espressi dagli utenti per
Pesecuzione dei propri job e le risorse disponibili sulla griglia, utiliz-
zando opportuni algoritmi di scheduling. Una volta trovate queste
corrispondenze, 'RB ¢ in grado di decidere a quali CE devono essere
assegnati i job sottomessi, attraverso il Job Submission System
(JSS).

66

La Figura 3-3 mostra un primo schema del Workload
Management System (per semplicita sono stati omessi eventuali
Worker Node):

Workload Management System

O 2:scheduling

J:scelta del CE

1:sottomissione del job
-

N —
A

[
oy
[0}

_—

>0
—

[=] = .. =]

Figura 3-3 Schema di base del Workload Management System

I job sottomessi dagli utenti sono descritti utilizzando un lin-
guaggio, detto JDL (Job Definition Language). Il JDL adottato
da DataGrid e il “Classified Advertisement (ClassAd) Language” defi-
nito dal progetto Condors33 per la descrizione di job, workstation ed
altre risorse. I1 JDL e un semplice linguaggio basato su espressioni,
con cui e possibile specificare le caratteristiche di un job (parametri
di input/output, requisiti di sistema, jobmanager da utilizzare ed altri
attributi) in maniera da facilitare la ricerca, da parte del Resource
Broker, delle corrispondenze tra requisiti del job e disponibilita di ri-
sorse. Per ogni job sottomesso alla griglia, I'utente deve scrivere un
file in JDL con tutte le caratteristiche e gli attributi del job; tra questi,
di fondamentale importanza sono I'Input Sandbox e I'Output
Sandbox. Questi due attributi indicano, rispettivamente, il set di file

33 Lo scopo del progetto Condor (http://www.cs.wisc.edu/condor) ¢ quello di
implementare meccanismi e politiche di High Throughput Computing (HTC) su
vasti insiemi di risorse di calcolo geograficamente distribuite. Condor-G, una
versione del software di Condor specifica per gli ambienti di tipo Grid, &€ uno dei
componenti su cui si basa il funzionamento dei Resource Broker.

67

che il job riceve in input (I'eseguibile del job e di tutti i suoi file di
input) e il set di file che il job restituisce in output.

Le descrizioni dei job, scritte dagli utenti in JDL, vengono
“tradotte” dall’RB in comandi RSL della sottostante architettura
globus e passati al JSS. I criteri di scheduling adottati dal Resource
Broker si basano su:

- autorizzazioni di accesso alle risorse da parte degli utenti;
- disponibilita dei dati;

- requisiti dei job;

- preferenze dei job;

- politiche di accounting;

- considerazioni di tipo euristico.

Affinché I'RB possa decidere quali risorse debbano essere allo-
cate per 'esecuzione di un job, tutti i grid-elements devono essere in
grado di fornire delle informazioni sul loro stato e pubblicarle, perio-
dicamente, su un database ospitato da un altro grid-element, detto
Information Index (II). Il meccanismo utilizzato per questa ope-
razione € quello offerto dal Metacomputing Directory Service (GIIS +
GRIS) della struttura globus sottostante. La Figura 3-4 mostra il
nuovo schema del Workload Management System, esteso con un
Information Index:

3:schedule

<D
1 :submit . 2: query

Q@D

" 4:submit ‘ A
— — —
jcal
== == e

-------- #» L'RB interroga direttamente i CE

Figura 3-4 Workload Management System con Information Index

68

Tutti gli eventi legati alla sottomissione, I'esecuzione e il com-
pletamento di un job vengono registrati su un altro grid-element,
detto Logging & Bookkeeping (L&B). Il database con tutti questi
eventi puo essere consultato dall’'utente attraverso la User Interface
per avere informazioni relative allo stato dei job che ha sottomesso. Il
nuovo schema e illustrato in Figura 3-5:

3:schedule
9w A
1:submit 2:query Vv
;g =, | — <)
5:query AL/ QVQ
/\ JoussE e
@& (D w
-
—

-------- » L'RB interroga direttamente i CE

Figura 3-5 Workload Management System con Logging & Bookkeeping

69

3.4.35 Indipendenza dalla locazione dei dati

Attualmente l'intero sistema di accesso ai dati all'interno della
griglia & basato sull’utilizzo di file. Tutti gli oggetti che interagiscono
con un’applicazione vengono mappati su file. Anche lo standard input
e lo standard output dei job vengono rediretti su file per consentire
un’elaborazione di tipo batch. L'indipendenza dell’elaborazione di un
job dalla locazione fisica dei dati € ottenuta grazie al cosiddetto mec-
canismo delle repliche. Uno stesso file (master), memorizzato su un
certo Storage Element puo esistere in copie multiple (repliche) su al-
tri Storage Element distribuiti all'interno della griglia. Ogni file ha 2
nomi:

- un Logical File Name (LFN) che ¢ un indirizzo del tipo:
| fn://<VO>/ <pat h>
dove <VO> ¢ la Virtual Organization in cui € memorizzato il
file. Ad esempio I'LFN:
| fn://virgo.org/virgofile-1.dat
identifica il file di nome “vi rgofil e-1. dat“ allinterno
della VO di nome “vi r go. or g”.

- un Physical File Name (PFN) che ha la forma:

pfn:// <SE>/ <pat h>
dove <SE> ¢ lo Storage Element su cui il file & fisicamente
memorizzato. Ad esempio il PFN:

| fn://virgo-se.na.infn.it/test/filel. dat
identifica il file di nome “fi | el. dat” che si trova nella
directory “t est ” di uno Storage Element che ha come indi-
rizzo “virgo-se.na.infn.it”.

Ad ogni LFN possono essere associati diversi PFN, uno per la
copia master del file ed uno per ogni copia (replica) dello stesso file.
Un nuovo grid-element, detto Replica Catalogue (RC) gestisce un
database di tipo LDAP con tutte le associazioni tra LFN e PFN.
Affinché il database rimanga aggiornato, gli Storage Element regi-
strano, periodicamente, il contenuto del proprio file system sul
Replica Catalogue. Per ogni file pubblicato sul database viene memo-
rizzata una serie di attributi, tra cui:

70

- un flag che ne identifica il tipo (master oppure replica);
- il proprietario;

- 1 diritti di accesso (lettura, scrittura, esecuzione...);

- data dell’'ultimo accesso;

- checksum e codici di controllo d’errore.

Le applicazioni possono accedere ad un file attraverso il suo
LFN. Sara poi compito del Resource Broker interrogare il Replica
Catalogue per ottenere il PFN del file all’atto della sottomissione di
un job. In questo modo, se uno stesso file ¢ replicato in piu punti
della griglia, il Resource Broker potra scegliere come PFN quello in
cui compare lo Storage Element piu “vicino” al Worker Node che
dovra eseguire il job. Il Worker Node prescelto potra recuperare il file
dallo Storage Element utilizzando il protocollo GridFTP. La Figura
3-6 mostra il nuovo schema della griglia, esteso con le funzionalita
offerte dal Replica Catalogue:

3:schedule
2:query
1:submit
—_—
6:que

._,_,eo

Jssf V
: f—
. : :@
X S“b% L s
8B - 8
g e Al

5:GridF TP transfer
-------- » L'RB interroga direttamente i CE

Figura 3-6 Meccanismo di accesso ai dati via Replica Catalogue

Per replicare i set di dati da uno Storage Element all’altro e af-
finché queste repliche siano registrate sul database del Replica

71

Catalogue in maniera automatica, si utilizza un tool chiamato GDMP
(Grid Data Mirroring Package). GDMP ¢ un software con archi-
tettura client/server che viene installato sugli Storage Element.
GDMP e in grado di replicare (mirroring) in maniera automatica ed
asincrona dei file arbitrari (in qualsiasi formato essi siano stati
scritti) all'interno della griglia. Il contenuto di un server GDMP puo
essere replicato su dei client GDMP in maniera sicura ed efficiente,
utilizzando alcuni componenti del tool-kit globus. I trasferimenti dei
dati tra due Storage Element replicati avvengono utilizzando il proto-
collo GridFTP e tutte le procedure di autenticazione remota si appog-
giano sulla Globus Security Infrastructure.

Quando un nuovo file viene creato su uno Storage Element, la
componente server di GDMP avvisa le componenti client residenti
sugli altri Storage Element (fornendo loro il nome del nuovo file) e
aggiorna il Replica Catalogue, inserendo una nuova entry con 'LFN e
il PFN del nuovo file (copia master). I GDMP client, successivamente,
provvedono autonomamente al trasferimento (via GridFTP) del file
dallo Storage Element remoto e all’aggiornamento del Replica
Catalogue, inserendo delle nuove entry con altri PFN per lo stesso
file, uno per ogni replica. Lo schema esteso delle griglia che utilizza il
Grid Data Management Package per la replica dei file € rappresentato
in Figura 3-7:

72

6:que

ssssssss

ssssssss

3:schedule

VXY
..'4&@51
<
o g ’ K P SE master

copy

5:.GridFTP transfer
=

(e Eeee——r——

*push” dello stato dei CE sul II
» LRB interroga diretemente i CE

Figura 3-7 Replica dei file con GDMP

73

3.4.3.6 Sicurezza

I meccanismi di autenticazione e di accesso alle risorse, basati
sui certificati X.509, sono quelli offerti dalla Security Infrastructure
(GSI) della sottostante architettura globus, descritti nel paragrafo
3.4.2.1.

Gli utenti della grid, identificati univocamente con il loro cer-
tificato, fanno parte di Organizzazioni Virtuali, che corrispondono a
gruppi di lavoro, enti di ricerca, aziende, societa, etc. Uno stesso
utente puo essere membro di piu Organizzazioni Virtuali e spesso,
per motivi di lavoro, puo essere costretto a spostarsi fisicamente da
un sito all’altro della grid, pur rimanendo nella stessa Organizzazione
Virtuale.

Per tenere traccia delle Organizzazioni Virtuali e degli utenti
che ne fanno parte, nasce l’esigenza di avere un nuovo grid-element,
detto Virtual Organization Server (VO). II VO gestisce un
database LDAP in cui € memorizzato I'elenco delle Organizzazioni
Virtuali e, per ognuna di esse, I'elenco dei membri che ne fanno parte.
Per ogni utente il VO memorizza una serie di campi, tra cui nome,
cognome, email, descrizione, chiave pubblica del certificato, etc. Il
VO puo essere usato come una sorta di “yellow pages” per recuperare
informazioni specifiche per un certo utente o per una certa Organiz-
zazione Virtuale. Le registrazioni sul database del VO vengono effet-
tuate, di solito, attraverso un’interfaccia web.

Come descritto nel paragrafo 3.4.2.1 il meccanismo di gestione
delle autorizzazioni per 'accesso alle risorse della grid ¢ attualmente
implementato nel testbed con un “grid-mapfile”. Questo file & pre-
sente su ogni Computing Element e Storage Element e contiene dei
mapping tra il subject dei certificati utente e le username locali delle
macchine. Il grid-mapfile &€ un oggetto statico e se il database del VO
viene aggiornato frequentemente i grid-mapfile dei vari CE ed SE
possono diventare obsoleti in breve tempo. Per evitare che cio accada
i1 CE e gli SE eseguono periodicamente un perl script, detto
mkgridmap. Questo script legge un file di configurazione in cui ci
sono definite delle politiche locali (ACL access control list), interroga
il VO e costruisce un grid-mapfile aggiornato con le corrispondenze
tra i subject dei certificati degli utenti autorizzati e un elenco di
username locali. Questo schema ¢ illustrato nella Figura 3-8:

74

Generazione automatica del grid-mapfile

0 |nfn,c it oe

........ Interfaccia

web per le
|0u VIRGOI ou=ATLAS ou CMS *registrazioni
sul VO

an
A'..‘

P A Xy | Vl‘

CM=Mario Rossi | [CH=1John Smith | | Ch=Franz Elmer | ®ee DlreCtory

Authentication Authentication Autf;eSmkatrbn
Certificate Certificate Certificate

mkgridmap grid-mapfile
-~
Utel"ltl - o

Figura 3-8 Generazione automatica del grid-mapfile

75

3.4.3.7 Installazione e management dei grid-elements

Il numero di grid-elements in ogni sito connesso alla grid puo
diventare estremamente elevato. In un ente di ricerca molto grande,
ad esempio, il numero di grid-elements puo essere dell’ordine delle
migliaia. Le configurazioni dei grid-element evolvono rapidamente,
in maniera molto dinamica. L'intero sistema software su cui si basa
I'infrastruttura grid € in continuo e rapido sviluppo. Versioni aggior-
nate del tool-kit globus e di tutto il middleware di DataGrid vengono
rilasciate molto frequentemente per correggere gli inevitabili errori di
programmazione di componenti software cosi sofisticati. Le versioni
del software che gira sui grid-element devono essere allineate per
evitare problemi di incompatibilita e malfunzionamenti distribuiti.
Puo capitare, inoltre, che dei set di risorse devono essere allocati per
un breve periodo ad un certo processo di elaborazione (ad esempio
un calcolo che dura una settimana) e riallocati, successivamente, per
un’altra elaborazione. Cido comporta un notevole sforzo da parte dei
system administrator, costretti a impiegare ore di lavoro in onerose
operazioni di installazione e riconfigurazione delle macchine. Per far
fronte a questi evidenti problemi di management dei grid-elements
devono essere utilizzati degli strumenti software opportuni. Quello
utilizzato nei progetti EDG e INFN-Grid e LCFG34 (Local
ConFiGuration System).

LCFG é un tool di installazione automatica, configurazione e
management centralizzato di macchine con sistema operativo Linux.
L’architettura client/server su cui si basa LCFG e illustrata in Figura

3-9:

34 http://www.lcfg.org

76

Architettura di LCFG

LCF& Source Config Files

Web Server
HTTP
|::> "=
Compiler XML Profile
{mkprof) Comporlren‘r
Lacal cache SErpTs
... Notify -
Server Ackno.t;\;.ledge Client
——

Figura 3-9 Architettura client/server di LCFG

La configurazione di un intero sito (inteso come insieme di
computer) € descritta nei “source files”, mantenuti su un server cen-
trale. Ognuno di questi file non corrisponde (necessariamente) ad
una macchina specifica ma descrive, piuttosto, un “aspetto” della
configurazione complessiva. Un source file, ad esempio, puo descri-
vere i parametri necessari alla configurazione di una macchina per gli
studenti, quelli necessari all'installazione di una generica macchina
Linux Redhat 6.2, quelli specifici per un Computing Element di una
grid, etc.

I source files vengono “compilati” (con il tool mkprof) in profili
individuali, specifici per le singole macchine. Ogni profilo contiene i
parametri necessari alla configurazione di una macchina target.
Quando un profilo (che risiede sul server) viene modificato, la mac-
china client associata a quel profilo riceve una notifica UDP. Il client
recupera dal server, via HTTP, la versione aggiornata del suo profilo e
lo memorizza in una cache locale. I client, interrogano periodica-
mente il server per verificare se vi siano ulteriori cambiamenti nel
proprio profilo non ancora notificati.

I client, inoltre, inviano periodicamente al server degli
“acknowledgement” UDP; il server usa questi messaggi per generare

77

dinamicamente una pagina web in cui sono visualizzate le informa-
zioni relative allo stato dei client.

Sui client, i “component scripts” sono responsabili della lettura
e del parsing del profilo ricevuto dal server, nonché
dell'implementazione della configurazione descritta in tale profilo.
Quest’ultima procedura viene svolta, in generale, rigenerando op-
portunamente i file di sistema della macchina client e notificando i
demoni dei servizi coinvolti in tali modifiche.

Un profilo LCFG e, di fatto, un documento XML con una
struttura semplice, contenente una sezione per ogni componente. La
configurazione di ogni componente ¢ descritta da una lista di coppie
chiave/valore. Il profilo fornisce una esplicita dichiarazione
dell'intera configurazione della macchina client.

Il meccanismo dei profili centralizzati consente di installare e
configurare una macchina “da zero” in brevissimo tempo, con il mi-
nimo intervento da parte dellamministratore di sistema.
L’installazione di un grid-element (di cui € presente un profilo
sull'LCFG server), ad esempio, si riduce a un reboot della macchina e
all’avvio di una procedura automatica che:

- legge da un dispositivo di boot (floppy, cdrom o scheda di
rete) una versione minimale del sistema operativo;

- partiziona il disco di sistema e installa il sistema operativo
(la lista dei pacchetti di Linux da installare e descritta nel
profilo ottenuto dal server LCFG);

- esegue degli script di post-installazione che completano la
configurazione e I'aggiornamento del software.

Il sistema di installazione “non presidiata” offerto da LCFG si
avvale di un server DHCP per l'assegnazione degli indirizzi IP alle
macchine da installare e di un server NFS per I'esportazione ai client
di una directory in cui sono presenti tutti i pacchetti di Linux.

Questo sistema risolve in maniera efficiente i problemi legati al
management di un elevato numero di grid-elements all'interno di un
sito.

78

3.4.4 Test di analisi dei dati di VIRGO con GRID

Nei paragrafi successivi sono descritti i passi seguiti per
I'implementazione dell'infrastruttura grid iniziale, il layout geografico
dei grid-elements utilizzati e il meccanismo di sottomissione dei job
di analisi dei dati di VIRGO.

34.4.1 Realizzazione dell’infrastruttura iniziale

L’obiettivo di questo lavoro e quello di creare un pool iniziale
di macchine da configurare e utilizzare come grid-elements. In questa
prima fase di test € stato deciso di utilizzare soltanto un sottoinsieme
dei nodi diskless della Linux Farm descritta nel Cap. 2. In particolare,
dal set di 12 computer sono stati scelti 4 nodi diskless da convertire,
rispettivamente, in 1 User Interface, 1 Computing Element e 2
Worker Node.

Il sistema operativo (Linux RedHat 6.2) e il middleware di
DataGridss (EDG 1.1.4), sono stati installati su una partizione del
disco da 18Gbyte in modo da fornire ai 4 nodi una doppia configura-
zione e utilizzarli, a seconda delle esigenze, come grid-elements o
come nodi diskless della Linux farm locale.

Oltre al pool di 4 macchine scelte tra i nodi della farm ¢ stato
utilizzato un altro computer come LCFG server per le installazioni e il
management centralizzato dei grid-elements.

Il setup delle macchine ha richiesto i seguenti passi:

- Acquisizione del know-how. In questa fase sono state rac-
colte tutte le informazioni e la documentazione necessaria
all'utilizzo del tool-kit globus e del middleware di DataGrid;

- Installazione e configurazione del server LCFG. Sulla mac-
china scelta per questo compito e stato installato il sistema
operativo (da CDROM) e le componenti server di LCFG, tra
cui: un server DHCP per 'assegnazione automatica degli in-
dirizzi IP ai grid-elements, un server NFS per I'esportazione
dei pacchetti Linux (in formato rpm) e un server web

35 http://marianne.in2p3.fr/

79

(Apache 1.3.12) da cui i grid-element effettuano il download
del proprio profilo.

Creazione dei profili per i 4 grid-elements. Il team di svi-
luppo del middleware di DataGrid fornisce dei “modelli” di
file di configurazione (source files) che descrivono dei gene-
rici grid-elements. Questi modelli sono stati personalizzati
con tutti i parametri “site-dependent” della rete locale di
Napoli e con tutti i parametri specifici per i 4 grid-elements
(nomi, indirizzi IP, schema di partizionamento dei dischi,
filesystem da montare, pacchetti software aggiuntivi...). Una
volta personalizzati, i source files sono stati compilati con
“mkprof”, il tool di LCFG che genera i profili XML e resi
disponibili ai client, via web.

Creazione di un floppy per il boot iniziale. Uno dei compo-
nenti di LCFG consente di creare un dischetto di boot per
I'installazione “non presidiata” dei grid-elements. Con
questo tool sono stati creati i boot-floppy per i 4
grid-elements (1 UI, 1 CE e 2 WN). Una volta inseriti i floppy
nel drive delle 4 macchine, le procedure di installazione
automatica hanno generato, in breve tempo e senza alcun
intervento manuale, dei sistemi pronti per essere utilizzati
come grid-elements.

8o

3.4.4.2 Layout geografico dei grid-elements

Il pool iniziale di 4 grid-elements descritto nel paragrafo pre-
cedente € soltanto uno dei “mattoni” di base che compongono
l'infrastruttura utilizzata come testbed per I'esecuzione di job di ana-
lisi dei dati di VIRGO su grid.

Il layout geografico [32] dell'intero pool di grid-elements uti-
lizzati nella VIRGO Virtual Organization e illustrato nella Figura
3-10:

Layout della VIRGO Virtual Organization

Computing Element

Worker Node 1

Worker Node 2

Computing Element

Worker Node 1

Worker Node 2

Worker Node 3

Ve Toiortace | \ /

GARR

/

S Tt

i

EO run

Computing Element
Worker Node 1
Worker Node 2

Resource Broker

Information Index

Logging & Bookkeeping

Figura 3-10 Layout geografico dell'infrastruttura grid usata da VIRGO

| User Interface |

I grd-elements utilizzati sono disposti su tre siti INFN con-
nessi alla rete GARR: Napoli, Roma e Bologna. I siti di Napoli e Roma
hanno due configurazioni “gemelle” con una User Interface e una
farm locale costituita da un Computing Element e due Worker Node.
Al CNAF di Bologna, tier 1 per gli esperimenti di LHC e VIRGO, sono
installati i grid-elements che offrono i servizi di base per il funziona-
mento di tutto il testbed INFN-Grid: Resource Broker, Information
Index, Replica Catalogue, Logging & Bookkeeping. A Bologna,
inoltre, & installata una farm locale costituita da un Computing
Element e tre Worker Node, ed infine uno Storage Element con uno

81

spazio disco di 1Tbyte contenente un mirror dei dati acquisiti durante
I’Engineering Run 0* di VIRGO (EO run).

36 L'interferometro di VIRGO ¢ ancora in fase di realizzazione. I test periodici delle
apparecchiature necessarie all’acquisizione dei dati sono chiamati “Engineering
Run”, durano in genere qualche giorno e hanno dei numeri progressivi (0,1,2...)

82

3.4.4.3 Sottomissione dei job di analisi dei dati

Questo paragrafo descrive il modo in cui sono stati effettuati i
test di analisi di binarie coalescenti utilizzando l'infrastruttura grid di
VIRGO, illustrata nei due paragrafi precedenti.

Nella situazione iniziale lo Storage Element di Bologna
contiene i “Raw Data” (dati “grezzi”) acquisiti durante il Run EO di
VIRGO. Questi dati sono organizzati in particolari strutture dette
“frame” e memorizzati all'interno di una serie di file. I Raw Data non
vengono pubblicati sul Replica Catalogue perché non devono essere
mirrorati su altri Storage Element, né devono essere direttamente
processati dalle farm. Il processo di analisi vero e proprio, infatti,
deve essere eseguito su alcuni subset di questi dati grezzi, scelti in
modo opportuno dai ricercatori di VIRGO (ad esempio dai dati grezzi
devono essere estratti soltanto quelli relativi ad una certa banda di
frequenze del segnale acquisito dall'interferometro). Questi subset di
dati devono essere pubblicati sul Replica Catalogue per poter poi es-
sere analizzati utilizzando le farm di Computing Element e Worker
Node dei tre siti. L’analisi viene fatta applicando 'algoritmo Matched
Filter ai dati estratti, con circa 40.000 template. Se tutti i template
venissero usati da un solo processo Matched Filter ci sarebbe un solo
job allocato su uno dei Worker Node e non si sfrutterebbero i van-
taggi offerti dal calcolo distribuito all'interno della griglia. Per distri-
buire il carico computazionale tra tutti i Worker Node disponibili,
I'insieme dei 40.000 template viene diviso in piu sottoinsiemi,
ognuno dei quali e utilizzato da un processo Matched Filter su un
certo subset di dati estratti.

Quanto appena descritto puo essere sintetizzato in 4 passi:

1) L’utente si collega ad una delle due UI ed effettua la proce-
dura di autenticazione sulla grid. Nella home-directory
dell’'utente vi € una subdirectory di nome “.globus” che
contiene il suo certificato e la sua chiave privata. L’utente
esegue il comando “grid-proxy-init”, digita la passphrase
che protegge il suo certificato e ottiene I'autorizzazione di
eseguire job sulla grid. Tale autorizzazione dura di default
12 ore, periodo dopo il quale il suo certificato proxy (creato
con il comando grid-proxy-init) non € piu valido.

83

2) L'utente sottomette alla grid un job per I'estrazione di un
subset di dati dallo Storage Element di Bologna. I dati
estratti vengono pubblicati sul Replica Catalogne.

3) Per ogni sottoinsieme di template viene sottomesso alla
grid un job per I'esecuzione di un processo Matched Filter
sul subset di dati ottenuto al punto 2). Il Resource Broker
provvede, in maniera autonoma, all’allocazione dei job sui
Worker Node disponibili.

4) L’utente puo in ogni momento interrogare il Logging &
Bookkeeping, col comando “dg-job-status”, per conoscere
lo stato dei job che ha sottomesso. Una volta che tutti i job
raggiungono lo stato “completed” 'utente puo recuperare il
risultato delle elaborazioni nella sua Output Sandbox, con
il comando “dg-job-get-output”, ed effettuare il “logout”
dalla griglia con il comando “grid-proxy-destroy”, distrug-
gendo cosi il suo certificato proxy, creato al punto 1).

I passi 1) e 4) sono banali mentre il 2) e 3) richiedono ulteriori
dettagli.

Generalmente, per l'estrazione di un subset di dati dai frame
contenuti nei Raw Data, i ricercatori di VIRGO utilizzano un esegui-
bile di nome “extract.exe”. Affinché questo programma possa essere
eseguito sulla grid € necessario scrivere un file in JDL che ne descriva
le caratteristiche. Questo file, che chiameremo ad esempio
“extract.jdl”, deve poi essere sottomesso alla grid con il comando
“dg-job-submit”. Esaminiamo il contenuto del file “extract.jdl”:

84

1
"extract.sh": 4

Executable =
Argunent s = "685112730 1200"
2

St dQut put = "extract.out";]
St dError = "extract.err";

3
I nput Sandbox =
{"extract.sh","extract.exe","cnaflist.ffl","X 509up_ul000"};
Qut put Sandbox = {"extract.out","extract.err"};

4

Requi renent s =
Menber (ot her. RunTi meEnvi ronnment, " VI RGOL. 0") &&
other.CEld =="del | 10. cnaf.infn.it:2119/) obnanager - pbs-wor kq";

85

Nella sezione n.1 sono specificati il nome dell’eseguibile del job
e 1 parametri di input. L’eseguibile non ¢ il vero “extract.exe” ma uno
shell-script “extract.sh”. Cio € dovuto al fatto che, oltre ad eseguire il
programma “extract.exe”, devono essere compiute una serie di opera-
zioni (settare variabili di ambiente, assegnare dei permessi di accesso
ai file, pubblicare i dati ottenuti sul Replica Catalogue). Tutte queste
operazioni sono specificate nello script “extract.sh”, il cui contenuto €
il seguente:

86

#H#H####H Shel | script “extract. sh”
#
#!/ bi n/ sh

#

Menorizza il none della directory corrente nella
wvariabile curdir

#

curdir=" pwd’

#

Menorizza il contenuto del certificato proxy nella
wvariabile “nmyproxy”

#

nmypr oxy="echo $X. 509 USER PROXY"

#

Assegna i diritti di accesso al certificato proxy
#

chmod u+r ${curdir}/ X 509up_ul000

chrmod go-rwx ${curdir}/X 509up_ul000

#

Esporta il contenuto della variabile X 509_USER _PROXY
#

export X. 509 USER PROXY=${curdir}/ X 509up_ul000

#

Assegna un none al file di output

#

outfile="echo V-$1-$2. out"

#

Esegue |’ estrazione dei dati con il progranm
“extract.exe”

#

echo $outfile

$curdir/extract.exe cnaflist.ffl $1 $2 Soutfile
#

Copia i dati estratti in una directory dello
Storage El enment

#

cp $outfile /flatfile/virgo

#

#

#

Pubblica i dati estratti sul Replica Catal ogue
#

gl obus-job-run delll1l.cnaf.infn.it /bin/bash -c 'export

LD LI BRARY_PATH=/ opt/ gl obus/li b:/opt/edg/lib:/usr/local/lib;
gdnmp_register local _file -d /flatfile/virgo

#

gl obus-job-run dellll.cnaf.infn.it /bin/bash -c 'export

LD LI BRARY_PATH=/ opt/ gl obus/li b:/opt/edg/lib:/usr/local/lib;
gdnmp_publ i sh_cat al ogue

87

Nella sezione n.2 del file “extract.jdl” sono specificati i nomi
dei file su cui devono essere rediretti lo standard output
(“extract.out”) e lo standard error (“extract.err”) del job.

Nella sezione n.3, invece, & specificato I'elenco dei file che
costituiscono I'Input Sandbox e I’Output Sandbox del job. Nel file
“cnaflist.ffl” c’é¢ I'elenco dei nomi dei file contenenti i frame da cui
estrarre i dati. Il file “X.509up_u1000” contiene il certificato proxy.

Nella sezione n.4, infine, sono specificati i requisiti del job. In
particolare viene esplicitamente richiesto al Resource Broker che il
job venga eseguito su una macchina che abbia settato una variabile di
ambiente di nome “VIRGO1.0” e il cui indirizzo € “dell10.cnaf.infn.it”
(che corrisponde a quello dello Storage Element di Bologna). In
questo modo I'esecuzione del job di estrazione dei dati verra eseguito
direttamente sullo Storage Element, evitando cosi inutili trasferi-
menti di dati verso altri Computing Element.

Per effettuare il passo 3) del processo di analisi € necessario
creare un file JDL che descriva il job per I'esecuzione dell’algoritmo
Matched Filter su un subset di dati. L’eseguibile dell’algoritmo
Matched Filter si chiama “mf.exe” ed accetta come input un file con-
tenente 200 template (di nome “template-200”), un file di configura-
zione (di nome “Mf.cfg”) e un file con i dati da analizzare. 1l file JDL,
che chiameremo “compute.jdl” avra il seguente contenuto:

88

& | 1

Executable = "conpute.sh";
Argunments = "tenpl ate-200";
« 12

St dQut put = "nf.out";
St dErr or ="nf.err"; / 3
| nput Dat a = "LF: V-685112730- 600. out ";

P
| nput Sandbox =

{"comput e.sh", " X. 509up_ul000", "nf.exe", "t enpl at e- 200",
"M.cfg","LFN2PFN. pl "};

Qut put Sandbox ={"nf.out","nf.err"};

/ 5
ReplicaCatalog = "ldap://grid0llg.cnaf.infn.it:9011/rc=VI RGO
Test bedl Replica Catal og, dc=gri d011g, dc=cnaf, dc=i nfn,dc=it";

/ 6
Dat aAccessProtocol = "gridftp";
Rank = ot her. FreeCPUs;
g

Requi renment s =
Menber (ot her. RunTi meEnvi ronment , " VI RGOL. 0") ;

89

Nella sezione n.1 sono specificati il nome dell’eseguibile del job
e il parametro di input (il file contenete i template). Anche in questo
caso, I'eseguibile € uno shell-script, di nome “compute.sh”, che, oltre
a lanciare il vero eseguibile dell’algoritmo Matched Filter, esegue
altre operazioni (settare variabili di ambiente, effettuare la tradu-
zione da Logical File Name a Physical File Name del file di input, tra-
sferire il file di input dallo Storage Element al Computing Element su
cui verra eseguito il job). Il contenuto del file “compute.sh” ¢ il se-
guente:

#HH####H Shel | script “conpute. sh”

#

#!/ bin/sh

#

Menorizza il none della directory corrente nella
wvariabile curdir

#

curdir="pwd’

#

Menorizza il contenuto del certificato proxy nella
wvariabile “nmyproxy”

#

nmypr oxy="echo $X. 509 USER PROXY

#

Assegna i diritti di accesso al certificato proxy
f‘fhrrod u+r ${curdir}/ X 509up_ul000

chrmod go-rwx ${curdir}/X 509up_ul000

i Esporta il contenuto della variabile X 509_USER_PROXY
zxport X. 509 USER PROXY=${curdir}/ X 509up_ul000

z Effettua la traduzione da LFN a PFN del file di input
ﬁf n="$curdi r/ LFN2PFN. pl °

Trasferisce il file di input dallo Storage El enent
al Conputing El enent

HHHFHH

/ opt / gl obus/ bi n/ gl obus-url - copy $pfn
file:// /bin/hostnane $curdir/file.input
#

#

Esegue |’algoritnmo Matched Filter

#

$curdir/nf.exe M.cfg $1 file.input

90

Nella sezione n.2 del file “compute.jdl” sono specificati i nomi
dei file su cui devono essere rediretti lo standard output
(“compute.out”) e lo standard error (“compute.err”) del job.

Nella sezione n.3, invece, € specificato il Logical File Name del
file di input, contenente i dati da analizzare. La traduzione da Logical
File Name a Physical File Name e fatta allinterno dello script
“compute.sh”, chiamando un perl-script di nome “LFN2PFN.pl”. La
vera traduzione da LFN a PFN e effettuata dal Resource Broker,
all’atto della sottomissione del job. L'RB scrive il PFN del file di
input, insieme ad altre informazioni, in una sottodirectory di nome
“brokerinfo” nella home-directory dell’'utente collegato alla UI. Il
perl-script “LFN2PFN.pl” ha il compito di leggere il PFN dalla sotto-
cartella “.brokerinfo” e restituirlo come output.

Nella sezione n.4, come nel caso del file “extract.jdl” € specifi-
cato l'elenco dei file che costituiscono I'Input Sandbox e I'Output
Sandbox del job.

Nella sezione n.5 € specificata una stringa che identifica
I'indirizzo del Replica Catalogue.

Nella sezione n.6 sono specificati 2 attributi: il protocollo da
utilizzare per il trasferimento del file di input dallo Storage Element
al Computing Element (gridftp) e una preferenza (rank) per la scelta
del Computing Element su cui eseguire il job (con FreeCPUs si indica
che e preferibile che il job sia eseguito su un CE con una o pia CPU
inutilizzate).

Nella sezione n.7, infine, € specificato I'unico requisito per
Pesecuzione del job. Viene richiesto che I'RB allochi il job su un CE
che abbia settato una variabile di ambiente di nome “VIRGO1.0”.

Per automatizzare la sottomissione dei job di analisi si puo
utilizzare uno shell-script da far girare sulla UI. Questo script esegue
un ciclo in cui, viene fatto un “dg-job-submit” del file “compute.jdl”
facendo variare, ad ogni passo successivo, il contenuto del file di
template. In questo modo il carico computazionale dovuto
all’esecuzione di tanti processi Matched Filter viene distribuito, in
maniera uniforme ed automatica, su tutti i Worker Node disponibili.
Per ogni “dg-job-submit”, viene restituita una stringa, detta PID
(Process ID), che identifica univocamente il job all’interno della grid.
Attraverso il PID e possibile, interrogando il Logging & Bookkeeping

g1

col comando “dg-job-status”, ottenere informazioni sullo stato di un
job. Un possibile shell-script che esegua la sottomissione automatica
dei job di analisi € il seguente:

#HH###H## Shel | -script submit. sh

#

#!/ bi n/ sh

#

#

#

Viene assegnato un none ad un file contenente i PID
dei job sottonessi alla grid

#

TI MESTAMP="dat e +%s"

JOBLI ST="echo dgj obl i st - $TI MESTAMP

#

#

La directory “tenpl ates-archive” contiene tutti i

sottoinsiem di tenplate

#

for TEMPLATE_FILE in "Is -1 tenplates-archive ; do
cp -f tenpl ates-archivel/ STEMPLATE FI LE ./t enpl at e- 200
/ opt / edg/ bi n/ dg-j ob-submt conpute.jdl -output $JOBLIST
rm-f tenpl ate-200
sleep 2

done

92

3.4.4.4 Un’interfaccia user-friendly per I’accesso alla grid

I meccanismi di accesso alla grid e di sottomissione dei job
descritti nei paragrafi precedenti obbligano gli utenti ad un conside-
revole lavoro di organizzazione degli script da far girare sulla User
Interface attraverso una riga di comando.

Uno dei traguardi che le grid tentano di raggiungere €, invece,
quello di fornire agli utenti una visione astratta delle risorse di cal-
colo e la possibilita di accedere ad esse attraverso delle interfacce
semplici ed intuitive.

Un primo approccio, in tal senso, si € avuto nel progetto
INFN-Grid con la realizzazione di un “portale web” di accesso alla
griglia. Tale sistema prende il nome di GENIUS37 (Grid Enabled
web eNvironment for site Independent User job Submission). [33]

GENIUS si e rivelato uno strumento fondamentale durante la
seconda parte dello stage; le operazioni di accesso alla grid (con la
generazione automatica dei certificati proxy), sottomissione di script
JDL, interrogazione di database LDAP e monitoraggio dello stato dei
job sono state notevolmente agevolate dall'utilizzo di semplici inter-
facce web.

Per completezza, nella Figura 3-11 € illustrato uno schema
logico che descrive l'accesso alla grid attraverso il portale web
GENIUS:

37 https://genius.ct.infn.it

93

Workstation

degli utenti M

UTENTI

YEB Browser | | WEB Browser | , WEB Browser
¥ ¥ L

GENIUS web portal

Applicazioni
specifiche degli |

eseprimenti

Architettura
DataGRID
GLOBUS
tool-kit

GRID

Figura 3-11 Accesso alla grid attraverso GENIUS

94

4 Conclusioni

Attualmente, la Linux farm realizzata durante lo stage ¢ utiliz-
zata dai ricercatori di VIRGO come un valido strumento per la pro-
gettazione, lo sviluppo e il testing di procedure di analisi dei dati, sia
in locale che in un contesto di calcolo geograficamente distribuito.
Tale strumento & particolarmente versatile in quanto la doppia confi-
gurazione dei nodi consente, in maniera rapida, di allocare o deallo-
care le risorse disponibili a seconda delle esigenze di calcolo (locale o
grid-oriented).

La prima parte dello stage (Par. 2.2 e 2.3), particolarmente si-
gnificativa da un punto di vista della progettazione hardware e
software, ha portato alla realizzazione di un potente strumento di cal-
colo, costituito da un cluster di macchine Linux, da utilizzare in
maniera efficiente per I'analisi, in locale, dei dati di VIRGO. Tale
sistema, dotato di importanti caratteristiche quali scalabilita, rapidita
di installazione, facilita di configurazione, monitoraggio, utilizzo e
manutenzione, ha dimostrato di avere un buon rapporto
prezzo/prestazioni.

I meccanismi offerti da MOSIX (Par. 2.5) per la migrazione dei
processi, il bilanciamento dinamico del carico computazionale e
lottimizzazione sull’utilizzo della memoria, hanno aumentato in
modo significativo le prestazioni del sistema.

Nella seconda parte dello stage (Cap. 3) il sistema di calcolo €
stato esteso implementando l'infrastruttura di base che costituisce
una grid. A tale scopo sono state utilizzate tecnologie tra le piu avan-
zate disponibili nel campo del calcolo distribuito, del trasferimento
dati, dell'Information Technology e delle procedure di sicurezza te-
lematica.

La validita del modello adottato e la fattibilita del progetto
sono state confermate dai test effettuati sia durante (Par. 2.6) che
dopo (Par. 3.4.4) la fase di prima implementazione.

Per quanto riguarda i servizi principali si puo asserire che la
gestione delle risorse di calcolo e della security sono gia abbastanza
adatte allo scopo ma necessitano indubbiamente di miglioramenti
nella facilita e comodita di utilizzo.

I problemi aperti sono ancora innumerevoli ed ¢ probabile che
in futuro il modello di grid adottato subisca variazioni anche notevoli

95

dovute, ad esempio, alla interconnessione di griglie computazionali
con architetture eterogenee. In tale direzione si muovono, attual-
mente, progetti quali DataTAG38, con 'ambizioso traguardo di realiz-
zare delle griglie computazionali transoceaniche, tra I'Europa e
I’'America.

Il lavoro descritto in queste pagine € stato solo uno dei primi
passi di un lungo processo che occupera, presumibilmente, fisici e
informatici per il prossimo decennio ma, da quanto ottenuto, si puo
concludere che a oggi esistono sia le conoscenze che le tecnologie ne-
cessarie allo sviluppo di griglie computazionali capaci di soddisfare
le richieste del calcolo in importanti applicazioni scientifiche, quali
lanalisi di segnali acquisiti da antenne interferometriche.

38 http://datatag.web.cern.ch/datatag/

96

Glossario

API: Acronimo di Application Programming Interface, termine gene-
rico che indica un set di librerie che permettono ad un programma-
tore di inserire alcune funzionalita nei propri programmi.

Benchmark: Programma utilizzato per misurare le prestazioni di
un sistema informatico o di un suo specifico componente.

BootP: Boot Protocol, ¢ uno dei protocolli standard che utilizzano
un’architettura di tipo client/server per I'assegnazione dinamica di
indirizzi IP agli host di una LAN.

Cache: Termine che indica un’area di memoria, spesso notevolmente
piu veloce delle altre, in cui vengono registrate le informazioni che si
intendono utilizzare piu di frequente.

Cluster: Termine che indica un gruppo di computer che lavorano
congiuntamente per eseguire un unico compito. Si parla, in genere, di
cluster di calcolatori per indicare un insieme di calcolatori che usano
le proprie risorse in un sistema di calcolo parallelo. Spesso la parola
cluster € usata come sinonimo di Farm.

Computing Element (CE): € una risorsa grid in grado di fornire
cicli di CPU per l'esecuzione di job. Un CE puo anche essere il
gateway di un cluster di PC, un supercomputer per ’'esecuzione di job
paralleli, o una postazione standard di calcolo interattivo in grado di
gestire applicazioni grafiche e I/O verso dispositivi di storage

DHCP: Dynamic Host Configuration Protocol, ¢ uno dei protocolli
standard che utilizzano un’architettura di tipo client/server per
lassegnazione dinamica di indirizzi IP agli host di una LAN.

Farm: Questo termine indica un gruppo di computer adibito ad una
produzione specifica, come ad esempio il lavoro di simulazione o
analisi dati per un esperimento. Una farm puo essere gestita in modi
pit o meno complicati dal software che si occupa del job
management.

97

FLOPS: FLoating-point Operations Per Second, € 'unita di misura
per la velocita nei calcoli a virgola mobile. Rappresenta il numero di
operazioni di calcolo a virgola mobile (con numeri frazionari) eseguiti
in un secondo da un processore.

Fork: La fork ¢ la chiamata di sistema (Unix) con cui un processo in
esecuzione puo generare un sottoprocesso. La chiamata fork puo es-
sere utilizzata come jobmanager su un Computing Element.

FPU: Floating Point Unit, ¢ il processore che effettua calcoli in vir-
gola mobile. A volte € integrato nel processore principale, altre volte
(nelle architetture piu vecchie) € un coprocessore dedicato a questo
compito.

FTP: File Transfer Protocol, € un protocollo standard usato comu-
nemente su nternet per il trasferimento di file.

Globus: Insieme di pacchetti software (tool-kit) che costituiscono il
nucleo dei servizi forniti da una griglia computazionale grid. Globus
viene spesso considerato come un “collante” che tiene insieme e
rende omogenee le parti che costituiscono la grid.

GASS: Global Access to Secondary Storage, € un protocollo utilizzato
da globus per il trasporto automatico dei file da un punto all'altro
della grid.

GDMP: Grid Data Mirroring Package, € un software, con architet-
tura client/server, in grado di replicare (mirroring) in maniera auto-
matica ed asincrona dei file arbitrari (in qualsiasi formato essi siano
stati scritti) all'interno della griglia.

GIIS: Grid Index Information Service, parte del servizio MDS che ri-

ceve le informazioni dalle varie risorse (tramite i GRIS) e le organizza
in un database LDAP.

o8

GIS: Grid Information Service, & la parte del servizio MDS che si
occupa di collezionare, organizzare e diffondere le informazioni rela-
tive allo stato delle risorse della grid.

GRAM: Globus Resource Allocation Manager, € la parte di globus
che gestisce le richieste di un utente o di un processo per quanto ri-
guarda l'allocazione delle risorse.

Grid: Termine generico che indica un’infrastruttura per la condivi-
sione e il coordinamento nell’utilizzo di risorse all'interno di comu-
nita vaste, dinamiche e multi-istituzionali.

Grid-element: elemento di una grid in grado di offrire un partico-
lare servizio.

Grid-oriented: con questo termine si indica un ambiente di calcolo
distribuito che si avvale di una infrastruttura Grid.

GridFTP: E’ un estensione del protocollo FTP standard che ha, come
principale caratteristica, la possibilita di saturare il link su cui
avviene la trasmissione dei dati, utilizzando piu socket contempora-
neamente.

GRIS: Grid Resource Information Service, parte del servizio MDS
che si occupa di comunicare ai livelli superiori della struttura
gerarchica dell'MDS lo stato di una risorsa.

GSI: Grid Security Infrastructure, ¢ la parte del software che gestisce
I'infrastruttura adibita alla sicurezza di una grid.

Host: sinonimo di computer, elaboratore.
HPC: High Performance Computing, con questa espressione si iden-
tifica un ambiente di elaborazione in cui le risorse di calcolo hanno

prestazioni particolarmente elevate con tempi di risposta molto
brevi.

99

HTC: High Throughput Computing, con questa espressione si iden-
tifica un ambiente di elaborazione in cui € richiesta una enorme
potenza di calcolo per I’esecuzione di job che durano lunghi periodi di
tempo.

HTTP: HyperText Markup Language, € il protocollo standard utiliz-
zato su Internet per la trasmissione e lo scambio di ipertesti.

Information Index (II): grid-element che colleziona in un
database le informazioni relative allo stato delle risorse di una Grid.

ISO: International Organization for Standardization, ¢ I'organismo
internazionale che si occupa della definizione di standard, quali pro-
tocolli, dispositivi, schemi, etc.

JDL: Job Definition Language, € un linguaggio basato su espressioni,
con cui e possibile specificare le caratteristiche di un job (parametri
di input/output, requisiti di sistema, jobmanager da utilizzare ed altri
attributi) in maniera da facilitare la ricerca, da parte del Resource
Broker, delle corrispondenze tra requisiti e disponibilita di risorse.

Jobmanager: Un jobmanager ¢ un software che ha il compito di
gestire le risorse di un singolo computer o di un cluster, scegliendo
come e quando eseguire un job in base alle risorse disponibili e a una
serie di regole definite dall'amministratore di sistema.

JSS: Job Submission System, ¢ il sottosistema software che si occupa
dell’allocazione di un job su un Computing Element scelto dal
Resource Broker.

LAN: Local Area Network, ¢ una rete di calcolatori interconnessi,
situati all'interno di un’area limitata del raggio di poche centinaia di

metri.

LDAP: Lightweight Directory Application Protocol, protocollo
standard per la consultazione di grossi database distribuiti.

100

LCFG: Local ConFiGuration System, ¢ un tool, con architettura
client/server, per linstallazione automatica, configurazione e
management centralizzato di macchine con sistema operativo Linux.

Linux: € un sistema operativo Unix che ha, tra le sue caratteristiche,
quello di essere opensource, multipiattaforma, multiutente e sup-
portato, a livello mondiale, da una vasta comunita di utilizzatori e
sviluppatori.

Logging & Bookkeeping (LLO): grid-element che colleziona in un
database le informazioni relative allo stato dei job in esecuzione
all'interno di una Grid.

MDS: Metadirectory Data Structure, sinonimo di GIS.

MFS: MOSIX File System, ¢ il file system offerto da MOSIX per la
condivisione di file all'interno di un cluster di macchine Linux.

MIPS: Million Instructions per Second, unita di misurazione della
velocita di un computer, in milioni di operazioni (intere) al secondo.
Viene utilizzata nelle prove (benchmark) per confrontare le presta-
zioni dei diversi modelli di CPU.

MOSIX: Multicomputer OS for unIX é un’estensione del kernel di
Linux ed e costituito da una serie di algoritmi per la condivisione
adattiva delle risorse, progettati in modo da rispondere, in tempo
breve, alle variazioni di utilizzo delle risorse, bilanciando il carico
computazionale all'interno di un cluster di workstation.

MPI: Message Passing Interface, € un set di librerie standard per lo
sviluppo di applicazioni di calcolo parallelo

NFS: Network File System, € uno dei protocolli standard, basato su

un’architettura client/server, per la condivisione di file tra due o piu
sistemi Unix.

101

Overhead: E’ la quantita di operazioni aggiunte all'esecuzione di un
programma da una qualsiasi infrastruttura. Ha come effetto generale
una perdita di performance del programma.

PBS: Portable Batch System, € un jobmanager che si occupa dello
scheduling e dell’allocazione (statica) dei processi in un cluster locale
di macchine fornendo degli strumenti per la gestione di code,
accounting delle risorse di calcolo ed elaborazioni di tipo batch

Policy: Una policy, € una serie di regole che stabiliscono il compor-
tamento di un sistema di security, queste regole servono a chiarire in
modo univoco chi, quando e come ¢ autorizzato ad accedere ad un
sistema informatico.

Replica Catalogue (RC): grid-element che gestisce un database di
informazioni relative ai file contenuti sugli Storage Element di una
grid.

Resource Broker (RB): ¢ un grid-element che ha il compito di
trovare una corrispondenza tra i requisiti espressi dagli utenti per
Pesecuzione dei propri job e le risorse disponibili sulla griglia, utiliz-
zando opportuni algoritmi di scheduling.

RSL: Resource Specification Language, ¢ il linguaggio utilizzato in
globus per descrivere al GRAM le caratteristiche del job da eseguire.

Socket: E’ un canale logico su cui viene trasmesso un flusso di dati
tra due computer.

SSL: Security Socket Layer, € un software in grado di creare dei
socket per lo scambio di dati crittati tra due computer, utilizzando un
meccanismi di crittografia asimmetrica (chiave pubblica/chiave pri-
vata).

Storage Element (SE): ¢ un nodo di una grid che fornisce i servizi
necessari a immagazzinare, localizzare e replicare i dati. Un SE,
inoltre, fornisce ad altri nodi della grid le informazioni relative alla
disponibilita dei dati.

102

Switch: dispositivo hardware multiporta utilizzato per lo scambio di
pacchetti tra due o piu calcolatori.

TCP/IP: Trasmission Control Protocol/Internet Protocol, € il proto-
collo standard utilizzato su internet per lo scambio di dati tra due
applicazioni.

TFTP: Trivial FTP, € una versione limitata del protocollo FTP
standard che non offre, ad esempio, nessun meccanismo di autenti-
cazione.

Tool-kit: ¢ un insieme di pacchetti software, facilmente estendibili,
che svolgono compiti specifici e possono essere utilizzati separata-
mente o in maniera congiunta.

UDP: User Datagram Protocol, protocollo standard per la trasmis-
sione di dati utilizzato in applicazioni che non richiedono garanzia di
ricezione dei pacchetti.

User Interface (UI): ¢ un nodo di una grid a cui gli utenti si colle-
gano per sottomettere i propri job. Una UI offre agli utenti un set di
comandi e un ambiente testuale, grafico o di tipo web per la sottomis-
sione e il management dei job.

Virtual Organization (VO): gruppo di persone ed entita geografi-
camente distribuite, multi-istituzionali, in dinamica evoluzione e con
interessi comuni, scientifici, economici o amministrativi. Un server
VO ¢ un grid-element che colleziona in un database l’elenco e i
membri delle Virtual Organization di una Grid.

Worker Node (WN): ¢ un nodo generico che offre potenza di cal-
colo. Un WN puo essere considerato ad esempio come un elemento di
una farm locale, o un computer che puo offrire, come unico servizio,
la sua cpu per I'esecuzione di job.

X.5009: Si tratta di uno standard ISO che definisce un sistema di cer-
tificazione usato per rendere sicure le comunicazioni elettroniche.

103

XML: Extensible Markup Language € un linguaggio di codifica
estensibile, e rappresenta un formato universale per dati e documenti
strutturati sul Web.

104

Bibliografia

[1] AA.VV. “General overview of the VIRGO Project”
http://www.virgo.infn.it/central.html

[2] F. Barone, L. Milano et al.: “Il problema del calcolo in VIRGO”,
addendum al proposal in commissione di gruppo II, INFN, 2001

[3] F. Barone, L. Milano et al.: “VIRGO Computing Plan” VIR-PLA-
DIR-7000-122, December 2001

[4] AA.VV. “Cluster Computing White Paper”, ver. 2.0 Final Release,
Ed. Mark Baker, University of PortsMouth, UK, December 2000
http://www.dcs.port.ac.uk/~mab/tfcc/WhitePaper/final-paper.pdf

[5] Ken Yap, Markus Gutschke: “Etherboot User Manual”, 2002
http://www.etherboot.org/doc/html/userman.html

[6] R. Coker : “Bonnie++ Documentation®, 1999
http://www.coker.com.au/bonnie++/readme.html

[7] M. M. Weber: “Glibench Documentation®, 2001
http://clibench.daemonware.ch /index.php?seite=articles

[8] C. Kurmann, T. Stricker: “Memory System Performance of High
End SMPs, PCs and Clusters of PCs”, 1999
http://www.cs.inf.ethz.ch/cops/software/doc/

[9] Q. O. Snell, A. R. Mikler, J. L. Gustafson: "NetPIPE: A Network
Protocol Independent Performance Evaluator”, 1996
http://www.scl.ameslab.gov/netpipe/paper/full.html

[10] Pallas GmbH: “Pallas MPI Benchmark documentation”, 2000

ftp://ftp.pallas.com/pub/PALLAS/PMB/PMB-MPI1.pdf
ftp://ftp.pallas.com/pub/PALLAS/PMB/PMB-MPI2.pdf

[11] G. R. Warnes: “Simplifying Linux Clusters: MOSIX +
ClusterNFS”, 1999

105

http://clusternfs.sourceforge.net/Presentation.pdf

[12] G. R. Warnes: “Recipe for a diskless MOSIX cluster using
ClusterNFS”, 2000
http://clusternfs.sourceforge.net/Recipe.pdf

[13] A. Barak, A. Braverman, I. Gilderman, O. La'adan: “Performance
of PVM with the MOSIX Preemptive Process Migration”, Proc. 7th
Israeli Conf. on Computer Systems and Software Engineering,
Herzliya, pp. 38-45, June 1996.
http://www.mosix.cs.huji.ac.il/ftps/pvm.ps.gz

[14] A. Barak, O. La'adan: “The MOSIX Multicomputer Operating
System for High Performance Cluster Computing”, Journal of Future
Generation Computer Systems, Vol. 13, March 1998
http://www.mosix.cs.huji.ac.il/ftps/mosixhpce.ps.gz

[15] A. Barak, O. La’adan, A. Shiloh: “Scalable Cluster Computing
with MOSIX for LINUX” Proc. Linux Expo '99, pp. 95-100, Raleigh,
N.C., May 1999
http://www.mosix.cs.huji.ac.il/ftps/mosix4linux.ps.gz

[16] S. McClure, R. Wheeler: “MOSIX: How Linux Clusters Solve Real
World Problems”, Proc. 2000 USENIX Annual Tech. Conf., pp. 49-
56, San Diego, CA., June 2000.
http://www.mosix.cs.huji.ac.il/ftps/usenix.ps.gz

[17] L. Amar, A. Barak, A. Eizenberg, A. Shiloh: “The MOSIX Scalable
Cluster File Systems for LINUX”, 2000
http://www.mosix.cs.huji.ac.il/ftps/mfs.ps.gz

[18] F. Barone, L. Milano, R. Esposito et al.: “Evaluation of Mosix-
Linux Farm Perforamces in GRID Environment”, Proc. of CHEP
(International Conference on Computing in High Energy and Nuclear
Physics), pag. 702-703, September 2001

[19] M. Bar: “Distributed OSs: General description of OpenMosix”,
2002

106

http://sourceforge.net/docman/display_doc.php?docid=95628&grou
p_id=46729

[20] M. Bar: “OpenMosix Internals: How OpenMosix Works”, 2002
http://sourceforge.net/docman/display_doc.php?docid=10390&gro
up_id=46729

[21] F. Barone, L. Milano, R. Esposito et al.: “Mosix Linux Farm
Prototype for GW Data Analysis”, 6% Gravitational Wave Data
Analysis Workshop, December 2001
http://gwdaw2001.science.unitn.it/abstracts/abstractsgwdaw.pdf

[22] F. Barone, L. Milano, R. Esposito et al.: “Preliminary tests on the
Napoli farm prototype for coalescing binary analysys”,
VIR-NOT-NAP-1390-196, March 2002

[23] I. Foster, C. Kesselman: “Globus: A Metacomputing
Infrastructure Toolkit”, Intl J. Supercomputer Applications, 1997
ftp://ftp.globus.org/pub/globus/papers/globus.pdf

[24] I. Foster, C.Kesselman: “The Grid: Blueprint for a New
Computing Infrastrucure”, Morgan Kaufmann Publishers, 1998,
Chap. 2

http://www.globus.org/research /papers/chapter2.pdf

[25] I. Foster, C.Kesselman, G. Tsudik, S. Tuecke: “A security
architecture for computational grids®, Proc. 5th ACM Conference on
Computer and Communications Security, 1998, pag. 83-92
ftp://ftp.globus.org/pub/globus/papers/security.pdf

[26] K. Czajkowski, S. Fitzgerald, I. Foster, C. Kesselman: “Grid
Information Services for Distributed Resource Sharing”, Proc. Tenth
IEEE International Symposium on High-Performance Distributed
Computing (HPDC-10), IEEE Press, August 2001.
http://www.globus.org/research /papers/MDS-HPDC.pdf

[27] B. Segal: “Grid Computing: The European Data Project”, 2000
http://web.datagrid.cnr.it/pls/portal3o/docs/1442.DOC

107

[28] AA.VV.: “A Computational and Data Challenge for future INFN
experiments; a GRID approach - Outline of the INFN-GRID Project”,
2000

http://www.infn.it/grid/doc

[29] A. Forte: “Certificates How-To”, INFN-Torino, 2001
http://www.to.infn.it/grid/seminari/18042001/

[30] A. Ghiselli: “DataGrid Prototype 1”7, INFN-CNAF, 2002
http://grid.infn.it/grid/doc/TERENA-EDG-release1.pdf

[31] F. Giacomini: “Architettura e componenti del middleware di
DataGrid”, INFN-CNAF, Workshop “Lezioni sul software e sul
calcolo moderno”, Feb. 2002
http://serverii.infn.it/grid/doc/gualino-giaco-o02.pdf

[32] R. Esposito, G. Tortone et al.. “A Grid Approach to
Geographically Distributed Data Analysis for Virgo”, Gravitational
Wave Advanced Detector Workshop, May 2002
http://131.215.114.135:8083 /related /talks /22 /tortone-palomba.pdf

[33] R. Barbera, A. Falzone: “GENIUS (Grid Enabled web
eNvironment for site Independent User job Submission) User’s
Guide”, May 2002

https://genius.ct.infn.it/manual /genius-manual-v1.3.pdf

108

