
Eur. Phys. J. C           (2023) 83:51 
https://doi.org/10.1140/epjc/s10052-023-11205-7

Regular Article - Theoretical Physics

Analysis of heat flow in the post-quasi-static approximation
for gravitational collapse in five dimension

A. Zahra1,a, S. A. Mardan1,b, I. Noureen2,c

1 Department of Mathematics, University of the Management and Technology, C-II, Johar Town, Lahore 54590, Pakistan
2 Department of Mathematics, Government College Women University Faisalabad, Faisalabad 38000, Pakistan

Received: 17 October 2022 / Accepted: 5 January 2023
© The Author(s) 2023

Abstract In this work, a generalized framework of the
post-quasistatic approximation in higher dimensional non-
comoving coordinates is presented. We study the evolution
of adiabatically radiating and dissipative fluid configura-
tion in higher dimensional post-quasi-static approximation.
An iterative method for describing self-gravitating spheres
is developed for this purpose. Dissipation is described by
free-streaming radiation and heat flux. We match the higher
dimensional interior solution, in non-comoving coordinates,
with the corresponding Vaidya exterior solution. The gen-
eralized form of post-quasistatic approximation leads to a
system of higher dimensional surface equations. The surface
equations are of significant importance in the understanding
of the physical phenomenon like luminosity, Doppler shift
and red-shift at the boundary surface of gravitating sources.

1 Introduction

Spherically symmetric solutions in general relativity (GR)
are important in the study of compact objects. The grav-
itational fields of astronomical bodies can be modeled by
using spherically symmetric solutions to the Einstein field
equations (EFEs). Indeed, most studied exact solutions to
EFEs are spherically symmetric. If the metric components
of spherical symmetry are static then exterior space time is
taken as Schwarzschild solution [1]. Reissner [2], Weyl [3]
and Nordström [4] developed the Reissner–Nordström solu-
tion to describe impact of electromagnetic field on gravitating
system. The exact vacuum solution of EFEs that describes
a rotating, stationary, axially symmetric black hole was dis-
covered by Roy Kerr [5]. This solution describes a black hole
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because it describes the spacetime generated by a singularity
with a curvature hidden by a horizon. Myers and Perry inves-
tigated the Schwarzschild, Reissner–Nordström, and Kerr
solutions for higher dimensional spacetimes [6]. Shen and
Tan [7] discussed Wyman’s solution in higher dimensions.
Chatterjee [8] obtained an exterior solution for spherically
symmetric Kaluza–Klein (KK) type metric.

The development of GR to higher dimensions has gained
a lot of attention in recent years. The five dimension and
higher manifolds presented by KK are used in various grav-
ity theories that extends Einstein’s GR. After a couple of
decades of the introduction of special relativity, Kaluza [9]
and Klein [10] postulated the existence of an extra spatial
dimension that can be considered as an extension to rela-
tivistic theory. Their motivation for doing so was to give
a unified description of electromagnetism and gravity in
terms of a five-dimensional metric. Chodos and Detweiler
[11] proposed the time-independent spherically symmetric
(in the typical three spatial dimensions) solution to the five-
dimensional vacuum Einstein equations, under the condition
that a killing vector exists in the fifth dimension. The con-
siderable work in this domain after KK was presented by
Wesson’s [12], he studied the properties of matter in KK
theories. The space-time matter theories [13] have become
increasingly prominent in gravitation and cosmology in the
fifth dimension. Liu and Overduin [14] investigated light
deflection and time delay results for massless test particles
in higher dimensions. Rahaman et al. [15] studied the usual
solar system phenomenon, such as the perihelion shift, light
bending, gravitational red-shift, gravitational time delay and
motion of test particles that are compatible with the exis-
tence of higher spatial dimensions. Bars and Terning [16]
introduced the extra time dimension. The solution was based
on gauge symmetry. They developed the general framework
by using the extra time dimension coordinate and found that
the results are consistent with standard models of general rel-
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ativity. The higher dimensional gravastars were also studied
by Rahaman et al. [17]. Moreover, many researchers have
worked on higher derivative gravities in connection to exten-
sion of GR [18–26].

The Rosen’s bimetric field equations in higher dimensions
for the static spherically symmetric space-time with charged
anisotropic fluid distribution were solved by Pandya and Has-
mani [27]. Singh et al. [28] investigated two distinct cos-
mological models with massive strings in five dimensional
relativistic theories. The first produces a five-dimensional
model of the Universe, while the second produces the vacuum
Universe. The properties of the model Universe are investi-
gated and compared to the properties of the four-dimensional
model. Baro et al. [29] investigated a model of the universe
that is isotropic throughout its evolution, non-sharing and
free from the initial singularity.

Debnath and Chakraborty [30] discussed the gravitational
collapse of spherically symmetric inhomogeneous dust in
higher dimensional space-time. The appearance of a naked
singularity has been studied in both non-marginal bound and
marginally bound cases. They found that naked singular-
ity is possible in all dimensions (n ≥ 4) for non-marginal
cases. By examining the existence of radial null geodesic
through the singularity in the marginally bound situation,
they have clearly come to the conclusion that naked singu-
larity may only appear for (n ≤ 5). Debnath [31] used a
higher-dimensional extension of the quasi-spherical Szek-
eres metrics with a non-zero cosmic constant to study grav-
itational collapse in (n + 2) dimensions. They discovered
that the possibility of a naked singularity depends on the ini-
tial density of a space-time with more than five dimensions.
The results are comparable to the collapse in Tolman–Bondi–
Lemaitre space-times with spherically symmetric space-
times. Yamada and Shinkai [32] investigated the gravitational
collapse of collisionless particles in spheroidal structures in
both four and five dimensions of space-time using numer-
ical methods. The collapsing behaviors are quite similar to
the cases in four-dimension, but they also found that five-
dimensional collapses proceed rapidly than four-dimensional
collapses. Khan et al. [33] presented the five-dimensional
spherically symmetric anisotropic collapse with a positive
cosmological constant. They employ the Schwarzschild–de
Sitter and five-dimensional spherically symmetric metrics
for the inner and outer regions, respectively. They found that
the entire collapse process is impacted by the cosmological
constant. The collapse process is slowed down by the cos-
mological constant.

Barnafoldi et al. [34] investigate the higher dimensional
neutron star with compactified fifth-dimensional excitations.
They showed that neutron stars with hyperon or extra-
dimensional cores are remarkably similar objects in a simple
model of a compact star. The Tolman–Oppenheimer–Volkoff
(TOV) equation produces a comparable structure with a

clearly defined stability area in the extra-dimensional case,
where the lowest KK modes may be observed. Additionally,
they introduced a new dimension, which contributed about
the emergence of new stability areas and the presence of
many stable hybrid star configurations. The double neutrino
shower from SN 1987A supports this conclusion. Paul [35]
studied the relativistic solutions of higher dimension compact
star in hydrostatic equilibrium with spherically symmetric
space-time. He found that the presence of higher dimensions
directly affects the star’s central density. The square of the
dimensions of space and time causes the density of the star’s
core to increase roughly proportionally. As a result, if a star
is surrounded in dimensions other than the standard four of
space-time, its centre density is relatively higher for a given
radius. It is also obvious that for a given radius, more space-
time dimensions than four allow for a more massive compact
star. Chattopadhyay and Paul [36] studied compact stars in
hydrostatic equilibrium in higher dimensions using a pseudo-
spheroidal space-time geometry. They found that the centre
density of the star increases linearly with the square of the
space-time dimensions. As a result, if a star is immersed in
more dimensions than the typical four-dimensional space-
time, its core density will be relatively higher for a given
radius. Bhar et al. [37] provided evidence for the existence of
higher dimensional anisotropic compact stars in noncommu-
tative space-time. They found that the physical behaviors of
the model parameters, such as matter-energy density, radial
and transverse pressures, anisotropy, and other characteris-
tics, are generally consistent throughout the stellar structure.
They also mention that as one goes to higher dimensions,
the central densities abruptly decrease, and that the measure
of anisotropy gradually increases, reaching its maximum at
five dimensions. A star’s central density is greatest in four
dimensions and lowest in higher dimensions.

Numerical techniques enable mathematicians to study
systems that are complicated to handle analytically [38].
Numerical models have proven to be beneficial in the inves-
tigation of strong field scenarios and for revealing unex-
pected occurrences in GR [39]. Nonetheless, it is clearly
more straight forward to solve ordinary differential equa-
tions (ODEs) than partial differential equations in general.
However, numerical solutions frequently make it difficult to
express general, qualitative, aspects of this process. The sug-
gested method produces a system of ODEs for quantities
determined at the fluid distribution’s boundary surface (BS)
starting from any interior static spherically symmetric seed
solution to the EFEs. The static limit of the numerical solu-
tion, which simulates dynamical self-gravitating spheres, is
the initial seed solution.

The pioneer work of Oppenheimer and Snyder [40]
urged researchers to explore relativistic aspects of gravitating
source their formation and inner structure. The motivation for
such interest is based on the fact that the relativistic collapse
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of massive stars is one of the main visible process in which
GR is predicted to play a vital role. However, self-gravitating
compact objects may experience periods of extreme dynami-
cal activity as they evolve over time. The static or quasi-static
(QS) approximation is unreliable for some phenomena, such
as the origination of neutron stars as a result of quick col-
lapse. In such conditions, it is necessary to consider con-
cepts that describe departures from equilibrium. Herrera et
al. [41] initially presented the post-quasistatic (PQS) approxi-
mations essence using radiative Bondi approach. Herrera and
his coworkers [42] have made considerable use of it. In Bondi
approach, the concept of QS approximation is absent: the sys-
tem proceeds immediately from static to PQS evolution. The
PQS approximation depends on “effective” variables, such
as effective pressure and energy density [43]. Because the
effective variables of the QS approximation correspond to
the physical variables. This approximation can be assumed
as an iterative technique, with each successive step represent-
ing a greater deviation from equilibrium. More precisely, the
authors [39] employed a method for modelling the evolu-
tion of compact objects that does not necessitate complete
integration of the EFEs with respect to the time coordinate.

The purpose of this work is to investigate the evolution
of compact objects in the PQS regime in five dimensions.
The fluid distribution under consideration is supposed to be
radiative in which free streaming of radiations induced dissi-
pative effects. The emission of photons and/or neutrino par-
ticles causes dissipation, which is a common procedure in
the evolution of compact objects. In fact, neutrino emission
appears to be the only viable technique for removing the
majority of the binding energy from a collapsing star. How-
ever, two other approximations, diffusion and streaming out
are frequently employed in the analysis of radiative trans-
port within compact objects. The diffusion approximation
assumes that likewise thermal conduction, the energy flux
of radiation is approximately equal to the temperature gra-
dient. This assumption is generally viable because the mean
free path of the particles responsible for energy transmis-
sion in star interiors is usually quite short in comparison to
the object’s normal length. A star, such as the sun, has a
mean free path of massless particles photons on the order of
2 cm. The mean free path of trapped neutrinos is less than the
size of the star core in compact cores with densities of about
1012 g cm−3 [44,45]. In addition, data from the 1987A super-
nova show that during the emission phase, the predominant
radiation transport regime is closer to the diffusion approxi-
mation than the streaming out limit [46].

In this article, we will discuss physical variables such as
ρ, P , ε, ω and Q. These physical variables predicted to play a
vital role in the evolution of self-gravitating objects. We will
use noncomoving coordinates, which means that the velocity
of any fluid element has to be taken into account as a relevant
physical variable, despite the fact that using co-moving coor-

dinates is the most common method to solve EFEs [47,48].
The layout of this work is as follows. We describe the con-
ventions and provide the higher dimensional EFEs in Sect. 2.
The Methodology of this paper is discussed in Sect. 3. Finally,
conclusion and discussion is presented in Sect. 4 that are fol-
lowed by a list of references.

2 The Einstein field equations in higher dimension

We consider non-static spherically symmetric distributions
of a collapsing fluid confined by a spherical surface

∑
, where

dissipation occurs due to free-streaming radiation and/or heat
flow. By using five dimensional Schwarzchild-like coordi-
nates [49], the metric is then written as

ds2 = eνdt2 − eλdr2 − r2(dr2 + sin2dφ2) − eμdw2, (1)

where ν, λ and μ are general functions of time and radial
coordinates. The spacetime coordinates are x0 = t, x1 =
r, x2 = θ, x3 = φ, x4 = h. The corresponding EFEs in
tensorial form are:

Gν
μ = −8πT ν

μ . (2)

That leads to following set of equations

− 8πT 0
0 = − 1
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where (.) and (′) denote partial differentiation in terms of
t and r respectively. We use the Bondi technique to give
physical meaning to the components of energy stress tensor
Tμ

ν .
Thus, in the accordance with Bondi, we will introduce

Minkowski coordinates (τ, x, y, z, h), in five dimension as

dτ = eν/2dt, dx = eλ/2dr, dy = rdθ, dz = rsinθdφ,

dh = eμ/2dw.

Then, using a bar to represent the higher dimensional
Minkowski coordinates of the energy stress tensor, we obtain

T̄ 0
0 = T 0

0 ; T̄ 1
1 = T 1

1 ; T̄ 2
2 = T 2

2 ; T̄ 3
3 = T 3

3 ; T̄ 4
4 = T 4

4 ;
T̄01 = e− (ν+λ)

2 T01.

Now, we assume that the physical content of space, as seen by
an observer moving relative to these coordinates with proper
velocity ω in the radial direction, consists of an isotropic fluid
with energy density ρ, isotropic pressure P , radial heat flux
q̂ and unpolarized radiation with energy density ε̂ traveling
in the radial direction. The five-dimensional covariant tensor
in Minkowski coordinates is defined as
⎡

⎢
⎢
⎢
⎢
⎣

ρ + ε̂ −q̂ − ε̂ 0 0 0
−q̂ − ε̂ P + ε̂ 0 0 0

0 0 P 0 0
0 0 0 P 0
0 0 0 0 P

⎤

⎥
⎥
⎥
⎥
⎦

The five-dimensional Lorentz transformation then demon-
strates that

T 0
0 = T̄ 0

0 = ρ + Pω2

1 − ω2 + 2Qωe
λ
2

√
(1 − ω2)

+ ε, (8)

T 1
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λ
2

√
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T 2
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2 = T 3
3 = T̄ 3
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4 = T̄ 4

4 = −P, (10)
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2
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ν
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√
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−e
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−λ
2

√
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and

ε ≡ ε̂
(ω + 1)

(1 − ω)
. (13)

It is worth noting that in (t, r, θ, φ,w) system, the coordinate
velocity dr

dt is associated with the proper velocity ω by

ω = dr

dt
e

(λ−ν)
2 . (14)

Applying Lorentz transformed Eqs. (8–11), in field Eqs. (3–
7), we obtain
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− 2

r

(
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)

, (17)

(ρ + P)ωe
(ν+λ)

2

1 − ω2 + Qe
ν
2 eλ(1 + ω2)

√
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+ e
(ν+λ)

2 ε
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{(
− μ′μ̇

4
+ μ̇ν′
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. (18)

Equations (15–18) yields a system for P , ρ, ω, Q and ε for
defined functions ν, μ and λ. when all of these physical vari-
ables are non-zero, the system is under-determined, and two
equations of state must be presented. In general, a transport
equation must be considered whenever Q �= 0. The system is
closed in the original Bondi [50] case of isotropic fluid (radial
pressure is equal to tangential pressure) and free streaming
regime, Q = 0. The system of equations is over-determined
for the adiabatic case when ε = Q = 0, isotropic fluid
and a constraint on the physical variable appears. The corre-
sponding Vaidya exterior geometry for higher dimension is
considered as [51]

ds2 =
(

1 − 2M(u)

R2

)
du2 + 2dudR

−R2
(
dθ2

1 + sin2θ1

(
dθ2

2 + sinθ2
2 dθ3

2

))
, (19)

where M(u) represent the total mass of the system inside the
BS denoted as � and u denotes the retarded time. At the BS
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and outside it, the two coordinate systems (t, r, θ, φ, h) and
(u, R, θ1, θ2, φ) are connected by

u = t − r − 2Mln
( r

2M
− 1

)
, R = r�, (20)

following necessary and sufficient conditions for two metrics
(1) and (19) shall be fulfilled to match smoothly.

eν� = e−λ� = e−μ� = 1 − 2M

R2
�

, (21)

[P]� = 0. (22)

The fluid in this study is considered to be isotropic and dis-
sipative in the form of free streaming radiations and/or heat
flow, where ε is the radiation density and q is the heat flow
are defined as

Tμν = (ρ + P)uμuν − Pgμν + qμuν + qνuμ + εlνlμ,

(23)

with

uμ =
( −eν/2

√
(1 − ω2)

,
ωe−λ/2

√
(1 − ω2)

, 0, 0, 0

)

, (24)

lμ =
(

e−ν/2, e−λ/2, 0, 0, 0

)

, (25)

where the fluid’s five velocity is represented by uμ, a five
dimensional null outgoing vector is denoted by lμ, and

qu = Q
(
ωe

λ−ν
2 , 1, 0, 0, 0

)
. (26)

After some computations, the radial component of conserva-
tion law is used to calculate Tμ

ν;μ = 0, we obtain following
equation

P ′ = −
(ν′ + μ′

2

)(
ρ + P

)
, (27)

which represents the static case of the TOV equation.

3 The methodology

While dealing with self-gravitating compact objects, the
most basic scenario is static equilibrium. This shows that
ω = ε = Q = 0, all time-dependent derivatives vanish
and a modified TOV equation is obtained. The QS regime,
the hydrostatic time scale, which is the typical time scale on
which the sphere responds to small changes in the hydrostatic
equilibrium, is very long in comparison to the slow rate of
change of the sphere. As a result, the system is constantly
near to hydrostatic equilibrium in QS regime. Its evolution
can be seen as a series of static models linked together by (18).
This theory is sensible because the hydrostatic time scale is
relatively short for several stages of a star’s life. It is approxi-
mately 4.5 s for a white dwarf, 27 min for the Sun and 10−4 s
for a neutron star with a mass of one solar mass and a radius of

10 km [52]. Any of the star configurations mentioned above
have been observed to change over the period of time that are
unusually long in comparison to their respective hydrostatic
time scales. As was previously stated, this approximation is
no longer accurate in some crucial instances and departures
from quasi-equilibrium must be taken into account. We will
discuss such departures, in the PQS approximation given in
following subsections.

3.1 The effective variables and PQS approximation
in higher dimension

The effective variables for the PQS approximation are
defined as follows:

ρ̃ = T 0
0 = ρ + Pω2

1 − ω2 + 2Qωe
λ
2

√
(1 − ω2)

+ ε, (28)

P̃ = −T 1
1 = P + ρω2

1 − ω2 + 2Qωe
λ
2

√
(1 − ω2)

+ ε. (29)

The effective variables in the QS regime satisfy the TOV
Eq. (27) as the corresponding physical variables. As a result,
effective and physical variables have the same radial depen-
dency in a QS condition (and likely in a static one as well).

The corresponding mass function is defined as

m =
∫ r

0
4πr2ρ̃dr. (30)

Substituting Eq. (29) into Eq. (16):

ν = ν�

+
∫ r

r�

2(8π P̃r4(r2 − 2m) − 2r3m′ + 6r2m − 12m2 + 4rmm′)
(2r3(r2 − 5m) + 12rm2 + r4m′ − 2r2mm′)

+ r2

r2 − 2m

( m̈

(r2 − 2m)
+ 4ṁ2

(r2 − 2m)2

)
dr, (31)

μ = μ�

+
∫ r

r�

2(8π P̃r4(r2 − 2m) + 2r3m′ − 2r2m + 4m2 − 4rmm′)
(2r3(r2 − 3m) + 4rm2 − r4m′ + 2r2mm′)

+ r2

r2 − 2m

( m̈

(r2 − 2m)
+ 4ṁ2

(r2 − 2m)2

)
dr. (32)

The radial dependency of metric functions is completely
determined for a given radial dependency of effective vari-
ables. Now, we will discuss the PQS regime as one that cor-
responds to a system that is not in equilibrium (or quasi-
equilibrium), however effective pressure and energy density
have the same radial dependency as the associated physical
variables in an equilibrium (or quasi-equilibrium) state. As
an alternative, metric functions with the same radial depen-
dence as those in the static or QS regime define the system in
the PQS regime. The logic behind this formulation is simple:
we seek a regime that, while not in an equilibrium condition,
represents the closest possible scenario to a QS evolution.
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3.2 The algorithm in higher dimension

The approach we are going to use is outlined below

1. Consider an analytic interior (seed) solution to the EFEs,
which represents a fluid distribution of matter in an equi-
librium state, given as ρst = ρ(r); Pst = P(r).

2. Assume that effective pressure P̃ and energy density ρ̃

are dependent on the same r as Pst and ρst .
3. One may obtain m, μ and ν up to some t functions using

equations (30), (31) and (32), as well as the radial depen-
dence of P̃ and ρ̃, which will be explored in more detail
below.

4. For these t functions, there are three ODEs, which are
characterized as surface equations.

• Evaluate Eq. (14) on r = r� .
• The equation that illustrates the relationship between

the energy flux (Ê) and mass loss rate along the BS.

• Determine non-static TOV equation on r = r� .

5. The additional information is needed to close the given
system of surface equations to determine some physical
variables on the BS.

6. Once it has been closed, the system of surface equations
can be integrated for any given set of initial conditions.

7. These two functions are completely determined by sub-
stituting the integration results in the expressions for m,
μ and ν.

8. The EFEs develop a system of equations for physical
variables after appropriately defining metric functions,
can be obtained for any kind of fluid distribution.

3.3 The surface equations in higher dimension

The system of surface equations is the critical point in the
algorithm, as should be obvious from the preceding. For this,
dimensionless variables are introduced as

A = r�
m�(0)

, F = 1 − 2M

A2 , M = m�

m�(0)
,

β = t

m�(0)
, 
 = ω�.

We obtained the first surface equation with the total initial
mass m�(0) by evaluating Eq. (14) at r = r� . As a result,

d A

dβ
= F
, (33)

by using junction conditions, one may then obtain from (15),
(18) and (21) computed at r = r� , yields

dM

dβ
= −F2

Ŝ

(
(1 + 
)Ê − 
ρ�

2
+ 
ρ� B̂

)
, (34)

where

Ê = 8πr5
�( ˆε� + q̂�), (35)

Ŝ = m′
�r�(3 + r2

� − 2m�) + 26m� − 16r2
�, (36)

B̂ = 3r2
� − 12(r2

� − 2m�) − 12πr�ρ� − 6r� + 8πr3
�ρ� − 6πr3

�ρ�
2

3r�(r2
� − 2m�)

. (37)

The gravitational redshift and Doppler shift are represented
on the right of Eq. (34). The observer’s perceived luminosity
at infinity is then defined as

L = −dM

dβ
. (38)

The second surface equation is

dF

dβ
= 2(1 − F)F


A
+ 2L

A
. (39)

Evaluating the law of conservation Tμ

ν;μ = 0 at the BS
yields the third surface equation, we obtained

P̃ + (ρ̃ + P̃)
(ν′ + μ′

2

)
= e−ν

4πr(r2 − 2m)
(

2m̈ + 7ṁ2

r2 − 2m
− ṁν̇

)
+ 2

r
(P − P̃). (40)

Evaluate Eq. (40) at the BS, the result is

d


dβ
= 
2

[{4π A5ρ̃�F − 4π A6ρ̃�
2F2 − 3A2Fm� + 6Fm2
� − 2A3ρ̃�
F

A5 − 5A3m� + 6Am2
� + 2π A4ρ̃� − 4π A4m�ρ̃�

}
+ 6πρ̃� + 16π2ρ̃2

�
2
]

− AF

2ρ̃�

[

R + 2

A

(
ρ̃�
2 + Ē(1 + 
)

4πr2
�

)]

, (41)
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where

R =
[
P̃ + (ρ̃ + P̃)

(ν′ + μ′

2

)]

�
, (42)

Ē = Ê(1 + 
). (43)

According to Eq. (33) this implies 
 = 0, we get

d2A

dβ2 = F
d


dβ
. (44)

By applying 
 = 0 on Eq. (41), we obtain

d


dβ
= − F

ρ̃�

[ AR

2
+ Ê

4πr2
�

]
. (45)

It is observe that the radius of the sphere tends to decrease
with a positive energy flux Ê . In other words, it favors object
compactification, which is understandable. We can see the
opposite effect occurs by reserving the signs of these quan-
tities. Now the sphere will only be bounce at its surface for
a positive energy flux for 
 = 0, we get

d


dβ
≥ 0. (46)

According to Eq. (45) this implies

− AR

2
(
 = 0) ≥ 0. (47)

This equation has a physical meaning, which is as follows.
The expression of R is defined in Eq. (42), is divided into
two parts for non-radiating, static configurations. The first
and second terms describe the hydrodynamical and gravita-
tional forces, respectively. The resulting force as r increases
is exactly − AR

2 ; if force is positive, there is a net acceleration
outward, and vice versa. This result is generalised in Eq. (47)
for general non-static configurations in five dimensions.

4 Conclusion and discussion

In this paper, a five-dimensional Schwarzschild-like non-
moving coordinate system is used to develop a general frame-
work for discussing relativistic collapse of spherical systems.
To analyze astrophysical scenarios in higher dimensions,
mathematicians used the KK theory, the M theory, string
theory, and superstring theory. In this work, we considered
the five-dimensional Schwarzchild like non comoving coor-
dinates. The fifth dimension represents spatial coordinates in
a radial direction. The higher dimension PQS approximation
is developed using the five dimensional geometry. A general
framework for the higher dimensional PQS approximation
is developed, the physical features of the stellar structure of
gravitational objects are analyzed. As a starting point, we
used an interior (analytical) seed solution to the EFEs. The

proposed method yields a set of ODEs for quantities esti-
mated at the BS. The numerical solution allows for the sim-
ulation of self-gravitating spheres.

The inner fluid distribution is assumed to be isotropically
configured, with heat flow and radiation factor that cause
dissipative effects within the gravitating system. Dissipation
is a phase of giant star evolution caused by the emission of
massless particles. In fact, neutrino emission appears to be
the only viable method for removing the bulk of the binding
energy from a collapsing star, resulting in the formation of
a neutron star or black hole. Outer space is considered as
Vaidya spacetime for smooth matching at the boundary of
sphere. In the discussion of departure from equilibrium there
are three possible situations which are (a) static equilibrium,
(b) QS equilibrium and (c) PQS equilibrium.

• Static Equilibrium: In case of static equilibrium all the
components of the EFEs have radial dependency.

• QS Equilibrium: The system is predicted to evolve slowly
enough in this regime to be deemed in equilibrium at any
given time. This indicates that the compact object evolves
very slowly, on a time scale significantly longer than the
time it normally takes for the sphere to react to a small
perturbation of hydrostatic equilibrium. The system is
assumed to be static between two small variations of time
due to very slow evolutionary process.

• PQS Equilibrium: The system which is not in the state of
equilibrium or departure from equilibrium is known as
PQS equilibrium.

The TOV equation is derived using a higher dimension con-
servation law. We developed Eq. (40) by using modified TOV
Eq. (27) and effective variables. The TOV equation is sat-
isfied by effective variables such as effective pressure and
energy density, as well as physical variables. In the static and
QS equilibrium, the effective and physical variables have the
same radial dependency. This process is iterative, with each
successive step reflecting a deeper understanding of the devi-
ation from the equilibrium state.

Motivated by the fact that non-comoving coordinates are
frequently used in gravitational collapse research, requiring
the definition of the PQS approximation. This method is
based on “effective” variables as well as a heuristic approach
to the latter, the rationale and justification for which is
revealed in the context of the PQS approximation in the five-
dimensional regime.

In this work, we restricted ourselves to the five-dimensional
PQS level. In higher dimension, we developed a system of
surface equations using the PQS approximation algorithm.
We established a higher-dimensional surface equation sys-
tem and studied realistic features of stars like Doppler shift,
gravitational redshift, and total mass loss rate, all of which
are related to total mass loss energy flux Ê over the BS.
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In higher dimensional spherically symmetric gravitational
collapse is observed for non-comoving coordinate system in
PQS approximation. The effects of heat flux and unpolarized
radiation in isotropic conditions were studied by consider-
ing five dimensional Vaidya outer space. The discussion of
this phenomena is not available in higher dimensional space-
time in any previous work. To comprehend the nature of
gravitational collapse in five dimensions, a general frame-
work for the PQS regime must be developed, which necessi-
tates the solution of nonlinear differential equations. Gravi-
tational collapse is a well-known energy-dissipating process
that dominates star formation and stellar evolution. We con-
sidered dissipation, which is an important factor in the gravi-
tational collapse process. The dissipative model is described
by the five-dimensional null outgoing vector in diffusion
approximation.

In higher dimensional space-time, compact stars, neutron
stars, and hybrid stars exist. These astrophysical phenom-
ena motivate us to study the higher dimensional gravitational
collapse. In literature, the gravitational collapse in the PQS
approximation for higher dimensions has not been modeled.

In this article, we developed the higher dimensional gen-
eral framework for the PQS approximation. For concrete
applications of the PQS approximation, we can use three
different types of models: (a) Schwarzschild-type model;
(b) Lemaitre–Florides-type model; and (c) Tolman type-VI
model. These models indicate the relativistic gravitational
effects due to the discontinuity of the radial pressure at
the BS. The evolution of the gravitational objects becomes
more and more “dynamic,” stressing once again their roles
in describing departures from equilibrium. This work can be
extended to the PQS regime’s gravitational collapse in co-
moving coordinates.
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