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Abstract
In this paper, we study the impossibility of constructing perfect complete quantum public key
encryption (QPKE) from quantumly secure one-way functions (OWFs) in a black-box manner. We
show that this problem is connected to a fundamental conjecture about the roots of low-degree
polynomials on the Boolean hypercube. Informally, the conjecture asserts that for every nonconstant
low-degree polynomial, there exists a universal (randomized) way to modify a small number of
input bits such that, for every input string, the polynomial evaluated on the modified input string
avoids 0 with sufficiently large probability (over the choice of how the input string is modified).
Assuming this conjecture, we demonstrate the impossibility of constructing QPKE from quantumly
secure one-way functions in a black-box manner, by employing the information-theoretical approach
recently developed by Li, Li, Li, and Liu (CRYPTO’24). Towards resolving this conjecture, we
provide various pieces of evidence supporting it and prove some special cases. In particular, we fully
rule out perfect QPKE from OWFs when the key generation algorithm only makes a logarithmic
number of quantum queries, improving the previous work, which can only handle classical queries.
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1 Introduction

Public-key encryption (PKE) is a fundamental primitive in modern cryptography. It enables
secure communication through an insecure channel. A server generates two keys, the secret
key and the public key; the secret key is owned only by the server, whereas the public key is
broadcasted to everyone else. PKE allows everyone to send messages to the server securely;
even if a malicious party, who keeps listening to the channel, has no idea about the actual
messages. Its counterpart, secret-key encryption, requires pre-shared keys to conduct secure
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communication. Since the first proposal 1 by Diffie and Hellman [13], PKE has become one
of the most important cryptographic primitives and concepts, with impacts ranging from
theoretical computer science to real-world constructions.

Despite enjoying all the advancements in secret-key encryption (SKE), all PKE schemes
have more structures. Therefore, PKE seems to require strictly stronger assumptions than
one-way functions. This observation was later confirmed by Impagliazzo and Rudich [16]:
there was no black-box construction of PKE solely from one-way functions (or in the random
oracle model).

Quantum information has changed the landscape of cryptography, especially weakening
the assumptions needed for various cryptographic primitives; for example, quantum key
distribution [10], oblivious transfer/multi-party computation [7, 15], commitment [3, 23].
Talking about PKE, first introduced by Morimae and Yamakawa [22], then followed by
[12, 17, 19, 6], QPKE with either quantum keys or quantum ciphertext can be constructed
from OWFs. However, quantum public keys and quantum ciphertext are often more difficult
to broadcast, use and authenticate than their classical counterparts. Thus, the possibility
of basing quantum PKE with classical public key, secret key and ciphertext on one-way
functions is still intriguing and largely unanswered. In the rest of the work, we will simply
denote such QPKE with classical keys and ciphertext by “QPKE”. Following the similar
questions in [16], in this work, we are interested in the problem:

Question 1: Whether QPKE can be constructed solely
in the quantum random oracle model (QROM)?

The direction was investigated first by Austrin, Chung, Chung, Fu, Lin and Mahmoody [5]
and later by Li, Li, Li and Liu [18]. Austrin et al. proposed the so-called “polynomial
compatible conjecture” (or PCC for short); basing on PCC, they fully rule out QPKE from
OWFs. However, their conjecture is tailored to this separation problem; to which we will
compare our conjecture later on. Besides, they are able to prove the non-existence of perfect
complete QPKE in the QROM when (i) Enc or (ii) both Gen and Dec make only classical
queries to a random oracle. Li et al. improved the result (ii) and showed that as long as the
key generation algorithm Gen only makes classical queries, perfect correct QPKE can not
exist in the QROM.

1.1 Our Results
In this work, we show that Question 1 is closely related to a fundamental conjecture about the
roots of low-degree polynomials on the Boolean hypercube. More specifically, we propose the
following conjecture, and show that it implies a full impossibility result of perfect complete
QPKE in the QROM.

▶ Conjecture 1. For any nonconstant function f : {−1, 1}n → R with degree d, the following
holds. There exists a distribution D on the set of partial assignments ρ with |ρ| ≤ poly(d)
such that: for any x ∈ {−1, 1}n,

Pr
ρ∼D

[f(xρ) ̸= 0] ≥ 1/poly(d).

1 The UK Government Communications Headquarters proposed and developed the same scheme even
earlier than Diffie and Hellman (1973 and 1974), and was later declassified by the British government in
1997.
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A partial assignment is denoted by ρ ∈ {−1, 1, ⋆}n and |ρ| is defined as the number of
non-⋆ entries. xρ is defined as an input string whose i-th bit will be equal to xi if ρi = ⋆,
and otherwise equal to ρi. In other words, the conjecture asserts that for every degree d
nonconstant f , there is a universal (randomized) way to modify poly(d) bits such that, every
input string x has an inverse-polynomial probability of evaluating to non-zero under this
randomized modification.

▶ Remark 2 (Comparing PCC in [5] with our conjecture). PCC (Conjecture 1.2) roughly asserts
that, for two distributions F,G over low degree polynomials with bounded influences, there
always exists f ∈ F, g ∈ G and x such that f(x)g(x) ̸= 0. To the best of our knowledge, there
is no obvious connection between PCC and our conjecture. Nonetheless, we hold that our
conjecture appears simpler and offers an alternative path towards the ultimate objective; since
our conjecture only involves a single polynomial (instead of two distributions) and resembles
many fundamental notions in the literature of boolean function analysis. Furthermore, PCC
might be too strong to hold: as it will imply attacks with only a polynomial number of
classical queries, even if both Alice and Bob make quantum queries; on the other hand, our
Eve makes quantum queries.

With the conjecture, we now present our main theorem.

▶ Theorem 3 (Main Theorem). If Conjecture 1 is true, then perfect complete QPKE does
not exist in the QROM.

▶ Remark 4. In the proof of Theorem 3, f is treated as a probability and ranges in [0, 1].
However, it would not weaken Conjecture 1 if we restrict the range of f to [0, 1]. Precisely,
in Conjecture 1, it does not lose generality to assume that f is nonnegative, because we can
consider f2 instead; then we can scale the function to fit in the range [0, 1].

Conjecture 1 is closely related to notions like certificate complexity, sensitivity in the literature
of boolean function analysis (BFA), and also to the celebrated Combinatorial Nullstellensatz
of Alon [2], making it a considerably natural conjecture. With the tools in BFA and the
Combinatorial Nullstellensatz, we can provide many pieces of evidence and prove special
cases. We mention some of the most important results below while leaving others in the
main body.

Special Case 1: Gen makes only classical queries
This is the case that already was analyzed in [18]; there, they did not go through BFA, but
rather proved it directly. We demonstrate the versatility of our conjecture and framework,
by showing:

▶ Lemma 5. Conjecture 1 holds for all f that can be expressed as the acceptance probability
of a (randomized) classical decision tree.

▶ Corollary 6 (Recasting [18]). Perfect complete QPKE does not exist in the QROM, if Gen
only makes classical queries.

Evidence 2: The Combinatorial Nullstellensatz
The following relaxed version of Conjecture 1 directly follows from the Combinatorial
Nullstellensatz of Alon (Lemma 22).

ITCS 2025
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▶ Lemma 7. For any nonconstant function f : {−1, 1}n → R with degree d, the following
holds. There exists a distribution D on the set of partial assignments ρ with |ρ| ≤ d such
that: for any x,

Pr
ρ∼D

[f(xρ) ̸= 0] ≥ 1/2d.

Somewhat surprisingly, we find that if the probability of f(xρ) being non-zero in Lemma
7 can be improved from 1/2d to 1/2dc for an arbitrary c < 1, then Conjecture 1 would be
affirmed. Formally, the following conjecture is equivalent to Conjecture 1:

▶ Conjecture 8. There is a universal constant c < 1, such that for any nonconstant function
f : {−1, 1}n → R with degree d, the following holds. There exists a distribution D on the set
of partial assignments ρ with |ρ| ≤ poly(d) such that: for any x,

Pr
ρ∼D

[f(xρ) ̸= 0] ≥ 1/2dc

.

▶ Lemma 9. Conjecture 8 holds if and only if Conjecture 1 holds.

Special Case 3: Gen makes O(log n) quantum queries

With Lemma 7, by following a similar argument in [18], we can directly conclude that when
the generation algorithm only makes O(logn) quantum queries, such QPKE does not exist
in the QROM.

▶ Lemma 10. Perfect complete QPKE does not exist in the QROM, if Gen only makes
O(logn) quantum queries.

Thus, we make a step forward by improving the result (ii) in [5] and that in [18].

Table 1 Provable separations in [5, 18] and this work. Q and C denote a polynomial number of
quantum and classical queries, respectively.

[5] (i) [5] (ii) [18] This work
Gen Q C C log Q
Enc C Q Q Q
Dec Q C Q Q

Special Case 4: Gen has “uniform” outputs

Here, by “uniform”, we mean that the output of GenH has support of the same size for
every possible oracle H, and the output distribution is uniform over the support. In other
words, |supp(GenH)| = |supp(GenH′

)| for every pair of H,H ′, and GenH is uniform over
samples with a non-zero probability. To resolve this case, we prove the following special case
of Conjecture 1:

▶ Lemma 11. Conjecture 1 holds for all f that takes at most poly(d) values.

▶ Corollary 12. Perfect complete QPKE does not exist in the QROM, if Gen is “uniform”.
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Evidence 5: Other equivalent conjectures
By the min-max principle, Conjecture 1 has the following equivalent form.

▶ Conjecture 13. For any nonconstant function f : {−1, 1}n → R with degree d, and any
distribution X on {−1, 1}n, there exists a partial assignment with |ρ| ≤ poly(d) such that
Prx∼X [f(xρ) ̸= 0] ≥ 1/poly(d).

▶ Lemma 14. Conjecture 13 holds if and only if Conjecture 1 holds. Thus, if Conjecture 13
is true, then perfect complete QPKE does not exist in the QROM.

In the main body, we provide additional evidence for Conjecture 13 (and consequently for
Conjecture 1). Conjecture 13 has the advantage of requiring only a single partial assignment
that works for the given input distribution, rather than a distribution of partial assignments.
This simplifies the reasoning considerably, and much of our evidence supports Conjecture 13.

1.2 Techniques
Here, we give a brief overview of why Conjecture 1 implies a full impossibility result of QPKE
in the QROM and the main differences between [18] and this work.

We will be mostly focusing on key agreement protocols in the QROM. In the QROM, all
parties can quantumly query a random oracle. A key agreement protocol is an interactive
protocol between two query-efficient quantum algorithms Alice and Bob, exchanging classical
messages. Their goal is to agree on a key, whereas any query-efficient adversary can not learn
the key, even observing all the communication on this channel. It is easy to see that QPKE
implies a two-round key agreement protocol:

Alice sends a single message m0 to Bob; in this case, m0 will be the public key.
Bob sends a message m1 to Alice; in this case, m1 will be the encryption of a random
key (which will be the agreed key in the two-round key agreement protocol).
Finally, they both output their own keys kA, kB ; in this case, Alice decrypts the ciphertext
using her secret key, whereas Bob simply outputs the random key.

Thus, to rule out QPKE in the QROM, it is sufficient to rule out the two-round key agreement
in the QROM.

Li, Li, Li and Liu [18] proposed the following framework that rules out QPKE with
classical-query key generation in the QROM. Let ViewA,ViewB denote the view of Alice
and Bob, right after m1 is received by Alice. They showed that, based on a novel approach
called approximate quantum Markov chain, a quantum-query Eve can reconstruct Alice’s
view View′

A such that

View′
AViewB ≈ ViewAViewB .

More precisely, Eve can reconstruct Alice’s register such that the margin of the fake Alice
and the real Bob is arbitrarily close to the real Alice and the real Bob. However, this is
not sufficient; since to compute the key kA, Alice potentially needs to perform computation
depending on its current state, the random oracle and all the messages m0,m1. As the
marginal is defined by tracing out the random oracle, we do not know what oracle to work
with. For example, a direct attempt is to run fake Alice under the real random oracle H;
but it is possible that under real H, conditioned on the messages being m0,m1, the view of
Alice and Bob will never equal to View′

AViewB , making the attempt meaningless.
Li et al. solved this by adapting Bob; while perfectly preserving the functionality of

the key agreement protocol, the new Bob has one additional nice property (let us call it
“stability”):

ITCS 2025
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if under a random oracle H, input message m0, Bob outputs certain m1 with non-zero
probability
then for every H ′ that has a small Hamming distance to H2, Bob on H ′ and m0 still has
non-zero probability to output m1.

With this property, they show that the two-round key agreement can not exist, when
m0 together with ViewA can be computed by a classical decision tree (or Gen only makes
classical queries). For any fake Alice view View′

A, it depends on at most d locations of a
random oracle; here d is the number of queries made by the classical decision tree. Thus, for
any oracle H0, as long as it is consistent on these d locations, Alice on H0 can output View′

A

and m0 with non-zero probability. They construct an oracle H ′ such that: (i) it is almost H,
except (ii) on those d locations, H ′ is reprogrammed to be consistent with these d locations.

It is clear that Alice on H ′ still outputs m0,View′
A with a non-zero probability (consistency

of these d locations). Moreover, the “stability” ensures that the adapted Bob on H ′ and m0
outputs ViewB also with a non-zero probability. Thus, there is a non-zero probability, under
the oracle H ′, Alice and Bob will end up with View′

A,ViewB and transcripts (m0,m1). Since
we assume the QPKE is perfect, after the whole execution, Alice and Bob should agree on a
key. As for Eve, it simply runs Alice with View′

A,m1 on H ′ and will recover the key.
The above reasoning in [18] does not work even if Alice only makes a single quantum

query, and thus they can only rule out QPKE when Gen makes classical queries. Since a
single quantum query can “store” information about exponentially many inputs, it seems
that fixing a smaller number of input-output behaviors does not fix Alice’s behavior.

We realize that, we do not need to keep Alice’s behavior the same; we are only required
to keep these probabilities non-zero. More precisely, our solution is to directly look at
the polynomial f describing the probability that a quantum Alice on some oracle, outputs
(m0,View′

A),

f(x) = Pr[(m0,View′
A)← Ax],

where we treat x as the random oracle fed into A. As the random oracle will be the input to
a polynomial, to be consistent with the literature of BFA, we will denote a random oracle
by x. Since A only makes d quantum queries, such a polynomial f has degree at most 2d.
The real random oracle is some x of which we have no knowledge about; the goal is to find
another x′ such that

f(x′) > 0, meaning Alice on the random oracle x′ outputs View′
A,m0 with a non-zero

probability, just like the classical case; and,
x′ and x have a small Hamming distance, so that Bob still has non-zero probability to
output ViewB ,m1.

As we do not know x, the only way we can obtain x′ is by locally modifying some locations
of x. For example, reprogramming some locations of the real oracle, and running the rest of
Alice under the reprogrammed oracle – this is where the partial assignment takes place. If
we can find a partial assignment ρ with |ρ| is small, such that for every x, f(xρ) > 0, then
the problem is resolved! This is the high-level intuition why our conjecture (Conjecture 1)
implies a full impossibility result of QPKE in the QROM.

2 We ignore a detail here: H ′ should be consistent with H on a small set of inputs, whereas on other inputs,
their Hamming distance is small. This does not change the reasoning, thus we make the simplification
in the introduction.



L. Li, Q. Li, X. Li, and Q. Liu 71:7

Towards Conjecture 1, we remark that the Combinatorial Nullstellensatz [2] directly
implies the existence of such ρ. More specifically, the Combinatorial Nullstellensatz claims
that: given any maximal monomial xS of f , for any x ∈ {−1, 1}n, there exists a ρ with
supp(ρ) = S such that f(xρ) ̸= 0. Therefore, Conjecture 1 holds if we swap the order of
quantifiers of ρ and x. Consequently, by letting D be the uniform distribution on the set
of partial assignments ρ with supp(ρ) = S, we have Prρ∼D[f(xρ) ̸= 0] ≥ 1/2d for any x,
as claimed by Lemma 7. In particular, when Gen makes only O(logn) queries and then
deg(f) = O(logn), we have Prρ∼D[f(xρ) ̸= 0] ≥ 1/poly(n), which implies Lemma 10.

1.3 Related works

In Conjecture 1, we characterize d-query quantum algorithms as degree-2d polynomials [8].
This characterization was further strengthened by Aaronson and Ambainis [1] in terms
of bounded degree-2d block-multilinear polynomials. Later, Arunachalam, Briet, and
Palazuelos [4] provided an exact characterization of quantum query algorithms in terms of
the so-called completely bounded norm.

2 Preliminaries

2.1 Basic notions in Boolean function analysis

Every function f : {−1, 1}n → R on the hypercube can be uniquely expressed as a multilinear
polynomial

f(x) =
∑

S⊆[n]

aS · xS ,

where xS := Πi∈Sxi. Indeed, this expression is called the Fourier expansion of f , where
aS = 2−n

∑
x f(x) · xS . The degree of f , denoted deg(f), is defined as the degree of its

multilinear polynomial expression, i.e., max{|S| | aS ̸= 0}. A monomial xS is called maximal
if it has degree deg(f), i.e., |S| = deg(f) and aS ̸= 0. The rank of f , denoted rank(f), is the
maximum number of disjoint maximal monomials.

A partial assignment is a function ρ : [n] → {−1, 1, ⋆}. We define the support of ρ as
supp(ρ) := {i|ρi ̸= ⋆}, and the size as |ρ| := |supp(ρ)|. For x ∈ {−1, 1}n, we define the
modification of x with ρ, denoted xρ, as the string x′ ∈ {−1, 1}n where x′

i = ρi for i ∈ supp(ρ)
and x′

i = xi for any other i.
We use Var(f) := Ex[f(x)2] −

(
Ex f(x)

)2 to denote f ’s variance, and define ∥f∥∞ :=
maxx |f(x)|. A real polynomial p ϵ-approximates f if |f(x)−p(x)| ≤ ϵ for every x ∈ {−1, 1}n.
The approximate degree of f , denoted by d̃eg(f), is defined to be the minimum degree needed
to 1/3-approximate f .

The following lemma will be used.

▶ Lemma 15 ([8]). Suppose a quantum algorithm makes d queries to a Boolean string
x ∈ {−1, 1}n, and the acceptance probability is denoted by f(x). Then the function f :
{−1, 1}n → R has degree at most 2d. That is, f can be expressed as

f(x) =
∑

|S|≤2d

aS · xS

ITCS 2025
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2.2 Quantum public key encryption
In this paper, we will consider constructions in the quantum random oracle model. Given
security parameter λ, the oracle H is chosen from the uniformly random distribution over
the family of functions Hλ : [2nλ ] → {0, 1}, where nλ is a polynomial of λ. The quantum
circuit has access to the oracle unitary UH that maps |i, y⟩ to |i, y ⊕H(i)⟩. We can also view
the oracle unitary in the phase basis U ′

H |i, y⟩ → (−1)H(i)y |i, y⟩.
We will consider quantum public key encryption with classical public key pk and ciphertext

ct in this paper. Particularly, we will consider the quantum public key encryption (QPKE)
scheme in the quantum random oracle model (QROM) defined as follows:

▶ Definition 16 (Quantum public key encryption in QROM). A public key encryption scheme,
relative to a random oracle H ← Hλ consists of the following three bounded quantum query
algorithms:

GenH(1λ) → (pk, sk): The key generation algorithm that generates a pair of classical
public key pk and secret key sk.
EncH(pk,m)→ ct: the encryption algorithm that takes a public key pk, the plaintext m,
produces the ciphertext ct.
DecH(sk, ct) → m′: the decryption algorithm that takes secret key sk and ciphertext ct
and outputs the plaintext m′.

The algorithms should satisfy the following requirements:
Perfect Completeness Pr

[
DecH

(
sk,EncH(pk,m)

)
= m : GenH(1λ)→ (pk, sk)

]
= 1.

IND-CPA Security For any QPT adversary EH , for every two plaintexts m0 ̸= m1 chosen
by EH(pk) we have

Pr
[
EH

(
pk,EncH(pk,mb)

)
= b

]
≤ 1

2 + ϵ(λ)
2 .

where we call ϵ(λ) as the advantage of the adversary. The scheme is IND-CPA secure if
ϵ(λ) is negligible for any adversary EH .

3 Consequences of our BFA conjecture

In this section, we will show the consequence in cryptography of Conjecture 1. If Conjecture 1
holds, we can obtain a black box separation between post-quantum secure one-way functions
and quantum public key encryption schemes.

▶ Theorem 17 (Restate of Theorem 3). Assuming Conjecture 1 is true, for any quantum
public key encryption scheme in the quantum random oracle model, if GenH and EncH make
d queries to H in total, and DecH makes D queries, there exists an adversary Eve EH which
can break the IND-CPA security with advantage 1/poly(d) by making O(poly(d) +D) queries.

It is known that we can use a QPKE scheme for a two-message key agreement protocol,
by setting the first message m0 = pk, and the second message m1 = Enc(pk, k), where k is
the key the two parties agree on. We can assume the key k is chosen uniformly random from
{0, 1}n. In the following section, we will refer to the two parties as A and B, and call the
algorithm of A before sending m0 as A0, and the algorithm after receiving message m1 as
A1. If we can learn the key k with probability p, we can also break the semantic security of
the QPKE scheme with advantage p, which implies that we also break the IND-CPA security
of the protocol. In the language of key agreement, we are considering the case where A0,A1,
and B can both make quantum queries while only sending classical messages, and we will
show how to learn the key k with probability 1/poly(d).
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Let us recall the results from [18]. In their paper, they are considering the case where A0
can only make classical queries. The key part of their analysis is to show how to construct a
register A′, such that there exists some oracle H ′, the content View′

A in A′ is consistent with
H ′ and transcript π = (m0,m1). We can think the algorithm B proceeds as follows: it first
receives the message m0 from A, and after making some queries to the oracle H, it makes a
measurement in the computational basis, and generates the key kB and the second message
m1. The state under consideration in [18] σAB = EH [σH

AB] is the state before B makes the
final measurement and sends the second message m1, where σH

AB is the state under oracle H,
and the expectation is over the posterior distribution of H given the first message m0.

To construct the register A′, they used tools from quantum information theory. They
used the following theorem from [14].

▶ Theorem 18. For any state ρAEB over systems AEB, there exists a channel T : E→ E⊗B′

such that the trace distance between the reconstructed state σA′E′B′ = T (ρAE) and the original
state ρAEB is at most√

ln 2 · I(A : B|E)ρ.

The theorem says that if the conditional mutual information I(A : B|E) is small, we can
generate a consistent copy of A′ by a channel only acting on E.

To decrease the conditional mutual information I(A : B|E), we have the following lemma
from [18].

▶ Definition 19 (Permutation Invariance). Let A1,A2,A3, . . . ,At,B be (t+ 1)-partite quantum
system. Given the joint state ρBA1A2···At , we say A1, . . . , At are permutation invariant, if for
any permutation π on [t], we have

ρBA1A2···At
= ρBAπ(1)Aπ(2)···Aπ(t) .

▶ Lemma 20. Let A1,A2,A3, . . . ,At,B,E be (t+2)-partite quantum system. Suppose the state
of the composite system ρBEA1A2···At

is fully separable. If A1,A2,A3, . . . ,At are permutation
invariant, then there is a 0 ≤ i ≤ t− 1 such that

I(At : B | E,A1, . . . ,Ai)ρ ≤ S(B)/t.

The lemma shows that if Eve parallel repeats multiple copies of B, the mutual information
will be decreased.

The following lemma from [9] will also be used.

▶ Lemma 21. Consider a quantum algorithm B that makes d queries to an oracle H. Denote
the quantum state immediately after t queries to the oracle as

|ψt⟩ =
∑
x,w

αx,w,t |x,w⟩ ,

where w is the content of the workspace register. Denote the query weight qx of input x as

qx =
d∑

t=1

∑
w

|αx,w,t|2.

For any oracle H̃, denote |ϕd⟩ as the final state before measurement obtained by running B
with oracle H̃, we have that

∥|ψd⟩ − |ϕd⟩∥ ≤ 2
√
d

√ ∑
x : H̃(x)̸=H(x)

qx.

ITCS 2025
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In [18], they defined the heavy query of Bob as {x : qx ≥ ϵ2/d2}. We summarize their
adversary Eve’s algorithm E as follows:
1. Eve parallelly simulates Bob’s algorithm BH(m0) for multiple times. In this process,

Eve records heavy queries of B under H classically and maintains an input-output pair
register RE = {(iE , H(iE))}.

2. By Lemma 20, if Eve repeat BH(m0) for poly(d, 1/ϵ) times, the conditional mutual
information I(A : B | E) of state σABE can be reduced to smaller than O(ϵ2). By The-
orem 18,the channel T : E→ A′E provides a state T (σBE) = σA′BE is ϵ close to the state
σABE . In the following section, we will choose ϵ = 1/poly(d).

3. Eve measures the secret key register as well as the query input-output history register of A′.
Note that in their case, we can assume AH

0 records its classical queries. The measurement
will give us some secret key sk′ and input-output pairs RA′ = {(iA′ , H ′(iA′))}, since
σA′BE ≈ϵ σABE , with high probability, the measurement result sk′ and RA′ are consistent
with message m0 and RE . Specifically, every query that is both in RA′ and RE should
be consistent, meaning RA′ is consistent with B’s heavy queries under oracle H.

4. Finally, by the observation beyond, if the oracle H is reprogrammed to H ′ using the
input-output pairs in RA′ , from B’s view, only poly(d) light query points under H are
modified. Using Lemma 21, it can be shown that w.h.p., BH′(m0) will output m1 with
nonzero probability, implying that π = (m0,m1) is a valid transcript under oracle H ′.
Thus by perfect completeness, if we simulate A1 given input (sk′,m1) over oracle H ′, it
can still agree with B.

We refer interested readers to their paper for the proof details.
Our observation is that in step 3, we do not need to generate the input-output pair RA′

by measuring A′. Given the algorithm of A0, if we can find some poly(d)-sized assignment
RA′ that is consistent with RE and guarantees the output probability of (sk′,m0) is still
non-zero, by similar arguments, we can see that B is consistent with the reprogrammed
oracle H ′, and will output m1 with non-zero probability. From Lemma 15, if we define
the algorithm outputs (sk′,m0) as acceptance, we can characterize the probability with a
2d-degree polynomial f(x), viewing the truth table of random oracle H as a Nλ = 2nλ length
vector x.

Now we show how to leverage Conjecture 1 to prove our main theorem. We use x for
the truth table of original oracle H, setting xi = (−1)H(i), and ρE for the restriction given
by RE , and apply Conjecture 1 to polynomial g(x) = f(xρE ). In an operational meaning,
considering g(x) means that we first fix the input-output pairs given by RE when selecting
the random oracle. We now argue g(x) is a non-zero polynomial with high probability. We
can obtain the joint view ViewA′E = (sk′,m0, RE) of A′E by performing a computational
basis measurement on corresponding registers. Since σA′E is ϵ close to σAE , we can see that
w.p. 1− ϵ, ViewA′E = (sk′,m0, RE) is a possible valid view obtained by measuring σAE .

By Conjecture 1, there exists a distribution of polynomial-sized restrictions D such that
for any x, Prρ∼D[g(xρ) ̸= 0] ≥ 1/poly(d), with |ρ| ≤ poly(d). In our case, this implies that
Prρ∼D[f(xρ∪ρE ) ̸= 0] ≥ 1/poly(d). If we select a polynomial-sized restriction ρ, there is
1/poly(d) probability such that (sk′,m0) is still a valid view of A0 under the new oracle
given by xρ∪ρE . The other arguments follow from the original proof.

4 Toward our BFA conjecture: evidences and special cases

In this section, we explore Conjecture 1 by providing some evidence and proving some special
cases.
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4.1 Main evidence: Combinatorial Nullstellensatz
The main evidence for Conjecture 1 comes from the celebrated Combinatorial Nullstellensatz
of Alon [2], which implies Conjecture 1, except with Prρ∼D[f(xρ) ̸= 0] ≥ 1/2d instead
of Prρ∼D[f(xρ) ̸= 0] ≥ 1/poly(d). Let us state the special case of the Combinatorial
Nullstellensatz for polynomials on the hypercube.

▶ Lemma 22 ([2]). Let f : {−1, 1}n → R be any nonconstant function with degree d, and
xS be any maximal monomial of f . For any x ∈ {−1, 1}n, there exists a ρ with supp(ρ) = S

such that f(xρ) ̸= 0.
Consequently, by letting D be the uniform distribution on the set of partial assignments ρ

with supp(ρ) = S, we have Prρ∼D[f(xρ) ̸= 0] ≥ 1/2d for any x.

We remark that Lemma 22 was also proven by Midrijanis [21]. Even though Lemma 22 has
an exponential rather than polynomial dependence on 1/d, we observe that it already has
a nontrivial implication on the separation between QPKE and OWFs. Precisely, it implies
that

▶ Theorem 23 (Restate of Lemma 10). For any quantum public key encryption scheme in the
quantum random oracle model, if EncH makes d queries to H, GenH makes O(log d) queries,
and DecH makes D queries, there exists an adversary Eve EH which can break the IND-CPA
security with advantage 1/poly(d) by making O(poly(d) +D) queries.

The proof of Theorem 23 is the same as Theorem 17 by replacing Conjecture 1 with
Lemma 22.

4.2 Proof of Lemma 9
In this subsection, we present the proof of Lemma 9, which claims that Conjecture 1 is
equivalent to a seemingly much weaker conjecture, namely Conjecture 8.

▶ Conjecture 8. There is a universal constant c < 1, such that for any nonconstant function
f : {−1, 1}n → R with degree d, the following holds. There exists a distribution D on the set
of partial assignments ρ with |ρ| ≤ poly(d) such that: for any x,

Pr
ρ∼D

[f(xρ) ̸= 0] ≥ 1/2dc

.

▶ Lemma 9. Conjecture 8 holds if and only if Conjecture 1 holds.

Proof. Conjecture 1 implying Conjecture 8 is trivial. Conversely, given any nonconstant
function f : {−1, 1}n → R with degree d, define

f̃(x1, . . . , xt) :=
t∏

i=1
f(xi)

where xi ∈ {−1, 1}n. Note that deg(f̃) = td. Assuming Conjecture 8 holds for f̃ , there exists
a distribution D̃0 of partial assignment ρ̃ = (ρ1, . . . , ρt) ∈ ({−1, 1, ⋆}n)t with |ρ̃| ≤ (dt)c1

such that

min
x̃

Pr
ρ̃∼D̃0

[
f̃(x̃ρ̃) ̸= 0

]
≥ 1

2(dt)c2

where c1, c2 are universal constants satisfying c1 ≥ 0 and 0 ≤ c2 < 1. Observe that

max
D̃

min
x̃

Pr
ρ̃∼D̃

[
f̃(x̃ρ̃) ̸= 0

]
≥ min

x̃
Pr

ρ̃∼D̃0

[
f̃(x̃ρ̃) ̸= 0

]
≥ 1

2(dt)c2
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where D̃ is a distribution of partial assignment ρ̃ = (ρ1, . . . , ρt) ∈ ({−1, 1, ⋆}n)t with
|ρi| ≤ (dt)c1 for all i. Then by Lemma 24, we have(

max
D

min
x

Pr
ρ∼D

[f(xρ) ̸= 0]
)t

= max
D̃

min
x̃

Pr
ρ̃∼D̃

[
f̃(x̃ρ̃) ̸= 0

]
≥ 1

2(dt)c2

where D is a distribution of partial assignment ρ ∈ {−1, 1, ⋆}n with |ρ| ≤ (dt)c1 . Thus there
exists a distribution D∗ such that(

min
x

Pr
ρ∼D∗

[f(xρ) ̸= 0]
)t

≥ 1
2(dt)c2 .

By setting t = d
c2

1−c2 log
1

c2−1 d, we have

min
x

Pr
ρ∼D∗

[f(xρ) ̸= 0] ≥ 2−(dt)c2 /t = 2− log d = 1/d. ◀

▶ Lemma 24. Given positive integers t,K, and function f : {−1, 1}n → R, let
f̃(x1, . . . , xt) :=

∏t
i=1 f(xi). Then

max
D̃

min
x̃

Pr
ρ̃∼D̃

[
f̃(x̃ρ̃) ̸= 0

]
=

(
max

D
min

x
Pr

ρ∼D
[f(xρ) ̸= 0]

)t

where D is a distribution of partial assignments ρ ∈ {−1, 1, ⋆}n with |ρ| ≤ K, D̃ is a
distribution of partial assignments ρ̃ = (ρ1, . . . , ρt) ∈ ({−1, 1, ⋆}n)t with |ρi| ≤ K for all i.

Proof. By the min-max principle, we have

max
D

min
x

Pr
ρ∼D

[f(xρ) ̸= 0] = min
X

max
ρ

Pr
x∼X

[f(xρ) ̸= 0] := p.

Let D∗ be the optimal distribution that reaches the maximum, X∗ the optimal distribution
that reaches the minimum. Let p̃ := maxD̃ minx̃ Prρ̃∼D̃

[
f̃(x̃ρ̃) ̸= 0

]
.

Claim 1: p̃ ≤ pt. By min-max principle,

max
D̃

min
x̃

Pr
ρ̃∼D̃

[
f̃(x̃ρ̃) ̸= 0

]
= min

X̃
max

ρ̃
Pr

x̃∼X̃

[
f̃(x̃ρ̃) ̸= 0

]
= min

X̃
max

ρ1,...,ρt

Pr
(x1,...,xt)∼X̃

[f(xρ1
1 ) ̸= 0, . . . , f(xρt

t ) ̸= 0] .

By setting X̃ to be X∗ ×X∗ × · · · ×X∗, we have

max
D̃

min
x̃

Pr
ρ̃∼D̃

[
f̃(x̃ρ̃) ̸= 0

]
≤ max

ρ1,...,ρt

Pr
xi∼X∗

[f(xρ1
1 ) ̸= 0, . . . , f(xρt

t ) ̸= 0]

= max
ρ1,...,ρt

∏
i

Pr
xi∼X∗

[f(xρi
i ) ̸= 0] =

∏
t

max
ρi

Pr
xi∼X∗

[f(xρi
i ) ̸= 0] = pt.

Claim 2: p̃ ≥ pt. By setting D̃ to be D∗ ×D∗ × · · · × D∗, we have

max
D̃

min
x̃

Pr
ρ̃∼D̃

[
f̃(x̃ρ̃) ̸= 0

]
≥ min

x1,...,xt

Pr
ρi∼D∗

[f(xρ1
1 ) ̸= 0, . . . , f(xρt

t ) ̸= 0]

= min
x1,...,xt

∏
i

Pr
ρi∼D∗

[f(xρi
i ) ̸= 0] =

∏
i

min
xi

Pr
ρi∼D∗

[f(xρi
i ) ̸= 0] = pt.

Thus p̃ = pt and p̃ can be reached by i.i.d. distribution D∗ × · · · × D∗. ◀

▶ Remark 25. By the same technique, the non-zero probability in Conjecture 1 can be further
improved from 1/poly(d) to 1− 1/poly(d), while still keeping |ρ| ≤ poly(d).
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4.3 Special cases of boolean functions
We also affirm Conjecture 1 for some special classes of functions.

▶ Lemma 26. Conjecture 1 holds when f satisfies one of the following conditions:
(a) f can be expressed as the acceptance probability of a classical randomized decision tree

with depth ≤ poly(d) (Lemma 5).
(b) f is Boolean-valued, more generally when f takes at most poly(d) values (Lemma 11).
(c) f is a symmetric function.

Proof.
Part (a). Recall that a randomized decision tree can be viewed as a distribution µ over
deterministic decision trees, such that the tree is evaluated by (i) first sampling a deterministic
decision tree from µ, and (ii) then evaluating this deterministic decision tree. Since f(x) is
the probability that the output of the evaluation is “yes”, and f is non-zero, there exists a
deterministic decision tree T with µ(T ) > 0 such that at least one of its leaves is labeled
with “yes”. We can set ρ to be the partial assignment corresponding to the path from the
root to the leaf. Then f(xρ) ̸= 0 for any x.
Part (b). Without loss of generality, assume ∥f∥∞ = 1. Since f takes at most poly(d)
values, there exists a gap b− a ≥ 1/poly(d) such that f(x) ∈ [−1, a] ∪ [b, 1] for all x. Define
f ′(x) :=

(
1 +

∣∣ a+b
2

∣∣)−1 (
f(x)− a+b

2
)
. Then f ′(x) ∈ [−1,−1/poly(d)] ∪ [1/poly(d), 1] for all

x. Define a boolean function

f̃(x) :=
{
−1 if f ′(x) < 0
1 if f ′(x) > 0

.

Then f̃ is (1 − 1/poly(d))-approximated by f ′. f ′ can be amplified to a degree-poly(d)
polynomial that 1/3-approximates f̃ . Thus we have d̃eg(f̃) ≤ poly(d), which further implies
f̃ can be computed by a decision tree with depth poly(d) [11].

(i) If a < 0 < b, then f(x) ̸= 0 alway holds. (ii) If a ≥ 0, by Part (a), there exists a
partial assignment |ρ| ≤ poly(d) such that f̃(x) = 1, which implies f(xρ) ≥ b > 0 for any x.
(iii) If b ≤ 0, by Part (a), there exists a partial assignment |ρ| ≤ poly(d) such that f̃(x) = −1,
which implies f(xρ) ≤ a < 0 for any x.
Part (c). Let xS = xi1xi2 · · ·xid

be a maximal monomial of f , and ρk be the partial
assignment such that ρk(i1) = · · · = ρk(ik) = 1 and ρk(ik+1) = · · · = ρk(id) = −1. By
Lemma 22, for any x, there exists a ρ with supp(ρ) = S such that f(xρ) ̸= 0. Since f is
symmetric, we have f(xρj ) = f(xρ) ̸= 0 where j is the number of 1’s in ρ. Let D be the
uniform distribution over {ρ0, ρ1, . . . , ρd}. Then Prρ∼D[f(xρ) ̸= 0] ≥ 1/(d+ 1) for any x. ◀

The above lemma implies the non-existence of perfect complete QPKE in QROM which
the key generation takes special forms, e.g., the special cases 1 and 3 mentioned in the
introduction.

▶ Corollary 27. Perfect complete QPKE does not exist in the QROM, if one of the following
holds:
(1) Gen only makes classical queries. (Corollary 6)
(2) Gen is uniform, i.e., it satisfies (i) |supp(GenH)| = |supp(GenH′

)| for every pair of H,H ′,
and (ii) GenH is uniform over supp(GenH) with a non-zero probability. (Corollary 12)

Proof. Consider the polynomial g(H) defined in the proof of Theorem 17, which is defined
to be the probability of GenHρE outputting (sk′,m0).

ITCS 2025
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(1) g can be expressed as the acceptance probability of a classical randomized decision tree
with depth d. Then the proposition follows from Part (a) of Lemma 26.

(2) g takes only two values 0 and 1/|supp(GenH)|. Then the proposition follows from Part
(b) of Lemma 26. ◀

4.4 More evidences for Conjecture 13
Additionally, we provide evidence for the equivalent form Conjecture 13 (and consequently
for Conjecture 1). The first piece of evidence is from the anti-concentration result for
low-degree polynomials by Meka, Nguyen and Vu [20], which implies Conjecture 13 when X
is uniform distribution on {−1, 1}n, except that |ρ| is allowed to be as large as d8d+4 instead
of |ρ| ≤ poly(d).

▶ Theorem 28 ([20]). Let f : {−1, 1}n → R be a nonconstant polynomial with degree d, and
U denote the uniform distribution on {−1, 1}n. If rank(f) ≥ d8d+2, then Prx∼U [f(x) ̸= 0] =
1− o(1).

▶ Lemma 29. For any nonconstant function f : {−1, 1}n → R with degree d, there exists a
partial assignment with |ρ| ≤ d8d+4 such that Prx∼U [f(xρ) ̸= 0] ≥ 1− o(1).

Proof. We construct a partial assignment ρ by the following algorithm, which contains at
most d rounds and each round reduces deg(f) by at least 1. Denote the function at round t
by f t. Initia,lly ρ is empty. At round t,
1. If rank(f t) ≥ d8d+2, the algorithm stops. By Theorem 28, we have

Pr
x∼U

[f(xρ) ̸= 0] = Pr
x∼U

[f t(x) ̸= 0] = 1− o(1).

2. If rank(f t) < d8d+2, let T be the variables contained a maximum disjoint set of maximal
monomials of f t. The algorithm assigns all the variables in T such that the function
after the assignment is still nonconstant and adds them to ρ. This step increases |ρ| by
|T | = deg(f t)rank(f t) < d8d+3. For any maximal monomial S of f t, we have S ∩ T ̸= ∅
because otherwise S ∪ T is a disjoint set of maximal monomials larger than T . Thus this
step reduces deg(f t) by at least one.

Because there are at most d rounds, we have |ρ| ≤ d8d+4. ◀

The second evidence is that Conjecture 13 holds for any function f with large variance
when X is uniform.

▶ Lemma 30. For any nonconstant function f : {−1, 1}n → R with degree d and Var(f) ≥
∥f∥2

∞/poly(d), there exists a partial assignment with |ρ| ≤ poly(d) such that Prx∼U [f(xρ) ̸=
0] ≥ 1/poly(d).

Proof. Var(f) = Ex[f2(x)]−(Ex f(x))2 ≤ Ex[f2(x)] ≤ Prx[f(x) ̸= 0]∥f∥2
∞. Thus Prx[f(x) ̸=

0] ≥ Var(f)
∥f∥2

∞
≥ 1/poly(d). ◀
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