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Abstract

Diffusive Shock Acceleration (DSA), applied in different astrophysical environ-
ment, has provided by far the most popular model for the origin of Cosmic Rays (CRs),
both for what concern the Galactic CRs (from GeV to PeV energies), through the ap-
plication of DSA at the outer front of expanding supernova remnants, as well as for
extragalactic CRs (beyond PeV energies), applying the DSA to extragalactic sources
like Gamma Ray Bursts, Active Galactic Nuclei and Radio Galaxies. Beyond the con-
siderable successes that this theory has achieved in the past years, lots of obscure points
still remains to be enlightened. In particular the explanation of ultra high energy CRs
seems to require the extension of DSA for shock at relativistic speed. Moreover recent
studies of nonthermal emission at young SNRs shock has revealed the importance of de-
veloping a fully non liner theory capable to include the dynamical effects of accelerated
particles, but a full understanding of all the phenomenology related to the nonlinearity
is far to be reached.

In this work we study several aspects relating to DSA both for newtonian and
for relativistic shocks. A mathematical approach to investigate particle acceleration at
shock waves moving at arbitrary speed in a medium with arbitrary scattering properties
was first discussed in Vietri (2003) and Blasi & Vietri (2005). In the fist part of this
thesis we use this method and somewhat extend it in order to include the effect of a large
scale magnetic field in the upstream plasma, with arbitrary orientation with respect to
the direction of motion of the shock. We also use this approach to investigate the effects
of anisotropic scattering on spectra and anisotropies of the distribution function of the
accelerated particles. A furter step in the analysis of the DSA process is put forward
introducing a general equation of state to describe the shocked downstream plasma.
More specifically we consider the effect of energy exchange between the electron and
proton thermal components downstream, and the effect of generation of a turbulent
magnetic field in the downstream plasma. The slope of the spectrum turns out to be
appreciably affected by all these phenomena, especially in the Newtonian and trans-
relativistic regime, while in the ultra-relativistic limit the universal spectrum s ≈ 4.3
seems to be a very solid prediction.

In the second part of the thesis we present the general solution for the non linear
(time independent) theory of particle accelerated at Newtonian shocks in the presence
of a pre-existing non-thermal particle population and for arbitrary diffusion coefficient.
Using this solution we show that, in general, the contribution of a pre-existing ener-
getic particle’s flux, like the galactic CRs, cannot be neglected in determine the shock
dynamics. The first consequence of this statement is that shocks like SNRs’ ones, that
propagates into the Galactic environment can evolve in a nonlinear way even if the
injection of fresh particles were an inefficient process.
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ent values of the Alfvénic Mach number, MA. . . . . . . . . . . . . . . . 88

A.3 Velocity ratio for perpendicular shocks . . . . . . . . . . . . . . . . . . . 89



viii

Acknowledgments

First of all I would like to thank my thesis adviser, Mario Vietri. I have learnt a
lot of physics talking and working with him. He was able to show me the beauty hidden
behind a formula written on a blackboard.

I also want to thank Pasquale Blasi, for his support and advises. This work
wouldn’t be done without his help and suggestions.

A special thank goes to Steve Shore, for fruitful discussions ranging from physics
to politics, from food to philosophy, I enjoyed it very much. I also want to thank all
the Astrophysics group at the University of Pisa and especially to Scilla Degl’Innocenti,
Carlo Ungarelli, Giada Valle, Pier Giorgio Prada Moroni and Rosa Poggiani.

Few words in my vocabulary can express the importance of a person among all
the others: my dear fellow traveller Nicoletta. I cannot even think a single day without
her presence and her influence in all my act. Thank you.



ix

Tre sò li putent’: lu papa, lu rrè e chi nun’ tene
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Introduction

Matter in astrophysical context foundamentally occurs in rarefied ionized plasma
state. When a rarefied plasma collides with a “stiff” obstacles or with another plasma
with a relative speed greater than the magnetosonic speed of the plasma itself, a colli-
sionless shock is produced1. Because such kind of collisions are extremely frequent in the
Universe, both in the galactic and in the extragalactic context, the study of collisionless
shock has an important role in the understanding of several astrophysical phenomena. In
particular collisionless shock in magnetized plasma are believed to be one of the principal
responsable for the production of non thermal particle population into astrophysical en-
vironments by the so called Diffusive Shock Acceleration, a mechanism able to transfer
energy from bulk macroscopic motion of plasma to single charged particles2.

Historically, the first theory of magnetized shock, due to De Hoffman & Teller
(1950), was stimulated by the study of atmospheric nuclear explosion. This work ignited
an avalanche of theoretical investigations of magnetohydrodynamic shocks. But during
the same years, a second strong motivations for a deeper investigation of shock physics
come about through the study of Cosmic Rays’ (CRs) origin. The seminal idea was put
forward by Fermi (1949, 1954) who proposed that CRs could be accelerated by repeated
stochastic scattering with moving magnetized clouds. Actually in its original form this
idea does not work neither to explain the shape of the observed CRs energy spectrum,
nor to account for their total energy density. This is because the average energy that a
particle gains per each encounter with a cloud is only proportional to v2

c
/c2, where vc is

the clouds mean speed and c the speed of light, and it turn out to be a small quantity
for any reasonable vc. The proportionality of the energy gain to the second power of the
speed justify the name of II order Fermi mechanism.

Only in the seventies, several authors independently realized that the Fermi’s idea
could be applied to particles in the vicinity of a shock wave (Axford et al. 1977; Krym-
skii 1977; Bell 1978a,b; Blandford & Ostriker 1978). The scattering action of magnetic
turbulence can confine such particles around the shock wave, and each time a particle
perform a cycle, crossing the shock from one side to the other and coming back, it gains
a bit of energy, subtracting it from the bulk motion of the plasma. With respect to the
Fermi’s original idea, in this case the energy gain of particles is always positive and, when
averaged over spatial direction, it is proportional to vs/c, where vs is the shock speed.
As one can easily understand, this is referred to as I order Fermi mechanism. In this
process the competition between the energy gain per cycle and the escape probability
from the acceleration region, determines the spectrum of accelerated particles. If both

1The term collisionless refers to the fact that any dissipative process that occurs across the
shock transition cannot be attributed to mechanisms based on collisions between particles, simply
because, for the context we are interested in, the shock thickness is several order of magnitude
smaller than the mean free path of particles. The shock transition is instead due to collective
wave-particle interactions.

2It is worth mentioning that the existence of collisionless shocks and their connection with
non-thermal particles has been proved directly by spacecraft observations when satellites passed
the bow shock standing upstream of the Earth’s magnetosphere in the solar wind.
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are independent of energy, or have the same dependence, the resulting energy spectrum
is a power-law, f(E) ∝ E−s, with a slope s that depends only by the compression factor
r at the shock, namely s = (r + 2)/(r − 1). If the plasma is assumed to behave like
an ideal gas, the compression factor for strong shocks is 4, and one easily get s = 2.
The fact that the observed CRs up to the energy of the knee (3 × 1015 eV) requires an
injected spectrum Qinj(E) ∝ E−s with s ∼ 2.1, has been considered a strong evidence
in favor of the hypothesis that I order Fermi acceleration can account for the Galactic
component of CRs.

Cosmic Rays. Cosmic Rays are ionized nuclei coming from the outer space and
detected at the Earth, or in the space just around the Earth, with balloon, satellite
experiments or air-shower detectors. One of the impressive feature of the CRs is that
they are detected over a huge range of energy: measurements with modern air-shower
detectors infer particles with an energy up to 3 × 1020 eV, the most energetic particles
ever measured. In spite of this large energy interval, extracting information from the
CRs spectrum is hard because it is nearly featureless. For energies greater than ∼
1 GeV, where the Solar wind screening effect become negligible, the spectrum resembles
to a broken power-law with a spectral index changing from 2.7 to 3.1 at an energy of
3 × 1015 eV (a feature called knee). A second change in the spectrum occurs around
3 × 1018 eV where the slope flattens again towards a value close to 2.7 (usually referred
to as the ankle). In the highest energy region the flux falls to very low values, hence

measurement becomes extremely difficult (at 3 × 1020 eV the flux is 1 particle per km2

each 350 years) and the energy determination is also affected by strong uncertainties.
Despite such difficulties the most recent data from the Auger experiment seems to confirm
the theoretical prediction of a sharp drop of the flux beyond 4×1019 eV (Pierre AUGER
Collaboration 2008), due to CRs interaction with the Microwave Background photons
(the so called GZK effect).

CRs up to an energy around 1017 eV are believed to originate in our own Galaxy.
The flux is nearly isotropic and does not mirror the distribution of matter in the Galaxy.
This means that they are produced somewhere in the Galaxy and diffuse toward us,
loosing any information about the incoming direction. The diffusion process that confines
CRs in the Galaxy is believed to be due to the scattering by the irregularities in the
Galactic magnetic field. The residence time depends on the particle energy and charge
Z, following an apparently simple law, i.e. τesc(E) ≃ 5 × 106 ( E

Z·10GeV )−δ yr, with
δ = 0.6. Estimate of this escaping time is inferred from the chemical composition of the
secondary CRs produced by spallation between CRs themselves and the interstellar gas,
and in particular from the relative abundance of some radioactive and stable isotopes.
Because the observed flux is due to the competition between the particles injected end
those escaping, i.e. N(E) ∝ Qinj(E) τesc(E), it turn out, as mentioned above, that taking
the injection spectrum as a simple power-law with an index of ∼ 2.1 could account for
the observations.

Particles with energy beyond the ankle, usually referred to as Ultra-High Energy
Cosmic Rays (UHECRs), cannot be confined in the Galaxy, because their Larmor radius
in the typical Galactic magnetic field is of the same order of the Galaxy size, or even
greater. Hence the particle deflection should be small enough that the arrival direction
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should trace the sources position in the sky. On the contrary the incoming spatial distri-
bution of UHECRs is nearly isotropic, hence the general opinion is that these particles
come from extragalactic sources. This idea is also supported by the measured compo-
sition that at this energy seems to change from heavy nuclei (iron) to predominantly
protons or possibly light nuclei, even if the lower statistic and the uncertainties related
to the shower physics, make this data difficult to interpret.

SNRs paradigm for Galactic CRs. A connection between CRs and supernovae
was firstly proposed more than seventy years ago by Baade & Zwicky (1934). Their
hypothesis is suggested by a simple energetic argument. The power needed to maintain
the Galactic CRs at the observed level against losses due to escape from the Galaxy can
be estimated as follows

PCR ∼ UCRVCR/τres ≈ 1040erg/s ,

where UCR ≈ 0.5 eV/cm3 is the CRs energy density measured at the Earth and VCR ∼
400 kpc3 is the volume of CRs halo around the Galactic disk. The tipical residence
time of a cosmic ray in the Galaxy we assume τesc ∼ 5 × 106 yr. Now we know that
the energy realased by a single supernova explosion is around 1053 erg. About 99% is
radiated away by escaping neutrinos, while the remaining 1% is transfer as mechanical
energy to the stellar envelope, that expands and produces a shock wave propagating into
the interstellar medium (ISM), with a typical speed of 104−105 Km/s. The total energy
injected into the Galactic environment is

PSNR = RSNRESNR ≈ 3 × 1041erg/s .

where RSNR ∼ 0.03 yr−1 is the rate of supernova explosion in the Galaxy. The en-
ergy density of the Galactic CRs component can be accounted for if one assume that
only a fraction around 3%3 of the total supernovae mechanical energy is transferred to
nonthermal particles.

The previous energetic argument and the hypothesis that the I order Fermi accel-
eration can occurs at the shocks formed by espanding shells of SNRs, strongly support
the idea that SNRs are the factories of CRs production. Indeed things are never sim-
ple as they appears. From this simple picture several problem arises. First of all the
maximum energy of CRs cannot be explained if one assume a magnetic turbulence of
the same order of the Galactic magnetic field: only energy up to Z × 1014 − 1015 eV
can be explained (Lagage & Cesarsky 1983), more than an order of magnitude below
the knee position. Secondly a back of the envelope calculation of the amount of energy
transfered form shock motion towards accelerated particles reveals an energetic problem:
assuming a reasonable quantity of particles injected into the acceleration process, in such
a waythat the that the observed flux can be explained, the energy they gain can be of

3This number has to be considered carefully, because it refers to particles that escape the
accelerator and propagate freely into the Galaxy. Nowadays it is still not clear how the accelerated
particles can escape from the remnant without loosing a considerable fraction of their energy
because of the adiabatic expansion.
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the same order of the total shock bulk energy, even assuming a maximum achievable
energy less that what inferred from CRs spectrum. This means that the shock evolution
is strongly affected by the presence of nonthermal population, and the back reaction of
CRs cannot be neglected in theoretical calculation. This was realized only at the end of
the century, and the investigation of non linear effect produced by the CRs action onto
the shock dynamics has revealed a variety of intriguing phenomena, most of them are
still far to be completely understood.

Relativistic shocks and the connection with UHECRs. Many mechanisms have
been proposed to explain UHECRs, but nowadays none of them seems to provide a
definite answer. As we have discussed above, particle acceleration by shock waves remains
the principal mechanism to explain the existence of Galactic CRs. Hence the idea that
some modified version of such mechanism can account also for UHECRs is a natural
speculation.

Acceleration at relativistic shocks, i.e. shocks with speed close to c, is one of
the favorite candidate. It was already discussed in late seventies (Blandford & McKee
1976; Blandford & Ostriker 1978; Peacock 1981). Such shocks are present in several
astrophysical contexts: in collimated jets associated with AGNs and quasars, in the
microquasar associated with compact object in our Galaxy, and in the relativistic fireballs
believed to be associated with Gamma Ray Bursts.

The theory of particle acceleration at relativistic shock is complicated by sev-
eral aspects. First of all, the distribution of particles near the shock front is strongly
anisotropic, because particles and shock speeds are of the same order. This imply that
the diffusion approximation cannot be used. Also, the energy gain per cycle in no more
a small quantities, we instead have ∆E ∼ E, and it cannot be related to the shock
speed in a straightforward way, as for the non relativistic shock case. Moreover in the
framework of relativistic, or even mildly-relativistic shocks, the importance of back reac-
tion of particles is still not understood as well as some aspects concerning the magnetic
turbulence.

Fortunately, at least in the limit of test particle approximation, which neglects the
dynamical reaction of accelerated particles we mentioned above, the theory of particle
acceleration at shock fronts can be formulated in a simple and exact form (Vietri 2003),
irrespective of shock speed. In this framework all the basic physical ingredients can
be taken into account in an exact way, with special reference to the type of scattering
that is responsible for the particles to return to the shock front from the upstream and
downstream plasmas.

The importance of study of relativistic shocks goes beyond the understanding of
UHECRs’ origin. Nonthermal particle population exist anyway in powerfull objects like
AGNs, microquasars or GRBs, where relativistic or mildly-relativistic shock are sup-
posed to be generated. This is inferred by the observation of radiation that is clearly
nonthermal in origin, like synchrotron emission from relativistic electrons. The same is
true for young SNRs, where nonthermal X-ray and TeV γ-ray radiation, coming from
the outer region of the remnants, has been detected in the past few years. The idea
that behind all these phenomena could stand the same fundamental mechanism is rather
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fascinating.

Aims. This short introduction wants to underline that shock physics cover a
primary role in the field of cosmic accelerators, and its connection with the ‘violent’
Universe is tight.

The aim of the present work is an in-depth study of several aspects of particle
acceleration mechanism for i) relativistic shock in the test-particle limit and for ii) New-
tonian shocks when nonlinear effects are included. The thesis is structured as follows. In
Chapter 1 we briefly summarize the basic features of shock acceleration for Newtonian
shock in the case of test-particle approach. Always in the case of test-particle approxima-
tion, in Chapter 2 we introduce the general framework to solve the acceleration problem
regardless of the shock speed. Newtonian, mildly-relativistic and fully relativistic shocks
can be handle solving the same relativistic equation for the particle distribution func-
tion. This general method is applied in Chapters 3 and 4 where we specialize the study
of particle acceleration in several situation of physical interests. Chapter 3 is dedicated
to the study of the diffusive properties of the medium where a shock can propagate.
Two situation are analyzed: shock propagating in presence of a static magnetic field and
shock propagating in a medium with anisotropic scattering properties. In Chapter 4 we
study the effects produced to the acceleration mechanism when the plasma equation of
state deviates from the usual ideal-gas approximation. As a matter of fact, the equation
of state of a plasma can be notably altered when the collective wave-particle interactions
are take into account. Such interactions, that are usually produced when the plasma
deviates from the equilibrium state, can account for energy exchange between protons,
electrons and electromagnetic field. In all the situations mentioned, we show how the
slope of the accelerated particle’ spectrum can deviate from the values usually adopted
in the literature. Consequences of this study can be especially important for the GRBs
physics.

In the last Chapter, we come back to Newtonian shocks and we illustrate the basic
features of the non-linear acceleration theory: we show how to include the back-reaction
of accelerated particles into the shock dynamics, under the hypothesis that the shock is
stationary in time. We present the general solution for the modified stationary shocks
also in presence of a pre-existing non-thermal particle population. Using this solution
we show that, in general, the contribution of a pre-existing energetic particle’s flux, like
the CRs observed at the Earth, cannot be neglected in determine the shock dynamics.
The first consequence of this statement is that shocks like SNRs’ ones, that propagates
into the Galactic environment, can evolve in a nonlinear way even if the injection of fresh
particles were inefficient.

In the Conclusions we briefly summarize our results, while a short Appendix
is dedicated to summarize the dynamical rule of a coherent magnetic field both for
Newtonian and for relativistic shocks.



Chapter 1

Diffusive shock acceleration: Newtonian theory in the

test-particle limit

Collisionless shocks are believed to be the principal mechanism able to convert
plasma bulk kinetic energy into energy of non-thermal particle population. Here we
introduce the basic idea of diffusive shock acceleration, summarizing only the relevant
results that can be usefull for the rest of this work. In this Chapter we only deal with non-
relativistic linear shocks. The full relativistic theory for linear shock will be present in
Chapter 2, while the general method to handle non-linear shocks for Newtonian velocity
will be described and developed in the Chapter 5.

1.1 Second order Fermi mechanism

Before discussing the particle acceleration by shock waves, we briefly describe the
original idea of Fermi about the stochastic acceleration. In his seminal papers Fermi
(1949, 1954) proposed such a mechanism to explain the observed cosmic rays spectrum.
The basic idea concerns the interaction between particles and Galactic turbulent mag-
netic field. Fermi idealized the turbulent magnetic field as magnetized clouds moving
around into the Galaxy with random velocity. In the frame of the clouds the magnetic
field is assumed to be static. A particle entering a cloud interacts in a collisionless way:
its direction is randomized by the turbulent magnetic field but the particle energy re-
mains unchanged in the reference frame of the cloud. Nevertheless the overall process
lead to a net gain of energy, as we can seen simply applying the Lorentz transformation
between the Galaxy and the cloud reference frame.

Energy gain. Let us consider a single particle with energy E1, in the Galaxy’s
frame, and a cloud with Lorentz factor γ and speed u = βc. For simplicity we assume
only relativistic particle, i.e. E ∼ pc. In the reference frame of the cloud the energy is

E′

1
= γE1(1 − β cos θ1) , (1.1)

where θ1 is the angle between particle’s and clouds velocities. After the interaction the
energy remains unchanged , E′

2 = E′
1, and the exit angle is θ′2 (in the clouds’ frame).

The final energy in the Galaxy frame is

E2 = γE′

2(1 + β cos θ′2) . (1.2)
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After a single interaction the energy gain is

E2 − E1

E1
≡ ∆E

E1
=

1 − β cos θ1 + β cos θ′
2
− β2 cos θ1 cos θ′

2

1 − β2 − 1 . (1.3)

To get the mean energy gain we need to average over the incoming and the outcoming
directions. Because the scattering in the cloud frame is isotropic, we have 〈cos θ′

2
〉 = 0.

On the other hand, the mean incoming direction can be computed averaging over the
particle flux, which is proportional to the relative velocity, βr = 1 − β cos θ1. Hence, if
the particle distribution is isotropic, we simply have:

〈cos θ1〉 =

∫

dΩ βr cos θ1
∫

dΩ βr
=

∫ 1
−1 d cos θ1 (1 − β cos θ1) cos θ1
∫ 1
−1

d cos θ1 (1 − β cos θ1)
= −β

3
(1.4)

The average energy gain become:

∆E

E1
=

1 + 1
3β2

1 − β2 − 1 ∼ 4

3
β2 . (1.5)

The last passage is obtained under the assumption that β ≪ 1. In spite of the fact that
in each interaction a particle can both gain or lose energy, the average energy gain is
positive simply because the cloud is moving, hence the flux of particle crossing the cloud
in front is greather then the one from behind. In other words this result is a consequence
of the beaming effect.

This mechanism is called second order Fermi mechanism because the energy gain
is proportional to the velocity squared. In such a mechanism a particle needs too mutch
time to reach very hight energy, and this mechanism turn out to be inefficient to explain
the Galactic cosmic rays spectrum.

Particle spectrum. Let us consider a generic stochastic acceleration process
where in each interaction the particle’s energy gain is proportional to its initial energy,
∆E = ξE. If the particle start with an energy E0, after n interaction its energy become
En = E0(1 + ξ)n. This means that the particle needs a number of interaction equal to

n =
ln(E/E0)

ln(1 + ξ)
(1.6)

to have an energy equal to E. We now assume that after each interaction a particle has
only a probability Pret = 1 − Pesc to undergo another acceleration cycle; we can also
say that Pesc is the probability of escaping from the acceleration mechanism. After n
interaction the number of particles which have an energy greater then E is proportional
to

N>E ∝
∞
∑

k=n

(1 − Pesc)
k =

(1 − Pesc)
n

Pesc
(1.7)
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Using the expression (1.6) we get a power law

N>E ∝ 1

Pesc

(

E

E0

)−δ

, (1.8)

where

δ = − ln(1 − Pesc)

(1 + ξ)
. (1.9)

Note that here we assumed Pesc to be independent of particle energy. Usually both Pesc

and ξ are small quantities, hence the previous expression reduce to δ ∼ Pesc/ξ. The
differential energy spectrum n(E) = dN/dE is a power law with an index

α = 1 + δ ∼ 1 + Pesc/ξ . (1.10)

The key ingredients to get a power law distribution is that the energy gained by each
particle in a single acceleration cycle should be proportional to the particle energy itself
and to the escaping probability should be energy independent.

1.2 Acceleration at shock front: first order Fermi mechanism

More than twenty years later, the Fermi’s idea was applied in the context of colli-
sionless shock to get a more efficient acceleration mechanism. In the following we discuss
two different approach: the microscopic one proposed by Bell (1978a) (and partially de-
veloped in the previous paragraph), where the energy history of each particle is followed;
the second equivalent approach introduced by Blandford & Ostriker (1978) makes use
of the formalism of the particle distribution function and the corresponding transport
equation.

As often happen in the science, the use of different approaches in describing
the same phenomena allows one to go deeper inside the physical mechanism. Moreover
different formalisms can be more or less suitable to extend the theory to different contexts
or to include complications into the problem.

1.2.1 The Bell approach

Bell discussed what happen to energetic particles in the vicinity of a shock wave.
A shock wave can be generally defined as a transition layer which propagates through
a plasma and changes its state. The incoming plasma is compressed and a fraction
of its bulk kinetic energy is converted into internal energy of the downstream plasma,
resulting in an increase of the plasma entropy. Because the astrophysical plasmas are
usually very tenuous, the microscopic interactions responsable of the state transition
are not the collisions between particles, but the interaction of particles with the plasma
waves generated by collective processes. The tickness of the shock layer is determined
by these processes, hence it should be of the order of the gyroradius of the downstream
thermal particles.

Bell considered a plane shock propagating parallel to the background magnetic
field direction and takes into account only particles with an energy sufficiently higher
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that they cannot resonate with the waves in the shock layer. Such particles see the shock
only as a discontinuity in the plasma.

Another assumption is that the energetic particles are efficiently scattered by the
plasma turbulence, in such a way that they can be considered isotropically distributed
both in the upstream and the downstream reference frame.

Consider a shock moving with velocity us = βsc. In the frame where the shock
is at rest the upstream plasma moves towards the shock with velocity β1 = βs, while
the downstream plasma moves away form the shock with velocity β2c. The situation is
similar to what happen in the case of moving cloud described in the previous section, but
this time the relative velocity between downstream and upstream plasma is βr = β1−β2.
The flux of particle crossing the shock from downstream region towards the upstream
one is

J− =

∫

dΩ

4π
nc cos θ =

nc

4
, (1.11)

where n is the number density and the integration is performed in the interval −1 6

cos θ 6 0. Hence the average value of the incoming angle is

〈cos θ1〉 =
1

J−

∫

dΩ

4π
nc cos2 θ1 = −2

3
(1.12)

while for the outcoming direction we have 〈cos θ′
2
〉 = 2/3 because the integration is

performed for 0 6 cos θ 6 1. According to Equation (1.3) the average energy gain in a
single cycle downstream-upstream-downstream is:

∆E

E
=

1 + 4
3βr + 4

9β2
r

1 − β2
r

− 1 ∼ 4

3
βr . (1.13)

Compared to the collision with clouds, the shock acceleration is more efficient,
resulting in an energy gain proportional to the relative velocity between upstream and
downstream plasmas. This is because in each shock encounter the particle gains a positive
amount of energy, while in the case of cloud collision it can both gain or lose energy. For
this reason the shock acceleration is also called first order Fermi mechanism.

After each cycle a particle has a finite probability to escape from the shock region
because of the advection of the downstream plasma. In a steady state situation the
particle flux advected towards downstream infinity is simply J∞ = nu2, while no particle
can escape towards upstream infinity. Hence, for the flux conservation we have J+ =
J− + J∞, where J+ is the flux of particles crossing the shock from upstream towards
downstream. The escaping probability can be expressed as follows:

Pesc =
J+

J−

=
J− + J∞

J−

=
4u2

c
, (1.14)

where we used Equation (1.12). The escaping probability is independent from particle
energy, hence, as showed in the precedent paragraph, the resulting energy spectrum is a
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power law whit an index

α = δ + 1 =
Pesc

∆E/E
+ 1 =

3u2

u1 − u2
+ 1 =

r + 2

r − 1
. (1.15)

The last equality makes use of the compression factor r = u1/u2, that can be obtained
using the flux conservation of mass, momentum and energy across the shock layer. For
a standard Newtonian hydrodynamic shock propagating with a Mach number M into a
gas with adiabatic index γ, the very well know result is:

r =
(γ + 1)M2

(γ − 1)M2 + 2
. (1.16)

For very strong shock (M ≫ 1) and an ideal gas (γ = 5/3) this value reduces to r = 4,

hence the predicted cosmic rays spectrum becomes n(E) ∝ E−2.

1.2.2 Approach using the transport equation

Blandford & Ostriker (1978) obtained the same result of Bell solving the transport
equation for the particle distribution function. Let f(x, p) be the particle distribution,

whit p the particle momentum, such that n(x) = 4π
∫

p2dp f(x, p) is the local number
density. The interaction between particles and magnetic turbulence can be described as
a diffusion process in the x space. Let D(x) be the diffusion coefficient. The particle
diffusion equation in the frame where the plasma is at rest is

∂f

∂t
=

∂

∂x

(

D
∂f

∂x

)

. (1.17)

In a frame where the plasma moves with velocity u the time derivative must be replaced
by the convective derivative, ∂t → ∂t + u∂x. Moreover, if the plasma velocity is not
constant, i.e. u = u(x), we must add a term to take into account the plasma compression
effect onto the particle momentum, i.e. ṗ = 1

3pdu
dx . Equation (1.17) can be rewritten in

the more general form as:

∂f

∂t
+ u(x)

∂f

∂x
=

∂

∂x

(

D(x)
∂f

∂x

)

− 1

3
p
du

dx

∂f

∂x
+ Q0(p)δ(x) . (1.18)

The last term, Q0(p)δ(x), takes into account the injection of fresh particles that is
supposed to occur only at the shock position (x = 0).

In the first instance we are interested in the stationary solution, hence ∂tf ≡ 0.
Moreover we note that for a stationary problem the solution in the downstream section
must be homogeneous, i.e. [∂xf = 0]2. To get the solution of Equation (1.18) we first
integrate it around the shock discontinuity, where the plasma velocity change from u1

to u2; we get:

D1

[

∂f

∂x

]

1

= −u2 − u1

3
p

∂f0

∂x
+ Q0 . (1.19)
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f0(p) ≡ f(0, p) is the distribution function at the shock position. Now we can use the
second boundary condition, i.e. the homogeneity of the distribution function at upstream
infinity, [∂xf = 0]∞. Integrating Equation (1.18) between 0− and −∞ we get:

D1

[

∂f

∂x

]

1

= u1 (f0 − f∞) . (1.20)

Using both Eqs. (1.19) and (1.20) we finally get the solution for f0:

f0(p) = s p−s
∫ p

0
dp′p′s−1

(

Q0(p
′)

u1
+ f∞(p′)

)

, (1.21)

where

s =
3u1

u1 − u2
=

3r

r − 1
. (1.22)

At least two physical situation can be of interest. The first one correspond to the
monochromatic injection, Q0(p) ∝ δ(p− pinj). This is exactly the same case discussed in
the previous paragraph using the Bell approach and the result turn out to be the same.
In fact Equation (1.21) reduces to a simple power law in the momentum, f(p) ∝ p−s.
For hight energy particle the distribution in energy is n(E) ∼ p2f(p) ∝ p2−s, and from
Eqs. (1.15) and (1.22) we see that α = s − 2.

The second interesting case concerns the presence of a pre-existing non thermal
particle distribution that can be re-accelerated by a shock (Bell 1978b). For the sake
of simplicity we suppose that the pre-existing population is a power law, f∞(p) ∝ p−s1,
for p above a minimum momentum p0; this could be the case if the particles come from
a previous shock acceleration with compression ratio r1. Neglecting a possible injection
term, the integration of Equation (1.21) gives us:

f(p) ∝
(

p

p0

)−s2
∣

∣

∣

∣

(

p

p0

)s2−s1

− 1

∣

∣

∣

∣

. (1.23)

The spectrum (1.23) is a power law in the hight momentum limit, with an index equal
to the smallest one between s1 and s2, i.e. the one corresponding to the strongest shock.
For momentum near p0 the spectrum become flatter and vanishes at p = p0.

In the case of multiple shocks acceleration the particle distribution become flatter
and flatter. Suppose to have an initial population given by f0 = Ap−s, with a minimum
momentum equal to p0, passing through n subsequent shocks. For simplicity we assume
all the shocks having the same Mach number. The repeated integration of the Equation
(1.21) gives us the following simple result:

fn(p) = Ap−s sn

n!
pn−1
0

[

ln
p

p0

]n

. (1.24)
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1.2.3 Limitation and problems of linear Newtonian approach

It is worth noting that both the macroscopic and the microscopic approaches sum-
marized in this chapter, suffer of some important limitations. The convection-diffusion
equation (1.18) implicitly assumes an isotropic particle distribution in all the relevant ref-
erence frames. The same assumption is implemented in the microscopic approach in the
computation of both the energy gain and the escaping probability (Eqs (1.12) and (1.14),
respectively). We note that even if the isotropic assumption were correct in the plasma
reference frame (as a consequence of a very efficient diffusion process), the same assump-
tion loses its validity when the distribution is busted in the shock frame, because an
anisotropy of the order of us/c is introduced. This correction is negligible for Newtonian
shocks, but becomes of primary importance when one deals with relativistic shocks. In
a consistent treatment the angular distribution can not be decided a priori, but it has to
be an output of the calculation. We will show how to address this point in the Chapter 2.

A second consideration concerns the contribution of the accelerated particle in
the shock dynamics. The theory presented in this chapter considers the shock as a pre-
existing phenomena whose dynamics is fixed by the hydrodynamic (or magnetohydrody-
namics) conditions. We have seen that the predicted energy spectrum is n(E) ∼ E−2;
this mean that the energy content in non-thermal particles diverges. It is clear that a
real physical process can only reach a maximum energy Emax, determined by the shock
size, the magnetic field strength and the timelife of the shock. On the other hand in
several astrophysical situations Emax can easily becomes sufficiently large such that the
fraction of energy transferred to the accelerated particles is no more negligible (>

∼ 10%),
and accelerated particles become able to modify the plasma state and the shock structure
itself. In such a regime the shock is called non-linear because this back reaction effect.
Several non linear processes can be expected when the back reaction of non thermal
particles is included in the computation: some of them tend to enhance the efficiency of
the shock acceleration, while others tend to reduce it:

1. If the accelerated particle pressure is sufficiently strong, the incoming upstream
plasma is smoothly compressed before the encounter with the shock discontinuity.
In such a modified velocity profile particles experience a different velocity jump in
passing from upstream to downstream, according to their energy. The net effect
is an acceleration more efficient for hight energy particles and less efficient for the
less energetic ones.

2. We know that usually the diffusion coefficient increases with energy. If the shock
produces sufficient hight energy particles such that their diffusion length becomes
larger than the shock acceleration region, these particles can escape towards up-
stream infinity, carring away a considerable fraction of energy and pressure. In
this picture the shock becomes “radiative” and the compression ratio increases,
allowing a more efficient acceleration.

3. Energetic particles streaming into the upstream plasma can produce plasma in-
stabilities able to amplify the magnetic turbulence. This mechanism can strongly
reduce the diffusion coefficient, enhancing the number of shock encounter that a
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particle experiences per unit time. Also this process translates in an enhancement
of the acceleration efficiency.

4. A more efficient acceleration as predicted by points (1)-(3), tends to reduce the
downstream plasma temperature simply because an increasing fraction of the total
energy is channelled into the non-thermal particles. On the other hand the particles
injected at the shock front are belived to come from the tale of the maxwellian
distribution of downstream particles. As a consequence a more efficient acceleration
should implies a less efficient injection.

5. If the production of magnetic turbulence by the accelerated particles (point[3]) be-
comes energetically important, CRs lose a fraction of their energy that is converted
into magnetic energy and pressure. While energetic particles cannot directly affect
the sub-shock discontinuity transition, the produced magnetic turbulence enhances
the total pressure and reduces the compression factor r.

As is clear the overall picture is extraordinary complicated and hightly non linear. We
have a competition between positive feedback mechanisms (1)-(3), which tend to enhance
the acceleration efficiency, and negative ones (4)-(5). In the recent years a lot of work
were done to address one or more of the points listed above, but a fully consistent
treatment of all these effects does not still exist.

Moreover there are serious doubts about the existence of a static solution of the
non linear problem. A more realistic solution should be time dependent.



Chapter 2

Diffusive shock acceleration: the relativistic theory

in the test-particle limit

2.1 Introduction

In this chapter we summarise the main characteristics of the theory of particle
acceleration developed by Vietri (2003) and Blasi & Vietri (2005). The reader is referred
to this previous work for further details. The power of this novel approach is in its
generality: it provides an exact solution for the spectrum of the accelerated particles
and at the same time the distribution in pitch angle that the particles acquire due
to scattering in the upstream and downstream fluids. This mathematical approach is
applicable without restrictions on the velocity of the fluid speeds (from Newtonian to
ultra-relativistic) and irrespective of the scattering properties of the background plasmas
(small as well as large angle scattering, isotropic or anisotropic scattering). The only
condition which is necessary for the theory to work is common to most if not all other
semi-analytical approaches existing in the literature, namely that the acceleration must
take place in the test particles regime: no dynamical reaction is currently introduced in
the calculations. As a consequence, the shock is assumed to conserve its strength during
the acceleration time, and the acceleration is assumed to have reached a stationary
regime.

A basic ingredient of the shock acceleration mechanism is the diffusion of particles
in the media both upstream and downstream with respect to the shock. This diffusion
allows a particle to cross and re-cross the shock, acquiring a certain amount of energy at
each cycle upstream → downstream → upstream. The information about scattering is
introduced in the problem through a function w(µ, µ′) which expresses the probability
per unit length that a particle moving in the direction µ′ is scattered to a new direction
µ. It is worth stressing that w can have a different functional form in the upstream and
downstream plasmas, in particular in the case of relativistic shocks.

The repeated scatterings of the particles lead eventually to return to the shock
front, as described in terms of the conditional probability Pu(µ◦, µ) (Pd(µ◦, µ)) that
a particle entering the upstream (downstream) plasma in the direction µ◦, returns to
the shock and crosses it in the direction of the downstream (upstream) plasma in the
direction µ. The mathematical method adopted to calculate the two very important
functions Pu and Pd based upon the knowledge of the elementary scattering function w
was described in detail in Blasi & Vietri (2005), and is based on solving two non-linear
integral-differential equations in the two independent coordinates µ◦ and µ.

Vietri (2003) showed on very general grounds that the spectrum of accelerated
particles is a power law for all momenta exceeding the injection momentum. The slope
of such power law and the anisotropy pattern of the accelerated particles near the shock
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Fig. 2.1 Pictorial view of particle scattering process around a plane shock wave as seen
by shock stationary frame.

front are fully determined by the conditional probabilities Pd and Pu and by the equa-
tion of state of the downstream plasma. Particle acceleration at shock fronts has been
previously investigated through different methods, both semi-analytical (see e.g. Kirk
& Schneider (1987); Gallant & Achterberg (1999); Kirk et al. (2000); Achterberg et al.
(2001)) and numerical, by using Monte Carlo simulations (e.g. Bednarz & Ostrowski
(1998); Lemoine & Pelletier (2003); Niemiec & Ostrowski (2004); Lemoine & Revenu
(2006)). The theory of particle acceleration developed by Vietri (2003) and Blasi & Vi-
etri (2005) has been checked versus several of these calculations existing in the literature,
both in the case of non relativistic shocks and for relativistic shocks, and assuming small
as well as large pitch angle isotropic scattering (see Blasi & Vietri (2005) for an extensive
discussion of these results).

2.2 An exact solution for the accelerated particles in arbitrary condi-

tions

The directions of motion of the particles in the downstream and upstream frames
are identified through the cosine of their pitch angles, all evaluated in the comoving
frames of the fluids that they refer to. The direction of motion of the shock, identified
as the z axis, is assumed to be oriented from upstream to downstream, following the
direction of motion of the fluid in the shock frame (µ = 1 corresponds to particles
moving toward the downstream section. Refer to Fig. 2.1 to a pictorial view). The
transport equation for the particle distribution function g, as obtained in Vietri (2003)
in a relativistically covariant derivation reads
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γ (u + µ)
∂g

∂z
=

∫∫

[

−W (µ′, µ, φ′, φ)g(µ, φ) + W (µ, µ′, φ, φ′)g(µ′, φ′)
]

dµ′dφ′

+ ω
∂g

∂φ̃
, (2.1)

in which both scattering and regular deflection in a large scale magnetic field are taken
into account.

Here all quantities are written in the fluid frame, with the exception of the spatial
coordinate z, the distance from the shock along the shock normal, which is measured in
the shock frame. u and γ are, respectively, the velocity and the Lorentz factor of the fluid
with respect to the shock. θ and φ are the polar coordinates of particles in momentum
space, measured with respect to the shock normal, while φ̃ is the longitudinal angle
around the magnetic field direction. As usual µ = cos θ and ω = eB/E is the particle
Larmor frequency. W (µ, µ′, φ, φ′) is the scattering probability per unit length, namely
the probability that a particle moving in the direction (µ′, φ′) is scattered to a direction
(µ, φ) after travelling a unit length.

An important simplification of Eq. (2.1) occurs when an axial symmetry is as-
sumed. In this case the scattering probability depends only on ∆ ≡ φ − φ′ and the
large scale magnetic field can be either zero or different from zero but parallel to the
shock normal. In both cases it is straightforward to integrate eq. (2.1) over φ: the two-
dimensional integral on the right-hand side simplifies to an integral in one dimension,
while the term ω(∂g/∂φ̃) disappears.

These simplifications lead to

γ (u + µ)
∂g

∂z
=

∫

[

−w(µ′, µ)g(µ) + w(µ, µ′)g(µ′)
]

dµ′, (2.2)

where

w(µ, µ′) ≡
∫

W (µ, µ′,∆) d∆ and

g(µ) ≡ 1

2π

∫

g(µ, φ) dφ .

The physical ingredients are all contained in the two conditional probabilities
Pu(µ◦, µ) and Pd(µ◦, µ): these two functions provide respectively the probability that a
particle entering the upstream (downstream) plasma along a direction µ0 exits it along
a direction µ. In the absence of large scale coherent magnetic fields, the two functions
Pu(µ◦, µ) and Pd(µ◦, µ) were defined through a set of two integral-differential non linear
equations by Blasi & Vietri (2005). We report these equations here for completeness:



17

Pu(µ◦, µ)

(

d(µ◦)

u + µ◦

− d(µ)

u + µ

)

=
w(µ, µ◦)

u + µ◦

−
∫ 1

−u

dµ′w(µ, µ′)Pu(µ◦, µ
′)

u + µ′
+

∫

−u

−1
dµ′w(µ′, µ◦)Pu(µ′, µ)

u + µ◦

−
∫

−u

−1
dµ′Pu(µ′, µ)

∫ 1

−u
dµ′′w(µ′, µ′′)Pu(µ◦, µ

′′)

u + µ′′
, (2.3)

Pd(µ◦, µ)

(

d(µ◦)

u + µ◦

− d(µ)

u + µ

)

=
w(µ, µ◦)

u + µ◦

+

∫ 1

−u
dµ

′Pd(µ
′, µ)w(µ′, µ◦)

u + µ◦

−
∫

−u

−1
dµ′Pd(µ◦, µ

′)w(µ, µ′)

u + µ′
−
∫ 1

−u
dµ′Pd(µ

′, µ)

∫

−u

−1
dµ′′w(µ′, µ′′)Pd(µ◦, µ

′′)

u + µ′′
. (2.4)

In the equations above we used:

d(µ) ≡
∫ +1

−1
w(µ′, µ)dµ′ , (2.5)

which is unity by definition.
It is worth stressing that Eq. (2.3) provides automatically the correct normaliza-

tion for the return probability from upstream:
∫ 1
−u dµ′Pu(µ◦, µ

′) = 1, independent of the
entrance angle µ◦. In §3.2.1 we will generalize the method to include the possibility of
deflection by large scale magnetic fields, which is one of the achievements of this work.
In that case we will show that the return probability from upstream is no longer bound
to be unity, due to the escape of particles from the upstream region.

The procedure for the calculation of the slope of the spectrum of accelerated
particles, as found by Vietri (2003) and Blasi & Vietri (2005), is as follows: for a given
Lorentz factor of the shock (γs), the velocity of the upstream fluid u = βs is calculated.
The velocity ud of the downstream fluid is found from the usual jump conditions at the
shock and through the adoption of an equation of state for the downstream fluid.

Once the two functions Pu and Pd have been calculated, the slope of the spectrum,
as discussed in Vietri (2003), is given by the solution of the integral equation:

(ud + µ)g(µ) =

∫ 1

−ud

dξQ
T
(ξ, µ)(ud + ξ)g(ξ), (2.6)

where

Q
T
(ξ, µ) =

∫

−ud

−1
dνPu(ν, µ)Pd(ξ, ν)

(

1 − urelµ

1 − urelν

)3−s

. (2.7)

Here urel = u−ud

1−uud
is the relative velocity between the upstream and downstream

fluids and g(µ) is the angular part of the distribution function of the accelerated particles,
which contains all the information about the anisotropy. Note that in Eq. (2.7) all
variables and functions are evaluated in the downstream frame, while the Pu calculated
through Eq. (2.3) is in the frame comoving with the (upstream) fluid. The Pu that need
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to be used in Eq. (2.7) is therefore

Pu(ν, µ) = Pu(ν̃, µ̃)
dµ̃

dµ
= Pu(ν̃, µ̃)





1 − u
2

rel

(1 − urelµ)2



 .

The solution for the slope s of the spectrum is found by solving Eq. (2.6). In general,
this equation has no solution but for one value of s. Finding this value provides not only
the slope of the spectrum but also the angular distribution function g(µ).

2.3 The special case of isotropic scattering

No assumption has been introduced so far about the scattering processes that
determine the motion of the particles in the upstream and downstream plasmas, with
the exception of the axial symmetry of the function W (µ, µ

′
, φ, φ

′
).

A special case of this symmetric situation is that of isotropic scattering, that
takes place when the scattering probability W only depends upon the deflection angle
Θ, related to the initial and final directions through

cos Θ ≡ µµ
′
+

√

1 − µ2
√

1 − µ′2 cos(φ − φ
′
). (2.8)

Among the many functional forms that correspond physically to isotropic scat-
tering, the simplest one is

W (µ, µ
′
, φ, φ

′
) = W (cos Θ) =

1

σ
e
− 1−cos Θ

σ , (2.9)

where σ is the mean scattering angle. Integration of eq. (2.9) over φ − φ
′
leads to

w(µ, µ
′
) =

1

σ
e
−

1−µµ
′

σ I0

(
√

1 − µ2
√

1 − µ′2

σ

)

, (2.10)

with I0(x) the Bessel function of order 0. Eq. (2.9), first introduced in Blasi & Vietri
(2005), naturally satisfies the requirement of being symmetric under rotations around
the normal to the shock surface. In the limit σ ≪ 1 this function becomes a Dirac Delta
function, strongly peaked around the forward direction, corresponding to isotropic Small
Pitch Angle Scattering (SPAS). For the opposite limit, that is σ ≫ 1, w becomes flat
and corresponds to the case of isotropic Large Angle Scattering (LAS). In §3.3.2 we will
modify this functional form to introduce the possibility of anisotropic scattering.



Chapter 3

The plasma diffusion properties

3.1 Introduction

In this Chapter we extend the application of the new theoretical framework sum-
marized in the previous Chapter to two new interesting situations: 1) presence of a
coherent large scale magnetic field in the upstream fluid; 2) anisotropic scattering. In
both cases we calculate the spectrum of accelerated particles and the distribution in
pitch angle (upstream and downstream) for shock fronts moving with arbitrary velocity.
The results of point 1) are compared with those obtained in Achterberg et al. (2001),
carried out for a parallel ultra-relativistic shock.

The work presented in this Chapter has been inspired by the need to address
several points of phenomenological relevance. As far as relativistic shocks are concerned,
it was understood that the return of the particles to the shock surface from the upstream
region can be warranted even in the absence of scattering, provided the background
magnetic field is at an angle with the shock normal (e.g. Achterberg et al. (2001)). This
is due to the fact that the shock and the accelerated particles remain spatially close
and regular deflection takes place before particles can experience the complex, possibly
turbulent structure of the upstream magnetic field. This implies that the calculation of
the spectrum of the accelerated particles cannot be calculated using a formalism based on
the assumption of pitch angle diffusion, as in the vast majority of the existing literature.

In the downstream region, the motion of the shock is always quasi-newtonian,
even when the shock moves at ultra-relativistic speeds. This implies that the propaga-
tion of the particles is generally well described by (small or large) pitch angle scattering.
However, the turbulent structure of the magnetic field, responsible for the scattering, is
likely to have an anisotropic structure and be therefore responsible for anisotropic scat-
tering. In fact, even in the case of isotropic turbulence, the scattering can determine an
anisotropic pattern of particle scattering. It follows that a determination of the spectrum
able to take into account these potentially important situations is very important.

The outline of the Chapter is the following: in §3.2 we consider in detail the case
of a large scale magnetic field in the upstream frame and no scattering of the particles.
The scattering is assumed to be isotropic in the downstream plasma. In §3.3 we introduce
the possibility of anisotropic scattering in both upstream and downstream plasmas. We
summarize in §3.4.
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3.2 Acceleration in the presence of static magnetic field

3.2.1 Particles’ deflection in the upstream region

It is well known that particle acceleration at a shock front with parallel magnetic
field without scattering centers does not work. This magnetic scattering may be self-
generated by the same particles, but the process of generation depends on the conditions
in specific astrophysical environments. The case in which a regular magnetic field not
parallel to the shock normal is present in the upstream fluid is quite interesting in that it
allows for the return of the particles to the shock front even in the absence of scattering
(see Fig. 3.1). In this section we investigate in detail the process of acceleration at
shocks with arbitrary velocity when only a regular large scale magnetic field is present
upstream (no scattering). We assume that enough turbulence is instead present in the
downstream plasma to guarantee magnetic scattering of the particles.

There are two main differences introduced by this situation when compared with
the standard case considered in the previous section:

• (a) Particle motion in the upstream region is deterministic: the stochasticity in-
troduced by the interaction with scattering centers is assumed to be absent. This
requires a new determination of the return probability Pu introduced in the Chap-
ter 2.

• (b) The presence of regular magnetic field with arbitrary orientation breaks the
axial symmetry around the shock normal. This, in principle, would force us to
treat the problem in the four angular variables µ

◦
, φ

◦
, µ and φ.

In the following we will show how addressing point (a) in fact solves point (b) as
well.

3.2.2 Upstream return probability

Let us Consider a particle entering upstream in the direction identified by the
two angles µ

◦
and φ

◦
, and returning to the shock along the direction identified by µ and

φ. Since the motion of the particle is deterministic, the return direction is completely
defined by the incoming coordinates, and we can write in full generality:

Pu(µ
◦
, φ

◦
;µ, φ) = (2π)

−1
δ
(

µ − µ1(µ◦
, φ

◦
)
)

δ
(

φ − φ1(µ◦
, φ

◦
)
)

, (3.1)

where µ1 and φ1 are obtained from the solution of the equation of motion, as discussed
below. One can see that Pu is effectively a function of only two variables.

In order to apply the same mathematical procedure introduced in §2.2, we need
to write Pu as a function of azimuthal angles only. Therefore we use the properties of
the delta function in δ(µ − µ1(µ◦

, φ
◦
)), to write:

Pu(µ
◦
, φ

◦
;µ, φ) =

1

2π

∣

∣

∣

∣

∂φ
◦
(µ

◦
, µ)

∂µ

∣

∣

∣

∣

δ
(

φ
◦
− φ̄

◦

)

δ
(

φ − φ1

)

≡ Pu(µ
◦
, µ) δ

(

φ
◦
− φ̄

◦

)

δ
(

φ − φ1

)

. (3.2)
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Fig. 3.1 Pictorial view of particle scattering process around a plane shock wave as seen by
shock stationary frame. Upstream only a static large-coherence magnetic field is present,
while downstream the diffusion is due to magnetic turbulence.

We now show that Pu(µ
◦
, µ), as defined by Eq. (3.2), is exactly the function to

be used in eq. (2.7). This is easily shown by writing the fluxes of particles ingoing and
outgoing the upstream plasma:

J+(µ, φ) =

∫

−u

−1
dµ

′
∫ 2π

0
dφ

′
Pu(µ

′
, φ

′
, µ, φ)J

−
(µ

′
, φ

′
) , (3.3)

which, when integrated over φ, yields

J+(µ) ≡
∫

dφJ+(µ, φ) =

∫

−u

−1

dµ
′
Pu(µ

′
, µ)J

−
(µ

′
) , (3.4)

where we assumed that J
−

is independent of φ. This is exactly the same relationship

as was used in Vietri (2003), and proves our point that the system may, in the average,
still be treated as if it were symmetric about the shock normal.

The key assumption here is that the flux crossing back into the upstream region
from the downstream one, J

−
, be independent of the azimuthal angle φ. This is of course

true in the Newtonian regime, because there the residence time for all particles diverges,
and there is time for deflections to effectively erase anisotropies in the φ direction. But
this must be true a fortiori in the relativistic regime, when one considers that the prop-
erties of scattering are of course still the same as in the Newtonian regime, while the
surface to be recrossed, i.e., the shock, is running away from the particles at a speed
that becomes, asymptotically, a fair fraction of the particles’ speed. So, while not exactly
true, the independence of J

−
from φ is at least a good approximation.
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In order to write Pu(µ
◦
, µ) in a more explicit way, we need to solve the equation

of motion of the particles, namely find the direction at which the particles re-cross the
shock front as a function of the incoming direction. Particles move following a helicoidal
trajectory around the magnetic field direction, indicated here as z̃. The problem is
simplest if expressed in the frame Õ comoving with the upstream fluid but with the
polar axis coincident with z̃. We mark with a tilde all quantities expressed in this frame.
The equations of motion in the frame Õ are:

µ̃(t) = µ̃
◦
, (3.5)

φ̃(t) = φ̃
◦
+ ωt , (3.6)

where t is time and ω is the Larmor frequency. The particles re-cross the shock when
zparticle(t) = zshock(t). This condition expressed in the frame Õ reads

sin(ω t + φ̃
◦
) − sin φ̃

◦
=

µ̃
◦

cos α + βs

sin α sin θ̃
◦

ωt , (3.7)

where α is the angle between the shock normal z and the magnetic field direction z̃.
The solution of Eq. (3.7) gives the upstream residence time t

∗
of the particles, to be

evaluated numerically.
The angles that identify the re-crossing direction, as functions of the residence

time, are

µ̃1 = µ̃
◦
, and (3.8)

φ̃1 = φ̃
◦
+ ωt

∗
(µ̃

◦
, φ̃

◦
) . (3.9)

A rotation by the angle α provides us with the re-crossing coordinates µ1 and φ1 in the
fluid frame. At this point the Jacobian in Eq. (3.2) can be calculated, although some
care is needed because this Jacobian is not a single valued function: for each pair (µ

◦
, µ)

the Jacobian has two values. This degeneracy arises because of the substitution of φ
◦

with µ, since each µ corresponds in general to two possible values of φ
◦
. This is clear

from Fig. 3.2, where we show some examples of solutions: the directions of entrance and
escape from the upstream fluid are plotted for different values of the shock speed and
for different orientations of the large scale magnetic field.

Eq. (3.7) admits a solution t
∗

> 0 only if the two following conditions are fulfilled:

i) the initial velocity of a particle along the shock normal must be larger than the
shock speed (otherwise the particle is prevented from crossing the shock to start
with). This implies:

µ
◦

< −βs . (3.10)

ii) The particle velocity along the shock normal has to be less than the shock speed,
namely

µ̃
◦

cos α > −βs . (3.11)
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Fig. 3.2 Location of the particles entering the upstream region (dashed lines) and re-
turning to the downstream region (solid lines) after being deflected by the magnetic field
upstream. The directions are plotted in the plane Γsβp,x - Γsβp,y. βp,x and βp,y are

the components of the particle velocity along the x and the y axis respectively. The
origin corresponds to particles entering along the shock normal. Circles correspond to
particles having constant µ

◦
. The left panels refer to Γsβs = 0.04. The right panels

refer to Γsβs = 1.0. In both cases we show the effects of three different orientations of
the magnetic field (from the top to the bottom cos α = 0.0, 0.4, 0.8). The presence of an
empty region when cos α > βs is due to particle leakage from upstream [Compare with
Fig.1 in Achterberg et al. (2001)].
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Particles not satisfying this last condition escape the shock region towards up-
stream infinity, a situation which is not realized in the case of scattering considered in
§2.2. This escape process occurs only for cos α > −βs, and results in the loss of particles
having the entrance pitch angles cosine exceeding µmin(µ◦

, φ
◦
). In fact for cos α < −βs,

µmin = const = −1 and all particles eventually re-cross the shock.
When the particles are allowed to escape upstream, the acceleration is clearly

expected to become less efficient and give rise to softer spectra of the accelerated particles
(see §3.2.3).

Putting together all of the above, we can finally write the upstream conditional
probability as

Pu(µ
◦
, µ) =

1

2π

∑

i=1,2

∣

∣

∣

∣

∂φ
◦

∂µ

∣

∣

∣

∣

i

θ
(

−µ
◦
− βs

)

θ
(

µ
◦
− µmin(µ◦

, µ)
)

, (3.12)

where the sum is extended over the two branches of the Jacobian.
For cos α < −βs the particles always return to the shock front and this forces the

return probability to be unity when integrated over all outgoing directions:

∫ 1

−u
dµ Pu(µ

◦
, µ) = 1 . (3.13)

This integral condition is trivially satisfied by Eq. (3.12) and is used as a check for Pu
after its numerical computation.

Figs. 3.3, 3.4 and 3.5 show some examples of our calculations of Pu(µ
◦
, µ) as

a function of µ for different values of µ
◦
, for a Newtonian, a trans-relativistic and a

relativistic shock respectively. For each case we show the results for different inclinations
of the magnetic field with respect to the shock normal. It is worth noticing that Pu does
not change significantly when the inclination of the magnetic field varies in the range
0 < cos α < βs, at a given shock speed. Therefore we do not expect a significant variation
of the spectral slope in this range. In §3.2.3 we show that this is in fact the case.
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Fig. 3.3 Conditional probability Pu(µ
◦
, µ) as a function of the outgoing direction µ, for

a fixed value of the shock speed (Γsβs = 0.04) with three different inclinations of the
magnetic field (cos α = 0.0, 0.4, 0.9). For each plot the different lines correspond to
different values of the ingoing direction µ

◦
.
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Fig. 3.4 Like Fig.3.3 but for a trans-relativistic shock (Γsβs = 1.0;βs = 0.707).
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Fig. 3.5 Like Fig.3.3 but for a relativistic shock (Γsβs = 5.0;βs = 0.98). The three plots
are very similar to each other because the condition cosα > βs is never reached.

3.2.3 Results for spectrum and angular distribution of the accelerated par-

ticles

In this section we use Eq. (2.6) and Eq. (2.7) to calculate the spectrum and angu-
lar distribution of the accelerated particles at the shock front. The return probabilities
are calculated assuming that in the downstream fluid there is isotropic scattering, so
that Pd can be calculated from Eq. (2.4) using Eq. (2.10) as a scattering function. We
assume σ = 0.01 for the SPAS regime and σ = 10 for the LAS regime. In the upstream
fluid we assume that particles can only be deflected by a large scale coherent magnetic
field with arbitrary orientation with respect to the normal to the shock front. The return
probability Pu is therefore calculated as discussed in detail in §3.2.2.

The only information still lacking to proceed further is an equation of state for the
medium, that would allow us to compute the velocity of the downstream fluid from the
jump conditions at the shock front (see for instance Gallant (2002)). We assume that the
gas upstream has zero pressure. Moreover, in the following we assume everywhere that
the magnetic field has no dynamical role, so that the standard jump conditions for an
unmagnetized shock can be adopted (the role of the magnetic field becomes important
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when the magnetic energy density becomes comparable with the thermal energy density
Kirk & Duffy (1999)).

Following much of the previous literature, we adopt the Synge equation of state
for the downstream gas Synge (1957), assuming that only protons contribute. Although
used widely, this assumption may not be well justified in a general case. We will illustrate
our conclusions on the role of the equation of state for the spectrum and anisotropy of
the accelerated particles in a separate paper.

Within this set of assumptions it is worth reminding that the velocity ratio r =
uup/udown tends asymptotically to 4 for a non relativistic shock (even for shock speeds

that are known to give lower compression factors) and to 3 for ultra-relativistic shocks.
The simplest case to consider is that of a shock in which the large scale coherent

magnetic field in the upstream region is parallel to the shock front (cos α = 0). This is
known as a perpendicular shock. The angular distribution and the slope of the spectrum
of the accelerated particles are plotted in Fig. 3.6 (the LAS (SPAS) case is shown in
the left (right) panel) and Fig. 3.7 respectively, for various shock velocities ranging from
newtonian to relativistic.

Looking at Fig. 3.6 some comments are in order. First of all the angular dis-
tribution extends in the range −1 < µ < µmax. As seen in the upstream frame, µmax
corresponds to particles that enter downstream after a deflection with initial coordinates
µ̃
◦

= −βs and θ̃
◦

= π/2. We can easily estimate µmax in the limit of relativistic shock
using Eq. (3.7). In the present case α = θ

◦
= π/2 and sin φ

◦
= −1/Γs, so Eq. (3.7)

gives

Γsβs =
1 − cos ξ

ξ − sin ξ
≡ f(ξ) , (3.14)

where ξ = ωt. Hight values of Γsβs correspond to small values of ξ, therefore we can
use the first order Taylor expansion of f around zero: f(ξ) = 3/ξ + O(ξ). Hence we get
ξ ≃ 3/Γsβs and

µmax = cos(ξ + φ̃
◦
) =

(

1 − 4/Γ
2

s

)1/2
. (3.15)

Finally this value can be expressed in the downstream reference frame

µ
′

max
=

µmax − vrel

1 + µmaxvrel

(3.16)

and with a little algebra one can see that µ
′

max
→ 1/3 for βs → 1, as can be seen from

Fig. 3.6.
A second comment concerns the discontinuity that the angular distribution shows

in passing from upstream to downstream sector. The jump can be easily understood
looking at the panel in Fig. 3.2 with Γsβs = 1 and cos(α) = 0: the biggest dashed circle
represents the particle that enter upstream with the maximum allowed value µ

◦,max =

−βs; only a fraction of these particles, about one half, recross the shock with an angle
infinitely close to µ

◦,max. This explain why the jump is roughly one half, and is located
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at µ
◦,max as appear in the downstream frame, i. e.

µ
′

◦,max
=

−βs + vrel

1 − βsvrel

= −βs

r
. (3.17)

For relativistic shock r → 3, and µ
′

◦,max
→ −1/3 , as results from Fig. 3.6.

The last note concerns the anisotropy. The angular distribution of the particles
in the downstream frame is seen to be rather anisotropic for the SPAS case, even in the
newtonian regime. Large angle scattering (LAS) is evidently more efficient in isotropiz-
ing the accelerated particles. On the other hand, because the regular magnetic field
deflection, the particles in the upstream section accumulate towards the maximum value
µmax.

The anisotropies do not seem to affect the spectrum of the accelerated particles
in the case of non relativistic shocks: the slope of the spectrum for both SPAS and LAS
is 4.000 ± 0.001. The effect becomes more prominent for faster shocks and in particular
for relativistic shocks. In the SPAS case, for Γsβs = 10, we found s = 4.272 ± 0.001,
compatible with s = 4.28 ± 0.01, obtained by Achterberg et al. (2001) for Γs = 10, with
a Monte-Carlo simulation.

In Fig. 3.7, the dotted and dashed lines refer to the SPAS and LAS cases respec-
tively. At first sight it may appear rather surprising that in the limit of relativistic shocks
the spectrum of accelerated particles is softer in the LAS regime than it is in the SPAS
regime, since LAS is envisioned as more efficient in redirecting the particles to the shock
front. This intuitive vision turns out to be incorrect, as also shown in Table 1, where we
list the slope, the average energy gain and the return probability from downstream (as
defined in Eqs. (3.20) and (3.23)) for a relativistic shock with Γsβs = 5.0.

Table 3.1 Exact spectral slope, mean amplification and downstream return probability
(as defined in eq. (3.20) and (3.23) respectively) for Γsβs = 5.0.

slope 〈G〉 〈P (down)

ret
〉

SPAS 4.218 ± 0.001 2.0387 0.4165
LAS 4.445 ± 0.001 2.0753 0.3430

One can see that while the average energy gain is similar in the two cases, the
return probability in the case of LAS is 20% lower than for the SPAS case. Qualitatively
this can be understood as follows: when the shock velocity increases, particles are caught
up by the shock front when they have travelled only a small fraction (of order 1/Γs) of
their gyration. Once downstream, LAS is likely to swing them far from the shock front
in a few interactions, while SPAS deflects their trajectories rather slowly yet remaining
in the vicinity of the shock surface. This is responsible for the 20% difference in the
average return probabilities in the two cases. This is also shown in Fig. 3.8, where we
plot the particles flux, J(µ) ≡ |µ+ud|g(µ) in terms of downstream coordinates: the total
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Fig. 3.6 Particle distribution function at the shock front when a large scale coherent
magnetic field is present in the upstream region, with a direction parallel to the shock
plane. In the downstream region particles are scattered in the LAS (left plot) or in the
SPAS regime (right plot) (here the maximum of the distribution is arbitrarily set equal
to 1). Several values of shock speeds are shown. The particle distribution functions
always show a jump at µ = −βs. Large angle scattering makes distribution functions
flatter compared with the small angle scattering case for −1 < µ < −ud.

flux of particles entering the downstream section (−ud < µ < 1) is normalized to unity.
It is clear from Fig. 3.8 that the flux of particles returning to the shock is slightly larger
for the case of SPAS (dashed line in the range −1 < µ < −ud).

A more interesting question concerns the effect of the orientation of the large scale
magnetic field with respect to the normal to the shock. We have already emphasized
that for any orientation different from that of a perpendicular shock, and in the absence
of scattering processes upstream, particles are lost from the upstream region, because
the shock cannot catch up with their motion. This happens when cos α > −βs, so
that the phenomenon is increasingly more important for shocks approaching the parallel
configuration. This reflects in increasingly softer spectra. In the limit cos α → 1, all
particles escape from the upstream region and no acceleration takes place.

The slope of the spectrum as obtained from our calculations is plotted in Fig.
3.9 (solid lines and symbols) as a function of cosα for three different shock speeds
(Γsβs = 0.6, 1.0, 2.0): when there is no particle escape, the slope s is actually a constant,
while it increases dramatically (and in fact diverges, showing the disappearance of the
acceleration process) for values of cos α larger than −βs. In the small panel in Fig. 3.9
we also plot the return probability from upstream: for very inclined shocks the return
probability is still very close to unity, as in the case of upstream scattering, but it drops
rapidly for increasingly less inclined shocks.

The steepening of the spectrum due to leakage of the particles towards upstream
infinity can also be understood in terms of a Bell-like (Bell 1978a) calculation, when
carried out for the case of a large scale coherent magnetic field. The slope of the spectrum
is related to the average return probability and to the average energy gain of the particles
per cycle back and forth through the shock front through the expression:
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regime.
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s = 3 − log〈Pret〉
log〈G〉 , (3.18)

where 〈G〉 is the mean amplification in a single cycle (downstream → upstream →
downstream), and 〈Pret〉 is the mean probability of returning to the shock. One should
keep in mind that Bell’s method, as expressed through the equation above is flawed in
that it does not take into proper consideration the correlation between the amplification
factor and the return probability. Moreover, Eq. (3.18) hides the assumption of isotropy
of the distribution function of the accelerated particles, since that formula was conceived
in a discussion of non relativistic shocks (Peacock (1981) introduced this formalism
for particle acceleration at relativistic shock fronts). All these limitations become of
particular importance for relativistic shocks. A general expression for the slope was
found in Vietri (2003), and reads:

〈Pret〉〈G
s−3〉 = 1. (3.19)

In the following we use Eq. (3.18), since we only want to provide the reader with an
argument of plausibility for the steepening of the spectra in those cases in which particle
leakage can take place in the upstream region. In order to account for this leakage,
which cannot take place in the standard scenario of diffusive particle acceleration at a
shock front, we generalize Eq. (3.18) in order to include the probability of escape from
the acceleration box from upstream. This is easily achieved by replacing 〈Pret〉 with

〈P (up)

ret
〉 · 〈P (down)

ret
〉. These mean values expressed in the downstream frame are:

〈P (down)

ret
〉 =

∫ −ud

−1
dµ

◦

∫ 1

−ud

dµ g(µ)(ud + µ)Pd(µ, µ
◦
)

∫ 1

−ud

dµ g(µ)(ud + µ)
(3.20)

and

〈P (up)

ret
〉 =

∫ 1

−ud

dµ
∫ −ud

−1
dµ

◦
g(µ

◦
)(ud + µ

◦
)Pu(µ

◦
, µ)

∫

−ud

−1
dµ

◦
g(µ

◦
)(ud + µ

◦
)

. (3.21)

In the last equation Pu has also to be computed in terms of quantities evaluated in the
downstream frame. Energy amplification for a particle entering the upstream region
with direction µ

◦
(as measured downstream) and returning with direction µ, is obtained

combining two Lorentz transformations:

G(µ
◦
, µ) = γ

2

rel
(1 − urelµ◦

)
(

1 + urelµ̄
)

, (3.22)

where µ̄ = (µ+urel)/(1+urelµ) is the returning direction as seen in the upstream frame.
Averaging the amplification we have:

〈G〉 =

∫ −u

−1
dµ

◦
g(µ

◦
)(u + µ

◦
)
∫ 1

−u
dµ G(µ

◦
, µ)Pu(µ

◦
, µ)

∫

−u

−1
dµ

◦
g(µ

◦
)(u + µ

◦
)
∫ 1

−u
dµ Pu(µ

◦
, µ)

. (3.23)
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The spectral slope as computed through Eq. (3.18) is plotted in Fig. 3.9 (large box)

with dashed lines; the corresponding upstream return probability 〈P (up)

ret
〉 is plotted in

the small box (dashed lines). The agreement with our exact results is better than 1%,
proving that the reason for the softening of the spectra of accelerated particles is in the
increased probability that the particles leave the acceleration region when only a large
scale coherent magnetic field is present upstream.
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Fig. 3.9 Large box : spectral slope as a function of cos α for three different values of the
shock speed. The dashed lines show the spectral slope computed with Bell’s method.
Small box : the corresponding upstream return probabilities.

The results discussed above apply to situations in which the magnetic field in
the upstream region can be considered as coherent on spatial scales exceeding the size
of the acceleration box. If the coherence scale of the field is smaller than the size of
the accelerator, then the direction of the particles suffer a random wandering motion
and one can think of this structured field as the source of diffusion and as a physical
mechanism that imposes a maximum energy to the accelerated particles (at least in the
absence of radiative energy losses). Particles that escape from the shock region too fast
(highest energy ones) have enough time to feel the effect of a coherent scale, while lower
energy particles live in the accelerator for longer times and in principle may feel different
orientations of the upstream magnetic field. This scenario is basically equivalent to
having some degree of scattering upstream, and should be treated with the formalism
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already discussed in Vietri (2003); Blasi & Vietri (2005). As soon as a phenomenon
equivalent to scattering is present, the probability of escape to upstream infinity vanishes,
for all those particles that are confined in the accelerator for sufficiently long times.
Moreover, one should keep in mind that even if a large scale coherent magnetic field
is present to start with, the propagation of the accelerated (charged) particles in the
upstream plasma is very likely to excite fluctuations in the magnetic field structure
through streaming instability Bell (1978a). These fluctuations act as scattering centers
and enhance the probability of returning to the shock front.

3.3 Acceleration for shock propagating in a medium with anisotropic

scattering properties

3.3.1 Anisotropic scattering: generality

In this section we consider again the standard case in which particle motion in
both the upstream and downstream fluids is diffusive, due to the presence of scattering
agents. However, we include the possibility that the scattering, though spatially constant,
may be anisotropic. The physical motivation for this generalization is the following: in
a background of Alfvèn waves with a power spectrum PW (k) (such that PW (k)dk is the
energy density in the form of waves with wavenumber in the range dk around k) the
particles suffer angular diffusion with a diffusion coefficient

Dθθ = 〈∆θ∆θ

∆t
〉 ≈ Ω

krPW (kr)

B2

0
/8π

, (3.24)

where kr = Ω/vµ is the resonant wavenumber and Ω is the gyration frequency of particles
with momentum p in the background magnetic field B0. One can clearly see from Eq.
(3.24) that the diffusion is anisotropic in general, unless the power spectrum has a specific
ad hoc form. One should keep in mind that Eq. (3.24) is obtained in the context of quasi-
linear theory. A full non-linear treatment might show how the turbulence is distributed
and which is the resulting particle angular distribution.

In the calculations that follow, we quantify the effects of anisotropic scattering on
the spectrum and angular distribution of the accelerated particles. The calculation of
specific patterns of anisotropy in the scattering agents is beyond the scopes of this paper,
therefore we adopt a few simple but physically meaningful toy models of anisotropic
scattering and we carry out the calculations within those models.

3.3.2 Modeling anisotropy

We parametrize the anisotropy in such a way to reproduce the following four
patterns:

• case A: Particles are scattered per unit length more efficiently while they move
away from the shock front than they are on their way to the shock front, both
upstream and downstream.
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• case B (opposite of case A): Particles are scattered per unit length more efficiently
on their way to the shock front than they are while they move away from the shock
front, both upstream and downstream.

• case C : In the downstream fluid, particles are scattered per unit length more
efficiently while they move away from the shock front (µ → 1) than they are on
their way to the shock front (µ → −1). In the upstream fluid the situation is
reversed, and scattering is more efficient for the particles that are moving toward
of the shock (µ → 1).

• case D (opposite of C ): Scattering is more effective around µ ∼ −1 both upstream
and downstream.

A pictorial representation of cases A-D is shown in Fig. 3.10.

Fig. 3.10 Pictorial representation of the four patterns of anisotropic scattering considered
in our calculations.

In order to simulate the cases A-D above, we adopt a scattering function similar
to Eq. (2.10), but modified to introduce anisotropic scattering. In particular, to achieve
this goal we allow the width σ of the scattering function to depend on both the initial
and final directions µ

′
and µ, so that:

w(µ, µ
′
) =

1

σ(µ, µ′)
e
−frac1−µµ′σ(µ,µ′)

I0

(
√

1 − µ2
√

1 − µ′2

σ(µ, µ′)

)

. (3.25)

It is worth stressing that the scattering function has to be symmetric if we ex-
change µ with µ

′
as a consequence of Liouville’s theorem, so we are forced to look for a

symmetric function σ(µ, µ
′
).
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In order to apply the functional form Eq. (3.25) to the cases A-D, it is sufficient

to adopt the following expression for the mean scattering angle σ(µ, µ
′
):

σ
∓
(µ, µ

′
) = σ

◦
·
(

1 − (a − 1)

4a
(µ ∓ 1)(µ

′ ∓ 1)

)

. (3.26)

Both σ+ and σ
−

have σ0 as the maximum and σ
◦
/a as the minimum value. For this

reason we will refer to a as the Anisotropy Factor. For a = 1, isotropic scattering is
recovered.

The resulting scattering function w
∓
(µ, µ

′
), obtained substituting Eq. (3.26) into

(3.25), is plotted in Fig. 3.11 together with the isotropic scattering function (Eq. (2.10)),
for σ

◦
= 0.05 and a = 10. These plots clarify how w+ and w

−
can simulate a scattering

more efficient in the µ = +1 and µ = −1 directions respectively.
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Fig. 3.11 The thick lines show the anisotropic scattering functions w+(µ, µ
◦
) (left box)

and w
−
(µ, µ

◦
) (right box), as functions of µ and for different values of the incoming

direction µ
◦
. The anisotropy factor is a = 10 and σ

◦
= 0.05. For comparison the

isotropic scattering function (Eq. (2.10)) is shown with thin lines and for the same
values of µ

◦
.

The condition
∫ 1

−1
dµ w(µ, µ

′
) = 1 that states the probability conservation, is

fulfilled by Eq. (3.25) provided σ0 ≪ 1. In the numerical calculations that follow we
assume σ0 = 0.05.

Using σ
−

and σ+ in different combinations for the upstream and the downstream
fluids, we can reproduce scenarios A, B, C, and D, as summarized in Table 3.2.

3.3.3 The particles’ spectrum: results for shocks of arbitrary speed and

fixed anisotropy factor

Following the procedure outlined in §2.2 and making use of Eqs. (3.25) and (3.26),
we compute the spectral index and the angular distribution for the scenarios A, B, C
and D, described above. In each case both the parameter σ

◦
and the anisotropy factor a
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Table 3.2 Summary of mean scattering angle used in the different scenario of Fig.3.10.

A B C D

upstream σ+ σ
−

σ
−

σ+

downstream σ
−

σ+ σ
−

σ+

are fixed (σ
◦

= 0.05 and a = 10), while the shock velocity is allowed to vary within the
range 0.04 < Γsβs < 5.

The angular part of the distribution function is shown in Fig. 3.12 for all the
four scenarios: A (left-upper panel), B (right-upper panel), C (left-lower panel) and D
(right-lower panel). The slope of the spectrum of accelerated particles is plotted in Fig.
3.13.

For relativistic shocks, the spread in the slope of the spectrum of accelerated
particles has less spread around ∼ 4, although in general it remains true that harder
spectra are obtained in the scenarios B and D.

A note of caution is necessary to interpret the apparent peak in the slopes at
Γsβs ∼ 1 for cases A, and at Γsβs ∼ 3 for cases D. These peaks are completely unrelated
to anisotropic scattering and is instead the result of the breaking of the regime of small
pitch angle scattering (or SPAS), as was already pointed out in Blasi & Vietri (2005).

The acceleration process does no longer take place in the SPAS regime when Γ
2

s
>
∼

1/4σ,

which happens at higher Lorentz factor when σ is smaller. This is shown in Fig. 3.14,
where we plot the slope for the case of isotropic SPAS for σ = 0.1 (dashed line) and
σ = 0.01 (solid line), and the corresponding angular distribution for Γsβs = 5. As
already found in Blasi & Vietri (2005), the transition from SPAS to LAS is generally
accompanied by a hardening of the spectra of accelerated particles. The peak seen in
Fig. 3.13 is simply the consequence of an effective value of σ in the anisotropic scattering
cases A and D. This is also clear comparing angular distributions of Fig. 3.14 with the
angular distribution of cases A and D for Γsβs = 4 and 5: the curves show the same
behaviour with a jump at µ = −βdown and a peak that moves towards µ = 1 as the
shock speed increase.

3.4 Discussion

In this chapter we carried out exact calculations of the angular distribution func-
tion and spectral slope of the particles accelerated at plane shock fronts moving with
arbitrary velocity, generalizing a method previously described in detail in Vietri (2003);
Blasi & Vietri (2005). In particular, we specialized our calculations to two situations:
1) presence of a large scale coherent magnetic field of arbitrary orientation with respect
to the shock normal, in the upstream fluid; 2) possibility of anisotropic scattering in the
upstream and downstream plasmas.

Our calculations allowed us to describe the importance of the inclination of the
magnetic field when this has a large coherence length and there are no scattering agents
upstream. For newtonian shocks, only quasi-perpendicular fields (namely perpendicular
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Fig. 3.12 Particle distribution function at the shock front for anisotropic scattering of
type A (top-left), B (top-right), C (bottom-left) and D (bottom-right), all with a = 10.
Each line represents a different shock speed as the labels show.
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shown for comparison (solid line).



37

 3.8

 3.85

 3.9

 3.95

 4

 4.05

 4.1

 4.15

 4.2

 0.1  1

sp
ec

tr
al

 s
lo

pe

Γs βs

Isotropic scattering ( σ0 = 0.01 )
Isotropic scattering ( σ0 = 0.1)

 0

 0.2

 0.4

 0.6

 0.8

 1

-1 -0.5  0  0.5  1

g(
µ)

µ

Γs βs = 5.0

σ= 0.01
σ= 0.1
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the spectrum of accelerated particles in the case of isotropic scattering with σ = 0.01
(solid line) and σ = 0.1 (dashed line). Right box: angular distribution for Γsβs = 5 with
σ = 0.01 (solid line) and σ = 0.1 (dashed line).

to the shock normal) are of practical importance, in that the return of particles to the
shock from the upstream section is warranted. Quasi-parallel shocks imply a very low
probability of return, so that the spectrum of accelerated particles is extremely soft. The
process of acceleration eventually shuts off for parallel shocks. For relativistic shocks,
the situation is less pessimistic because the accelerated particles and the shock front
move with comparable velocities in the upstream frame. In general, the acceleration
stops being efficient when the cosine of the inclination angle α of the magnetic field with
respect to the shock normal is comparable with the shock speed in units of the speed
of light. The slope of the spectrum of accelerated particles for cos α = 0 as a function
of the shock velocity is plotted in Fig. 3.7 for the two cases in which SPAS or LAS is
operating in the downstream plasma. The slope as a function of cos α = 0 for shocks
moving at different speeds is shown in Fig. 3.9. In the same figure we also show the
return probability from the upstream section, in order to emphasize that the presence
of a large scale magnetic field upstream leads to particle leakage to upstream infinity.
This latter phenomenon disappears when scattering is present, in that scattering always
allows for the shock to reach the accelerated particles. In this case the probability of
returning to the shock at an arbitrary direction is unity. One can ask when and how
the transition from a situation in which there is no scattering to one in which scattering
is at work takes place. When some scattering is present but the energy density in the
scattering agents (e.g. Alfvèn waves) is very low compared with the energy density in the
background magnetic field, only very low energy particles are effectively scattered. When
their energy becomes large enough, they only feel the presence of the coherent field.
Increasing the amount of scattering, this transition energy becomes gradually higher.
Particles whose Larmor radius is larger that the coherence scale of the magnetic field
can eventually escape the accelerator. In general the level of turbulence (and therefore
of scattering) and the number of accelerated particles are not independent since the
turbulence may be self-generated through streaming-like instabilities Bell (1978a).



38

In §3.3 we extended our analysis to the very interesting case of anisotropic scatter-
ing in both the upstream (unshocked) and downstream (shocked) medium. The pattern
of anisotropy, which clearly depends on the details of the formation and development of
the scattering centers, has been parametrized in four different scenarios, and for each
one we calculated the angular part of the distribution function and the spectrum of the
accelerated particles. Deviations from the predictions obtained in the context of isotropic
SPAS and LAS have been quantified: the typical magnitude of these deflections is a few
percent, but there are situations in which the deviation is more interesting, in particular
because it goes in the direction of making spectra harder.



Chapter 4

The role of the plasma equation of state

4.1 Introduction

Chapter 3 is dedicated to the analysis of the spectrum of particles accelerated at
relativistic shock with respect to the diffusive properties of the shocked and un-shocked
plasmas. In the contest of test-particle theory, besides the scattering properties, the
second important quantity that determines the slope of the particle spectrum is the fluid
velocity jump at the shock discontinuity. This quantity strongly depends upon the fluid
equation of state. In Chapter 3 we assume a relation between upstream and downstream
fluid velocities as results from considering the shocked plasma as a simple monoatomic
gas. No interaction between ions and electrons are assumed, besides the simple Coulomb
scattering. Moreover the turbulent magnetic field play no role in the plasma equation
of state, and no energy losses are considered. A more realistic plasma equation of state
has to take into account these contributions. The aim of this chapter is to determine the
changes to the spectral index of the accelerated particles, taking into account the possi-
bility that different physical situations may change the equation of state of the plasma
downstream of the shock. In particular collective plasma effects in the proximity of a
collisionless shock may be responsible for different levels of thermalization of the electron
and proton gas components behind the shock. These effects are expected to provide a
channel of energy transfer from protons to electrons (see for example Begelman & Chiueh
(1988); Hoshino et al. (1992); Gallant et al. (1992)) though not through particle-particle
collisions. Other collective processes might result in the generation of a downstream
turbolent magnetic field, which in turn may change the equation of state of the down-
stream fluid. We describe these effects in a phenomenological way, by introducing a
parametrization of the energy exchange between electrons, protons and magnetic field
energy densities in the downstream plasma, and we use such parametrization to infer
the changes in the equation of state and the spectral slope of the particles accelerated
at the shock front.

As a result of our calculations, we found several instances of violation of the
so-called universality of the spectrum in both the newtonian and the trans-relativistic
regimes.

The outline of this Chapter is the following: in §4.2 we remember the relativistic
jump conditions for a strong plane shock wave propagating in a generic fluid. In §4.3 we
introduce a new proton-electron plasma equation of state, adding to the classical Synge
equation two contributions: (i) possibility of energy transfer from protons to electrons by
collective plasma mechanisms and (ii) generation of a turbulent magnetic field (while the
consequence of an upstream coherent magnetic field will be discussed in the Appendix
A.2). We solve the jump conditions applying this new equation to downstream plasma
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obtaining the downstream fluid velocity as a function of the upstream one. In §4.4 we
show the results for the accelerated particles spectral slope computed using the new
plasma equation of state. We summarize and discute the results in §4.5.

4.2 Relativistic jump conditions for strong shocks

The jump conditions describing the conservation of mass, momentum and energy
across a shock front moving with velocity Vsh = βshc in a medium with density n1,
pressure p1 and energy density ǫ1 are as follows (e.g. Kirk & Duffy (1999); Gallant
(2002)):

Γ1β1n1 = Γ2β2n2 (4.1)

Γ
2

1
β1(ǫ1 + p1) = Γ

2

2
β2(ǫ2 + p2) (4.2)

Γ
2

1
β

2

1
(ǫ1 + p1) + p1 = Γ

2

2
β

2

2
(ǫ2 + p2) + p2 . (4.3)

Number densities (n), pressures (p) and energy densities (ǫ) are all measured in the
comoving frame of the plasma they refer to, while the Lorentz factor Γ1 (Γ2) of the
upstream (downstream) plasma are measured in the shock frame (clearly Γ1 = Γsh =

(1 − β
2

sh
)
−1/2

). The indexes ‘1’ and ‘2’ refer to the upstream and downstream plasmas

respectively.
The equations above can be easily generalized to the case of presence of non neg-

ligible magnetic fields upstream, but in the following we shall assume that the dynamical
role of such fields is always fully negligible, and shall therefore ignore the corrections in
the conservation equations.

The system of equations Eqs. (4.1)-(4.3) can be solved once an equation of state
for the plasma has been fixed, in the very general form ǫ = ǫ(n, p). For simplicity, in
the following we shall limit ourselves with the case of strong shocks, namely shock waves

propagating in cold pressureless media, so that p1 = 0 and ǫ1 ≃ n1mc
2 ≡ ρ1c

2
. In this

framework Eqs. (4.2) and (4.3) become:

Γ
2

1
β1ρ1c

2
= Γ

2

2
β2(ǫ2 + p2) and (4.4)

Γ
2

1
β

2

1
ρ1c

2
= Γ

2

2
β

2

2
(ǫ2 + p2) + p2 . (4.5)

We assume that the equation of state has the form ǫ2 = ρ2c
2
F (p2/ρ2c

2
), or in

terms of the normalized variables p̄2 = p2

ρ2c2
and ǭ2 = ǫ2/ρ2c

2
:

ǭ2 = F (p̄2). (4.6)

Most cases of astrophysical interest are well described by this functional form for
the equation of state of the downstream gas, as discussed in Sec. 4.3.

Using the equation of mass conservation, Eq. (4.1), Eq. (4.4) becomes

Γ2 = Γ1/(ǭ2(p̄2) + p̄2) ≡ g1(p̄2), (4.7)
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while from (4.5) we have

Γ
2

2
= (ǭ

2

2
− 1)/(ǭ2(p̄2)

2 − p̄
2

2
− 1) ≡ g

2

2
(p̄2) . (4.8)

The solution for p̄2 can be obtained solving numerically the equation g1(p̄2) = g2(p̄2).
Once p̄2 is known, the equation of state gives ǭ2 while Eq. (4.7), or equivalently Eq. (4.8),
gives Γ2. Finally Eq. (4.1) gives the number density n2. At this point it is also easy to
determine the velocity jump and the shock rβ = β1/β2, which is a crucial parameter for

the description of the process of particle acceleration at the shock front.

4.3 Equations of state for the downstream plasma

In this section we consider several instances of equations of state for the down-
stream gas, in addition to the well known and widely used Synge equation of state Synge
(1957). In §4.3.1 we discuss the case of a downstream plasma made of two independent
particle species that may thermalize to different temperatures. In §4.3.2 we introduce
the possibility that the the proton and electron components are coupled in a collisionless
way. In §4.3.3 we discuss the modification of the equation of state due to generation
of a turbulent magnetic field in the downstream plasma. Finally in §4.3.4 we make an
attempt to consider the most general case in which all the effects described above are
taken into account.

4.3.1 The case of a plasma with independent particle species

An equation of state which is widely used in the literature was introduced by
Synge (1957). The basic assumption is that the plasma consists of a single component
with temperature T , and

ǫ + p = ρc
2
G
(

mc
2
/kBT

)

(4.9)

where G(x) = K3(x)/K2(x) and K2, K3 are the modified Bessel functions. For x ≫ 1

(i.e. kBT ≪ mc
2
) Eq. (4.9) reduces to the classical Newtonian equation of state,

ǫ = ρmc
2

+ 3p/2, while in the opposite limit x ≪ 1 (i.e. kBT ≫ mc
2
) the ultra-

relativistic equation of state is recovered, ǫ = 3p.
If the downstream plasma can be well described as an ideal gas (p = nkBT ) made

of a single component, Eq. (4.9) can be rewritten in terms of the normalized variables
introduced in the previous section:

ǭ = G (1/p̄) − p̄, (4.10)

which has the functional form assumed in §4.3 with F (p̄) = G (1/p̄)− p̄. The Synge equa-
tion of state describes correctly the behaviour of the plasma in the ultra-relativistic and
newtonian limits: applying the procedure illustrated in §4.2 we easily find the velocity
jump rβ , which is plotted as a solid line in Fig. 4.1, as a function of the product Γshβsh.

In the case of strong Newtonian shocks the well known result rβ = 4 is recovered. In the

limit of an ultra-relativistic shock, when the downstream fluid obeys the ultra-relativistic
equation of state for the gas, rβ = 3.
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The generalization of the Synge equation of state to the case of two (or more) in-
dependent particle species with temperatures Ti is rather straightforward. Of particular
interest is the case in which the temperature of the i−th species is simply due to the
isotropization of the velocity vectors at the shock surface. In this case the energy density

of the i−th species in the downstream plasma can be written as ǫ2(i) = Γrelnimic
2
, or,

in terms of dimensionless variables:

ǭ2(i) = Γrel, (4.11)

independent of the type of particles. Since the normalized energy density is the same
for all species, the normalized pressures need to be the same too. It follows immediately
that for the system as a whole one can write:

ǭT + p̄T =
1

ρTc2

∑

i

ρic
2
G
(

mic
2
/kBTi

)

= G(1/p̄T) , (4.12)

where the total quantities have the subscript T .

4.3.2 Coupling between thermal protons and thermal electrons

The formation of collisionless shocks, both in the relativistic and newtonian regime
still represents a subject of active investigation, in that the mechanisms that allow for an
efficient transport of information among the particles in the plasma through the exchange
of MHD waves are poorly known. On the other hand we know that such shocks do exist,
which can be interpreted as an indirect proof of the importance of collective effects
in collisionless plasmas. The same type of effects may also be responsible for total or
partial thermalization of the different components of a plasma. Whether electrons and
protons downstream of the shock front are in thermal equilibrium or not is a matter
of debate. Most likely the answer depends on the specific conditions behind the shock
of interest. In addition to the thermalization of the species, there are several other
problems related to our ignorance of the complex physics that rules these effects: for
instance even the spectrum of the thermal distribution of protons (and respectively of
electrons) may not be a typical Maxwellian, in particular if a background magnetic field
makes the distribution of energy in the waves anisotropic. In these conditions one should
probably introduce a plasma temperature along the field and perpendicular to it. The
problem of the thermalization of the plasmas around collisionless shocks is also related
to the issue of the thickness of a collisionless shock, which is usually assumed to be of
the order of the gyration radius of the thermal proton component. The same collective
effects also determine the efficiency of injection of particles in the acceleration cycle: it
appears intuitively clear that in a collisionless shock the processes of thermalization and
particle acceleration to non-thermal energies are intimately related to each other.

Lacking a true theory of collisionless energy transport, we adopt here a phe-
nomenological approach in that we parametrize the degree of equilibration between elec-
tron and proton temperatures in the downstream region by introducing a parameter ξe,
such that the temperatures of electrons and protons satisfy the relation Te = ξeTp. On

very general grounds we expect ξe < 1, at least close to the shock, before any collisional
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effects may possibly equilibrate the two temperatures where the plasma has moved away
from the shock front.

If we assume that the electron and proton gas separately behave as perfect fluids,
the pressures of the two components are related through pe = nkBTe = ξepp. The

equations of state of electrons and protons are easily found to be

ǭp = ρ̄p G

(

ρ̄p

p̄p

)

− p̄p (4.13)

ǭe = ρ̄e G

(

ρ̄e

ξep̄p

)

− ξep̄p . (4.14)

Here all the normalized quantities refer to the total matter density, namely x̄ =

x/n(me + mp)c
2
. In order to solve the equations for the jump conditions at the shock

surface we also need the total normalized energy densities and pressures:

ǭT(p̄p) = ǭp(p̄p) + ǭe(p̄p) (4.15)

p̄T(p̄p) = p̄p(1 + ξe) . (4.16)

We found the appropriate solutions for the jump conditions for several values of
the parameter ξe in the range me/mp ≤ ξe ≤ 1. Fig. 4.1 shows the velocity ratio rβ

as a function of the product Γshβsh for ξe = me/mp, 0.1, 0.3, 0.5, 1 and ∞. The case

considered in section 4.3.1 corresponds to ξe = me/mp, while ξe = 1 represents the limit

case with protons and electrons thermalized at the same temperature.
The most peculiar feature of the curves plotted in Fig. 4.1 is the presence of a

peak approximately at the place where the shock becomes trans-relativistic. The nature
of this peak and the phenomenological implications of its presence are rather interesting.
In order to understand the origin of the peak we consider the unphysical case ξe = ∞,
which corresponds to completely cold ions in the downstream plasma. For all curves in
Fig. 4.1 we can clearly identify three regimes: 1) both electrons and protons downstream
are non-relativistic; 2) electrons are relativistic while protons are still non-relativistic; 3)
both electrons and protons are relativistic.

The case ξe = me/mp (or equivalently ξe ≈ 0) is the case that is usually studied in

the literature. In the limit of non relativistic strong shocks this case leads to compression
factor that asymptotically approaches 4. The derivative of the compression factor with
respect to βsh in this non relativistic regime is zero, as can be shown by using the Taub
conditions Eqs. (4.1)-(4.3) (or equivalently, and more easily, the non relativistic version,
the Rankine-Hugoniot jump conditions). On the other hand, if one expands the function
G(x) in the equation of state of electrons to second order in the variable 1/x (i.e. for
mildly relativistic temperature), keeping the protons non relativistic, the resulting total
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equation of state reads

ǭT = 1 +
3

2
p̄T +

15

8

ξ
2

e

(1 + ξe)
2

1

ρ̄e

p̄
2

T
. (4.17)

It is easy to show that the Rankine-Hugoniot relations give now a compression factor
with a positive derivative with respect to βsh, for small values of βsh. Moreover the
asymptotic value of rβ for ultra-relativistic shocks is always 3. This implies that at some

point in between the compression factor has a peak where the derivative is zero and the
compression factor is maximum. This is clearly seen in Fig. 4.1: in the trans-relativistic
regime, electrons become relativistic downstream before protons do (and even if the
shock is not fully relativistic) thereby making the downstream fluid more compressive.
To show that this is the correct interpretation, one can estimates the value of rβ at the

peak using the equation of state for non relativistic protons (ǫp = ρpc
2

+ 3pp/2) and

fully relativistic electrons (ǫe = 3pe). Under this assumption the total normalized energy
reads

ǭT = ρ̄p +
3

2

1 + 2ξe

1 + ξe

p̄T . (4.18)

Inserting this equation in the Rankine-Hugoniot relations one obtains the following ex-
pression for the compression ratio:

rβ =
4 + 7 ξe

1 + ξe

. (4.19)

Substituting ξe with the values listed in Fig. (4.1), one recovers values of the compression
factor close to that of the peaks within an error <

∼
4%.

4.3.3 Turbulent magnetic field production

It is interesting to investigate the possibility that part of the ram pressure of
the upstream fluid may be converted into a turbulent magnetic field in the downstream
region. We remember that the collisionless shock theory needs the presence of a strong
magnetic turbulence within the shock layer, capable to randomize the bulk motion of
the upstream particles. A possible way to produce such a turbulence is by a two-stream
magnetic instability (see Medvedev & Loeb (1999) and Rossi & Rees (2003) for a discus-
sion). This turbulence is in turn absorbed by the randomized particles themselves, but
a fraction of magnetic energy can survive also far from the shock layer. Using numerical
simulation Frederiksen et al. (2004) showed that for relativistic shock this is indeed the

case
1
.

Here we investigate this scenario and in particular we calculate the compression
factor at the shock and the spectrum of the accelerated particles. In order to take into
account the dynamical effect of the turbulent magnetic field it is necessary to generalize

1The problem of such numerical simulations is that is very difficult to follows the fluid’s
evolution far from the shock, hence this question remains open.
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Fig. 4.1 Velocity compression factor at the shock when the downstream protons transfer
a fraction ξe of their thermal energy to electrons.

the Taub conditions at the shock, (4.2)-(4.3), by introducing the proper components
of the electromagnetic stress tensor T

µν
. The specific energy density in the form of

turbulent magnetic field is ǫm = T
00

while the pressure in the direction identified by the

index i is pm,i = T
ii
.

In the plasma reference frame, where no electric field is present, the electro-
magnetic energy tensor can be written as follows:

T
µν

=
1

4π

(

F
µα

F
ν

α
− η

µν
F

αβ
Fαβ

)

= − 1

4π

(

B
µ
B

ν − 1

2
B

2
η

µν
)

. (4.20)

Here B
µ

= (0,B) and B
2

= B
2

x
+ B

2

y
+ B

2

z
. To be included in Eqs. (4.2)-(4.3) T

µν
has

to be expressed in the shock frame, where both the scaler B and the field component
along the propagation direction Bx remain unchanged. Hence the energy density and
the pressure along the shock propagation direction are

ǫm = (B
2

x
+ B

2

y
+ B

2

z
)/8π , (4.21)

pm,x = (−B
2

x
+ B

2

y
+ B

2

z
)/8π . (4.22)

Two situations may be of interest here: 1) the turbulent field is created directly
behind the shock. In this case the strength of the field is equally distributed among the
three spatial dimensions. 2) the turbulent field downstream results from the compression
of a turbulent field upstream. In this second case the two components of the field which
are perpendicular to the shock normal are amplified at the shock while the parallel
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component is left unaltered. In the former case the relation between energy density and
pressure is easily obtained to be

pm = ǫm/3 , (4.23)

where the factor 1/3 suggests that the magnetic field behaves like a relativistic gas
irrespective of the shock speed. On the other hand, in the latter case, if the shock is
ultra-relativistic, the parallel component of the turbulent magnetic field is negligible with
respect to the perpendicular components due to the shock compression. If the parallel
component is neglected, the relation between energy and pressure of the magnetic field
is easily obtained to be pm = ǫm.

In the following we limit ourselves with the case pm = ǫm/3, but we discuss the
case pm = ǫm in Sec. 4.4.

If ξm is the fraction of magnetic energy density with respect to the proton kinetic
energy density, we can write

ǭm = ξm (ǭp − ρ̄p) . (4.24)

When the magnetic energy equals the kinetic energy of protons, the magnetic
pressure is smaller than that of protons in the Newtonian limit. On the other hand the
two pressures become equal in the ultra-relativistic limit. It follows that we expect the
compression ratio to increase in the Newtonian limit as the magnetic contribution in-
creases, while the compression factor levels off when the relativistic regime is approached.
The total downstream equation of state when only protons and a turbulent magnetic field
are taken into account is:

ǭT = ǭp + ǭm = ǭp(1 + ξm) − ξmρ̄p . (4.25)

Fig. 4.2 shows the compression factor rβ for this situation, for several values of

ξm, in the range 0 < ξm < 1. The velocity compression factor ranges from 5.0 in the
Newtonian limit to 3.0 in the ultra-relativistic limit, when protons and the magnetic
field are considered in equipartition (i.e. ξm = 1).

4.3.4 The general case

As a natural conclusion of our exercise, we consider now the case of an electron-
proton plasma with all the effects introduced above. The total energy of the system is
given by the sum of the Eqs. (4.13), (4.14) and (4.24). The total pressure is the sum of
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Fig. 4.2 Velocity compression factor at the shock when a turbulent magnetic field is
present inside the electron-proton plasma, and ξm is the fraction of magnetic field energy
density with respect to the protons kinetic energy.

the three contributions due to protons, electrons and magnetic pressure. We can write:

ǭT(p̄p) = ǭp + ǭe + ǭm

= ǭp(1 + ξm) + ǭe − ρ̄pξm

= (1 + ξm)ρ̄p G

(

ρ̄p

p̄p

)

+ ρ̄e G

(

ρ̄e

ξep̄p

)

−p̄p(1 + ξm + ξe) − ρ̄pξm , (4.26)

p̄T(p̄p) = p̄p + p̄e + p̄m

= p̄p

(

1 + ξe −
ξm

3

)

+
ξm

3
ρ̄p

[

G

(

ρ̄p

p̄p

)

− 1

]

, (4.27)

where we also introduced the proton and electron normalized densities ρ̄p = mp/(mp +

me) and ρ̄e = me/(mp + me).

In order to avoid the effects of proliferation of free parameters, in the following
we limit ourselves with a sort of equipartition situation, in which ξe = ξm ≡ ξ. Fig. 4.3
shows the resulting compression factor rβ for me/mp ≤ ξ ≤ 1.

It is important to stress that for shocks in the newtonian and trans-relativistic
regime, the magnetic field and the thermal electrons both result in making the plasma
more compressible (the compression factor is as high as 5.6 at the peak Γshβsh ≃ 0.3,
when equipartition ξ = 1 is assumed). On the other hand for highly relativistic shocks
all the three components behave in the same way resulting in a compression factor equal
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to 3. The electron contribution turns out to be especially important in the intermediate
velocity range (0.1 <

∼
Γsβs

<
∼

1).
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Fig. 4.3 Velocity compression factor when the equation of state of the downstream plasma
takes into account the exchange of energy between electrons and protons, and the gen-
eration of a turbulent magnetic field. Here we assumed ξe = ξm ≡ ξ.

4.4 The particles’ spectrum

The spectrum and angular distribution of the particles accelerated at shocks with
arbitrary speed and arbitrary scattering properties of the fluid can be calculated follow-
ing the theory of particle acceleration reviewed in chapter 2. This approach requires
the calculation of the conditional probabilities of a particle returning from upstream or
downstream at some direction given the entrance direction. These conditional probabili-
ties were described by Blasi & Vietri (2005) in terms of two non-linear integral equations,
that were solved iteratively.

The theoretical approach of Vietri (2003) and Blasi & Vietri (2005) applies equally
well to cases of Small Pitch Angle Scattering (SPAS) and Large Angle Scattering (LAS)
and to the case of a large scale coherent field upstream, as shown in chapter 3. Here we
limit ourselves with considering only two situations, namely that of SPAS, both upstream
and downstream, and that of a large scale field upstream, with orientation perpendicular
to the shock normal (perpendicular shock). In 3.2.3 it was shown that the spectral shape
does not change dramatically with the inclination, with the exception of the cases where
the shock is quasi-parallel, but these cases lead to insignificant acceleration and are
therefore physically irrelevant.
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Before showing our results for the different equations of state discussed above,
it is useful to show the spectral slope and the distribution function of the accelerated
particles for different values of the velocity compression factor. In Fig. 4.4 we show
the spectral slope as a function of the compression factor for several values of Γshβsh,
ranging from 0.05 to 5.0. The solid line corresponds to the case of a strong newtonian
shock, s(rβ) = (rβ + 2)/(rβ − 1). In Fig. 4.5 we also show the distribution function of

the accelerated particles as a function of the direction µ measured in the downstream
frame.
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Fig. 4.4 Slope of the spectrum of accelerated particles as a function of the velocity
compression factor for different values of the shock speed. The scattering in the SPAS
regime both upstream and downstream.

4.4.1 The case of electron-proton coupling

As discussed in §§4.3.1-4.3.4, the basic effect of changing the equation of state is
to change the compression factor at the shock and thereby the shape of the spectrum
of the accelerated particles. In the following we discuss separately the effect of the
interaction between electrons and protons in the downstream plasma, and the effect of
the generation of magnetic field. Finally we shall use Eqs. (4.26) and (4.27) in order to
quantify the combined effect of the two phenomena.

Fig. 4.6 shows the spectral slope as a function of the shock speed for different
values of the parameter ξe which characterizes the degree of coupling between thermal
electrons and thermal protons, as introduced in §§4.3.1. The left panel refers to the case
of SPAS both upstream and downstream, while the right panel refers to the case of a
regular perpendicular field upstream (and SPAS downstream).
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Fig. 4.5 Angular distribution of accelerated particles at the shock front as measured in
the downstream fluid frame. µ is the cosine of the angle between the particle direction
and the shock normal. The different lines correspond to different values of the velocity
compression factor, as indicated in the labels, while the shock velocity has a fixed value
for each plot: Γshβsh = 0.1 (top-left), 0.5 (top-right), 1.0 (bottom-left) and 5.0 (bottom-
right).
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Some comments are in order: for very non-relativistic shocks (not shown in the
plot) the spectrum has the standard slope s = 4. In the ultra-relativistic limit universal-
ity is also reached, being the results independent on the value of ξe. Most differences in
the slope of the spectrum of accelerated particles is present for trans-relativistic shocks:
a minimum in the slope appears for these shocks, deeper for larger values of ξe. This
flattening of the spectrum is due to the increasing compression ratio at trans-relativistic
shock speed, as explained in the last paragraph of §4.3.2. A very similar behaviour was
found also in Kirk & Duffy (1999) (compare their Fig 3 with left panel of our Fig. 4.6)
where they use a different technique, the eigenvalue expansion firstly introduced by Kirk
& Schneider (1987), and an equation of state for a gas consisting of both hydrogen and
helium.
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Fig. 4.6 Slope of the spectrum of accelerated particles as a function of βshΓsh when the
electrons have a temperature Te = ξeTp. The left panel refers to the case of SPAS in

both the upstream and downstream plasmas. The right panel refers to the case in which
a regular perpendicular field is present upstream.

4.4.2 The case of turbulent magnetic field production

Based on the discussion in §4.3.3, the effect of a turbulent magnetic field is ex-
pected to depend upon the shock speed. As illustrated in Fig. 4.7 (left and right panel
as in Fig. 4.6) the spectrum of accelerated particles is harder than in the absence of mag-
netic fields for newtonian and trans-relativistic shocks (the minimum slope is s = 3.75 in
the equipartition regime, ξm ∼ 1). In the ultra-relativistic regime all the curves approach
the same value: the configuration of magnetic field adopted here does not produce any
change in the particle spectra with respect to the case where no magnetic field is present.
On the other hand this is easy to guess simply looking at Eq. (4.23).

The spectrum of the accelerated particles is however rather sensitive to the struc-
ture of the magnetic field. As we discussed in §4.3.3 and A.2, the equation of state of
the field depends on whether the field is generated downstream and is therefore isotropic
in the local frame, or it is rather compressed in its perpendicular components. In this



52

latter case the equation of state of the field is not the same as that of a relativistic fluid
and this affects the compression factor at the shock. As an instance we consider here

the case Γshβsh = 5 and we introduce a magnetization parameter α = (δB
2
/8π)/ρc

2

in the upstream region, where δB is the amplitude of the average magnetic turbulence.
α = 0 corresponds to the unmagnetized case, which leads to a compression factor 3.12

and a spectral slope s = 4.12, as already found earlier. On the other hand, for α = 10
−2

(α = 3 × 10
−2

) the compression factor becomes 2.71 (2.16) and the spectral slope is
s = 4.4 (s = 4.95). The corresponding value of the parameter ξm downstream, as
resulting from the compression of the perpendicular components of the magnetic field
is ξm = 0.11 (ξm = 0.28). This softening of the spectrum may have very important
phenomenological consequences for those classes of sources where particle acceleration
occurs at ultra-relativistic shocks.
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Fig. 4.7 Slope of the spectrum of accelerated particles as a function of βshΓsh when a

turbulent magnetic field is present with ǫm = ξm(ǫp − ρpc
2
). The left panel refers to the

case of SPAS in both the upstream and downstream plasmas. The right panel refers to
the case in which a regular perpendicular field is present upstream.

4.4.3 The general case

Finally we consider the case in which both the effects of turbulent magnetic field
downstream and energy exchange between the thermal components of electrons and pro-
tons are taken into account. More specifically we concentrate on the so called equipar-
tition case, in which ξe = ξm = ξ and we illustrate our results for different values of
ξ. Here we restrict our attention to the case in which the turbulent field is generated
downstream and does not result from the compression of an upstream field. As usual,
the left panel in Fig. 4.8 refers to SPAS both upstream and downstream and the right
panel to a large scale field upstream (and SPAS downstream).

For ξ = me/mp the standard result is recovered in the SPAS case (left panel).

The case ξ = 0 when a large scale magnetic field is present upstream was discussed in
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Fig. 4.8 Slope of the spectrum of accelerated particles as a function of βshΓsh with the
full equation of state for the downstream plasma. The left panel refers to the case of
SPAS in both the upstream and downstream plasmas. The right panel refers to the case
in which a regular perpendicular field is present upstream.

Section 3.2 and the results are very close to the case ξ = me/mp used as the lower limit

in Fig. 4.8.
In the other extreme case ξ = 1 the spectrum of accelerated particles is harder

than 4 in the non-relativistic limit and approaches the universal spectrum in the ultra-
relativistic case. In both cases of SPAS and regular field upstream, a minimum in the
slope of the spectrum is reached at βshΓsh ≈ 0.4 corresponding to s ≈ 3.65. This is a
result of the interaction between electrons and protons in the trans-relativistic regime.

In Figs. 4.6, 4.7 and 4.8 the range of shock velocities adopted for the cases of
upstream ordered magnetic field and of SPAS are quite different. This is not due to any
deep reason, but simply to the fact that the computation method introduced in Blasi &
Vietri (2005) becomes very challenging when the Lorentz factor becomes too large. This
is related to the fact that in order to describe the regime of small pitch angle scattering
we need to adopt a finite aperture σ of the scattering function which however must stay

smaller than 1/4Γ
2

sh
in order to operate in the SPAS regime. As discussed in §3.2 this

problem is absent in the case of ordered magnetic field.

4.5 Discussion

We used the theoretical framework introduced in Chapter 2 to determine the spec-
trum of particles accelerated at shocks with arbitrary speed and scattering properties,
with different equations of state of the gas downstream. In particular we investigated
two situations: 1) the downstream gas is made of thermal electrons and protons that
may exchange energy with each other, thereby changing the equation of state; 2) the
downstream gas includes a turbulent magnetic field. We also considered the case in
which both effects are at work at the same time.

In the downstream frame the scattering has always been assumed to be in the
SPAS regime, while in the upstream fluid we considered two scenarios, namely SPAS
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and regular field with no turbulent scattering. We limited our attention to the case of
strong shocks, namely the case in which the inflowing plasma has zero pressure.

When the downstream plasma is made of electrons and protons and their temper-
atures are different, for newtonian and ultra-relativistic shocks the shape of the spectrum
is not appreciably changed. However, for trans-relativistic shocks the compression factor
increases appreciably when the electron temperature is ≫ me

mp
Tp, causing a flattening

in the spectrum of the accelerated particles. In particular this is true for Te = Tp,

a situation which might be achieved due to some efficient collisionless plasma process,
able to equilibrate the electron and proton components more efficiently than the simple
isotropization of the velocity vectors.

The effect of a turbulent magnetic field on the compression factor and on the
spectral slope is more complex. We identified two situations of interest that arise when
the magnetic field is introduced in the conservation equations at the shock surface: 1) the
turbulent field is created downstream and is isotropic; 2) the magnetic field downstream
is the result of the compression of the turbulent field upstream (only the perpendicu-
lar components are compressed). In the former case it can be demonstrated that the
equation of state of the magnetic field is identical to that of an ideal relativistic gas, Eq.
(4.23), irrespective of the shock speed. When the shock is non-relativistic the compres-
sion factor at the shock is increased and the spectra become harder than in the absence
of field. For relativistic shocks the usual asymptotic spectrum is reached both in the
case of upstream regular deflection or small pitch angle scattering.

The second case is more interesting: when the perpendicular components of the
turbulent upstream field are amplified by crossing the shock surface, the resulting mag-
netic field downstream is strongly anisotropic and the equation of state of the magnetic
field is pm = ǫm, not resembling that of a relativistic gas. In this case, for relativistic
shocks the spectra of accelerated particles are softer than in the first scenario. For in-

stance for Γshβsh = 5 and α = 10
−2

(α = 3 × 10
−2

) the compression factor becomes
2.71 (2.16) and the spectral slope is s = 4.4 (s = 4.95). The corresponding value of
the parameter ξm downstream, as resulting from the compression of the perpendicu-
lar components of the magnetic field is ξm = 0.11 (ξm = 0.28). The important effect
consisting of a spectral steepening was found by Lemoine & Revenu (2006) and was
attributed to the fact that the compression in the downstream gas makes the magnetic
field quasi-perpendicular, thereby reducing significantly the probability of return from
the downstream frame. This effect is limited, in the analysis of Lemoine & Revenu (2006)
to the particles with gyration radius smaller than the coherence scale of the turbulent
field. The steepening of the spectrum as found in our calculations, is due to a change
in the equation of state of the downstream plasma (electrons, protons and magnetic
field) and concerns all of the spectrum of the accelerated particles. The relevance of this
finding for the phenomenology of several astrophysical sources of accelerated particles,
in particular those where a relativistic shock is expected or observed, is evident.



Chapter 5

Nonlinear CRs acceleration for newtonian shock

5.1 Introduction

Past chapters were dedicated to analyse the shock acceleration process assuming
that the energy transferred from the shock motion to the non-thermal particles were
negligible. This assumption, commonly called test-particle approximation, allows us
to separate the study of the acceleration process into two different steps: firstly the
determination of the shock structure, witch depends only on the thermal component of
the gas, than the study of the non-thermal particles production as a function of the fixed
shock structure. For obvious reasons this approach is also called linear theory.

In spite of the important results achieved, test-particle theory presents serious
deficiencies when used to explain the existence of CRs. First of all we note that, in
the contest of SNR paradigm, the linear theory can account only for CRs up to an

energy around Z × 10
14 − 10

15
eV (Lagage & Cesarsky 1983). The maximum energy is

limited by the combination of some quantities: the size L of the shock, the time τ during
which the shock propagates at hight velocity, vs, and the spatial diffusion coefficient of

the particles, D(p). Tipical values for a SNRs shock are vs = 10
4
Km s

−1
, L = 10pc

and τ = 10
3
yr. The simplest assumption for the diffusion is the Bohm like diffusion,

which assumes the mean free path of a particle to be of the order of its Larmor radius,

namely DB(p) = rLc/3 = pc/(3ZeB). Energies up to Z × 10
15

eV can be obtained using
B = 3µG, the tipical value for the interstellar magnetic field. Acceleration to higher
energies is improbable unless the magnetic field would be larger.

If one belives the SNRs to be the factories of galactic CRs, the maximum en-
ergy predicted by the linear theory has serious problems in explaining the spectrum as
observed at the Earth. Following the recent results of KASCADE experiment, protons

are observed up to energies of 2 − 4 × 10
16

eV (Hoerandel 2005). This problem become

worst if one supposes that the galactic CRs extend up to the energy of the ankle
1
,

i.e. ∼ 5 × 10
18

eV. Similar difficulties arises if one try to apply the shock acceleration
model in some extra-galactic environments to explain the most energetic part of the CRs
spectrum.

1Up to now the value of the cross energy, where the extragalactic CRs start to dominate on
the galactic component, is still a matter of debate. Two different scenario has been proposed:
the ankle scenario identifies the cross energy at 5×1018 eV, where a change of slope occurs. Most
recently the deep scenario has been proposed, where the ankle is interpreted as a feature of the
extragalactic CRs alone, due to the interaction with the CMBR photons. In this case the cross
energy is located at 1018 where a feature called second knee has been identified. See Aloisio et al.
(2007) and references therein for a detailed discussion.
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CRs are believed to be scattered by the magnetic field irregularities exited by the
CRs themselves through the streaming instability (Bell 1978a). In the contest of linear
theory these irregularities have an amplitude δB ≤ B

◦
, where B

◦
is the background

magnetic field into the unshocked region. But this condition holds only if the energy

channelled into the CRs is small compared with the bulk energy of the gas, PCR ≪ ρu
2
.

McKenzie & Volk (1982) firstly point out the possibility that CRs themselves can amplify
the turbulent magnetic field above the background field value. Using the equation that
describes the linear amplification of the turbulence (e.g. Bell & Lucek 2001), a back to
the envelope calculation gives the following estimate for the total energy of the amplified
field:

δB
2

B2

◦

= 2MA

PCR

ρu2 , (5.1)

where MA = u/vA is the Alfvén Mach number. If we suppose PCR ∼ ρu
2
, the ampli-

fication can be as hight as M
1/2

A
. For a SNRs shock propagating into the interstellar

medium, with tipical density of 1 proton·cm−3
and a tipical temperature of 10

5
K, Mach

number as hight as 1500 can be obtained. Numerical simulation reported in Lucek &
Bell (2000) confirms this effect, predicting an amplification factor around 100. As a

consequence the maximum energy predicted could be as hight as Z × 10
16 − 10

17
eV.

However such estimate can be strongly reduced by non linear effects which occurs when
δB ∼ B

◦
, and can saturate the amplification effect.

Some recent analysis of the hight resolution X-rays images of several SNRs pro-
vided the first clue about a probable magnetic field amplification in the post shock region
(Berezhko et al. 2003; Berezhko & Völk 2004; Völk et al. 2005; Parizot et al. 2006). Rel-
ativistic electrons lose energy by bremmstralung and emit X-rays. Both the brightness
and the size of the emitting region depend on the magnetic field intensity: strongest
is the field, brightest and smaller is the emitting region. Combined measure of these
two quantities allow one to estimate the field intensity. In all cases considered by the
cited authors values around few thousand µG are deduced. Hence, if we suppose to start
with the tipical interstellar field, 3µG, amplification around a factor 100 are required.
Recently a second mechanism of amplification has been proposed by Bell (2004), who
identified a non-resonant, nearly purely growing modes driven by the CRs current. Such
modes grow more rapidly than the resonant Alfvén waves usually considered, and can
account for a strong field amplification.

Previous considerations justify the importance of developing a non linear approach
for the shock acceleration problem. The non linearity reflects into two distinct aspects.
The first point concerns the mutual interaction between the CRs and the Alfvén waves:
from one hand the CRs produce and amplify the Alfvén waves; from the other hand
the Alfvén waves scatter the CRs themselves. From the mathematical point of view
this interaction translates into a dependence of the diffusion coefficient by the CRs
distribution function, D[f(x, p)].

The second aspect regards the backreaction of CRs onto the shock dynamics:
CRs exert a pressure against the incoming gas flux, reducing progressively its speed. In
turn the modification of the shock structure produces modification of the CRs spectrum
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because the particles feel a different velocity jump between the upstream and downstream
fluids, depending on their momentum. Three different approaches exist to include the
backreaction of CRs onto the shock dynamics. Numerical simulations play an important
role because the ability of a self-consistent treatment of several effects (Jones & Ellison
1991; Bell 1987; Ellison et al. 1990, 1995, 1996; Kang & Jones 1997; Kang et al. 2002).
The second approach are the fluid models, that treats the CRs component as a relativistic
fluid with a specific energy density and pressure (Drury & Voelk 1981; Drury et al. 1982;
Axford et al. 1982; Duffy et al. 1994). These models can handle with the CRs total
energy and pressure but they are unable to provide information about the non-thermal
particle spectrum that has to be provided a priori. The third approach is kinetic, and
attempts to study the CRs transport in a plasma, by the use of a transport equation for
the non-thermal particles.

Blandford (1980) tackles the problem considering the pressure of CRs a small
perturbation. This perturbative approach can only handle weakly modified shock. A
different approach was used in (Eichler 1984; Ellison & Eichler 1984; Eichler 1985; Ellison
& Eichler 1985) where some simplified assumpions are used to express the diffusion
coefficient.

Always in the contest of non linear theory, Berezhko et al. (1994) showed that

even when a small fraction of particles is involved in the acceleration process (∼ 10
−4

of the gas density), CRs can absorb about 20% of the SN explosion energy, while in
(Berezhko 1996) both the effect of CRs back reaction and geometrical factors on the
maximum energy were investigated.

More recently Malkov (1997); Malkov et al. (2000); Blasi (2002) developed an
approximate solution for the transport equation able to provide self-consistently both
the particle spectrum and the structure of the hydrodynamic flow.

All the previous approaches has been applied under the assumption that the
particle injection occurs at the shock position from the thermal pool. But important
effects could arise from a pre-existing population of non-thermal particles, also called seed
particles. Indeed shocks usually propagates into media where pre-accelerated particle
already exist. This is true not only for isolated supernovae, which explode in the ISM,
where the regular Galactic CRs are present, but it is even more important for those SN
that explode in the so called OB associations. These associations are group of massive
stars where most of SN progenitor are observed. The wind activity of such stars generates
large structures calls superbubbles, inside which the SN explosion rate is sufficiently high,
and the diffusion coefficient is sufficiently low, that particles can be accelerated repeatedly
before they can escape the superbubble region (Parizot et al. 2004). In such structures,
when a SN explode, the pre-existing CRs component can be even more important than
the fresh injected particles at the shock.

The linear theory of acceleration including seed particles was presented by Bell
(1978b), while the first analytical attempt to calculate the non-linear effect of pre-existing
non-thermal particle was developed by Blasi (2004) using an approximate solution for
the transport equation.

Here we present the full solution of the stationary-transport equation for a plane
geometry, including the back reaction of the CRs and the presence of a seed particles.
Although we assume e simple Bohm diffusion instead of including the correct treatment
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of the self-generated diffusion coefficient, the solution founded can be easily generalized
for every form of D also if it depends upon the spatial coordinate. We specialize our
solution to the case of a tipical SNRs shock in two different situations: we firstly consider
only the presence of seed particles, than we add the contribution of thermal injection
according to the thermal leakage model. As previously founded by Blasi (2004) we
confirm that the shock modification produced by the seed particles can dominate on
the same effect produced by the injection. Moreover the presence of seed particles also
changes the shape of the spectrum in the low energy region.

A problem arises when the shock acceleration mechanism is formulated with a
non-linear approach under the assumption of the stationarity of the solution: multiple
solutions appear. It is needless to say this is a very common aspect of non-linear phe-
nomena. Both the two fluid and the kinetic approaches have find that three solutions
arises for a large region of the parameters space. At the present it is still not clear how
to resolve such a problem. A possibility is that one or more solution could be unstable.
Using the two fluid approach Mond & O’C. Drury (1998) demonstrate that the inter-
mediate solution is indeed unstable to corrugations in the shock structure and emission
of acoustic waves. A second possibility put forward in Malkov et al. (2000) is that the
shock can sit at the critical point, self-regulating the value of the maximum achievable
momentum and the injection from the thermal pool. The latter hypothesis turns out to
be less clear when applied in a situation where also the seed particles are added, because,
as we will discuss, the shock has no way to reduce the effect of modification induced by
the pre-existing particles, as can done for the injected particles. One can also suspect
that the stationarity is an incorrect assumption and that the actual solution continously
evolves with time.

This chapter is organized as follows: in the next section we summarize the gas
dynamics under the effect of the CRs, obtaining the expression of the fluid velocity as
a function of the CRs distribution. In §5.3 we solve the diffusive-transport equation
using the pre-existing CRs distribution as the upstream infinity boundary condition and
a mono-energetic injection at the shock discontinuity. §5.4 summarizes the procedure
to obtain the complete solution in a self-consistent manner. The results for a tipical
scenario of a SNRs shock are shown and commented in §5.5. We conclude in §5.6.

5.2 The gas dynamics

In the contest of non-linear shock theory the dynamic and thermodynamic prop-
erties of the gas result from the interaction with the CRs component. As sketched in
Figure 5.1 we expect that the CRs pressure slows down the upstream gas flux, producing
a curved velocity profile (the region were this occurs is called precursor). The remaining
sub-shock step is only a discontinuity for the gas, because it is too thin compared with
the mean free path of accelerated particles.

The first step consist to include CRs into the mass and momentum conservation.
We write these equations between the upstream infinity, where the gas has velocity u

◦

and density ρ
◦

= m ng,◦, and a generic point x. The mass conservation for the gas is

simply
ρ
◦
u
◦

= ρ(x)u(x) . (5.2)
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Fig. 5.1 Generic modified shock structure as seen in the shock reference frame. The solid
line shows the the plasma velocity profile. The discontinuity at x = 0 is usually called
sub-shock

Obviously the mass contribution of CRs can be neglected. The momentum conservation
reads:

ρ
◦
u
◦

2
+ Pg,0 + PCR,0 = ρ(x)u(x)

2
+ Pg(x) + PCR(x) , (5.3)

where Pg and PCR are the gas and the CRs pressure respectively. The CRs pressure at

a fixed point x can be expressed using the distribution function of the particles:

PCR(x) =
4π

3

∫ pmax(x)

pmin(x)
dp p

3
v(p)f(p, x) , (5.4)

The second step requires the gas equation of state. The simplest assumption is
to suppose that the gas is adiabatically compressed, hence the pressure reads:

Pg(x) = Pg,◦

(

ρ(x)

ρ
◦

)γg

, (5.5)

where γg is the adiabatic index of the gas. At the end of this section we will make some

comments on the validity of the adiabatic assumption. Now we want to rewrite the mo-
mentum equation in a usefull adimensional form. Taking into account the conservation

of mass flux and the definition of the Mach number, M0 = c
2

s
/u

2

◦
= (γPg,0)/(ρ◦u

2

◦
), we

can divide equation (5.3) for ρ
◦
u
◦

2
. The result is

ξc(x) − ξc,◦ = 1 − U(x) +
1

γgM0
2

(

1 − U(x)
−γg

)

. (5.6)

Here ξc is the CRs pressure normalized with respect to the total momentum flux, i.e.

ξc(x) = PCR(x)/(ρ
◦
u

2

◦
), and U(x) ≡ u(x)/u

◦
. ξc,◦ is the normalized pressure at upstream

infinity. Equation (5.6) is the first stone of the non-linear shock model; once inverted it
allows us to get the gas speed u(x) as a function of the CRs distribution f(x, p).
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The boundary values of gas speed are usually expressed using the total and the
sub-shock compression factors, Rtot = u

◦
/u2 and Rsub = u1/u2. Equation (5.6) provide

us an usefull relation between the CRs pressure at the sub-shock position and Rsub:

ξc(0) − ξc,◦ = 1 +
1

γgM0
2 − Rsub

Rtot

− 1

γgM0
2

(

Rsub

Rtot

)−γg

. (5.7)

This relation will be used in §5.4 to obtain ξc,◦ only as a function of once Rsub. But to

get this aim we also need to express Rtot as a function of Rsub. If the upstream gas is
adiabatic compressed, as we assumed previously, the Mach number at upstream infinity
and the one at the subshock are related by:

M
2

1
= M

2

0

(

Rsub

Rtot

)γg+1

(5.8)

On the other hand the Rankine-Hugoniot jump conditions applied at the sub-shock
provide use the well-know relation between Rsub and M1:

Rsub =
(γg + 1)M

2

1

(γg − 1)M2

1
+ 2

(5.9)

Substituting M1 as results from (5.9) into equation (5.8), we get the final expression for
Rtot:

Rtot = M0

2/(γg+1)





(γg + 1)R
γg

sub
− (γg − 1)R

γg+1

sub

2





1
γg+1

. (5.10)

Some comments are in order about the adiabatic hypothesis. It is worth noting
that the equations (5.3) and (5.5) implies a non trivial assumption about the interaction
process that occurs between thermal and non-thermal particles. As many times stressed,
the interaction between particles in a tenuous plasma, as those present in almost all
astrophysical situations, is mediated only by non local field effects; the contribution
of Coulomb scattering is completely negligible. For an approach like this, where the
particles are divided in two different component, thermal (plasma) and non thermal
(CRs), the interactions can be sketched as:

Plasma ⇌ Wave ⇌ CRs.

Both thermal and non-thermal particles produce and react to the waves. The question is
which kind of wave can transmit the pressure from CRs to the thermal plasma and vice-
versa. As generally known CRs can excite two kind of waves: magnetosonic and Alfvén
waves. The former are dumped very quickly through the Landau-damping mechanism,
hence they contribute to heat the plasma in a non adiabatic way. On the other hand
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Alfvén waves are only slightly dumped
2

and can persist long time after their generation:

they are the true responsables of the adiabatic compression
3
.

We mention also a second process that produce a non-adiabatic gas heating,
originally discovered by Drury & Falle (1986): the so called acoustic instability. When
a pressure gradient is present in the plasma, the CRs presence can amplify the sound
waves up to the development of a train of shock waves that heat the gas.

The plasma wave-component should be taken into account also in the jump con-
ditions at the sub-shock. The pressure and energy flux exerted by the waves can reduce
considerably the gas compression factor Rsub, especially in the case of strong modified

shock where CRs produce a strong Alfvén wave turbulence
4
. Hence also our equation

(5.9) turn out to be an approximation.
As it is clear from the previous discussion, a complete solution of the problem

should include the contribution of the waves in the momentum equation and their effect
onto the gas equation of state. The net effect of the non-adiabatic heating is the reduc-
tion of the acceleration efficiency because a larger fraction of the initial energy flux is

channeled into the internal energy of the gas
5
. But we note that a correct treatment re-

quires a non liner theory of the wave-particle interaction that, in our knowledge, has not
still developed. In any case all this discussion does non invalidate our main conclusion.

5.3 The diffusive-transport equation for CRs

In this section we find the most general expression for the cosmic rays distribution
function, solving the convection-diffusion equation under the assumption of stationarity.
As in the chapter 2 we assume a plane geometry, so the problem is one-dimensional, and
we chose the frame where the shock is stationary and is located at x = 0, while both the
upstream and downstream fluids move with positive velocity u(x) along the x direction
(see Figure 5.1). The cosmic rays are injected according to a function Q(x, p), where p
is the injection momentum. With f

∞
(p) we indicate the pre-existing CRs distribution,

i.e., the boundary condition at upstream infinity (x = −∞). Under this assumptions,

the diffusive-transport equation reads
6
:

∂

∂x

[

D(x, p)
∂

∂x
f(x, p)

]

− u(x)
∂f(x, p)

∂x
+

1

3
u
′
(x)p

∂f(x, p)

∂p
+ Q(x, p) =

∂f

∂t
= 0 . (5.11)

2Despite the fact that Alfvén waves do not undergo the Landau damping, when the Alfvén
velocity is greater than the sound speed, they produce magnetosonic waves in a similar fashion
then Alfvén waves produced by particles with velocity greater than the Alfvén speed (see Skilling
(1975)). Because magnetosonic waves are in turn dumped, the whole process produce a non
adiabatic heating precisely called Alfvén-heating.

3For an extensive discussion see e.g. McKenzie & Volk (1982).
4See Vainio & Schlickeiser (1999) for a self-consistent treatment of the jump conditions in the

presence of Alfvén waves.
5See Amato & Blasi (2006) for a quantitative estimation of this effect in the case of weak

turbulence.
6For the derivation of the diffusive-transport equation starting from the Vlasov equation see

(e.g. Vietri 2006, chap. 4).



62

In this equation the first and the second terms represent the particle diffusion and con-
vection respectively, and D(x, p) is the diffusion coefficient. The third term takes into

account the effect of the adiabatic compression of the fluid. Note that u
′ ≡ du/dx.

The non-linearity of equation (5.11) is twofold: first of all the fluid velocity u(x)
depends on the CRs pressure, as we saw in §5.2. Secondly, as is now generally ac-
cepted, the diffusion process is caused by the CRs self-generated turbulence. Hence a
full self-consistent treatment requires the inclusion of the self-generated turbulence and
the description of the diffusion coefficient in terms of turbulence density. In this work
we neglect the self-generated turbulence, and we will assume a Bohm diffusion with an
uniform magnetic field. This simplification will not invalidate our main conclusions; how-
ever the inclusion of self-generated diffusion is not difficult, at least in the quasi-linear
approach, as done by Amato & Blasi (2006).

Injection problem. We assume that the particle injection occurs immediately
upstream of the shock, hence Q(x, p) = Q

◦
(p)δ(x). The generally accepted picture

describes the injection process as due to the sub-shock discontinuity itself: the same
collective processes responsable of the fluid thermalization from the upstream to the
downstream state should be provide a fraction of supratermal particle able to cross the
shock discontinuity and start the Fermi acceleration mechanism. The detailed description
of the injection mechanism is still a matter of investigation, but numerical simulations
show that this is the correct picture. As usually done in the literature, we will use a
mono-energetic injection at a single momentum value pinj:

Q
◦
(p) =

η ng,1u1

4πp2

inj

δ(p − pinj) . (5.12)

Here u1 and ng,1 are the fluid velocity and the gas density immediately upstream while η

rapresents the fraction of the upstream gas injected as suprathermal particles. In passing

we note that from the numerical simulations η is usually of the order of ∼ 10
−4

; this
means that both the energy and momentum lost by the gas are negligible, hence could
be neglected in the computation of gas jump conditions. Although η is an unknown
parameter, because it hides all the bad know physics of collisionless shock, it can be
related to the subshock compression factor through a simple argument. We suppose
that only particles from the downstream thermal bath with larmor radii grater than the
shock thickness can start the acceleration process. Because the shock thickness is of the
order of the larmor radii of the thermal particles, and the downstream temperature is
related to Rsub, the result is a relation η(Rsub). This picture is called thermal leakage
model. We adopt here the recipe proposed by Blasi et al. (2005) that gives the following
result for η:

η =
4

3
√

π
(Rsub − 1) ξ

3
e
−ξ2

. (5.13)

The paramete ξ identifies the effective injection momentum as a multiple of the thermal
momentum, i.e.

pinj ≡ ξ pth , (5.14)
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whit the thermal momentum defined as pth ≡
√

2mpKBT . The fraction of particle

injected is η ∼ 10
−4

for ξ = 3.5. As is clear from equation (5.13) more the shock is
modified (Rsub approaching 1) less are the injected particles. This feedback mechanism
allows the shock to self-regolate and, as shown by Blasi et al. (2005), strongly reduces
the problem of multiple solutions.

Following Malkov (1997) and Blasi (2004) the solution of equation (5.11) can
be expressed in an implicit form using the boundary conditions at upstream infinity,
f
∞

(x) ≡ f(−∞, p), and at the shock position, f
◦
(p) ≡ f(0, p). While the cited authors

use an approximated solution, we will compute the exact expression. Before doing this,
in §5.3.3, in the next section we will remember how to express f

◦
(p).

5.3.1 Boundary conditions at the shock position

As showed by Blasi (2002), the expression for the distribution at the shock position
can be obtained integrating equation (5.11) along the shock discontinuity, between the

points 0
−

and 0
+

(see Figure 5.1). An important point ha to be stressed: the CRs
distribution is assumed to be continuous at the sub-shock discontinuity. The physical
motivation is that CRs has a mean free path longer than the sub-shock thickness hence
they don’t feel the discontinuity. Moreover the downstream section is considered uniform
in space, therefore we can assume (∂f/∂x)0+ = 0, the result of the integration become

[D∂xf ]0− =
1

3
p ∂pf (u2 − u1) + Q

◦
(p) . (5.15)

Now equation (5.11) can be integrated again, but this time between −∞ and 0
−
; substi-

tuting the expression (5.15) in the result we finally get a first-order differential equation
for f

◦
, i.e.

p ∂pf◦(p) = − 3

up(p) − u2

{

f
◦
(p)

[

up(p) +
1

3
p ∂pup(p)

]

− u
◦
f
∞

(p) − Q
◦
(p)

}

, (5.16)

where up(p) is defined as follows

up(p) = u1 +
1

f
◦
(p)

∫

∞

0

du(x
′
)

dx′ f(x
′
, p)dx

′
. (5.17)

As underline by Blasi (2002) up has a simple physical meaning: it represents the mean

fluid velocity experienced by a particle with momentum p in the upstream section. In-
tegration of equation (5.16) allow us to express f

◦
(p) as an implicit function of f(x, p)

by the use of the expression (5.17); moreover it is usefull to distinguish between the
contribution of the injection and that resulting from the seed particles. The injection is
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written out according to the expression (5.12). The final solution is

f
◦
(p) = f

inj

◦
(p) + f

seed

◦
(p)

=
η ngas,1

4πp3

inj

3Rsub

RtotUp(p) − 1
exp

{

−
∫ p

pinj

3RtotUp(p
′
)

RtotUp(p
′) − 1

dp
′′

p′′

}

+
3Rtot

RtotUp(p) − 1

∫ p

pmin

exp

{

−
∫ p

p′

3RtotUp(p
′′
)

RtotUp(p
′′) − 1

dp
′′

p′′

}

f
∞

(p
′
)
dp

′

p′
. (5.18)

As usual Rtot and Rsub are the total and the sub-shock compression factor and Up ≡
up/u◦

. Some attention has be paid with the value of pmin: it means the minimum

momentum allowed for the f
seed

◦
at the shock position. Because we suppose that only

particles with p > pinj can take part to the acceleration, pmin is the maximum between pinj

and the minimum momentum that seed particles have when they encounter the sub-shock
at the first time. In fact, because of the effect of the gas compression, seed particles arrive
at the sub-shock with momentum greather than what they have at upstream infinity.
We will derive pmin in the §5.3.4.

5.3.2 The test-particle limit

Before to compute the complete solution for the distribution function, let us re-
analyse the test-particle limit case to show why such a solution cannot be a physical
one. When we assume that the dynamical role of accelerated particles is negligible,
the upstream plasma speed reduces to a constant, u(x) = u0, and Up → 1, hence the

distribution function at the shock, Eq. (5.18), turn out to be a simple power law in the
momentum, i.e.:

f
◦
(p) = f

inj

◦
(p) + f

seed

◦
(p)

=
η ngas

4πp3

inj

s

(

p

pinj

)−s

+ s p
−s
∫ p

pmin

p
′s−1

f
∞

(p
′
) dp

′
. (5.19)

Now, let us compare the pressure generated by CRs with respect to the plasma thermal
pressure. For simplicity we assume that only the injection at the shock occurs. Moreover
we set s = 4. Substituting Eq. (5.19) into Eq. (5.4) we get the following estimate for the
CRs pressure:

PCR =
4π

3

∫ pmax

pinj

p
4
v(p)f

◦
(p) d ln(p) <

∼

4

3
η ngas pinjc ln

[

pmax

mpc

]

, (5.20)

where the last passage is obtained considering only the pressure due to particle with
p > mpc for which the approximation v(p) = c holds. The ratio between CR and gas
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pressure can be estimate as follows:

PCR

Pgas

=
PCR

ngas KBT
<
∼

η
8 pinjc

3 pthvth

ln

[

pmax

mpc

]

≈ 2.3 · 105
η ξ ln

[

pmax

105mpc

]

(

T

105K

)−1/2

,

(5.21)
where we use the definition of pinj, Eq. (5.14). It is clear that even for a fraction of in-

jected particles as small as 10
−5

, the CR pressure can be greather than the gas pressure,
hence it cannot be neglected into the Eq. (5.3).

Always using the test-particle solution we can show that the contribution of seed
particles can be relevant if one considers as seed the CR spectrum as observed at the
Earth. Let us assume that f

∞
is a power law with index s0, starting from the minimum

momentum pmin:

f
∞

(p) =
nCR,0

4πp3

min

(s0 − 3)
(

p/pmin

)−s0 . (5.22)

It is convenient to express the number density nCR,0 as a function of CRs energy density,

ECR,0, and pmin:

nCR,0 =
ECR,0

c pmin

s0 − 4

s0 − 3
= 3.6 · 10−10

cm
−3

(

ECR,0/eV cm
−3

pminc/GeV

)

. (5.23)

where the value s0 = 4.7 is assumed. Substituting Eq. (5.22) into Eq. (5.19) we can easily
get the ratio between the re-accelerated seed particles and the freshly injected ones:

f
seed

◦
(p)

f inj

◦
(p)

−→
p≫pmin

nCR,0

η ngas

(

s0 − 4

s0 − s

)

(

pmin

pinj

)s−3

(5.24)

≈ 3.6 · 10−2

(

10
−5

η

)(

cm
−3

ngas

)

( ECR,0

eV cm−3

)

(

10
−3

mpc

pinjc

)

. (5.25)

The previous estimate has to be taken carefully. It is worth stressing that the result in
Eq. (5.24) is sensitive to the value of the spectral index s in the range pinj < p < pmin.

As we will show, in the low momentum range, the nonlinear theory predict a greather
value for s, in such a way that Eq. (5.24) can easily reach the a value of order unity and
even greather, especially in case of low ambient medium density.

5.3.3 General solution for the distribution function

Now we can write out the solution for f(x, p). Using the shortening ν ≡ ln(p),
the equation (5.11) can be rewritten as follows:

∂x[D(x, ν)∂xf ]− u(x)∂xf +
1

3
u
′
(x)∂νf + Q(x, ν) = 0 . (5.26)
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We make the following substitutions:

g(x, ν) ≡ D(x, ν)∂xf(x, ν) , (5.27)

b(x, ν) ≡ 1

3
u
′
(x)∂νf(x, ν) . (5.28)

Eq. (5.26) become:

∂xg(x, ν) =
u(x)

D(x, ν)
g(x, ν) − b(x, ν) . (5.29)

The solution of this equation is the sum of the solution of the homogeneous associated
equation, g1(x, ν), plus a particular solution g2(x, ν):

g1(x, ν) = g
◦
(ν)e

−A(x,ν)
, (5.30)

g2(x, ν) = e
−A(x,ν)

∫ 0

x
e
A(x′,ν)

b(x
′
, ν)dx

′
, (5.31)

(5.32)

where

A(x, ν) =

∫ 0

x

u(x
′
)

D(x′, ν)
dx

′
. (5.33)

The boundary condition g
◦
(ν) ≡ g(x = 0, ν) can be derived from the boundary conditions

of f(x, ν), as we will show in a while. Integrating the equation (5.27) from upstream
infinity up to x, we get the implicit solution for f :

f(x, ν) = f
∞

(ν) +

∫ x

−∞

g1(x
′
, ν) + g2(x

′
, ν)

D(x′, ν)
dx

′
. (5.34)

In the limit x → −∞, equation (5.34) give us no new information, while for x → 0 it
provides the following expression for g

◦
:

g
◦
(ν) =

f
◦
(ν) − f

∞
(ν) −

∫ 0

−∞
g2(x

′
, ν)/D(x

′
, ν)dx

′

∫ 0

−∞
eA(x′,ν)/D(x′, ν)dx′

. (5.35)

The final step is the substitution of equation (5.35) into (5.34). The full solution can be
expressed as follows:

f(x, ν) = f
∞

(ν)
[

1 − G1(x, ν)
]

+ f
◦
(ν)G1(x, ν) + h(ν)

[

G2(x, ν) − G1(x, ν)
]

, (5.36)
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where:

G1(x, ν) =

∫ x

−∞

e
A(x′,ν)

D(x′, ν)
dx

′

/

∫ 0

−∞

e
A(x′,ν)

D(x′, ν)
dx

′
; (5.37)

G2(x, ν) =

∫ x

−∞

g2(x
′
, ν)

D(x′, ν)
dx

′

/

∫ 0

−∞

g2(x
′
, ν)

D(x′, ν)
dx

′
; (5.38)

h(ν) =

∫ 0

−∞

g2(x
′
, ν)

D(x′, ν)
dx

′
. (5.39)

From their definitions, the functions G1 and G2 have the same value 1 for x → 0, and
0 for x → −∞, hence equation (5.36) provides the correct boundary condition in these
limits: f(x → 0, ν) = f

◦
(ν), and f(x → −∞, ν) = f

∞
(ν). Equations (5.36)-(5.39)

rapresent the formal solution of the problem in an iterative form: once both D(x, p)

and u(x) are known, we can chose an arbitrary well defined f
(0)

(x, p) to compute up

and f
◦

using equations (5.18) and (5.17) respectively. This functions are in turn used to

compute the new distribution function f
(1)

(x, p) by equation (5.36). The procedure can
be iterated until the convergence is getted.

But a piece still misses: the value of pmin as appears in the equation (5.18) is
not specified until now. At a first stage, one can argues that the value of pmin at the
shock position should be an output of the solution, because the only relevant boundary
conditions are f

∞
(p), defined in the interval [pmin,∞, pmax,∞], and the spatial derivative at

infinity, i.e. ∂xf(x, p)|x=−∞
= 0. This turn out to be incorrect because in the equation

(5.36) the distribution function is defined by iteration and we will show in the next
section that when the solution of a PDE is expressed by an iterative form, the resulting
domain could be different with respect to the exact solution.

5.3.4 Effect of compression on the momentum

The solution for the distribution function founded in the previous section is not
complete because it does not include the correct domain in the phase-space (x, p). Such a
problem arises because we use an iterative definition for f(x, p) in therms of the boundary

conditions f
∞

(p) and the velocity function u(x). If we use f
(0)

(x, p) ≡ f
∞

(p) as the first
step of the iteration procedure, the domain of the solution turn out to be the simple
Cartesian product Dp(f∞)×Dx(u). But this is not correct as we clarify with the following

example.
Let us consider the problem of particle transport when the diffusion is not present.

As for the full diffusion-convection problem, the solution can be expressed with an iter-
ative formula. The convection equation without the diffusion term reads:

−u(x)∂xf +
1

3
u
′
(x) p ∂pf(x, p) = 0 . (5.40)
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Fig. 5.2 Caracteristic lines for the convection equation.

If we divide equation (5.40) by u(x) and integrate it from −∞ up to x, we get the
solution through the following iterative formula:

f(x, p) = f
∞

(p) +

∫ x

−∞

p ∂pf(x
′
, p)

1

3u

du

dx′ dx
′
. (5.41)

Now if we chose f
∞

as the first step of the iteration, we easily get the solution in form
of a series:

f(x, p) =
∞
∑

n=0

1

n!

(

log(u/u
◦
)

3

)n d
n

d logn p
f
∞

(p) . (5.42)

If the upstream boundary condition is expressed as the usual power-law, f
∞

∝ p
−s

, in
the interval [pmin,∞, pmax,∞], the series can be easily summed and gives us:

f(x, p) = f
∞

(p)
[

u(x)/u
◦

]−s/3
. (5.43)

The solution (5.43) is correct, as one can easily check substituting it into equation (5.40),
and it is defined in the rectangular domain Dp(f∞)×Dx(u). But this is incorrect: if u(x)

is not constant, the fluid compression (or expansion) increases (or decreases) both the
maximum and the minimum momenta. This conclusion can be recovered in a natural
way if the compression equation is analyzed with the method of characteristics for first-
order PDE. One as to find the first integral witch determines the characteristic lines
φ(x, p). The solution does not depend on x and p as independent variables, but only by
the function φ(x, p), i.e. f(x, p) = f(φ(x, p)). The first integral is the solution of the
following equation

dx

3u/u′ = −dp

p
. (5.44)
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which integrated from upstream infinity up to a point x gives the following results:

φ(x, p) = p u(x)
−1/3

. (5.45)

Calling s the parameter along the characteristic lines, the convection equation can be
rewritten in the new variables φ and s as:

u(φ, s)
2/3

∂sf(φ, s) = 0 . (5.46)

This equation has the trivial solution f = const along the caracteristic lines, i.e. φ =
const (showed in the figure 5.2). This represents the correct consequence of the com-
pression effect: if a particle has momentum p

◦
at upstream infinity, at a point x its

momentum become:

p(x) = p
◦

(

u
◦

u(x)

)1/3

, (5.47)

As a consequence the correct domain is φmin < φ < φmax i.e.

pmin,∞

(

u
◦
/u(x)

)1/3
< p(x) < pmax,∞

(

u
◦
/u(x)

)1/3
. (5.48)

Now we can return to consider the full diffusion-convection problem. Firstly
we note that the diffusion does not change the particle momentum modulus, but only
its direction. This means that the fluid compression produces the same effect as in
the simple convection problem, hence the particles momentum obey the compression
equation (5.47). (Now the difference is that f is no more a constant along the φ = const
lines). Following also the discussion about the injection process, the correct expression
for the minimum momentum in the equation (5.18) is

pmin = max
[

pinj, pmin,◦

]

= max
[

pinj, pmin,∞

(

Rtot/Rsub

)1/3
]

. (5.49)

The tipical value of pmin,∞ is taken to be 10
−3

mc. When the shock is only slightly

modified pinj ≫ pmin,◦, but this relation can be reversed if the shock is strongly modified.

Assuming that the injection obey the thermal leakage model, we can compute the value
of Rsub at which pinj = pmin,◦:

R̄sub =

[

γg − 1

γg + 1
+

2

γg + 1
A

3(γg+1)/4
M

(3γg−5)/4

0

]−1

, (5.50)

where

A = 2 ξ

(

2(γg + 1)

γg − 1

)1/2(
pmin,∞

mc

)−1(KBT0

mc2

)1/2

. (5.51)
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It is worth to note that in the case of monoatomic non relativistic gas, i.e. γg = 5/3,

R̄sub does not depend on M0:

R̄sub =

[

1

4
+

15

16
ξ
2
(

pmin,∞

mc

)−2(KBT0

mc2

)]−1

. (5.52)

For the tipical values of the parameter assumed in this work (T0 = 10
5
K, pmin,∞ =

10
−3

mc and ξ = 3.5) the value of R̄sub is ∼ 2.813.

5.4 Algorithm to get the solution

In this section we will summarize the procedure to get the full solution. We start
from the boundary values of the gas state at upstream infinity: u

◦
, M0 and PCR,0; than

we chose a value for Rsub which in turn fixes the value of CRs pressure at the sub-shock
front ξc(0) through equation (5.7). At this point we start the iterative process using for

the first step the functions u
(0)

(x) ≡ u
◦

and f
(0)

(x, p) ≡ f
∞

(p). For the pre-existing
CRs distribution we adopt the spectrum as observed at the Earth, i.e a power-law with
index s = 4.7 and normalized in such a way that the CRs pressure and the gas pressure
are equal at upstream infinity. The next steps are made using in sequence the equations
(5.18), (5.36), (5.4), (5.6), (5.49) and again (5.18) to get the following chain:

{

u
◦

f
∞

(p)

}

(4.16)
=⇒ f

(0)

◦
(p)

(4.27)
=⇒ f

(1)
(x, p)

(4.4)
=⇒ ξ

(1)

c
(x)

(4.6)
=⇒u

(1)
(x)

(4.40)
=⇒ p

(1)

min
(x)

(4.16)
=⇒ f

(1)

◦
(p) .

Now we note that the resulting f
(1)

◦
(p) cannot be used as the starting function for a

new iteration, because when integrated it give rise to a CRs pressure at the sub-shock
different from ξc(0). To go beyond this difficulty we define the re-normalized function

f̄
(1)

◦
= λ1f

(1)

◦
, where

λ1 =
4π

3ξc(0)

∫

dp p
3
v(p)f

(1)

◦
(p) , (5.53)

and we use it as the new input for the algorithm. The procedure is repeated until the
convergence is getted. The resulting value of λ tell us if the solution is a good one
or not: λ = 1 correspond to a physically acceptable solution. Varying Rsub in the
whole allowed range, i.e. between 1 (completely modified shock with no sub-shock) and

M
2

0
(γg + 1)/(2 + M

2

0
(γg − 1)) (unmodified shock) we look for such solutions.

We note that the procedure just described is equivalent to solve a non linear
eigenvalue problem for f

◦
, i.e.

G[f
◦
] = λ f

◦
(p) , (5.54)

and looking for an eigenfunction with eigenvalue equal to 1. The operator G hides all
the previous described operations.

Two comments are in order. The first question that one can ask is whether the
solution actually exists or not. Unfortunately from the theoretical point of view there are
no theorem that guarantee neither the existence of a solution and not even its unicity.
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Fig. 5.3 Behaviour of the iterative algorithm described in §5.4: comparison between
convergent and oscillating cases iterative algorithm resulting from the use of different

recipes for the normalized function f̄
◦
(p). M0 = 100, T0 = 10

5
K, pmax,∞ = 10

6
and

Rsub = 2.4. See the text for the detailed description of each case.

The second non trivial question is: assumed that the solution exist, does the algorithm
actually converge? The algorithm as described above converge only some values of Rsub
and M0 (basically when the shock is only slightly modified). As an example we report
in Figure 5.3 (with filled square points and solid line) the behaviour of the algorithm for

M0 = 100, T0 = 10
5
K, pmax,∞ = 10

6
and Rsub = 2.4. The plot shows how λ oscillates

between two values, to which correspond two different functions for f
◦
(p).

A possible way to get the convergence in the whole region of space parameters
we are interested in, is by changing the definition of f̄

◦
(obviously without changing the

normalization at x = 0). The most general expression for f̄
(n)

◦
can be build as a linear

combination of the f
(k)

◦
with k ≤ n:

f̄
(n)

◦
= α1λnf

(n)
+ α2λn−1f

(n−1)
+ ... + αkλn−k+1f

(n−k+1)
, (5.55)

with the constraint α1 + α2 + ... + αk = 1. In Figure 5.3 we have plotted what happen
choosing only the first two functions with α1 = α2 = 1/2 (filled-triangle) and αk>2 ≡ 0:
the convergence is getted after few iterations. Choosing three function, with α1 = α2 =
α3 = 1/3 (filled-circle), the solution oscillate again. We fix our attention to the former
case with two functions. Different behaviour can be observed changing the relative values
of α1 and α2. Figure 5.4 shows what happen for α1 > α2 (upper panel) and for α1 < α2
(lower panel). While in the former case the behaviour is chaotic, in the latter case the
convergence is always getted and the combination α2 = 3α1 allows to get the convergence
in the shortest number of cycles.
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Fig. 5.4 Behaviour of the algorithm when f̄
(n)

◦
= α1λnf

(n)
+ α2λn−1f

(n−1)
. For α1 > α2

(upper panel) the convergence is never getted, the behaviour is somehow chaotic (the
plot shows only three cases with α1/α2 = 2, 3, 4). On the other hand, when α1 < α2
(lower panel) the algorithm converges always. All the other parameters are the same as
in Figure 5.3.
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5.5 Results

Now that all the mathematical machinery has been described in the previous
sections, the rest of the chapter will be devoted to present some results about the modi-
fication of the shock structure under the influence of non-thermal particles. We first anal-
yse the results when only a pre-existing population of non-thermal particles is presents
(§5.5.1). Secondly, in §5.5.2, we investigate the situation where both seed particles and
injection at the sub-shock discontinuity are take into account.

5.5.1 Re-acceleration of seed particles

In this section we explore the consequence of a shock propagating into a region
with a pre-existing non-thermal particle population. In the introduction we just empha-
size the importance of this study: while the possibility of particles injection at the shock,
although widely accepted, suffers from big uncertainties, the presence of cosmic rays into
the Galaxy is well established. A shock propagating into the interstellar medium cannot
avoid the dynamical effect of galactic CRs, hence the knowledge of such effect turn out to
be of primary importance to understand the evolution of a shock. We expect that such
effect is expecially important during the early stage of a shock, when the contribution of
the injection is negligible. Moreover, as we will show in the next section, the knowledge
of the effect of seed particles onto the shock could help us to understand better the
injection process itself.

As found by Blasi (2004) the presence of a CRs component is able to modify a
shock also if the injection is neglected. The cited author use an approximate solution
for the equation (5.11). Here, using the correct solution as developed in the previous
sections, we will show that such conclusions are correct.

In the following we assume that a plane shock propagates with velocity u
◦

into

a plasma with temperature T0 = 10
5
K. Because we have in mind a SNRs shock prop-

agating into the interstellar medium, we adopt a power-law spectrum to describe the
non-thermal particle distribution:

f
∞

(p) = N
∞

p
−s

. (5.56)

For the spectral index we use the value s = 4.7 as results from the CRs spectrum
observed at the Earth below the knee. The normalization is determined assuming the
pressure equilibrium between the gas and the CRs component, i.e Pg,0 = PCR,0, a relation

roughly respected into the interstelar medium. We note that the assumption of pressure
equilibrium can be easily relaxed if one wants to study a shock propagating into a different
environment, as could be the high density stellar formation regions, or shock produced
into the AGNs jets or lobes.

The seed particle distribution is defined in the range [pmin,∞, pmax,∞]. The maxi-

mum momentum is fixed by the shock acceleration process and its detailed calculation is
a very difficult task. pmax,∞ is determined not only by the dimension of the acceleration

region and by the energy losses; a crucial role is played by the magnetic field amplifi-
cation as firstly pointed out by Bell & Lucek (2001). As shown by Blasi et al. (2007)
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Fig. 5.5 Comparison between the approximated method used in Blasi (2004) (dotted-line)
and the exact method developed here (solid-line). The plot shows the eigenvalue λ as a
function of Rtot for a single case with the parameters value as show in the caption. The
physical acceptable solution are those for which λ = 1.

the pmax,∞ can be as hight as 10
6
mc when the effect of magnetic field amplification

are take into account. Here we adopt pmax,∞ = 10
6
mc unless differently specified. We

note that if the seed particle spectrum extends above pmax,∞, particles with p > pmax,∞

can be neglected because they escape from the acceleration region without take part to
the acceleration process. The minimum momentum of the seed particle is taken to be

pmin,∞ = 10
−3

mc.

Following the procedure described in §5.4 we find the solution varying the value
of Rsub (and hence also Rtot by equation (5.10)) and looking for the solution with λ = 1.
Because we are considering only the seed particles, equation (5.18) can be simplified

dropping out the first addend f
inj

◦
. For what concern the diffusion coefficient D(p), we

adopt a Bohm diffusion with a spatially-constant magnetic-field density. We are aware
that such a choice is unrealistic, but it does not affect our main conclusions.

The first comment concerns the comparison between our results and that of Blasi
(2004). As pointed out by the cited author, the major problem concerns the appearance
of multiple solutions. This problem is not resolved using our correct solution for the
particle distribution. Figure 5.5 compares the results for the function λ(Rtot) using the
approach of Blasi (2004) (dotted line) and the one presented here (solid line) for the

following value of the parameters: M0 = 100, T0 = 10
5
K and pmax = 10

5
mc. First of

all we note that both the curves presents 3 solutions. The main difference concerns the
middle solution, while the unmodified (Rtot ∼ 4) and the strong-modified (Rtot ∼ 58
solutions are essentially the same. A detailed study performing the variation of the
parameters value shows that our approach reduces somehow the region of the space
parameter where the multiple solutions are present, but it is far from resolve the problem.
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Fig. 5.6 Upper panel : this plot shows the difference between the results with and without
the constraint on pinj. Each curve represents the value of the eigenvalue λ as a function

of Rtot. The solutions of the problem correspond to λ = 1. Two values of Mach number
are shown, M0 = 100 (thick lines) and M0 = 500 (thin lines) with the same temperature
and maximum momentum (as indicated in the figure). The dashed lines result from the
calculation under the assumption that all the seed particles undergo the acceleration
process, while for the solid lines only particle with p > pinj are consideres. It is clear that

the problem of multiple solution is still present, but the region of the parameter space
where multiple solutions appear is somehow translated.
Lower panel : the same as the upper panel but for λ as a function of Rsub.
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As occurs for the injection at the sub-shock, one can suppose that only particles
with the momentum above a defined threshold, namely p > pinj, can cross the shock

and start the acceleration process. If we adopt this recipe also for the seed particles,
with pinj determined by the thermal leakage model itself (but excluding the injection

of thermal particles) multiple solutions persist. Figure 5.6 compares the results when
all the incoming particles take part to the acceleration (dashed lines) with the situation
where the restriction p > pinj is applied (solid lines). Two value of Mach number are

considered, M0 = 100 and 500, with T0 = 10
5
K and pmax = 10

6
mc. One time more

the multiple solutions appear but the space parameter region where this happens is
somehow translated towards lower value of the Mach number. We also note that the
strong modified solution (the one with the greatest Rsub) remain almost unaltered.

We are aware that the appearance of multiple solutions is connected to the non-
linear nature of the modified-shock problem and does not depend on the approximations
made, for example, either on the form of the diffusion coefficient or on the value of pmax.
From one hand we can suspect that one or more solutions could be unstable, hence
unimportant from the physical point of view. Such a conclusion is achieved by Mond
& O’C. Drury (1998) who use the two-fluid model approach to demonstrate that the
intermediate solution is unstable to corrugations in the shock structure and emission of
acoustic waves. On the other hand the stationarity assumption itself could be unphysical,
hence the problem should be solved in a time dependent way.

5.5.2 Acceleration in presence of seed particles and injection

In the previous section we showed how the Galactic component of CRs can modify
the shock structure in a significative way. In the present section we address the more
complicated scenario where, besides the pre-existing population of CRs, also the injection
of particles at the sub-shock front occurs.

It is worth remembering that in the situation where only injection is take into
account, the problem of multiple solutions is strongly reduced if a feedback mechanism,
like the thermal leakage recipe (equation (5.13)) is implemented into the shock dynamics.
This happens because the thermal leakage acts in such a way to allow the shock to self
regulate (see Blasi et al. (2005)): more is the modification less are the particles injected.
When the seed particles are added the situation become generally worse, because the
feedback mechanism does not apply to them. In spite of this, for what may concern the
SNRs shock scenario, the parameters region of physical interest presents only a single
solution.

As an example, in Figure 5.7 we compare the three different cases that take into
account (i) only the seed particles (dashed line), (ii) only the injection (dotted line) and
finally (iii) both the contributions (solid line). The parameters are fixed as shown in the
caption. The situations (ii) and (iii) both present a single solution. The figure shows
only the case with M0 = 100, but the same conclusion apply for a wide range of the
Mach number value: Figure 5.8 shows the results for M0 ranging from 50 to 500 when
both the pre-existing CRs and the injection are take into account.

Restricting our discussion to that cases that present only a single solution, it
is interesting to analise the particle spectrum depending on whether the seed particles
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Fig. 5.7 Comparison between the solutions of the modified shock problem obtained in
the three different situations: only seed particles (dashed-line), only injection from the
thermal bath (dotted-line) and both the previous (solid-line). For all the three cases the
parameters are fixed as shown in the caption.

are included or not. Such a comparison is shown in Figure 5.9, as usual, for several
values of the Mach number. The upper panel shows the particle spectrum f

◦
(p) at the

sub-shock position. In the case where the galactic CRs are take into account (solid
line), the spectrum turns out to be steeper at low energy, while at high energy remains
unchanged with respect to the case where only injection is considered. The steepness
of the spectrum is enhanced going from hight Mach numbers towards lower ones. This
result can be confirmed looking at the corresponding values of the sub-shock and the
total compression factors. Lower panels of the same figure show Rsub (left side) and Rtot
(right side) as a function of M0. While the value of Rtot changes very little in passing
from the solution without seeds to that with both seeds and injection, Rsub results in
a strong reduction, in accordance with the modification of the spectrum only at low
energy.

The reason of such behaviour at low energies lies in the different shape of the
spectrum derived by the seed particles and the one resulting only from the injection,

namely the functions f
(seed)

◦
(p) and f

(inj)

◦
(p) as defined in the equation (5.18). In the

limit p → pinj the former goes to zero while the latter increases towards higher values.

In principle this difference can be used to measure the relative weight of the two con-

tributions, as we will show in a while. It is worth to remember that f
(inj)

◦
(p) strongly

depends on the parameter ξ that regulates the efficiency of the injection process (see
Eq. (5.13)). Until now we have assumed the arbitrary value 3.5, but it is needless to
say that we are not able to compute the exact value of ξ because the very poorly-know
physics that stays behind the injection mechanism. It could be very interesting if such
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Fig. 5.8 Result of the modified shock problem when both injection and seed particles are
considered for several values of Mach number as shown in the caption.

parameter could be estimated from the observations. For this aim we have shown in
Figure 5.10 what happens to the particle spectrum when the value of ξ changes. Both

the component f
(seed)

◦
(p) and f

(inj)

◦
(p) are shown, together with their sum f

◦
(p). We

have performed the computation at a fixed Mach number (100) for three different values
of ξ, namely 3.25, 3.5 and 3.75, which correspond to an injection efficiency η of about

6.6 ·10−4
, 1.9 ·10−4

and 4.8 ·10−5
respectively. The corresponding change in spectrum at

low energy is significative: going from ξ = 3.25 up to ξ = 3.75 the spectrum varies over
an order of magnitude in the region where p ∼ pinj. Also the local slope q(p) ≡ −d log f◦

d log p

changes, decreasing from ∼ 5.2 down to 4.3, as shown in the lowest panel of the same
figure. For lower Mach numbers the difference become more pronounced.

Unfortunately we have no way to measure such difference in the low energy region
of the spectrum.

5.6 Conclusions

In this chapter we presented the full solution for the stationary problem of a shock
propagating into a plasma including the back reaction of the non-thermal particles. Our
main goal is the study of shock modification under the action of a pre-existing non-
thermal particle population. This study is motivated by a trivial remark: astrophysical
shocks like SNRs shocks, propagates into the interstellar medium where a Galactic Cos-
mic Rays population already exists. This is true for every SNR, expecially those that
expand in the so called superbubbles, i.e. regions with a high concentration of massive
stars, where the rate of supernovae explosions can be so frequent that energetic particles
can be accelerated by several shocks, before leaving the region.
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Fig. 5.9 Comparison between the solutions obtained when only the injection at the
shock front in considered (dashed lines) and when also the seed particles are added

(solid lines). Temperature and pmax are fixed at 10
5
K and 10

6
mc respectively, while the

injection efficiency is fixed at ξ = 3.5. The upper panel shows the non-thermal spectrum
as observed at the sub-shock front for several values of the Mach number, as reported
in the caption. In the lower panels the relatives values of Rsub and Rtot are shown as a
function of the Mach number (left and right side respectively).
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Fig. 5.10 The total non-thermal particle spectrum f
◦
(p) as a function of the momentum

is shown in the three upper panels (solid lines) as results for three different values of
the parameter ξ, namely 3.25, 3.50 and 3.75. The other parameters are fixed as shown

in the caption. The two components of the spectrum, f
(seed)

◦
and f

(inj)

◦
, are also shown

separately with dashed and dot-dashed lines respectively. The lower panel compares the
local slope of the total spectrum for the three cases.
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The test-particle theory of re-acceleration of non-thermal particle was firstly pre-
sented by Bell (1978b), who estimated that each shock passage can enhance the particle
energy by an order of magnitude. He further pointed out that, in the limit of infinite
number of shocks passing in the same region, the particle spectrum tends to a power

low in energy E
−3/2

. This means that a lot of energy is channelled into non-thermal
particles. Hence a non linear treatment is clearly required.

The first attempt to develop the non-linear generalization of such theory was pre-
sented by Blasi (2004), which used an approximate solution for the diffusion-convection
equation. The author recognized the role of the seed particles in producing modified
shocks, also in the absence of the injection from the thermal pool.

With respect to the previous studies, here we solve exactly the diffusion-convection
equation. Hence we use the correct solution for the spectrum to perform detailed cal-
culation of the particle spectrum in the tipical scenario of a SNR expanding into the
interstellar medium. We confirm the result of Blasi (2004), finding that the pre-existing
CRs can modify a shock in a stronghest way with respect to what injected particles
can do alone. This means that test-particle approach can never been used, also if the
injection would be negligible.

We also perform the computation of the spectrum fixing the contribution of the
pre-existing cosmic rays, assumed in pressure equilibrium with the interstellar gas, and
varying the injection efficiency. We find that the low energy region of the spectrum is
remarkable affected by the variation of the injection efficiency, while the high energy
region remains unchanged.

The main problem concerning the modified shocks is the presence of multiple
solutions, that persist also when the diffusion-convection equation is solved without
approximations. In spite of the fact that the problem presents only a single solution in
a wide range of the parameter space of physical interest, the multiple-solution problem
may hide a subtle issue. First of all it is possible that one or more solutions are not stable.
While in the contest of the two fluid model this turn out to be the case, stability study
of the kinetic approach had not been performed yet. A second possibility is that the
assumption of stationarity could be incorrect. It is possible that the shock continuously
evolves and never settle in a stationary solution, like many non linear systems. If this
were the case, the problem should be solved in a time dependent way.
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Conclusions and final remarks

In this work we investigate several aspects of the particle acceleration mechanism
at shock waves. The work is structured into two macroscopic parts. In the first part
(Chapters 2, 3 and 4) we study acceleration mechanism in the test-particle approximation
for shocks with arbitrary velocity , while Chapter 5 is dedicated to the non-linear shock
theory restricted to Newtonian shocks.

In Chapter 3 we carried out exact calculations of the angular distribution function
and spectral slope of the particles accelerated at plane shock fronts moving with arbitrary
velocity, generalizing a method previously described in detail in Vietri (2003) and Blasi
& Vietri (2005) (which is summarized in Chapter 2). In particular, we specialized our
calculations to two situations:

1. presence of a large scale coherent magnetic field of arbitrary orientation with re-
spect to the shock normal, in the upstream fluid;

2. anisotropic scattering of the particles both in the upstream and in the downstream
plasmas.

Our calculations allowed us to describe the importance of the inclination of the mag-
netic field when this has a large coherence length and there are no scattering agents
upstream. For newtonian shocks, only quasi-perpendicular fields (namely perpendicular
to the shock normal) are of practical importance, in that the return of particles to the
shock from the upstream section is warranted. Quasi-parallel shocks imply a very low
probability of return, so that the spectrum of accelerated particles is extremely soft. The
process of acceleration eventually shuts off for parallel shocks. For relativistic shocks,
the situation is less pessimistic because the accelerated particles and the shock front
move with comparable velocities in the upstream frame. In general, the acceleration
stops being efficient when the cosine of the inclination angle α of the magnetic field with
respect to the shock normal is comparable with the shock speed in units of the speed
of light. As a matter of fact, in this case the presence of only a large scale magnetic
field upstream leads to particle leakage to upstream infinity. This latter phenomenon
disappears when scattering is present, in that scattering always allows for the shock to
reach the accelerated particles. In this case the probability of returning to the shock at
an arbitrary direction is unity. One can ask when and how the transition from a situation
in which there is no scattering to one in which scattering is at work takes place. When
some scattering is present but the energy density in the scattering agents (e.g. Alfvén
waves) is very low compared with the energy density in the background magnetic field,
only very low energy particles are effectively scattered. When their energy becomes large
enough, they only feel the presence of the coherent field. Increasing the amount of scat-
tering, this transition energy becomes gradually higher. Particles whose Larmor radius
is larger that the coherence scale of the magnetic field can eventually escape the accel-
erator. In general the level of turbulence (and therefore of scattering) and the number
of accelerated particles are not independent since the turbulence may be self-generated
through streaming-like instabilities (Bell 1978a).
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Always in Chapter 3 we extended our analysis to the very interesting case of
anisotropic scattering in both the upstream (unshocked) and downstream (shocked)
medium. The pattern of anisotropy, which clearly depends on the details of the forma-
tion and development of the scattering centers, has been parameterized in four different
scenarios, and for each one we calculated the angular part of the distribution function
and the spectrum of the accelerated particles. Deviations from the predictions obtained
in the context of isotropic small angle scattering (SPAS) and large angle scattering (LAS)
have been quantified: the typical magnitude of these deflections is a few percent, but
there are situations in which the deviation is more interesting, in particular because it
goes in the direction of making spectra harder.

In Chapter 4 we develop a general parametric plasma equation of state to handle
in a more realistic way the problem of acceleration at shock waves propagating through
a plasma. This equation of state is applied to the shocked downstream plasma to get
the velocity ratio needed to compute the spectrum of accelerated particles. We consider
a simplified model of proton-electron plasma to take into account:

1. collective plasma effects that allow energy transfer from protons to electrons;

2. generation of turbulent magnetic field.

We analyse how these processes alter the compression factor of downstream plasma. We
find values for the downstream fluid velocity very different from what predicted assuming
that the plasma behaves like an ideal gas, a simplification that is generally adopted in
the literature.

These results for the downstream fluid velocity are combined with the theory
of shock acceleration of Chapter 2, to get the spectral slope s of accelerated particles.
Two different regimes for particles diffusion are considered in the upstream fluid: small
angle scattering and deflection by a static magnetic field. For the downstream fluids
only the SPAS regime is considered. The spectral slope is shown as a function of shock
speed from Newtonian to fully relativistic values, and for several values of equation of
state parameters. We show how the presence of a turbulent magnetic field lead to softer
spectra as a consequence of strong magnetic pressure contribution. On the other hand,
energy transfer from protons to electrons have the opposite effect: it reduces the total
pressure leading to harder spectra.

Fermi I order mechanism is usually believed to give the same results independently
from the microphysics. This is true only at a superficial glance. The results presented in
Chapter 4 show that a correct shock acceleration theory cannot neglect the microphysics
of a plasma even if this could not directly affect the diffusion process of high energetic
particles. Hence we belive that a deep study of the complex microphysics that regulate
plasma interactions is needed.

In the last part of this thesis, Chapter 5, we presented the general solution for
the stationary diffusion-convection equation describing the acceleration at shock that
propagates with constant (Newtonian) speed, including the dynamical reaction of the
accelerated particles, and for arbitrary diffusion coefficient. Our solution allows one to
include the effect of a pre-existing nonthermal particle population. We try to answer
two principal questions: i) whether a correct mathematical treatment can help to solve
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the problem of multiple solutions, and ii) under which conditions the presence of a
pre-existing nonthermal particle population can affect the shock dynamic.

The answer to the first question is negative. Multiple solutions are still present
even when the diffusion-convection equation is solved without approximations. Even
if some authors have demonstrated that this problem is alleviated when a reasonable
recipe for the injection is assumed (Blasi et al. 2005), the multiple solutions is not a
mere mathematical question, but can hide a subtle issue: it is either possible that one
or more solutions are not stable (like happens in the context of the two fluid model)
or the assumption of stationarity could be incorrect. It is indeed possible that the
shock continuously evolves and never settle into a stationary solution, like it happens in
many non linear systems. If this were the case, the problem should be solved in a time
dependent way.

For what concerns the point ii), we showed that the contribution of a pre-existing
energetic particle’s flux, like the Galactic CRs, whose pressure is comparable to that of
the ISM, can in general affect the shock dynamics. As a consequence shocks like those
generated in a SN explosion, that propagates into the Galactic environment can evolve in
a nonlinear way even if the injection of fresh particles were not an efficient process. This
consideration could be even more important in situations where CRs pressure is supposed
to be stronger, like stellar regions with high rate of SN explosions (OB association).
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Appendix

Jump Conditions for perpendicular shocks

In this Appendix we want to discuss to some extent the dynamical role of a
coherent magnetic field in the shock process. In Chapter 3 we have just discussed how
the coherent field can diffuse particles and drive the acceleration process also in the
absence of a random diffusion. In that case we completely neglect the contributions of
magnetic pressure and energy in computing the jump conditions. This is correct when we
deal with a magnetic field whose energy density is negligible with respect to the shock’s
kinetic energy, as is the case for the interstellar field. Nevertheless in some astrophysical
environments the field contribution to the energy density could be strongest and the
shock dynamic can significantly be altered. It is also worth to remember that when we
deal with strictly parallel shocks, as we done in Chapter 5, the field has no influence
onto the shock, no matter its energy density is. In that case the field’s only role is to
support the Alfvén waves that tie together the plasma and the CRs.

On the other hand, when the field is not parallel to the shock normal (oblique
shock) it can alter significantly the shock jump conditions. In the Figure A.1 we sketch
an oblique shock in the normal incident frame. A straight magnetic field exerts an

isotropic pressure equal to B
2
/(8π), that has to be included in the momentum and energy

conservation. Moreover, because the orthogonal component of the field is compressed
at the shock, the field direction changes and, as a consequence, at the discontinuity the
field exerts a tension force onto the plasma in the x − y plane. This means that the
plasma can convert momentum from the x to the y direction.

In this case the jump condition become more complicated than the Rankine-
Hugoniot or Taub jump conditions, because we need to add the components of the
energy-momentum tensor along the y direction. For simplicity we consider here only the
case of perpendicular shocks. In this case the tension force disappear and the problem
return to be one-dimensional. We only need to take into account the magnetic pressure
and energy. We firstly resolve the problem for Newtonian shocks, obtaining an analytic
expression for the compression factor, than we solve numerically the relativistic case.

A.1 The Newtonian limit

For the sake of completness we report in the following the full MHD jump con-
ditions for the oblique non-relativistic shocks. Besides the fluid’s mass, momentum and
energy conservation along the x direction, we need to add the source-free Maxwell equa-
tions for the magnetic field, ∇ ·B = 0 and ∇ × (u × B) = 0. Expressed in a vectorial
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form, the jump conditions reads:

[ρu · n̂] = 0 , (A.1)
[

ρu (u · n̂) + p + B
2
/8π − (B · n̂)B/4π

]

= 0 , (A.2)
[

u · n̂
(

1

2
ρu

2
+

γg

γg − 1
p +

B
2

4π

)

− (B · n̂)(B · u)

4π

]

= 0 , (A.3)

[B · n̂] = 0 , (A.4)

[n̂× (u ×B)] = 0 . (A.5)

Here [x] means the difference between the downstream and the upstream values, i.e
[x] = x2 −x1. n̂ is the normal to the shock surface and the fluid is considered ideal with
the adiabatic index γg. In the case of orthogonal shocks the jump conditions strongly

simplified: Eqs. (A.4) and (A.5) simply give B2,x = B1,x and B2,y = r B1,y, where r is

the usual compression factor, r = u1/u2. Eqs. (A.2) and (A.3) become respectively:

1 +
1

γgM
2

1

+
1 − r

2

2M2

A

=
1

r

(

1 +
1

γgM
2

2

)

, (A.6)

1

2
+

1

M2

1
(γg − 1)

+
1 − r

M2

A

=
1

r2

(

1

2
+

1

M2

2
(γg − 1)

)

. (A.7)

Here the magnetic contribution is parametrized using the Alfvénic Mach number of the

shock, namely MA ≡ u1/vA = ρ1u
2

1
/(B

2
/4π). We recover the standard R-H relations

for MA → ∞. Solving together (A.6) and (A.7) the only physical acceptable solution,

Fig. A.1 Sketch of an oblique shock in the normal incident frame. F is the tension force
caused by the change of the field direction, and exerted by the field onto the plasma.
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besides the trivial one, r = 1, is the following:

r =

2 + M
2

1

(

γg − 1 +
γg

M2
A

)

−
{

[

2 + M
2

1

(

γg − 1 +
γg

M2
A

)]2
− 4(γg + 1)(γg − 2)

M4
1

M2
A

}1/2

2(γg − 2)
M2

1

M2
A

.

(A.8)
The Figure A.2 show the compression factor as a function of M1 for several value of MA.
In the limit of negligible magnetic energy density we recover the usual hydrodynamic

result r = [(γg + 1)M
2

1
)]/[(γg − 1)M

2

1
+ 2].

We note that the shock to exist requires r > 1. This condition imposes an upper
limit for the magnetic energy density, that translates into a lower limit for the Alfvénic
Mach number:

M
2

A
> M

2

1
/(M

2

1
− 1) . (A.9)

An interesting result is that the minimum value of MA does not depend on the adiabatic
index of the plasma. In the following we also report the expression for the downstream
Mach number:

M
2

2
=

[

γg(r − 1) +
r

M2

1

−
γgr(r

2 − 1)

2M2

A

]−1

. (A.10)

For what concern the downstream pressure and temperature, for an ideal gas the follow-
ing relations hold:

T2/T1 = M
2

1
/(r

2
M

2

2
) , (A.11)

p2/p1 = M
2

1
/(r M

2

2
) . (A.12)

Using the solution for r it is easy to see that the condition M1 > 1 implies r > 1 and
M2 < 1 and, in turn, also T2 > T1 and p2 > p1, as required by the second principle of
the thermodynamics.

A.2 The relativistic treatment

As described in §4.3.3, to get the MHD generalization of the relativistic jump
conditions, we simply need to add the Maxwell-energy tensor, Eq. (4.20), to the fluid
momentum-energy tensor. The results are the same Equations (4.1)-(4.3) plus the mag-
netic energy and pressure contributions both for upstream and downstream sections. As

for the Newtonian case, the upstream values are ǫm,1 = pm,1 = B
2
/(8π). The down-

stream values can be computed using the source-free Maxwell equations in the shock
frame around the shock discontinuity

∇µ(B
′µ

u
ν − u

µ
B

′ν
) = 0 , (A.13)

where B
′µ

is the field in the shock frame and u
µ

is the plasma 4-velocity. Equation
(A.13) joint with the Lorentz transformation for B

′µ
between the plasma and the shock

frame, gives us the parallel and the orthogonal field components: Bx,2 = Bx,1 and
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Fig. A.2 Compression factor for Newtonian perpendicular shock as a function of the
Mach number in the presence of a coherent magnetic field, for different values of the
Alfvénic Mach number, MA.

B
⊥,2β1Γ1 = B

⊥,2β2Γ2. Because we have only the orthogonal component, the result

reads:

ǫm,2 = pm,2 = ǫm,1

(

Γ1β1

Γ2β2

)2

, (A.14)

As usual we limit our analysis to the strong shocks (p1 = 0). Obviously the mass
conservation, Eq. (4.1), does not change, while Eqs. (4.2) and (4.3) with the magnetic
contribution can be expressed as follows:

Γ
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2

(
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2
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2
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)

(
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=
(
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2

2
β

2

2

)

(
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)2
, (A.15)
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(
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2

1
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2

1
− Γ

2

2
β

2

2

)

= 0 . (A.16)

In the present case we use the magnetization parameter αm = B2/8π
ρ1c2

instead of the

Alfvénic Mach number. The Equations (A.15) and (A.16) can be solved numerically
once the equation of state for the downstram gas is provided in term of the normalized
enthalpy w̄ = ǭ(p̄) + p̄.

The simplest example of solution is shown in Figure A.3 where the velocity ratio
rβ vs. the shock velocity is plotted for a non-interacting electron-proton plasma (i.e.

we do not take into account any of the collective plasma processes described in the
Chapter 4). Different values of magnetic energy density are considered, ranging from

αm = 5 × 10
−4

up to 0.1. The presence of magnetic pressure makes the plasma less
compressible, hence the compression factor can be strongly reduced.
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Fig. A.3 Velocity ratio for perpendicular shocks as a function of Γshβsh, for several values
of the magnetized parameter αm.

It is worth noting that while in the Newtonian limit there exist a maximum value
for αm (i.e. a minimum value for MA), above which the shock cannot exist, in the ultra-
relativistic limit the magnetic energy density is not limited by any value, and rβ → 1

when αm → ∞.
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