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Abstract

The ATLAS and CMS experiments at the LHC discovered a 125 GeV Higgs boson
in 2012. The measurements of its properties give us an insight to many important
physical parameters. In this thesis the CMS H → ττ → µνµνττhντ analysis is dis-
cussed, including the Higgs physics theory, construction of the CMS apparatus and
event reconstruction algorithms. Moreover, a set of machine learning methods is
presented together with their utilization in event identification. The construction of
these methods allows them to be easily accommodated to official Monte Carlo CMS
data samples in the supervised learning mode. We showed that the result of 0.875
for average area under receiver operating curves for all considered event final states
is feasible. The best performance is obtained for neural network model.

The thesis contains the author analysis of significance implemented on top of
both cut based and machine learning based distributions of discriminating variables
in the aforementioned Higgs boson decay channel. The results indicate that the in-
corporation of the output of machine learning estimator can boost the performance
of the analysis by 20 to 35%.



Streszczenie

W 2012 roku eksperymenty ATLAS i CMS ogłosiły odkrycie nowej cząstki skala-
rnej o masie około 125 GeV - bozonu Higgsa. Pomiary własności tej cząstki pozwalają
na oszacowanie wielu ważnych parametrów fizycznych Modelu Standardowego.
W szczególności sprzężenia bosonu Higgsa do leptonów mogą być mierzone w
rozpadach na dwa taony. W niniejszej pracy omówiona jest analiza H → ττ →
µνµνττhντ: przedstawiono podstawy teoretyczne Modelu Standardowego i spon-
tanicznego łamania symetrii wraz z fizyką cząstki Higgsa, budowę detektora CMS
przy akceleratorze LHC oraz algorytmy rekonstrukcji zderzeń. Zaprezentowano po-
nadto przegląd metod uczenia maszynowego razem z ich zastosowaniem do iden-
tyfikacji przypadków w omawianej analizie. Wygoda użycia tych metod wynika
z faktu łatwego ich trenowania przy użyciu standardowych próbek Monte Carlo
dostępnych dla analiz fizycznych kolaboracji CMS. Uzyskane wyniki wskazują na
możliwość uzyskania wartości 0.875 dla uśrednionej powierzchni pod krzywymi
ROC (ang. „Receiver Operating Curve”, charakterystyka operacyjna odbionika) dla
rozpoznawania czternastu zdefiniowanych stanów końcowych istotnych w analizie
H → ττ.

Praca kończy się autorską analizą znaczoności zaimplementowaną dla wyżej
wspomnianego kanału rozpadu bozonu Higgsa. Porównano tutaj rozkłady zmie-
nnych dyskryminujących dla standardowej analizy opartej o cięcia kinematyczne
oraz analizy opartej o wynik z modelu sieci neuronowej. Wykazano, że uczenie ma-
szynowe pozwala na poprawę wyniku końcowego analizy o 20% do 35% .
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Introduction

At the time of writing this thesis the Higgs boson is already a well known and
confirmed part of the Standard Model. Since its discovery in 2012, the ATLAS
(A Toroidal LHC ApparatuS) and CMS (Compact Muon Solenoid) collaborations re-
defined their analyses’ main objective to the Higgs particle property studies and Be-
yond Standard Model searches. As part of the former task, for the Run II (2015-2018)
of the Large Hadron Collider (LHC), direct coupling measurements into fermions
were conducted in the ditau Higgs decay channel.

This channel is characterized by a relatively large Higgs boson branching ratio
(BR) of 6%. However, tau lepton decays very rapidly and it’s only possible to search
for its decay products. On top of that, there are many possible tau decay modes, not
excluding the semi-leptonic ones where hadrons (visible as jets) are present in the fi-
nal state (about 60% of the BR). As a consequence the single H → ττ analysis is split
into multiple sub-analyses. Moreover, the large hadronic background present at the
LHC collision point plays a crucial role, and the invisible neutrinos worsen the mass
reconstruction resolution. The signal-to-background ratio is boosted by considering
the topology of Higgs boson production processes and applied into analysis with a
set of carefully selected constraints on kinematical variables in the event. The above
process is called categorization and has been the place of major improvements for
the Run II (2015-2018) versus the initial Run I (2010–2013) design. In particular, the
one dimensional distributions of discriminating variable (Higgs mass) were replaced
by two dimensional ones, with observables chosen per category and presenting the
best discriminative power between signal and backgrounds. This allows to limit the
number of categories as 2D approach does not require designing complex selection
criteria based on a variety of variables. Additionally, the remaining categories have
similar definitions across final states.

Work on the construction of the analysis (e.g. categorization) may be considered
very technical, but it is crucial for enhancing the sensitivity of the measurement and
influence the final precision of the result. This is especially important when only
a finite amount of physical data is available. Therefore, I have decided to devote
this thesis to present yet another approach to the H → ττ analysis, where Run II
categorization is backed up – or even replaced – by a single classifier, derived using
the set of popular machine learning techniques. The aim of this thesis is to find the
machine learning classifier which effectively reconstructs the origin of the event and
find if and how this classifier can be used for Higgs boson signal extraction. Within
that task we do not constrain the target of the classification only to Higgs-like and
not-Higgs-like discrimination as a general insight into the event can bring valuable
information e.g. for the signal (background) estimation in the control regions de-
fined in the analysis.

The thesis is organized as follows. Chapter 1 describes the foundations of the
Higgs particle physics. The Standard Model is introduced as a field theory with ap-
propriate gauge group symmetry and with spontaneous symmetry breaking. Fur-
thermore the properties of the Higgs boson, i.e. mass, couplings, main production
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processes and decay modes are presented. The chapter ends with a brief description
of the tau lepton properties.

In Chapter 2 the Compact Muon Solenoid apparatus is described. The chapter
begins with a short presentation of historical background and the reasoning behind
the LHC and CMS creation. The rest of the text is devoted to the description of
constituents of the CMS: the magnet, inner tracking detector, calorimeters, muon
trackers and trigger systems.

The vast majority of analyses in the CMS are based on high level objects (elec-
trons, muons, photons, jets and so on) reconstructed from signals left by particles
traversing the matter of the detector. The sophisticated algorithms employed for
this task are enumerated and detailed in Chapter 3. In the Compact Muon Solenoid
experiment, the core algorithm used is called Particle Flow and described first. It
uses data from all CMS subsystems and allows to distinguish between muons, elec-
trons, photons and charged/neutral hadrons. The jets are reconstructed on top of
the Particle Flow particles and taus are identified from jets. At the end, the Higgs
boson mass reconstruction in the ditau events is presented.

The results of this thesis are based upon the cut-based H → ττ analysis, and as
such it was necessary to have working re–implementation of the standard (and offi-
cial) CMS analysis. Chapter 4 follows the path of the 2016 CMS H → ττ analysis, all
the way from official CMS data samples to the nominal distributions of discriminat-
ing variables in this channel. Within that, the analysis-specific variables are defined,
the baseline and the category selections are presented and the Monte Carlo to Data
samples weights and scale factors are discussed. Moreover, the relevant systematic
uncertainties are given.

Chapter 5 explains exactly what Machine Learning is and what it has to do with the
term classifier. In the main part of this chapter a variety of classifiers are presented,
trained and compared. The analysis goes from the simplest white box model – de-
cision tree, through newer and more advanced random forest and boosted decision
trees, and ends with neural networks as an example of lately worldwide favored
approach to machine learning.

The last Chapter 6 uses the best classifier found earlier to propose its utilization
for the Higgs boson events classification. The results are compared to the perfor-
mance of the standard CMS analysis classification (presented in Chapter 4) on the
ground of the significance calculation.

The results of the thesis are summarized in Conclusions. Five appendices con-
tain a list of data samples used (Appendix A), additional technical information for
Chapter 4 (Appendix B), control plots for the H → τµτh analysis (Appendix C), the
input variables for the machine learning models (Appendix D), and derivation of
the equation for the significance used in Chapter 6 (Appendix E).
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Chapter 1

Introduction to Higgs boson and
tau lepton physics

The currently dominant model in high energy physics is called the Standard Model
(SM) or Glashow–Weinberg–Salam Model [1]. SM is a quantum field theory that fully
describes three of the four fundamental forces (the only exception is gravity) in
the Universe and all elementary particles discovered so far. The Lagrangian of
the SM is composed of three parts related to the quark sector (Quantum chromody-
namics (QCD)), fermion sector (Electroweak interaction theory) and Higgs sector. In
this chapter we will shortly introduce the basics of the SM, emphasizing the spon-
taneous electroweak symmetry breaking, Higgs boson properties and tau lepton
physics. We will describe the classical approach to the Standard Model, where neu-
trinos are massless and the lepton flavor mixing effects related to Pontecorvo–Maki–
Nakagawa–Sakata matrix are neglected.

1.1 The Standard Model

The Standard Model is described by the Lagrangian density

LSM = Lkinetic+gauge + LYukawa + LHiggs. (1.1)

The above formula describes all particles and their interactions in the Standard
Model. Lagrangian in Eq. 1.1 contains all allowed terms dimension 4 or less respect-
ing Lorentz invariance and gauge group

SU(3)× SU(2)×U(1). (1.2)

In accordance to Noether theorem [2] every gauge symmetry corresponds to a
conservation of a single physical quantity. In the Standard Model they are called
color, (weak) isospin and hypercharge, respectively for gauge groups given in Eq. 1.2.

The field content of the Standard Model contains the Higgs field (spin 0), fermionic
fields (spin 1/2) and vector gauge fields (spin 1).

The Higgs field φ is the only complex scalar field in the Standard Model. It has
four degrees of freedom and is described by the following quantum numbers

φ = (1, 2,+1/2) (1.3)

In this notation the quantum numbers describe the transformation properties with
respect to the gauge group (Eq. 1.2). This means that φ transforms as a singlet under
SU(3) (it is color neutral and thus does not take part in the strong interactions) and
as a doublet under SU(2). The last entry of the triplet is the value of hypercharge.
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The three fermion generations (labeled by the subscript i) are described by five
representations of the fields and their transformation properties with respect to the
gauge group (Eq. 1.2). They are as follows:

• the doublet of left-handed quarks: QLi = (3, 2, +1/6),

• the singlet of right-handed up quarks: uRi = (3, 1, +2/3),

• the singlet of right-handed down quarks: dRi = (3, 1, -1/3),

• the doublet of left-handed leptons: LLi = (1, 2, -1/2),

• the singlet of right-handed leptons: eRi = (1, 1, -1).

The gauge interactions bosonic degrees of freedom are given by eight SU(3)
fields Gµ

a = (8, 1, 0), three SU(2) fields Wµ
a = (1, 3, 0) and one U(1) field Bµ = (1,

1, 0). The first type are called the gluonic fields and are responsible for transmit-
ting color interactions. The two latter ones are combined together into a unified
Glashow–Weinberg–Salam theory [3, 4, 5] of the electromagnetic and weak inter-
actions, shortly called the electroweak theory. The field strength tensors are given
by

Gµν = ∂µGν
a − ∂νGµ

a − gS fabcGµ
b Gν

c ,

Wµν = ∂µWν
a − ∂νWµ

a − gWεabcW
µ
b Wν

c ,
Bµν = ∂µBν − ∂νBµ (1.4)

Here gS and gW are the strong SU(3) and the weak SU(2) coupling constants. The
U(1) coupling constant will be called gY.

To finish the construction of the Standard Model we need to write down the
definition of the covariant derivative in terms of the fields Gµ

a , Wµ
a and Bµ:

Dµ = ∂µ + igSGµ
a La + igWWµ

b Tb + igYBµY . (1.5)

The generators of each group are as follows. The La’s are the SU(3) generators, which
are described by the 3× 3 Gell-Mann matrices 1

2 λa for triplets and 0 for singlets. The
Tb’s are the SU(2) generators, given by 2× 2 Pauli matrices 1

2 σb for doublets and 0
for singlets and Y is the hypercharge.

Let us now expand the Eq. 1.1 and elaborate on the physics behind it.
The first term gives

Lkinetic+gauge = −1
4

Gµν
a Gaµν −

1
4

Wµν
b Wbµν −

1
4

BµνBµν

−iQ̄Li /DQLi − iūRi /DuRi − id̄Ri /DdRi − iL̄Li /DLLi − iēRi /DeRi

− (Dµφ)† (Dµφ
)

(1.6)

and describes the free propagation of the fields in spacetime, and gauge interactions.
The remaining terms in the Lagrangian contain interactions between appropriate

fields. The Yukawa term LYukawa describes the interaction between the Higgs field
and fermion fields. The coupling is proportional to the fermion masses [6]

LYukawa = Yd
ijQ̄LiφdRj + Yu

ij Q̄Liφ̃uRj + Ye
ij L̄LiφeRj + h.c. (1.7)

In this equation φ̃ = iσ2φ† is a doublet with the hypercharge Y(φ̃) = −1 and the
Y’s represent general 3× 3 matrices of dimensionless couplings between scalars and
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fermions. The couplings depend on the flavor of the particles and this part of the
Lagrangian is the only source of CP symmetry violation in the SM1.

The last term in the Lagrangian is the so-called scalar potential

LHiggs = −V(φ) = −µ2φ†φ− λ(φ†φ)2, (1.8)

where µ and λ are constant scalar coefficients. This part is responsible for symmetry
breaking and is the essence of the Brout-Englert-Higgs mechanism [9, 10, 11, 12],
which will be described in the following section.

1.2 Symmetry breaking and the Brout-Englert-Higgs mecha-
nism

There are two ways of breaking the exact symmetry of the Lagrangian: explicit and
spontaneous. In the former case the Lagrangian does not exhibit symmetry at all.
In the latter case the Lagrangian is symmetrical under some transformation, but the
ground state of the theory is not. Therefore, it is the nonvanishing vacuum exception
value (vev) of a field present in the theory that breaks the symmetry. The usefulness
of the spontaneous symmetry breaking mechanism stems from the fact that thanks
to it in the theory particles acquire masses. In the unbroken SU(2) × U(1) theory of
weak and electromagnetic interactions all gauge bosons are massless which is incon-
sistent with short-range nature of weak forces and clearly massive force carries. The
spontaneous breaking of this continuous local2 gauge symmetry is exactly what is
needed to give the masses to the weak interaction bosons (via Higgs mechanism),
leaving the photon massless (in accordance with Goldstone theorem [13]). Since we
want three out of four (the number of generators of symmetry group is 3 + 1) mass-
less bosons to acquire mass, the symmetry of the ground state should be symmetry
with single generator. The broken Lagrangian U(1) symmetry group is associated
with electromagnetism with electric charge as its generator.

In the Standard Model the Higgs field has a non-zero vev v

〈0|φ(x)|0〉 = 1√
2

(
v
0

)
.

The placement of the real-valued vev in the higher component of the doublet does
not cause any loss of generality. In order to get the mass part of the Lagrangian we
need to evaluate its kinetic term at the vev. We obtain:

Lmass = − (Dµφ)† (Dµφ
)
= −1

8
v2(1, 0)

(
gWW3

µ − gYBµ gW(W1
µ − iW2

µ)

gW(W1
µ + W2

µ) −gWW3
µ − gYBµ

)2 (1
0

)
.

The diagonalization of this matrix leads to the following formula

Lmass = −M2
WWµ+W−µ −

1
2

M2
ZZµZµ, (1.9)

1In the extended SM theory with right-handed neutrinos the lepton CP symmetry also can be vio-
lated. The T2K experiment reported a 2σ confidence interval for the CP violating phase (δCP) of PMNS
matrix [7] which does not include CP-conservation cases (δCP = 0, π) [8].

2Every local symmetry is also a global one, but not vice versa.
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where the fields

W±µ ≡
1√
2
(W1

µ ∓ iW2
µ); Zµ ≡ cos θWW3

µ − sin θW Bµ; θW ≡ tan−1(gY/gW)

are associated with W± and Z0 particles and their masses are equal

MW = gW · v/2 ≈ 80.4 GeV; MZ = MW/ cos θW ≈ 91.2 GeV.

and θW is the Weinberg mixing angle (electroweak mixing angle). The fourth mass-
less particle, which is ruled out of Eq. 1.9 by the zero element of the Higgs vev
spinor, is a photon represented by the field:

Aµ ≡ sin θWW3
µ + cos θW Bµ.

In the Standard Model the Higgs field is also present in terms responsible for giv-
ing mass of the fermions via the Yukawa interactions (see Eq. 1.7). These interactions
explain how the masses of fermions are generated in the Standard Model. Fermions,
which are initially massless (before spontaneous symmetry breaking in the so-called
gauge interaction eigenstate) acquire a mass, determined by the Yukawa coupling
after symmetry breaking (mass eigenstate). The mass term is omitted for the neutri-
nos, since right-handed neutrinos are not present in the Standard Model3. To obtain
the fermion particle masses after the Higgs field gains a vev, we perform a rotation to
the fermion mass eigenstate basis. After performing the diagonalization the masses
are given by

m f =
Y f v√

2
(1.10)

Y f being appropriate parameters of the Lagrangian in Eq. 1.7.

1.3 The Higgs boson and its properties in the Standard Model

From the four initial degrees of freedom of the Higgs field, the W± and Z bosons
absorb one degree of freedom each in the Higgs mechanism. Therefore, after spon-
taneous symmetry breaking only one degree of freedom is left. It corresponds to the
physical Higgs boson.

The mass of the Higgs boson (in terms of the parameters of the Eq. 1.8) is

mH =
√

2λv, (1.11)

where λ is the so-called Higgs self-coupling parameter.
The expectation value of the Higgs field must be fixed experimentally by relation

to the Fermi coupling constant GF
4, giving the value of v,

v =
(√

2GF

)−1/2
∼ 246 GeV. (1.12)

3The SM does not explain how neutrinos obtain masses. One of the explanations which goes beyond
the SM is that they are Majorana particles. Another one assumes the presence of additional right-
handed (sterile) neutrinos and Yukawa-like mass terms.

4...which in turn comes from measurements of the muon lifetime, gives strength of the weak force
and is equal to 1.1663787(6)× 10−5 GeV−2
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The lack of the prediction of the Higgs measured mass is due to the fact that the λ
coefficient is a Standard Model free parameter. Given the Higgs mass approximately
equal to 125 GeV, λ ' 0.13. Furthermore, the minimum of the Higgs potential (Eq.
1.8) is for

|φ0|2 ≡ v2 =
−µ2

λ
,

so we have |µ| ' 88.8 GeV. An illustration of the Higgs potential and spontaneous
symmetry breaking mechanism is shown in Fig. 1.1.

Figure 1.1: Illustration of the Higgs potential (Eq. 1.8) and symmetry breaking mechanism.
The main plot shows the projection of the complex scalar potential V(φ) (top left 3D plot)
onto a plane where two (out of an infinite number) of vevs are chosen. The shape of the
potential requires the µ2 constant to be negative, i.e. µ is a purely imaginary number. After
the Higgs field φ acquires a vev v (the purple ball falls down the slope), the initial symmetry
of the potential is broken (the purple ball can no longer move freely and must stay in the

groove).

1.3.1 Higgs couplings

We can write down explicitly the full expression describing Higgs boson (self) cou-
plings as

L = −gH f f f̄ f H +
gHHH

6
H3 +

gHHHH

24
H4 + δVVµVµ

(
gHVV H +

gHHVV

2
H2
)

(1.13)

with V = W± or V = Z and δW = 1 and δZ = 1/2. In the formula above we have

• gH f f =
m f
v as the Higgs coupling constant to the fermions - it is linearly pro-

portional to the mass of the lepton/quark m f .

• gHVV =
2m2

V
v as a single Higgs coupling constant to vector bosons. It is propor-

tional to the square of the vector boson mass mV , so it is much larger than gH f f
(for mV ≈ m f ).
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• gHHVV =
2m2

V
v2 as a double Higgs coupling constant to the vector bosons - also

proportional to the square of the vector boson mass, but with squared vev in
the denominator.

• gHHH =
3m2

H
v and gHHHH =

3m2
H

v2 - are the Higgs self couplings in a triple and
quadrupole vertex.

In the LHC one-loop processes also play an important role, in which a Higgs boson
is produced from gluons and decays into photons. In the first case, the loop con-
tains mainly a virtual top-antitop pair. In the second case, the photons are created
dominantly via a virtual vector boson loop (top loop contributes at a ∼ 20% level
compared to W± at leading order).

1.3.2 Higgs boson production at the LHC

In the LHC the Higgs particle is produced mainly via gluon-gluon fusion (ggH),
vector boson fusion (VBF), associated production with a weak-boson and finally as-
sociated production with a tt̄ quarks pair (see Fig. 1.2). The total production cross
section corresponding to these processes depends on (for the fixed Higgs mass of
125 GeV) the center of mass energy, and is equal to 55.1 pb for 13 TeV.

Figure 1.2: The Standard Model Higgs boson prediction for the cross section. On the left plot
the cross section as a function of center-of-mass energy for 125 GeV Higgs boson, and on the

right plot as a function of Higgs particle mass for
√

s = 13 TeV are shown [14].

Gluon fusion (gg→ H)

Gluon fusion (Fig. 1.3) is the largest cross section Higgs boson production mecha-
nism at the LHC. In the SM gg→ H process at Leading Order (LO) is mediated only
by an exchange of virtual quarks, where the particular quark contribution is pro-
portional to its mass [15]. The following terms constitute to the current best gluon
fusion prediction for the cross section σ at the 13 TeV center-of-mass energy [15]:

• LO cross section of 16.00 pb. Although this contribution can be calculated
precisely, its value is computed using effective theory to keep consistency with
higher order corrections. The effective theory cross section is derived assuming
infinite top quark mass and then rescaled (at each order) by the ratio σLO

mt
/σLO

mt=∞.
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g

g

t H

Figure 1.3: Main process Feynman diagram for gluon fusion Higgs production.

Here σLO
mt

denotes the SM cross section with five massless quarks and a single
massive top quark. In this approach the contributions from bottom and charm
quarks are neglected. They are added separately using the precise SM result.

• NLO (Next-to-Leading Order) cross section of 18.79 pb. This contribution is
also known exactly and computed analogously to the previous case. The ad-
ditional correction is applied to match the exact theory (i.e. which takes into
account the finite top quark mass) with the effective one.

• NNLO (Next-to-Next-to-Leading Order) cross section of 9.90 pb. The NNLO
results are obtained only in the frame of effective theory and return 9.56 pb.
The additional 0.34 pb comes from the inclusion of subleading corrections
given through an expansion of the inverse top quark mass.

• Electroweak (EW) and N3LO ([Next-to]3 = Next-to-Next-to-Next-to-Leading
Order) cross section of 3.89 pb. These consist of electroweak radiative correc-
tions computed at the NLO (mixed QCD-electroweak corrections are known
only in an effective theory [16]) and rescaled effective theory N3LO cross sec-
tion.

All above sum up to the 125 GeV Higgs production cross section of:

σggH = 48.58 pb+4.56%
−6.72% (theory)± 3.20% (PDF+αs).

Vector boson fusion (qq→ q′q′H)

The second-largest Higgs production cross section at LHC is Vector Boson Fusion
(VBF). In this process (Fig. 1.4) the scattering of two (anti-)quarks is mediated by a
vector boson with radiation of the Higgs boson into the final state.

q q′

q q′

H

V∗

V∗

Figure 1.4: Feynman diagram for VBF Higgs production.

In the event the two scattered quarks are visible as two hard jets going in opposite
direction along the beam. Furthermore, the final state gluon radiation is strongly
suppressed in VBF due to color-singlet nature of the W/Z boson exchange. Because
of these features, the VBF process is fairly easily distinguished from both large QCD
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background and Higgs associated production. This makes VBF particularly useful
for Higgs searches in channels with hadrons (jets) in the final state (H → bb̄, H →
ττ̄).

The VBF cross section is currently calculated at the NNLO QCD, where VBF
process is considered as double deep-inelastic scattering (DIS) with standard DIS
structure functions Fi(x, Q2); i = 1, 2, 3. Additionally, the relative NLO EW correc-
tions and contribution from photon-induced channels are added. The final predicted
cross section value at 13 TeV is the following:

σqqH = 3.7817 pb+0.43%
−0.33% (theory)± 2.1% (PDF+αs)

Higgs Strahlung (qq′ → Z/WH)

The associated production of Higgs boson with a vector gauge boson (W or Z) is
called Higgs Strahlung (Fig. 1.6) and is another important production process next to
gluon fusion and VBF.

q

q′

V

H

V∗

Figure 1.5: Feynman diagram for Higgs Strahlung.

Although the large QCD background limits the usefulness of this channel in ded-
icated Higgs search analyses, it can still be relevant e.g. for high-pT VH(H → bb̄)
events, where information about substructure of jets can be used to extract the signal
[17] and where Higgs particle decays into a pair of W bosons or into invisible (un-
detectable) Beyond Standard Model particles. Moreover, the couplings of the Higgs
boson to the W and Z bosons can be measured separately and uniquely throughout
this channel.

The total inclusive theoretical cross section predictions for Higgs Strahlung are
known in the frame of Standard Model up to NNLO QCD and NLO EW corrections.
In the case of NLO QCD and majority of NNLO QCD corrections they can by re-
duced to the Drell-Yan production of a virtual gauge boson [18]. The irreducible part
of NNLO QCD corrections contain Higgs boson radiation from top-quark loops (for
qq′ → VH) and where Z and H couple to gluons via top-quark loop (for gg → ZH)
[19]. The NLO EW cannot be factorized into Drell-Yan-like process due to irreducible
box diagrams already at one loop [20]. For the 125 GeV Higgs boson at 13 TeV we
have:

σVH = 1.373 pb+0.5%
−0.7% (theory)± 1.9% (PDF+αs).

Associated production (gg→ tt̄H)

At LHC at 13 TeV, the Higgs boson is created in about 1% of events via associated
production with a top-antitop quark pair. This channel can be used to probe the top
quark Yukawa coupling yt directly and model-independently5. Also, this channel is

5Indirect measurements of yt can be performed with gg→ H events assuming no contribution from
unknown particles in the loop.
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relatively experimentally clear but with a complex final state and the Higgs signal
can be extracted using multivariate analysis (MVA) techniques [21].

g

g

H

t

t̄

Figure 1.6: Feynman diagram for Higgs associated production with top-antitop quark pair.

The tt̄H cross section is known at the LO [22], NLO QCD [23] and NLO EW [24]
orders. The predicted value for 125 GeV Higgs boson at 13 TeV is:

σtt̄H = 0.5071 pb+5.8%
−9.2% (theory)± 3.6% (PDF+αs).

In this thesis we neglect the tt̄H production because of its very small contribution
to the analyzed data sample.

Other production processes

From the other 125 GeV Higgs boson production processes, it is worth to note 1)
the associated production with single (anti-)top quark (74.25 fb at 13 TeV); 2) the
associated production with charm-quark pair (85 fb at 13 TeV) and 3) the associated
production with bottom-quark pair (479.20 fb at 13 TeV) [25]. The first two have
negligible cross sections. The third one although having a cross section comparable
to gg→ ttH process, has also a very large background at LHC.

1.3.3 Higgs decay modes

Theoretical total width of a 125 GeV SM Higgs boson is 4.07× 10−3 GeV+4.0%
−3.9% [26].

The dominant branching ratios with theoretical uncertainties are shown in Fig. 1.7.
In this section we will give a brief introduction into the most important Higgs par-
ticle decay modes with extended consideration about the most interesting for us
H → τ+τ− decay channel.

Diphoton decay mode (H → γγ)

The H → γγ search channel (Fig. 1.8) is characterized by its high mass resolution
of ≈ 2% (no neutrinos in the final state and efficient reconstruction in the electro-
magnetic calorimeter) and very good background rejection (Higgs particle creates a
narrow peak over otherwise smoothly falling diphoton mass distribution). The main
backgrounds are prompt two photon production, photon with jet and pair of jet pro-
cesses (where the jet fakes a photon). The final result is calculated by simultaneous
fitting the signal yield from multiple categories (created with respect to the produc-
tion process, expected mass resolution and signal-to-background ratio). The mea-
sured signal strength relative to the Standard Model prediction is equal to 1.18+0.17

−0.14
for CMS [27] and 0.99+0.14

−0.14 for ATLAS [28]. The CMS Collaboration additionally gave
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Decay Mode BR
Fermionic decays
H → bb̄ 5.84 · 10−1

H → τ+τ− 6.27 · 10−2

H → cc̄ 2.88 · 10−2

H → µ+µ− 2.18 · 10−4

Bosonic decays
H →WW∗ 2.14 · 10−1

�

2l2ν, (l=e,µ) 1.06 · 10−2

H → gg 8.19 · 10−2

H → ZZ∗ 2.62 · 10−2

�

4l, (l=e,µ) 1.24 · 10−4

H → γγ 2.27 · 10−3

H → Zγ 1.53 · 10−3

�

2lγ, (l=e,µ) 1.03 · 10−4

Figure 1.7: The Standard Model Higgs boson decay branching ratios and total uncertainties.
On the left plot the 80-200 GeV particle mass range and on the right a table with numerical

values for 125 GeV particle are shown [14].

the estimated significances for different categories: 6.7 (ggH), 1.7 (VBF), 3.2 (tt̄H) and
2.4 (VH) standard deviations.

H W

γ

γ

H F

γ

γ

Figure 1.8: Leading-order Feynman diagrams of the Higgs boson decays to photons. H → γγ
is a one-loop process at LO. W stands for W boson and F for fermions in the loop.

Higgs to four leptons decay mode (H → 4l)

Another channel with high mass resolution and good background separation is H →
ZZ∗ → l+l−l′+l′−. The main irreducible backgrounds are qq̄ → ZZ∗ and gg →
ZZ∗. The reducible background is mainly from Z boson production together with a
pair of bottom or top quarks or jets. Both CMS and ATLAS experiments performed
measurements of Higgs boson mass (mH) using this channel. For 13 TeV LHC data,
the obtained values are 125.26± 0.21 GeV (CMS, 35.9 fb−1) [29] and 124.79± 0.37
GeV (ATLAS, 36.1 fb−1) [30].

Higgs into b-quark (H → bb̄) and W-boson (H →WW∗) pair decay modes

The two above Higgs boson decay channels are often and interchangeably called
golden channels. Other decay modes, although sometimes with a higher branching
ratio, suffer from large background and/or poor Higgs boson mass determination.
Both problems are valid for H → bb̄ and H → W+W− → l+l−νν̄ channels. In the
former case the vast majority of events do not have a lepton in the final state, which
makes it very hard to separate them from an enormous QCD background at the
LHC. The current state-of-the-art result in H → bb̄ channel for observed (expected)
significance is 5.6 (5.5) standard deviations for CMS [31] and 5.3 (4.8) standard de-
viations for ATLAS [32]. The results were obtained by a combination of analyses
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from Run 1 and Run 2 and from all considered topologies (associated production,
VBF, etc.). The H → W+W− → l+l−νν̄ analysis is usually subdivided into three,
depending on the flavor of the leptons in the final state, i.e. e+e−, µ+µ− and e±µ∓.
These three channels are distinctive with regard to a set of dominant backgrounds,
where the main events contamination may stem from non-resonant vector boson
production, Drell-Yan process, vector boson plus jet or multijet production. The
Higgs boson decay into a pair of W bosons was first observed by the CMS experi-
ment for 35.9 fb−1 of

√
s = 13 TeV data and published in a 2019 paper [33]. ATLAS

reported H → WW∗ observation using only 25 fb−1 of data from
√

s = 7 and 8 TeV
proton-proton collisions with an excess of 6.1 standard deviations over the estimated
background [34].

Ditau decay mode (H → τ+τ−)

The H → τ+τ− channel (branching fraction about 6%) is currently one of two (next
to H → bb̄ with branching fraction of about 57%) at the LHC (or any hadronic col-
lider with a comparable luminosity) best suited to perform measurements of Higgs
boson couplings to fermions. In order to do this the overwhelming QCD background
needs to be significantly reduced and the interesting events need to be extracted.
This can be done comparatively easier with decays into pair of taus than bottom
quarks thanks to tagging leptons from leptonic tau decays and powerful identifica-
tion of taus-to-hadrons decays6.

The final result of the analysis is obtained by merging the calculations from mul-
tiple sub-analyses. The main analysis splitting is twofold:

• by tau decay mode - to electrons (τe), to muons (τµ) and to hadrons (τh) with
corresponding neutrinos. This gives four detached sub-analyses of Higgs bo-
son into: τhτh, τµτh, τeτh and τeτµ. Currently the H → τµτµ and H → τeτe
searches are excluded from H → ττ analysis due to low branching fraction
and significant background contributions,

• by number of jets: zero, two or all other cases. This is meant to optimize (with
regard to signal-to-background ratio) the final cuts with respect to the Higgs
boson production mode.

For all above cases the Higgs boson signal is searched for as a broad7 excess over
the background in the Higgs boson mass (or better mass of ditau system) mττ distri-
bution. The main background sources are: Z boson (Drell-Yan production) decays
to taus and electrons8 (where the electron fakes the hadronic tau), W boson produc-
tion associated with jets in the event (where W decays leptonically and jet fakes the
hadronic tau), top-anti-top production and multijet production (again jet fakes the
hadronic tau).

The Higgs boson decays into a pair of tau leptons was first observed in a sin-
gle experiment by the CMS. In the discovery publication from 2017 the combined
data from LHC 7, 8 and 13 TeV runs were used [35]. The H → ττ was established
with significance of 5.9 standard deviations (4.9 for 35.9 fb−1 with 13 TeV data only)
compared to expected significance of 5.9 (4.7). The corresponding result from 2018

6In H → bb̄ channel the signal is mainly extracted for vector boson associated production (VH),
where leptonic W/Z decays are used for event tagging.

7This is due to mττ poor resolution (one order of magnitude worse than for H → ZZ and H → γγ
channels) caused by undetectable neutrinos in the final state.

8The Z → ee background is however irrelevant for H → τhτµ process, which is of main interest in
this thesis.
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ATLAS publication gave 6.4 standard deviations (4.4 for 36.1 fb−1 with 13 TeV data)
compared to expected significance of 5.4 (4.1) [36].

1.4 Tau lepton

The tau lepton or tauon is a third-generation charged lepton [37, 38] discovered at
SLAC-LBL detector in 1975 [39]. The tau particle has a mass of 1776.86± 0.12 MeV
and its lifetime is (290.3± 0.5) × 10−15 s [26]. Tauon can decay either leptonically
or semi-leptonically (tauon is the only lepton heavy enough to be able to decay into
hadrons). In the former case, there is an electron or a muon with two neutrinos in
the final state. The semi-leptonic decays are often referred to as hadronic decays, and
in such case there is only one tauonic neutrino in the final state.

The basic possible decays and approximate branching fractions follows a simple
counting rule. First, please note that taus are weakly interacting particles and can
decay only via intermediate virtual weak boson (W±). Since W± can only decay
into a fermion-anti-fermion pair, tau decays into baryons are forbidden. Moreover,
the charge conservation enforces the final state meson to be build out of different
flavored quarks. Out of the six quarks only three can occur in tau lepton decays due
to energy conservation law: top (mt ≈ 173 GeV) and bottom (mb ≈ 4.18 GeV) are
heavier than tau by itself and the lightest meson with a charm quark (D-meson with
mass about 1.87 GeV) is also heavier. All above leaves us with following symbolic
formula for the inclusive rate (the equation for anti-tau τ+ is analogical) :

Γ(τ− → everything) = Γ(τ− → ντ + e− + ν̄e) + Γ(τ− → ντ + µ− + ν̄µ)

+ Γ(τ− → ντ + dj + ūj) + Γ(τ− → ντ + sj + ūj).
(1.14)

In the formula above all terms are a function of mass of the particles and hadronic
terms are additionally associated with |Vud|2 and |Vus|2 matrix elements of Cabibbo
— Kobayashi -– Maskawa matrix which contains information about the strength of
the flavour-changing weak interaction. However, if we notice that |Vud|2 + |Vus|2 ≈ 1
and neglect the particles masses, we obtain the branching ratio of 20%

Mode Decay channel BR (Γi/Γ) [%]

Leptonic τ± → µ± ν̄µντ 17.392± 0.04
τ± → e± ν̄eντ 17.816± 0.04

1-prong
τ± → h±ντ 11.506± 0.05

τ± → h±π0ντ 25.935± 0.09
τ± → h±2π0ντ 9.458± 0.10

3-prong τ± → h±h±h∓ντ 9.780± 0.05
τ± → h±h±h∓π0ντ 4.790± 0.05

- others ≈ 3.323

Table 1.1: Main tauon decay channels branching frac-
tions [40]. h± stands for π± or K±.

separately for two fully lep-
tonic channels and 60% for
hadronic decays. The last fig-
ure (3 · 20%) stems from count-
ing every quark color sepa-
rately. More precise calcula-
tions require taking into ac-
count mass and QCD correc-
tions effects. For reference, the
current best experimental val-
ues for main branching frac-
tions of tauon are presented in
Table 1.1.

The lifetime of tauon translates into approx. 87 µm cτ decay length. From the
perspective of large general-purpose detector (like CMS or ATLAS) taking into ac-
count Lorentz boost, the decay length is too small to be solely and reliably used for
tau lepton identification. Tauon fully leptonic decays are reconstructed as leptons
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since electron and muon are stable (the latter in the range of the detector radius).
The hadronic decays are reconstructed from hadrons. Charged pions and kaons

Figure 1.9: Hadronic tau mass distribu-
tion in Z/γ∗ → ττ events. [41]

are also semi-stable with decay length of several
to several dozens meters. The remaining neutral
pion decays almost instantaneously (with decay
length of 67 nm) into almost exclusively a pair
of photons (branching ratio ≈ 0.99)9. It may be
interesting to consider the visual mass distribu-
tion of the hadronic tau lepton (Fig. 1.9). On
the right hand side, the continuous distribution
have two dominant contributions from the two
resonances (vector mesons): ρ (τ± → ρ±ν →
π±π0ν, mρ = 770 MeV, cτ ' 0) and a1 (τ± →
a1ν → π±π±π∓ν and τ± → a1ν → π±π0π0ν,
ma1 = 1260 MeV, cτ ' 0). The single peak on
the left is the mass of the charged pion (about
135 MeV).

9Technically speaking CMS covers 100% of neutral pions decays, as its remaining decay modes
involve an electron-positron pair in place of photon(s) which is taken into account in the reconstruction
as γ→ e+e− conversion (both processes are indistinguishable within CMS resolution).
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Chapter 2

The Large Hadron Collider and the
Compact Muon Solenoid detector

2.1 Large Hadron Collider

On 24 October 1945 the United Nations (UN) was created. The system of specialized
agencies of this intergovernmental organization, tasked to promote international co-
operation and to maintain international order, include UNESCO (United Nations
Educational, Scientific and Cultural Organization), which has been authorized to
"assist and encourage the formation of regional research laboratories in order to in-
crease international scientific collaboration..." [42]. At an intergovernmental meeting
of UNESCO in Paris in December 1951, the first resolution concerning the establish-
ment of a European Council for Nuclear Research was adopted. Two months later,
11 countries signed an agreement establishing the provisional council – the acronym
CERN (Conseil Européen pour la Recherche Nucléaire) was born [43].

CERN‘s mandate of establishing a world-class fundamental physics research or-
ganization in Europe led to multiple fundamental discoveries in the field of nu-
clear and particle physics, e.g.: discovery of the weak neutral currents (1954), first
observations of antinuclei (1965), W and Z particles discovery (1983) and first an-
tiatoms production (1995). The progress in theoretical physics and incorporation of
Higgs Mechanism (or Brout–Englert–Higgs Mechanism, 1964) into SM (Weinberg
and Salam, late 1960s) created the need for its experimental confirmations. The idea
of large proton-proton synchrotron was originally conceived in the 1980s, and in
1994 CERN Council approved the construction of Large Hadron Collider (LHC) [44].

Neither time nor place for the LHC was coincidental. The first serious attempt
for the Higgs boson discovery was conducted with Large Electron–Positron Col-
lider (LEP) which was constructed between 1984 and 1989 at CERN and operated
from 1989 until 2000. This largest electron-positron accelerator ever built worked
at energies up to 209 GeV. The search was not conclusive with lower bound limit
for the Higgs boson mass set at 114.4 GeV at the 95% confidence level, and a deci-
sion was taken to stop LEP and switch to LHC as soon as possible. Instead of using
only weakly and electromagnetically interacting leptons colliding on relatively small
energies and luminosity, the LHC collides protons which allows for large center-of-
mass energy (low synchrotron radiation losses) and luminosity (no antiparticles) on
the price of uncertainty in interacting partonic state and some design difficulties.
Around 2001 LEP was dismantled to make way for the LHC, which re-used its 26.7
km long tunnel.

The decision to place LHC in LEP tunnel let to reduce the project costs but also
influenced many technical solutions. For example the LEP tunnel has eight short arcs
and eight long straight sections which allowed to compensate the high synchrotron
radiation losses with long RF cavities. The arcs internal diameter of only 3.7 m was
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adequate for the particle–antiparticle collider in which two counter-rotating beams
share the same ring, but not in case of particle-particle collider where two rings are
needed (beams require opposite magnetic dipole fields). Eventually the twin-bore
magnet design was adapted [45].

The performance of LHC is determined by multiple factors:

• The maximal collision energy is constructed by the value of magnetic filed cre-
ated by an array of 1232 dipole magnets around the pipe. 8 T superconducting
magnets cooled with superfluid helium used in the LHC allow for accelerating
particles to designed energy of 8 TeV. At this energy, the magnet superconduct-
ing cables have to handle electric currents up to 12 kA and the cooling system
has to maintain constant temperature of 1.9 K, which is difficult taking into
account very low heat capacity of the cable in such environment. In order to
avoid very long training of magnets and to minimize the number of quenches
the collision energy for Run II of LHC was limited to 13 TeV [46].

• The number of events Nevent occurring at the interaction point (IP) in every
second is given by:

Nevent = Lσevent, (2.1)

where σevent is the cross section for the event and L is the instantaneous lumi-
nosity. The machine luminosity depends only on the beam parameters and can
be written for a beam with Gaussian profile of proton distribution as [45]:

L =
N2

b nb f γr

4πεnβ?

[
1 +

(
θcσz

2σ?

)2
]−1/2

, (2.2)

where Nb is the number of particles per bunch, nb - the number of bunches per
beam, f - the revolution frequency, γr - the relativistic gamma factor, εn - the
normalized transverse beam emittance, β? - the beta function at the collision
point, θc - the full crossing angle at the IP1, σz - the RMS (root mean square)
bunch length, and σ? - the transverse RMS beam size at the IP. The both inte-
grated and maximum peak luminosity is limited by a number of reasons. The
properties of storage ring constrains in a quite sophisticated manner the max-
imum β−function to 180 meters in arcs. The beam screen aperture of 44.04 ×
34.28 restrict the maximum transverse beam size to 0.119 cm when combined
with prescribed minimum aperture of 10σ RMS beam size. The obtained val-
ues of β−function and beam size translate into 3.75 µm limit on the transverse
beam emittance [48]. Then the beam-beam interaction at all IPs measured by
the linear tune shift:

ξ =
Nbrp

4πεn
, (2.3)

should not exceed 0.015. In the above formula rp is the classical proton radius.
From Eq. 2.3 one can find that linear beam-beam shift and the aperture of the
LHC impose the limit on the maximum bunch intensity of Nmax

b = 1.15× 1011

(this number was actually reached in 2017 [49]). Further limitations stem from
e.g.: aperture of the triplet magnets, total stored beam energy and synchrotron
radiation; and set the maximum designed peak luminosity for LHC at Lmax

peak =

1034 cm−2s−1 (the real maximum peak luminosity obtained is more than twice

1The LHC collision crossing angle is of the order of couple of hundred microradians (typically
∼ 150 µrad) and slowly decreases as the LHC fill goes [47].
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the designed and equal to 2.14 × 1034 cm−2s−1 [50]). The luminosity of the
beam traveling through the tunnel decreases with time due to degradation and
emittance. For LHC the luminosity lifetime and average turnaround time can
be calculated for 15 and 1.2 hours, respectively. Knowing these values a maxi-
mum total integrated luminosity can be estimated to be 120 fb−1 assuming 200
days of operation per year.

Collected luminosity

The LHC was successfully commissioned in 2010, colliding protons with 7 TeV center-
of-mass energy till April 2012 and 8 TeV later at the end of the year. During this time
the collider reached a peak luminosity of 7.7 × 1033 cm−2s−1 and delivered about
25 fb−1 to both CMS and ATLAS experiments. After the Long Shutdown 1 (LS1,
2013 – 2015) the LHC unleashed its full potential at 13 TeV center-of-mass energy
and delivered 4.2 fb−1 (2015) + 41 fb−1 (2016) + 49.8 fb−1 (2017) + 67.9 fb−1 (2018) of
integrated luminosity. Fig. 2.1 shows the peak luminosity and the increase in inte-
grated luminosity over time at the CMS. At the time of writing, we are during the
LHC Long Shutdown 2 (LS2, 12.2018 – 02.2021).

(a)

(b)

Figure 2.1: (a) Peak luminosity versus time for 2010-2012 and 2015-2018 (pp data only). (b)
Delivered luminosity versus time for 2010-2012 and 2015-2018 in the CMS experiment (pp

data only) [50].
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2.2 Compact Muon Solenoid detector

Compact Muon Solenoid (CMS) is a general purpose detector build upon scheme
of a cylinder 29 m long and 15 m in diameter2. This 14 kilotons heavy apparatus is
divided into 5 segments: the central barrel, two endcaps and two outwardly placed
forward calorimeters [52, 53].

The cartesian coordinate system of the CMS originates at the center of the detec-
tor and has x, y, z-axes pointing to the center of the LHC, up and along the anticlock-
wise beam direction, respectively. The θ angle between the particle three-momentum
and the positive direction of the z-axis (polar angle) is used to define pseudorapidity
η as − ln[tan(θ/2)]. The azimuthal angle is defined on the x− y plane and relative
to the x-axis.

2.2.1 Superconducting magnet

The central feature of the CMS is a huge solenoid, which pro-
duces 3.8 T of magnetic field and stores 2.66 GJ of total en-
ergy. The design of the magnet was determined by the fol-
lowing considerations:

• The generated field value. The charged particle path curvature decreases with
its energy and increases with external magnetic field. The precision measure-
ment of a particle momentum in a finite detector range requires high values of
magnetic field. In other words, the resolution of the tracker and muon system
is a function of particle energy and field induction.

• The generated field geometry. There are three factors here. First, the mag-
net has to be long enough, so it can cover the highest possible pseudorapidity
range and the (ultra-)peripheral events can be detected. Second, the shape of
the field influences the detector resolution. Additionally, the more homoge-
neous magnetic field is, the simpler algorithm for reconstruction can be used.

• The presence of other CMS subsystems. The magnet coil cannot interfere with
the tracker, calorimeters, nor the muon system.

• Costs. A strong magnet uses considerable amount of power and enforces uti-
lization of an efficient cooling system. On the other hand, a weak magnet
requires the whole detector to be enlarged in order to obtain comparable us-
ability. In particular, the big part of the construction budget was devoted to
creation of an underground detector cavern. All institutes involved in the CMS
Collaboration participate in the cost of the magnet.

The CMS magnet is a 12.9 m long cylinder with inner bore of 5.9 m and is
constructed out of five coil modules. Each module is made of four 2.65 km long
Rutherford-type niobium-titanium cables co-extruded with high purity aluminum
for thermal stabilization. The four-layer winding and large cross-section of conduc-
tor of 6.4×2.2 cm2 help withstand 64 atmospheres of hoop stress inside the detector
coming from its own magnetic field and voltage of almost 19 kV. The magnet ensures
the momentum resolutions of ∆p/p ∼ 10% at the TeV scale.

2CMS scheme icons in this chapter are taken from Sketchup images highlighting the sub-detectors [51].
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2.2.2 Tracker

The innermost part of the CMS detector – the tracker – is re-
sponsible for the reconstruction of tracks of charged particles.
The high spatial and temporal resolution is achieved by us-
ing fast and tiny semiconductor detectors, which are stacked
together to create the world’s largest silicon detector with 5.8
m in length and 2.5 m in diameter.

The principle of operation of a semiconducting detector is comparable to the op-
eration of the diode. A charged particle traveling through the volume of the detector
creates an electron-hole pair. The free electrons from the conduction band are first
captured by the electrode and then multiplied in an amplifier. The scheme of silicon
detctor and CMS pixel module is shown in Fig. 2.2.

The particle track reconstruction is based on the signal localization coming from
electrodes. Due to a small band gap detectors based on silicon are able to operate
stably at room temperatures although the CMS tracker is cooled to sub-zero tem-
peratures in order to mitigate material degradation in the harsh environment in the
vicinity of the beam.

Figure 2.2: Working scheme of typical silicon detector (left), CMS pixel detector module (middle) and
pixel scheme (right) [54].

The tracker is comprised of two sub-detectors: the pixel tracker and the strip
tracker. They both create two concentric cylinders along the CMS z-axis, contain
barrel (|η| < 0.9) and endcap (|η| < 2.5) parts and have an independent power
supply, read-out and cooling systems [55].

The pixel detector3 consists of 66 million pixels made of 285 µm thick silicon
n+-in-n sensors and creating cells of size 100×150 µm in rφ × z. The pixel barrel
system consists of three layers of radii of 4.4, 7.3 and 10.2 cm, and pixel endcap
system consists of two pairs of disks at z = ±34.5 and z = ±46.5 cm. The whole
pixel detector is build of 1440 modules covering about 1 m2 sensing area. The overall
resolution is approximately 20–40 µm in the longitudinal (z) coordinate and 10 µm
in the transverse (rφ) coordinate. The third coordinate is determined by the sensor
plane position [57].

The strip detector has 9.3 mln strips/channels covering about 198 m2 and con-
sists of:

• Tracker Inner Barrel (TIB) - made of 4 layers of strip detectors, which are placed
between r = 20 cm and r = 55 cm from the beam axis. It uses 320 µm thick
silicon detectors with 80 to 120 µm distance between neighboring strips. TIB

3We will give the description of the pixel tracker that was present at the time of 2016 data taking (i.e.
for data samples used in this thesis). In 2017, CMS has upgraded pixel detector to mitigate expected
inefficiencies of the readout chip at the LHC luminosities after 2017. The new pixel detector has new
readout chips with increased readout bandwidth, an additional layer in the barrel part and also an
additional disk per side in the endcaps (which all adds up to 124 million pixels/channels) [56].
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provides hit position measurements resolution of up to 23 µm in both rφ and z
directions.

• Tracker Outer Barrel (TOB) - made of 6 layers of strip detectors, which are
placed between r = 55 cm and r = 116 cm from the beam axis. It uses 500 µm
thick silicon detectors with 122 to 183 µm distance between neighboring strips.
TOB provides hit position measurements resolution of up to 35 µm in rφ and
52 µm in z directions.

• Tracker Inner Disks (TID) - made of 3 disks, which are placed between z = 58
cm and z = 124 cm. It uses 320 µm thick silicon detectors with 100 to 141 µm
distance between neighboring strips.

• Tracker End Caps (TEC) - made of 9 disks, which are placed between z = 124
cm and z = 282 cm. It uses 320 µm thick silicon detectors in the three inner-
most rings and 500 µm thick detectors in the remaining rings. The distance
between neighboring strips varies between 97 and 184 µm.

The tracker allows to reconstruct tracks for pseudorapidity below 2.5, particle
transverse momentum above 0.1 GeV and produced up to 60 cm from the beam line.
The efficiency of the reconstruction and the quality of the track depend on the pile-
up and particle type, momentum and pseudorapidity. For reference, the prompt
isolated muons with |η| < 1.4 and pT = 100 GeV are reconstructed with essentially
100% efficiency and with pT, transverse and longitudinal impact parameter resolu-
tion of approximately 2.8%, 10 µm and 30 µm, respectively. The reconstruction effi-
ciency for prompt charged particles in tt̄ events with pT = 10 GeV and for a mean
number of interactions per crossing around 10 is 94% in barrel and 85% in endcaps
and the resolution is 1.5%, 25 µm and 45 µm for the same quantities as previously
[57].

2.2.3 Calorimeters

Calorimeters allow for the measurement of particle energies
and also, to a lesser extent, measurement of the trajectory.
The operation of the calorimeters relies on the phenomenon
called particle shower, i.e. production of multiple secondary
particles with less energy as the result of interaction of parti-
cle with matter. The energy deposits can be measured using scintillating properties
of some materials and by calculating emitted photons intensity, which is propor-
tional to the particle energy. The information about particle position is obtained by
exploiting the segmentation of scintillation detectors. The increase of relative res-
olution with the particle energy is a distinctive feature of calorimeters. These are
usually placed between the tracker and muon chambers.

The construction of efficient calorimetric systems is mostly a matter of materials
engineering. There are calorimeters optimized only to particles interacting by elec-
tromagnetic force (Electromagnetic CALorimeters/ECALs) or by strong nuclear force
(Hadronic CALorimeters/HCALs) or general purpose calorimeters. The scintillator si-
multaneously may be an absorber (Homogeneous calorimeters) or may be intercon-
nected with some dense material, e.g. lead (Sampling calorimeters).
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Electromagnetic calorimeter

The Electromagnetic CALorimeter (ECAL) of the CMS is a
hermetic and homogeneous detector made out of 61200 lead
tungstate (PbWO4) scintillating crystals. It is placed outside
the tracker and divided into a barrel and two endcaps.

The barrel covers pseudorapidity region below 1.479, has
an inner diameter of 258 cm and is divided into 36 identical supermodules, 18 on
each half of the barrel. The supermodule weights around 3 tonnes and covers 20◦

in φ. The short radiation length of 0.89 cm and small Molière radius of 2.2 cm of
lead tungstate made the construction of compact and finely granulated calorimeter
possible. A single crystal is an inverted truncated pyramid with a square 2.2x2.2 cm2

base4 (front face), height of 23 cm (corresponding to 26 radiation lengths) and covers
0.0174 in ∆φ and ∆η; hence the granularity of the barrel is 360-fold in φ i 170-fold in
η.

The endcaps cover pseudorapidity of 1.479 < η < 3.0 and are placed 314.4 cm
(with magnet on) away from the primary vertex. Each endcap is subdivided into two
halves comprising of 3662 crystals. Each crystal is a polyhedron with approximately
2.9x2.9 cm2 base (front face) and height of 22 cm.

Figure 2.3: Left: Longitudinal view of the ECAL. Right: ECAL supermodule energy resolution, σE/E,
as a function of electron energy measured from a beam test. The upper series of points correspond
to events taken with a 2×2 cm2 trigger. The lower series of points correspond to events selected to
fall within a 0.4×0.4 cm2 region. The energy was measured in an array of 3×3 crystals with electrons

impacting the central crystal [53].

The two layer sampling calorimeter (preshower device or ES) is installed in front
of the fiducial region of the endcaps (1.653 < η < 2.6), and is designed primarily
to identify neutral pions and to help in identification of electrons. In ES the lead
is used to initiate particle showers from photons/electrons and silicon strip sensors
measure the deposited energy.

The CMS ECAL energy resolution can be measured with a test beam5 (Fig. 2.3)
and parameterized with the following function:

(σ
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)2
=

(
S√
E

)2

+

(
N
E

)2

+ C2,

4The equality of this values with Molière radius of PbWO4 allows to capture full cascade with
matrix of 2× 2 crystals.

5The electromagnetic calorimeter resolution was also confirmed with 5 fb−1 of
√

s = 7 TeV 2010/11
data [58]. The obtained energy resolution was 2% for barrel and 2-5% for endcaps in the Z boson decay
events.
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where E is a energy of incident electron/photon energy, S is the stochastic term,
which depends on photodetector gain, photo-statistics and event–to–event fluctua-
tions, N represents the noise term, which depends on event pile-up and electronic
noise, C is a constant term, which depends on additional effects like leakage of en-
ergy from the rear face of the crystal, the accuracy of the inter-calibration constants
or non-uniformity of the longitudinal light collection [59]. For the representative re-
sult shown in Fig. 2.3, the values are: 3.63 or 2.83 for S (depending on the trigger),
124 MeV for N and 0.26 for C.

Hadronic calorimeter

The volume between ECAL and the magnet coil is occu-
pied by the Hadronic Calorimeter (HCAL). It is primarily de-
signed to absorb all remaining particles from the interaction
except muons and neutrinos. Hence, the selection of brass for
the absorber, as it is non-magnetic, easy to machine and most
importantly has a relatively short interaction length6. The brass is complemented
with stainless steel in the innermost and outermost layers for the sake of structural
strength. The plastic scintillator with embedded wavelength-shifting (WLS) fibres
(tile/fibre technology) plays the role of an active medium. The signal is carried out
outside of the scintillator by high-attenuation-length fibres to multi-channel hybrid
photodiodes.

Similarly to the ECAL, the HCAL is divided into a hadron barrel part (HB) and
two hadron endcap parts (HE). Additionally, two specialized subdetectors form
parts of HCAL: 1) hadron outer detector (HO) which increases HCAL to over 10
interaction lengths serving as a “tail-catcher” located in the return yoke of the barrel
and 2) hadron forward detector (HF) which increases HCAL pseudorapidity cover-
age to 5.0.

The HB consists of 32 towers and lies from 177.7 cm to 287.65 cm from the beam
line and is assembled of two half barrels, each covering pseudorapidity region below
1.4 and constructed of 18 20o wedges in φ. The wedge contains 17 layers which are
made of plastic scintillator tiles stacked with brass or stainless steel. The double
thick first layer of scintillator is dedicated to measurements of low energy showering
particles. Each tile has a size of ∆φ× ∆η = 0.087× 0.087 and is instrumented with
single WLS.

The 14 towers of HE cover pseudorapidity region 1.3 < |η| < 3.0. The base-
line segmentation of HE of 5◦ in azimuthal direction and 0.087 in η is modified for
η > 1.74 in order to accommodate the bending radius of the fiber readout and is
equal to 10◦ in φ and 0.09 − 0.35 in pseudorapidity. In total, HE consists of 2304
towers.

The HO is located in front of the barrel muon system and covers |η| < 1.26. It
is built with one layer 1 cm thick scintillator at 409.7 cm radial distance everywhere,
except for the most central region of 2.54 m along the z-axis, where another active
layer and 18 cm thick iron absorber is placed.

The hadron forward parts of HCAL are located behind the HEs, between 11.2 m
and 12.85 m from the interaction point. The HF is a steel/quartz fibre detector which
is suitable for the congested forward region environment due to short and narrow
hadronic showers. The Cherenkov light originated from passing particle is collected
in quartz fibers aligned parallel to the beam axis and positioned at 0.5 cm intervals

6The brass used is cartidge brass #260 composed of 70% Copper and 30% Zinc, characterized by the
density of 8.83 g/cm3 and nuclear interaction length of 16.42 cm.
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in 0.1 cm grooves in surrounding steel plates. The HF is divided into 13 towers in η
and 35 towers in φ totaling to 910 towers and over 1800 channels in both HF parts.

The HCAL and ECAL barrel hadronic energy resolution may be parameterized
as σ/E = a/

√
E ⊕ b (E in GeV), with stochastic term a = 0.847± 0.016 GeV and

constant term b = 0.074± 0.008. The endcap energy resolution is similar to that in
the barrel [60].

2.2.4 Muon system

Muons do not interact by strong force and emit only minor
bremsstrahlung so the vast majority of muons produced in
LHC can survive the travel through tracker and calorimeters
of the CMS. In fact, the design assumption of the CMS is that
if neutrinos and non-SM particles are neglected, the only par-
ticles going outside the magnet coil (or HO) from interaction vertex are muons. The
negligible background for muons in outermost regions of the CMS allowed for con-
struction of very efficient muon track finding device, and the 1.8 T magnetic field
inside large return yoke helps in reliable momentum recognition even for high-pT
muons.

Figure 2.4: Left: Scheme of the DT chamber; Center: Photo of the CSC with visible chambers;
Right: Scheme of the double gap RPC used in CMS [61].

The muon system is made exclusively of gaseous detectors, but using different
chamber technology in different regions of the CMS (see Fig. 2.4) to ensure robust
and redundant operation to fully explore muon physics potential.

The Drift Tube (DT) is a proportional chamber with a cell pitch of 4.2 cm (2 cm
drift length), characterized by a high spatial resolution and at relatively low price,
but also low temporal resolution, high deadtime and susceptibility on external elec-
tromagnetic field. The Drift Tubes are used in the barrel region, where a very large
surface has to be covered and the residual magnetic field and the particle flux are
low. Single DT station is designed to produce a spacial muon momentum vector,
with resolution of 100 µm in position and 1 mrad in the direction of φ.

The derivative of Multiwire Proportional Chamber called Cathode Strip Cham-
ber (CSC) is deployed in the endcaps of the muon system (0.9 < |η| < 2.4), where
neutron induced background rate, muon rate and the magnetic field are all high. The
geometry and thereby the production process is much more complicated for CSCs
than for the DTs. In return, CSCs have large bandwidth and are stable in high mag-
netic field environment. At the CMS, a single CSC chamber consists of 7 trapezoidal
panels which create 6 gas gaps. Every gap has a net of anodes and cathodes running
perpendicular to each other. The anodes collect the electron from avalanche induced
by the passing of the particle (cathodes collect an image charge). The CSCs have a
typical spatial resolution of 200 µm and an angular resolution of 10 mrad in φ.
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Resistive Plate Chambers (RPCs) are installed on top of the DTs and CSCs for
|η| < 1.6. They have effective temporal resolution of the order of several nanosec-
onds and are dedicated to providing fast information for the Level-1 trigger. The
CMS RPCs are double 0.2 cm gas gap chambers operating in avalanche mode to
ensure stable operation at high signal rates.

The Barrel Muon Detector of the CMS experiment covers pseudorapidity below
1.2 and is divided into 5 wheels along z-axis, into 4 stations in radial direction and
into 12 sectors in azimuthal angle. DTs detectors are sandwiched by RPCs in two
innermost layers, and paired with RPCs in remaining four. Therefore, a single muon
can cross up to four DT chambers and six RPCs, leaving 44 measurement points in
the DT system and 6 in RPC system. In total, there are 250 DT chambers and 480
RPCs in the barrel muon system.

The Endcap Detector is made of 4 disks mounted perpendicular to the beam at
both sides of the barrel and covers pseudorapidity between ±0.9 and ±2.4. The
majority of the 468 CSCs placed in the disks are overlapped in φ in order to avoid
gaps in the system. CSCs for η < 1.61 are accompanied by 576 RPCs in all four
stations (the 144 in fourth station were added during LS1).

The segmentation of the hosted in the magnet return yoke muon system is shown
in Fig. 2.5.

Figure 2.5: Top right quarter view of the CMS muon system in rz-plane [53]. In 2016 four
layers of RPC detectors were installed in the endcaps.

2.2.5 Trigger system

With a new bunch crossing coming every 25 ns it is not technically possible to pro-
cess all events online and with full available granularity nor save them all to the
storage. To go around this problem, the CMS detector is equipped with a trigger
system, which reduces beam-beam collision rate down to 1 kHz. Such a system has
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to be designed in a manner that enables to keep the latency, timing and the rate con-
trolled simultaneously ensuring good physics performance. In the CMS, the trigger
system is divided into Level 1 trigger (L1) and High Level Trigger (HLT).

Level 1 trigger (Fig. 2.6) utilizes simplified algorithms implemented on a custom
hardware (FPGAs and ASICs) in order to reduce the collision rate to below 100 kHz.
L1 is synchronized with 40 MHz LHC clock and generates a L1 accept decision with
a fixed latency of about 4 µs. Level 1 trigger comprises of two independent sub-
systems, namely of the calorimeter trigger and the muon trigger (no tracker data is
used at L1). The former uses signals coming from calorimeters to create simplified
high-level objects: electrons, photons, jets, tau candidates and Missing Transverse
Energy (MET). The latter correlates hits in muon chambers to reconstruct muons.

Figure 2.6: Overview of the CMS L1 trigger system for Phase-I upgrade (used in Run 2 after
2015/16) [62].

All calorimetric trigger algorithms are streamlined and follow the order:

• The particle transverse energy from ECAL, HCAL and HF in the form of prim-
itives are unpacked, linearized and undergo some energy threshold require-
ments.

• The dynamic clustering algorithm is used to reconstruct individual clusters.
The good electron energy containment and energy resolution is obtained with
this method, which helps to minimize the effects of pile-up. The individual
clusters are subsequently combined, filtered and summed.

• The electron/photon-, tau lepton-, jet- and MET- finders are used to generate
high level objects. The identification is based on the energy deposit values,
shower profile, cluster shape and isolation criteria. The jets finder employs the
9x9 trigger towers sliding window centered around a local maxima to approx-
imate R = 0.4 cone radius used in offline anti-kT algorithm [63].

• The calibration and isolation energy are evaluated.

• Sorted reconstructed objects are directed to the links out to the Global Trigger
(µGT).
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Figure 2.7: (Left:) Efficiency for a single e/γ trigger reconstruction vs offline ET in the barrel
(black curve) and in the endcaps (red curve). Threshold of ET > 40 GeV applied. (Center:)
The same for a single tau vs offline pT . Curves plotted for taus with ET above 28 (red curve),
above 30 (black curve) and above 32 (blue curve). (Right:) Normalized distribution of the
difference in jet transverse energy between Level 1 trigger and offline reconstruction. Dif-
ferent colors label results for different pile-up vertices count. The Eo f f line

T > 30 GeV and
pseudorapidity below 3.0 thresholds are applied [63].

The performance of the calorimetric trigger is presented in Fig. 2.7.
The L1 muon trigger consists of three separate algorithms for three pseudora-

pidity regions of the detector: Barrel Muon Track Finder (BMTF, |η|<0.83), Over-
lap Muon Track Finder (OMTF, 0.83 < |η|<1.24) and Endcap Muon Track Finder
(EMTF, 1.24<|η|<2.4). The Global Muon Trigger (µGMT) cleans the duplicates of re-
constructed muon candidates generated in all systems above. The muon candidates
from µGMT are sent to Global Trigger (µGT) where L1 decision (to hold or remove
event) is undertaken (taking into account calorimeter data).

The BMTF track finding algorithm is a three-stage algorithm. In the first stage the
algorithm combines track primitives7 from different stations. It is done by extrap-
olating the muon candidate to the following station and checking if it is within an
acceptable window. In the second stage the acceptable extrapolations create tracks
with corresponding quality. In the third stage the tracks are issued physical param-
eters like transverse momentum and pseudorapidity.

OMTF is based on the idea of the comparison of the hits from DT, RPC and CSC
(on an equal footing), with the so-called "Golden Patterns". Golden Pattern holds
information about bending distribution in each layer for a muon of a given pT [64].
Different pT hypotheses are probed and the result muons undergo ghostbusting i.e.
are cleaned from duplicates, before being delivered to the µGMT.

EMTF uses pattern-based approach to the muon finding. Track segments from
the CSCs together with RPC clusters are matched with patterns in the azimuthal
direction to form tracks. Here, the RPC hits are used only in case of lacking CSC
data. Furthermore, the low quality (very scattered) and duplicating tracks are re-
moved. Finally, the best three tracks are assigned transverse momentum, azimuthal
and bending angles, and charge.

The efficiency plots for the Muon Track Finders are presented in Fig. 2.8.
Events accepted by Level 1 trigger are read fully (i.e. all signals from subdetec-

tors) and passed on for a further analysis in the HLT. HLT is built on a commercial
hardware (26 000 CPU cores in 2017) to run online event reconstruction using al-
gorithms closely related to the ones used in the offline (final) analysis. Therefore,

7Track primitives give muon coordinates, bending angle as well as quality bits. In case of BMTF
the track primitives are called super-primitives, because they use combined information from DT super-
layer and RPC hits. The use of super-primitives allows to improve efficiency and obtain better bunch
crossing determination.
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Figure 2.8: Efficiency distributions as a function of reconstructed muon pT for EMTF (Left),
OMFT (Center), EMTF (Right). The pT = 25GeV threshold applied [64].

HLT takes advantage of the full granularity of the CMS and thanks to performance
refinements generates a decision in average time of (26k cores / 100 kHz = ) 260 ms
per event. As a result, the maximum input rate of 100 kHz rate is further reduced
to about 1 kHz.8 HLT is designed as a large number (hundreds) of independent se-
quences of reconstructing modules seeded by L1 triggers called "HLT paths". Addi-
tional filtering modules are implemented to discard uninteresting events at the early
stages of reconstruction. The common sequences are interchanged across different
HLT paths and a single event can be processed within different streams and datasets.
Also, special LHC runs like cosmic, low pile-up and heavy ions have special HLT
menus. The highest-rate-paths in the CMS are isolated single muon/electron paths
due to large production rate of W → e/µν in the LHC. The rates for common HLT
paths used at CMS at 13 TeV are shown in Table 2.1.

Description Condition Rate
Isolated single muon pT(µ) > 24 GeV 235 Hz
Isolated single electron pT(e) > 32 GeV 165 Hz
Non isolated single muon pT(µ) > 50 GeV 46 Hz
Non isolated single electron pT(e) > 115 GeV 17 Hz
Isolated diphoton pT(γ) > 30/22 GeV, M(γγ) > 90 GeV 40 Hz
Isolated ditau pT(τ) > 35/35 GeV, |η(τ)| < 2.1/2.1 40 Hz
Isolated dielectron pT(e) > 23/12 GeV 25 Hz
Isolated dimuon pT(µ) > 17/8 GeV, M(µµ) > 3.8 GeV 28 Hz
Isolated electron-muon pT(e) > 23(12) GeV, pT(µ) > 8(23) GeV 7.5 (4) Hz
Single jet pT(j) > 500 GeV 11 Hz
Hadronic transverse energy HT > 1050 GeV 10 Hz
Missing transverse energy PFMET > 120 GeV, PFMHT > 120 GeV 33 Hz
Hadronic tt̄ HT > 380 GeV, ≥ 6 jets (pT > 32 GeV), 2 b-tagged jets 9 Hz
Boosted heavy jets pT(j) > 400 GeV, M(j) > 30GeV 27 Hz
Isolated single photon pT(γ) > 110 GeV, |η(γ)| < 1.479 12 Hz
Non isolated single photon pT(γ) > 200 GeV 13 Hz
Triple muon pT(µ) > 5/3/3 GeV, M(µµ) > 3.8 GeV 9 Hz
isolated dimuon+electron pT(µ) > 4 GeV, pT(e) > 9 GeV 4.5 Hz
Displaced J/ψ→ µµ pT(µ) > 4/4 GeV, 2.9 < M(µµ) < 3.3 GeV + displaced

vertex
33 Hz

Table 2.1: HLT paths with their rate for an instantaneous luminosity of 1.8× 1034 cm−2s−1 at
13 TeV and a pile-up of 50. The rate uncertainties are of the order of few Hz [65].

8The 1 kHz is a typical HLT rate. However space on tapes that events are saved to allow to record
up to 2 kHz data and DAQ have an even higher limit of about 6 kHz, while the limiting factor is
performance of the offline reconstruction. Therefore, the 1 kHz limit can be extended by saving only
reconstructed objects information (no raw data, "data scouting") or by saving full events without the
offline reconstruction to be reconstructed during technical stops ("parking").
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The CMS tracker is the source of trigger primitives used at the HLT. The tracker
hits and/or reconstructed track can validate the calorimeter or muon object, improve
precision of pT and isolation measurements or help to discriminate pile-up events by
giving primary vertex location. All this results in reduction of rates and backgrounds
at the output of the HLT.
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Chapter 3

Offline object reconstruction

The CMS is an exemplary "hermetic detector" (or "4π detector"), which means that it
is designed to observe all decay products (except neutrinos) of beam-beam interac-
tion in a collider. The particle reconstruction and identification strategy is based on
the feature that particles of different type interact differently in consecutive subcom-
ponents of the detector. In Fig. 3.1 sketch of the interactions with detector matter is
presented for basic particle types.

Figure 3.1: The transverse view of the CMS detector with specific particle interactions. An-
timuon (µ+), charged pion (π+), electron (e), photon (γ) and neutron (n) are shown in this

example [66].

The algorithmic representation of this idea, which the CMS collaboration has
decided to implement a few years before the first LHC run, is called the Particle
Flow algorithm (PF). In this approach, the global event description is provided with
a comprehensive list of final-state particles for each event. The outstanding CMS
performance in terms of jet and hadronic tau reconstruction, missing transverse mo-
mentum (

−−→
MET) determination1 and lepton identification stems directly from utiliza-

tion of the PF algorithm. The quality of the detector is a necessary requirement to
be able to use the PF algorithm. As we will later see, the PF relies on reconstructing
particles from the so-called "blocks", which are created on the topological basis and

1In the CMS, for every event, we are reconstructing missing transverse momentum as a vector with
two nonzero components (perpendicular to the beam axis, METx and METy). The absolute value of
this vector is called missing transverse energy (MET).
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are very sensitive to the tracking inefficiencies, requiring hermetic and fine-grained
calorimeters and a highly segmented muon system.

3.1 Particle Flow algorithm

The Particle Flow algorithm provides a list of individual particles, namely: electrons,
muons, photons, charged and neutral hadrons. Those can later be used to build jets,
determine MET, reconstruct and identify hadronic taus, determine isolation, etc. The
adopted workflow is the following:

• The tracks are reconstructed and the ECAL and HCAL clusters are built (sep-
arately).

• The "blocks" are defined by linking tracks and clusters.

• The PF-particles are created from blocks.

In the particular case of muons, their identification is based on the signals from the
CMS muon detectors and relies on the tracks matching between the tracker and the
muon system.

Tracker tracks reconstruction

The tracks reconstruction process begins with reconstruction of hits in pixel and strip
detectors. In both cases, the zero-suppressed signals from data acquisition system
are clustered and the cluster position and its uncertainty is calculated in a local coor-
dinate system of the sensor. Translation of the hit into the global coordinate system
is combined with introducing corrections to the actual location of detector elements
and surface deformation found in the alignment process.

The tracker hits (local reconstruction) are an input to the track reconstruction
(global reconstruction), which returns particle position and momentum estimates.
Two basic ideas are utilized in this process: 1) CMS version of combinatorial Kalman
filter called Combinatorial Track Finder (CTF) [67] and 2) the iterative tracking [57]
method.

CTF is an algorithm designed to reconstruct tracks from the hits in three steps. In
the first step, the very short trajectories of charged particles called seeds are generated
using a few pixel hits2 (in simplest case). Seeds are required to satisfy some restric-
tions (e.g. on momentum or position) to limit the total number of created seeds. In
the second step, the track candidates are built by gathering the hits from successive
layers of the tracker. For every track candidate this procedure starts with seed and
locates the compatible hits using the projection of initial trajectory. At every layer the
track candidate parameters are updated. In the third step of CTF, the final track can-
didate is used to determine origin, transverse momentum and direction of charged
particle.

The sole use of CTF would end up in either low efficient tracking (by requiring
high-pT tracks and/or with low number of missing hits) or large fake-rate (with-
out any special requirements the algorithm will create a lot of tracks by correlating

2The seeds are build from inside to outside of the tracker. This particular choice is backed up by
a few reasons: 1) the pixel tracker has a very good efficiency (85% of simulated tt̄ events leave hits
in at least 3 pixel layers [57]); 2) the occupancy of pixels is typically much lower than strips due to
large granularity; 3) the bremsstrahlung radiation and inelastic interactions of particles do not affect
the reconstruction efficiency.
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hits originating from different particles). To go around this problem, the CTF algo-
rithm is applied multiple times with a different parametrization (seeds/tracks re-
quirements) and to a different set of hits. More specifically, the very tough starting
quality requirements on tracks are loosened from iteration to iteration. Simultane-
ously the initially complete set of hits shrinks with every iteration by masking the
hits used previously. This way it is possible to build up efficiency with consecutive
iterations keeping overall fake-rate low, i.e. high purity. The seeding configuration
in the CMS iterative tracking method is presented in Table 3.1.

Iteration Name Seeding Targeted Tracks
1 InitialStep pixel triplets prompt, high pT
2 DetachedTriplet pixel triplets from b hadron decays, R . 5 cm
3 LowPtTriplet pixel triplets prompt, low pT
4 PixelPair pixel pairs recover high pT
5 MixedTriplet pixel+strip triplets displaced, R . 7 cm
6 PixelLess strip triplets/pairs very displaced, R . 25 cm
7 TobTec strip triplets/pairs very displaced, R . 60 cm
8 JetCoreRegional pixel+strip pairs inside high pT jets
9 MuonSeededInOut muon-tagged tracks muons

10 MuonSeededOutIn muon detectors muons

Table 3.1: Tracking iterations with seeding configuration and targeted tracks as used in PF
reconstruction during LHC Run II. R is the distance between the track production position

and the beam axis [66].

Electron tracking

Since electrons are charged and stable particles we could imagine that their tracks are
perfectly well reconstructed with default iterative tracking method.

Figure 3.2: Illustration of GSF reconstruction [68].

This is indeed true for nonradiating
electrons for which the tracking ef-
ficiency is the same as for muons.
However, electrons have a large
cross-section on the bremsstrahlung
photon radiation inside the tracker.
If the emitted photon is energetic,
the Kalman filter based pattern
recognition can fail because a kink
in the electron trajectory occurred
at the emission point. Therefore,
the CMS Collaboration developed
a dedicated electron reconstruction
algorithm based on the Gaussian
Sum Filter (GSF) track fitter, where
the electrons are seeded using both
ECAL measurements (ECAL-based approach) and output of iterative tracking (tracker-
based approach). As a result, the dedicated collection called GSF electrons tracks (see
Fig. 3.2) is introduced into the CMS event reconstruction.

In the ECAL-based approach the electron seed is given by the crystal containing
most of the energy deposited in the considered region. If the electron seed is found,
the cluster energy and position are used to infer the position of the hits in the tracker
layers. The ECAL-based approach is effective for energetic and well-isolated elec-
trons and can work fine even for cases where bremsstrahlung photons are emitted
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(if they fit into ECAL cluster window). ECAL-based approach is not effective for
nonisolated electrons (energy and position of electron are biased by contributions
from other particles in the jet) and for low-energy ones (the electron energy is un-
derestimated as it radiates outside the cluster window due to large bending in the
magnetic field of the CMS). The electrons missed by the ECAL-based method are
often recovered using tracker-based approach where the electron seed is defined by
the tracker track. The track can be refitted with GSF filter if it has many missing hits
and its momentum is not compatible with ECAL cluster energy.

Muon tracking

The muon track can be reconstructed in the CMS inner tracer and/or outer muon
spectrometer. The former has an advantage of very precise muon momentum mea-
surements, the latter of high reconstruction purity thanks to calorimeters in front
of it absorbing the vast majority of particles other than muons (and neutrinos). In
the CMS the collection of muon objects is composed of three muon types: 1) tracker
muons, 2) standalone muons and 3) global muons. Tracker muons are related to the
reconstructed tracker tracks having extrapolation matched with at least one active
muon segment. Tracker muons are efficient in the reconstruction of low-pT muons
for which multiple scattering in the return yoke affects muon system resolution.
Standalone muons are the muons reconstructed only with hits in the muon system.
Standalone muons usually have a worse pT resolution and a higher cosmic muon
contamination versus tracker and global muons. Global muons are the muons recon-
structed by refitting hits from two compatible tracks from tracker and muon system.
Global muon reconstruction is especially efficient for high-pT muons as it requires
at least two coincided layer hits in muon spectrometer.

Calorimeter clusters

The clusterization is a process designed to generate information about the energy
and direction of the particles interacting within the calorimeters volume. It is de-
ployed separately in each calorimeter subdetector and comprises of four steps:

• Identification of the cluster seeds. From all calorimetric cells surpassing energy
(and transverse energy in ECAL due to significant noise) threshold(s) the ones
with the largest energy deposit among the neighboring cells are taken as seeds.

• Identification of the topological clusters. In this procedure the cells surround-
ing the cluster are aggregated starting from the seeds. The cell energy needs
to pass certain threshold requirements and has to have at least one corner in
common with the cluster.

• Identification of the clusters. The clusters are searched inside topological clus-
ters using a Gaussian-mixture model. The basic idea here is to assume that
seeds in the frame of topological clusters are the source of Gaussian energy
deposits and that only those deposits are set off in all the cells within the topo-
logical cluster. The model parameters are fitted using maximum-likelihood
method iteratively until convergence, where the seeds position and energy are
used for initial model evaluation.

• The clusters parameters (positions and energies) are taken directly from the
final shape of the Gaussian functions.
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The energy calibration procedure plays a crucial role in the clusterization with
regard to PF reconstructing. This is mainly because the PF particle identification re-
lies on comparison of cluster energy with the compatible tracker track momentum.
The possible discrepancies can be interpreted as signal from neutral particles. The
calorimeter cluster calibration procedure uses test beams, radioactive sources, cos-
mics and collision data (using photons and kaons). It is executed separately for the
ECAL and HCAL and takes into account threshold conditions, energy and pseu-
dorapidity dependence and, in case of HCAL, also the already performed ECAL
calibration (for more details see [66]).

Link procedure and PF-particles reconstruction/identification

The reconstructed tracks and clusters are elements of blocks. The creation of blocks
takes place for neighboring elements on the (φ,η) (or (x,y)) plane for barrel (or end-
cap) and consists of linking the elements with the following procedure:

• The tracker track to calorimeter cluster link. The cluster is linked to a track if it lays
on the track prolongation. The track (last measured hit) is extrapolated: to the
two first layers for the preshower; to the expected maximum of the longitudi-
nal electron shower for the ECAL; to the depth of one interaction length into
the HCAL. In case of multiple linking (many HCAL clusters to a single track
or many tracks to a single ECAL cluster), only the closest is kept.

• The GSF tracks to ECAL cluster (bremsstrahlung photon) link. The cluster is linked
to the GSF track if it lays on any of the track extrapolations, made as straight
lines (tangents) originating from the GSF track and tracker layer intersection
(as shown in Fig. 3.2).

• HCAL to ECAL and ECAL to preshower clusters links. The cluster of preshower
(ECAL) is linked to the ECAL (HCAL) if it lies in the cluster envelope of ECAL
(HCAL). In case of multiple linking (many HCAL clusters to a single ECAL
cluster or many ECAL clusters to a single preshower cluster), only the closest
is kept.

• Tracker tracks to tracker track links. The tracks can be linked through common
secondary vertex (SV). It is required that there are at least 3 tracks connected
to SV from which only one leads to PV and that the outgoing tracks have in-
variant mass bigger than 0.2 GeV. This linking is meant to take into account
nuclear interactions within tracker volume.

• Tracker track to muon track link. This link is established during the creation of
global muons.

This algorithm does not guarantee to always link elements from one particle into a
single block, as this is limited by the granularity of subdetectors.

Every block is a starting point for the same PF-particles reconstruction and iden-
tification analysis. At first, the global muons (with reconstructed momentum which
is in agreement with momentum of compatible tracker muon) are identified as PF
muons. The relevant tracks and ECAL energy clusters compatible with the muon
hypothesis are removed from the block. In the second step, the PF electrons are
identified using multivariate analysis techniques, where GSF tracks and ECAL clus-
ters parameters serve as input parameters. The relevant tracks and ECAL clusters
are again removed. The third step is to search for fake tracks: the tracks with rela-
tive pT uncertainty larger than relative calorimetric energy resolution are removed.
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Figure 3.3: An exemplary event reconstructed with Particle Flow algorithm. The simulated
particles are: neutral kaon (K0

L), neutral pion (π0) and two oppositely charged pions (π±).
On the left-hand side different CMS planes are presented. The top-left plot is an (x, y) view,
where two circles represent the ECAL and HCAL surfaces. The middle-left and bottom-left
plots are a (φ,η) planes of the ECAL and HCAL surfaces, respectively. The gray border
on the middle-left plot marks the HCAL topological cluster envelope projection. On all
plots the green lines represent (the projections of) the reconstructed tracks, the gray areas
represent the energy deposits in crystals (more gray means more energy is deposited) and
the red dots indicate the position of the reconstructed clusters. On the right-hand side, the
PF reconstruction steps are outlined. In the first step, the blocks are defined by linking tracks
with clusters. In the second step, tracker-HCAL links are cleaned. Then the charged hadrons
(π±) are reconstructed from block 2. In the last step two block 2 clusters are identified as
photons (from π0 → γγ conversion) and the block 1 cluster is identified as a neutral kaon.

Left hand side figures are adopted from [69].



3.2. Jet reconstruction 37

Next, all tracker to HCAL links are removed from the block except the closest ones.
Then, the connected tracks and ECAL clusters are considered. The sum of energies
of the ECAL clusters linked to a single track is calculated, starting from the closest
cluster. All links are kept till the sum of the energy does not exceed the track trans-
verse momentum and the remaining links are removed. If after the previous step
the sum of the ECAL clusters energy connected to the tracker track is considerably
smaller than the tracks pT, then additional muon and fake track search is triggered.
In the last two steps the remaining block elements are used to identify hadrons and
photons. First the PF charged hadron, PF neutral hadron or PF photon are extracted
by comparing the (summed) track momentum and the calibrated calorimeter en-
ergy. At last, the PF neutral hadrons and PF photons are created using remaining
clusters (not linked to any track). The reconstructed PF particles let us to determine
the missing transverse energy 6~ET,PF as a negative vectorial sum of all PF particles
transverse momenta ~pT,i:

6~ET,PF(raw) = −
Nparticles

∑
i=1

~pT,i. (3.1)

A more detailed description of the procedure above and the Particle Flow algo-
rithm performance plots can be found in Ref. [66]. The exemplary PF event recon-
struction is shown in Fig. 3.3.

3.2 Jet reconstruction

The PF particles are clustered to reconstruct jets. The standard method employed
in the CMS experiment to achieve this starts with defining protojets. A protojet can
be an individual particle or a bunch of overlapping, particles and is characterized
by its transverse momentum~ki, transverse energy Ei = |~ki|, rapidity yi and azimuth
φi, where i is a protojet enumerator. Having a set of protojets we can define the
distances: 1) diB = k2p

i - the distance between a single protojet and the beam and 2)
dij - the distance between the protojets defined as:

dij = min(k2p
i , k2p

j )
(yi − yj)

2 + (φi − φj)
2

R2 , (3.2)

where the parameter R is the cone size parameter equivalent and should be of order
1, and p is an arbitrary integer governing the relative power of the energy versus ge-
ometrical scales3. Now the jets can be extracted recursively by finding the minimum
of all the protojets distances. If the minimum found is a diB-type, then protojet i is
a jet and is removed from the protojets list. If the minimum found is a dij-type, the
protojets i and j are merged to create a single protojet, which is added to the protojets
list in place of the original ones. This procedure is repeated until all jets are found
and the protojets list is empty.

It can be shown that natural p = 1 choice is not optimal and that algorithm
p = −1 gives a fast, collinear and an infrared safe4 way to extract the hadronic
jets [71]. This latter choice is the default CMS jet clustering algorithm and is called
anti-kT algorithm. Both cases are compared for a simple event scenario in Fig. 3.4.

3Typically R=0.4, as was mentioned during the L1 calorimetric trigger description.
4The algorithm is infrared safe if any infrared singularities do not appear in the perturbative calcu-

lations and found solutions are insensitive to soft radiation in the event [70].
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Figure 3.4: A comparison between kT (left) and anti-kT (right) algorithms reconstruction be-
havior on a sample event [71]. The color regions indicate which random soft ghost particles
(out of ∼ 104 present in the event) are clustered into a jet. kT algorithm is somewhat more

dependent on the specific set of ghost.

The jet energy found turns out to be biased versus the real/generated jet energy.
Therefore, after identification every jet undergoes the Jet Energy Correction (JEC) pro-
cedure, which in its basic form is composed of three levels [72]:

• L15: correction for average offset-energy from pile-up. The pile-up, i.e. presence of
multiple proton-proton collisions within a single bunch crossing, is a source
of tracks and calorimeter deposits. The L1 correction is introduced to miti-
gate these contributions in jet reconstruction and proceeds in steps designed
to take care of different types of signals. The calorimeter deposits echoed after
prior collisions and existing because of finite temporal calorimeter resolution
are removed with calorimeter signal processing. The pile-up charged-hadrons
are subtracted by exploiting the tracker resolution and tagging particles not
originating from primary hard interaction. Then the pile-up jet identification
(PUJetID) is used to remove those jets. Finally, the pile-up neutral particles
diffuse energy is estimated per event and subtracted from the jets.

• L2L3: correction for (pT, η) dependence of jet response. Since the CMS detector
is a cylinder and not an isotropic ball, it will respond differently for the same
jet sent in two different directions. In L2L3 correction the simulated particle
response is defined as:

Rg(〈pT〉, η) =
〈pT〉
〈pT,g〉

[pT,g, η] (3.3)

where pT and η are defined for anti-kT reconstructed L1-corrected jets and g
indicates generated particle-level jets. The Rg is evaluated in (pT,g, η) bins
(see Fig. 3.5). The L2L3 correction relies exclusively on simulated events as
it simplifies the coverage of the phase space corners (very low- and very high-
transverse momenta and pile-up events).

• L2L3Residuals: correction for residual data-simulation differences (applied to data
only). This correction complements the previous one and is devoted to effects
which are not precisely simulated. The L2L3Residual corrections are also de-
fined in (pT, η) bins and modeled with tag-and-probe on the dijet events. The

5L1 correction has nothing to do with L1 trigger and the similarity of names is coincidental.
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Figure 3.5: The simulated jet response Rg (after JEC applied) as a function of the recon-
structed jet pseudorapidity η for various values of jet transverse momentum [72].

jet energy response is figured out by studying transverse momentum imbal-
ance between reference (tag) jet and the jet to be calibrated (probe).

3.3 Tau reconstruction

The branching ratio for the tau decaying into hadrons is about 65%, with final state
predominantly containing either one or three charged mesons and up to two neutral
pions.

Figure 3.6: Tau jet

The electrons and muons coming from the leptoni-
cally decaying taus are reconstructed by standard tech-
niques [73, 74, 75, 76], and taken as they are. The re-
construction of hadronically decaying taus6 (τh) is more
involving and starts with anti-kT jets, which are used as
seeds for dedicated Hadron–Plus–Strip (HPS) algorithm
[77]. As π0 decays virtually instantaneously into γ parti-
cles, which in turn can convert into an e+e− pair, the HPS
algorithm tries to reconstruct π0s from photon and elec-
tron constituents of the jet first. All energy deposits in
electromagnetic calorimeter within a 0.05 [η] × 0.20 [φ]
window are clustered into a "strip" (see Fig. 3.6). The
strip is enlarged in φ–direction to account for the e+e− pair bending in the magnetic
field of the detector. The special treatment is applied for low-pT electrons, for which
the e+e− pair can go outside the strip and produce an energy deposit in the isolation
region of the tau jet, causing isolation cuts (< 2 GeV) to fail.7 For such cases the
original strip window size can be dynamically changed (enlarged) with electron pT.

6Such decays with hadrons will be called hadronic, even if this is not strictly correct because of
existence of neutrons in final state (weak decay).

7This effect is more pronounced at higher-pT taus, as the decay product usually has higher trans-
verse momentum.
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For each jet charged hadrons (h) and ECAL strips are combined to reproduce the
tau decay mode. The following topologies are considered: (1) single hadron (rel-
evant to τ → hντ decays); (2) hadron plus strips (relevant to τ → hπ0ντ and τ →
hπ0π0ντ decays); (3) three hadrons (relevant to τ → hhhντ decays); (4) three hadrons
plus strip (relevant to τ → hhhπ0ντ); (5) two hadrons (with or without additional
strips).

Lp. Decay Mode
0 1prong
1 1prong + π0

2 1prong + 2π0

5 2prong
6 2prong + π0

7 2prong + 2π0

10 3prong
11 1prong + π0

Table 3.2: Hadronic tau de-
cay modes

The 2-prong topology (with or without π0s) is used to
care of tracking inefficiencies of the detector. The fourth
and fifth topologies add up to about 3–4% of overall re-
construction efficiency and are especially important for
high energy taus for which the jet to tau fake rate is low.

For every reconstructed tau the HPS algorithm at-
tributes the decay mode in form of integer between 0 and
11. The decay mode number is defined as 5× (Nc − 1) +
Np, where Nc is the number of signal charged hadrons
and Np is the number of signal π0s (strips). Table 3.2
presents available decay modes.

The tau reconstruction is followed by identification designed to separate hadronic
taus from quark and gluon jets and from other flavor leptons [78]. In this step, it is
required for the tau to pass cut-based isolation defined by the formula:

Iτ = ∑ Pcharged
T (dZ < 0.2 cm) + max(Pγ

T − ∆β ∑ Pcharged
T (dZ > 0.2 cm), 0),

where the two right-hand side terms are the transverse momentum sums of charged
particles (originating from primary vertex within a distance of 0.2 cm and within

Figure 3.7: Misidentification probabilities for
hadronic tau as a function of their identifica-
tion efficiency, evaluated using H → ττ and

QCD multijet MC events [79].

a ∆R = 0.5 isolation cone, exclud-
ing hadrons used for reconstruction) and
photons, respectively. The ∆β correction
factor, equal to 0.2, accounts for overesti-
mation of neutral energy deposits due to
pile-up. Its value corresponds to the ratio
of neutral to charged pion production rate
(0.5), corrected for the adopted isolation
cone size difference for charged hadrons
originating from the primary vertex (0.5)
and from pile-up (0.8). Loose, medium
and tight isolation working-points are de-
fined as Iτ cuts of 2.5, 1.5 and 0.8 GeV [79].
Additionally to the isolation sum discrim-
inant, every tau is probed with a multi-
variate (MVA-based) discriminants com-
bining isolation with available life time
and tau shape information. The expected
jet to tau misidentification probability as
a function of expected hadronic tau iden-
tification efficiency is presented in Fig. 3.7.
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3.4 Higgs mass reconstruction in decays into a pair of taus

Figure 3.8: H → τµτh

The calculation of the mass for the two-body Higgs de-
cay into taus is in principle straightforward. For center-
of-mass reference frame the mass of Higgs is simply the
invariant mass of the two taus:

MCM
H = Eτ1 + Eτ2 = 2

(√
m + p

)
. (3.4)

The problem can be therefore narrowed down to the de-
termination of the momentum of the tau leptons, i.e. mo-
mentum of the lepton + two neutrinos and/or hadronic
tau jet and one neutrino (depending on the tau decay
mode, e.g. see Fig. 3.8). The momenta of the lepton or

hadronic tau are given as an output of the PF or HPS algorithms. However, the
momenta carried out by two to four neutrinos are clearly underconstrained: only
6Ex and 6Ey variables are known. This problem is addressed by the SVfit algorithm,

which tries to estimate it using statistical maximum likelihood estimation (MLE)
method. The MLE allows to find unknown parameters xu for a given model by us-
ing (conditional) probability density function f to define the likelihood function L,
and then maximizing it. For a given ditau mass Mττ we can write (δ stands for Dirac
delta function):

L(Mττ) =
∫ d f (xu|xm)

dxu
δ(Mττ −Mττ(xu, xm))dxu. (3.5)

This equation simply means that the likelihood function is a weighted sum over
all parameters compatible with measured xm values and assumed mass value. In
the SVFit the calculations are repeated for a range of mass values Mi

ττ and the one
corresponding to the maximum of L(Mi

ττ) is the Higgs mass we are looking for.
To calculate L(Mττ) the parameters (xu, xm) and the integration range has to be

known.
Let us consider the kinematics of the tau. If we split the tau energy Eτ into visible

and invisible part and introduce minv as the mass of the neutrino pair produced in
leptonic tau decays (minv is equal to zero for hadronic tau decays by convention) we
get:

Eτ = Evis + Einv = Evis +
√
|~p2

τ − ~p2
vis|2 + m2

inv

hence:

m2
τ + ~p2

τ = E2
τ = (Evis + Einv)

2 =

(
Evis +

√
~p2

τ − 2|~pτ||~pvis| cos θ + ~p2
vis + m2

inv

)2

Solving the equation above with respect to the angle θ (known in literature as the
Gottfried-Jackson angle) we obtain:

θ = arccos
m2

inv −m2
τ −m2

vis ± 2EτEvis

2|~pvis||~pτ|
, (3.6)

where m2
vis = E2

vis − p2
vis. Here, tau lepton energy Eτ is given by formula Eτ = Evis

X ,
where X is the fraction of tau energy carried out by the visible decay products. The
variables X and minv constrain the tau momentum vector to lie on the surface of the
cone (Fig. 3.9).
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To determine relative position between ~pvis and ~pτ in the laboratory frame two
angles are needed: φ (which is a free parameter that gives the angular coordinate of
the tau lepton momentum vector around the cone axis) and θ (which is given by Eq.
3.6). Since all remaining variables are known we have: xm = {mτ, mvis, Evis,~pvis, θ}
and xu = {X, φ, minv}.

Figure 3.9: Tau cone

In the SVfit algorithm the probability density function is
factorized:

d f (xu|xm)

dxu
=

dΓ1(x1
u|x1

m)

dx1
u

× dΓ2(x2
u|x2

m)

dx2
u

× fMET,

where the first two terms are proportional to the matrix ele-
ments for two taus decays and the third quantifies the com-
patibility of parameters with measured 6Ex and 6Ey values. In
the case of unpolarized taus:

dΓ(xu|xm)

dxu
∝

1
2π

 1

1− m2
vis

m2
τ

 ,

dΓ(xu|xm)

dxu
∝

minv

4m2
τ

(
(m2

τ + 2m2
inv)(m

2
τ + m2

inv)
)

,

fMET =
1

2π
√
|V|

exp

{
−1

2

(
6Ex −∑ pν

x
6Ey −∑ pν

y

)T

·V−1 ·
(
6Ex −∑ pν

x
6Ey −∑ pν

y

)}
,

where the top term pertains to hadronically decaying taus, the middle term concerns
leptonically decaying taus and in the bottom term V is a MET covariance matrix. The
exhausting description of probability density function (e.g. for polarized decay case)
can be found in the literature [80].

The boundary conditions for the integration are: m2
vis/m2

τ ≤ X ≤ 1 and minv = 0
for hadronic tau decays, 0 ≤ X ≤ 1 and 0 ≤ minv < mτ

√
1− X for leptonic tau

decays. For angles we have: −1 ≤ cos θ ≤ 1 and 0 ≤ φ ≤ 2π.
The relative mττ resolution obtained with SVfit varies between 10% and 20% de-

pending on considered tau decay modes (and boost of ττ system), and by itself im-
proves the final expected significance of the order of 40% when compared to visible
mass usage.
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Chapter 4

The Higgs boson analysis in the
ditau decay channel

In the framework of the Standard Model the Higgs boson can be produced in a
hadron collider like the LHC mainly via gluon-gluon fusion (GGF), vector boson
fusion (VBF) and by associated production with a weak-boson. The observation of
the particle is performed in a statistical way throughout identification of its decay
products and their kinematics, and is strictly correlated with our ability of back-
ground rejection. The Higgs boson was first observed in H → ZZ and H → γγ
decay channels [81], which are well reconstructed and do not have particles with
color charge present in the final state.

Sensitivity in the double tau lepton channel is suppressed in a hadron collider al-
though its branching fraction of about 6% is second highest for a 125 GeV SM Higgs
boson. It is caused by a large QCD-background, which hinders the identification of
hadronically decaying taus, and by neutrinos in the final state worsening the recon-
structed mass resolution. Nevertheless, this particular channel is a valuable source
of data for Higgs Physics studies for several reasons:

• decay into taus gives a chance to directly measure Yukawa coupling of the
Higgs boson;

• the angular distributions of decay products of tau leptons can be used as a
probe of CP nature of Higgs-to-tau couplings;

• in some Beyond SM scenarios, in particular large-tan β Minimal Supersymmet-
ric Standard Model (MSSM), the branching ratio of Higgs resonances into taus
can be significantly enhanced.

A complex H → ττ analysis is also perfectly suited as a playground for various
machine learning techniques. In this chapter specifically, the H → τµτh analysis will
be presented.

Author’s note

The official CMS analysis was lead and implemented by the CMS groups at Univer-
sity of Wisconsin Madison (USCMS) and Deutsches Elektronen-Synchrotron (DESY).
Since the analysis is very complex, the groups agreed to share partial results and
analysis ideas rather than actual implementation and the details of implementations
are not available for viewing. Thus, the author made his own version of the analy-
sis from scratch using only available generic CMS tools. The content of this chapter
closely follows the author analysis implementation and does it in a manner that
should in principle allow to reproduce all results. Hence, both order and language
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of this chapter are more technical and less pedagogical than those adopted in the
reference publication [82]. All plots sourced here from this official work are marked
with bold CMS word on the top-left.

In this chapter all emphasized words/phrases will be given their clarification in Tech-
nical Appendix B. Also from now on by tau we usually mean hadronic tau and by
lepton we mean an electron or a muon.

Analysis overview

The H → ττ analysis follows the methodology presented in Section 1.3.3. There are
three main steps in the analysis. First, pairs of high level objects (particles) are recon-
structed (created), where every object corresponds to the single tau lepton final state.
The Higgs boson signal extraction consists of reconstructing the ditau system mass
which plays the role of discriminating variable. The overall low signal is enhanced
by introducing a set of carefully selected kinematical cuts which mitigate the back-
ground. Almost all steps of this analysis can be attributed into one of six common
categories:

• Objects creation: the data samples used are created centrally by the CMS Col-
laboration and are meant to serve multiple analyses (not only Higgs boson-
related ones). As such, they do not contain all needed physical objects or vari-
ables in a form of ready-to-use data. Examples of the objects/variables we
reconstruct from the data in the flow of analysis are Higgs boson candidate
collection (p. 4.2), loose jet ID (p. 46), electron ID, generator matching infor-
mation (p. 47), medium 2016 muon ID, event vetoes or muon isolation (p. 51).
In this chapter we adopted a simple rule of thumb to write extensively only
about objects created purposefully for this analysis.

• Objects/events selection: the opposite situation to the above one also happens,
i.e. not all information available is required. The selection is three-fold: 1) we
choose only samples with non-negligible contribution to signal phase space; 2)
we reject uninteresting events from selected samples; 3) we remove not used
information from the events. The samples selection is discussed in Section 4.1.
Uninteresting events are removed due to many reasons, e.g. they do not con-
tain any Higgs boson candidate or do not pass baseline selection (p. 50). The
removal of information from the event (e.g. photons collection) is motivated
by implementation reasons (less storage space occupied, faster code execution
on smaller datasets) and done at the end of the first part of the analysis (see
below).

• Categorization: the categorization is basically the superposition of events se-
lection and clustering. The majority of events left after baseline selection are
further rejected by categorization cuts. The remaining ones are subdivided into
three detached sets called 0jet, boosted and vbf categories. The categorization
is meant to boost signal-to-background ratio by fine-tuning the final selection
in given category using information about anticipated Higgs production pro-
cess (p. 53).
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• Simulated data (MC) corrections: the Monte Carlo simulation is not perfect
and must be corrected1. Examples are tau energy scale (p. 49), recoil (p. 51),
pile-up or lepton identification corrections (Section 4.4).

• Simulated (MC) to collision (Data) data matching. MC samples need to be
normalized to the collected collision data luminosity (p. 57). They are then
used for the background estimation (Section 4.6) and to create stacked Data-
to-MC control plots (Appendix C).

• Systematic uncertainties calculation: the implementation of systematic uncer-
tainties requires creating rescaled (up and down) distributions of discriminat-
ing variables which are input to the global fit. This is a complicated task and
since it goes beyond the goals of this thesis is not included. The main sources
of systematic uncertainties are however enumerated at the end of this chapter.

The whole analysis is split into two parts. In the first part (corresponding roughly
to the first two points above, described in Section 4.2) samples are processed within
the CMS SoftWare Framework (CMSSW) version 8_0_26, which allows for easy data
files retrieval and CMS Event Data Model (EDM) handling, fast analysis modules
(analyzers / producers / filters) creation, native and extended ROOT framework
support, build in access to the Worldwide LHC Computing Grid (WLCG) via CMS
Remote Analysis Builder (CRAB) utilities and more. The CMSSW – although being
a capable and beautify designed system – is constrained by the computing envi-
ronment as its installation outside CERN LXPLUS cluster is cumbersome, comput-
ing resources demanding and operationally slow, and is very limited in terms of
compatibility with third-party software (including machine learning libraries). In
the second part of the analysis (categorization, MC corrections and data matching)
we go around these issues by making a custom code written independently of the
CERN/CMS infrastructure.

4.1 Samples

The data samples used in this analysis are a subset of the proton–proton data collected
in 2016 at center of mass energy of 13 TeV. Only certified (high quality) runs from LHC
data taking periods 2016B to 2016H are used with total luminosity of 35.9 fb−1. The
average pile-up was about 27 interactions per bunch crossing.

The simulated signal Monte Carlo (MC) samples for gluon fusion (ggH), vector
boson fusion (VBF) and with associated W± or Z bosons production modes are gen-
erated with POWHEG 2.0 BOX program [83], where the NLO QCD calculations can
be matched with parton shower generators. As mentioned in Chapter 1 the tt̄H pro-
cess samples are skipped. The cross sections and branching fractions for the Higgs
boson production are taken from [25] and [84].

The simulated background MC samples are generated with MADGRAPH [85] or
POWHEG BOX programs. The former is used at LO for Z + jets and W + jets pro-
cesses and at NLO for diboson production. The latter for tt̄ (version 2.0) and single
top (version 1.0) quark production. Please note that the dedicated Drell-Yan sam-
ples with low (below 50 GeV) and high (above 150 GeV) invariant mass of Z boson
are not used because of negligible contribution to the signal region. Parton show-
ers, hadronization and hadronic taus decays are modeled with PYTHIA8 [86] using
underlying event tune CUETP8M1 [87].

1We introduce new corrections only to MC events. The only corrections discussed in context of
collision data are Jets (p. 46) and Type-I MET (p. 47) corrections, which are reapplied.
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Simulated events are reconstructed in the same way as events from collisions
with exception of being additionally processed with CMS detector simulator based
on GEANT4 [88]. Both Data and MC datasets, together with cross sections, are
summarized in Appendinx A.

A Global Tag is a collection of records of data needed by the reconstruction and
analysis software but not included in data samples, like alignment, calibration, tem-
perature or parameters for the simulation software. The Global Tag is defined for col-
lision and simulated data separately and for each data-taking period. Most physics
objects reconstructed in data are already calibrated and ready-to-use and do not re-
quire additional corrections. The notable exceptions are jet energy corrections and
trigger configuration information which are sensitive to the Global Tag version [89].
The global tags used in this analysis are given in Appendix B.

4.2 Data pre-processing

Pairs creation

The analysis starts with defining the Higgs boson candidates as pairs of muons and taus.
The muons are required to pass pT,µ > 20, |ηµ| < 2.1 and taus to pass pT,τh > 27,
|ητ| < 2.3 and have absolute value of charge equal to unity (|qτ| = 1). Moreover, a
muon and a tau in the pair have to be separated in the (η − φ)-plane:

dR :=
√
(ητh − ηµ)2 + (φτh − φµ)2 > 0.5,

where φ in radians. Please note that there can be zero, one or more pairs per event.
Also note that the Higgs boson candidate is created from the muon collection; in
other words there is no dedicated collection of taus decaying into muons (or elec-
trons to be precise).

Jets corrections and selection

Jets collection available in data contain PF-jets reconstructed with anti-kT algorithm
with ∆R = 0.4 cone size. Although the jet energy corrections are by default applied
to collision and MC events, we re-apply them for data taking periods 2016B - 2016G
samples due to updated Global Tag (see Appendix B).

Only jets with |η| < 4.7, pT > 30 GeV and passing so called loose jet ID Working
Point (WP, criteria are presented in Table 4.1) are kept for further analysis. Loose
jet ID is meant to reject badly reconstructed, fake or noise jets. The fake–rate in jets
passing loose jet ID is 1-2%.

Variable |ηj| ≤ 2.4 2.4 < |ηj| ≤ 2.7 2.7 < |ηj| ≤ 3.0 |ηj| > 3.0
Neutral Hadron Energy Fraction < 0.99 < 0.99 − −
Neutral Electromagnetic Energy

Fraction
< 0.99 < 0.99 < 0.9 < 0.9

Charged Hadron Energy Fraction > 0 − − −
Charged Multiplicity > 0 − − −

Charged Electromagnetic Energy
Fraction

< 0.99 − − −

Neutral Multiplicity − − > 2 > 10
Number of Constituents > 1 > 1 − −

Table 4.1: Loose jet ID criteria. In columns the conditions for different jet pseudorapidities
(|ηj|) ranges are given.
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MET corrections

MET definition given in Eq. 3.1 does not take into account the results of the jet
energy correction process. The necessary correction which is applied is called Type-I
correction and consists of the propagation of the jet energy corrections onto missing
transverse energy by replacing the vector sum of the transverse momenta of the
uncorrected jets with the same for corrected (JEC applied) jets. The Type-I correction
is the most widely used MET correction in CMS.

The MET can be decomposed with respect to the origin of the energy as in the
following expression:

6~Euncorr.
T = −∑

i
~pT, i = − ∑

i∈jets
~pT, i − ∑

i/∈jets
~pT, i = −∑

jet
~puncorr.

T, jet − ∑
i/∈jets

~pT, i, (4.1)

where we have split the sum of the PF particles transverse momentum into clustered
objects (jets) and unclustered objects parts. The jets can be further classified into
classes with a threshold at the corrected transverse momentum:

6~Euncorr.
T = − ∑

jet
~pL123

T, jet>10GeV

~puncorr.
T, jet − ∑

jet
~pL123

T, jet<10GeV

~puncorr.
T, jet − ∑

i/∈jets
~pT, i, (4.2)

where L123 indicates L1, L2 and L3 levels of JEC (see Section 3.2).
Type-I correction can be written as

(
~puncorr.

T, jet − ~pL123
T, jet

)
, so we can modify Eq. 4.2

to the form:

6~Euncorr.
T = − ∑

jet
~pL123

T, jet>10GeV

~pL123
T, jet− ∑

jet
~pL123

T, jet>10GeV

(
~puncorr.

T, jet − ~pL123
T, jet

)
− ∑

jet
~pL123

T, jet<10GeV

~puncorr.
T, jet − ∑

i/∈jets
~pT, i.

The Type-I corrections are applied for MET collection available in collision and
MC data samples, but without MET covariance matrix filled. As it is required for
SVfit algorithm (see Section 3.4) we have recalculated MET using updated JEC (p.
46).

Electron identification

Electrons are reconstructed from ECAL clusters and GSF tracks (Chapter 3). The
identification of electrons is based on the information about reconstructed electron
electromagnetic shower shape and track parameters, e.g. cluster pseudorapidity,
electron transverse momentum, cluster width (in η and φ directions), active tracker
layers number, number of missing hits, track-to-cluster displacement and so on. To
avoid creating a multitude of separated identification categories in these strongly
(pT, η)-dependent calculations, we used multivariate electron identification method
(MVA ID) where single discriminator variable is computed in a way providing the
best separation between the signal (prompt electrons) and backgrounds (fake elec-
trons, mostly due to misidentified jets). The different WPs are defined for differ-
ent signal efficiency as cuts on discriminator value. Working points are trained on
DY + Jets MC samples (with prompt electrons as signal and non-prompt and fake/un-
matched electrons as background) corresponding to data collected in 2016 and tuned
for the pT > 10 GeV electrons.
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Generator matching

Many corrections applied to MC samples depend on the origin of the reconstructed
hadronic tau, which is taken as the type of generated particle that matches the tau
particle most closely in the (η − φ)-plane (dR). In the process of generator matching
six categories are introduced, and they are presented in Table 4.2.

Cat Type Nearest gen level object
1 Prompt electron Prompt electron, pT > 8 GeV
2 Prompt muon Prompt muon, pT > 8 GeV
3 τh → e Direct prompt electron, pT > 8 GeV
4 τh → µ Direct prompt muon, pT > 8 GeV
5 τh → τh Generator level τh jet, pT > 15 GeV (summed four-momenta of the visible

(prompt) generator τh decay products)
6 Jet/pile-up fake Anything that does not fall in any of the above categories i.e. no match

within dR < 0.2

Table 4.2: Hadronic tau generator matching categories

The pT > 8 GeV cut in Table 4.2 is introduced in order to eliminate electrons and
muons from decays of hadronic resonances and photons converting into a lepton
pair (significant for pe,µ

T below 6 GeV) and is set to be at least 1 GeV below the analy-
sis thresholds on the reconstructed lepton transverse momenta. The pT,τh > 15 cut is
inspired by the transverse momentum requirement for seeding a jet in hadronic tau
reconstruction (pseed

T > 14 GeV).
The generator matching is crucial from the point of view of MC corrections/re-

scaling, because they depend on the generator matching category. Hence it strongly
influences both shapes and yields in final discriminating variable(s) distributions.
Above is the reason for the decision to synchronize the generator matching recipe be-
tween the CMS groups involved in the H → ττ analysis.

Lepton isolation

The relative (with respect to the lepton transverse momentum) lepton isolation is
given by the formula:

Rl
iso =

(
∑ p±T + max

[
0, ∑ p0

T + ∑ pγ
T −

1
2 ∑ ppu

T

])/
pl

T, (4.3)

where p±T is transverse momentum of charged hadron originating from the primary
vertex and p0,γ

T is the same for neutral particles (neutral hadron and photon). The
ppu

T is a neutral particles pile-up correction using: 1) a jet area method [90] for elec-
trons; 2) the half of the sum of pile-up charged particles (i.e. transverse momenta for
particles not originating from the primary vertex) for muons. Only half of the sum
is taken as this corresponds to the ratio of neutral to charged hadrons production in
inelastic proton-proton collisions. The "max"–term is put to ensure that only the pos-
itive pile-up corrected contributions from neutral particles are taken into account.
Negative corrections can occur due to statistical character of pile-up contamination.
All summations in Eq. 4.3 are over PF-particles in the cone around lepton with size
of ∆R = 0.3 for electrons and ∆R = 0.4 for muons. The numerator of Eq. 4.3 is called
the absolute lepton isolation.
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Tau isolation

The hadronic tau isolation is derived for Run II data with MVA method using e.g.
energy deposits in calorimeters around tau candidate and tau lifetime information.
The resulting discriminator (tau MVA isolation ID) is available for every tau candi-
date in the data tau collection (see Section 3.3). It comes in two forms: as decimal
number in range from zero to one (raw tau MVA isolation ID) or as one of six WPs2.
In the latter case, the discriminator either takes zero value (does not pass WP, i.e. tau
is not isolated) or one (tau is isolated on given WP level).

Muon identification

The muon identification (ID) helps to reject fake and non-prompt muons, e.g. from
decays in-flight. Three WPs are available in data (muon collection):

• Loose muon ID: it requires PF-muon which is also reconstructed as either
global-muon or tracker-muon, without any further additional track-quality
and muon-quality requirements. It is highly efficient for prompt muons and
muons from quark decays.

• Medium muon ID: it is attributed to the muon particle if it passes loose muon
ID together with additional track-quality and muon-quality requirements re-
lated to tracker to muon system matching (segment compatibility, global χ2),
number of hits in the muon system, tracker variables (number of missing hits,
tracker track χ2) and calorimeter energy deposits compatibility. Medium muon
ID is optimized to reach 99.5% efficiency on prompt muons with transverse
momentum above 20 GeV and absolute pseudorapidity below 1.2 (in barrel
part of the muon system).

• Tight muon ID: it requires global muon with additional muon-quality require-
ments. It has the best purity but is 2-3% less efficient than medium muon ID.

Although available in the data, the medium muon ID had to be recalculated for
collision data taking periods 2016B to 2016F in order to match the performance of
the ID obtained in data taking periods 2016G and 2016H3. The criteria for so called
medium2016 muon ID are given in Appendix B.

Tau energy scale corrections

Tau energy scale (TES) corrections are applied to the hadronic taus with transverse
momentum between 20 and 400 GeV4, with decay mode 0, 1 and 10 (see definition in
Section 3.4) and with respect to the generator matching category (see Table 4.2). The
energy of the tau can be corrected in two ways: 1) by re-scaling the (px,py,pz)-vector
by some factor and recalculating tau energy or 2) by re-scaling the whole four-vector
of the tau.

2VVL / VL / L / M / T / VT WP tau MVA isolation ID, where V - very, L - loose, M - medium and
T - tight (see Fig. 3.7)

3The tracker issues were the reason for different performance. A decrease of signal over noise ratio
associated to loss of tracking hits has been observed in late 2015 and part of 2016. The problem was
initially believed to be due to heavily ionizing particles (HIPs), but finally traced to saturation effects
in the pre-amplifier of the APV chip of tracker readout.

4The hadronic taus with pT,τh < 20 are not used and the taus with pT,τh > 400 are very rare and no
correction is delivered.
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Generator matching category 5 5 5 2 or 4 2 or 4 1 or 3
Tau Decay Mode 0 1 10 0 1 1
TES factor value -1.8% +1.0% +0.4% -0.2% +1.5% +9.5%

Table 4.3: Tau Energy Scale factors. Taus with combinations of generator matching category
and decay mode that are not present in this table are not scaled. The uncertainty on all TES

factor values is 0.6%.

For 1-prong tau decays the mass of the single hadron in jet is assumed to be
charged pion mass, therefore the energy of taus with decay mode equal to zero is
corrected using the first method to keep the mass unchanged. For other decay modes
the second method is used. The re-scaling factors are presented in Table 4.3. TES
influences the yields; taus can be pushed out or in of the analysis pT,τh threshold,
depending on the decay mode.

Baseline selection

Before selecting the best pair (Higgs boson candidate) in the event, pairs are verified
for the constituent lepton quality (even if there is only one pair existing). Hadronic
taus have to fulfill the following requirements:

• transverse momentum above 30 GeV (pT,τh > 30 GeV) and absolute pseudo-
rapidity below 2.3 (|ητh | < 2.3). The first requirement is meant to increase the
significance in the analysis and the second one is justified by tau object recon-
struction constraints (related to available detector acceptance) and in agree-
ment with value recommended by CMS Tau Particle Object group;

• longitudinal transverse impact parameter below 0.2 cm (dz < 0.2 cm). It mea-
sures the distance of the track projection (distance of closest approach) to the
primary vertex (PV) along the beam line direction. For hadronic tau this pa-
rameter is taken as transverse parameter of the leading charged hadron PF
candidate used to HPS reconstruction;

• charge has to be equal to plus or minus one (|q| = 1);

• must by reconstructed as 1- or 3-prong tau decay.

Muon has to fulfill the following requirements:

• transverse momentum above 20 GeV (pT,µ > 20 GeV) and absolute pseudo-
rapidity below 2.1 (|ηµ| < 2.1). Both thresholds are driven by HLT trigger
requirements.

• longitudinal transverse impact parameter below 0.2 cm (dz < 0.2 cm) and
transverse impact parameter below 0.045 cm (dxy < 0.045 cm). Transverse
impact parameter measures the distance of the track projection to PV in the
(x− y)-plane (perpendicular to the beam axis);

• has to pass medium (2016) muon ID.

The Higgs boson candidates which pass the lepton requirements are checked
for compatibility with HLT trigger. If the transverse momentum of the muon in a
pair is above 23 GeV, it has to match HLT filter trigger object within ∆R < 0.5 for the
single isolated muon trigger (with muon pHLT

T threshold of 22 GeV). For Higgs boson
candidates with muon in 20 < pT,µ ≤ 23 range, both muon and tau have to match
appropriate HLT filter trigger object. The lowering of muon pT,µ threshold from 23
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to 20 GeV is introduced to the analysis in order to increase the signal acceptance (by
about 25%) and sensitivity (by about 10%). Triggers and filters to match are given in
Appendix B in Table B.1.

Best pair (Higgs boson candidate) selection

As already mentioned there can be more than one τµτh pair in the event, which is
undesirable. It was observed that the selection based on the lepton isolation had the
highest efficiency for selecting the correct pair in signal events. If multiple pairs exist
after HLT matching the following procedure is executed:

• For every pair, the relative muon isolation Rµ
iso is calculated. Only the pairs

with smallest Rµ
iso are kept.

• If after the first step there is still more than one pair (for cases with possibly
different muon candidates, but of genuinely the same isolation value), only
the ones with the highest muon transverse momentum are kept.

• If after the second step there is still more than one pair (likely because two pairs
share the same muon object), only the ones with the highest score of MVA-based
tau ID discriminant are kept.

• If after third step there is still more than one pair with the same leptons isola-
tion and muon pµ

T, the one with the highest tau pT,τh is kept.

The selected pair is put to one additional test. First, it is checked if muon is
loosely isolated (Rµ

iso < 0.3). Then to avoid events with electron or muon misiden-
tified as hadronic tau, it is required for tau to satisfy anti-lepton discriminators. For
the discriminator against muon the tight WP is chosen in order to efficiently reduce
the large Z → µµ background. For the discriminator against electron the very loose
WP is selected because of a small yield for backgrounds with electrons in the final
state and to keep a high efficiency for the signal. If the pair fails this test, the event
is removed.

Event vetos

In order to keep different final states of the H → ττ analysis exclusive and suppress
the DY+jets background all events should contain exactly two leptons of a desired
flavor. In particular if there are two good, isolated, opposite charge sign (OS) muons
in the event it is probably a Drell-Yan process Z/γ∗ → µµ with an additional jet
faking hadronic tau. Above scenarios are covered with three boolean veto variables
presented in Table 4.4. If any of those variables is true, the event is rejected.

In Table 4.4 the conversion veto discriminator assures that the electron does not
come from photon conversion (γ → e+e−). It is based on the information from the
tracker, like the number of missing hits, distance between (hypothetical) conversion
tracks and angles between conversion tracks at conversion vertex.

Corrections of missing transverse energy

The missing transverse energy is assigned to the pair/event in one of the three forms,
depending on the data sample: 1) without any modifications (for real data); 2) with
MET updated for the TES (for MC samples without recoil corrections); 3) with MET
updated for the TES and then recoil corrected (for MC samples with recoil correc-
tions, see Appendinx A).
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Veto name Lepton definition Truth condition
dimuon pT > 15, |η| < 2.4, is global, tracker

and PF muon, dz < 0.2, dxy < 0.045,
Rl

iso < 0.3

two opposite sign muons with dR > 0.15

extra muon pT > 10, |η| < 2.4, is medium muon,
dz < 0.2, dxy < 0.045, Rl

iso < 0.3
more than one muon

extra electron pT > 10, |η| < 2.5, dz < 0.2, dxy <

0.045, Rl
iso < 0.3, passes conversion

veto, track has maximum one missing
inner track hit, passes electron MVA
ID 90% WP

at least one electron

Table 4.4: Hadronic tau generator matching categories

The change in tau transverse momentum caused by TES needs to be reflected in
MET value. The following formula for MET TES-corrected four-vector elements is
used:

pcorr
x = px − ∆pτ

x = ET · cos φ− (pτ,corr
x − pτ,uncorr

x ) ;

pcorr
y = py − ∆pτ

y = ET · sin φ−
(

pτ,corr
y − pτ,uncorr

y

)
,

(4.4)

where φ and px,y are transverse momentum azimuthal angle and (x, y)-coordinates
of momentum vector, respectively.

It may happen, that the measured MET value does not strictly correspond to
the genuine MET in the event and carries out the admixture of instrumentally in-
duced MET. To the unwanted induced part of the MET contribute many experimen-
tal and physical effects like JEC, fluctuating jet composition, detector noise, pile-up,
restricted detector resolution and acceptance, etc. MET recoil correction is intro-
duced as the negative value of the induced MET. In other words recoil correction is
a way of fixing the mismodeling of missing transverse momentum in the simulated
samples. Strictly speaking, the correction

~U = 6~ET − ~pt,ν (4.5)

is the difference of reconstructed MET ( 6~ET) and total transverse momentum of neu-
trinos (~pt,ν). The ~U value is figured out by analyzing Z → µµ events5, where no gen-
uine MET is expected and vector boson transverse momenta are well-understood
and well-measured. Therefore, the ~U is determined as an offset with respect to the
zero MET value. The recoil is computed for data and MC separately and the MC
result is corrected w.r.t. the data. The correction vector can be decomposed onto axis
parallel (U||) and perpendicular (U⊥) to the boson transverse momentum direction.
The U|| is typically negative and decreases linearly with boson pT due to increase
in jet energy resolution, whereas U⊥ is dominated by noise and pile-up. Recoil cor-
rections are prescribed for the Drell-Yan, W+Jets and Higgs production simulated
samples (where boson transverse momentum is well defined) and applied depend-
ing on the generated boson pT value (full and visible) and jet multiplicity. The boson
transverse momentum is known and reconstructed from simulated (generator) par-
ticles.

After MET corrections are done, the mass of the Higgs boson candidate is cal-
culated with SVfit algorithm (Section 3.4) and all samples are saved for processing
outside CMSSW.

5The list of cuts required for dimuon events extraction is presented in the analysis note [82].
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4.3 Analysis categories

So far we have assured that all reconstructed leptons in the pair lie within the detec-
tor acceptance, originate from the primary vertex and are loosely isolated. Now we
split the analyzed events into categories, so it is possible to fine tune the final cuts
and further increase the significance.

Three main categories are defined by choosing events with two, one and zero
jets, which reflects the anticipated Higgs production process. Zero-jet (0jet) category
targets events with gluon fusion Higgs boson production. Two-jet (vbf) category
is intended to be enriched in vector boson fusion Higgs production and delivers
the highest signal-to-background ratio, but also the lowest signal yield. The reduc-
tion of the SM background (e.g. tt̄ events) in this category is achieved by requiring
the leading two jets system to have a large invariant mass (mjj > 300 GeV). One-jet
(boosted) category contains events which did not fall into any of the previous ones.
It contains mainly events from gluon fusion Higgs production with additional jet(s)
(≈ 80% of signal events in this category), vector boson fusion Higgs production with
one jet unreconstructed or with two jets with low dijet system mass (≈ 12% of signal
events) and associated Higgs boson production where W/Z boson decays hadroni-
cally (≈ 8% signal events).

All categories require the tau lepton to be isolated by passing tight WP tau MVA
isolation ID, have leptons of opposite sign (charge conservation) and with a low
transverse mass (MT) of the muon lepton candidate defined as:

Mµ
T :=

√
2pT,µ 6~ET(1− cos ∆φ(µ, 6~ET)), (4.6)

where ∆φ(µ, 6~ET) is the azimuthal angle between muon and missing transverse en-
ergy. For heavy W boson leptonic decays (W → µνµ) the muon and neutrino are

Figure 4.1: Distribution for Mµ
T in H → τµτh

events for L=19.4 fb−1 of
√

s = 8 TeV CMS
data. Green line indicat the 50 GeV cut [91].

more likely to be emitted back-to-back
and the Jacobi peak for Mµ

T ' mW,
because transverse mass simulates the
"invariant mass" of W boson made of
available transverse momenta and with
muon mass neglected. Therefore, for
such events the transverse mass will be
large. On the other hand, in DY + jets
and H → τµτh events, the muon and
neutrino are more likely to travel in
the same direction due to the lower
tau lepton mass compared to W boson.
Furthermore, MET is only instrumen-
tal for QCD events. For all such cases
the transverse mass tends to be small.
The additional effects come from com-
pensating neutrino momentum vectors
in symmetrical decay scenarios, which

further decreases the reconstructed missing transverse energy and hence the trans-
verse mass value. The 50 GeV cut is motivated by the placement of W + jets peak in
the transverse mass distribution (Fig. 4.1), and allows to suppress significant back-
grounds of W+jets and tt̄ events.
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The Higgs transverse momentum is defined as:

~pT(H) := ~pτµ

T + ~pτh
T + 6~ET. (4.7)

The distribution of this variable is shifted towards higher values for various Higgs
boson production scenarios (VBF, ggH with jets, associated vector boson produc-
tion), hence it presents discriminating power versus mainly QCD background. Fi-
nally, the jet pair system invariant mass mjj is the mass of the sum of the four-
momenta of the two leading (highest pT) jets in the event. For the vbf category
the large mjj effectively reduces different backgrounds, e.g. tt̄. Categorization cuts
are summarized in Table 4.5.

Variable 0jet boosted vbf
No. of jets 0 1 or

>2 and (mjj ≤ 300 or pT,τh ≤ 40. or pH
T ≤ 50.)

≥ 2

Pair charge -1 -1 -1
Muon transverse mass ≤ 50 ≤ 50 ≤ 50
Tau isolation > 0.5 > 0.5 > 0.5
Tau transverse momentum − − > 40
Muon isolation ≤ 0.15 ≤ 0.15 ≤ 0.15
SVFit (mττ) mass − < 300 < 400
Higgs transverse momentum − − > 50
Jet pair system mass − − > 300

Table 4.5: The cuts defining the categories in H → τµτh decay channel.

4.4 Simulated samples corrections

Pile-up correction

The number of primary vertices in the MC is adjusted at the event-by-event basis us-
ing the pileup distributions calculated for data and MC separately. The distributions
are generated using "true pile-up" method, i.e. contain the histograms of the mean
number of interactions per crossing. For data samples this method uses total inelas-
tic minimum bias cross section (of 69.2 mb) and average instantaneous luminosity to
obtain proper value for a given luminosity section in the LHC run.6 For MC pile-up
is generated (with PYTHIA) using minimum bias collision events.

Tau isolation correction

The efficiency on the hadronic tau identification varies for different isolation WPs.
The necessary scale factor (SF) is obtained from Z → τµτh events by performing
maximum likelihood fit for visible mass distribution for two categories where this SF
is anti-correlated. The number of events in the fit are adjusted using Z → µµ control
region. For the tight WP tau MVA isolation ID used in this analysis a constant SF of
0.95 with uncertainty of 5% is applied for events where hadronic tau is a generator
matched to hadronic tau (category no. 5).

6Another method is "observed pile-up", which returns the counted number of events seen in a given
beam crossing (using the number of vertices in data and generator variables in MC).
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Electron/muon fake rate correction

Similarly to the tau isolation correction, a muon to tau fake rate and electron to tau
fake rate scale factors can be measured. They are applied depending on the anti-
lepton discriminator ID, tau generator matching category and pseudorapidity range.
The muon/electron to tau fake rate SFs are presented in Table 4.6.

Tau discriminator η range Generator matching category Scale factor
loose anti-electron η < 1.460 1 or 3 1.213 ± 0.07

loose anti-electron η > 1.558 1 or 3 1.375 ± 0.05
tight anti-muon η < 0.4 2 or 4 1.263 ± 0.07

tight anti-muon 0.4 ≤ η < 0.8 2 or 4 1.364 ± 0.28
tight anti-muon 0.8 ≤ η < 1.2 2 or 4 0.854 ± 0.04
tight anti-muon 1.2 ≤ η < 1.7 2 or 4 1.712 ± 0.5
tight anti-muon 1.7 ≤ η < 2.3 2 or 4 2.324 ± 0.5

Table 4.6: Muon/electron to tau fake rate scale factors.

Drell-Yan e/µ→ τh fake rate correction

For the Drell-Yan events the additional, decay mode-dependent7 e/µ → τh fake
rate SFs are calculated. It is done in a three step process. In the first step, the MC
events are divided into two groups: 1) the events where generated lepton (electron
or muon) is reconstructed as hadronic tau (lepton faking tau) and 2) all the rest, i.e.
where reconstructed hadronic tau is not faked from generator lepton. In the second
step, the total yield of the latter group is subtracted from the available collision data
yield. In the last step, the obtained collision data visible mass distribution is Gaus-
sian fitted to the same distribution for the events from the first group above of MC
events. This way the SFs can be found separately for electrons and muons faking
taus and also for different tau decay modes. Table 4.7 shows the appropriate event
SFs.

Correction type Decay Mode Generator matching category Scale factor
e→ τh fake rate 1-Prong 1 or 3 0.98± 12%
e→ τh fake rate 1-Prong + π0s 1 or 3 1.2± 12%
µ→ τh fake rate 1-Prong 2 or 4 0.74± 25%
µ→ τh fake rate 1-Prong + π0s 2 or 4 1.0± 25%

Table 4.7: DY e/µ → τh fake rate corrections. The SFs are applied for all Drell-Yan events
with lepton faking hadronic tau.

Muon tracking and trigger efficiency correction

Tag-and-probe is used to find the muon tracking efficiency and trigger efficiencies
for collision and MC data. It allows to identify "probe" object as a muon in two
muons decay thanks to the resonance mass constraint. For the muon efficiency mea-
surements this technique relies on the dimuon resonance (Z → µµ, J/φ → µµ)
events, for which stringent quality requirements are imposed on the one muon (tag).
For the second muon (probe) the two categories (set of cuts) are created, which differ
by a single variable in relation to which the efficiency is computed. The efficiency is
obtained as a number of events passing the more restrictive category divided by the
same for a less restrictive selection. If both muons in the event pass both criteria (for

7As we will see in Section 4.7 one of the discrimination variables in 0jet category is decay mode.
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tag and probe), they are examined independently. In the first case, it is checked if the
standalone muon is a global muon; and in the second case, it is checked if the probe
is matched to the HLT triggers from baseline selection in a cone ∆R < 0.5. The µ/τh
cross triggers efficiency is also found for µτh events, where muon was used as a tag.
All efficiencies are calculated in probe (pT,η) bins, and for cross triggers additionally
for different tau decay modes. The ratio of efficiencies for data and MC are used as
weights in the analysis (corrections).

Lepton identification correction

Lepton ID scale factors correct for lepton identification efficiencies and are measured
with tag-and-probe method using Z → ee (for electron ID SF) and Z → µµ (for
muon ID SF) events. The event extraction is based on the set of cuts presented in
[82]. The weight is defined as the efficiency ratio εdata/εMC, where ε itself is a ratio
between the number of probes passing the ID and failing it, and it is extracted from
the invariant mass distribution for the window around Z boson mass peak. Please
note that the event cuts are the same for the real data and for MC. The generator
information is not used here. The event weight is generated as a function of the
probe lepton transverse momentum and pseudorapidity.

LO MADGRAPH DY SF

The LO MADGRAPH Drell-Yan samples reweighing corrects the shape of the distri-
butions with respect to the generator level Z boson transverse momentum and mass
modeling inaccuracies due to usage of LO calculations8. The weight is produced
using Z → µµ dataset, in Z-(pT, m) bins, and is normalized so it does not modify the
yield. The Z boson is reconstructed from generator particles. The requirements on the
events for Z → µµ extraction are given in [82]. The weights are presented in Fig. 4.2.

Figure 4.2: LO MADGRAPH Drell-Yan weights.

8DY is simulated at LO, as it allows to simulate samples with different jet multiplicity (up to 4 jets)
for coverage of the full phase space.
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4.5 Simulated samples normalization

Drell-Yan and W+jets

Simulated samples (MC) have to be normalized in order to represent the same yield
as data collected in proton-proton collisions. The total weight for the event is the
product of partial weights from the previous section and normalization.

The DY+jets MC samples are given in two versions: inclusive samples and sam-
ples with a number of additional final state partons (jets) forced at the generator level
(between 1 and 4). This way it is easier to a cover large area of phase space taking
into account constraints on the dataset volume. The different Z+jets samples have
to be stitched into one with every event weighed in a proper manner. The weight is
calculated based on cross section and number of events for a given multiplicity of
final state partons. The procedure is the following:

• The total number of processed events TDY
i for a given dataset (i ∈ inclusive,

DY+jet, DY+2jets, ..., high mass inclusive DY+Jets sample) is found.

• The normalized total number of processed events NTDY
i is defined as a total

number of processed events divided by appropriate cross section (given in Ap-
pendix A), i.e. NTDY

i = TDY
i /σ.

• The raw weight per event is calculated as

SFDY
(NN)LO

NTDY
incisive + NTDY

partons + NTDY
HM

. (4.8)

Here SFDY
(NN)LO is NNLO–to–LO correction factor equal to 5765.4/4895 (cross

section NNLO–to–LO ratio for inclusive Drell-Yan samples). Subscript partons
is an integer corresponding to the number of jets in the dataset. NTDY

partons is zero
for events with number of partons less than one or more than four. The NTDY

HM
is equal to NTDY

i value for high mass inclusive DY+Jets sample for events with
mass above 150 GeV (and zero otherwise). By "mass" we mean the invariant
mass of the two leptons system in the event.

• Finally the weight is obtained from raw weight by multiplying it by the lumi-
nosity of analyzed collision data.

The W+jets MC samples stitching is done by the same procedure with two excep-
tions: 1) SFDY

(NN)LO is replaced with SFW
(NN)LO equal to 61526.7/50380 (cross section

NNLO–to–LO ratio for inclusive W + jets samples) and 2) there is no dependency
on event mass, so NTW

HM is always zero.

Other MC

The normalization of the remaining MC samples is given by the formula:

luminosity ∗ cross section
∑ generator weight

(4.9)

where summation in the denominator is performed over all processed events. The
generator weight is a number assigned to every event in simulated samples and
is almost always equal to unity. The only exception are diboson samples, which
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are generated with MADGRAPH program at NLO cross sections (AMCATNLO) and
where generator weights can take both positive or negative values. Typically the
fraction of events with negative weight is 10-20% and since they are canceling 10-
20% of the positive weighted events the statistics are effectively reduced (to 60-80%
of original size) for those datasets. The reason for negative weights stem from the
way the NLO event generator is matched to the (N)LL accuracy parton-shower and
hadronization algorithm (see [92, 93, 94]).

4.6 Background estimation

Drell-Yan

DY + Jets background is modeled wholly by the MC and only rescaled and normal-
ized on per with description given in Sections 4.4 and 4.5. Every event from DY +
jets samples falls into one out of three categories:

• ZTT category contains events where hadronic tau in Higgs boson candidate
is matched to hadronic tau particle at the generator level (category no. 5 in
Table 4.2). Drell-Yan production with a tau pair in the final state is the main
irreducible background in H → τµτh decay channel.

• ZL category contains events where hadronic tau in Higgs boson candidate is
matched to muon or electron at the generator level (cat. no. 1-4). Here, the
background comes e.g. from Z → µµ events where one muon is faking a
hadronic tau.

• ZJ category contains events where hadronic tau in Higgs boson candidate is
matched to the jet at the generator level (cat. no. 6). Here, the background
comes e.g. from Z → µµ events where one muon is lost and additional final
state jet is faking a hadronic tau.

W+jets

The W+jets background plays an important role in H → τµτh channel in case where
W boson decays leptonically and jet is misidentified as a hadronic tau. The shape of
this background is taken from the simulation, but to cope against the small yield in
the signal region causing significant statistical fluctuations relaxed selection is used.
In relaxed selection the tight WP tau MVA isolation ID is replaced with medium WP
and the muon isolation is raised from 0.15 to 0.30. It is confirmed that this does not
bias the shape of the distribution with respect to the nominal cuts.

Let us denote nominal (i.e. signal region), low transverse mass (Mµ
T < 50 GeV)

W+jets yield by W↓n , nominal high transverse mass (Mµ
T > 80 GeV) yield by W↑n , and

relaxed yields accordingly with lower index r. The signal region yield can be written
as

W↓n = W↓r (MC) · SFr→n, (4.10)

where scale factor SFr→n ≡W↓n /W↓r describes the transition from relaxed to nominal
conditions. In the analysis it is actually derived using data-driven method where
collision data sample of high-Mµ

T (W+jets enriched) events is used:

SFr→n =
W↑n (Data)

W↑r (MC)
. (4.11)
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The W↑n (Data) is defined as data yield with QCD and all MC backgrounds (except
W+jets) samples subtracted. Because the QCD contribution is also estimated from
data and dependent on the W+jets MC, the normalization of the W+jets background
is dependent on itself. However, this is a second order effect of roughly 4% and is
accounted as a systematic uncertainty. The whole W+jets estimation process is re-
peated for every category separately. The 5% (0-jet and boosted category) or 25%
(vbf category) uncertainty related to the (statistical) uncertainty of data, W+jets,
QCD and tt̄ in high-Mµ

T sideband are applied. A higher uncertainty value for vbf
stems from a higher statistical uncertainty and a lower purity of W+jets background.
Additional 5% (boosted cat.) or 10% (0-jet and vbf cat.) uncertainties are related to
the high-Mµ

T to low-Mµ
T extrapolation factor.

QCD

The contamination from QCD multi–jet events is an important reducible source of
background in the H → τµτh channel. It is estimated from collision data using same
sign (SS) events9 and given by the formula:

QCDOS = SFSS→OS
QCD ×

[
Data−DY, tt̄, VV, EWK, Other− SFData→MC

W ×W
]

SS
,

where

• OS (SS) subscript indicates the yield coming from OS (SS) events;

• SFSS→OS
QCD is a scale factor correcting the difference between the number of OS

and SS events observed in QCD enriched region (obtained by inverting muon
isolation criteria).

• SFData→MC
W = W↑n (Data)/W↑n (MC) is a scale factor describing the ratio of Data

to MC events for nominal high-Mµ
T yields.

Ditop

The tt̄ background is estimated from MC sample and similarly to the DY background
is split into sub-samples depending on the tau generator matching. The two cate-
gories are "TTT" if tau is matched to hadronic tau and "TTJ" otherwise.

Others

Other backgrounds, like diboson and single-top-quark event samples, are small and
their contributions are estimated with MC simulation.

4.7 Signal variables

In the previous Run I H → ττ analysis the Higgs boson signal was extracted from
SVfit ditau mass distributions. In order to maximize signal to background (S/B) ra-
tio a multiple (up to 7) different categories were considered for every tau pair decay
into a final state. For the Run II another approach was developed, where SVfit mass
was replaced with 2D distributions. The first variable in 2D distributions represents

9"Same sign" concerns the charge of particles in the pair, i.e. the event is SS if muon and tau have
the same (negative or positive) charge. The signal events are of opposite sign (OS) type.
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the tau pair system mass (mττ) and the second is selected specifically for every cat-
egory. This way it is possible to maintain good analysis sensitivity with only three
categories – 0jet, boosted and vbf – defined using a limited number of variables and
very similar for every final state. At the same time, the simplified collection of cuts
did not affect the statistics – the background could be controlled with a number and
range of bins keeping a high amount of events in the 2D distribution.

In the H → τµτh final state the following variables have been used:

• The high resolution of SVfit mass is not crucial in 0jet category since it has the
lowest S/B ratio. Instead of delivering good Higgs mass reconstruction, the
0jet category comes useful in constraining the background contributions. The
chosen lepton pair visible mass (mvis) as a discriminating variable in the final
fit helps to separate poorly-described Z → ll background. Another constraint
on Z → µµ background comes from the hadronic tau reconstruction, as muon
to tau fakes are not present in the 3-prong decay mode. Decay mode is a second
variable in the 2D distributions, with three bins representing 1-prong, 1-prong
with neutral pion(s) and 3-prong decays.

• In the boosted category Higgs boson candidate invariant (SVFit) mass (mττ) is
the first discriminating variable. The second one is transverse momentum of
Higgs boson candidate pH

T (see Section 4.3) as it takes high values for Higgs
gluon fusion events with Lorentz-boosted boson recoiling against jets. High-
pH

T events are very unlikely to many backgrounds, especially W + jets or QCD
ones.

• Higgs boson candidate invariant mass (mττ) and the jet pair invariant mass
(mjj) are chosen for variables in the vbf category. High-mjj are suppressed in
mainly QCD multi-jet events.

4.8 Analysis cross check

The form of 2D discriminating variables distributions is neither very clear for hu-
man reading nor convenient to process in statistical analysis tools. Therefore, before
further processing, all 2D plots are projected into a single axis. More specifically
all bins of visible mass (for 0jet category) or SVFit mass (for boosted and vbf cat-
egories) are placed side-by-side consecutively for every bin of the second variable
(decay mode, Higgs boson candidate transverse momentum or the jet pair invariant
mass). These so called "unrolled" distributions, created for all channels (τhτh, µτh, ...
etc) and replicated multiple times with rescaled/re-weighted variables according to
the systematic uncertainties implementation, are an input into the global maximum
likelihood fit performed for the official CMS publication. Moreover, they are used to
create stacked data-to-background distributions (so called "control plots"). The offi-
cial analysis control plots are given in Appendix C and the final results from official
H → ττ analysis are presented in the next section. For reference, the official CMS
control plot for H → τµτh vbf category is shown in Fig. 4.3.
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Figure 4.3: Observed and predicted 2D distributions in the vbf category of the τµτh decay
channel. The normalization of the predicted background distributions corresponds to the
result of the global fit. The signal distribution is normalized to its best fit signal strength.
The background histograms are stacked. The "Others" background contribution includes
events from diboson and single top quark production, as well as Higgs boson decays to a
pair of W bosons. The background uncertainty band accounts for all sources of background
uncertainty, systematic as well as statistical, after the global fit. The signal is shown both as

a stacked filled histogram and an open overlaid histogram [82].

The nominal discriminating variable unrolled distributions are also used to check
the agreement ("synchronization") of different H → ττ analysis versions between all
groups involved. The selection of plots (for collision data, signal and background)
from this synchronization analysis made for Official CMS, Cross-check CMS and
Author implementations are presented in Figures 4.4 and 4.5. Official CMS distribu-
tions are the ones which were used to obtain the results in the official publication.
Cross-check CMS distributions are delivered by an independent CMS group and
were used internally by the CMS Collaboration before the publication. Author dis-
tributions are generated as a result of H → τµτh analysis presented in this chapter.
The very complicated H → τµτh analysis made it practically impossible to obtain
exactly the same distributions. The differences stem from e.g. the different CMSSW
versions used, the different order of data processing steps, the different cuts and
weights implementation (which can be further histogram- or value-based) or even
different computing system architectures and programming languages which end
up in different number of significant figures of (floating) numbers (and rounding re-
sults). There are two main conclusions coming out from the synchronization analy-
sis. First, that checked distributions are in agreement in a sense, that almost all points
on the histograms are within Official CMS distributions error bars. Second, that Au-
thor implementation presents better agreement with Official CMS than Cross-check
CMS. The only exception is for 0jet category ZTT background, where total yield of
the Author distribution is about 1.5% below the Official CMS and Cross-check CMS
ones.
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Figure 4.4: The events yield for collision data (left column) and signal gluon fusion Higgs
production MC (right column) samples for Official CMS (red), Cross-check CMS (green) and
Author (blue) analysis implementations. The 0jet (top row), boosted (middle row) and vbf
(bottom row) categories are presented in different rows. The definitions of bins are taken

from control plots (see Appendinx C).
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Figure 4.5: The events yield for ZTT (left column) and QCD (right column) backgrounds for
Official CMS (red), Cross-check CMS (green) and Author (blue) analysis implementations.
The 0jet (top row), boosted (middle row) and vbf (bottom row) are presented in different

rows. The definitions of bins are taken from control plots (see Appendinx C).
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4.9 Official CMS analysis results

The global maximum likelihood fit is used to find the significance for the SM Higgs
boson and H → ττ signal strength (µ). All distributions mentioned at the end of
previous section are combined to create the binned likelihood involving the expected
and the observed number of events. The predicted number of events for the H → ττ
process, scaled by a signal strength modifier (a free parameter of a fit), is taken as ex-
pected number of signal events. The nuisance parameters in the fit representing the
systematic uncertainties are varying according to their probability density functions
(log-normal or Gaussian).

The excess of observed events in all decay modes and with respect to the SM
background expectation can be visualized on a histogram of decimal logarithm of
signal to signal-plus-background ratio (Fig. 4.6 left). The cleanest Higgs signal
comes from a channel with two hadronic taus in the final state.

A profile likelihood ratio test statistic [95] is used to generate the local p–value
(Fig. 4.6 right). The observed significance for the 125.09 GeV Higgs signal is 4.9 stan-
dard deviations compared to the expected significance of 4.7 standard deviations for
35.9 fb−1 at 13 TeV. The corresponding H → ττ signal strength is µ = 1.09+0.27

−0.26.
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Figure 4.6: Left: Distribution of the decimal logarithm of the ratio between the expected signal
and the sum of expected signal and expected background in each bin of the mass distribu-
tions used to extract the results, in all signal regions. Right: Local p–value and significance

as a function of the SM Higgs boson mass hypothesis [82].

Systematic uncertainties

The 2.6% uncertainty is related to the integrated luminosity. Additional uncertainty
of 7 to 20% is applied on the yield for Drell-Yan MC samples, depending on the final
state and category. Similarly, the diboson and single top cross sections are estimated
with 6% uncertainties. Uncertainties coming from theory and related to the cross
sections, signal acceptances, PDFs, αs, renormalization and branching fractions add
up to 20% (see Table 4.8).
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As the transverse momentum of leading jets influences the dijet system mass,
the variations in jets energy may change the total number of events in bins of dis-
criminating variable histogram in vbf category (see Section 4.3). There are almost 30
sources of systematic uncertainties related to the jet energy scale coming from e.g.
absolute scale (mainly combined photon and muon reference scale and initial / final
state radiation correction) uncertainty, single particle and quark / gluon response in
ECAL and HCAL uncertainty or observed JEC time dependence due to calorimeter
radiation damage. All JES uncertainties are considered as fully uncorrelated to avoid
constraining jets unaffected by uncertainties related only to the specific regions of the
detector (e.g. endcap-only ones).

In the H → τµτh final state up to 2.5% systematic uncertainty related to the MET
energy scale is applied on the MC yields [82]. This effect is largest in 0jet category
and comes from the relationship between MET and (muon) transverse mass (see Eq.
4.6 and Section 4.3).

The 1.2% uncertainty is related to the TES for taus. It is uncorrelated between
decay modes and correlated between final states.

The 2% uncertainty is related to the trigger efficiency.
The uncertainty for processes where a jet is faking hadronic tau depends on the

jet transverse momentum pT,j and is calculated as 20%× 0.01× pT,j. For jets with
transverse momentum pT,j > 200 GeV the flat 40% uncertainty is applied because of
a lack of statistics.

In the 0-jet category in H → µτh final state the events are separated using the
reconstructed tau decay mode. The 3% uncertainty is related to differences in recon-
struction/identification of hadronic tau in various decay modes. This uncertainty
affects the shape of the distributions and not the overall normalization.

The 5% uncertainty related to data/MC MVA tau isolation ID correction is ap-
plied to the simulated events where tau is matched to generator hadronic tau (be-
longs to generator category no. 5).

The 25% uncertainty related to the µ → τh fake rate and applied to the Z → µµ
events is present in the H → τµτh final state.

The 0.3-0.5% uncertainty on the Z → µµ peak position in the 0jet category is
applied in H → τµτh events.

The 2% uncertainty is related to the lepton isolation and ID and applied on the
yield for all MC-derived backgrounds10.

The shape uncertainty of the Drell-Yan background is computed by applying 0.9
or 1.1 times the LO MADGRAPH correction (see p. 56).

The 20% uncertainty is put on the SFSS→OS
QCD scale factor (Section 4.6). An addi-

tional 20% uncertainty is applied on the QCD yield related to the QCD extrapolation
between anti-isolated control region and signal region.

The Table 4.8 summarizes the systematic uncertainties relevant to the analysis.

10QCD (obtained from same-sign data events) and W+jets (derived from high-Mµ
T data region) are

not affected in H → τµτh (see Section 4.6).
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Table 4.8: Sources of systematic uncertainty. The acronyms CR and ID stand for control
region and identification, respectively. The global fit to the signal and control regions may
constrain the uncertainty – in such case the updated value is given in the third column [82].

Summary

In this chapter the following goals have been achieved:

• The H → τµτh analysis has been described along with its implementation
made by the Author.

• It has been demonstrated that the presented implementation and the one used
to obtain the public CMS result are in agreement. This allows to proceed
with investigations oriented on machine learning based methods in discussed
Higgs boson decay channel (Chapters 5 and 6).

• The official CMS results in H → ττ have been reported. The obtained observed
signal significance is 4.9 and the signal strength is 1.09+0.27

−0.26.
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Chapter 5

Event identification using Machine
Learning techniques

Introduction

Machine learning (ML) term was first introduced by A. L. Samuel (1901–1990) in his
1959 paper "Some Studies in Machine Learning Using the Game of Checkers" [96].
His simple algorithm was able to beat a local human expert in a game of checkers
and already at this time justified the statement that it may be eventually econom-
ically feasible to use learning schemes to real-life problems. Today, ML becomes
incorporated at increasing number of applications and is even called the leading
force of the fourth (or third) industrial revolution [97, 98].

There is no single definition of ML, but one of the most popular states that it
is the scientific study of algorithms and statistical models that computer systems
use to progressively improve their performance on a specific task [99]. It is also of-
ten pointed out that ML is an application of artificial intelligence (AI) and allows
computers to act without being explicitly programmed [100, 101]. Finally M. Stamp
writes in his book that ML "is a form of statistical discrimination", where "the com-
puter learns important information (...) trying to extract useful information from
seemingly inscrutable data" [102]. This last quotation is particularly useful in jus-
tifying usage of ML for particle physics detector data, as all that people do in the
analyses can be summarized as statistic-based extraction of information about the
origin of visible particles.

Although learning process for the machine in many aspects resembles learning
of a human being, it always has to be based on an algorithm which falls into one of
four categories [101]. In the category called supervised learning the machine is ordered
to find the function:

f : X → Y (5.1)

called the classifier1, which is able to cast an observed object of interest (called exam-
ple or instance or observation or event in our case) characterized by the set X of (input)
variables x ∈ X (features) onto a class y ∈ Y (label). The category name comes from re-
quirement of existence of supervised training dataset, i.e. labeled sample of data from
which the classifier can be deduced (trained). The model can be evaluated using a
test dataset, disjoined from the training one to ensure unbiased results. Additionally,
we introduce insample as dataset comprised of training and test datasets used during
models training and benchmarking, and outsample as test dataset for the final model

1Strictly speaking the supervised learning can be divided into Classification Learning, Preference
Learning and Function Learning [103]. Also, the classifier which is used to predict a categorical (dis-
crete) outcome may be replaced by regressor used for the continuous response.
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validation. In the insample the events can float between training and test datasets
for consecutive trainings, which helps for discarding the overtrained models.

The event identification problem is an exemplary supervised learning problem:
we are equipped with labeled training datasets (MC samples) and a set of features
for every event to use.

The other three learning categories are:

• unsupervised machine learning algorithms. Here the training dataset is un-
labeled. The model explores hidden structures/patterns from data instead of
predicting the right output. Unsupervised learning often uses principal com-
ponent and cluster analysis and allows modeling probability densities of given
inputs [104];

• semi-supervised machine learning algorithms. The training is performed on
two datasets: small labeled and large unlabeled. Using two datasets can im-
prove the accuracy of the obtained model (e.g. in classification problem);

• reinforcement machine learning algorithms. Refers to goal-oriented algorithms
acting in an environment and learned how to attain an objective using the
reward-penalty system for the algorithm decisions. This approach is useful
to e.g. creating gaming models. Reinforcement learning was used by the fa-
mous Google AlphaGo program to beat the European Go champion in 2015
[105].

For the last three categories, the learning method is not necessarily related to
the concept of the classifier, therefore the broader term of estimator was coined. An
estimator is a learning (or any) algorithm that fits (or trains) on data [106]. The
estimator term can also refer to:

• high-level API (Application Programming Interface) encapsulating training,
evaluation, prediction and exportation of the model (e.g. in TensorFlow or
sklearn) [107];

• the method of finding the parameters for classifier or probability density for
the model, e.g. Maximum Likelihood Estimator (MLE), Bayesian Estimator or
estimator as optimization of loss criterion [108].

We give the above two meanings for a reference as these often come up in the lit-
erature. In this chapter, we will be using the estimator word in the first meaning
exclusively.

In the previous chapter the H → ττ analysis has been presented. Its main goal
is to discriminate the Higgs boson signal from the background. Now we will gen-
eralize the problem to discriminating an arbitrary process (H or W+jets or tt̄ and
so on), called signal, from the remaining processes (backgrounds). In the following
sections we solve this problem using a set of well established machine learning tech-
niques (decision trees, random forests, boosted decision trees and neural networks).
Created models will be evaluated using receiver operating characteristic curves. The
performance of the best classifier found will be compared to the standard (cut based)
analysis in the next chapter. The collision data samples will not be used for analysis
in following chapters, because they do not provide the generator information (used
for classification)2.

2Please note, that trained model can be used for collision data as we will not use generator infor-
mation as model input variables. However, the interpretation of results would not be trivial and goes
beyond the scope of this thesis.



5.1. Initial analysis setup and data preprocessing 69

The chapter is organized as follows. In Section 5.1 the ML analysis structure is
described, together with output classes definitions, used data samples and features
standardization. Sections 5.2 – 5.5 are devoted to present various ML techniques,
starting from the simplest model (Decision Tree) to the most advanced (Neural Net-
work). Decision Trees are used to introduce the ML model performance metrics.
This chapter ends with a short summary of the tested classifiers.

5.1 Initial analysis setup and data preprocessing

The output classes (categories) defined for the analysis are given in Table 5.1. The
samples used are the same as in Chapter 4, with exception of additional QCD, ggH
and VBF datasets used in order to improve statistics and enumerated in Appendinx
A. The data–driven methods for QCD background extraction are not used3.

Category ggH125 qqH125 WH125 ZH125
Process gg→ H → τhτh qq→ H → τhτh W+H→ τhτh Z+H→ τhτh

Category ZTT ZL ZJ W EWKZ
Process Z → τhτh Z+jets→ ll,

l → τh

Z + jets→ ll,
jet→ τh

W + jets Electroweak Z
boson plus two jets

Category QCD TT ST VV Other
Process QCD tt̄ Single top

quark
Diboson Processes which

do not fall into any
other category

Table 5.1: Output classes for ML classification.

All events used have to contain only one lepton pair and are required to pass
baseline selection (see p. 50) and event vetos (see p. 51). We however remove the
constrain on the very loose anti-electron discriminator for tau lepton. This step is
undertaken in order to further increase the number of available events for training,
works efficiently for the QCD events and does not significantly change overall in-
put variables distributions. The loss of anti-electron discriminator variable is partly
compensated by adding the raw (float) discriminator value to the features list4. The
events number gain versus standard analysis are presented in Table 5.2.

Because the format of binary (ROOT) files [109] used in the CMS analysis is not
compatible with machine learning tools, the data files are converted to the HDF5
data format [110]. The new files contain a two dimensional array (matrix), with
features values in columns and consecutive events in rows. A full list of features
(available for every event) is presented in Appendix D.

In the standard analysis all available events in a given category undergo the same
procedure (i.e. application of cuts and weights), therefore their order is not relevant
and the manner of the category dataset creation (by default concatenation of differ-
ent data samples, e.g. Drell-Yan with zero, one, ... number of jets) does not effect
the result. Before proceeding with ML computation we have to split the samples
into insample and outsample, so it is crucial to ensure the same properties of those
datasets inside a single category (e.g. similar distribution of number of jets). This

3Please note, that if data–driven methods were used, the lepton charge would have been removed
from the features list. This is because the QCD events from the data are same sign ones.

4The usage of word "partly" comes from the fact that discriminator working points are not simple
cuts on the raw discriminator value, but are dependent on the tau-specific category and tau transverse
momentum.
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No. category name standard analysis machine learning analysis events gain [%]
1 ggH125 29571 53242 80
2 qqH125 47529 134254 182
3 WH125 37745 43475 15
4 ZH125 16730 19149 14
5 ZTT 279635 316711 13
6 ZL 22824 28880 27
7 ZJ 599171 693878 16
8 W 3687419 4235549 15
9 EWKZ 18501 21192 15
10 QCD - 63492 -
11 TT 3197220 3732232 17
12 ST 1720897 2003396 16
13 VV 2903838 3417318 18
14 Other 304687 357906 17

Table 5.2: Comparison of number of events per category after baseline selection.

is done by shuffling the events using pseudorandom number generator with given
seed to retain reversibility and reproducibility.

The common procedure in ML during a preprocessing step is features standard-
ization [111]. In this process the values of the (feature) distribution are rescaled to
some presumed range. The reasons for doing this will be given later in this chap-
ter, and for now it will just be shown how it is done here. From the whole bunch of
different standardization methods, two have been found useful in this analysis: stan-
dard score (z-score) and normalized empirical cumulative distribution function (normalized
ECDF).

Figure 5.1: The SVFit mass distributions for
ZH125 output class before and after standard-
ization. In the figure the nominal distribu-
tion (in red) overlays the distribution stan-
dardized using standard score (in blue) giving
violet. The standard score is computed with
µ = 146.15 GeV and σ = 82.04 GeV. The bot-
tom and the left axis labels refer to the nomi-
nal distribution and the top and right labels to

the standardized distributions.

The standard score is arguably
the most popular standardization tech-
nique in ML. For random variable5 (r.v.)
X the standardized r.v. Z is given as:

Z =
X− µ

σ
, (5.2)

where µ is mean (expectation value)
and σ is standard deviation of X. The
standard score is the standard statistical
tool when comparing observations with
different normal distributions [113], be-
cause it does not change the shape of the
distributions. The standard score nor-
malized distribution of the SVFit mass
(see Section 3.4) is shown in Fig. 5.1.
From the plot one can deduce two con-
clusions: 1) the standard score changes
only the x–axis normalization (not the
shape) and 2) the SVFit mass distribu-
tion is not the normal distribution.

Since many ML techniques assume normally distributed input variables, we will
deal with the fat–tailed (i.e. with large skewness or kurtosis) distributions taking ad-
vantage of the probability integral transform [114]. Every continuously distributed

5Random variable is a function defined on a sample space S and taking values in the real line
R = (−∞, ∞) [112].
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feature X can be standardized to the r.v. Y with a uniform distribution:

Y = FX(X), (5.3)

where FX is a cumulative distribution function (CDF) of a feature. The CDFs of
features are not known, therefore CDF version based on the observed data (ECDF)
is used.

Figure 5.2: The SVFit mass distributions for
ZH125 output class before and after standard-
ization. In the figure the nominal distribution
(in red) is plotted together with distribution
standardized using empirical cumulative dis-
tribution function (in blue). The axis labels are

as in Fig 5.1.

The ECDF is defined as:

Fn(t) =
1
n

n

∑
j=1

1{Zj≤t}, (5.4)

where 1ε is the indicator of the (count-
able, finite) set ε, Zj is a value j of fea-
tures set Z and Z is sorted [115]. In
this analysis the ECDFs were generated
using a sub-sample of 1000 events per
sample. Please note, that the ECDF is
r.v. itself and exhibits small fluctua-
tions. Also note that because the unifor-
mity of Y is preserved only for contin-
uously distributed r.v., the ECDF-based
standardization will not be applied for
discrete-valued features (e.g. number of
jets) [116]. The uniform distribution Y
can be converted into a normal distribu-
tion using inverse transform sampling
[117]. The result for the ZH125 sample SVFit variable is shown in Fig. 5.2.

The insample is created by concatenation of shuffled (standardized or not) sam-
ples, by taking first half of events of each sample. The remaining events are used to
create outsample6.

After preprocessing, it is time to proceed with the ML computations. Since the
standard analysis is based on the complex chain of selections, it is natural to start
with estimator that is the closest to this workflow: a decision tree. The description
of decision trees given in the next section will be followed with an introduction to
the methods of benchmarking the performance of the ML models.

5.2 Decision Tree and ML performance measurements

Decision Tree (DT) is an estimator which recursively partitions the events space [118].
The single partition is realized by the if-else cut-like statement on feature(s) and splits
the space into sub-spaces [119]. In case of this analysis (which is also by far the
most frequent case), the cut is performed on a single feature and the space is always
divided into two sub-spaces7. At the end, all partitions are assigned to the classes
having the largest representation of events in a given sub-space.

6We took no more than 400k events per sample, as we noticed it accelerates the computations with-
out sacrificing the quality (performance) of results (model).

7The overrun of the single-feature-per-split limitation would require at least O(nm) complexity
algorithm, where n is a number of events and m is a number of features considered in the single
condition. This in turn would seriously restrict the maximum number of events available for training.
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The above procedure can be identified with – and takes its name from – the con-
cept of a tree, which in graph theory is an undirected graph with vertices connected
by exactly one path8 [121]. The DT starts from the root, which is the sole node with-
out incoming edges. The remaining nodes have one incoming edge and either mul-
tiple (usually two) or no outgoing edges. The former are called internal (test) nodes,
the latter leaves (or decision nodes) (see Fig. 5.3).

Figure 5.3: The illustration of the Decision Tree estimator. Left: 2D events space. The two
features – SVFit mass (s) and Higgs momentum (p) – are used to split the space to back-
ground (blue dots) and Higgs (green stars) events. Right: matching graph. In the root and
test nodes, the letters S and P indicate the feature for which the split is performed. In the
leaves the letters B (bkg.) and H (signal) indicate the output class of the classifier. The events

distribution in this example is illustrative and not a real one.

Finding the optimal DT algorithm is at least NP-hard9 [122, 123], therefore the
heuristic methods (usually top-down10) are required and implemented. The com-
mon interface for these methods consists of two steps: tree growing followed by tree
pruning.

At the tree growing step, the tree is expanded by iterative execution of the code
at each data node. Two things may happen: 1) if the stopping criterion is satisfied, the
node is converted into a leaf and marked with an appropriate class; 2) two (for the
binary tree; denoted as left and right) or more new nodes are created and connected
to the original node using split criterion. The examples of a stopping criterion are as
follows:

• The maximum depth of the tree (i.e. the length of the longest path from a root
to a leaf) has been reached;

• The leaf is pure, i.e. all events in the node belong to a single class;

• The node contains less than the given minimum number of events required to
split;

8A tree is a connected non-empty graph with no circuits [120].
9NP stands for Nondeterministic Polynomial. In complexity theory of decision problems the prob-

lem is NP-hard if it can be translated into one for solving any nondeterministic polynomial time (i.e.
solvable in polynomial time by a nondeterministic Turing machine) problem.

10The method is called top-down, because it is designed to look at the entire data in each step -
decision tree is initiated by choosing the most efficient single variable to split the whole dataset and
then grown from root to leaves in a recursive manner. In contrary, in bottom-up approach the DT is
build from leaves to the root.
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• The split does not leave the minimal number of events in each of the branches;

• The split does not leave a minimum weighted fraction of the sum total of
weights (of all the input samples) in each of the branches;

• The split does not provide the minimum impurity decrease;

• The impurity is below a given threshold.

The aforementioned impurity is a function φ : P → R, where P = (p1, p2, ..., pk)
is a distribution of k discrete values of the r.v. and pi ∈ [0, 1] (pi is related to the
proportion of the r.v. belonging to i-class), which satisfy [119]:

• φ(P) ≥ 0;

• φ(P) is minimum if ∃i such that component pi = 1;

• φ(P) is maximum if ∀i, 1 ≤ i ≤ k, pi = 1/k;

• φ(P) is symmetric with respect to components of P;

• φ(P) possesses derivatives of all orders in its domain i.e. is C∞ function.

Intuitively, the impurity can by understood as a measure of homogeneity (or hetero-
geneity) of the dataset (or subset) with respect to the output class. If a given dataset
contains events belonging to several classes, then we say the dataset is impure or
heterogeneous. The impurity is largest when all classes are equally represented in
the dataset. If the dataset contains events belonging to a single class it is pure or
homogeneous. If we define the proportion of the samples that belong to the class
k ∈ Y at node t as:

p(k|t) = 1
N ∑

zi∈Rt

I(yi = k),

where the sum is over events zi in region (partition) Rt, then the popular impurity
functions are given by the formulas:

φ = ∑
k

p(k|t)(1− p(k|t)) Gini impurity, (5.5)

and
φ = −∑

k
p(k|t) log(p(k|t)) Entropy impurity. (5.6)

The Gini impurity returns the probability of incorrect classification of a randomly
picked event out of the dataset. Entropy (information entropy or Shannon entropy) is a
measure of unpredictability of the state and was introduced in 1948 by C. Shannon
[124]. The base for the logarithm is equal to two, although in principle could be any
number. Entropy has desired property of being additive when the probabilities are
multiplied11 [125], but also has a drawback of being computationally heavy.

Impurity can be used as a base for defining the split criterion. Let us denote split
as θ = (x, tp), where x is a feature and tp is the cut value. Then for a dataset Qp
(where Qp = Q− ∪ Q+ and Q− = (x, y)|xi ≤ tp for a binary tree) we can define the

11Please note, that for very small probabilities p(k|t), the multiplication (Gini index) can lead to
rounding error.
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information gain G as:

G(Qp, θ) = φ(Qp)−
m

∑
j=1

Nj

N
φ(Qj)

binary tree
= φ(Qp)−

N−
N

φ(Q−(θ))−
N+

N
φ(Q+(θ)),

(5.7)
where N and Nj,± are the number of observations at parent node p and child nodes
j ("±" for left and right), respectively. Information gain measures how much infor-
mation a split gives about the class as we go down the tree. The split criterion used
in many DT algorithms (e.g. CART) obtains the split by maximizing the G(Qp, θ).

DTs tend to overtrain themselves for loose stopping criteria (for a finite train-
ing set one can always have one-element regions, unless features vector is the same
for multiple classes). On the other hand, the tight stopping criteria often end up in
underfitted models. Finding the right balance for the stopping criteria is a difficult
task, therefore an alternative method was developed by L. Breiman et al. [126] called
pruning. In this methodology, the overfit tree built with loose criteria is simpli-
fied back by cutting out branches that do not add up to the generalization accuracy.
The reduced error is an example of a pruning technique, where the tree is traversed
bottom-up checking if replacing an internal node (non-leaf subtree) with the most
frequent class (best possible leaf) reduces tree accuracy (increases misclassification
rate). If not, the node is removed.

The DTs have multiple advantages: they are easy to visualize and interpret12,
do not require data standardization, the prediction algorithm has a low compu-
tational complexity (O(log(n))), can handle multi-class output variables and are
easily statistically validated. The DT makes also no assumptions about underly-
ing data distributions i.e. is a nonparametric learning method and every situation is
observable in the model (it is a white box model). However, they are susceptible to
over(under)fitting, sensitive to the changes in the training samples and finding the
optimal DT is practically impossible for more complicated scenarios. The cure for
this last drawback of DT – heuristic methods – is based on greedy algorithms [127],
which are suboptimal.

In this analysis the sklearn [128] package is used, where DT implementation
exploits the Classification and regression trees (CART) technique introduced in [126].
CART produces binary trees finding the best split with information gain (Eq. 5.7),
with either Gini (default) or Entropy impurity, and with pruning of the final tree.

In order to initially check the performance of the DT and the validity of the pro-
cedures used in this chapter, the following category recognition exercise has been
created:

• For all analysis categories (0jet, boosted and vbf) every defining condition (see
Table 4.5) is cast onto Boolean variable;

• For all events, the set of features is created comprised of numbers created
above;

• The output classes for DT model are defined as category names, plus "trash"
class for events which do not fall into any of the categories;

• The model is trained to recognize the proper category (or trash) for the event.
In other words, the DT has to figure out the categories definition from the data.

12Although the size of a classification tree is strongly correlated to the size of the training set.
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The visualization in form of a graph of the resulting model is presented in Fig.
5.4. DT managed to find the ideal solution for the defined task and classify all events
in validation sample properly.
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Figure 5.4: Decision tree model visualization for category recognition problem as a result of
a ML training process. In boxes are given either condition (in case of nodes, see Table 4.5)
or output class (in case of leaves). The Boolean variables given at nodes positions are in

human-readable form. Different colors correspond to different output classes.

There are several well established measures for evaluation of the model i.e. quan-
tification of the effectiveness of a classification strategy. In this thesis the confusion
matrix, receiver operating characteristic curve (ROC curve or simply ROC) and ROC Area
Under Curve (ROC AUC) are used.

5.2.1 Confusion matrix

Confusion matrix (or error matrix) is used to visualize the performance of the al-
gorithm. The rows of the matrix represent the actual class instances, whereas the
columns the predicted class ones [119]. The cells of the matrix contain the mea-
sure of the amount of correctly or incorrectly classified events. Depending on the
approach the numbers represent:

• the number of classified events - for unweighted, non-normalized case;

• the yield of classified events - for cross-section weighted, non-normalized case;

• the percentage of number of events/yield - for normalized case.
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The four definitions are usually introduced to help with the model description:

• True positive (TP) - the number/yield/percentage of correctly assigned events
for the class under consideration. TP lies on the intersection of actual row and
predicted column for a given class in the confusion matrix.

• False positive (FP) - the number/yield/percentage of incorrectly assigned events
as belonging to the class under consideration. FP is the sum of the elements on
the predicted column minus TP in the confusion matrix;

• False negative (FN) - the number/yield/percentage of incorrectly assigned
events as not belonging to the class under consideration. FN is the sum of
the elements on the actual row minus TP in the confusion matrix;

• True negative (TN) - the number/yield/percentage of events correctly assigned
as not belonging to the class under consideration. TN is the sum of all elements
in the confusion matrix that do not enter into TP, FP or FN.

The variables above work particularly well in the two output classes scenario, where
they are given by the appropriate numerical value in a single confusion matrix cell
(for more than two output classes they are arrays). For the multi-class output, the
example of the confusion matrix is presented in Fig. 5.5. Please note that the sum of
the elements in every row is one.
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Figure 5.5: The illustration of relation between confusion matrix elements and true/false
positive/negative for ZTT output class. The sum of the numbers under areas colored with

green, blue, violet and red constituent TP, FN, FP and TN respectively.

To compute the confusion matrix C the vector of predicted (scores) and actual
(target) values are required. Let us denote these two objects with A and B. Then we
have:

C = AT · B
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In this analysis both A and B are of (number of classes × number of events) shape,
therefore C has dimension = (14, 14). In order to normalize the confusion matrix, all
elements need to be divided by sum of the events (in rows). Furthermore, to obtain
cross-section weighted result, every event is multiplied by an appropriate weight.

The normalized confusion matrix for classification recognition model is very sim-
ple: as the model returns perfect results the confusion matrix is 4× 4 identity matrix.
The problem with confusion matrix is that it does not allow for simple model com-
parison in more complex cases.

5.2.2 ROC and ROC AUC

The quantities introduced in the previous section can be used to define appropriate
rates. The True Positive Rate (TPR):

TPR =
TP

TP + FN

is called the sensitivity, and gives the fraction of events that are correctly classified
out of all events of a given class. The sensitivity is also often called efficiency in HEP,
e.g. on the trigger related field. The True Negative Rate (TNR)

TNR =
TN

TN + FP

is called specificity, and gives the fraction of events that are correctly not classified
into the class under consideration. Please note that models which classify all events
as signal (background) have sensitivity equal to one (zero) and specificity equal to
zero (one). Therefore, the models with both high sensitivity and specificity are de-
sirable. The (balanced) accuracy of the model is often introduced as the half of the
sum of these two quantities. Although the domain of such accuracy is [0, 1], it is
assumed that for the models with accuracy below 0.5 it is always possible to reverse
the classification criteria and obtain a result above 0.5.

The accuracy would be the perfect measure of goodness of a model, but there is
an issue with it. The majority of the estimators do not generate the binary results
(i.e. simple output with the name of the output class), but return the score i.e. the
measure of the probability for the event to belong to the given output class13. For
these models the rates – and hence the accuracy – can be modulated by the introduc-
tion of the thresholds on the score(s). The threshold independent model evaluation
is possible with the ROC curve.

The ROC is a graphical plot of <sensitivity> against <1 – specificity> for varied
threshold values.14 There are few features of ROC that are readily deduced:

• ROC points are always equal to/above the [(0, 0), (1, 1)] line, and ROC lying
on this line corresponds to a random-walk model. The reasoning is the same
as for the accuracy – a very bad model can be transformed into a better one by
reversal of classification criteria.

• For binary output estimators (like DT), ROC is a single point. This stems from
the fact, that the threshold for the binary score cannot be set;

13In fact, decision trees are the only binary models that will be considered here.
14The <1 – specificity> is also called fall-out or false positive rate and is equal to FP

FP+TN . It may some-
times be confused with false discovery rate or fake rate – often used in physics and defined as FP

FP+TP .
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• For the continuous score domain models, ROC is created by connecting the
points for all threshold cuts. The line always contains (0, 0) point (for suffi-
ciently high score threshold no event is classified into any of the output classes)
and (1, 1) (for sufficiently low score threshold all events are classified into any
of the output classes).

• ROC is defined for a binary classifier system. As mentioned earlier during
confusion matrix description, for a model with more than two output classes,
the TP(R) and TN(R) are given as arrays. Hence, for such models the number
of ROC curves equal to the number of output classes need to be plotted.

• The perfect point on the ROC would be (0,1), for which all signal events are
classified correctly and no background events are misclassified as signal. This
case is realized in classification recognition exercise.

For convenience and to be able to compute ROC AUC even for the single-point ROC
the line to (0,0) and (1,1) points are always drawn. The illustration of the ROC curve
idea is presented in Fig. 5.6. The ROC curves in following sections will be generated
using sklearn package implementation [129].
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Figure 5.6: An illustration of the receiver operating characteristic curve. On the left is the
output of the exemplary ML model for signal (green stars) and background (red dots) events.
The violet dashed lines indicate the different threshold cuts. For every cut we can compute
the sensitivity and specificity (defined in text) and mark (green dots) on the right hand side

plot. The ROC curve is created by connecting the points.

ROC can serve as a rough model performance estimation, but its practicality for
different models comparison is confined only to models in which ROC curves do
not intersect. Since this is a rare case in the real world, it is useful to introduce yet
another measure for that purpose – ROC AUC.

ROC AUC corresponds to the probability for the classifier to assign to the ran-
domly selected signal event a score higher than to the randomly selected back-
ground event. This is also the most common statistic used to compare models in
the machine learning community [130]. For classification recognition exercise all
four ROC curves have AUC equal to unity.

In this chapter we are training classifiers with multiple output classes, therefore
there are multiple ROC curves per model. The dominance relationship between
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classifiers will be established with the mean of all ROC AUCs calculated for every
model. The common allegation here is that since the Higgs samples are underrepre-
sented due to smaller datasets and cross sections15, the raw ROC AUCs is no good
for model evaluation and it should be somehow reweighed. Moreover, the stan-
dard cut based analysis is oriented on maximizing the signal-to-background ratio,
which should be translated into maximizing the ROC values for a specific choice of
working point (threshold) and not average ROC AUC. It is hard to disagree with
the statements above, but we have decided to stick with mean ROC AUC approach
because of two reasons. Firstly, the ROC AUC (as opposed to e.g. accuracy) is not
sensitive to the imbalance problem [131], i.e. it will not be high if the minority class is
badly predicted. The model with bigger (mean of) ROC AUC(s) will be better [119],
regardless of samples representation16. Secondly, we wanted to avoid narrowing
down the analysis by doing only "Higgs boson signal vs backgrounds" discrimi-
nation. The information about the origin of the event (not only if it is Higgs-like)
is valuable for defining/constraining the contamination of various backgrounds of
physical processes for control and signal regions, and can be used to improve the
standard analysis results.

5.2.3 DT model results

Figure 5.7: The efficiency (percent of correctly
recognized events) versus the size of the train-
ing dataset. Errors are below the size of the
points, e.g. for 5000 events set DT efficiency is

equal to 27.98± 0.14.

Before creating a final model the im-
pact of the size of the training dataset
on the overall model efficiency has been
checked. This is done by selecting
a subset of insample events, training
the model using this subset as train-
ing dataset, and computing the ratio of
properly classified events to all events
for the outsample. The last step is
straightforward for decision trees as
they return only the name of the output
class for a given event. The results are
given in Fig. 5.7. We found that the ef-
ficiency grows monotonically with the
number of training events, which con-
firms the validity of the implemented
procedure.

The final decision tree classifier [132] has been trained on full insample. The
confusion matrix of the model is presented in Fig. 5.8. We can see that obtained
estimator has the biggest troubles in discriminating between single top and tt̄ and
also between ZJ and W+jets processes. ZTT and ZL classes are on the other hand
well distinguished. The ROCs with areas under curves values are presented in Fig.
5.9. The decision tree model works relatively well with ROC AUCs mean of 0.611.
The best discriminated output class is ZTT with ROC AUC of 0.85 and the worst
discriminated is EWKZ for which the model behaves the same as would random
guessing (ROC AUC is equal to 0.5). The Higgs boson signal processes (ggH, qqH

15This is usually called the imbalance problem.
16There is one additional effect: models usually trains separately for different output classes (true es-

pecially for deep learning estimators) and only a small subset of trained models actually provides any
discriminating power, so any reasonable ROC curves reweighing would not change the final model
choice in a vast majority of scenarios.



80 Chapter 5. Event identification using Machine Learning techniques

and Z/W+H) are poorly classified with average ROC AUC of 0.56, from which the
best performance is obtained for vector boson fusion Higgs boson production (ROC
AUC = 0.62).
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Figure 5.8: Confusion matrix for DT model
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5.3 Random Forest

The problem with the decision tree getting inevitable overfit to training data when
increasing its complexity is solved in CART technique by pruning. This approach
of building reasonably general tree by lowering the complexity of fairly overfit tree
was questioned by T.K. Ho [133], who proposed an alternative method where the
accuracy of the estimator on the train and test sample increases simultaneously, and
with tree complexity17. In his method called Random Forest (RF) the estimator is
built out of a multitude of unpruned decision trees (hence forest) for which only a subset
of features is used at each node during tree growing. For every tree the features
are selected at random independently for every node. This is done to reduce the
correlation between decision trees in an ensemble [136]. The maximal number of
input features considered in the node is one of the main estimator parameters that
can be set before the training. In this analysis we will try the following values:

max_features = [0.1, auto, 0.9],

where numbers represent the fraction of features used18 and auto option sets the
parameter to be equal to square root of the number of available features. The lower
the value of this parameter the lower is the variance of the base estimators (DTs) and
higher bias of the combined estimator (RF).

The idea of Ho was extended by L. Breiman [137], who introduced bootstrap ag-
gregating ("bagging"). He proposed to train every decision tree in the forest not on
the full training sample, but using only a randomly chosen subset of events19. Bag-
ging helps to improve the accuracy and stability and constrains overfitting of the RF.
It also reduces the variance of the base estimators.

The RF algorithm is able to return the prediction for the probability for a given
output class. It is given as the mean of the class probabilities predicted by all trees
in the forest. The class probability for a single tree is in turn computed as a fraction
of events of the class under consideration present in the DT output leaf event space
[138].

Most of the advantages of the DT are also valid for the RF: the data standard-
ization is not required, it runs efficiently even for large datasets and can handle a
multitude of input features, the model can be visualized, and gives an insight into
variables importance in the problem (although it is not strictly a white-box estima-
tor). Moreover, the RF does not overfit and even though a single decision tree in the
forest is likely more biased and less accurate than this given with CART technique,
the RF is on average much more accurate.

In order to find the best RF estimator, the training is repeated for different config-
urations of model parameters (hyperparameters). Except for the maximal number
of features in the node, the following quantities have been modified:

• number of decision trees in the forest:
n_estimators = [15, 30, 45, 80],

17The resistance to overtraining for the forest method can be explained in a frame of stochastic dis-
crimination theory [134, 135]

18In other words if n is a total number of features, then we at random pick 0.1 ∗ n or 0.9 ∗ n of features
to be used to maximize the information gain. The features that have not been selected can be taken
into account at the other node.

19In bagging method the events are selected with replacement, and the size of the training subset is
kept the same as the full sample.
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• impurity function for base estimators:
criterion = ["gini", "entropy"],

where names are self-explanatory and refer to Eqs. 5.5 and 5.6.

• minimal number of events required to split the node:
min_samples_split = [2, 8, 0.05],

where the default value is 2. The floating value indicates the fraction of events
required out of the whole training dataset.

• the seed used by the random number generator.
random_state = [1, 2, 3].

This is used to check, if the events order/choice influence the results.

The models are compared with ROC AUC (the higher the better). To improve the
stability of the comparison the cross-validation is implemented. First, the insample
is split into four. Then the model is trained four times using a sum of three (each time
different) subsets and validated on the remaining one. Finally, the ROC AUC of the
model is given as an average ROC AUC for these four trainings. The results for 216
available combinations of parameters are summarized in Fig. 5.10. The worst ob-
tained ROC AUC is 0.767± 0.001, and the best is 0.849 (with standard deviation less
than 5 · 10−4). The amount of trees in the forest and the number of events required to
split the node turned out to have the biggest influence on the model accuracy. On the
other hand, the random generator seed value does not change the performance of
the model, which indicates validity of the preprocessing step of events randomiza-
tion process. The bottom line is that the hyperparameter optimization can provide
significant model improvement and should be done if possible.
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Figure 5.10: The impact of the hyperparameter optimization on the ROC AUC. For every hyperpa-
rameter, the points have been calculated by averaging the model ROC AUC values over all remaining

hyperparameters.

RF with best selected hyperparameters is trained once again using full insample,
and validated in the outsample. The confusion matrix for RF is presented in Fig.
5.11 and the ROCs with ares under curves values are presented in Fig. 5.12. The
random forest model average ROC AUCs for all output classes is 0.849, with ZTT
being the best discriminated background. The average ROC AUCs for four Higgs
boson output classes is 0.853. The RF presents considerably better performance than
use of sole decision tree.
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Figure 5.11: Confusion matrix for RF model
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5.4 Gradient boosted decision trees

Small decision tree classifiers are often considered to be "weak" predictor models,
i.e. they are computationally simple and perform relatively poorly (only slightly
better than random guessing) in complicated scenarios. The question of existence of
arbitrary "strong" (i.e. accurate) learner built out of a set of weak learners20 was first
posed by M. Kearns [139] and L. Valiant [140] as hypothesis boosting problem21, and
answered affirmatively in 1990 by R. Schapire [141]. Although these theoretical con-
siderations can be in practice applied for an arbitrary (weak) estimator, it is decision
trees that gained the most attraction in the field of boosting. The first famous boost-
ing algorithm, developed by Y. Freund and again R. Schapire in 1996 [142], AdaBoost
is traditionally implemented using stumps, i.e. one-level decision trees. AdaBoost
was originally developed for binary problems, and its first extensions to multi-class
problems required quite strong base learners and did not gain much attention [143].
The boosting algorithm we have used in the analysis is a generalization of AdaBoost
called gradient boosting algorithm, which is widely used and well suited for multi-
class classifications [144].

The gradient boosting algorithm is based on the idea of finding a function (clas-
sifier) f of input variables (features) x ⊂ X which minimizes a specified loss func-
tion L(y, f (x)) for a given set of output classes y ⊂ Y. The employed loss function
depends on the problem, and in our case of multi-class classification it is the nega-
tive multinomial log-likelihood. It can be shown that minimizing the negative log-
likelihood loss function is equivalent to minimizing the categorical cross-entropy
between the target (in training dataset) and prediction given by the classifier.

Gradient boosted decision trees (BDT) algorithm is composed of three parts. In the
first part the classifier fk(x) is initialized with constant value (=zero) for all classes
k ⊂ K. The second part comprises of iterative refinement of the classifier. On ev-
ery iteration step m ∈ {1, ..., M}, the new decision tree is trained on targets given
by the gradient of loss function evaluated at f = fm−1. The worse the current pre-
diction is for the event, the higher will the (absolute) value of target on the next
iteration be. Please note that even though we search for the classifier, the trees fitted
in this method are regression trees and not classification trees. A fitted decision tree
is added to existing classifier at the end of every loop. In the third part of algorithm
the final classifier is set as the one from the last iteration: fk = fkM. For more detailed
description of the BDT please see e.g. [145].

The output of the classifier can be used to compute the class probabilities for an
event with the following formula (called softmax activation function):

pk(x) =
exp{ fk(x)}

∑K
l=1 exp{ fl(x)}

. (5.8)

The form of Eq. 5.8 ensures that 0 ≤ pk(x) ≤ 1 and that the sum of the probabilities
over all classes equals one.

The boosting algorithms are susceptible to overfitting. Regularization techniques
constraining the fitting procedure are introduced to reduce this undesired effect. The
first obvious regularization method is to constrain the number of boosting stages M
(n_estimators). The second method, which is sensitive to the mutual interactions of
the input features, sets the maximal depth (max_depth) of the individual tree i.e. it

20Gradient boosting is similar to the RF in the sense that the combined estimator is built in the form
of an ensemble of base estimators.

21"Boosting" term refers to boosting the performance (accuracy) of the base estimator.
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modifies the number of nodes. A third popular way of constraining overfitting is to
modify the so called learning rate (learning_rate). Learning rate is a weight given to
every new tree added while updating the classifier in the second part of the boost-
ing algorithm. Finally, there are regularization methods which are inspired by RF
algorithm and consist of limiting: 1) the minimal number of events required to split
the node (min_samples_split); 2) the fraction of features available to be used in the
split at the node (max_features); 3) the fraction of events to be used for training the
trees (subsample). All above regularization techniques are introduced to the model
at the stage of estimator initialization (before the training) via hyperparameters. We
performed hyperparameter optimization to find the best model settings by training
324 different models. Results are summarized in Fig. 5.13.
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Overfitting is not the only downside of BDT. Other potential and significant neg-
ative aspects of this algorithm are 1) a high computational complexity of the algo-
rithm and 2) that it still is a shallow estimator. The former means that the train-
ing takes a lot of processing time and sometimes enforces shrinking of the training
dataset. The latter means that BDT has limited power to capture the abstract rela-
tions between features and requires building training variables deliberatively (using
a posteriori knowledge) in order to make it work with best performance. Regardless
of those issues, BDT is one of the best out-of-the-box estimators in supervised learn-
ing scenarios, producing a combined classifier giving small errors on the training
dataset, an overall low variance compared to base estimator and is fairly robust to
overfitting owing to regularization.

The confusion matrix for BDT is presented in Fig. 5.14 and the ROCs and ROC
AUCs values are in Fig. 5.15. The boosted decision tree average ROC AUC for
all output classes is 0.860, with ZL being the best discriminated background. The
average ROC AUC for Higgs boson output classes is 0.87. The BDT presents better
performance than RF.
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Figure 5.14: Confusion matrix for BDT model
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Figure 5.15: ROC curves for the BDT model
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5.5 Deep learning

Deep learning (DL) is a name for machine learning techniques based on artificial
neural networks22, i.e. computing systems inspired by biological neural networks.
The exhaustive description of DL is a book long task. We will therefore concentrate
only on methods implemented in this analysis, which are based on the PYTORCH

library [146] and constrained by the hardware.23

Figure 5.16: Neuron model [147]. The xi de-
note the input variables, wi are weights and b

is the bias.

The basic building block of DL algo-
rithms is a neuron (Fig. 5.16) – the gen-
eralization of invented already in 1957
perceptron. Similarly to the biological
neuron, the artificial neuron (also called
node) has dendrites, cell body and an
axon. The dendrites represent incom-
ing connections xi, i.e. features values
(in case of first neurons layer) or output
from (connected) neurons of the previ-
ous layer. The signals moving along the
dendrite are rescaled by the weights wi,
which are free parameters of the model adjusted during learning process. In cell
body the signals from dendrites are summed up. Additionally, there can be a bias
b (another free parameter) added to the computed sum, which ensures activation of
the neuron24 for low strength signals. The function

f = ∑
i

wixi + b,

where i goes from 1 to number of dendrites is called a transfer function. Finally, the
value of the transfer function is passed over to the axon, where it is wrapped by the
activation function and transmitted further to either the neuron(s) of the next layer
or the output of the net. The activation function is used in order to introduce non-
linearity to the neuron response – without it a single layer model would not be able
to perform more than (multidimensional) linear regression. In practice the activa-
tion function performs filtering and rescaling of output from the neuron. Popular
activation functions are Heaviside step function (in perceptron), sigmoid function
(used historically before the third wave25 of DL popularity) and Rectified Linear
Units (ReLU) which is recently favored for various real-life problems. Typically a
single layer of neurons share the same activation function type, which is determined
by specific layer purpose.

The neural network is composed of multitude of neurons. One step above the
neuron in the net abstraction hierarchy is a layer, which is simply a bunch of com-
pletely independent (not connected) neurons. The layers can be further stacked to

22We do not want to be too strict here. For the purpose of this thesis let us assume that Deep Learning
(DL) is a subset of ML based on Deep Neural Networks (DNNs) and DNN is simply Neural Network
(NN) with at least three layers (including the input and output one).

23We used single low-end gaming GPU with a 3 GB memory. This influenced the maximum number
of neurons/layers and data batch size.

24The neuron is activated when outputs nonzero value, otherwise is dead.
25The AI history can be divided into three periods between its establishment in the 1950’s and now,

splitted by two AI winters in 1970’s and 1985-90s.
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create multilayer neural network. The way in which the neurons in layers are con-
nected depends on the utilized network architecture, e.g. all neurons between lay-
ers are fully connected (in feed-forward neural networks), the neurons in a layer are
connected only to a subset of previous layer neurons (in convolutional neural networks
used primarily for image recognition) or neurons are connected creating directed
graphs i.e. the neuron in next layer can feed back the neuron from previous layer
(in recurrent neural networks i.e. networks with memory). In this analysis we imple-
mented the multilayer feed-forward net, where we can distinguish three types of
layers: input, hidden and output. Single input layer is fed by the features values and
typically has the number of neurons equal to the number of features. The potentially
many hidden layers are crucial to solve non-linear problems. The number of hidden
layers and the number of neurons in every hidden layer are arbitrary and are the
hyperparameters of the model. The last hidden layer is connected to the output layer
for which the number of outputs is the same as the number of output classes (for
classification). The output layer returns the measure of probability for the event to
belong to a given output class and uses usually a sigmoid or softmax (see Eq. 5.8)
activation function.

When the neural network architecture, number of (hidden) layers and the num-
ber of neurons and activation functions for every layer are set up, it is time to proceed
with net training. The goal of this process is to find the values of weights and biases
for which neural network gives the best estimates for output classes. Two questions
need to be answered: "How to measure goodness of the model estimates?" and "How to
translate this measure to changes of weights and biases?".

The goodness of the model estimates is measured with loss function. Similarly
to the situation with BDT algorithm, the best form of the loss function depends on
the neural network application. The loss function takes weights and biases as pa-
rameters and computes error of net prediction w.r.t. target. Finding the optimal pa-
rameters for arbitrary loss function would be NP-hard combinatorial optimization
problem. To go around this problem the common requirement for loss functions is
to be convex and smooth, which allows to compute its gradients estimates w.r.t. pa-
rameters. The task of finding the gradient of multivariate functions (with multiple
local minima) is a science by itself and core fundamental concept of almost all DL
methods [148]. The most popular solution here is to use backpropagation algorithm
[149]. This algorithm invented in the 1960’s implements the gradient descent of loss
function in weight/bias space exploiting the chain rule. The free parameters of the
model are updated iteratively and recursively going backwards from output layer to
input layer. The backpropagation algorithm is fast and allows to distribute predic-
tion error across all parameters of the net. Moreover, it is possible to ensure global
convergence of backpropagation under a few assumptions on the loss function [150].

The class of algorithms called sometimes optimizers is designed to perform the
translation of gradient of the loss function into parameters changes. Regardless of
optimizer implementation, the parameters changes are in the direction of decreasing
prediction error. In this analysis we have settled on the ADAptive Moment estima-
tion (Adam) optimizer [151]. Let us denote the parameters and gradient of the loss
function by θ and g, respectively. Then the Adam algorithm correction is given by
the formula (arrow indicates the direction of updates):

θt ← θt−1 −
[

α ·
(√

vt

1− βt
2
+ ε

)−1

· mt

1− βt
1

]
, (5.9)
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where mt is exponential moving average of the gradient (estimate of gradient first
moment/mean)

mt ← β1 ·mt−1 + (1− β1) · gt,

and vt is exponential moving average of the squared gradient (estimate of gradient
second moment/uncentered variance)

vt ← β2 · vt−1 + (1− β2) · g2
t .

The algorithm updates the values of gradient moments and models parameters it-
eratively until the stopping criterion is satisfied, i.e. θt will converge. The index t
(acronym from time) is the iterator in the loop and if denoted as subscript indicates
the number of iterations and if placed in superscript means the power. For t = 0 we
set mt = ~0 and vt = ~0. In the formula above, β1 and β2 are the exponential decay
rates for the moment estimates. They are also the hyperparameters of the model, set
in range between zero and one. In Eq. 5.9 there are three parts in the main bracket:

• The learning rate or stepsize α. The role of this hyperparameter is similar to the
one in BDT algorithm, which is to modulate the learning speed. This regular-
izes the model by helping avoid overtraining on noisy data. It is a challenging
task to choose the right value for this important variable, as it may vary de-
pending on model, dataset or even layer and epoch number.

• The middle part of the bracket introduces the adaptive learning rate. The term
in the denominator under the square root is used to counteract the bias to-
ward zero value of (initialized by the zero vector) second moment. The small
constant ε prevents the divisions by zero in the computation.

• The last part is simply the bias-corrected gradient first momentum estimate.

The above algorithm hides yet another important hyperparameter. For the loss func-
tion L( f (x; θ), y), where f is the model, x is the features vector and y is the target,
the gradient estimate computation (processed by backpropagation algorithm) can
be written as:

g← 1
m
∇θ

(
m

∑
i=1

L( f (xi; θ), yi)

)
,

where the summation is over the subset of events in the training sample. The size of
this subset (i.e. value of m) is called batch size. With batch size hyperparameter it is
possible to improve the performance and decrease the hardware memory usage of
the algorithm without loosing the generality of results. This in turn allows to design
bigger nets using limited computing resources.

The training can be repeated multiple times using training epoch number hyper-
parameter. Each training epoch is a full Adam algorithm passed over the whole
training dataset.

The DL models are sensitive to features initial normalization. There are at least
three reasons for that. First, the normalization affects the activation of the neurons.
If some input values are too small the neurons can became dead for those features.
Conversely, the large input variable range can end up in too large neuron activa-
tions. It is valuable to match the features normalization to the range of the activation
function, e.g. 0 to 1 for sigmoid, ReLU and softmax or -1 to 1 for hyperbolic tan-
gent. Second, some optimizers can assume the normalized features to make initial
weights/biases and/or internal algorithm parameters values sensible. Third, the
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gradient descent used in backpropagation algorithm may not be able to find the best
gradient direction and converges much slower if the features are not normalized.

The DL methods became very popular recently; arguably they are the most pop-
ular ML techniques nowadays. They are fast to learn and execute (also due to GPU-
optimization), learn well on huge datasets and have a long history of usage and
development. They are also "...the second best way to solve any problem26...". There
are however some drawbacks of DL, e.g.: 1) they are black-box models, hence do
not give an easy way to obtain human-readable insight into the problem; 2) they are
non-deterministic and sensitive to the initial parameters. Therefore, in our case the
grid-search based hyperparameter optimization has no real value; 3) they are not
probabilistic, so it is difficult to estimate the prediction (error) for the model (classi-
fication).

In the analysis we trained the model using four hidden layers with the first three
layers made of 600 and the fourth layer of 300 neurons, and with ReLU activation
functions. We used a constant learning rate of α = 0.01, adaptive batch size (varying
from m = 2000 to m = 50000 events depending on epoch) and 1000 training epochs.
The input and output layers have sigmoid activation functions and the score has
been translated into probability measures using softmax function. The above archi-
tecture was chosen by author empirically as the number of parameters is too large
for DL to make use of grid search practical, especially when parallel processing is
not possible due to only one GPU available.

The confusion matrix for DL is presented in Fig. 5.17 and the ROCs and ROC
AUCs values are shown in Fig. 5.18. The deep learning model average ROC AUC
for all output classes is 0.875, with ZTT being the best discriminated background.
The average ROC AUC for Higgs boson output classes is 0.885. The DL is overall
slightly better than BDT.

Summary

In this chapter four machine learning models have been developed: decision tree
(ROC AUC of 0.611), random forest (ROC AUC of 0.849), BDT (ROC AUC of 0.860)
and neural network (ROC AUC of 0.875). The output classes discrimination turned
out to be qualitatively similar in all four cases. The ZTT, ZL, QCD and TT classes
have always been the best distinguished. On the other hand, the events of VV and
EWKZ processes have been poorly recognized. The models behave similarly also
with respect to the relative discrimination power between different output classes.
Single top and ditop are always difficult to differentiate, and the same goes for ZJ
and W classes.

One of the goals in this chapter has been to present the overview of available
machine learning methods and their utilization in the HEP field. As such we tried to
devote a similar amount of time for developing every method. There are two conclu-
sions. First one is stated above: the models, although intrinsically different, return
quantitatively similar results. Second conclusion is that currently neural network
(DL) presents the best performance.

DL can be relatively quickly implemented, trains fast with help of GPU and re-
turns best results. RF and especially DT perform poorly compared to DL. BDT is
- depending on settings - either very bad in classification or very slow in training
Moreover, DL has the largest margin for improvement, e.g. with usage of stronger
hardware. However, the DL method requires a quite deep understanding in order

26"The best way is to actually understand the problem" [152].
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to give good results - a simple hyperparameter optimization using grid search has
not worked well in our case.
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Figure 5.17: Confusion matrix for DL model
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Chapter 6

Machine Learning application into
the H → ττ analysis

In the CMS H → ττ publication [153] (described in details in Chap. 4), the excess
of signal 125 GeV Higgs boson events is given quantitatively in the form of local
background-only p−values, i.e. the probabilities of background fluctuations to de-
liver an excess of events at least as large as observed [154]. In this process the 2D
distributions of the discriminating variables are used as an input for the global max-
imum likelihood fit. The nuisance parameters with appropriate probability density
function (Gaussian or log-normal) are introduced into the fit in order to account for
the systematic uncertainties. Finally, the obtained p−values are translated into cor-
responding observed significance S.

The described procedure requires certain amount of additional data preprocess-
ing as it is an standardized procedure implemented within the Higgs PAG combine-
tool Combined Limit [155]. The data samples preparation is a time-demanding task
on its own, needed in order to obtain limits, significances and likelihood scans for
final data-driven analysis. However, since we are only interested in significance ra-
tio between the methods a simplified approach for the significance calculations is
sufficient. It is described in Appendix E. In particular all operations will be done on
the nominal distributions with fixed signal and background yield.

There are multiple possible ways to bring machine learning into physics analysis.
Here we propose to use the output of the ML algorithm as an standalone discrimi-
nating variable1. The procedure is applied on top of the categorization used in the
CMS analysis (i.e. only for events passing the 0jet, boosted or vbf category cuts) to
ensure a fair comparison.

Our goal in this chapter is to calculate the significance for cut based analysis
using the nominal distributions of discriminating variables (original plots are pre-
sented in Appendix C), where the Higgs signal events and background will be sim-
ulated with MC samples. Furthermore, we will compare it to the significance com-
puted for the proposed machine learning based approach.

6.1 Setup

To proceed with the computations, the steps from Chapter 4 have been repeated,
with several modifications, separately for insample and outsample. The following
changes have been made with respect to the original analysis:

1We have also tested the approach with ML score playing the role of additional variable to be used
together with Higgs mass estimate variable, i.e be swapped with the second variable on the 2D signal
variable distributions. The approach presented in this chapter turned out to be, however, both simpler
and more efficient.
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• The background has not been split into subcategories (eg. "Electroweak", "QCD",
etc). As we are interested only with signal/background yield ratio this change
does not affect the results;

• Real data is not used, thus only expected sensitivity is evaluated;

• The W + jets yield is taken from MC, i.e. the procedure of distribution "smooth-
ing" has not been applied;

• QCD has been taken from MC and not from the data.

The third and fourth points are necessary to hold the definition of outsample consis-
tent throughout the thesis, and have a negligible influence on the final conclusions.
The signal yield is taken from the MC as a sum of the events from samples ggH125,
qqH125, ZH125 and WH125 that have passed considered category selections.

For all the events left after categorization, the DL from Section 5.5 has been used
to generate the event-by-event scores. In the original analysis we are interested only
in the Higgs signal and not in determining a specific event origin. Therefore, for
every event the fourteen-element score array needs to be cast into the measure of
the probability for the event to belong only to the Higgs category. Let us create
two classes: Higgs (S) and background (B). Further, the score for the class Higgs is
defined – for every event – as:

score(S) = ∑
i

score(i), (6.1)

where i goes over ggH125, qqH125, ZH125 and WH125 categories. Obviously, the
relation score(B)=1- score(S) always holds.

Model sensitivity evaluation

Sensitivity of a given (ML- or cut-based) approach is evaluated by measuring the
significance S (see Appendix E):

S =
√

2 log Q =

√√√√2

{
∑

bins
−si + (si + bi) log

[
1 +

si

bi

]}
, (6.2)

where the sum goes over all bins in 2D distributions (number of bins is equal to
number of bins of the first variable times the number of bins of the second variable)
for cut based analysis and over all score bins for ML based analysis. The results are
computed separately for all analysis categories.

6.2 An insight into machine learning approach

The basic idea behind the Higgs boson searches is related to the discriminating vari-
ables, i.e. variables with some power to distinguish between the signal and back-
ground events. Standard H → τµτh analysis relies on ditau system mass and trans-
verse momentum, dijet system mass and to some extent on hadronic tau decay
mode. All of them are somehow sensitive to the physical process taking place in
the event (see Chapter 4). Since DL model uses input features containing all afore-
mentioned variables, we are using only its output (score in Eq. 6.1) as the sole dis-
criminating variable.
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The ideal (fake) discriminating variable (e.g. top plot in Fig. 6.1) would allow to
always determine the origin of the event and therefore be used to discard (extract)
all background (signal) events. Real DL score is not ideal - its distribution for signal
and background for MC samples is shown on the bottom plot in Fig. 6.1.
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Figure 6.1: Scores distributions, normalized to unity separately for signal and background.
Top plot presents the "ideal" (fake) distribution where signal and background can be per-
fectly separated using only two score bins. Bottom plot presents the real distribution for MC

samples used. Please note the uneven bin ranges.

For every distribution of discriminating variable we are able to compute the
number of events of signal and background in every bin and further obtain the sig-
nificance using the formula in Eq. 6.2. Two contradictory effects occurs. On the one
hand, in order to get a large significance we want to have as many as possible (to
build up the sum part) terms with the highest possible signal-to-background ratio
in Eq. 6.2. In other words, more bins in the histogram usually mean a larger sig-
nificance. On the other hand, by slicing finely the distribution we soon reach the
point where only a small number of events will be present in every bin. This in turn
will cause significant fluctuations in events number (per bin) and a large systematic
uncertainty of the final result. The trade-off between the significance value and its
uncertainty may be an issue in an analysis and in our case has been worked out by
looking at the cut based case solution. More specifically, we modeled binning of our
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score distributions to have the same number of bins and with the number of events
not significantly smaller (see next page) than the worst case in cut based analysis.

From the bottom plot in Fig. 6.1 one can see that the bin splitting with con-
stant bin widths is not optimal. There are at least two reasons: 1) splitting bins with
low-score values does not bring much significance improvement due to large back-
ground and 2) the high-score bins may contain zero or negligible background yield
boosting final significance to very large values but also with unacceptably large un-
certainty. We decided to derive the proper bin splitting using a two-step process:

• Primary bin splitting by optimization. In this step we have decided to take
advantage of scalar function minimization methods and optimize the (negative
of) significance as a function of bins splitting. The following assumptions have
been adopted:

1. The optimization has been performed on the insample to obtain unbiased
results;

2. The number of score bins is the same as the number of bins of second vari-
able (i.e. decay mode, pH

T or mjj) in the cut based analysis distributions
(three for 0jet, six for boosted and four for vbf categories). We have not
used the total number of bins in 2D distributions as the optimization does
not work well for large number of degrees of freedom and the results are
worse than when using additional quantile-based splitting2.

3. The edges of bins are given with precision of three significant digits;

4. The minimal, expected, normalized background event yield and the num-
ber of used generator MC events number in a single bin are required to
exceed those values for the cut based method for a given category3. To
ensure the result will obey this requirement also on outsample we raised
the actual requirement values for boosted and vbf categories (to 1 for yield
and 5 for number of events);

5. The optimization has been performed with the Nelder-Mead simplex al-
gorithm [156] – the most widely used algorithm for unconstrained opti-
mization problem [157].

To increase the likelihood for a found local minimum to be a global minimum,
the stochastic Basin-Hopping algorithm [158] has been used on top of Nelder-
Mead, with five hundred algorithm iterations and with the initial step size for
use in the random displacement set up as an inverse of the number of bins.
The results are presented in Table 6.1.

Category Bins edges
0jet [0, 0.326, 0.53, 1]
boosted [0, 0.05, 0.242, 0.41, 0.676, 0.966, 1]
vbf [0, 0.215, 0.548, 0.949, 1]

Table 6.1: The best splitting per category found with insample significance optimization.

2This is true with the assumption of using reasonable number of iterations in Basin-Hopping algo-
rithm (see below). We set up cutoff on optimization algorithm execution time for 2 hours.

3In we denote the yield by y and number of events by n then we have: y0jet, cut
min, bkg ' 17, n0jet, cut

min, bkg = 22,

yboosted, cut
min, bkg ' 0.0009, nboosted, cut

min, bkg = 1 and yvbf, cut
min, bkg ' 0.007, nvbf, cut

min, bkg = 1.
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• Secondary bin splitting using background events quantile. In this step we are
further subdividing the bins from the primary bin splitting to get the total bin
number equal to the number of bins in cut based analysis (separately for every
category). The main objective here is to avoid introduction of large system-
atic uncertainties by creating bins with a very low background yield/events
number. Since - by construction - the number of background events decreases
with the score value, we do not split the last bin. The other bins are divided
by hand, taking care of keeping assumption no. 4 to always hold, and using
splitting by background quantile4. The results are presented in Table 6.2.

Category Number of sub-bins Total no. of bins
0jet [21,14,1] 36
boosted [25,20,2,2,10,1] 60
vbf [10,5,4,1] 20

Table 6.2: The number of sub-bins in quantile splitting by background events and the total
number of bins per category.

The number of events (signal and background) per bin of discriminating variable
distribution - score for ML based method and decay mode/visible mass (0jet cat.),
pH

T /SVFit mass (boosted cat.) or mjj/SVFit mass (vbf cat.) for cut based method -
are plotted in Fig. 6.2.

6.3 Systematic uncertainties

In order to measure the sensitivity of the results to the systematic uncertainties we
are following the method from the original publication [82] and rescale the values of
the selected variables (up and down). The variables and the scale factors are inspired
by Table 4.8, from which we took four most important systematic uncertainties in
the H → τµτh decay channel. The following sources of systematic uncertainties are
taken into account:

• Hadronic tau energy scale. We rescale the transverse momentum of the taus
matched to generator hadronic tau (cat. no. 5 in Table 4.2) by ±1.2%. Af-
ter this change the SVFit mass, Higgs boson transverse mass and momentum,
hadronic tau transverse mass, lepton pair transverse momentum and visible
mass have to be recalculated.

• Muon misidentified as hadronic tau energy scale. We rescale the transverse
momentum of the taus matched to generator lepton (cat. no. 1-4 in Table
4.2) by ±1.5%. The other variables have been recalculated like in the previ-
ous point.

• MET transverse momentum energy scale. We rescale MET coordinates ( 6~Ex,
6~Ey) all together by ±3%. Other dependent and recalculated variables are:

SVfit mass, lepton transverse masses and Higgs boson transverse mass and
momentum.

• Jet energy scale. All jets in the event get rescaled transverse momenta de-
pending upon their original pT and η. We have used the standard formula:

4We have used event-wise quantile splitting, i.e. number of events in sub-bins are equal. We could
use yield-wise quantile splitting just as well.
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pnew
T = pold

T × (1± φ(pT, η)), where φ(pT, η) is recommended correction func-
tion (values) used in reference analysis. JES does not enforce SVFit mass recal-
culation.
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Figure 6.2: Plots of signal versus background yield. Every point represents a single bin of
discriminating variable distribution. The values for cut-based (red circles) and ML-based
(green triangles) analysis are given together. Three separate plot cover three categories: 0jet

(top), boosted (middle) and vbf (bottom).
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Different rescales may change discriminating variables distributions in different
ways. Hadronic tau energy scale influences the overall yield by moving events out-
side or inside signal region due to baseline selecton pT,τh > 30 cut (see p. 50) and
changes the shape of SVFit mass (is one of its input parameters). MET transverse
momentum energy scale does the same via Mµ

T > 50 cut in categorization (see Sec-
tion 4.3). JES may change which category the events are assigned to (changes the
number of jets (njets) by making jet not pass the pT > 30 cut - see p. 46) and to
which bin in vbf category (changes dijet system mass (mjj) value). Rescales may also
influence the classification results given by the neural network (see Section 5.5).

6.4 Results

The values of points from Fig. 6.2 (and similar distributions rescaled according to
the previous section) have been used to compute the significance from Eq. 6.2. The
results are:

• in 0jet category the significance for cut based analysis is 1.389+0.1%
−3.7% and for ML

based analysis is 1.751+3.1%
−3.3%. The neural network allows to obtain about a 26%

better result with a comparable systematic uncertainty.

• in boosted category the significance for cut based analysis is 2.640+14%
−9.9% and for

ML based analysis is 3.171+0.3%
−5.9%. The neural network allows to obtain about a

20% better result with even a smaller systematic uncertainty.

• in vbf category the significance for cut based analysis is 2.461+41%
−2.2% and for ML

based analysis is 3.340+2.4%
−38% . The neural network allows to obtain nominally

about a 35% better result, however, the systematic uncertainties are large here,
for both cut- and ML-based analyses. The best case for cut based analysis is
slightly better than nominal value for ML method and the worst case for ML
analysis is slightly worse than nominal cut based case.

The uncertainties in above figures are the result of rescaling the variables presented
in previous section, i.e. come from systematic effects. The numerical results for the
significance analysis are summarized in Table 6.3. The final significance number
is the superposition of two things: 1) the discriminating power of the considered
discriminating variable with respect to the signal events and 2) the stability of its
value when varying inputs conditions. The former allows to construct distributions
with high signal-to-background bins, and the latter to practically use them with-
out worrying about exploding systematic uncertainties. Presented results show that
developed machine learning methods have comparable stability to the cut based ap-
proach and present even a better signal discriminating potential. Hence, they can be
thought as a simple extension (or replacement) to the standard cut-based analysis
categorization.
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0jet cut based boosted cut based vbf cut based
NOMINAL VALUE 1.389 2.640 2.461
hadronic tau energy
scale

+0.0
−0.05

+0.241
−0.159

+0.079
−0.0

muon misidentified as
hadronic tau energy
scale

+0.006
−0.013

+0.016
−0.064

+0.003
−0.003

MET transverse mo-
mentum energy scale

+0.0
−0.0

+0.202
−0.053

+1.026
−0.0

jet energy scale +0.027
−0.0

+0.192
−0.189

+0.054
−0.054

RESULT
(cut based analysis)

1.389+0.1%
−3.7% 2.640+14%

−9.9% 2.461+41%
−2.2%

0jet ML based boosted ML based vbf ML based
NOMINAL VALUE 1.751 3.171 3.340
hadronic tau energy
scale

+0.015
−0.049

+0.0
−0.116

+0.08
−0.421

muon misidentified as
hadronic tau energy
scale

+0.024
−0.0

+0.0
−0.018

+0.003
−0.003

MET transverse mo-
mentum energy scale

+0.029
−0.029

+0.01
−0.0

+0.0
−0.796

jet energy scale +0.043
−0.0

+0.0
−0.145

+0.0
−0.887

RESULT
(ML based analysis)

1.751+3.1%
−3.3% 3.171+0.3%

−5.9% 3.340+2.4%
−38%

Table 6.3: Significance for cut based and ML based analysis together with the impact of var-
ious rescales of tau/MET/jet energy scales on the result. Values for every category (0jet,

boosted, vbf ) are given in separate columns.
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Conclusions

The aim of this thesis has been to apply the latest developments in scientific study of
algorithms and statistical models, commonly called machine learning, on the work-
ing re-implementation of the 2016 CMS H → ττ → µνµνττhντ analysis. All relevant
details of the analysis have been presented. It has been shown that it is possible
to obtain agreement at the level of a few percent with official nominal CMS dis-
tributions of discriminating variables. Furthermore, we have explained why and
how the machine learning methods could be applied to the event identification and
how it could be translated onto a ground of Higgs decays analysis. While doing
that we have prepared four machine learning estimators (decision tree, random for-
est, boosted decision tree and neural network) and have shown that neural network
works best in considered scenario. The obtained performance given in terms of ROC
AUC is equal to 0.875.

The machine learning classifier can work as an extension for categorization pro-
cedure employed in official CMS H → ττ analysis, which is based on a carefully
chosen set of kinematical cuts. We propose a new method in which the two dimen-
sional distributions of discriminating variables are replaced with only output of the
deep neural network. We then compare these two approaches by computing the
significance. Machine learning has turned out to be considerably better improving
the result by 20% to 35% (depending on the category) without increasing systematic
uncertainties with respect to the original method.

The techniques proposed in this thesis can be used for example to improve the
sensitivity to the signal events or to better determine the background contributions
in control regions used in the analysis. They could further be used to obtain better
Higgs properties measurements. One of the most important physical results that
could be enhanced is related to the Higgs boson signal strength modifiers µi, which
are defined as the ratio of the particular process branching ratio BR f to the SM pre-
diction (BR f )SM:

µ f =
BR f

(BR f )SM
,

where f = ZZ, WW, γγ, ττ, bb. The combined CMS result of the signal strengths
for 35.9 fb−1 at 13 TeV are depicted on the left-hand side in Fig. 6.3. From the plot
one can see that the uncertainties in the ditau Higgs decay mode channel are bigger
than all of the other channels, with the exception of the Higgs decay into bb. The ML
techniques could improve the result by constraining the uncertainties and effectively
rule out some of the beyond SM models.

The other measurement that can benefit from utilization of ML techniques is re-
lated to the coupling modifier κj:

κ2
j =

σj

σSM
j

or κ2
j =

Γj

Γj
SM
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σj being cross-sections and Γj branching ratios (super-/subscript indicates SM val-
ues). The κj can be conveniently used to measure the deviation of the observed num-
ber of Higgs events from the SM prediction. The deviation is calculated in terms of
the parameters (M, ε), which relate to the coupling modifiers by the κF = vmε

f /M1+ε

(for fermions) and κV = vm2ε
V /M1+2ε (for vector boson) formulas. The result of such

phenomenological fit is presented on right-hand side of Fig. 6.3. The better coupling
modifier determination obtained with ML techniques would translate into smaller
M and ε errors.

Figure 6.3: Left: The Higgs decay signal strength modifiers µ. The thick and thin blue hor-
izontal bars indicate the ±1σ and ±2σ uncertainties, respectively. The red line shows ±1σ
systematic components of the uncertainties. Right: The fit of the six parameter κ model plot-

ted versus the particle mass [159].

The ML-based analysis of H → ττ decay channel is already presented by the
CMS Collaboration in a public analysis note (PAS-only technical report) [160]. In
the publication the neural network score is used as a discriminating variable and
the methods which are used are to some extent similar to the ones presented in this
thesis for DL. For example the DNN used also has two hidden layers and softmax
function at the output layer. On the other hand, this analysis contains simplified
input data sets (by requiring isolated hadronic taus and leptons, which effectively
reduces background contamination), smaller number of input features (18 vs 68 for
τµτh final state) and output classes (8 vs 14), and a larger number of categories in
classification scheme (12 vs 3). The analyzed 2016 and 2017 collision data corre-
sponding to 77.4 fb−1 of integrated luminosity allowed to obtain the total inclusive
cross section for H → ττ process equal to σ = 2.56± 0.48(stat)± 0.34(syst). The
future official (not preliminary) CMS Collaboration H → ττ public analysis based
on the neural networks is currently in preparation.
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Appendix A

Datasets

DY + Jets, Recoil Corrections applied
Sample Cross section (pb)

/DYJetsToLL-M-50-TuneCUETP8M1-13TeV-madgraphMLM-
pythia8/RunIISummer16MiniAODv2-PUMoriond17-80X-mcRun2-
asymptotic-2016-TrancheIV-v6-ext1-v2/MINIAODSIM

5765.4

/DYJetsToLL-M-50-TuneCUETP8M1-13TeV-madgraphMLM-
pythia8/RunIISummer16MiniAODv2-PUMoriond17-80X-mcRun2-
asymptotic-2016-TrancheIV-v6-ext2-v1/MINIAODSIM

5765.4

/DY1JetsToLL-M-50-TuneCUETP8M1-13TeV-madgraphMLM-
pythia8/RunIISummer16MiniAODv2-PUMoriond17-80X-mcRun2-
asymptotic-2016-TrancheIV-v6-v1/MINIAODSIM

1012.5

/DY2JetsToLL-M-50-TuneCUETP8M1-13TeV-madgraphMLM-
pythia8/RunIISummer16MiniAODv2-PUMoriond17-80X-mcRun2-
asymptotic-2016-TrancheIV-v6-v1/MINIAODSIM

332.8

/DY3JetsToLL-M-50-TuneCUETP8M1-13TeV-madgraphMLM-
pythia8/RunIISummer16MiniAODv2-PUMoriond17-80X-mcRun2-
asymptotic-2016-TrancheIV-v6-v1/MINIAODSIM

101.8

/DY4JetsToLL-M-50-TuneCUETP8M1-13TeV-madgraphMLM-
pythia8/RunIISummer16MiniAODv2-PUMoriond17-80X-mcRun2-
asymptotic-2016-TrancheIV-v6-v1/MINIAODSIM

54.8

WZ, no Recoil Corrections
Sample Cross section (pb)

/WZTo1L3Nu-13TeV-amcatnloFXFX-madspin-
pythia8/RunIISummer16MiniAODv2-PUMoriond17-80X-mcRun2-
asymptotic-2016-TrancheIV-v6-v1/MINIAODSIM

3.05

/WZTo1L1Nu2Q-13TeV-amcatnloFXFX-madspin-
pythia8/RunIISummer16MiniAODv2-PUMoriond17-80X-mcRun2-
asymptotic-2016-TrancheIV-v6-v3/MINIAODSIM

10.71

/WZTo2L2Q-13TeV-amcatnloFXFX-madspin-pythia8/RunIISummer16MiniAODv2-
PUMoriond17-80X-mcRun2-asymptotic-2016-TrancheIV-v6-
v1/MINIAODSIM

5.595

/WZTo3LNu-TuneCUETP8M1-13TeV-amcatnloFXFX-
pythia8/RunIISummer16MiniAODv2-PUMoriond17-80X-mcRun2-
asymptotic-2016-TrancheIV-v6-v1/MINIAODSIM

4.708

/WZTo3LNu-TuneCUETP8M1-13TeV-powheg-
pythia8/RunIISummer16MiniAODv2-PUMoriond17-80X-mcRun2-
asymptotic-2016-TrancheIV-v6-v1/MINIAODSIM

4.708

W + Jets, Recoil Corrections applied
Sample Cross section (pb)

/WJetsToLNu-TuneCUETP8M1-13TeV-madgraphMLM-
pythia8/RunIISummer16MiniAODv2-PUMoriond17-80X-mcRun2-
asymptotic-2016-TrancheIV-v6-v1/MINIAODSIM

61526.7

/WJetsToLNu-TuneCUETP8M1-13TeV-madgraphMLM-
pythia8/RunIISummer16MiniAODv2-PUMoriond17-80X-mcRun2-
asymptotic-2016-TrancheIV-v6-ext2-v1/MINIAODSI

61526.7

/W1JetsToLNu-TuneCUETP8M1-13TeV-madgraphMLM-
pythia8/RunIISummer16MiniAODv2-PUMoriond17-80X-mcRun2-
asymptotic-2016-TrancheIV-v6-v1/MINIAODSIM

9644.5
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/W2JetsToLNu-TuneCUETP8M1-13TeV-madgraphMLM-
pythia8/RunIISummer16MiniAODv2-PUMoriond17-80X-mcRun2-
asymptotic-2016-TrancheIV-v6-v1/MINIAODSIM

3144.5

/W2JetsToLNu-TuneCUETP8M1-13TeV-madgraphMLM-
pythia8/RunIISummer16MiniAODv2-PUMoriond17-80X-mcRun2-
asymptotic-2016-TrancheIV-v6-ext1-v1/MINIAODSIM

3144.5

/W3JetsToLNu-TuneCUETP8M1-13TeV-madgraphMLM-
pythia8/RunIISummer16MiniAODv2-PUMoriond17-80X-mcRun2-
asymptotic-2016-TrancheIV-v6-v1/MINIAODSIM

954.8

/W3JetsToLNu-TuneCUETP8M1-13TeV-madgraphMLM-
pythia8/RunIISummer16MiniAODv2-PUMoriond17-80X-mcRun2-
asymptotic-2016-TrancheIV-v6-ext1-v1/MINIAODSIM

954.8

/W4JetsToLNu-TuneCUETP8M1-13TeV-madgraphMLM-
pythia8/RunIISummer16MiniAODv2-PUMoriond17-80X-mcRun2-
asymptotic-2016-TrancheIV-v6-v1/MINIAODSIM

485.6

/W4JetsToLNu-TuneCUETP8M1-13TeV-madgraphMLM-
pythia8/RunIISummer16MiniAODv2-PUMoriond17-80X-mcRun2-
asymptotic-2016-TrancheIV-v6-ext1-v1/MINIAODSIM

485.6

/W4JetsToLNu-TuneCUETP8M1-13TeV-madgraphMLM-
pythia8/RunIISummer16MiniAODv2-PUMoriond17-80X-mcRun2-
asymptotic-2016-TrancheIV-v6-ext2-v1/MINIAODSIM

485.6

TTbar, no Recoil Corrections
Sample Cross section (pb)

/TT-TuneCUETP8M2T4-13TeV-powheg-pythia8/RunIISummer16MiniAODv2-
PUMoriond17-80X-mcRun2-asymptotic-2016-TrancheIV-v6-
v1/MINIAODSIM

831.76

Higgs, no Recoil Corrections
Sample Cross section (pb)

/GluGluHToTauTau-M125-13TeV-powheg-pythia8/RunIISummer16MiniAODv2-
PUMoriond17-80X-mcRun2-asymptotic-2016-TrancheIV-v6-
v1/MINIAODSIM

48.58*0.0627

/VBFHToTauTau-M125-13TeV-powheg-pythia8/RunIISummer16MiniAODv2-
PUMoriond17-80X-mcRun2-asymptotic-2016-TrancheIV-v6-
v1/MINIAODSIM

3.782*0.0627

/WplusHToTauTau-M125-13TeV-powheg-pythia8/RunIISummer16MiniAODv2-
PUMoriond17-80X-mcRun2-asymptotic-2016-TrancheIV-v6-
v1/MINIAODSIM

0.8400*0.0627

/WminusHToTauTau-M125-13TeV-powheg-pythia8/RunIISummer16MiniAODv2-
PUMoriond17-80X-mcRun2-asymptotic-2016-TrancheIV-v6-
v1/MINIAODSIM

0.5328*0.0627

Higgs small, no Recoil Corrections
Sample Cross section (pb)

/ZHToTauTau-M125-13TeV-powheg-pythia8/RunIISummer16MiniAODv2-
PUMoriond17-80X-mcRun2-asymptotic-2016-TrancheIV-v6-
v1/MINIAODSIM

0.884*0.0627

/VBFHToWWTo2L2Nu-M125-13TeV-powheg-JHUgen-
pythia8/RunIISummer16MiniAODv2-PUMoriond17-80X-mcRun2-
asymptotic-2016-TrancheIV-v6-v1/MINIAODSIM

0.0858

/GluGluHToWWTo2L2Nu-M125-13TeV-powheg-JHUgen-
pythia8/RunIISummer16MiniAODv2-PUMoriond17-80X-mcRun2-
asymptotic-2016-TrancheIV-v6-v1/MINIAODSIM

1.001

Single top, no Recoil Corrections
Sample Cross section (pb)

/ST-tW-antitop-5f-inclusiveDecays-13TeV-powheg-pythia8-
TuneCUETP8M1/RunIISummer16MiniAODv2-PUMoriond17-80X-
mcRun2-asymptotic-2016-TrancheIV-v6-ext1-v1/MINIAODSIM

38.09

/ST-tW-top-5f-inclusiveDecays-13TeV-powheg-pythia8-
TuneCUETP8M1/RunIISummer16MiniAODv2-PUMoriond17-80X-
mcRun2-asymptotic-2016-TrancheIV-v6-ext1-v1/MINIAODSIM

38.09
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/ST-t-channel-antitop-4f-inclusiveDecays-13TeV-powhegV2-madspin-
pythia8-TuneCUETP8M1/RunIISummer16MiniAODv2-PUMoriond17-80X-
mcRun2-asymptotic-2016-TrancheIV-v6-v1/MINIAODSIM

24.11

/ST-t-channel-top-4f-inclusiveDecays-13TeV-powhegV2-madspin-pythia8-
TuneCUETP8M1/RunIISummer16MiniAODv2-PUMoriond17-80X-
mcRun2-asymptotic-2016-TrancheIV-v6-v1/MINIAODSIM

39.852

WW, no Recoil Corrections
Sample Cross section (pb)

/WWToLNuQQ-13TeV-powheg/RunIISummer16MiniAODv2-
PUMoriond17-80X-mcRun2-asymptotic-2016-TrancheIV-v6-
v1/MINIAODSIM

43.53

/WWToLNuQQ-13TeV-powheg/RunIISummer16MiniAODv2-
PUMoriond17-80X-mcRun2-asymptotic-2016-TrancheIV-v6-ext1-
v1/MINIAODSIM

43.53

/WWTo1L1Nu2Q-13TeV-amcatnloFXFX-madspin-
pythia8/RunIISummer16MiniAODv2-PUMoriond17-80X-mcRun2-
asymptotic-2016-TrancheIV-v6-v1/MINIAODSIM

43.53

/WWTo2L2Nu-13TeV-powheg/RunIISummer16MiniAODv2-
PUMoriond17-80X-mcRun2-asymptotic-2016-TrancheIV-v6-
v1/MINIAODSIM

10.48

ZZ, no Recoil Corrections
Sample Cross section (pb)

/ZZTo2L2Q-13TeV-amcatnloFXFX-madspin-pythia8/RunIISummer16MiniAODv2-
PUMoriond17-80X-mcRun2-asymptotic-2016-TrancheIV-v6-
v1/MINIAODSIM

3.22

/ZZTo2Q2Nu-13TeV-amcatnloFXFX-madspin-pythia8/RunIISummer16MiniAODv2-
PUMoriond17-80X-mcRun2-asymptotic-2016-TrancheIV-v6-
v1/MINIAODSIM

4.03

/ZZTo2L2Nu-13TeV-powheg-pythia8/RunIISummer16MiniAODv2-
PUMoriond17-80X-mcRun2-asymptotic-2016-TrancheIV-v6-
v1/MINIAODSIM

3.22

/ZZTo4L-13TeV-amcatnloFXFX-pythia8/RunIISummer16MiniAODv2-
PUMoriond17-80X-mcRun2-asymptotic-2016-TrancheIV-v6-ext1-
v1/MINIAODSIM

1.212

Electroweak, no Recoil Corrections
Sample Cross section (pb)

/EWKWMinus2Jets-WToLNu-M-50-13TeV-madgraph-
pythia8/RunIISummer16MiniAODv2-PUMoriond17-80X-mcRun2-
asymptotic-2016-TrancheIV-v6-v1/MINIAODSIM

20.25

/EWKWMinus2Jets-WToLNu-M-50-13TeV-madgraph-
pythia8/RunIISummer16MiniAODv2-PUMoriond17-80X-mcRun2-
asymptotic-2016-TrancheIV-v6-ext1-v1/MINIAODSIM

20.25

/EWKWMinus2Jets-WToLNu-M-50-13TeV-madgraph-
pythia8/RunIISummer16MiniAODv2-PUMoriond17-80X-mcRun2-
asymptotic-2016-TrancheIV-v6-ext2-v1/MINIAODSIM

20.25

/EWKWPlus2Jets-WToLNu-M-50-13TeV-madgraph-
pythia8/RunIISummer16MiniAODv2-PUMoriond17-80X-mcRun2-
asymptotic-2016-TrancheIV-v6-v1/MINIAODSIM

25.62

/EWKWPlus2Jets-WToLNu-M-50-13TeV-madgraph-
pythia8/RunIISummer16MiniAODv2-PUMoriond17-80X-mcRun2-
asymptotic-2016-TrancheIV-v6-ext1-v1/MINIAODSIM

25.62

/EWKWPlus2Jets-WToLNu-M-50-13TeV-madgraph-
pythia8/RunIISummer16MiniAODv2-PUMoriond17-80X-mcRun2-
asymptotic-2016-TrancheIV-v6-ext2-v1/MINIAODSIM

25.62

/EWKZ2Jets-ZToLL-M-50-13TeV-madgraph-pythia8/RunIISummer16MiniAODv2-
PUMoriond17-80X-mcRun2-asymptotic-2016-TrancheIV-v6-
v1/MINIAODSIM

3.987

/EWKZ2Jets-ZToLL-M-50-13TeV-madgraph-pythia8/RunIISummer16MiniAODv2-
PUMoriond17-80X-mcRun2-asymptotic-2016-TrancheIV-v6-ext1-
v1/MINIAODSIM

3.987
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/EWKZ2Jets-ZToLL-M-50-13TeV-madgraph-pythia8/RunIISummer16MiniAODv2-
PUMoriond17-80X-mcRun2-asymptotic-2016-TrancheIV-v6-ext2-
v1/MINIAODSIM

3.987

/EWKZ2Jets-ZToNuNu-13TeV-madgraph-pythia8/RunIISummer16MiniAODv2-
PUMoriond17-80X-mcRun2-asymptotic-2016-TrancheIV-v6-
v1/MINIAODSIM

10.01

/EWKZ2Jets-ZToNuNu-13TeV-madgraph-pythia8/RunIISummer16MiniAODv2-
PUMoriond17-80X-mcRun2-asymptotic-2016-TrancheIV-v6-ext1-
v1/MINIAODSIM

10.01

/EWKZ2Jets-ZToNuNu-13TeV-madgraph-pythia8/RunIISummer16MiniAODv2-
PUMoriond17-80X-mcRun2-asymptotic-2016-TrancheIV-v6-ext2-
v1/MINIAODSIM

10.01

WGamma, no Recoil Corrections
Sample Cross section (pb)

/WGToLNuG-TuneCUETP8M1-13TeV-amcatnloFXFX-
pythia8/RunIISummer16MiniAODv2-PUMoriond17-80X-mcRun2-
asymptotic-2016-TrancheIV-v6-ext1-v1/MINIAODSIM

489.0

/WGToLNuG-TuneCUETP8M1-13TeV-amcatnloFXFX-
pythia8/RunIISummer16MiniAODv2-PUMoriond17-80X-mcRun2-
asymptotic-2016-TrancheIV-v6-ext2-v1/MINIAODSIM

489.0

/WGToLNuG-TuneCUETP8M1-13TeV-amcatnloFXFX-
pythia8/RunIISummer16MiniAODv2-PUMoriond17-80X-mcRun2-
asymptotic-2016-TrancheIV-v6-ext3-v1/MINIAODSIM

489.0

/WGstarToLNuMuMu-012Jets-13TeV-madgraph/RunIISummer16MiniAODv2-
PUMoriond17-80X-mcRun2-asymptotic-2016-TrancheIV-v6-
v1/MINIAODSIM

2.793

/WGstarToLNuEE-012Jets-13TeV-madgraph/RunIISummer16MiniAODv2-
PUMoriond17-80X-mcRun2-asymptotic-2016-TrancheIV-v6-
v1/MINIAODSIM

3.526

VV, no Recoil Corrections
Sample Cross section (pb)

/VVTo2L2Nu-13TeV-amcatnloFXFX-madspin-pythia8/RunIISummer16MiniAODv2-
PUMoriond17-80X-mcRun2-asymptotic-2016-TrancheIV-v6-
v1/MINIAODSIM

11.95

/VVTo2L2Nu-13TeV-amcatnloFXFX-madspin-pythia8/RunIISummer16MiniAODv2-
PUMoriond17-80X-mcRun2-asymptotic-2016-TrancheIV-v6-ext1-
v1/MINIAODSIM

11.95

/WZJToLLLNu-TuneCUETP8M1-13TeV-amcnlo-
pythia8/RunIISummer16MiniAODv2-PUMoriond17-80X-mcRun2-
asymptotic-2016-TrancheIV-v6-v1/MINIAODSIM

4.708

/ZZTo4L-13TeV-powheg-pythia8/RunIISummer16MiniAODv2-
PUMoriond17-80X-mcRun2-asymptotic-2016-TrancheIV-v6-
v1/MINIAODSIM

1.212

Data
Sample Luminosity

(fb−1)
/SingleMuon/Run2016B-03Feb2017-ver2-v2/MINIAOD 5.788
/SingleMuon/Run2016C-03Feb2017-v1/MINIAOD 2.573
/SingleMuon/Run2016D-03Feb2017-v1/MINIAOD 4.248
/SingleMuon/Run2016E-03Feb2017-v1/MINIAOD 4.009
/SingleMuon/Run2016F-03Feb2017-v1/MINIAOD 3.102
/SingleMuon/Run2016G-03Feb2017-v1/MINIAOD 7.540
/SingleMuon/Run2016H-03Feb2017-ver2-v1/MINIAOD 8.606
/SingleMuon/Run2016H-03Feb2017-ver3-v1/MINIAOD see above

Additional samples used in Machine Learing analysis
Sample Cross section (pb)

/QCD-Pt-20toInf-MuEnrichedPt15-TuneCUETP8M1-13TeV-
pythia8/RunIISummer16MiniAODv2-PUMoriond17-80X-mcRun2-
asymptotic-2016-TrancheIV-v6-v1/MINIAODSIM

302672.16
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/QCD-Pt-20to30-MuEnrichedPt5-TuneCUETP8M1-13TeV-
pythia8/RunIISummer16MiniAODv2-PUMoriond17-80X-mcRun2-
asymptotic-2016-TrancheIV-v6-v1/MINIAODSIM

2960198

/QCD-Pt-30to50-MuEnrichedPt5-TuneCUETP8M1-13TeV-
pythia8/RunIISummer16MiniAODv2-PUMoriond17-80X-mcRun2-
asymptotic-2016-TrancheIV-v6-v1/MINIAODSIM

1652471

/QCD-Pt-50to80-MuEnrichedPt5-TuneCUETP8M1-13TeV-
pythia8/RunIISummer16MiniAODv2-PUMoriond17-80X-mcRun2-
asymptotic-2016-TrancheIV-v6-v1/MINIAODSIM

437504

/QCD-Pt-80to120-MuEnrichedPt5-TuneCUETP8M1-13TeV-
pythia8/RunIISummer16MiniAODv2-PUMoriond17-80X-mcRun2-
asymptotic-2016-TrancheIV-v6-ext1-v3/MINIAODSIM

106034

/QCD-Pt-80to120-MuEnrichedPt5-TuneCUETP8M1-13TeV-
pythia8/RunIISummer16MiniAODv2-PUMoriond17-80X-mcRun2-
asymptotic-2016-TrancheIV-v6-v1/MINIAODSIM

106034

/QCD-Pt-120to170-MuEnrichedPt5-TuneCUETP8M1-13TeV-
pythia8/RunIISummer16MiniAODv2-PUMoriond17-80X-mcRun2-
asymptotic-2016-TrancheIV-v6-v1/MINIAODSIM

25191

/QCD-Pt-170to300-MuEnrichedPt5-TuneCUETP8M1-13TeV-
pythia8/RunIISummer16MiniAODv2-PUMoriond17-80X-mcRun2-
asymptotic-2016-TrancheIV-v6-v1/MINIAODSIM

8655

/QCD-Pt-170to300-MuEnrichedPt5-TuneCUETP8M1-13TeV-
pythia8/RunIISummer16MiniAODv2-PUMoriond17-80X-mcRun2-
asymptotic-2016-TrancheIV-v6-ext1-v1/MINIAODSIM

8655

/QCD-Pt-300to470-MuEnrichedPt5-TuneCUETP8M1-13TeV-
pythia8/RunIISummer16MiniAODv2-PUMoriond17-80X-mcRun2-
asymptotic-2016-TrancheIV-v6-v1/MINIAODSIM

797

/QCD-Pt-300to470-MuEnrichedPt5-TuneCUETP8M1-13TeV-
pythia8/RunIISummer16MiniAODv2-PUMoriond17-80X-mcRun2-
asymptotic-2016-TrancheIV-v6-ext1-v1/MINIAODSIM

797

/QCD-Pt-300to470-MuEnrichedPt5-TuneCUETP8M1-13TeV-
pythia8/RunIISummer16MiniAODv2-PUMoriond17-80X-mcRun2-
asymptotic-2016-TrancheIV-v6-ext2-v1/MINIAODSIM

797

/QCD-Pt-470to600-MuEnrichedPt5-TuneCUETP8M1-13TeV-
pythia8/RunIISummer16MiniAODv2-PUMoriond17-80X-mcRun2-
asymptotic-2016-TrancheIV-v6-v1/MINIAODSIM

79.0

/QCD-Pt-470to600-MuEnrichedPt5-TuneCUETP8M1-13TeV-
pythia8/RunIISummer16MiniAODv2-PUMoriond17-80X-mcRun2-
asymptotic-2016-TrancheIV-v6-ext1-v1/MINIAODSIM

79.0

/QCD-Pt-470to600-MuEnrichedPt5-TuneCUETP8M1-13TeV-
pythia8/RunIISummer16MiniAODv2-PUMoriond17-80X-mcRun2-
asymptotic-2016-TrancheIV-v6-ext2-v1/MINIAODSIM

79.0

/GluGluHToTauTau-M125-13TeV-powheg-pythia8/RunIISummer16MiniAODv2-
PUMoriond17-80X-mcRun2-asymptotic-2016-TrancheIV-v6-
v2/MINIAODSIM

48.58*0.0627

/VBFHToTauTau-M125-13TeV-powheg-pythia8/RunIISummer16MiniAODv2-
PUMoriond17-80X-mcRun2-asymptotic-2016-TrancheIV-v6-
v2/MINIAODSIM

3.782*0.0627

/VBFHToTauTau-M125-13TeV-powheg-pythia8/RunIISummer16MiniAODv2-
PUMoriond17-80X-mcRun2-asymptotic-2016-TrancheIV-v6-
v2/MINIAODSIM

3.782*0.0627
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Appendix B

Technical Appendix for Chapter 4

Section 4.1
data samples All samples (collision data and MC) are produced centrally by the CMS Collab-

oration and are available via CMS Data Aggregation Service (DAS) system.
runs (high qual-
ity) certified

The quality of the date is controlled by Data Quality Monitoring (DQM)
system and Data Certification (DC) team [161]. The valid runs are
then collected in JSON file. We have used data for runs defined in
Cert_271036-284044_13TeV_23Sep2016ReReco_Collisions16_JSON.txt file.

mass of Z boson The Drell-Yan MC samples are binned in the event invariant mass variable (inv.
mass of γ∗/Z′). Inclusive samples used in the analysis are generated with in-
variant mass above 50 GeV. The low–mass samples are DYJetsToLL_M-10to50-*
and high–mass samples are DYJetsToLL_M-150-*. The CMS simulated dataset
names are described in [162].

global tags The following global tags (or GlobalTags) were used:

• for data samples Run B to G: 80X_dataRun2_2016SeptRepro_v7;

• for data samples Run H: 80X_dataRun2_Prompt_v16;

• for MC samples: 80X_mcRun2_asymptotic_2016_TrancheIV_v8.

Section 4.2
defining the
Higgs boson
candidates

The pairs were created with a dedicated module. We used
CandViewShallowCloneCombiner, which is a standard CMSSW utility. It
allows to pick an arbitrary particles collection and define simple kinematical
conditions on component/combined particle(s).

muons and taus The muon and taus collections are slimmedMuons and slimmedTaus miniAOD
data format [163].

jets collection slimmedJets
re-apply them The original corrections are reverted and the new ones are applied. JEC labels

are: L1FastJet, L2Relative, L3Absolute and L2L3Residual.
loose jet ID The usual name for it is loosePFJetID
MET collection slimmedMET
cuts on discrim-
inator value

We are using two working points corresponding to 80% and 90% efficiencies with
cuts:

• For 80% eff. WP: >0.941 (0 ≤ ηe < 0.8); >0.899 (0.8 ≤ ηe < 1.48); >0.758
(1.48 ≤ ηe).

• For 90% eff. WP: >0.837 (0 ≤ ηe < 0.8); >0.715 (0.8 ≤ ηe < 1.48); >0.357
(1.48 ≤ ηe)

generator
matching

The generator matching procedure uses a standard collection of pruned genera-
tor particles (prunedGenParticles, 50-100/event), which are pointed by the MC
matching of the high level objects. The pruned generator particles are equipped
with a set of status flags which are robust, generator-independent functions for
categorizing mainly final state particles, but also intermediate hadrons/taus.
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Section 4.2
Prompt electron prunedGenParticle with pdgId equal to -11/11 and status flag isPrompt
Prompt muon prunedGenParticle with pdgId equal to -13/13 and with status flag

isPromptFinalState
Direct prompt
electron

prunedGenParticle with pdgId equal to -11/11 and with status flag
isDirectPromptTauDecayProduct

Direct prompt
muon

prunedGenParticle with pdgId equal to -13/13 and with status flag
isDirectPromptTauDecayProductFinalState

status flags The ones we used in analysis are:

• isPrompt: not from hadron, muon or tau decay (n.b. in standard samples
muons are not allowed to decay at generator level);

• isPromptFinalState: final state (status 1) particle satisfying isPrompt;

• isDirectPromptTauDecayProduct: is the direct decay product from a tau de-
cay (i.e. no intermediate hadron), where the tau does not come from
hadron decay;

• isDirectPromptTauDecayProductFinalState: final state (status 1) particle sat-
isfying isDirectPromptTauDecayProduct.

generator
matching recipe

First the TauGenJetProducer fed with prunedGenParticles and with
includeNeutrinos==False flag is used to generate collection of generator
level hadronic taus. Then the three collections of generator particles are
produced with TauGenJetDecayModeSelector:

• category 3 generator hadronic taus: select flag set to "electron";

• category 4 generator hadronic taus: select flag set to "muon";

• category 5 generator hadronic taus: select flag set to "one-
Prong0Pi0, oneProng1Pi0, oneProng2Pi0, oneProngOther, threeProng0Pi0,
threeProng1Pi0,threeProng1Pi0, rare";

At the end the matched generator category is found by choosing the closest gen-
erator particle from between the collections above and the prunedGenParticles
for categories 1,2 and 6 (fulfilling conditions from Table 4.2).

Three WPs The names for those in the muon collection are: isLooseMuon, isMediumMuon and
isTightMuon.

medium2016
muon ID

bool goodGlobal = isGlobalMuon and globalTrack.normalizedChi2<3 and
combinedQuality.chi2LocalPosition<12 and combinedQuality.trkKink<20;
bool medium2016ID = isLooseMuon and innerTrack.validFraction>0.49
and segmentCompatibility > (goodGlobal ? 0.303 : 0.451);

reconstructed as
1- or 3-prong
tau decay

decay mode finding tau ID > 0.5

MVA-based tau
ID discriminant

byIsolationMVArun2v1DBoldDMwLTraw

boson pT value
(full and visible)
and jet multi-
plicity

A boson is reconstructed from its decay products taken from pruned particles
collection. The criteria for particle to be a boson constituent are (Particle Data
Group IDs (pdgId) can be found, e.g. [164]):

• For boson full pT calculation:
isDirectHardProcessTauDecayProduct or
(fromHardProcessFinalState and (pdgId in {11,12,13,14,16}))

• For boson visible pT calculation:
(fromHardProcessFinalState and (pdgId in {11,13})) or
(isDirectHardProcessTauDecayProduct and
(pdgId not in {12,14,16}))

Jets are required to be ∆R > 0.5 away from both pairs of leptons. In selected
W+Jets events one of the leptons is faked by a hadronic jet and this jet should be
counted as a part of hadronic recoil to the W boson. Therefore, when processing
the W+Jets MC sample the number of jets is increased by one.
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Section 4.2
HLT triggers for muon pT > 23.

HLT trigger Filters to match
HLT-IsoMu22 hltL3crIsoL1sMu20L1f0L2f10QL3f22QL3trkIsoFiltered0p09
HLT-IsoTkMu22 hltL3fL1sMu20L1f0Tkf22QL3trkIsoFiltered0p09
HLT-IsoMu22-eta2p1 hltL3crIsoL1sSingleMu20erL1f0L2f10QL3f22QL3trkIsoFiltered0p09
HLT-IsoTkMu22-eta2p1 hltL3fL1sMu20erL1f0Tkf22QL3trkIsoFiltered0p09

HLT triggers for muon 20. < pT ≤ 23.
HLT trigger Filters to match

HLT-IsoMu19-eta2p1-
LooseIsoPFTau20

hltL3crIsoL1sMu18erTauJet20erL1f0L2f10QL3f19QL3trkIsoFiltered0p09
or hltOverlapFilterIsoMu19LooseIsoPFTau20
hltPFTau20TrackLooseIsoAgainstMuon
or hltOverlapFilterIsoMu19LooseIsoPFTau20

HLT-IsoMu19-eta2p1-
LooseIsoPFTau20-
SingleL1

hltL3crIsoL1sSingleMu18erIorSingleMu20erL1f0L2f10QL3f19QL3trkIso-
Filtered0p09 or hltOverlapFilterSingleIsoMu19LooseIsoPFTau20
hltPFTau20TrackLooseIsoAgainstMuon
or hltOverlapFilterSingleIsoMu21LooseIsoPFTau20

Table B.1: HLT triggers with filters to match. Muon filters to match are colored in purple and
tau filers in blue.

Section 4.3
tight WP tau
MVA isolation
ID

byTightIsolationMVArun2v1DBoldDMwLT

Section 4.4
pileup distribu-
tions

They are calculated for "Moriond17" data processing and saved in 800 bins his-
tograms (for data and MC) in 0<NPU<80 range (NPU is a number of primary
vertexes).

loose anti-
electron

againstElectronMVAVLoose

tight anti-muon againstMuonTight3
weights in the
analysis

Muon tracking weight is m_trk_ratio and muon trigger
weights are m_trgMu22OR_eta2p1_desy_ratio (pµ

T > 23.) or
m_trgMu19leg_eta2p1_desy_ratio ( 20. < pµ

T ≤ 23.) from
htt_scalefactors_v16_5.root file. The cross trigger weight
is t_genuine_TightIso_mt_ratio (for 20. < pµ

T ≤ 23.) from
htt_scalefactors_sm_moriond_v2.root file. Both files are from CMS Correc-
tion Workspace repository.

Lepton ID scale
factors

The values of corrections applied are taken out of the CMS Correction Workspace
repository. The muon ID weight used is taken as m_idiso0p15_desy_ratio value
from htt_scalefactors_v16_5.root file.

Z boson is recon-
structed

The reconstruction is the same as for boson pT value (full and visible) and jet multi-
plicity row in the previous table.

weights are pre-
sented in Fig.
4.2

These are taken from zpt_weight_nom variable from
htt_scalefactors_v16_5.root file in CMS Correction Workspace reposi-
tory.

Section 4.5
partons is a number of particles in the event with status=1 and pdgID ∈ {21, 1, 2, 3, 4, 5}.

Particles are taken out of the externalLHEProducer collection.
leptons Leptons are taken out of the externalLHEProducer collection here as well. If

there is a different number of leptons then two than the invariant mass is set to
zero.
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Appendix C

Control plots

The reference plots from official H → τµτh CMS analysis [82] and after the global fit
are given (for all analysis categories) in Fig. C.1, C.2 and C.3
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Figure C.1: Observed and predicted 2D distributions in the 0jet category of the µτh decay
channel. The normalization of the predicted background distributions corresponds to the
result of the global fit. The signal distribution is normalized to its best fit signal strength.
The background histograms are stacked. The "Others" background contribution includes
events from diboson and single top quark production, as well as Higgs boson decays to a
pair of W bosons. The background uncertainty band accounts for all sources of background
uncertainty, systematic as well as statistical, after the global fit. The signal is shown both as

a stacked filled histogram and an open overlaid histogram. [82]
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Figure C.2: Observed and predicted 2D distributions in the boosted category of the µτh decay
channel. The description of the histograms is the same as in Fig. C.1 [82]
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Figure C.3: Observed and predicted 2D distributions in the vbf category of the µτh decay
channel. The description of the histograms is the same as in Fig. C.1. [82]
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Appendix D

Features list

Name Meaning
svfmass pair SVFit mass
svfpt pair SVFit transverse momentum
svfmassErr error of SVFit mass
svftransverseMass SVFit transverse mass
svftransverseMassErr error of SVFit transverse mass
pth Higgs boson visible transverse momentum (leption pair +

MET)
ptvis leption pair transverse momentum
m_vis leption pair visible mass
mt lepton pair transverse mass
mjj mass of the pair of leading jets (Nan if njets < 0)
njets number of jets
njetsingap number of jets between (in η) the pair of leading jets
jjdr ∆R for two leading jets
mu_pt muon transverse momentum
mu_phi muon azimuthal angle
mu_eta muon pseudorapidity
mu_mt muon transverse mass
mu_d0 muon displacement from PV in x− y plane
mu_dz muon displacement from PV in z-axis (beam-axis)
mu_isLooseMuon muon loose ID
mu_isTightMuon muon tight ID
mu_isHighPtMuon muon high−pT ID
mu_isMediumMuon muon medium ID
mu_iso muon isolation
mu_charge muon charge
tau_pt tau transverse momentum
tau_phi tau pseudorapidity
tau_eta tau azimuthal angle
tau_mass tau mass
tau_energy tau energy
tau_decayMode tau decay mode
tau_charge tau charge
tau_mt tau transverse mass
tau_d0 tau displacement from PV in x− y plane
tau_dz tau displacement from PV in x-axis
tauID_1 byCombinedIsolationDeltaBetaCorrRaw3Hits tau ID
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tauID_2 chargedIsoPtSum tau ID
tauID_3 neutralIsoPtSum tau ID
tauID_4 puCorrPtSum tau ID
tauID_5 footprintCorrection tau ID
tauID_6 photonPtSumOutsideSignalCone tau ID
tauID_7 againstElectronMVA6Raw tau ID
tauID_8 againstElectronMVA6category tau ID
tauID_9 byIsolationMVArun2v1DBdR03oldDMwLTraw tau ID
tauID_10 byIsolationMVArun2v1DBoldDMwLTraw tau ID
tauID_11 byIsolationMVArun2v1PWdR03oldDMwLTraw tau ID
tauID_12 byIsolationMVArun2v1PWoldDMwLTraw tau ID
mat_pt MET transverse momentum
met_phi MET azimuthal angle
met_eta MET pseudorapidity
met_px MET px
met_py MET py
bptag_1 leading jet pfJetBProbabilityBJetTags discriminator
bptag_2 sub-leading jet pfJetBProbabilityBJetTags discriminator
csvtag_1 leading jet pfCombinedInclusiveSecondaryVertexV2BJetTags

discriminator
csvtag_2 sub-leading jet pfCombinedInclusiveSecondaryVer-

texV2BJetTags discriminator
jet_energy_1 leading jet energy
jet_energy_2 sub-leading jet energy
jet_eta_1 leading jet pseudorapidity
jet_eta_2 sub-leading jet pseudorapidity
jet_phi_1 leading jet azimuthal angle
jet_phi_2 sub-leading jet azimuthal angle
jet_pt_1 leading jet transverse momentum
jet_pt_2 sub-leading jet transverse momentum
delta_mu_tau u deltaR(mu,tau)
delta_mu_met deltaR(mu,met)
delta_tau_met deltaR(tau,met)
delta_mu_tau_met deltaR(mu,tau,met)

Table D.1: Features used in Machine Learning based analysis
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Appendix E

Statistics

In HEP Higgs analyses a usual way of dealing with significance computation starts
with defining the a hypotheses [165]:

• null hypothesis H0, where we assume the observed (discriminating variables)
distributions stems from existence of only background;

• alternative hypotheses H1, where there exists an addition of a signal events con-
tributing to the observed phenomena.

The likelihood-ratio based hypothesis test [166] between those two hypotheses can
be performed. The Neyman–Pearson lemma states that the most powerful test statis-
tics in such scenario is:

Q(~x) =
L(~x|H1)

L(~x|H0)
, (E.1)

where L is a probability density function for the distribution of (possibly multi-
dimensional) discriminating variable ~x = xj. In the case of number-counting ex-
periment, the likelihood of getting n events is given by the Poisson distribution. If
additionally the distribution of a discriminating observable f (~x) is known (and de-
termined for every event j), then total likelihood can be factorized [167]:

Q(~x) =
Pois(n|s + b)∏n

j=1 fs+b(xj)

Pois(n|b)∏n
j=1 fb(xj)

. (E.2)

Assuming no interference between signal "s" and background "b" events, the dis-
tribution for alternative hypothesis can be written down as: fs+b(x) = [s fs(x) +
b fb(x)]/(s + b).

Finally, Eq. E.2 can be further extended, taking into account different contribu-
tions N (“channels”), e.g. different event topology selections, data taken at different
center-of-mass energies or data collected in different experiments:

Q(~x) =
∏N

k=1 Pois(n|s + b, k)∏n
j=1 fs+b(xj, k)

∏N
k=1 Pois(n|b, k)∏n

j=1 fb(xj, k)
.

Substituting the actual functions we have:

Q(~x) =
∏N

k=1(exp[−sk − bk](sk + bk)
nk /nk!)∏n

j=1[sk fs(xj, k) + bk fb(xj, k)]/(sk + bk)

∏N
k=1(exp[−bk](bk)nk /nk!)∏n

j=1 fb(xj, k)
,
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where s and b are the number of signal and background events. The above equation
can be simplified into:

Q(~x) =
∏N

k=1(exp[−sk])∏n
j=1[sk fs(xj, k) + bk fb(xj, k)]

∏N
k=1 ∏n

j=1 bk fb(xj, k)
=

N

∏
k=1

exp[−sk]
n

∏
j=1

[
1 +

sk fs(xj, k)
bk fb(xj, k)

]
.

(E.3)
The usage of t(~x) = −2 log Q(~x) statistics is convenient, since its value grows

together with incompatibility between data and (~x) [168]. Substituting in Eq. E.3 we
have:

t(~x) = −2

{
−

N

∑
k=1

sk +
n

∑
j=1

log
[

1 +
sk fs(xj, k)
bk fb(xj, k)

]}
Let us suppose we only have one channel (e.g. 0jet). The expression above can

be simplified into:

t(~x) = −2

{
−s +

n

∑
j=1

log
[

1 +
s · fs(xj)

b · fb(xj)

]}

Furthermore, let the fs/b describe the discriminating variable (e.g. the score)
p.d.f. that is given in a form of two-bins histogram (for score w ≤ 0.5 and w > 0.5).
Then we have:

t(~x) = −2

{
−s + ∑

events(w≤0.5)
log
[

1 +
s · fs,1

b · fb,1

]
+ ∑

events(w>0.5)
log
[

1 +
s · fs,2

b · fb,2

]}

From now on we will follow the convention adopted in [168], and define the
"Asimov data set", as the one for which the estimators evaluation for all parameters
end up in obtaining their true values. Thanks to doing that it is possible to estimate
(the median) significance using a single representative (MC) dataset, instead of an
ensemble of simulated datasets. For the Asimov dataset, the observed number of
events n is equal to the simulated (expected) sum of the signal and background,
namely

n = s + b.

Further, since fs/b is p.d.f. (is normalized into one), we have s · fs,1 = s1, where s1 is
a number of events for which w ≤ 0.5. This reasoning works for all fs/b, therefore
we have:

t(~x) = −2
{
−s + (s1 + b1) log

[
1 +

s1

b1

]
+ (s2 + b2) log

[
1 +

s2

b2

]}
The generalization of this equation for arbitrary number of fs/b distribution bins

can be written as:

t(~x) = −2

{
−s + ∑

x bins
(si + bi) log

[
1 +

si

bi

]}
= −2 ∑

x bins

{
−si + (si + bi) log

[
1 +

si

bi

]}
The Taylor expansion of this formula for y = s

b around y = 0 gives:
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t(~x) = − ∑
x bins

2bi {−yi + (yi + 1) log [1 + yi]} ∼ − ∑
x bins

2bi

{
0 +

yi

1!
∗ 0 +

y2
i

2!
∗ 1
}

= ∑
x bins

{
s2

i
bi

}
Finally for a sufficiently large b, the significance S can be approximated by the

formula [168]:
S =
√

t,

hence:

S =

√√√√2

{
∑

x bins
−si + (si + bi) log

[
1 +

si

bi

]}
,

or in the Taylor-expanded form:

S =

√√√√ ∑
x bins

{
s2

i
bi

}
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