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RESUMO

O Modelo Padrão (SM) da física de partículas teve numerosos sucessos na previsão de
resultados experimentais. Apesar disso, a maioria dos físicos de partículas acreditam
que o SM não é a teoria final para as interações fundamentais, mas uma teoria efetiva
válida apenas em alguma escala de baixa energia. Isso significa que deveria haver física
além do SM (BSM). Uma das razões para esta crença é o problema da hierarquia, ou
seja, porque a massa de Higgs é muito inferior à escala de Planck. Existem algumas
soluções para este problema, como supersimetria, dimensões extras e o Higgs composto.
O Higgs composto é uma das soluções mais exploradas para o problema de hierarquia
atualmente. Esse modelo estende as simetrias do SM e gera o campo de Higgs como um
bóson pseudo-Nambu-Goldstone composto, gerado por uma quebra de simetria. Essa
quebra pode gerar diversos campos de Higgs, como singletos e dubletos. Esta dissertação
faz uma abordagem abrangente do Modelo Composto de Higgs, com foco principal na
construção do modelo e no Higgs Composto Mínimo como principal exemplo. O primeiro
capítulo define e discute o Problema da Hierarquia. O segundo capítulo fornece uma
revisão completa do mecanismo de Higgs, começando pelos fundamentos da invariância
da simetria de calibre e progredindo até a quebra de simetria eletrofraca e as massas dos
bósons de calibre. O capítulo três investiga as discussões formais em torno do mecanismo
de Higgs a partir de uma perspectiva da teoria de grupos. Finalmente, o capítulo quatro
apresenta detalhadamente a construção do Higgs composto, com o modelo mínimo servindo
como exemplo concreto.

Palavras-chave: física de partículas; modelo padrão; problema da hierarquia; bóson de
higgs; higgs composto.



ABSTRACT

The Standard Model (SM) of particle physics has had numerous successes in predicting the
results of experiments. Despite this, most particle theorists believe it is not the final theory
for the fundamental interactions but an effective theory valid only at some low energy
scale. This means that there should be physics beyond the SM (BSM). One of the reasons
for this belief is the hierarchy problem, i.e., why the Higgs mass is so much lower than the
Planck scale. There are a few solutions to this problem, such as supersymmetry, extra
dimensions, and the Composite Higgs. The composite Higgs is one of the most explored
solutions to the hierarchy problem nowadays. This model extends the SM symmetries and
generates the Higgs field as a composite pseudo-Nambu-Goldstone Boson generated by
a symmetry breaking. This breaking can generate several Higgs fields, such as singlets
and doublets. This thesis takes a introductory approach to the Composite Higgs Model,
with a primary focus on the model’s construction and the Minimal Composite Higgs as a
prime example. The first chapter defines and discusses the Hierarchy Problem. The second
chapter provides a thorough review of the Higgs mechanism, starting from the basics of
gauge symmetry invariance and progressing to Electroweak Symmetry Breaking and the
masses of gauge bosons. Chapter three delves into the formal discussions surrounding
the Higgs mechanism from a group theory perspective. Finally, chapter four presents the
composite Higgs construction in detail, with the minimal composite Higgs serving as a
concrete example.

Keywords: particle physics; standard model; hierarchy problem; higgs boson; composite
higgs.
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Chapter 1

INTRODUCTION

1.1 Why should we go beyond?

No one can deny that the SM has had an immense number of successful prediction,
in excellent agreement with experimental results. However, some observations can not be
explained using only the SM, such as dark matter, dark energy, neutrino oscillations, and
the hierarchy problem. The SM is not a final theory of fundamental particles and their
interactions; it is “just” an effective theory, i.e., there is no reason for it to be valid at a
high energy limit, and we expect it not to be!

In order to understand why the SM is an effective theory, one can simply recall
that a complete description of gravity is absent in this theory. More precisely, a partial
description of quantum gravity at a perturbative level can be used when the gravitational
field is not too intense. However, this approach breaks down at the Planck mass scale
E ≳ 4πMP ⋍ 1019 GeV, when gravity becomes significant even at the quantum level.
Some new physics must appear at last at scales of MP order to overcome the perturbative
limit, giving rise to a “true” elementary quantum gravity theory. We can denote by ΛSM

the maximum energy scale up to which the Standard Model is a reliable effective theory,
and we then have ΛSM ≲MP .

The example of Quantum Gravity discussed earlier illustrates the effective nature of
the Standard Model (SM). However, it does not imply that the theory’s cutoff is necessarily
at the Planck scale. In fact, we expect the cutoff to be much lower than the Planck scale,
because otherwise one would have to face other difficulties related to electroweak symmetry
breaking, as explained in what follows.

As an effective description, the SM Lagrangian is calculated at the scale ΛSM by
integrating out the contributions from higher energy dynamics. The surviving terms
in the Lagrangian are those that respect fundamental principles such as the SU(3)C ×
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SU(2)L × U(1)Y (the SM gauge group), and Lorentz invariance. However, beyond these
invariances, there is little guidance regarding the precise form the Lagrangian should
take. One characteristic we do know must be satisfied is that all terms in the Lagrangian
must have the correct dimension, denoted as [L] = E4, with ΛSM being the only relevant
scale. Consequently, any SM operator must be proportional to 1/(ΛSM)d−4, with d being
the operator’s energy dimension, enabling us to classify operators based on their energy
dimensions. When constructing models with predictive power, it is crucial to consider the
dimensions of operators. Operators with dimension d > 4 correspond to non-renormalizable
operators which must be suppressed by some factors of the scale of ΛSM. Operators with
dimension d = 4 describe most aspects of SM fields and define a renormalizable theory.
However, it is worth examining operators with dimension d = 2 more closely.

In the SM, there is only one operator with dimension d = 2, the Higgs mass term.
Since each Higgs field has a dimension of one in energy, the operator must be enhanced by
Λ2

SM [2], in order to have the correct dimension. Mathematically, this can be expressed as

cΛ2
SMH

†H, (1.1.1)

where “c” represents a coefficient. The Higgs mass term holds a significant role in Elec-
troweak Symmetry Breaking (EWSB), as it controls the scale of EWSB and, consequently,
the mass of all the particles interacting with the Higgs. Following the discovery of the
Higgs boson, we know that its mass, mH , is approximately 125 GeV. This mass value leads
to the mass term being µ2 = m2

H/2 = (85 GeV)2. If we assume that the cutoff of the SM
model lies at the Planck scale, we encounter a lack of naturalness in the Higgs mass term

c =
µ2

Λ2
SM

∼ 10−28 ≪ 1. (1.1.2)

There is no apparent reason for this to occur, and it gives rise to what is known as the
hierarchy problem1. In the next section, we will discuss this issue in more detail, shedding
light on why we should expect new physics below the Planck scale.

1.2 The Hierarchy Problem

In the preceding section, we briefly touched upon the hierarchy problem without
delving into its intricacies. Nevertheless, it holds significant relevance as the driving force
behind this dissertation. In this section, we aim to elucidate the origin of this problem and

1 The naturalness problem, and therefore the Hierarchy problem, may be just a pseudo-problem,
meaning that it can be just a coincidence that the parameter is in the way it is. There are also exciting
anthropic explanations, which may involves a Multiverse hypothesis, [3, 2] that do not need new physics
to solve the problem.
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present potential resolutions. As one might surmise, our primary focus will revolve around
the Composite Higgs Model as a viable solution; alternative approaches are explored in
the literature (see e.g. [4, 3]).

To better understand the hierarchy issue, let us consider a scenario where humanity
possesses complete knowledge of the final nature theory, encompassing all interactions and
particles. This all-encompassing theory, which includes the electroweak interaction and the
electroweak symmetry breaking (EWSB) delivered by the Higgs boson, must accurately
predict the mass-term of the Higgs field, denoted as µ2. The Higgs boson mass can be
expressed as m2

H = 2µ2. Assuming the Higgs mass depends on energy and on the other
parameters “ptrue” of this fundamental theory, one has[2]

m2
H =

∫ ∞

0

dE
dm2

H

dE
(E; ptrue), (1.2.1)

where, the integration is performed over a range of energy values, which is necessary to
account for contributions across the entire energy scale. This integration should encompass
the energy scale from zero to infinity or at least extend up to a very high cutoff imposed
by this hypothetically more fundamental theory.

The continuous integration region allows us to divide the integral into two parts.
The first part involves integrating up to the cutoff energy of the Standard Model (SM),
while the second part covers the remaining energy range. Mathematically

m2
H =

∫ ΛSM

0

dE
dm2

H

dE
(E; ptrue) +

∫ ∞

ΛSM

dE
dm2

H

dE
(E; ptrue)

= δSMm
2
H + δBSMm

2
H . (1.2.2)

The term δBSMm
2
H represents an unknown contribution from energies equal to or higher

than ΛSM. On the other hand, the term δSMm
2
H originates from virtual particles below

the cutoff energy, and their behavior is assumed to be well described by the SM. Before
identifying the specific BSM theory, we cannot make any definitive statements about
δBSMm

2
H . However, we can estimate δSMm

2
H by considering the diagrams depicted in

Figure (1.1), where only the most relevant contributions are considered, allowing us to
derive a reasonable approximation. This calculation gives rise to [2, 3, 4]

δSMm
2
H =

3y2t
8π2

Λ2
SM − 3g2W

8π2

(
1

4
+

1

8 cos2 θW

)
Λ2

SM − 3λ

8π2
Λ2

SM, (1.2.3)

where yt is the Yukawa coupling, gW is a coupling related to the electroweak theory,
θW is the Weinberg angle, and λ is the self coupling of the Higgs field2. The previous
contributions arise from the top quark, gauge bosons and Higgs self-coupling, respectively.

2 All of these parameters are going to be explained in details in the following chapters.
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Figure 1.1: Diagramically representation of the Higgs boson mass corrections, delivered
by the top quark, gauge boson, and self-coupling, respectively. The yt is the Yukawa
coupling between the Higgs boson and the quark top, the gW is the Higgs coupling to the
electroweak gauge bosons, and the λ is the Higgs self coupling.

Quantum loop correction to the Higgs mass due to the SM goes quadratically with the
ΛSM , and, therefore, if ΛSM ≫ 125 GeV, the corrections would be bigger than the Higgs
mass itself since mH = 125 GeV. The hierarchy problem becomes evident from this point of
view. We must recognize that we are dealing with this calculation solely in the low-energy
limit to address this issue. Considering the low-energy regime, we can overcome the
divergence problem associated with the quadratic divergences.

Now, the hierarchy problem becomes evident. The “true” mass term receives two
contributions that are entirely unrelated due to the stark difference in their energy scales.
Suppose the value of ΛSM is large. In that case, the second contribution must be just as
significant as the first one, with an opposite sign, to reproduce the Higgs boson’s light
mass in the SM, as shown in Eq. (1.2.2). In other words, δBSMm

2
H ⋍ −δSMm

2
H . A measure

of fine-tuning can quantify this cancellation between the two contributions, denoted as ∆

[2]:

∆ ≥ δSMm
2
H

m2
H

=
3y2t
8π2

(
ΛSM

mH

)2

⋍

(
ΛSM

450 GeV

)2

. (1.2.4)

The dominance of the top contribution is considered, as the Yukawa coupling plays a
significant role compared to the other terms present in Eq. (1.2.3).

The problem becomes even more evident when we consider a scenario where the
SM is assumed to be valid at very high energy scales, i.e., ΛSM ≳ 1015. In this case, the
fine-tuning measure is estimated to be ∆ ⋍ 1024. This implies that in order to achieve the
required cancellation in the “true” theory description for the Higgs boson mass mH , the
two contributions must match up to the 24th decimal place. However, expecting such a
precise cancellation between two completely disconnected contributions is highly unlikely.
In essence, a theory plagued by this issue loses its predictive power as it would necessitate
an experiment capable of determining the two mass contributions with an accuracy of
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Figure 1.2: Diagrams representing the Higgs mass-term contribution due to two-loop
corrections delivered by a new heavy fermionic particle coupled to the Higgs indirectly via
SM gauge bosons.

at least 24 decimal places to estimate mH
3. Achieving such a level of precision may be

practically impossible, leading to an inability to comprehend the microscopic origin of
EWSB [2, 4].

The hierarchy problem is not dependent on the chosen renormalization scheme4, and
it goes beyond the issue of canceling divergences. Instead, it arises from the fundamental
challenge of reconciling the vastly different energy scales of electroweak and UV scales
5. Introducing any coupling between the Higgs boson and new physics reintroduces the
quadratic dependence on the energy scale at which the new physics manifests. For instance,
let us consider a new scalar particle that arises from new physics at a scale mS and couples
to the Higgs boson through a four-point interaction. This new scalar interaction leads to
a further contribution in the Lagrangian, ∆L ⊃ λS|H|2|S|2, resulting in a correction to
the Higgs mass, as given by the equation [4]

δm2
H =

λS
16π2

[
Λ2

UV + 2m2
S ln

(
ΛUV

mS

)
+ (higher order cont.)

]
. (1.2.5)

By considering the first term inside the bracket6, we observe that the Higgs mass receives
quadratic contributions due to the presence of new physics scales.

The quadratic sensitivity of the Higgs mass persists even when the new states are
not directly coupled to the Higgs but interact with other fields in the Standard Model.
To illustrate this point, let us consider a pair of heavy fermions, denoted as Ψ, that

3 The Hierarchy problem can be viewed as merely a pseudo-problem, suggesting that any cancellation
may merely be a coincidence, leaving us with no actual issue. However, humanity is at a standstill because
we are unsure of the next steps in the scientific exploration of the physical fundamental nature of the
universe. We face several challenges within the Standard Model, and it is essential to investigate all
possible options to solve them. Therefore, the Hierarchy problem must be thoroughly examined to help us
discover new directions in BSM physics.

4 The claim that the hierarchy problem is a mere renormalization issue or disappears in dimensional
regularization is fallacious in both cases, we are not going to this topic, but the reader can go to [5] to
have more information.

5 Here, we denote the UV scales as high energy scales; the UV means Ultraviolet. IR often denotes low
energy scales, meaning Infra Red [6, 7].

6 Repare, there is no physical reason to do it but it is done for the sake of argument.
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are charged under the SM group but do not have direct couplings to the Higgs. Due
to the interaction between the gauge bosons and these new fermions, the Higgs mass
term will acquire “indirect” contributions from diagrams depicted in Figure (1.2). These
contributions lead to [4]

δm2
H ∼

(
g2

16π2

)2 [
aΛ2

UV + 48m2
F ln

(
ΛUV

mF

)
+ (higher order cont.)

]
, (1.2.6)

which has the same form of Eq. (1.2.5), showing again the quadratic sensitivity to a new
physics.

With the arguments presented, we can rewrite the hierarchy problem as follows:
“The hierarchy problem is the issue that the Higgs mass mH is sensitive to any high scales
in the theory, even if it only indirectly couples to the Standard Model” [4]. This lack of
naturalness can be addressed by constraining the scale of new physics to ΛSM ∼ few TeV,
which results in a fine-tuning parameter of ∆ ∼ 10. This implies a cancellation of only
one digit between the SM and BSM quantum corrections. Consequently, this new physics
should be within the reach of current or near-future collider experiments7. In this scenario,
the SM cutoff eliminates the large loop contribution from above the TeV scale.

Once the issue involving the Hierarchy problem is clear, an attentive reader may ask:
why do we attribute the problem only to the Higgs boson mass but not to the fermions
and gauge bosons?. The reason is that fermions and gauge bosons have protections against
large quantum corrections, which are suppressed by their small tree-level mass parameter.
The fermion protection arises from the chiral symmetry in the massless limit. For gauge
bosons, the protection is due to the restoration of gauge symmetry in the massless limit
[4]. This protection leads to logarithmic corrections in the cutoff scale of the theory, Λ,

∆me ∼ me ln

(
Λ

me

)
(1.2.7)

∆M2
W ∼ M2

W ln

(
Λ

MW

)
. (1.2.8)

This absence of quadratic divergences in the loop correction of fermion masses is a good
hint towards the idea of Composite Higgs Model (CHM). Instead of being an elementary
field, suppose the Higgs is a composite of a new bunch of heavy fermions, or gauge bosons,
delivered by a new strong sector. In that case, the divergences do not appear in a quadratic
power. The composite Higgs we are going to deal with is about this assumption. In the
following chapters, we will treat this topic more deeply.

7 Therefore, the naturalness is restored.
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Chapter 2

THE HIGGS MECHANISM

This chapter is dedicated to elucidating the Higgs Mechanism within the SM. The
mechanism serves the purpose of upholding a fundamental principle known as local gauge
invariance, which we shall revisit and explore in the first section bellow.

2.1 Gauge theories

We embark on our exploration of the Higgs Mechanism by delving into gauge
symmetries, a concept that underpins the foundation of the Standard Model of particle
physics. Symmetries are so crucial in particle physics that it is possible to resume all
interactions as a resulting junction of symmetries and dynamics, as Figure 2.1 shows. There
are two types of symmetries that are foundations of the Standard Model: space-time and
gauge symmetries. Here, we will delve into just the gauge case. Extensive literature exists
on this topic, with notable references including [8, 9, 10] for a comprehensive overview,
and [11, 6] for a more in-depth and didactic approach. We will start our discussion by the
most straightforward case we can: the abelian model.

2.1.1 Abelian gauge theory

In particle physics, quantum field theory, or even classical mechanics, symmetries or
invariances in physical systems are associated with the conservation of specific quantities1.
For instance, a system that exhibits translation invariance leads to the conservation of
momentum. In contrast, invariance under time displacements and rotations correspond to
energy conservation and angular momentum, respectively.

1 In this context, it is assumed that the reader possesses a certain familiarity with the concepts of field
theory and particle physics. Prior knowledge of these subjects will significantly aid in comprehending the
following discussion.
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Figure 2.1: The basic structure of the SM. The symmetries and dynamics lays in the
core of the theory, then, putting together in the Lagragian, giving rise to the interactions
representated by the “O’s”. Image from [12].

These conservation laws are well-established principles derived from Noether’s
theorem. To provide an understanding of this theorem, we will briefly discuss it. Our
starting point is writing down the system’s action.

S =

∫
d4xL (ϕi, ∂µϕi) . (2.1.1)

Consider the field behaving like ϕi → ϕi + δϵϕi under some transformation, linearly
depending on N parameters ϵA. If the system remains unchanged under the transformation,
the action must change at most by a total derivative [13]

δϵS =

∫
d4x∂µW

µ (2.1.2)

with W µ being a linear function of ϵA. Under this assumption, it is possible to verify the
existence of a conserved current [7], defined by

jµ(ϵ) =
∂L

∂ (∂µϕi)
δϵϕi −W µ, (2.1.3)

respecting

∂µj
µ =

[
∂µ

(
∂L

∂ (∂µϕi)

)
− ∂L
∂ϕi

]
δϵϕi ≈ 0. (2.1.4)

Therefore, we have N conserved currents for each transformation given by ϵA. This is
Noether’s theorem! It is essential to say that the conservation holds on-shell, i.e., where
the classical equations of motions apply [14]. The transformations considered before were
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global, i.e., the transformation parameter does not depend on the space-time coordinates.
We can define a quantity called charge by using the current

Q(ϵ) =

∫
d3xj0(ϵ). (2.1.5)

Integrating Eq. 2.1.4 over the three-space

0 =

∫
d3x∂µj

µ =

∫
d3x∂0j

0 +

∫
d3x∇⃗ · j⃗ = ∂0

∫
d3xj0 +

∮

S

j⃗ · ds⃗

= ∂0Q+ surface term, (2.1.6)

where the divernce theorem was applied. If the fields goes to zero in the infinity, the
surface term goes to zero, leading to [15]

Q̇(ϵ) = 0. (2.1.7)

Conservation of a certain charge is then a direct consequence of the existence of symmetry
in the physical system.

Noether’s theorem establishes a profound connection between symmetries and
conservation laws, stating that “every differentiable symmetry of the action of a physical
system with conservative forces has a corresponding conservation law”. As we progress
further, we will draw upon concepts from group theory, making it crucial to understand
symmetries within our context clearly. We will discuss this in more detail in what follows

In field theory there are two types of symmetries: internal symmetry and space-time
symmetry2. Unlike space-time symmetries, internal symmetries do not involve fields with
varying space-time properties. There are two types of internal symmetries: global and local
symmetries. To illustrate what a global symmetry is, let us consider the Lagrangian for
the free electron, denoted by the field ψ, which is described by the following Lagrangian3

Lfree = iψ̄γµ∂
µψ −mψ̄ψ. (2.1.8)

Here, ψ represents a four-component spinor, with each component representing an inde-
pendent field variable, and the γµ denotes the conventional Dirac matrices. For further
reference on the notation used, please consult the notation and convention adopted.

One can perform a phase transformation on the field, given by

ψ(x) → eiαψ(x), (2.1.9)
2 As discussed in the refs. [11, 13]
3 By applying the Euler-Lagrange equation in this Lagrangian, the world wide famous Dirac equation

is obtained [7].
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where α is a real constant. This transformation belongs to a family of phase transformations
represented by the unitary Abelian group U(1), denoted as U(α) = eiα [6]. The U(1) group
comprises all possible phase transformations parametrized by the real constant α. The
U(1) gauge transformation does not induce any change in the electron’s Lagrangian, Eq.
(2.1.8). We can demonstrate the invariance by considering the transformed Lagrangian,
denoted as L′

free, as follows

L′
free = ψ̄′γµ∂µψ

′ −mψ̄′ψ′, (2.1.10)

where ψ′ is the transformed field, i.e., ψ′ = U(α)ψ. Expanding this expression, we find

L′
free = e−iαψ̄γµ(eiα∂µψ)−me−iαψ̄(eiαψ)

= e−iαeiαψ̄γµ∂µψ −me−iαeiαψψ̄. (2.1.11)

Since eiα and e−iα cancel out in each term, we obtain

L′
free = iψ̄γµ∂µψ −mψ̄ψ. (2.1.12)

Notice that the transformed Lagrangian, L′
free, is equivalent to the original Lagrangian,

Lfree, indicating that the Lagrangian remains invariant under the U(1) gauge transforma-
tion, confirming that there is an U(1) internal symmetry.

When the transformation parameter, α, remains constant, it indicates that the
field undergoes the same transformation at all points in space-time, referred to as a global
symmetry. Now, let us consider the scenario where these transformations become local,
meaning that the transformation parameter becomes a function of position, α → α(x). In
this case, different points in space-time experience distinct transformations. If we apply a
local U(1) transformation to the field

ψ(x) → eiα(x)ψ(x) (2.1.13)

the Lagrangian takes on the form

L′
free = ψ̄′γµ∂µψ

′ −mψ̄′ψ′ (2.1.14)

= e−iα(x)ψ̄γµ∂µ(e
iα(x)ψ)−me−iα(x)ψ̄(eiα(x)ψ). (2.1.15)

Since the transformation parameter depends on the position, it will not be “transparent”
to the derivative, thus

∂µ(e
iα(x)ψ) = eiα(x)∂µψ + ieiα(x)ψ∂µα. (2.1.16)
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This new expression will break the U(1) invariance of the lagrangian, explicitly

L′
free = e−iα(x)eiα(x)ψ̄γµ∂µψ −me−iα(x)eiα(x)ψψ̄ + ie−iα(x)eiα(x)ψ̄γµψ∂µα

=
(
iψ̄γµ∂µψ −mψ̄ψ

)
+ iψ̄γµψ∂µα. (2.1.17)

The term between parenthesis is just the original Lagrangian, therefore

L′
free = Lfree + iψ̄γµψ∂µα, (2.1.18)

and we see that there is an extra term spoiling the Lagrangian gauge invariance.

What occurs when we attempt to restore gauge invariance in the local U(1) trans-
formation? This question is intriguing, as imposing local gauge invariance does not have a
direct physical significance. Still, intriguing consequences can emerge from doing so. To
embark on this task, we can recognize that the additional term in Eq. (2.1.18) originates
from the derivative. Hence, modifying the derivative is the most straightforward approach
to restoring gauge invariance. We denote this modified derivative operator as Dµ, which
must satisfy the following condition to preserve the Lagrangian’s invariance,

Dµψ → eiα(x)Dµψ. (2.1.19)

Because it transforms in the same way as the field, we call this operator a covariant
derivative. We must introduce in the derivative a new field with transformation properties
that eliminate the extra term. The construction that accomplishes this is given by

Dµ ≡ ∂µ − ieAµ. (2.1.20)

Here, the “auxiliary” field Aµ is introduced as a clever technique to restore gauge sym-
metry. Its purpose is to be constructed in a way that ensures the field undergoes U(1)
transformations, transforming like

Aµ → Aµ +
1

e
∂µα. (2.1.21)

The subsequent transformation rule for the field Aµ, referred to as a gauge field,
effectively eliminates the term that compromises local gauge invariance. Additionally,
including the covariant derivative and Eq. (2.1.21) introduces novel characteristics to
the Lagrangian. To observe this, let us combine all the components of the newly gauge-



2 THE HIGGS MECHANISM 22

transformed Lagrangian in Eq. (2.1.8),

L = iψ̄γµD
µψ −mψ̄ψ

= ψ̄γµ(∂µ − ieAµ)ψ −mψ̄ψ

= Lfree − ieψ̄γµAµψ. (2.1.22)

By examining this equation, we can confirm its local gauge invariance. The transformed
free Lagrangian includes an additional term, Eq. (2.1.18), which will be nullified as a
result of the gauge field transformation,

L′
free = Lfree + iψ̄γµψ∂µα− ieψ̄γµ

(
Aµ +

1

e
∂µα

)
ψ

= Lfree + iψ̄γµψ∂µα− iψ̄γµψ∂µα− ieψ̄γµAµψ

= Lfree − ieψ̄γµAµψ. (2.1.23)

The additional term in the last equation signifies that the field Aµ plays a significant
physical role rather than a mere mathematical artefact. It will engage with the electron
field, leading to observable effects. We can also introduce a kinetic term4 that is invariant
under the field transformation, Eq. (2.1.21), to impart dynamics to this field Aµ. The sole
entity that fulfills all the requirements associated with the field Aµ is

Fµν = ∂µAν − ∂νAµ. (2.1.24)

The term above corresponds to the field strength tensor, which appears in the covariant
formulation of electromagnetism. We can identify the field Aµ as the photon field. Inter-
estingly, through the imposition of local gauge invariance, a new field emerges, and in the
case of the electron, we obtain the electromagnetic field as a bonus. This showcases the
remarkable potential of gauge symmetry. By demanding local gauge invariance, we can
construct an interacting field theory. The final Lagrangian we obtain for the electron is
the Quantum Electrodynamics Lagrangian (QED)

LQED = ψ̄ (iγµD
µ −m)ψ − ieψ̄γµAµψ − 1

4
FµνF

µν . (2.1.25)

This is the construction of the QED as an abelian gauge theory5.

In the Lagrangian formulation of Quantum Field Theory (QFT), the term associated
with mass is quadratic in the field. In the case of the QED Lagrangian, the electron’s
mass term is represented by (mψ̄ψ), which is absent in the Lagrangian for the photon

4 To be considered acceptable, this dynamical term must maintain both gauge and Lorentz invariance.
5 The term “abelian” is used to describe the U(1) group’s character, which refers to its commutative

nature. In an abelian group, the order of the group elements does not affect the result of their multiplication.



2 THE HIGGS MECHANISM 23

field. It is widely understood that the photon is massless6. However, even if it did possess
mass, it would not be possible to describe it within a gauge invariant Lagrangian. A mass
term of the form

Lγ−mass =
1

2
m2AµAµ (2.1.26)

violates local gauge invariance since

AµAµ →
(
Aµ +

1

e
∂µα

)(
Aµ +

1

e
∂µα

)
̸= AµAµ. (2.1.27)

Indeed, local gauge symmetry leads to the emergence of a massless field. This intriguing
characteristic motivates us to introduce the Higgs field, as we will delve into and explain
further in the subsequent chapters.

2.1.2 Non-Abelian gauge theories

Now, let us move on to the discussion of non-abelian gauge theories. Non-abelian
gauge theories are built upon gauge groups that are not abelian, such as SO(N) and
SU(N). These theories are necessary to describe self-interacting fields, which abelian
theories cannot capture adequately.

We will use the theory of the strong interaction among colour charges as an example.
This will lead us to the well-known theory of Quantum Chromodynamics (QCD). The
starting point is to recognize that each quark can be found in three possible states, namely
it can possess a red, green or blue colour charges. Then the quark field can be arranged as
a 3-plet of color fields denoted as qj described by a lagrangian

Lfree = q̄j (iγµ∂
µ −m) qj. (2.1.28)

Next we postulate that the strong interaction does not distinguish between these three
colours, i.e. there is no preferred direction in colour space. We can then perform a “rotation”
in this space without affecting the dynamics. Since this field redefinition must not change
total probabilities (i.e. it must not alter the norm of physical states), it must be described
by an unitary operator. We thus postulate that the theory must be symmetric under
SU(3) transformations given by

q(x) → Uq(x) ≡ eiαa(x)Taq(x), (2.1.29)

where here, U represents an arbitrary 3×3 unitary matrix, and a summation over repeated
Latin indices is applied. The Ta, with a = 1, ..., 8, denotes the eight SU(3) generators, and

6 Actually, the photon mass is subject to an upper limit, as indicated by Mγ < 10−18eV [11]. However,
this value is minimal because the photon can be considered massless in all practical scenarios.
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αa is the local group parameter.

To proceed from Eq. (2.1.29) towards local gauge invariance, we must consider an
infinitesimal transformation and expand the U matrix in Taylor series [6] to apply the
group action on the field. Under this consideration, we can write the unitary matrix U up
to the first order as

U ≡ eiαa(x)Ta ⋍ 1 + iαa(x)Ta, (2.1.30)

where αa(x) are now infinitesimal transformation parameters. Fields and derivatives will
obey

q → (1 + iαaTa)q (2.1.31)

∂µq → (1 + iαaTa)∂µq + iTaq∂µαa. (2.1.32)

It is clear that similar to the U(1) case, the last term hampers gauge invariance. Motivated
by our previous discussion, we are enticed to introduce a gauge field similarly, leading to
the covariant derivative

Dµ = ∂µ + igTaG
a
µ, (2.1.33)

and imposing a field transformation

Ga
µ → Ga

µ −
1

g
∂µα

a, (2.1.34)

to eliminate the additional term. It is crucial to emphasize that the two indices in the field
correspond to the Lorentz index, denoted as µ = 0, ..., 3, and the group index, represented
by a = 1, ..., 8. Consequently, we have eight distinct 4-plet gauge fields that can be
identified as the gluon fields, the strong force mediator.

Putting all the pieces together in the transformed Lagrangian, we obtain

L′ = q̄(iγµD
µ −m)q

= q̄(iγµ∂
µ −m)q − g(q̄γµTaq)G

a
µ. (2.1.35)

This Lagrangian is not invariant due to the part in parenthesis in the last term. This
arises from the non-abelian nature of the SU(3) group, i.e., the group generators do not
commute among themselves. To have a better view of how the last term transforms, we
can apply the transformation

q̄γµTaq → [(1− iαaTb)q̄](γ
µTa)[(1 + iαaTb)q̄]

→ (q̄γµTaq) + iαbq̄γ
µ(TaTb − TbTa)q

→ (q̄γµTaq)− fabcαb(q̄γ
µTcq), (2.1.36)
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where we used the commutation relations between the group generators [6]

[Ta, Tb] = ifabcTc. (2.1.37)

We can now see the root of the problem, and we introduce another term to compensate
for the non-abelian behavior of the generator. The modification is made on the field; it
will transform like

Ga
µ → Ga

µ −
1

g
∂µαa − fabcαbG

c
µ, (2.1.38)

where the last term ensures that 2.1.35 is gauge invariance.

At the end of the day, what we have is the Lagrangian for Quantum Chromodynamics
(QCD), which, including a dynamical term to the gauge field, assumes the form

LQCD = q̄(iγµ∂
µ −m)q − g(q̄γµTaq)G

a
µ −

1

4
Ga

µνG
µν
a , (2.1.39)

where
Ga

µν = ∂µG
a
ν − ∂νG

a
µ − gfabcG

b
µG

c
ν . (2.1.40)

Once again, we observe a modification compared to the abelian model. The strength
tensor now contains an additional term7. When we compute the product of the strength
tensor, cubic and quartic terms involving the gauge field arise,

LQCD ⊃ g“G3” + g2“G4”. (2.1.41)

These terms introduce self-interactions, as depicted in Figure 2.2. Consequently, a non-
abelian theory is inherently a self-interacting theory.

Figure 2.2: Self-interaction of the gluon in QCD. The first diagram is due to the cubic
term in Gµ, and the second arises from the quartic term.

Both the non-abelian and abelian gauge theories encounter a similar challenge:
introducing a mass term disrupts the gauge symmetry. We do have to introduce some

7 The invariant strength tensor is constructed, not just assumed to be a determined form. Reference
[11] reasonably explains the construction of such a quantity in a pretty general approach.
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new mechanism to give mass to the gauge bosons; in the case of photons, it is okay not to
have a mass term8. However, in the gauge boson in electroweak theory, it is different; it
possesses a measurable mass. How can we escape this apparent “nightmare” for the gauge
theories? The Higgs9 has the answer!

2.2 Spontaneous Symmetry Breaking

The previous Section provided a comprehensive overview of local gauge symmetry
and its implications. A remarkable feature is the fascinating emergence of a gauge field
that mediates interactions when enforcing the theory’s invariance. In fact, we consider
local gauge invariance to be a fundamental characteristic of nature.

However, a significant issue arises in the absence of an invariant mass term for the
gauge bosons. This becomes particularly relevant as we observe that gauge bosons have
mass in Weak and Strong interactions. Consequently, a fundamental question emerges.
How can we generate mass for the gauge bosons to account for the observed masses in
the weak and strong interactions? The answer lies in breaking the symmetry. The idea of
breaking the gauge symmetry might sound paradoxical, considering it is a fundamental
feature of nature. Nevertheless, two distinct methods exist to achieve this: explicit and
spontaneous symmetry breaking.

Explicit symmetry breaking is achieved by introducing a new term, by hand, to the
Lagrangian, a therm that breaks the symmetry, so that the total Lagrangian becomes

L = Lsym + Lbreaking. (2.2.1)

However, this method has notable drawbacks. Firstly, we lose a crucial guide when
constructing a Lagrangian theory by abandoning gauge symmetry. Symmetries provide
valuable insights into determining the appropriate form of the terms in the Lagrangian.
Disregarding this principle can lead to ambiguity and uncertainty in the theory’s formula-
tion.

Secondly, a mass term introduced by hande, precesely because it breaks the sym-
metry, can lead to problematic unrenormalizable divergences in the weak and strong
interactions [6]. These divergences can render the theory mathematically inconsistent and
hinder its predictive power.

For these reasons, explicit symmetry breaking, in this context10, proves to be a
8 Since it does not have a measurable mass.
9 The physicist, not the particle.

10 We will see that explicit symmetry breaking is a fundamental tool to construct the Composite Higgs
Model, but it has a different approach than here.
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less promising approach and may not be worth the effort. Therefore, it becomes evident
that spontaneous symmetry breaking presents a viable solution to our problems11. This is
indeed the case, as we will see!

2.2.1 Spontaneously breaking of a global U(1) symmetry

Spontaneous symmetry breaking, also known as hidden symmetry, occurs when the
Lagrangian remains symmetric under certain group transformations, while the physical
vacuum breaks this symmetry [9]. To illustrate this process, let us consider a simple case
with one complex scalar field described by the free Lagrangian

Lfree = ∂µϕ
†∂µϕ− µ2ϕ†ϕ. (2.2.2)

This equation exhibits global U(1) symmetry, i.e., ϕ → eiαϕ. Within this Lagrangian,
there are both a dynamical and a mass term. Now, we can extend this by including
a self-interaction term. The simplest term that respects all the symmetries of the free
Lagrangian is

Lint = −λ
(
ϕ†ϕ
)2
. (2.2.3)

It is crucial to emphasize that the potential

V (ϕ) = µ2
(
ϕ†ϕ
)
+ λ

(
ϕ†ϕ
)2
, (2.2.4)

must be bounded below. This essential condition ensures that the system possesses a
stable ground state. Without this lowest energy level, the system could have negative
energy and exhibit unstable behavior [6]. Incorporating this interaction term, the complete
equation becomes

L = ∂µϕ
†∂µϕ−

[
µ2ϕ†ϕ+ λ

(
ϕ†ϕ
)2]

. (2.2.5)

An important feature can be applied here. The complex scalar field can be parametrized
by two real fields φ1 and φ2, such that

ϕ =
1√
2
(φ1 + iφ2) , (2.2.6)

ϕ† =
1√
2
(φ1 − iφ2) . (2.2.7)

Therefore, the Lagrangian in Eq.(2.2.5) can be rewritten as

L =
1

2
(∂µφ1)

2 +
1

2
(∂µφ2)

2 − µ2

2

(
φ2
1 + φ2

2

)
− λ

4

(
φ2
1 + φ2

2

)2
. (2.2.8)

11 Sadly, not all of our life problems, just the mass term issue.
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In quantum field theories, particles are viewed as excited states of the field. These
excitations manifest as quantized fluctuations around the field’s lowest energy state, known
as the vacuum state. The field’s value in this state is called the vacuum expectation value
(VEV). To ascertain the particle spectra, we expand the potential around its minimum at
the lowest energy state [9], expressed as

V (φ1, φ2) = V (⟨φ1⟩ , ⟨φ2⟩) +
∑

a=1,2

(
∂V

∂φa

) ∣∣∣∣∣
V EV

(φa − ⟨φa⟩)

+
1

2

∑

a,b=1,2

(
∂2V

∂φa∂φb

) ∣∣∣∣∣
V EV

(φa − ⟨φa⟩) (φb − ⟨φb⟩) + ... , (2.2.9)

where ⟨ϕ⟩ = (⟨φ1⟩ ⟨φ2⟩)T is the VEV of ϕ. One can readily observe that the second term of
the expansion becomes zero when the requirement of VEV being a minimum is imposed12.
The mixed derivative of this term can be identified as the mass matrix

∂2V

∂φa∂φb

= m2
ab, (2.2.10)

which can then be diagonalized to identify the system’s mass-eigenstates.

The parameters µ and λ in Eq. (2.2.5) govern the physical properties of the system’s
minimum. When λ > 0 and µ2 > 0, the system exhibits a non-degenerate minimum state,
as illustrated on the left side of Figure 2.3. In this scenario, there is no breaking of the
symmetry. The unique minimum occurs at ⟨φ1⟩ = ⟨φ2⟩ = 0, and the mass matrix is
diagonal

m2
ab =

(
m2 0

0 m2

)
, (2.2.11)

leading to fields with equal mass, with mass eingenvalues of m.

Another possibility for the parameter’s value is that we can make λ > 0 and µ2 < 0.
In this case, the potential becomes

V (φ1, φ2) = −µ
2

2

(
φ2
1 + φ2

2

)
+
λ

4

(
φ2
1 + φ2

2

)2
. (2.2.12)

The potential minimum is obtained by requiring the first derivatives to be zero,

(
∂V

∂φ1

) ∣∣∣∣∣
V EV

= −µ2 ⟨φ1⟩+ λ ⟨φ1⟩
(
⟨φ1⟩2 + ⟨φ2⟩2

)
= 0, (2.2.13)

(
∂V

∂φ2

) ∣∣∣∣∣
V EV

= −µ2 ⟨φ2⟩+ λ ⟨φ2⟩
(
⟨φ1⟩2 + ⟨φ2⟩2

)
= 0. (2.2.14)

12 Actually, the first derivative only ensure that we have a sadle point, and not a mininum but, remember,
we said that the potential is bounded bellow, what ensure that there are a global minimum.
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Figure 2.3: Left: Here µ2 > 0, and no symmetry breaking takes place. Right: The
parameter µ changes, µ2 < 0, and the potential assumes a shape where the vacuum
degenerates; choosing one minimum between many equal ones breaks the symmetry. Image
from [8].

The solutions for these equations, apart from the trivial one where the VEV is zero, are

⟨φ1⟩2 + ⟨φ2⟩2 =
µ2

λ
= v2. (2.2.15)

This equation can be rewritten in terms of the field ϕ

〈
ϕ†ϕ
〉2

=
µ2

2λ
=
v2

2
, (2.2.16)

Figure 2.3, right, illustrates the new potential’s structural representation. The VEV now
forms a circle with a radius denoted by v, as defined in the last equation. This value
results in the spontaneous breaking of the original U(1) symmetry, as the potential must
select a specific vacuum state from the range of possibilities.

Figure 2.4 shows a simple analogy that can clarify this concept. Imagine applying
pressure to a symmetrically positioned needle along its central axis. Initially, the needle
maintains its configuration. However, if the force becomes sufficiently intense, the needle
will bend in a particular direction, causing a breaking in its cylindrical symmetry. The
newly acquired state shares an energy configuration with all other directions, yet predicting
the exact direction of the final state becomes impossible.

Now let us look into what happens with the mass matrix. The second derivatives
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Figure 2.4: Demonstration of spontaneous symmetry breaking in bending a needle. Image
from [6].

of Eq. (2.2.12) with respect to the real fields are given by

∂2V

∂φ2
1

= −µ2 + λ
(
φ2
1 + φ2

2

)
+ 2λφ2

1. (2.2.17)

∂2V

∂φ2
2

= −µ2 + λ
(
φ2
1 + φ2

2

)
+ 2λφ2

2. (2.2.18)

∂2V

∂φ1∂φ2

= 2λφ1φ2. (2.2.19)

Since all the vacuum states are symmetric, we can choose any configuration without losing
generality or physical consequences. Here we pick ⟨φ1⟩ = v and ⟨φ2⟩ = 0. The mass matrix
becomes

m2
12 =

(
2λv2 0

0 0

)
. (2.2.20)

We now realize that the point
〈
ϕ†ϕ
〉
= 0 does not represent the true minimum. In order

to study the field fluctuations, we can translate the field to the real vacuum state, i.e.,〈
ϕ†ϕ
〉
= v2. Two new fields can parameterize the fluctuations around the minima, namely

ξ and η, as in

ϕ(x) =
1√
2
[v + η(x) + iξ(x)] (2.2.21)

One represents the real, and the other the imaginary parts of the fluctuations. It is possible
to rewrite the latter equation by using imaginary exponential and disregarding second and
higher order terms in ξ and η, i.e.

ϕ =

(
v +

η(x)√
2

)
eiξ(x)/

√
2v. (2.2.22)
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Thus, we have a radial and an angular direction in the field vacuum, as shown in Figure
2.5. With the new parameterization, we can write the Lagrangian as follows

Figure 2.5: Potential structure for a complex scalar field with λ > 0 and µ < 0. Image
from [6] with modifications.

L =

[
1

2
(∂µη) (∂

µη) + µ2η2
]
+
1

2
(∂µξ∂

µξ)−λ
√
µ2

λ
η
(
η2 + ξ2

)
−λ
4

(
η2 + ξ2

)2
+
µ4

4λ
. (2.2.23)

The first term in the Lagrangian is nothing more than the Lagrangian for a massive scalar
field η (Klein-Gordon Lagrangian), with mass mη =

√
2µ2. The second term is a kinect

term for a massless field ξ. Meanwhile, the third and fourth are interacting terms for the
two fields and a constant term that does not play any role in the model13. The η-particle
mass can be viewed as a consequence of a restoring force against oscillations in the radial
direction, i.e., the potential in that direction is not free to change. On the other hand, the
massless nature of the ξ-particle is a consequence of an SO(2) invariance in the Lagrangian;
there is no restoring force against angular oscillations, and you do not have to pay any
energy cost to create that particle in that direction [11].

Let us pause briefly; breathe and ask yourself, what happened here? I.e., we started
from the Lagrangian for a complex scalar field and ended up with a weird Lagrangian
describing massless particles. What is going on? We did nothing but change the notation
to the real degrees of freedom of the system, which allowed us to realize the Lagrangian
properties more accurately. The Lagrangian must describe the same physical system.
Thus, the rise of a massless scalar field should not be due to a mere choice of notation.
Indeed, this is a perfect example of Goldstone’s theorem, which states that massless scalars

13 Since the Lagrangian must be integrated to obtain the action, any constant terms will disappear
during this process, because it will turn to be surface terms that are neglegible if the field goes to zero in
the infinity, which is the case. Therefore, we can ignore it here without any further issues.
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occur whenever a continuous symmetry of a physical system is “spontaneously broken” [6].
These scalar particles are known as Nambu-Goldstone Bosons. The Goldstone theorem
will be discussed in the next chapter.

Spontaneous symmetry breaking can look like an useless tool by now due to the
issues with the Nambu-Goldstone particles. However, it will be helpful to generate mass
for other particles, as discussed in the following section. Let us just keep going and study
the case of spontaneously broken gauge symmetries.

2.3 The Abelian Higgs Model

We have seen the spontaneous breaking of global gauge symmetry in the last section,
but what happens if the spontaneously broken symmetry is local? Well, let us see!

We start with the simplest example: a local U(1) symmetry. Eq. (2.2.5) describes
a complex scalar field; the first step is to make it invariant under a local U(1) gauge
transformation, namely

ϕ→ eiα(x)ϕ. (2.3.1)

Just as in section 2.1, the partial derivative in the Lagrangian must be replaced by the
covariant one,

Dµ ≡ ∂µ − iqAµ, (2.3.2)

and the gauge field transforms as

Aµ → Aµ +
1

g
∂µα. (2.3.3)

Putting all this information together and introducing a dynamical term to the gauge field,
one has

L = −1

4
FµνF

µν +Dµϕ
†Dµϕ− µ2ϕ†ϕ+ λ

(
ϕ†ϕ
)2
, (2.3.4)

where
Fµν = ∂µAν − ∂νAµ. (2.3.5)

Once again

ϕ =
1√
2
(φ1 + iφ2) , (2.3.6)

ϕ† =
1√
2
(φ1 − iφ2) . (2.3.7)

When µ2 > 0, we have just the QED Lagrangian for a charged scalar particle of
mass µ, plus an extra self-interaction term and the field Aµ remains massless.
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For µ2 < 0, spontaneous symmetry breaking appears. The potential has a continuum
of absolute minima, corresponding to a continuum of degenerate vacua at

⟨ϕ⟩2 = −µ
2

2λ
=
v

2
. (2.3.8)

Here, the same procedure done in the last section can be used, i.e., shift the fields to
rewrite the Lagrangian in terms of perturbations around the true vacuum. Therefore, the
Lagrangian with perturbations around the true vacuum is

L = −1

4
FµνF

µν +
1

2
[∂µη − qAµξ]

2 +
1

2
[∂µξ + qAµ (v + η)]2

−λ
[
vη +

η2 + ξ2

2

]2
. (2.3.9)

Doing the math and working out all the terms, we get

L = − 1

4
FµνF

µν +
1

2

(
q2v2

)
AµA

µ

︸ ︷︷ ︸
Massive V ector F ield

+
1

2
(∂µη)

2 − 1

2

(
2λv2

)
η2

︸ ︷︷ ︸
Massive Scalar F ield

+
1

2
(∂µξ)

2

︸ ︷︷ ︸
Nambu−Goldstone Boson

+

[
q2AµA

µ

(
vη +

η2

2
+
ξ2

2

)
− λ

4

(
η2 + ξ2

)2 − λvη
(
η2 + ξ2

)]

︸ ︷︷ ︸
Interacting Term

+ [qvAµ∂
µξ + qAµ (η∂

µξ − ξ∂µη)]︸ ︷︷ ︸
Kinetic Mixing Terms

. (2.3.10)

As expected from the previous section, the η-field now has a mass corresponding to the
radial fluctuation. The gauge field Aµ seems to have acquired a mass, as shown in the
first term in the Lagrangian. Nevertheless, the ξ-field, which we identify as the Nambu-
Goldstone particle, is again present with some weird mix of terms involving its derivatives
and the other fields. These terms can be represented in Feynman diagrams as in Figure
2.6, and we see that they would naively correspond to a scalar field being converted to
a vector field. These kind of terms represent off-diagonal contributions, that shows us
to beware in interpreting the Lagrangian. Indeed, the particle spectrum in L does not
represent the correct one. A proper choice of gauge can reveal the true degrees of freedom

Figure 2.6: Mixing interaction between the gauge boson and the Goldstone field.

of the model. To do this, note that at first order

ϕ =
1√
2
[v + η(x) + iξ(x)] =

1√
2
[v + η(x)] eiξ(x)/v. (2.3.11)
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Using the freedom of gauge transformation, we can choose α(x) = −ξ(x)/v in Eq. (2.3).
The gauge transformation becomes

Aµ → Aµ −
1

gv
∂µξ. (2.3.12)

The field transforms as
ϕ→ e−iξ(x)/vϕ =

1√
2
(v + η(x)) . (2.3.13)

Since the Lagrangian is locally gauge invariant, we put all the pieces together

L = − 1

4
FµνF

µν +
1

2

(
q2v2

)
AµA

µ

︸ ︷︷ ︸
Massive V ector F ield

+
1

2
(∂µη)

2 − 1

2

(
2λv2

)
η2

︸ ︷︷ ︸
Massive Scalar F ield

+

[
q2AµA

µ

(
vη +

η2

2

)
− λvη3 − 1

4
λη4
]

︸ ︷︷ ︸
Interacting Term

, (2.3.14)

plus an irrelevant constant [11].

In our choice of gauge, the Nambu-Goldstone was removed, and we ended up with
an η-field with mass m2 = 2λv2, and a massive vector field Aµ. The ξ-particle is no longer
in the Lagrangian, and the boson field has become massive. In fact, fixing the gauge has
explicitly shown us that the formerly ξ-field has become the longitudinal component of the
massive vector field Aµ. After the symmetry breaking, we had four degrees of freedom: two
scalars and two helicity states of the massless gauge field. After the symmetry breaking,
we end up with a massive scalar particle, η, plus three helicity states of the massive gauge
field Aµ, the same degrees of freedom, but in a different configuration. It is usual to say
that the massless Nambu-Goldtone boson was “eaten” by the massless photon to become
a massive vector boson [6]. The “new” massive boson η is known as the Higgs boson, and
this process of generating mass by dynamical means is known as the Higgs mechanism.
The gauge we have used is known as the unitary gauge, or U-gauge [11]. In that gauge,
only states that appear in the Lagrangian are the physical ones. The unitarity of the
S-matrix and the complete set of Feynman rules for the model are evident in this gauge
[11].

Peter Higgs and others who worked on the issue of mass in gauge theory had an
excellent motivation behind generating mass via spontaneous symmetry breaking [16].
In order to see this argument, consider a free massless U(1) theory, in which the gauge
boson propagator goes like ∼ ip−2 [6]. By introducing an interaction with some constant
background field with a strength iΣ, the propagator will change. The 1 particle irreducible
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(1PI) interaction for this model can be computed, as pictured in Figure 2.7 [7], by

i

p2︸︷︷︸
Free Theory

+
i

p2
(−iΣ) i

p2︸ ︷︷ ︸
1PI

+
i

p2
(−iΣ) i

p2
(−iΣ) i

p2︸ ︷︷ ︸
(1PI)2

+ . . .

=
i

p2

[
1 +

Σ

p2
+

(
Σ

p2

)2

+

(
Σ

p2

)3

+ ...

]

=
i

p2

∞∑

i=0

[
Σ

p2

]n
=

i

p2

(
1− Σ

p2

)−1

(2.3.15)

Figure 2.7: The propagator of the interaction theory can be obtained by computing all
the 1PI insertions.

If the background field strength is given by −iΣ = iq2⟨ϕ⟩2, the expression before
can be rewritten as

i

p2
+

i

p2
(−iΣ) i

p2
+

i

p2
(−iΣ) i

p2
(−iΣ) i

p2
+ ... =

i

p2 − q2⟨ϕ⟩2 , (2.3.16)

where the q is again the electric charge. Surprise, surprise, the interaction between the
massless gauge boson with a background field has shifted the mass pole of the A-field to
p2 = m2

A = q2⟨ϕ⟩2. And more: by giving mass, a new degree in the polarization in the
field arises [16]. Is it not shocking? This event indicates that generating mass dynamically
to the gauge boson is possible [16]. Once there is the Yang-Mills theory, the Goldstone
Theorem, and the indication that the gauge field mass can be generated by interacting
with another field, the puzzle of giving mass to the gauge bosons has a natural solution in
the Higgs Mechanism.

The model discussed in this section, of course, is not observed in nature. There is
no observation of a massive photon, at least until now. The U(1) model was only a toy
model to explain how the mechanism works. We are now able to extend it to a non-abelian
model, which, by the way, applies to the entire Standard Model of particle physics.



2 THE HIGGS MECHANISM 36

2.4 The Glashow-Weinberg-Salam Model

After discussing the Abelian Higgs, it is straightforward to consider extending the
approach to a non-Abelian case. Indeed, this step is crucial in order to construct the
electroweak model, known as the Weinberg-Salam model.

2.4.1 Non-Abelian Higgs Model

The discussion of the non-abelian model will be constructed for the SU(2) group,
one of the fundamental groups of the electroweak interaction. We start by taking the
Lagrangian for a complex scalar field

L = (∂µϕ)
† (∂µϕ)− µ2ϕ†ϕ− λ

(
ϕ†ϕ
)2
. (2.4.1)

The field ϕ is a doublet of SU(2), which explicitly is given by

ϕ =

(
ϕα

ϕβ

)
=

1√
2

(
ϕ1 + iϕ2

ϕ3 + iϕ4

)
. (2.4.2)

At this point, it is not difficult to notice that the Lagrangian is invariant under SU(2)
phase transformations, such as

ϕ→ ϕ′ = eiαaτa/2ϕ, (2.4.3)

where a = 1, 2, 3 and τa are the three groups generators.

To promote the symmetry to a local one, we must take αa = αa(x) and, as done
before, the covariant derivative must be introduced,

Dµ = ∂µ + ig
τa
2
W a

µ . (2.4.4)

Here we have three new fields, W a
µ (x), due to the “gauging” of the SU(2) group. Consider

infinitesimal gauge transformations

ϕ(x) → ϕ′(x) =

(
1 +

i

2
α · τ

)
ϕ(x), (2.4.5)

where the bold symbol is an abbreviation for three components, i.e., τ = (τ1, τ2, τ3) and
similarly to the other entities. The gauge fields will transform as

Wµ → Wµ −
1

g
∂µα−α×Wµ. (2.4.6)
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Here, the difference between an Abelian gauge field transformation, Eq. (2.3.12), and a
non-abelian one is evident. The extra term of the latter equation is due to the vectorial
nature of the field Wµ under SU(2) transformations; it is rotated even if α is independent
of x [6]. Putting the covariant derivative in the Lagrangian leads to

L = Dµϕ
†Dµϕ− V (ϕ)− 1

4
Wµν ·Wµν

=
(
∂µϕ+ i

g

2
τ ·Wµϕ

)† (
∂µϕ+ i

g

2
τ ·Wµϕ

)
− V (ϕ)− 1

4
Wµν ·Wµν , (2.4.7)

where
V (ϕ) = µ2ϕ†ϕ+ λ

(
ϕ†ϕ
)2
, (2.4.8)

and the gauge field kinetic term is given by

Wµν = ∂µWν − ∂νWµ − gWµ ×Wν . (2.4.9)

Again, the last term in the equation above is a consequence of the non-abelian nature
of the SU(2) group; that is, it occurs because the group generators τ ’s do not commute
among themselves [6].

The potential structure, Eq. (2.4.8), reminds us of the already studied potential
where the µ parameter led to two different physical situations. The µ2 > 0 case, where
there is no symmetry breaking, and the exciting case of µ2 < 0 which leads to the SU(2)
symmetry breaking. In the latter, the potential has a minimum located at a finite value ϕ,
where

ϕ†ϕ ≡ 1

2

(
ϕ2
1 + ϕ2

2 + ϕ2
3 + ϕ2

4

)
= −µ

2

2λ
. (2.4.10)

Of course, the vacuum manifold at which the potential is minimized is invariant under
SU(2) transformations. As done before, the appropriate way to study the symmetry
breaking is expanding the field ϕ(x) around a particular minimum, namely

ϕ1 = ϕ2 = ϕ4 = 0,

ϕ2
3 = −µ

2

λ
≡ v2. (2.4.11)

Since a simple rotation can connect all the vacua points, there is no physical implication
in choosing a particular state. The system’s choice of one specific VEV is the symmetry’s
spontaneous breaking [6].

We develop the model around its minimum. To do it, we write the field in terms of
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fluctuations, ξ1,2,3(x) and h(x) as [6, 17]

ϕ(x) =
1√
2

(
ξ2 + iξ1

(v + h(x))− iξ3

)

=
1√
2

(
1 + iξ3/v i(ξ1 − iξ2)/v

i(ξ1 + iξ2)/v 1− iξ3/v

)(
0

v + h(x)

)

=
1√
2

[
1+

i

v
τ · ξ(x)

](
0

v + h(x)

)

≃ 1√
2
eiτ ·ξ(x)/v

(
0

v + h(x)

)
. (2.4.12)

It is possible to get rid of the exponential in the last equation by doing a gauge transfor-
mation, just as we did in the abelian case by using the U-gauge, i.e.

ϕ→ ϕ0 = e−iτ ·ξ(x)/vϕ =
1√
2

(
0

v + h(x)

)
. (2.4.13)

The ξ-fields are the ones that will be absorbed by the gauge fields; therefore, they do not
appear in the final Lagrangian.

Based on the current situation where the Goldstones are no longer present in the
Lagrangian, our focus now shifts to the mass terms of the gauge bosons. These bosons
are expected to have acquired mass due to the symmetry-breaking process. In order to
accomplish this task we can substitute ϕ0 of the Eq. (2.4.13) into the Lagrangian in Eq.
(2.4.7). The term of interest is [6]

∣∣∣ig
2
τ ·Wµϕ

∣∣∣
2

=
(
i
g

2
τ ·Wµϕ

)† (
i
g

2
τ ·Wµϕ

)

=
g2

8

∣∣∣∣∣

(
W 3

µ W 1
µ − iW 2

µ

W 1
µ + iW 2

µ W 3
µ

)(
0

v

)∣∣∣∣∣

2

=
g2v2

8

[(
W 1

µ

)2
+
(
W 2

µ

)2
+
(
W 3

µ

)2]
. (2.4.14)

the symbol | |2 is an abbreviation of ( )†( ). Upon comparing the equation above to the
gauge boson mass term, 1

2
M2B2

µ, it becomes evident that the mass is MW = 1
2
gv. As a

result, the Lagrangian describes a massive scalar field, h(x) ( the Higgs field), and three
massive gauge fields. The scalar degrees of freedom, originating from the Goldstones,
subsequently became the longitudinal polarizations of the massive vector bosons.

The Higgs mechanism offers a pathway to introduce masses to gauge bosons. Explic-
itly adding the mass term to the Lagrangian, however, renders the theory unrenormalizable
and leads to a loss of predictive power. However, if the symmetry is spontaneously broken,
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it remains present but is “hidden” by the ground state choice, allowing the model to retain
its renormalizability and predictive power.

We can now extend the Higgs mechanism to a “real” theory that describes nature,
as we do in the following subsection.

2.4.2 The electroweak symmetry breaking

With all the tools we have lectured about, we are in the position of going forward
and formulating the Higgs mechanism so that the gauge bosons W and Z become massive
and the photon remains without mass. The model where this is done is called the Glashow-
Weinberg-Salam model (GWS)14, and it unifies two of the four known fundamental forces
of nature, the electromagnetic and weak forces, at an energy of v = 246 GeV. This model
has has been shown to be renormalizable by Gerardus ’t Hooft and Martinus Veltman
[20, 21].

We introduce four real scalar fields ϕi to achieve our goals. Based on the phe-
nomenology of the electromagnetic and weak interactions [6], it was known that the gauge
symmetry corresponding to these interactions is a product of two simple groups of the
SU(2)L × U(1)Y group15. For a scalar field, we have

L =

∣∣∣∣
(
i∂µ − igT ·Wµ − ig′

Y

2
Bµ

)
ϕ

∣∣∣∣
2

− V (ϕ), (2.4.15)

where T are the three generators of SU(2)L, Y is the U(1)Y generator, and the potential
V (ϕ) is the one in Eq. (2.4.8). This Lagrangian has the same structure as before, plus
the U(1) group term. The scalar field must be constructed as a group’s representation
to develop a group invariant model. The most economical choice possible is an isospin
doublet with weak hypercharge Y = 1 [6]

ϕ =

(
ϕ+

ϕ0

)
, (2.4.16)

14 Some textbooks refer to this model just as Weinberg-Salam model [6, 11]. What can be unfair to
Glashow, who gave significant contributions to the field, as in [18], and won the Nobel prize together with
Weinberg and Salam. By the way, his supervisor, Julian Schwinger, gave the idea for his Nobel prize work
during his Ph.D. studies. There is an excellent Glashow interview [19] about this topic on YouTube.

15 The Y stands for hypercharge. The L stands for “left”, indicating the left-chiral nature of particles
and how they transform under the group action. It is a way of categorizing particles based on their
behavior under the weak interaction. So, particles not carrying a charge under these groups are often
called “right-handed” particles. The presence of SU(2)L in the Standard Model means that only particles
with left-chiral properties interact via the weak interaction, while right-handed particles do not. For
further information about this topic, please consult the references [6, 11, 7, 21].

https://youtu.be/iOcZyT5huDQ?si=W3WvFgTvvsLnAxrb
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where

ϕ+ ≡ (ϕ1 + iϕ2)√
2

, (2.4.17)

ϕ0 ≡ (ϕ3 + iϕ4)√
2

. (2.4.18)

Here, the “+” superscript signifies that the doublet component carries an electric charge,
whereas the “0” indicates that the field equation is electrically neutral.

Now, it is time to break the symmetry to generate mass for the gauge bosons, but
not the photon, of course. To induce a spontaneous symmetry breaking, we demand, as
before, the parameter µ2 < 0 and λ > 0 and choose a particular vacuum expectation value
ϕ0. One appropriate choice is

ϕ0 =
1√
2

(
0

v

)
. (2.4.19)

Why is this a good VEV choice? As one may know, for a vacuum state to be symmetric
(invariant) under a group, i.e., Gϕ0 = ϕ0, where G is the group transformation [4, 11].
However, we desire the symmetry breaking to generate the boson’s masses. Let us see
what happens when we apply the group generators to the vacuum state

T 1ϕ0 = τ 1ϕ0 =
1

2
√
2

(
0 1

1 0

)(
0

v

)
=

1

2
√
2

(
v

0

)
̸= 0, broken!

T 2ϕ0 = τ 2ϕ0 =
1

2
√
2

(
0 −i
i 0

)(
0

v

)
=

1

2
√
2

(
−iv
0

)
̸= 0, broken!

T 3ϕ0 = τ 3ϕ0 =
1

2
√
2

(
1 0

0 −1

)(
0

v

)
=

1

2
√
2

(
0

−v

)
̸= 0, broken!

Y ϕ0 = Yϕϕ0 = +1ϕ0 =
1√
2

(
0

v

)
̸= 0, broken!

Where we have used that T = (1/2)τ , the τ being the Pauli matrices [6]. We also use that
the scalar field has hypercharge of +1, by construction [21]. In the previous equations, the
field VEV is clearly not symmetric; it breaks all the generators of both groups. Nonetheless,
a combination of T 3 and Y is not broken [21], indeed

(
T 3 +

Y

2

)
ϕ0 =

1

2

(
τ 3 + Y

)
ϕ0 =

1

2
√
2

(
Yϕ + 1 0

0 Yϕ − 1

)(
0

v

)

=
1√
2

(
1 0

0 0

)(
0

v

)
= 0, unbroken! (2.4.20)

Hence, the generator Q =
(
T 3 + Y

2

)
is a system symmetry. This Q is the electric
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charge operator, also known as the Gell-Mann–Nishijima relation for the electric charge.
This operator gives rise to the U(1)EM , i.e., it is the group generator, representing the
electromagnetic group, and the Q is the (electric) charge conserved16. This result is
astonishing; the scalar field’s VEV breaks the SU(2)L × U(1)Y to the electromagnetic
group, in other words

SU(2)L × U(1)Y → U(1)EM . (2.4.21)

Breaking the symmetry gives mass to the gauge bosons and more. It keeps a group intact,
which explains why the charge is conserved17 and how the photon remains massless. If
you wonder what would happen if the field’s VEV were differed, the answer is almost
nothing! The thing is, it is always possible to rotate the vacuum state to another one.
Hence, the physics should not be different by just changing the VEV. Indeed, when a
rotation is performed in the Eq. (2.4.19), there will be no breaking in the U(1)EM ; in fact,
what will change is the Gell-Mann–Nishijima relation, leading to another definition for
the electric charge. Therefore, any VEV state will be electrically neutral and preserve the
electromagnetic group [21, 22].

The gauge boson masses are obtained by substituting the vacuum expectation value
ϕ0 in the Lagrangian, whose the relevant term is [6]

∣∣∣∣
(
−igτ

2
·Wµ − i

g′

2
Bµ

)
ϕ

∣∣∣∣
2

=
1

8

∣∣∣∣∣

(
gW 3

µ + g′Bµ g
(
W 1

µ − iW 2
µ

)

g
(
W 1

µ + iW 2
µ

)
−gW 3

µ + g′Bµ

)(
0

v

)∣∣∣∣∣

2

=
1

8
v2g2

[(
W 1

µ

)2
+
(
W 2

µ

)2]
+

1

8
v2
(
g′Bµ − gW 3

µ

) (
g′Bµ − gW 3µ

)

=

(
1

2
v2g2

)2

W+
µ W

−µ +
1

8
v2
(
W 3

µ Bµ

)( g2 −gg′
−gg′ g′2

)(
W 3µ

Bµ

)

=
1

8
v2
[
g
(
W 3

µ

)2 − 2gg′W 3
µB

µ + g′2B2
µ

]
(2.4.22)

where W± = (W 1 ∓W 2) /
√
2 are the mass eingenstates. Therefore, as the mass term

must be M2
WW

+W−, we have

MW =
1

2
vg (2.4.23)

There are some mixing terms between the Bµ and the W 3, i.e., off-diagonal terms, meaning
that the actual field states are not the mass eigenstates. Nevertheless, it is possible to

16 Remember, by Noether theorem, the presence of a symmetry in the system implies in a conserved
charge [11].

17 A pretty good day on the job, I would say!
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rewrite this mixing term in a more convenient form

1

8
v2
[
g
(
W 3

µ

)2 − 2gg′W 3
µB

µ + g′2B2
µ

]
=

1

8
v2
[
gW 3

µ − g′Bµ

]2

+ 0
[
g′W 3

µ + gBµ

]2
. (2.4.24)

Now, it is clear that the terms inside the brackets are the two orthogonal mass eigenstates,
one with eigenvalue zero and the other with eigenvalue 1

8
v2. By naming the new orthogonal

states as the physical fields Zµ and Aµ, we can identify the Eq. (2.4.24) with

1

2
M2

ZZ
2
µ +

1

2
M2

AA
2
µ, (2.4.25)

therefore, upon normalizing the fields [6]

Aµ =
g′W 3

µ + gBµ√
g2 + g′2

with MA = 0, (2.4.26)

Zµ =
gW 3

µ − g′Bµ√
g2 + g′2

with MZ =
1

2
v
√
g2 + g′2. (2.4.27)

Of course, at this point, the astute reader must have guessed that the A-field is the photon
field, massless, and the Z-field is another massive gauge boson field. The MA = 0 is
achieved by construction; we have made our choices to make it possible. Therefore, it is
not a prediction but a consistency check of the model.

By introducing the world-famous Weinberg angle, θW , defined as [6]

g′

g
= tan θW , (2.4.28)

we can express the A- and Z-fields as

Aµ = cos(θW )Bµ + sin(θW )W 3
µ ,

Zµ = − sin(θW )Bµ + cos(θW )W 3
µ .

(2.4.29)

One can also express the W -mass using the Weinberg angle by combining Eqs. (2.4.23)
and (2.4.27), leading to

MW

MZ

= cos θW . (2.4.30)

The inequality MZ ̸=MW originates from the mixing between W 3
µ and Bµ. When θW = 0

there is no mixing, and the Z- and W -mass equality is restored. The ratio MW/MZ is a
standard model’s prediction and, thus, a path to test it. Another SM prediction is the ρ
parameter, which is an expression of the gauge bosons masses and the Weinberg angle,
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which, respects the following relation

ρ ≡ M2
W

M2
Z cos2 θW

= 1. (2.4.31)

It turns out that ρ is the parameter that specifies the relative strength of the neutral and
charged current weak interaction. Experimentally, the parameter value is [23]

ρexp = 1.01013± 0.00005, (2.4.32)

a good agreement with the theory, mainly when we think that no loop corrections
were considered in here. As we will see, the custodial symmetry is responsible for this
parameter being equal to 1 in the SM. In extensions of the SM, it is desirable to have this
symmetry to protect this parameter from significant corrections and avoid discrepancies
from experimental data.

Until now, we have just worked on the exciting terms for our symmetry-breaking
discussion in Eq. (2.4.15), i.e., the mass terms. However, other terms leads to physical
consequences as well [11]. Also, we have not discussed the Higgs field during the symmetry-
breaking process. Indeed, we focused only on the vacuum state, Eq. (2.4.19). To see the
terms involving the Higgs field, we should repeat the steps we took in the non-abelian
Higgs model and introduce a perturbation around the minimum, namely

ϕ0 =
1√
2

(
0

v + h(x)

)
, (2.4.33)

where the h(x) is the Higgs field18. By substituting this doublet into the Lagrangian in
Eq. (2.4.15), one obtains the interacting terms between the gauge bosons and the Higgs,
together with the kinetic term to the Higgs boson. Putting all the pieces that contain the
Higgs field together, including the potential, one gets [17]

LHiggs =
1

2
∂µh∂

µh− λv2h2 − λvh3 − λ

4
h4, (2.4.34)

where we have used that v2 = µ2/λ. As a result, the Higgs mass is

M2
h = 2λv2 = −2µ2, (2.4.35)

the parameter λ is the Higgs self-coupling. We will turn to this expression later during
the composite Higgs discussion. It is necessary to stress that the Higgs mass is not a
Standard Model prediction; we do not know the parameter λ, but there are some physical
constraints, such as vacuum stability and the perturbative limit to theory [17].

18 Or, as said before, the perturbation in the radial direction in the potential
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2.4.3 The quark masses

Until now, we have said nothing about the fermions masses. The fact is that the
Higgs mechanism is also needed to give them mass. The weak interaction is chiral and
maximally party-violating [24], meaning that the SU(2) gauge bosons only couple to
left-handed particles and right-handed antiparticles [25], i.e., particles that have the group
charge. This is an experimental observation that was taken into account to construct
the SM. Of course, there is also the SU(3) group, but we will not delve into the strong
interaction since it plays no role in the composite Higgs model construction; the interested
reader can take a look at Ref. [26] for an excellent and pedagogical discussion about the
symmetry of the strong interaction group.

In the Standard Model, the left-handed fermions, leptons, and quarks form pairs of
SU(2) fundamental representations. They can be collected in three generations of SU(2)
doublet pairs

Li =

(
νeL

eL

)
,

(
νµL

µL

)
,

(
ντL

τL

)
, (2.4.36)

Qi =

(
uL

dL

)
,

(
cL

sL

)
,

(
tL

bL

)
, (2.4.37)

where i = 1, 2, 3 index the generations. The leptons (e, µ, τ, νe, νµ, ντ ) are the electron,
tau, muon, and their neutrinos, respectively. The quarks (d, u, s, c, b, t) are the down, up,
strange, charm, bottom, and top, respectively. The left-handed fermions transform as
Weyl spinors19. The right-handed fermions are

eiR = {eR, µR, τR} , νiR = {νeR, νµR, ντR} , (2.4.38)

uiR = {uR, cR, tR} , diR = {dR, sR, bR} . (2.4.39)

these right-handed particles are uncharged under the SU(2). The right-handed neutrinos
have not yet been observed but were included for completeness. In fact, it is an open
question in particle physics where the neutrino masses come from; the interested reader
can read this at reference [28]. In practice, the fields behave under the SM group action as

SU(2)L :

{
L→ L′ = eiαa(x)

τa
2 L

R → R′ = R
, (2.4.40)

U(1)Y :

{
L→ L′ = eiβ(x)L

R → R′ = eiβ(x)R
. (2.4.41)

19 Left-handed particles transforms as
(
1
2 , 0
)

and right-handed weyl spinors transforms as
(
0, 1

2

)
under

the SU(2)L × SU(2)R. A pretty good treatment of the Lorentz group and its representations can be
found in Refs. [13, 27].
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Here L and R represents all the left- and right-handed fermions, respectively. Due to this
behavior, we can construct a table with electroweak SM charges, Table 2.1.

Field Li eR νR Qi uR dR H
SU(2)L 2 1 1 2 1 1 2
U(1)Y −1

2
−1 0 −1

6
2
3

−1
3

1
2

Table 2.1: Standard model fermions. In the first line, the numbers indicate the representa-
tions, where 2 represents the fundamental representation of SU(2)L and 0 is a singlet of
the same group. The second line is the hypercharge.

Using the information collected so far, it is possible to write down the interacting
terms between the fermions and the gauge bosons, together with the kinetic terms. The
procedure is standard: replace the partial derivative with the covariant one, with some
necessary modification, and the result is

Lint = iL̄i

(
/∂ − ig

τa

2
/W

a − i
g′

2
YL /B

)
Li + iQ̄i

(
/∂ − ig

τa

2
/W

a − i
g′

2
YQ /B

)
Qi

+ iēiR

(
/∂ − i

g′

2
Ye /B

)
eiR + iν̄iR

(
/∂ − i

g′

2
Yν /B

)
νiR

+ iūiR

(
/∂ − i

g′

2
Yu /B

)
uiR + id̄iR

(
/∂ − i

g′

2
Yd /B

)
diR. (2.4.42)

The symbols with a hash are called slash, and means /∂ = γµ∂µ, where the γµ are the Dirac
matrices. The YQ and YL are the hypercharge of the left-handed fields, and Ye, Yν Yu and
Yd for the right-handed fields’ hypercharges [24].

Cutting to the chase, we now go to the mass. For reasons that will be clear later,
we will focus our discussion only on the quark masses. If one considers the Dirac mass
term to the fermion [7]

Lmass ⊃ −m
(
Ψ̄LΨR + Ψ̄RΨL

)
, (2.4.43)

it is evident, due to Eq. (2.4.40), that this term is not invariant under local SU(2) gauge
transformation. The chiral nature of the electroweak interaction is the criminal guilty
of this crime. There is no way to construct an operator to couple with the left-handed
particle having the correct quantum numbers by using only the leptons and gauge bosons.
Therefore, we must include the Higgs boson to save the day, once more.

Focusing on the quarks and including all three generations, we have

Lmass = −Y d
ijQ

i
ϕdjR − Y u

ijQ
i
ϕ̃ujR + h.c. (2.4.44)

where ϕ̃ ≡ iτ2ϕ
⋆ and h.c. represents the hermitian conjugate terms. The Y ’s in the last

equation are the Yukawa three-dimensional matrices. After the Higgs acquires its VEV,
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one gets

Lmass = − v√
2
Y d
ij d

i

Ld
j
R − v√

2
Y u
iju

i
Lu

j
R + h.c. = − v√

2

[
dLYddR + uLYuuR

]
+ h.c. (2.4.45)

The last equation is in a matricial form. To find the masses, the matrix must be diagonalized,
leading to [24]

Lmass = − v√
2
yd dLdR − v√

2
yu uLuR + h.c.. (2.4.46)

Each quark acquires a mass given by

m(d,u) = − v√
2
y(d,u). (2.4.47)

This is the quark mass we were looking for. Keep this expression in mind; we will get back
to it soon!

Much more can be discussed about the fermionic sector of the electroweak interaction,
such as the mixing between the generations, but for the CH debate present in this text,
what was presented is sufficient to proceed to the next topic.

2.5 Explicit symmetry breaking: A first sight

Before finishing this chapter, it is worth examining the behavior of the potential
described in Eq. (2.4.8) by introducing a perturbation term that explicitly breaks the
underlying symmetry. The potential, then, becomes

V (ϕ) = µ2ϕ†ϕ+ λ
(
ϕ†ϕ
)2 − ϵϕ3, (2.5.1)

where the parameter ϵ > 0 and the field ϕ is a doublet given by Eq. (2.4.2). The new
term changes the potential’s vacuum configuration. To see that we can differenciate the
potential with respect to the fields and make it equal to zero, i.e., we are looking at the
sadle point of the potential. By doing this procedure, we get

(
∂V

∂ϕk

)
=

[
µ2 + 2λ

(
ϕ2
1 + ϕ2

2 + ϕ2
3 + ϕ2

4

)]
ϕk = 0, (2.5.2)

(
∂V

∂ϕ3

)
=

[
µ2 + 2λ

(
ϕ2
1 + ϕ2

2 + ϕ2
3 + ϕ2

4

)]
ϕ3 − ϵ = 0, (2.5.3)

where k = 1, 2, 4. The field configuration that satisfies both equations is the vacuum state
[29]. Substituting the usual VEV configuration, Eq. (2.4.11), the relations above will turn
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to
(
∂V

∂ϕk

) ∣∣∣
V EV

= 0, (2.5.4)
(
∂V

∂ϕ3

) ∣∣∣
V EV

=
[
µ2 + 2λv2

]
v − ϵ = 0, (2.5.5)

thus

[
µ2 + 2λv2

]
=
ϵ

v
. (2.5.6)

Notice that in the limit of ϵ→ 0 we recover the usual VEV configuration. The field can
be expressed in terms of fluctuations around the minimum20

ϕ(x) =
1√
2

(
ξ1 + iξ2

(v + h(x))− iξ3

)
. (2.5.7)

Putting this into the potential one finds

V =
µ2

2

[
ξ21 + ξ22 + ξ23 + (v + h)2

]
+
λ

4

[
ξ21 + ξ22 + ξ23 + (v + h)2

]2 − ϵ (v + h)

=
µ2

2

(
ξ21 + ξ22 + ξ23 + h2

)
+
λ

4

(
ξ21 + ξ22 + ξ23

)
v2 + interation terms.

=
1

2

(
µ2 + 2λv2

) (
ξ21 + ξ22 + ξ23

)
+
µ2

2
h2 + interation terms. (2.5.8)

using Eq. (2.5.6), we reach

V =
1

2

( ϵ
v

) (
ξ21 + ξ22 + ξ23

)
+
µ2

2
h2 + interation terms. (2.5.9)

This result is surprising. By adding a perturbation that breaks explicitly the symmetry,
the Golstones modes have acquired a mass

mξ =

√
ϵ

v
. (2.5.10)

The Nambu-Goldtones become pseudo Nambu-Goldtone Bosons (pNGB) [29]. Why dis
this happen? Remember that in the previous sections, we identified the Nambu-Goldstones
as a perturbation on the angular direction in the potential. Due to vacuum degeneracy,
no energy cost is associated with moving along the valley of the potential, suggesting
that the mass term in this direction becomes zero [3]. Adding the ϵ term breaks the
vacuum degeneracy. Indeed, Eq. (2.5.5) shows that the perturbation has lifted the vacuum

20 We already have done this procedure in Eq. (2.4.12), but now, we are not going to the U-gauge once
we want to see what the perturbation effect into the Goldtones modes
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manifold. Figure 2.8 depicts the potential’s format with and without explicit symmetry
breaking. Now, there is a cost moving along the angular direction, and, therefore, the
ξ-fields became massive.

 NGB  Mode
pNGB Mode

V (ϕ)V (ϕ)

|ϕ3|

v
v v

|ϕk|
v

Figure 2.8: Left: There is no explicit symmetry breaking, therefore, the vacuum is
degenerate. This situation is what happens in the fields ϕk. Right: The vacuum has been
lifted, and the symmetry is explicitly broken, turning the NGB into pNGB. Image inspired
by reference [30].

Despite the exciting effect of generating mass to the gauge bosons, the breaking
term in the Lagrangian brings an unwanted effect. Calculating quantum corrections
to observables in terms of Goldstone-boson loop diagrams will generate nonanalytic
corrections in the symmetry-breaking parameter such as ϵ ln(ϵ) [29]. The procedure of
explicitly breaking symmetry will be used in the Composite Higgs construction. Then, we
must ensure that nonanalytic terms will not appear in the model.

Now, we are ready to enter the composite Higgs model. Hold on tight. The journey
is just beginning!
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Chapter 3

GROUP THEORY STRUCTURE

During this section we are going through a small stroll into group theory. The
entire Composite Model is built mainly on group theory arguments. Therefore, it is helpful
to discuss this foudations; of course, some group theory knowledge is desirable in order to
understand the arguments, but it is not required. Indeed, most of the references do not
cover this topic [2, 31]. Hence, it is possible to comprehend the model without this study.

3.1 Goldstone theorem

In chapter two, we have used the statement of Goldstone’s theorem; now, we will
discuss it more deeply. It is crucial not just in the Higgs mechanism but also in the
Composite Higgs models.

Let ϕ be an n-tuplet of fields describing a theory, which transforms in some
representation1 of a global symmetry Lie group G. In an interacting theory, these fields
are subject to a potential V (ϕi), in which the minima define the vacuum manifold

V0 ≡ {ϕ0 | V (ϕ0) = Vmin} . (3.1.1)

This manifold is the crucial aspect of the spontaneous symmetry breaking. If it is a single
point, there is no symmetry breaking, but if the manifold is not trivial, the symmetry is
spontaneously broken since the field must choose one of the minima points. Moreover,
if this is the case, any transformation of the symmetry group G, will move the vacuum
configuration from one point to another within the vacuum manifold. If ϕ0, ϕ′

0 ∈ V0, then
there is a g ∈ G such that

ϕ′
0 = gϕ0. (3.1.2)

1 It is assumed that the reader is familiar with group theory. For any questions or uncertainties about
this topic, please refer to Ref. [32, 33, 34]
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It may happen that some elements of the group will keep the original state unchanged.
We will denote by H this subgroup that leaves the vacuum invariant. If we consider a
point ϕ0, the group H is defined as the set of elements in G that leave ϕ0 unchanged

H ≡ {h ∈ G| hϕ0 = ϕ0} . (3.1.3)

The field ϕ is called the order parameter of the symmetry G.

By taking advantage of these definition, Goldstone’s Theorem can be stated as
follows.

Theorem 3.1.1 (Goldstone’s theorem). If a continuous and global symmetry G is sponta-
neously broken to H, then there will be massless particles called Goldstone bosons. The
number of these Goldstone bosons is given by

dim (G/H) = dimG − dimH.

To show how this theorem arises, supose the field ϕ is in an N dimensional
represention of G, and that it has compotents ϕ = (ϕ1, ..., ϕi) with i = 1, ..., N . Applying
the exponential map to the field

ϕ→ ϕ′ = eiα
ATA

ϕ =
[
1 + iαATA + ...

]
ϕ ≃ ϕ+ iαATAϕ, (3.1.4)

where we considered the αA as an infinitesimal parameter and, thus, considered terms only
up to the first order in the expansion. Each component of the field will change by

δϕi = iαA
(
TA
)j
i
ϕj, (3.1.5)

with the
(
TA
)j
i

being the group generators in the representation taken. Putting the
transformed field in the potential and expanding it around δϕ = 0 up to the first order,
we have

δV (ϕ+ δϕ) = V (ϕ) + iαA ∂V

∂ϕi

(
TA
)j
i
ϕj. (3.1.6)

The potential is symmetric under group transformations, therefore, it must remain un-
changed, leading to

δV (ϕ+ δϕ)− V (ϕ) = iαA ∂V

∂ϕi

(
TA
)j
i
ϕj = 0. (3.1.7)

Now, take the derivative with respect to ϕj,

[
∂V

∂ϕi

(
TA
)j
i
+

∂2V

∂ϕi∂ϕj

(
TA
)k
i
ϕk

]
= 0, (3.1.8)
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where the factor αA was dropped down since it is arbitrary. At the VEV, the first term
goes to zero, since it is a minimum of the potential, while the remaining term is

(
∂2V

∂ϕi∂ϕj

)∣∣∣∣
ϕ=ϕ0

(
TAϕ0

)
i
= 0, (3.1.9)

for A = 1, ..., dimG. The second derivative can be identified as the mass matrix and, thus,

M ij
(
TAϕ0

)
i
= 0. (3.1.10)

There are three situations where the equation above is satisfied. First, the vacuum state
itself can be zero, ϕ0 = 0; in this case, there is no symmetry breaking, and no particles are
expected. Secondly,

(
TAϕ0

)
i
= 0 is null, meaning that, for the generators that annihilate

the vacuum, which is the case of the H generators no particle is created. Last but not
least, for the case

(
TAϕ0

)
i
≠ 0, we have M ij = 0, i.e. states with mass eigenstates equal

to zero are created. These are the Goldstone bosons!

This is proof of the theorem at the level of classical field theory, which shall be
enough for our purpose of motivating the theorem. The reader interested in the quantum
treatment can consult Ref. [7]. We, now, go to see where the Higgs boson lives2.

3.2 The Higgs house

This section intend to show the group theory foundation of the Higgs mechanism.
We start our discussion considering a physical system described by a Lagrangian with
spontaneous symmetry breaking, i.e., the Lagrangian is invariant under a Lie group G, but
the vacuum state is invariant just under a subgroup H of G [29]. The breaking pattern
will generate n = dim[G]− dim[H] Nambu-Goldstones. These massless particles will be
described by n fields, ϕi, that are real functions on Minkowski space, M4. As done before,
the fields can be arranged in an n-vector

ϕ⃗ =




ϕ1

ϕ2

...
ϕn



. (3.2.1)

The vector defines an n-dimensional vector space3

V ≡
{
ϕ :M4 → Rn|ϕi :M

4 → R continuous
}
. (3.2.2)

2 The boson, not the physicist.
3 Which is also a manifold.
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Now, we define a map φ̃ that associates, in a unique way, to each pair (g, ϕ) ∈ G × V an
element φ̃V (g, ϕ) ∈ V , videlicet

φ̃ : G × V → V (3.2.3)

(g, ϕ) 7→ φ̃V .

Here we are following the notation from the references [35, 36], where the barred arrow
denotes the action of a function at the element level, i.e., while f : A → B indicates a
function which has a domain in A and a codomain B, the f : A 7→ B indicates that a
particular function f associates to an argument A a value B.

The map described in Eq. (3.2.3) aims to define the operation of the group G on
the vector space V , known as a group action. This operation is a homomorphism from
one group to another and satisfies the conditions [29]

φ̃(e, ϕ) = ϕ ∀ ϕ ∈ V (3.2.4)

φ̃(g1, φ̃(g2, ϕ)) = φ̃(g1g2, ϕ) ∀ g1, g2 ∈ G and ∀ ϕ ∈ V. (3.2.5)

The latter equation is the criterion for a map to be a homomorphism, ensuring that the
group structure is preserved during the process. We now choose as the origin of the vector
space V the system’s vacuum state ϕ0. Using the group action, we can make a definition
we will use later4.

Definition 3.2.1 (Orbit). Given a set X on which a group G acts and x ∈ X , the set of
all images defined as

O(x) = {g · x | g ∈ G} ,

is the orbit of X [33].

The Figure 3.1 shows an orbit of the group action. Since the system’s ground state is
invariant under the subgroup H, the φ̃ must map the vacuum to itself for all the subgroup
elements. Reformulating φ̃ : (h, ϕ0) 7→ ϕ0 for all h ∈ H. We can define concept of stabilizer
as follows.

Definition 3.2.2 (Stabilizer). Given a set X which a group G acts on and x ∈ X , the
subgroup defined as

Gx = {g · x = x | g ∈ G} ,

is the stabilizer of x [33].
4 We will have to use some definitions taken from the references with modifications in some cases to

make them more reliable. According to [32], “A good definition should be precise, economical, and capture
a simple, intuitive idea. If in addition, it is easy to work with, so much the better.”; a thought we will
work to follow!
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Figure 3.1: The orbit O(x) of a group action.

The stabilizer is also called little group. Clearly, H is the stabilizer of ϕ0.

Given a subgroup H of G, we define the left coset as

Definition 3.2.3 (Left Coset). If H is a subgroup of G and g ∈ G, the subset of G
constructed as

gH = {g · h | h ∈ H}

is called the left coset of H [33].

The definition of the right coset is straightforward, as the name suggests. All the left
cosets together form a group defined as follows.

Definition 3.2.4 (Quotient Group). If H is a normal subgroup, then the set of all left
cosets of H

G/H = {gH | g ∈ G} ,

forms a group called the quotient, or factor, group [33]. The group operation is defined by

g1H · g2H = g1 · g2H.

A normal subgroup is one satisfying the property of gHg−1 = H for all g ∈ G. It is crucial
to stress that the quotient group is not contained in G5. The G/H is a group where each
element is by itself a subset of G. Figure 3.2 illustrates this structure. By looking at this
image, it is also possible to see that the cosets of the factor group either completely overlap
or are completely disjoint [29]; the pink contours do not intersect each other.

The reader must be asking about the reason for all these definitions. It turns
out that the NGBs live in the coset G/H; what we are going to do is use the definition

5 Indeed, the elements of each coset in the quotient group are contained within G. However, the elements
of G/H represent distinct cosets, meaning these elements are not individual elements of G, but rather sets
of elements.
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He

GGG

eH

g1H
g2H

g3H

g4H g5H

g6H

g7H g8H

g9Hg10H

g11H

g12H

Figure 3.2: Illustration of the quotient group. Left: Pictorial representation of the group
G, its elements represented by the black. The H subgroup is pictured by the blue contour
that contains the unitary element, e, as the green dot. Right: The elements of the group
G/H are represented by the pink contours. Each left coset giH represents an element of
the quotient group, where gi ∈ G. Note that the subgroup H is itself the group’s unity
element.

presented before to prove this statement. We start this task by applying the group action
(3.2.3) in the quotient group. In this sense we have a new map, namely

φG/H : G/H× V → V (3.2.6)

(gh, ϕ) 7→ φ.

This group action has the interesting property of mapping the origin onto the same vector
in Rn under all elements of a given coset gH ∈ G/H [29]

φ(gh, ϕ0) = φ(g, φ(h, ϕ0)) = φ(g, ϕ0) ∀ g ∈ G and h ∈ H; (3.2.7)

where we have used Eq. (3.2.5) and the fact that the vacuum state is invariant under the
action of any element of H. This feature ensures that the map is surjective, i.e., all the
points in the vacuum manifold have a correspondent group action elements. The image of
the group action is the entire codomain [36]. Consider now two elements g1, g2 ∈ G, with
g1 /∈ g2H. Assuming that φ(g1, ϕ0) = φ(g2, ϕ0), one can show that[29]

ϕ0 = φ(e, ϕ0) = φ(g−1
1 g1, ϕ0) = φ(g−1

1 , φ(g1, ϕ0))

= φ(g−1
1 , φ(g2, ϕ0)) = φ(g−1

1 g2, ϕ0). (3.2.8)

Here, we have reached a contradiction. The last equation is true only if g−1
1 g2 ∈ H,

or, equivalently, g2 ∈ g1H, which contradicts the assumption of g2 /∈ g1H and, thus,
φ(g1, ϕ0) ̸= φ(g2, ϕ0). In conclusion, the map is a one-to-one relationship, i.e., an injection



3 GROUP THEORY STRUCTURE 55

[36]. With the two properties before, we can state that the mapping is bijective [36] and,
hence, can be inverted on the φ(g, ϕ0) image. By taking advantage of the definitions
of orbit, Defn. (3.2.1), and stabilizer, Defn. (3.2.2), the bijection relationship can be
established in a much more straightforward manner through the Orbit-Stabilizer Theorem,
stated as

Theorem 3.2.1 (Orbit-Stabilizer theorem). For each point x ∈ X , there is a bijection
between the orbit O(x) and set of left cosets of the stabilizer Gx [32]. The bijection is
given by

g · x 7−→ gGx.

How the theorem applies in our case may need to be clarified, but things get better when
we call a spade a spade. We are considering the origin ϕ0, thus, our orbit is given by g · ϕ0

for g ∈ G. The stabilizer of ϕ0 is the subgroup H, therefore, the bijection we have is

g · ϕ0 7−→ gH. (3.2.9)

the g ·ϕ0 is, clearly, an element of V , hence, there is a bijection between the Goldstones and
the factor group. All the definitions and properties above were to conclude that there exists
an isomorphic mapping6 between the factor group G/H and the vector space V , i.e. the
NGB’s fields. While two isomorphic groups may exhibit differences in the characteristics
of their elements, they share identical structures regarding subgroups, cosets, classes,
and other related properties. Crucially, isomorphic groups inherently possess identical
representations [37]; they are the same group for practical effects! The Goldstones, indeed,
live in the coset G/H.

Distinct group elements gh1, gh2, gh3, ... ∈ G are associated to the same element in
G/H, as can be seen in Figure 3.2. We can choose a representative element of G for each
element in G/H, denoted by ĝ. Hence, any group element g ∈ G can be written as g = ĝh,
for some h ∈ H. For a compact and path-connected group [4], each element ĝ and h can
be expressed by using the exponential map, so that we have [37]

g = ĝ(ξ)h(α) ≡ eiξATA

eiαaTa

, (3.2.10)

where (ξA, αa) are the group parameters [34], which may be promoted to fields, and the
(TA, T a) are the generators of G and H, respectively [4]. In terms of the isomorphism we
established, each ϕ is uniquely associated with an element of G/H, i.e., a coset ĝh with an
appropriate ĝ. Since the ĝ is the representative of the group G we say that the g is the

6 An isomorphic map is a map that is homomorphic and, in addition, has a one-to-one relation between
the domain and the image. This injective property ensures the invertibility of the map.
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representative of the coset ĝH such that

ϕ = φ(g, ϕ0) = φ(ĝh, 0). (3.2.11)

Using the maps defined before, we have

φ(g′, ϕ) = φ(g′, φ(ĝh, 0)) = φ(g′ĝh, 0) = φ(f, ϕ0) = ϕ′, f ∈ g′(ĝH). (3.2.12)

This result shows us that in order to obtain an element ϕ′ from another ϕ, we multiply the
left coset ĝH by an element g′. This is the indication that we can “travel” from different
cosets by multiplying them by elements of the group G

g′

g′

↓ ↓
ĝH → g′ĝH

ϕ → ϕ′

This process uniquely defines the Goldstone bosons’ transformation properties within an
appropriate selection of variables that parameterize the elements of the quotient G/H [29].

3.3 Custodial symmetry

In Chapter 2 we have mentioned custodial symmetry as the principle behind
protecting the ρ parameter. In this section, we will delve into this topic more deeply. Refs.
[3, 25, 38] inspired the following discussion. For a general approach about the custodial
symmetry in a model with multiple Higgs doublets, please see Ref. [39]. The custodial
symmetry is discussed in the framework of Composite Higgs models in [40, 41]7.

After all our discussion about the gauge bosons and the electroweak sector, we are
led to the Lagrangian in Eq. (2.4.15), namely

LHiggs = (Dµϕ)
†Dµϕ− µ2ϕ†ϕ− λ

(
ϕ†ϕ
)2
. (3.3.1)

The Higgs Lagrangian is invariant under the SM SU(2)L × U(1)Y group. Consider, as we
did before, the Higgs doublet

H = ϕ =

(
ϕ+

ϕ0

)
, (3.3.2)

From now on, to explicitly indicate that we are dealing with the Higgs boson, the notation
for the doublet will be H.

7 Paper [41] is a classic in Composite Higgs Models.
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Expanding the potential in terms of the doublet four components, we get

V (ϕ) = µ2 (ϕ2
1 + ϕ2

2 + ϕ2
3 + ϕ2

4) + λ (ϕ2
1 + ϕ2

2 + ϕ2
3 + ϕ2

4)
2
. (3.3.3)

All four field components have the same interactions and couplings. Here, the accidental
symmetry comes up. You are right if you noticed this is symmetric under SO(4) transfor-
mations! It happens that the Higgs four-plet spans a four-dimensional vector space, where
the field components can be used as the basis for this space since they are orthogonal.
As shown in Ref. [2], the SO(4) group is locally isomorphic to SU(2)L × SU(2)R, which
expressed as SO(4) ≃ SU(2)L × SU(2)R. We can, therefore, put the Higgs doublet in a
representation of the left and right groups

Φ =
(
H̃,H

)
=

(
ϕ0∗ ϕ+

−ϕ− ϕ0

)
. (3.3.4)

This is a bi-doublet where H̃ and H is each one a doublet of SU(2)L. They are rotated by
an SU(2)L transformation, delivered by UL from the left side of the bi-doublet

SU(2)L : Φ′ → ULΦ, (3.3.5)

while an SU(2)R transformation UR acts on the right side

SU(2)R : Φ′ → ΦU †
R. (3.3.6)

Therefore, both groups act in the bi-doublet as

SU(2)L × SU(2)R : Φ′ → ULΦU
†
R. (3.3.7)

This transformation acts explicitly on the Higgs matrix entries as follows

�
ϕ0∗ ϕ+

−ϕ− ϕ0

�
SU(2)R

SU(2)L .

By using the bi-doublet notation, the Lagrangian is expressed as

LHiggs =
1

2
Tr |DµΦ|2 − V (Φ), (3.3.8)

with
V (Φ) = µ2Tr

(
Φ†Φ

)
+ λ

[
Tr (Φ†Φ)

]2
. (3.3.9)
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This potential is invariant under the SO(4) transformations, in fact, the lagrangian is
invariant under global SO(4) transformations, i.e., when there is no covariant derivative
and no gauge bosons

Lglobal = Tr
[
∂µΦ

†∂µΦ
]
− V (Φ). (3.3.10)

However, going to the covariant derivative, i.e., coupling the Higgs boson to the gauge
bosons, the above Lagrangian becomes not invariant (or variant) under global group
transformations. The fact is that when we gauge the electroweak group, we break the
symmetry by not gauging the entire group. To ilustrate this, we write down the covariant
derivative applied to the fields

DµΦ =

(
∂µΦ− i

g

2
τaW

a
µΦ + i

g′

2
Φτ 3Bµ

)
. (3.3.11)

Under global SU(2)L transformations, the Bµ does not change, it is an SU(2)R field, and
the W gauge bosons transforms as:

τaW
a
µ → ULτaW

a
µU

†
L, (3.3.12)

therefore, using Eq. (3.3.5), we have

τaW
a
µΦ →

(
ULτaW

a
µU

†
L

)
(ULΦ) = ULτaW

a
µΦ, (3.3.13)

which leaves the lagrangian invariant under arbitrary SU(2)L transformations. However,
the story changes when we consider the right group. Under arbitraty global SU(2)R
transformation, the W ’s fields does not suffer any action, just as the Bµ (it has a trivial
transformation under U(1)Y and no transformation under the remain elements of the
SU(2)R group), leading a behaviour under SU(2)R action described by

Φτ 3Bµ → ΦU †
Rτ

3Bµ ̸= Φτ 3BµU
†
R, (3.3.14)

which does not lead to and SU(2)R invariance, i.e., the term i
2
g′Bµ in the Lagrangian

breaks the custodial symmetry, because we privilege third generator of the SU(2)R group,
T 3. It is analogous to introducing a vector in a three-dimensional space since it must point
to a direction, the spherical symmetry is broken, and the system now has a privileged
direction. The situation is depicted in Figure 3.3. If we consider the limit where g′ = 0, the
full symmetry, SO(4), of the entire Lagrangian is acquired. In this scenario, the covariant
derivative becomes

Dµ = (∂µ − igT ·Wµ) . (3.3.15)
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And the kinectic term in the lagragian behaves under SU(2)L × SU(2)R transformation as

Tr
[
(DµΦ)

†DµΦ
]

→ Tr

[∣∣∣∂µ
(
ULΦU

†
R

)
− ig

(
ULT ·WµU

†
L

)(
ULΦU

†
R

)∣∣∣
2
]

= Tr

[∣∣∣UL (∂µΦ− igT ·WµΦ)U
†
R

∣∣∣
2
]

= Tr

{[
UL (∂µΦ− igT ·WµΦ)U

†
R

]† [
UL (∂µΦ− igT ·WµΦ)U

†
R

]}

= Tr
[
UR (∂µΦ− igT ·WµΦ)

† U †
LUL (∂µΦ− igT ·WµΦ)U

†
R

]

= Tr
[
UR (∂µΦ− igT ·WµΦ)

† (∂µΦ− igT ·WµΦ)U
†
R

]

= Tr
[
(∂µΦ− igT ·WµΦ)

† (∂µΦ− igT ·WµΦ)
]

= Tr
[
(DµΦ)

†DµΦ
]
, (3.3.16)

where we have used the propertie of trace which states that Tr (P−1AP ) = Tr (A) [42].
Thus, in the limit as g′ → 0, the Higgs sector of the Standard Model exhibits a global
symmetry SU(2)L × SU(2)R. This symmetry was not imposed when the model was built,
therefore, it is called accidental symmetry. Since global SU(2)R is broken by the small
parameter, it is said that this symmetry is approximate, or softly broken [43].

After the Higgs gets its VEV, the fully SO(4) symmetry is broken to the SO(3).
To see the breaking in action, consider the VEV in the bi-doublet representation

⟨Φ⟩ = 1

2

(
v 0

0 v

)
. (3.3.17)

this expression cleary breaks the chiral symmetry

UL⟨Φ⟩ ≠ ⟨Φ⟩ ⟨Φ⟩U †
R ̸= ⟨Φ⟩. (3.3.18)

However, the case where SU(2)L = SU(2)R remains intact

UL⟨Φ⟩U †
L = UL

(
v√
2
1

)
U †
L =

(
v√
2

)
ULU

†
L =

v√
2
1 = ⟨Φ⟩ . (3.3.19)

This is the custodial symmetry! The case SU(2)L = SU(2)R is known as SU(2)V , the
vectorial or diagonal group. When discussing representation, the bidoublet is a 2 ⊗ 2

representation of SU(2)L × SU(2)R group; when the symmetry breaking, SU(2)L ×
SU(2)R → SU(2)V , takes place, the representation goes like 2⊗ 2 → 3⊕ 1. Therefore,
we have a triplet given by ϕ0∗, ϕ+ and ϕ−, which are the goldstones eaten by the gauge
bosons, and a singlet, ϕ0, the physical Higgs.

Since the coupling g′ is small, the SM has an approximate custodial SU(2)V
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SU(2)L × SU(2)R

SU(2)L × U(1)YSU(2)V

U(1)EM

Figure 3.3: Group theory of the Higgs sector of the SM. The Higgs potential has a global
SU(2)L × SU(2)R symmetry, shown as the gray ruled part. This symmetry is explicitly
broken to the local EW Standard Model group (SU(2)L × U(1)Y ), represented in blue,
by gauging only a part of the SU(2)R group. When the EWSB takes place, the global
symmetry SU(2)L × SU(2)R is broken to the diagonal (or vectorial) group SU(2)V , where
SU(2)L = SU(2)R, represented by the red part of the image. The SU(2)V is the custodial
symmetry. The remaining U(1)EM is the intersection of the vectorial and SM group. Image
inspired by Weinberg in Ref. [44].

symmetry leading to the protection of the ρ parameter at tree level. The protection
extends even at the loop level, where the leading corrections to the parameter due to the
Higgs boson, Figure 3.4, is given by [25]

ρ̂ ≈ 1− 11GFM
2
Z sin2 θW

24
√
2π2

ln
M2

h

M2
Z

, (3.3.20)

with GF being the Fermi constant [6]. When g′ → 0, sin2 θW → 0, the correction goes to
zero, protecting the parameter.

Figure 3.4: Corrections to the W and Z boson masses due to Higgs loops.

The discussion in this section was intended to show why custodial symmetry is
necessary and desired in BSM models. Extending the SM is typically a tricky business
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because the model is extremely successful in numerous predictions, including the so-called
electroweak precision tests. Any SM extension must agree with these tests8. If the model
satisfies this custodial symmetry, one at least can be recomforted that constraints on the
ρ parameter are unlikely to be violated.

8 It is like changing the wheel of a moving car, which should continue to move (and the car is on fire).
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Chapter 4

THE COMPOSITE HIGGS MODEL

In this chapter we will go through the Composite Higgs model. I expect to elucidate
how the model is built, including some formal aspects, and how it works. As a concrete
example, we will discuss the Minimial Composite Higgs Model (MCHM), the simplest
reliable model that mimics the Standard Model.

As a starting point, we will briefly discuss the model’s main idea and how it is
constructed.

4.1 The main idea

The composite Higgs scenario is a simple and graceful solution to the hierarchy
problem. As the name suggests, we will suppose that the Higgs is not a point-like particle
but a composite state with a finite size, namely lH . This bound state will be a product of
a new confining interaction, i.e., a new strong sector characterized by a confinement scale
m∗ = 1/lH above the TeV scale. The finite size of the Higgs will affect the mass corrections
in Eq. (1.2.1). At low energy levels, the quanta (photon) do not have the resolution to
“see” what is inside the Higgs, the composite state behaves as an elementary particle, and
the integrand in Eq. (1.2.1) grows linearly with E, just like in the SM. The finite size
effects become apparent as E approaches and surpasses m∗. Similar to the scenario where
a proton is hit by a virtual photon with a wavelength smaller than the proton radius, the
composite Higgs is transparent to high-energy quanta, causing a decline in the integrand
[2]. Therefore, the linear SM behaviour is replaced by a peak around E ∼ m∗, followed by
a quick decline. The Higgs mass generation phenomenon gets localized at m∗ = 1/lH , and
mH is insensitive to much higher energies.

Since we need a bound state, a new strong interaction must be included1. At least
1 One can ask why we do not use the good and old QCD sector to generate the Higgs as a compound
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a part of the new composite sector must take place in a strongly-coupled non-perturbative
regime. The composite sector emerges from an even more fundamental theory at a very
high scale ΛUV ≫ TeV, whose precise value will not matter to us given that the whole
point of the construction is precisely to make the EW scale insensitive to it [2]. There is
also the need to include the SM particles in the model, i.e., all the particles we know as
elementary ones. Since the gauge fields must be elementary, the new sector must respect
the SM gauge symmetry, and, therefore, the symmetry group G of the new interaction
must contain at least one SU(2)L × U(1)Y subgroup.

Imposing a new symmetry group means introducing new effects, particles, dynamics
and even new symmetry breaking. Since we are going to construct a new strong sector,
QCD will serve as an inspiration for this new model, more specifically the theory of pions2.
As said before, we will use a strong sector respecting a global symmetry G as a starting
point. The Higgs must arise as a composite state from this sector, described effectively as
a NGB. Therefore, the symmetry must be broken spontaneously to a subgroup Hglobal,
leading to dim(G)− dim(Hglobal) massless Goldtone bosons living in the coset G/H. In
order to generate mass to the Higgs, it must become a pNGB, which is accomplished by
introducing explicit symmetry breaking, delivered by the interaction of the new sector to
the elementary sector. Figure (4.1) illustrates the structure discussed. There is also another
source of an explicitly breaking of G by gauging a subgroup Hgauge, leading to dim(Hgauge)

gauge bosons. Among the NGB, a total of dim(Hgauge)− dim(Hgauge ∩Hglobal) must be
absorbed to give mass to the gauge bosons; the remaining dim(G) - dim(Hgauge ∪Hglobal)

are the pNGB of the theory. The group H = Hgauge ∩ Hglobal is broken, being the one
containing the SM electroweak group [45], so that it is gauged and preserved by the strong
dynamics [4], as is shown in Figure (4.2).

Figure 4.1: The basic composite scenario structure. The (tR?) indicates the possibility of
the top quark being a part of the composite sector. Image from [2].

As we already know, a viable model requires the inclusion of GEW in Hgauge∩Hglobal.
Thus, the simplest group one can choose is GEW = Hgauge = Hglobal. In order to have the

state. If the Higgs were a composite state of QCD, we would have reached an energy scale to “break” it,
i.e., we already reached a resolution that would be sufficient to see inside a hypothetical composite Higgs
confined by QCD.

2 We are not going to discuss this model here, but the interested reader can take a look at the references
[4, 5] for an excellent approach to the topic.
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Higgs as a pNBG, we must have of dim(G)− dim(Hglobal) ≥ 4. The simplest group choice
that can be made is G = SU(3). However, this choice brings large corrections to the ρ
parameter due to the lack of a custodial symmetry [45]. By introducing the custodial
symmetry3 as an extension of the subgroup Hglobal, namely Hglobal = SU(2)L × SU(2)R ≃
SO(4), the issue with the ρ parameter is solved. The minimal choice for the global
symmetry in this scenario is G = SO(5), leading to the emergence of the Higgs as the only
pNGB.

Figure 4.2: Symmetry Breaking pattern of the Composite Higgs scenario. Image from [4].

It may be worth mentioning that the concept of CHM is inspired by the successful
understanding of pion dynamics based on chiral symmetry breaking in QCD. In the
two-flavor version of QCD, the global symmetry is approximately G = SU(2)L × SU(2)R.
The quark condensate ⟨q̄q⟩ spontaneously breaks this symmetry to H = SU(2)L+R. The
three Nambu-Goldstone bosons in the coset G/H are identified as the world-famous pions,
described by a Lagrangian where the global symmetry is realized non-linearly [48]. We
will not enter deeper into this discussion; despite its obvious importance, the interested
reader can find a good pedagogical approach in the references [3, 4].

One needs more than the entire group structure treated so far to ensure a realistic
model; one also needs to guarantee the necessary non-derivative interactions to make one
of the Goldostones a realistic Higgs candidate. This is provided by a mechanism called
vacuum misalignment, which we will discuss in the next section.

3 It may seem that the custodial symmetry is mandatory to the composite models, this is not really
true. Indeed, the custodial symmetry brings protection to the oblique parameters [4]. However, there
are other paths to address this issue, such as imposing extra symmetries to the model. An interesting
example of a model that does not have custodial symmetry is discussed in [46, 47].
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4.2 Vacuum misalignment

One of the most essential concepts behind the composite Higgs scenario is a
mechanism by which the composite Higgs boson effectively behaves like an elementary
one. This mechanism is called vacuum misalignment, which shifts the unbroken group,
H → H′, and breaks the electroweak group to U(1)EM , as shown in Figure (4.3). To delve
into this concept, we must enter into the group theory basis of the model.

Figure 4.3: Representation shift due to the vacuum misalignment. The ξ is the degree of
misalignment, representing the squared ratio of the electroweak symmetry breaking VEV
and the G → H scale. Image from [4].

We start our discussion by remembering that a spontaneous symmetry breaking
occurs not due to an explicit term in the lagrangian, but by the system’s dynamic by istself,
and can be diagramatically expressed by G → H. In order to generate this symmetry-
breaking, we assume that the vacuum state of the composite sector is not invariant under
the entire new composite group but, instead, invariant just under the subgroup H ⊂ G.
We choose a base of linearly independent generators in the Lie algebra of G to study this
symmetry breaking. Taking the group generators, TA, and splitting them into the broken
(A = â = 1̂, ..., dim[G/H]) and unbroken (A = a = 1, ..., dim[H]) leads to

{TA} = {T a, T̂ â}. (4.2.1)

The Lie algebra of the subgroup H is generated by the set {T a}. By choosing the vacuum
state of the system as F⃗ , the group generators must satisfy

T aF⃗ = 0, (4.2.2)

T̂ âF⃗ ̸= 0, (4.2.3)

hence, the unbroken generator preserves the vacuum state, whereas the broken one does
not and form a linearly independent set of vectors over the real numbers [2].
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Any choice of the basis in the algebra of G would be equally good. Once the group
is broken by gauging the electroweak group, the reference system must be such that GEW

is embedded in H, i.e., the SM group generators must be included among the {T a}’s
generators. Therefore, we do not have to entail many assumptions about the G → H
breaking pattern; in such a way, we have the freedom to choose any G group as long as
it contains the GEW as its subgroup4. Table (4.1) shows several symmetry choices to the
Composite Higgs model.

Table 4.1: The first two columns depict patterns of symmetry breaking G → H in some
Lie groups. The third column indicates whether the custodial symmetry is present in
the model. The fourth column provides the dimension of the coset. In contrast, the fifth
column lists the representations of the NGBs under H and SO(4) ≃ SU(2)L × SU(2)R.
in the case of a lack of custodial symmetry, the representation showed is the one from
SU(2)L×U(1)Y . When there are more than two SU(2) groups in H and multiple potential
decompositions, the highest number of bi-doublets is presented. Table from [49].

Despite the vast number of constructions possible, the set of different composite
Higgs models with N Nambu-Goldstone bosons is finite. This holds for the following
reasons. Given that the number of subgroups H of a group G is finite, the number of

4 The freedom here is incredible; however, ensuring that the model aligns with the experiments is
crucial. Furthermore, the model can exhibit multi-step symmetry breaking patterns, as G → H′ → H′′.
Such models are not very common due to the requirement of introducing an additional NGB field at each
step of the symmetry breaking process, which complicates the construction significantly.
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Figure 4.4: Size of same simple groups G and the minimum number of broken generators.
The G2, F4, E6, and E7 are the five exceptional simple Lie groups. Image from [48].

cosets G/H with N generators is also finite for a fixed group G. An astute reader might
imagine that by increasing the size of G, there could be an infinite set of group-subgroup
pairs with precisely the same number of broken generators. Well... not at all. As the size
of G grows, examining its maximal subgroups reveals that the minimum number of broken
generators also increases. For simple groups, this is visually depicted in Figure 4.45; for
the group families SU(n), Sp(2n), and SO(n), the trend shown in the figure holds for
arbitrarily large n. More generally, when the group is semi-simple, G = G1 × G2 × . . . ,
the maximal subgroups are either the maximal subgroup of one of the factors Gi or the
diagonal subgroup of two equal factors, i.e., Gi × Gi → Gi. Given that a finite number of
groups generate a precise number of Nambu-Goldstone Bosons, a natural question arises:
which groups are responsible for this generation? Table 4.2 provides the answer, detailing
the groups that produce up to eight NGBs.

As said in the last chapter, the Goldstones are the parameters of local transforma-
tions in the direction of the broken generators {T̂ â}. In the case of the Higgs mechanism,
these directions are the angular direction in the potential. Hence, we are led to the already
known Ansatz [2]6

Φ⃗(x) = eiθâT̂
â

F⃗, (4.2.4)

where the Φ⃗ is a scalar field describing the theory of symmetry breaking. In the exponential,
the θâ are fields, one for each broken generator, among which we must identify the four
real components of at least one Higgs doublet. Extra components can be present as other
scalars enlarging the Higgs sector. Of course, the Higgs VEV breaks the electroweak
symmetry down to the electromagnetic group once we have to reproduce the SM.

5 For further information about the exceptional simple Lie groups, please take a look at [50].
6 Even though the reference [2] calls it an Ansatz, it has an explication lying in the group theory, as we

will clarify it later on.
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Table 4.2: Composite Higgs Models with up to eight Nambu-Goldstone Bosons (NGBs)
are organized according to their scalar field content. The symmetries permitted in the
scalar sector from an IR perspective are specified. Table from [48].
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The composite sector, in isolation, has a spontaneous symmetry breaking pattern
G → H leading to NGB’s θ fields, with no potential, arbitrary vacuum state, and,
consequently, massless. Their VEV is unobservable since any constant configuration θ

corresponds to an equivalent vacuum that can be reached by applying a G transformation
like exp[−i ⟨θâ⟩ T̂ â]. Moreover, it is possible to eliminate any VEV, ⟨θâ⟩, by a redefinition
of the fields of the type Φ⃗ → exp[−i ⟨θâ⟩ T̂ â]Φ⃗. The subgroup H is not broken in this
situation, so the EWSB does not happen [2, 30, 31], as illustrated geometrically on the
left of Figure (4.5).

HHHHHHHH
v

G/HG/H F⃗ =
D
Φ⃗

E
F⃗ =

D
Φ⃗

E F⃗⃗FD
Φ⃗

ED
Φ⃗

E

θ

v

Figure 4.5: Representation of the Vacuum misalignment mechanism. Left: The composite
sector in isolation leads to a vacuum state of the field Φ⃗ aligned with the reference vacuum
F⃗ and there is no EWSB. Right: When the interaction between elementary and composite
sectors is introduced, the true vacuum state is shifted by an angle θ with respect to the
reference vacuum, the Higgs acquires a non-zero VEV, and the EWSB takes place. The
electroweak VEV is the projection of the vacuum into the H space. Image adapted from
the references [30, 31].

The situation changes when the elementary sector is considered. The symmetry is
explicitly broken due to the gauging of the electroweak group and couplings to the SM
fermions7. Now that the fields θ acquire a potential, the VEV is not arbitrary and the field
acquires a mass. It is no longer possible to perform a group transformation to eliminate
these fields; they have become observable. In this case, the GEW ⊂ H is broken by shifting
the true vacuum

〈
Φ⃗
〉

with respect to the H-preserving vacuum F⃗ , leading to a vacuum
misalignment, as shown on the right of Figure (4.5). It is expected that the entire EWSB
effect, including masses of SM particles, is controlled by the projection of

〈
Φ⃗
〉

onto the H
plane [2]. Therefore, the EWSB scale will be determined by

v = f sin(⟨θ⟩), (4.2.5)
7 Saying that a symmetry is explicitly broken is the same as saying that it is not an exact symmetry.
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where f =
∣∣∣
〈
Φ⃗
〉∣∣∣ represents the scale of spontaneous breaking in G → H.

It is possible to have a large value of ⟨θ⟩. However, composite Higgs construction
gains significance and diverges from technicolor8 when the misalignment angle is small,
i.e., ⟨θ⟩ ≈ 1, creating a gap between the scale f and the EWSB scale v. This gap is widely
expressed as [31]

ξ ≡ v2

f 2
. (4.2.6)

As ξ → 0, with v fixed, the composite sector decouples from low-energy physics by sending
its typical scale f to infinity. Only the Goldstone boson Higgs persists in the spectrum
in this limit, and all other bound states decouple. The theory consistently converges
to the Standard Model as ξ tends to zero, rendering the composite Higgs effectively
elementary. Experimental validations of the SM, especially its accurate portrayal of
electroweak precision physics, can be systematically restored with a small enough ξ. The
composite model is, therefore, attractive when the misalignment angle is small, leading to
the condition.

ξ ≡ v2

f 2
= sin2(⟨θ⟩) ≪ 1. (4.2.7)

This condition is not automatically satisfied [2]; one must be concerned about it and
introduce mechanisms to ensure that Eq. (4.2.7) is valid. Some options exist to make it
happen, such as collective symmetry breaking or imposing extra symmetries to the model,
such as a Z2 symmetry [4]. We are not going through this topic during our discussions,
but instead, an assumption to be checked later on.

Now, we will discuss a composite Higgs model’s construction, to exemplify how it
can be done.

4.3 The Minimal Composite Higgs Model

We will use the Minimal Composite Higgs Model (MCHM)9 to illustrate how to
build the Higgs as a pNGB. As said before, the assumptions we have to make about the
group structure of the new sector are pretty mild; it must just have the SM Electroweak
group as its subgroup and a 4-plet to be identified as the Higgs field. The MCHM is built
on the basis of an SO(5) group broken into the SO(4) subgroup. As one can check [2], the
SO(4) is locally isomorphic to the chiral group SU(2)L × SU(2)R group, and, therefore,
contains the EW group. The discussion starts with the construction of the Higgs and the
gauge bosons Lagrangian using the linear σ-model.

8 For a good, and crash, review about the technicolor see [51].
9 Here the term “minimal” refers to the minimal construction which is endowed with the Custodial

SO(4)C Symmetry [4, 3].
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4.3.1 Linear realization

As a starting point for our discussion, we identify the group structure of the model.
Once we adopt the SO(5) → SO(4) breaking pattern and SO(4) ≃ SU(2)L ×SU(2)R, the
SU(2)L group can be identified as the SM one, and the third generator of SU(2)R as the
SM hypercharge, i.e., Y = t3R

10. As one may have noticed, the SO(5) has 10 generators,
acting on the fundamental 5 representation, conveniently taken to be TA = {T a, T̂ i},
A = 1, ..., 10, where [2]

T a =

{
Tα
5L =

(
Tα
L 0

0 0

)
, Tα

5R =

(
Tα
R 0

0 0

)}
, (4.3.1)

(
T̂ i
)
IJ

= − i√
2

(
δiIδ

5
J − δiJδ

5
I

)
, (4.3.2)

where, in the first equation, a = 1, ..., 6 and α = 1, 2, 3; while, in the second one, i = 1, ..., 4

and I, J = 1, ..., 5. These generators are normalized as

Tr
[
TATB

]
= δAB. (4.3.3)

The T a, the first six generators, span the unbroken SO(4) sub-algebra and are defined
in Appendix B, Eqs. (B.22) and (B.23). The T̂ i are the broken generators associated
with the NGB’s. We have a total of four broken generators, leading to four Goldstones
transforming as 4 = (2,2) of the unbroken group.

The TA generators of SO(5) have the structure [3]

TA =




H G/H

G/H



. (4.3.4)

It is now clear that the vacuum satisfying Eqs. (4.2.2) and (4.2.3) is

F⃗ =




0

0

0

0

f



. (4.3.5)

We are interested in the Nambu-Goldstone bosons, so there is nothing fairer than to expand
10 This assumption will bring some issues when we consider the fermionioc particles, but, for now, it is

enough consider just this structure.
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the field around fluctuations in the directions of the broken generators, as explained before,
leading to

Φ⃗ = ei
√
2

f
Πi(x)T̂

i

(
0⃗

f + σ(x)

)
. (4.3.6)

The Π⃗ are the four NGB’s and the σ(x) is a resonance of the new composite sector, and
the 0⃗ is a 4-vector with zero in all the components. The Goldstone matrix is defined as
being

U [Π] = ei
√
2

f
Πi(x)T̂

i

. (4.3.7)

As demonstrated in the Appendix C, the equation above can be expressed in a more
convenient manner as

U [Π] =


14×4 −

[
1− cos

(
Π
f

)]
Π⃗Π⃗T

Π2 sin
(

Π
f

)
Π⃗
Π

− sin
(

Π
f

)
Π⃗T

Π
cos
(

Π
f

)

 , (4.3.8)

where Π =
√
Π⃗T Π⃗, and 14×4 is the unit matrix in four dimensions. Applying the last

relation to Eq. (4.3.6) we are left with

Φ⃗ = (f + σ)


sin

(
Π
f

)
Π⃗
Π

cos
(

Π
f

)

 . (4.3.9)

One can see that the unbroken generators’ action on the Φ⃗ leads to an rotation of the
fourplet Π⃗

Φ⃗ → eiαaTa

Φ⃗ ⇔ Π⃗ → eiαaTa

Π⃗. (4.3.10)

We now turn our sight to the model’s Lagrangian. Since we are considering a real scalar
field, even as an effective theory, we have [2]

LC =
1

2
∂µΦ⃗

T∂µΦ⃗− g2∗
2

(
Φ⃗T Φ⃗− f 2

)2
, (4.3.11)

which we will study in the perturbative weakly-coupled regime g∗ < 4π. This Lagrangian
must be invariant under SO(5) transformations acting on the field Φ⃗ as

Φ⃗ → g · Φ⃗, g = eαATA ∈ SO(5). (4.3.12)

However, after the field acquires a VEV, the symmetry is broken to the SO(4) subgroup.
The minimization condition of the potential is, clearly, ⟨Φ⃗T ⟩⟨⃗⃗Φ⟩ = f 2. Introducing Eq.
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(4.3.9) into the Lagrangian, we are led to

LC =
1

2
∂µσ∂

µσ − (g∗f)
2

2
σ2 − g2∗f

2
σ3 − g2∗

8
σ4 (4.3.13)

+
1

2

(
1 +

σ

f

)2 [
f 2

Π2
sin2

(
Π

f

)
∂µΠ⃗

T∂µΠ⃗ +
f 2

4Π4

(
Π2

f 2
− sin2

(
Π

f

))
∂µΠ

2∂µΠ2

]
.

Here we see that the resonance mass is

m∗ = g∗f. (4.3.14)

Typically, the resonances from a strong sector lies in the same range of the symmetry
breaking scale, namely f , which is much larger than the EW scale. Some exciting properties
arise from the Lagrangian. By expanding around Π = 0, it is easy to see that there is an
infinite set of local interactions between an arbitrary number of Goldstone fields but only
two derivatives. Every interaction, i.e. leg insertion, is weighted by the symmetry-breaking
factor f due to the NGB entering the Goldstone matrix as Π⃗/f . Analogously to the Pion
in QCD, the f is called the “Higgs decay constant” [2].

The 4-plet Π⃗ can be expressed in terms of the two Higgs Doublet components

H =

(
hu

hd

)
, (4.3.15)

by using the Eq. (B.31), as

Π⃗ =




Π1

Π2

Π3

Π4




=
1√
2




−i
(
hu − h†u

)

hu + h†u

i(hd − h†d)

hd + h†d



. (4.3.16)

As shown in Apenddix B, the Higgs doublet can be expressed as

H =
1√
2

(
Π2 + iΠ1

Π4 − iΠ3

)
. (4.3.17)

The theory is of course also invariant under four non-linearly realized transformations
associated with the broken generators [2]. Using that

Π2 = Π2
1 +Π2

2 +Π2
3 +Π2

4, (4.3.18)
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we can write

|H| =
(
H†H

) 1
2 =

1√
2

[(
Π2 − iΠ1 Π4 + iΠ3

)(Π2 + iΠ1

Π4 − iΠ3

)] 1
2

=
1√
2

(
Π2

1 +Π2
2 +Π2

3 +Π2
4

) 1
2 =

1√
2
Π, (4.3.19)

and (
∂µΠ⃗

)2
= 2∂µH

†∂µH, (4.3.20)

so that the Lagrangian, ignoring the resonances11, becomes

LC ⊃ f 2

2|H|2 sin
2

(√
2|H|
f

)
∂µH

†∂µH +
f 2

8|H|4

[
2
|H|2
f 2

− sin2

(√
2|H|
f

)]
(
∂µ|H|2

)2
.

(4.3.21)

As the endpoint, we have reached the Lagrangian for the Higgs dynamics and
self-interaction. We still have to introduce the gauge bosons and fermions to the model to
mimic the Standard model. However, before that, we will see how the CCWZ construction
can be used to construct the composite model. The following sections will discuss the
physical consequences of the Higgs Lagrangian.

4.3.2 Gauge sector

The new composite sector must contain the SM group and, hence, its particles,
including the gauge bosons, discussed in the last chapter. In this section, we will introduce
these particles by gauging the SM group, as we have done before.

The procedure of gauging a group is to promote the ordinary derivative to a
covariant one in the Lagrangian. Since we want the SM group, we gauge its generators,
i.e., the generators of SU(2)L × U(1)Y . The SO(4) is locally isomorphic to the chiral
group SU(2)L × SU(2)R [2], which indicates to us how to choose the generators to be
gauged: the entire SU(2)L group generators and, in some way, the generator of U(1)Y
as one among the generators of SU(2)R. The generator chosen is the third generator of
the right chiral group, a choice made due to the transformation behaviour of the NGB
under the group generators, the only one that has the right hypercharge and a proper
transformation rule [2, 5] . Putting all this information together, we are led to

∂µΦ⃗ → DµΦ⃗ =
(
∂µ − igWα

µ T
α
L − ig′BµT

3
R

)
Φ⃗. (4.3.22)

11 The resonances are strongly suppressed at low energy levels by the decay constant. Therefore, we can
ignore them here without any further concern
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The gauging process also leads us to elementary kinetic terms for the gauge bosons

LG = −1

4
Wα

µνW
µν
α − 1

4
Bµν

µν . (4.3.23)

At low energies, the EW gauge bosons propagators and self-interaction vertices are equal
to the SM [2]. The fields, (Wα

µ , Bµ), and the coupling strength, (g, g′), are the SM ones.
Since we have chosen to gauge not the entire group but the SM generators, the group
symmetry G is explicitly broken.

In Eq. (4.3.21) we faced the Lagrangian for the Higgs doublet, not for the field Φ⃗.
Hence, how should the covariant derivative be applied to the Higgs doublet? Inasmuch as
the Higgs sector in the composite model must be the SM one in low energies, the covariant
derivative is expected to be the same as in the SM. Indeed, this is precisely the case here.
The change from the ordinary derivative to the covariant in the Higgs doublet is [2, 52]

∂µH → DµH =

(
∂µ − igWα

µ

τα
2

− ig′Bµ
1
2

)
H, (4.3.24)

where the τα are the Pauli matrices. Ignoring the resonances, we have

LC ⊃ f 2

2|H|2 sin
2

(√
2|H|
f

)
(DµH)†DµH +

f 2

8|H|4

[
2
|H|2
f 2

− sin2

(√
2|H|
f

)]
(
∂µ|H|2

)2
.

(4.3.25)
The last term remains unchanged; the derivative is still ordinary because |H|2 is a singlet
[5]. The consequences of the new sector Lagrangian to the gauge bosons can be observed
by computing the physical couplings. We do this job through the Higgs VEV in the unitary
gauge

⟨H⟩ = 1√
2

(
0

V + h(x)

)
, (4.3.26)

where the h(x) describes the physical Higgs fluctuations. Putting the VEV into the term
(DµH)†DµH leads to

(Dµ⟨H⟩)†Dµ⟨H⟩ = 1

2

(
0

V + h(x)

)†(
∂µ − igWα

µ

τα
2

− ig′Bµ
1
2

)2
(

0

V + h(x)

)
.

It is important to notice that

|H|2 = 1

2
(V + h(x))2 , (4.3.27)

∂µ|H|2 = (V + h(x)) ∂µh. (4.3.28)

There is just one term in which the covariant derivative, and consequently, the gauge
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bosons, appear. Taking this first element of the Lagrangian (4.3.25) and considering only
the relevant terms, we are left with

f 2

2|H|2 sin
2

√
2|H|
f

|DµH|2 ⊃ sin2 V + h

f


g

2f 2

8

(
0

1

)T (g′

g
Bµ +W 3

µ W 1
µ − iW 2

µ

W 1
µ + iW 2

µ
g′

g
Bµ +W 3

µ

)2(
0

1

)

+
f 2

2 (V + h)2
(∂µh)

2

]
. (4.3.29)

As a result we get

f 2

2|H|2 sin
2

√
2|H|
f

|DµH|2 = sin2 V + h(x)

f

[
g2f 2

4

(
W+

µ W
−µ +

ZµZ
µ

2 cos θW

)

+
f 2

2 (V + h(x))2
(∂µh)

2

]
, (4.3.30)

where we have used the SM eigenstates and the Weinberg angle, as we did in the last
chapter, namely [53]

W± =
(W 1 ∓W 2)√

2
, (4.3.31)

Zµ =
gW 3

µ − g′Bµ√
g2 + g′2

, (4.3.32)

cos θW =
g√

g2 + g′2
. (4.3.33)

Observe that from Eq. (4.3.29) to Eq. (4.3.30), the left and right side’s relations have
changed, i.e., we passed from “⊂” to “=”. The reason is that Eq. (4.3.29) has mixing
terms involving the gauge bosons and the Higgs bosons derivative. However, when we
use the eigenstates, these terms are not present anymore [5, 52]. Therefore, we have an
equality relationship.

Finally, the entire Lagrangian in (4.3.25) becomes

LC ⊃ sin2 V + h(x)

f

[
g2f 2

4

(
W+

µ W
−µ +

ZµZ
µ

2 cos θW

)
+

f 2

2 (V + h(x))2
(∂µh)

2

]

+
f 2

2 (V + h(x))2

[
(V + h(x))2

f 2
− sin2 V + h(x)

f

]
(∂µh)

2 , (4.3.34)

which can be rewritten as

LC ⊃ g2f 2

4
sin2 V + h(x)

f

(
W+

µ W
−µ +

ZµZ
µ

2 cos θW

)
+

1

2
(∂µh)

2 . (4.3.35)
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The sine can be expanded by using Taylor expansion around h = 0, leading to

sin2 V + h

f
= sin2

(
V

f

)

+ 2 cos

(
V

f

)
sin

(
V

f

)
h

f
+

1

2!

[
−2 sin2

(
V

f

)
+ 2 cos2

(
V

f

)](
h

f

)2

+
1

3!

[
−4 cos

(
V

f

)
sin

(
V

f

)
− 4 sin

(
V

f

)
cos

(
V

f

)](
h

f

)3

+ . . .

= sin2

(
V

f

)
+

1

2
sin

(
2V

f

)
h

f
+ cos

(
2V

f

)(
h

f

)2

− 2

3
sin

(
2V

f

)(
h

f

)3

+ . . .

(4.3.36)

Substituting the last expression into the Lagrangian, the first term of the expansion gives
rise to the gauge bosons mass terms, given by

LC ⊃ g2f 2

4
sin2

(
V

f

)(
W+

µ W
−µ +

ZµZ
µ

2 cos θW

)
(4.3.37)

therefore
MW =MZ cos θW =

gf

2
sin

V

f
=
gv

2
, (4.3.38)

where we have used
v = f sin

V

f
, (4.3.39)

with v ≃ 246 GeV the EW VEV. From Eq. (2.4.31), we can see that at tree level, the
relation ρ = 1 holds in the minimal composite models. This is because the custodial
symmetry is present in the model after the EWSB; the Higgs VEV breaks the symmetry
to the custodial symmetry, SO(4) → SO(3)c ≃ SU(2)c, like in the SM.

In order to write down the interacting terms, it is convenient to rewrite Eq. (4.3.36)
by using the definition of ξ = v2/f 2 and considering the misalignment angle small. The
result is

sin2 V + h

f
=

(
v

f

)2
[
1 + 2

√
1− ξ

h

v
+ (1− 2ξ)

(
h

v

)2

− 4

3
ξ
√
1− ξ

(
h

v

)3

+ . . .

]
.

(4.3.40)
The interacting terms between the Higgs and the gauge bosons become

Lint =

[
1 + 2

√
1− ξ

h

v
+ (1− 2ξ)

(
h

v

)2

+ . . .

](
M2

WW
+
µ W

−µ +
M2

Z

2
ZµZ

µ

)
. (4.3.41)
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Consequently, the hV V vertex deviation with respect to the SM is [2]

κV ≡ gCH
hV V

gSMhV V

=
√
1− ξ < 1, (4.3.42)

where gSMhV V = 2mV /v. The vertex with two Higgsses is changed by

κV V ≡ gCH
hhV V

gSMhhV V

= 1− 2ξ. (4.3.43)

Hence, the composite model brings observable deviations from the SM. Due to the current
LHC measures status, a SM coupling deviation up to around 20% is allowed, giving a
bound of ξ ≤ 0.4 [30], which, in terms of the composite sector scale reads f ≳ 389 GeV.
The deviations vanish as the parameter ξ → 0 while keeping v constant by doing f → ∞.
In this scenario, the composite Higgs essentially behaves like an elementary particle.

With the gauge sector clarified, we turn our eyes to the fermionic sector.

4.3.3 Fermionic sector

After discussing the gauge sector in the composite model, it is natural to aim
to describe the fermions in this model. Despite the noble goal, our journey could be
easier. Unlike the gauge construction, we have yet to determine how the fermions must
be embedded in the model. The reason is that we need to learn how they transform
under the groups G and H. Since the most significant fermionic contribution to the Higgs
potential comes from the top and bottom quarks [2, 47], they will be our example during
the discussion.

With no background information about how to start the job proposed, one could
think of using the SM Yukawa interaction fields,

LY ukawa = −qLytH̃tR − qLybHbR + . . . , (4.3.44)

to construct the new model Lagrangian, i.e.

LCompY uk = LCompY uk (H, qL, tR, bR) . (4.3.45)

Here, the qL is the third generation of quarks, qL = (tL, bL)
T , H̃ = iτ2H

∗ and qL = q†Lγ
0,

γ0 being a Dirac matrix12[25]. The guess made in Eq. (4.3.45) is not correct; the SM
fermions do not have a well-defined transformation rule under the composite groups, G and
H; hence, it is not known how to construct invariant terms to the Lagrangian. Moreover,

12 Take a look at the notation and convention section.
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the fermions have a dependence on the representation. Thus, the NGB matrix must
be such that constructing the interacting terms involving the Higgs and the fermions is
possible. We need to change the guess in order to have a consistent theory.

The issue remains even if one takes the fermion field to a linear representation of G,
namely

qL → Q
L
, tR → TR, bR → BR, (4.3.46)

because the symmetry is broken to H; therefore, the fields must also be in a representation
of the latter. However, ensuring that the field is embedded in a representation of the
unbroken group is not enough since the quarks should be fundamental degrees of freedom
in energies scales above the symmetry breaking, indicating that they must be some
representation of G.

Let us address the issue of how to construct invariant terms to the Lagrangian.
For this, remember that a field Υ of a theory that respects the symmetry G transforms
according to the group action defined in the last section, namely

Υ → Υ(g) = φ̃(g,Υ), ∀ g ∈ G. (4.3.47)

Now, let us define a new field as [2]

Υ ≡ φ̃(U−1[Π],Υ). (4.3.48)

Here the U−1 is the inverse Goldstone matrix defined in the previous section. By acting
with a group element g on this field, the transformation must be in both elements of the
group action since the Goldstone matrix also has transformations under the symmetry
group, i.e.

φ̃ (g,Υ) = Υ(g) = φ̃
(
U−1[Π(g)],Υ(g)

)

= φ̃
(
U−1[Π(g)], φ̃(g,Υ)

)
(as per Eq. (4.3.47))

= φ̃
(
U−1[Π(g)]g,Υ

)
(φ̃ is homomorphism)

= φ̃
((
hU−1 [Π] g−1

)
g,Υ)

)
(Goldstone transformation rule)

= φ̃
(
hU−1 [Π] ,Υ)

)
= φ̃

(
h, φ̃(U−1[Π],Υ)

)

= φ̃ (h,Υ) , (4.3.49)

where we have used the inverse of the Goldstone matrix transformation rule, that is

U−1
[
Π(g)

]
= hU−1 [Π] g−1. (4.3.50)

As a conclusion, Eq. (4.3.49) showed us that under G transformations the field defined in
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Eq. (4.3.48) behaves like

Υ → Υ(g) = φ̃ (h,Υ) = Υ(h), ∀ h ∈ H. (4.3.51)

An action of G results in a transformation under H due to the factor g−1 present in
the Goldstone inverse matrix transformation rule that compensates the term of the G
transformation [2]. With this result in hands, we use it to define a new fermion field as

QL ≡ φ̃(U−1[Π], Q
L
), (4.3.52)

which, clearly, transforms under G as

QL → Q
(g)
L = φ̃(h,QL) = Q

(h)
L (4.3.53)

The same idea can be applied to the right-handed fermions. Dressing the new fields with
the inverse Goldstone matrix, leads to entities with a well-defined transformation rule,
and, hence, one can use this properties to build the Lagrangian

Lfermionic = Lfermionic (QL, TR, BR) . (4.3.54)

We still have to face the fermion representation issue. Once the composite sector
has, a priori, no requirement about the particle representation, the fermions are not
necessarily embedded into the exact representation of the symmetry group G. We must
write down the explicit expression of the fields in order to determine the allowed operators.
We have the freedom to choose the fermion representations. Therefore, we are going to
discuss the simpliest one, the fundamental representation. Valuable treatments of other
representations are present in [2, 5].

When a general group SO(N) with fundamental representation denoted by □[N], is
broken to a subgroup SO(N − 1), the fundamental representation decomposes as [43]

□[N] → □[N−1] ⊕ 1[N−1], (4.3.55)

where the 1[N−1] is a singlet13 of SO(N − 1). Therefore, we are able to decompose a
fundamental representation of SO(5) into representations of SO(4) as

Q
[5]
L =

˙
Q

[4]
L + . . . , (4.3.56)

where the
˙
Q

[4]
L is a singlet representation of the unbroken group14. Of course, the same

13 Any tensorial representation will have at least one singlet in its decomposition; of course, there is not
too much to talk about the representation of the remaining elements of the decomposition [5].

14 Here is important to stress that the
˙
Q

[4]
L is a incomplet fiveplet of SO(5), it has zero at some



4 THE COMPOSITE HIGGS MODEL 81

argument is applied to the other fermions, in our case BR and TR. Hence, the Lagrangian
must, for sure, contain at least the singlet representation

Lfermionic ⊃ −ytλt
˙
Q

[4]

L ˙
T

[4]
R − ybλb

˙
Q

[4]

L ˙
B

[4]
R . (4.3.57)

We have no clue about the remnant fields in the decomposition in Eq. (4.3.56), indicated
by the dots; nonetheless, we know how to build at least one invariant operator. Our task
will be embedding the fields in the fundamental representation, identifying the singlet
component, and using it to write down the interactions.

After defining the decomposition of the representation, we must ensure that the
fields in Eq. (4.3.57) can represent the SM field. We do it by studying how the field
decomposes under the GEW . Taking advantage of Eq. (4.3.55), we see that a fundamental
representation of SO(5), □[5], decomposes, under the SO(4) group, as

□[5] → □[4] ⊕ 1[4], (4.3.58)

with □[4] being in the fundamental representation of SO(4) and 1[4] the singlet. However,
the unbroken group is isomorphic to the chiral group, SO(4) ≃ SU(2)L × SU(2)R. As
discussed in [2] the fundamental representation of SO(4) behaves as (2,2) of SU(2)L ×
SU(2)R, indicating the decomposition under the chiral group

□[4] → 2⊕ 2, (4.3.59)

where 2 is the fundamental representation of SU(2)L,R. We have defined the third generator
of the right group as the hypercharge operator, Y = t3R, therefore, the fundamental
representation of SO(4) decomposes as two doublets with opposite charges, ±1/2, as
shown in [2] . Rewriting the last equation with the respective hypercharge leads to

□[4] → 2 1
2
⊕ 2− 1

2
. (4.3.60)

At the end of the day, we have

□[5] → □[4] ⊕ 1[4] → 2 1
2
⊕ 2− 1

2
⊕ 1

[4]
0 , (4.3.61)

where the 0 indicates that the singlet has no hypercharge. In the SM, the decomposition of
the quarks under the GEW are 21/6, 12/3, 1−1/3 for the qL, tR, bR, respectively. Therefore,
we must face a severe issue; the quarks can not be embedded into the representations of
the SO(5) satisfyng the correct quantum number. To solve this problem, we add a new
unbroken group to the model, namely U(1)X , and make the hypercharge a combination of

components.
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the third generator of SU(2)R and the new group generator

Y = T 3
R +X. (4.3.62)

Since the new group remains intact, the breaking pattern becomes

SO(5)× U(1)X → SO(4)× U(1)X . (4.3.63)

The new group plays no role in the symmetry breaking; no extra Goldstone appears.
Moreover, the U(1)X group commutes with the SO(5) [2], and thus, all the SM gauge
bosons are neutral under the new group. Extra interacting terms must be added when
fields have a X charge. For the fundamental representation, the choice of charge X = 2/3

under U(1)X will result in the decomposition [2]

□[5]
2
3

→ □[4]
2
3

⊕ 1
[4]
2
3

→ 2 7
6
⊕ 2 1

6
⊕ 1

[4]
2
3

. (4.3.64)

The second and third elements of the decomposition have the correct quantum numbers
of the qL and tR, respectively. Therefore, we can embed them into these representations.
Nonetheless, the bR can not be one of the representations shown above due to the wrong
hypercharge; the solution is to change the X charge. In this case, we choose X = −1/3,
decomposing as

□[5]

− 1
3

→ □[4]

− 1
3

⊕ 1
[4]

− 1
3

→ 2 5
6
⊕ 2 1

6
⊕ 1

[4]

− 1
3

, (4.3.65)

the last term being adequate to embed the bR. As an endpoint to the representation issue,
we have the tR being embedded in □[5]

2
3

, bR in □[5]

− 1
3

, and qL in □[5]
2
3

when coupled to the tR,

or qL in □[5]

− 1
3

when coupled to the bR.

It is helpful to take a moment to clarify the notation used above to ensure everything
is as straightforward as possible. The 2/3 and −1/3 values are in the first terms before
the arrow and in both terms after the arrow in Eqs. (4.3.64) and (4.3.65), represent the
charge under the U(1)X group. The subscripts on the last three terms on the right-hand
side of these equations refer to the total hypercharge, given by Eq. (4.3.62). Specifically,
these subscripts result from summing 2/3, −1/3, and the values shown in Eq. (4.3.61).
One way to interpret this is to consider that before the SO(4) group is decomposed, there
is no T 3

R generator with charge in the representation, as the group is still SO(5)15.

With all the ingredients collected, it is now possible to construct the invariants.
Thus, the next step is to build them explicitly. We approach first the top quark construction.
The starting point is embedding the fermions in an incomplete, linear representation of

15 While the notation here might appear confusing at first glance, rest assured, it truly is!
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SO(5). For the right top, we have [2]

TR =




0

0

0

0

tR



. (4.3.66)

Since the elements of the unbroken group are in block-diagonal form, with the first 4× 4

block made of an SO(4) rotation and “1” in the remaining entry, the choice made for
the representation is clearly a singlet under the unbroken group 16. Moving forward, we
need to embed the qL into □[5]

− 2
3

, it also must be a doublet of SU(2)L. As shown in Ref.
[2] , the chiral group representations can be written in the bidoublet form, i.e., a (2,2)

representation, where, as in Eq. (B.43), the bidoublet can be expressed in terms of two
complex doublets, namely

Ψ ≡ (Ψ−, Ψ+) =

(
Ψu

− Ψu
+

Ψd
− Ψd

+

)
. (4.3.67)

Since it transforms like a doublet under SU(2)L and has the correct T 3
R = −1/2 charge,

we choose the Ψ− to be qL,

qL =

(
tL

bL

)
= Ψ− =

(
Ψu

−

Ψd
−

)
. (4.3.68)

Hence, by inspection Ψu
− = tL, Ψd

− = bL and Ψu
+ = Ψd

+ = 0. Putting these outcomes in Eq.
(B.45) the fourplet of SO(4) is

q
[4]
L =

1√
2




−ibL
−bL
−itL
tL



. (4.3.69)

Embedding the fourplet into an incomplete 5-plet of SO(5) leads to

Q
L
=

1√
2




−ibL
−bL
−itL
tL

0




=

(
q
[4]
L

0

)
. (4.3.70)

16 Remember, the underline indicates a linear representation of G, and the result of embedding the tR
in this representation.
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In order to finally write down the interacting terms, we “dress” the quarks representations
of SO(5) with the Goldstone matrix 17. By Eq. (4.3.52), the left-chiral quarks will become

QL = φ̃
(
U−1 [Π] , Q

L

)
=


14×4 −

[
1− cos

(
Π
f

)]
Π⃗Π⃗T

Π2 − sin
(

Π
f

)
Π⃗
Π

sin
(

Π
f

)
Π⃗T

Π
cos
(

Π
f

)


(
q
[4]
L

0

)

=



{
14×4 −

[
1− cos

(
Π
f

)]
Π⃗Π⃗T

Π2

}
· q[4]L

sin
(

Π
f

)
Π⃗T

Π
· q[4]L


 . (4.3.71)

We have used Eq. (C.26) for the inverse Goldstone matrix. When constructing the
invariant, we will use the QL, which is given as

QL = φ̃T
(
U−1 [Π] , Q

L

)
= Q

L
U [Π] =

(
q
[4]
L 0

)

14×4 −

[
1− cos

(
Π
f

)]
Π⃗Π⃗T

Π2 sin
(

Π
f

)
Π⃗
Π

− sin
(

Π
f

)
Π⃗T

Π
cos
(

Π
f

)



=


q

[4]
L ·
{
14×4 −

[
1− cos

(
Π
f

)]
Π⃗Π⃗T

Π2

}

sin
(

Π
f

)
q
[4]
L · Π⃗

Π


 . (4.3.72)

The simbol “T ” in the group action is just to indicate that the action has changed, since
the conjugate field is not a column vector, but a line vector instead, so the Goldstone
matrix action and form must be different. Clearly, the above representation can be split
in two others

Q
˜
L = q

[4]
L ·
{
14×4 −

[
1− cos

(
Π

f

)]
Π⃗Π⃗T

Π2

}
, (4.3.73)

˙
QL = sin

(
Π

f

)
q
[4]
L · Π⃗

Π
. (4.3.74)

These entities belong to the representations

Q
˜
L ∈ 4

[4]
2
3

, (4.3.75)

˙
QL ∈ 1

[4]
2
3

. (4.3.76)

Dressing now the right top quark with the Goldstone matrix leads to

TR = φ̃
(
U−1 [Π] , TR

)
=


14×4 −

[
1− cos

(
Π
f

)]
Π⃗Π⃗T

Π2 − sin
(

Π
f

)
Π⃗
Π

sin
(

Π
f

)
Π⃗T

Π
cos
(

Π
f

)


(

0⃗

tR

)

=


−tR sin

(
Π
f

)
Π⃗T

Π

tR cos
(

Π
f

)

 . (4.3.77)

17 They must be appropriately dressed to join the party, right?
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Making the same procedure before, the TR is split as

T
˜R = −tR sin

(
Π

f

)
Π⃗T

Π
, (4.3.78)

˙
TR = tR cos

(
Π

f

)
, (4.3.79)

belonging to

T
˜R ∈ 4

[4]
2
3

, (4.3.80)

˙
TR ∈ 1

[4]
2
3

. (4.3.81)

As discussed before, we always have the singlet representation in the decomposition of
fundamental representations; for this reason, we chose this representation to build the
invariants. However, one may ask if the choice for the 4[4] would lead to a different term
and, even more, to a different physics. Well, no! Here, both representations are not
independent of each other; this can be seen as

(
Q
˜L

)
i

(
T
˜R

)i
+

˙
Q

L ˙
TR =

(
QL

)
I
(TR)

I =
(
Q

L
U [Π]

)
I

(
U−1 [Π]TR

)I

=
(
Q

L

)
I
(TR)

I = 0, (4.3.82)

since TR and Q
L

were constructed to be orthogonal. As a consequence, it does not
matter what representation we choose. For the sake of simplicity, we select the singlet
representation. The invariant is, then

˙
Q

L ˙
TR =

[
sin

(
Π

f

)
q
[4]
L · Π⃗

Π

]
tR cos

(
Π

f

)
=

tR
2Π

sin

(
2Π

f

)
q
[4]
L · Π⃗

=
tR

2
√
2Π

sin

(
2Π

f

)(
ibL −bL itL tL

)




Π1

Π2

Π3

Π4




=
tR

2
√
2Π

sin

(
2Π

f

)[
bL (iΠ1 − Π2) + tL (iΠ3 +Π4)

]

=
tR

2
√
2Π

sin

(
2Π

f

)(
tL bL

)(iΠ3 +Π4

iΠ1 − Π2

)

=
1

2Π
sin

(
2Π

f

)
qLH̃tR, (4.3.83)

where in the last step Eq. (B.28) was used18. By replacing the Π, just like in Eq. (4.3.19),
18 The convention being used for the matrix gamma is the Eq. (A.1) .
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the expression before can be rewritten as

˙
Q

L ˙
TR =

1

2
√
2|H|

sin

(
2
√
2|H|
f

)
qLH̃tR. (4.3.84)

One question may appear after reading the equation above; the tR is a singlet under the
SO(4) group, but the qL is a doublet under the SU(2)L and, therefore, is not a singlet
under the unbroken group. Confused? Here, the product qLH̃ is a singlet; in this sense,
the Higgs operator acts on the left quark doublet, making the result a singlet. Introducing
the couplings and constants the generalized Yukawa Lagrangian for the top is

Lt
Y = −ytf

˙
Q

L ˙
TR + h.c.

= − ytf

2
√
2|H|

sin

(
2
√
2|H|
f

)
qLH̃tR + h.c. , (4.3.85)

where the yt is the composite Yukawa coupling, a free parameter, and f is the breaking
energy scale. By letting the Higgs19 make its magic, the symmetry is spontaneously broken
by the VEV, which is given by H̃ → ⟨H̃⟩ =

(
V/

√
2, 0
)T

since the Π4 is the SM Higgs.
After the EWSB, we are led to

Lt
Y = − ytf

2
√
2|⟨H⟩|

sin

(
2
√
2|⟨H⟩|
f

)
qL⟨H̃⟩tR + h.c.

= −ytf
2V

sin

(
2V

f

)(
tL bL

)( V√
2

0

)
tR + h.c.

= − ytf

2
√
2
sin

(
2V

f

)
tLtR + h.c.

= −ytf√
2
sin

(
V

f

)
cos

(
V

f

)
tLtR + h.c.

= −ytf√
2

√
ξ
√

1− ξtLtR + h.c.

= −ytf
√
ξ (1− ξ)

2
tLtR + h.c. (4.3.86)

Eq. (4.3.39) were used together with the expression ξ = v2/f 2. By comparing with Eq.
(2.4.47), the equation above makes evident the quark mass parameter

mt = ytf

√
ξ (1− ξ)

2
. (4.3.87)

Having found the top mass, we can analyze the interaction with the SM Higgs. We
introduce the mass obtained into the Lagrangian, but we go to the unitary gauge where

19 The particle, not the physicist, of course.
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the potential has fluctuations around its minimum, i.e., ⟨H⟩ = V + h(x). As a result, one
gets

Lt
Y = − ytf

2
√
2|⟨H⟩|

sin

(
2
√
2|⟨H⟩|
f

)
qL⟨H̃⟩tR + h.c.

= − mt

2|⟨H⟩|
1√

ξ (1− ξ)
sin

(
2
√
2|⟨H⟩|
f

)
qL⟨H̃⟩tR + h.c.

= −
√
2mt

2 (V + h)

1√
ξ (1− ξ)

sin

(
2 (V + h)

f

)(
tL bL

)(V+h√
2

0

)
tR + h.c.

= −mt

2

1√
ξ (1− ξ)

sin

(
2 (V + h)

f

)
tLtR + h.c. (4.3.88)

Small perturbation around the minimum means that the h is small. Hence, we can expand
the sine in the previous equation as Taylor series around h = 0 [54]

sin
2 (V + h)

f
= sin

(
2V

f

)
+ cos

(
2V

f

)
2h

f
− 1

2
sin

(
2V

f

)(
2h

f

)2

+ . . .

= 2 sin

(
V

f

)
cos

(
V

f

)
+ 2

h

f

[
1− 2 sin2

(
V

f

)]

− 4
h2

f 2
sin

(
V

f

)
cos

(
V

f

)
+ . . .

= 2
√
ξ
√

1− ξ + 2
h

f
(1− 2ξ)− 4

h2

f 2

√
ξ
√
1− ξ + . . .

= 2
√
ξ (1− ξ) + 2

h

v

√
ξ (1− 2ξ)− 4

h2

v2
ξ
√
ξ (1− ξ) + . . . (4.3.89)

Returning to the Lagrangian

Lt
Y = −mt

2

tLtR√
ξ (1− ξ)

[
2
√
ξ (1− ξ) + 2

h

v

√
ξ (1− 2ξ)

− 4
h2

v2
ξ
√
ξ (1− ξ) + . . .

]
+ h.c.

= −mttLtR

[
1 +

h

v

1− 2ξ√
1− ξ

− 2
h2

v2
ξ + . . .

]
+ h.c.

= −mttt− k5t
mt

v
htt− c5t

mt

v
h2tt+ . . . (4.3.90)

This is the composite Lagrangian for the top quark, which provides the top mass and
interactions with the SM Higgs. The term htt is a SM-like interaction but with a modified
coupling k5. Expressing it in terms of the composite and the SM couplings leads to

k5t =
1− 2ξ√
1− ξ

, (4.3.91)
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where the superscript 5 indicates we have embedded the fermions in the fundamental
representation. It is essential to highlight that this modification is not unique to the model;
it depends on the representation in which we embed the fermions. A different choice of
representation would have led to a different coupling modification [2]. The third term in
the top Lagrangian is absent in the SM, whose coefficient is

c5t = −2ξ. (4.3.92)

In the elementary Higgs limit, when ξ → 0, the coupling modification reduces to the SM
parameters, k5t = 1 and c5t = 0. More about these modifications and their consequences
will be said in the following sections.

Moving forward to the bottom quark20, we must have the right-handed one as a
singlet under the unbroken group. The procedure is almost the same done with the top
quark, with the difference in the U(1)X charge. Taking into account the decomposition
pattern in Eq. (4.3.65), the bottom can be expressed as

BR =




0

0

0

0

bR



, (4.3.93)

just in the same fashion as the top. There is a difference with the left-handed spinor; now,
we must embed it in a representation that decomposes under SO(4) as a T 3

R eigenstate of
+1/2; thus, it is chosen to match with the Ψ+ in Eq. (B.43)

qL =

(
tL

bL

)
= Ψ+ =

(
Ψu

+

Ψd
+

)
. (4.3.94)

Substituting tL = Ψu
+, bL = Ψd

+ and Ψu
− = Φd

+ = 0 in Eq. (B.45), the embedded
representation of SO(4) is

q
[4]
L =

1√
2




−itL
tL

ibL

bL



. (4.3.95)

Putting the left fourplet into an SO(5) is, once more, straightforward when we take a look
20 I realize that I may be redundant here, as the explanation for the bottom quark closely mirrors that

of the top quark, with only minor differences. However, I prefer to be repetitive rather than risk making
the information unclear or confusing for the reader.
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at the broken and unbroken generators, namely

Q
L
=

1√
2




−itL
tL

ibL

bL

0




=

(
q
[4]
L

0

)
. (4.3.96)

Dressing the bottom singlet with the Goldstone matrix, we have

BR = φ̃
(
U−1 [Π] , BR

)
=


14×4 −

[
1− cos

(
Π
f

)]
Π⃗Π⃗T

Π2 − sin
(

Π
f

)
Π⃗
Π

sin
(

Π
f

)
Π⃗T

Π
cos
(

Π
f

)


(

0⃗

bR

)

=


−BR sin

(
Π
f

)
Π⃗T

Π

bR cos
(

Π
f

)

 , (4.3.97)

the same math as of the right top quark. As before, we choose the singlet of the
decomposition

˙
BR = bR cos

(
Π

f

)
,

˙
BR ∈ 1

[4]

− 1
3

(4.3.98)

One will find the same expression of Eq. (4.3.71) when dressing the qL, i.e.,

QL =


q

[4]
L ·
{
14×4 −

[
1− cos

(
Π
f

)]
Π⃗Π⃗T

Π2

}

sin
(

Π
f

)
q
[4]
L · Π⃗

Π


 . (4.3.99)

but with a different left fourplet. The singlet one is, evidently

˙
QL = sin

(
Π

f

)
Π⃗T

Π
· q[4]L ,

˙
QL ∈ 1

[4]

− 1
3

(4.3.100)

The singlet is the only representation used to construct the invariant; thus, we are not
going into the other presentation for the reasons we have already discussed. The invariant
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turns out to be

˙
Q

L ˙
BR =

[
sin

(
Π

f

)
q
[4]
L · Π⃗

Π

]
bR cos

(
Π

f

)

= − bR√
2Π

sin

(
Π

f

)
cos

(
Π

f

)(
itL tL −ibL bL

)




Π1

Π2

Π3

Π4




=
bR

2
√
2Π

sin

(
2Π

f

)(
tL bL

)( iΠ1 +Π2

−iΠ3 +Π4

)

=
1

2
√
2|H|

sin

(
2
√
2|H|
f

)
qLHbR. (4.3.101)

Hence, the composite bottom Lagrangian is given by

Lb
Y = −ybf

˙
Q

L ˙
BR + h.c.

= − ybf

2
√
2|H|

sin

(
2
√
2|H|
f

)
qLHbR + h.c. . (4.3.102)

After the EWSB the Higgs acquires its VEV, leading to

Lb
Y = − ybf

2
√
2
sin

(
2V

f

)
bLbR + h.c.

= −ybf√
2
sin

(
V

f

)
cos

(
V

f

)
bLbR + h.c. = −ybf

√
ξ (1− ξ)

2
bLbR + h.c.

= −mbbb, (4.3.103)

where the new bottom mass is

mb = ybf

√
ξ (1− ξ)

2
. (4.3.104)

In the unitary gauge and considering fluctuations around the potential’s minimum, the
Lagrangian turns out to be

Lb
Y = − ybf

2
√
2
sin

(
2 (V + h(x))

f

)
bLbR + h.c.

= − mb

2
√
ξ (1− ξ)

sin

(
2 (V + h)

f

)
bLbR + h.c.. (4.3.105)
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Expanding in Taylor series as was done in Eq. (4.3.89)

Lb
Y = − mbbb

2
√
ξ (1− ξ)

[
2
√
ξ (1− ξ) + 2

h

v

√
ξ (1− 2ξ)− 4

h2

v2
ξ
√
ξ (1− ξ) + . . .

]

= −mbbb− k5b
mb

v
hbb− c5b

mt

v
h2bb+ . . . (4.3.106)

Where the couplings are

k5b =
1− 2ξ√
1− ξ

, (4.3.107)

c5b = −2ξ, (4.3.108)

just as for the top quark. Please do not think that this is a general feature of composite
Higgs models. It results from embedding both fermions in the same SO(5) representation.
If we have chosen to embed them in different representations, the story would be different,
e.g., if the top had been taken to be in the 5 and the bottom in the spinorial 4 of SO(5) the
couplings would not be equal, kb = k4b ̸= k5t = kt. The dependence on just one parameter
ξ is also a coincidence of this specific case, which comes about because there was only one
invariant operator for both top and bottom quarks. There exist representations for which
the dependence is not of this type [2]. Since the construction done before makes use of the
fundamental representation, it is often refered as MCHM5 [30, 31].

As the above discussion suggests, the choice of representation directly affects the
physics of the new model therefore, there is almost an unlimited number of variations and
combinations to construct the model. The choice of the group on which the new sector is
based is also arbitrary. All the freedom in the construction leads to a rich and vast number
of viable models that may solve not just the hierarchy issue but other unsolved problems
in the SM, such as baryon asymmetry, dark matter puzzle, Higgs vacuum stability, and
many others.

4.3.4 Partial compositeness paradigm

Until now, we have discussed only the elementar sector of the composite scenario.
However, two issues arise promptly. First, the expression we found as corrections to the SM
vertices tells very little about the composite Higgs model. Of course, there is a deviation
from the values expected by the SM prediction, but experiments would not be able to
tell if this discrepancy is due to the new strong sector or any other BSM scenario [30].
Secondly, we have described the theory so far as an effective field theory, and at high
energy scales, there is a need to consider the effects of the resonances from the new sector.
Since their masses are expected to be higher than the TeV scale, only the terms interacting
with the elementary sector are relevant to the discussion. The mixing terms also solve the
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first issue; they bring signatures that may differ from other models.

There are two methods for introducing mixing. The most straightforward approach
would be to introduce a new kind of Yukawa coupling, as in [5]

Lbillinear = −ytQ̄LOt
STR − ybQ̄LOb

SBR + h.c., (4.3.109)

where the Ob
S and Ot

S are scalar operators. These operators are constructed with bricks21

(fields) in the strong sector. This kind of operator brings interactions called bilinear [3] in
the same fashion as technicolor models. The issue with this solution is that the operators’
dimension is 1, allowing invariants in the form of

Loperator =M2
t

(
Ot

S

)2
+M2

b

(
Ob

S

)2
. (4.3.110)

This messes up the entire construction we have done here since it reintroduces the hierarchy
problem. This is the wrong path!

Using linear interactions is the correct manner of introducing the mixing between
the composite and elementary sectors. The composite operator, made of field present in
the new sector, couples linearly with only one field at the time, Figure 4.6 illustrates the
bilinear and linear interactions. Putting this idea in mathematical language, we have[5]

Llinear = yLQ̄LOL
F − ytRT̄ROtR

F − ybRB̄RObR
F + h.c. (4.3.111)

Here, y′s couplings are dimensionless coefficients, and the operators have a dimension of
5/2 in energy. This is the partial compositeness paradigm [31]. Fermionic operators create
particle states with identical quantum numbers to those of elementary fermions. These
operators can be related to resonances of the new strong sector, known as the fermion
partner. Therefore [2]

〈
0
∣∣OL

F

∣∣ Q̃
〉

̸= 0,
〈
0
∣∣OL

R

∣∣ Q̃
〉

̸= 0,

where Q̃ and T̃ are fermionic resonances. When the Higgs acquires the EW VEV, the
fermions and their partners will mix.

When in four-dimensional space-time22, the dimensional analysis shows that the
21 Reminding you of the title of this thesis.
22 The dimensional analises can be made for any theory, even in higher dimensions than four. However,

the dimension of the fields, couplings, constants, and so on, can be different in higher dimensions.



4 THE COMPOSITE HIGGS MODEL 93

Figure 4.6: Types of interactions between the elementar and composite sectors. Left:
bilinear interaction, the composite operator is scalar and reintroduce the hierarchy problem.
Right: linear interaction, the composite operator is fermionic and there is no hierachy
issues coming from it. Image from [30].

fermionic operator must be of the form

OL
F → f

4π
Ψ (4.3.112)

with Ψ the fermionic resonance23. Writing down the Lagrangian for this field, together
with mass terms

Llinear = −f
[yL
4π
Q̄LΨL +

ytR
4π

T̄RΨtR +
ybR
4π

B̄RΨbR + h.c.
]
− fΨ̄Ψ. (4.3.113)

The resonances can be integrated out at low energy levels, and the Yukawa transmutes to
approximately [2]

yt ∼
yLytR
4π

, (4.3.114)

yb ∼
yLybR
4π

. (4.3.115)

Partial compositeness introduces new interactions and contributions that can be
experimentally measured. It is crucial for developing a UV-complete model.

b b b b b

We could calculate the Higgs masses and parameters from the new strong sector, but
this is beyond the scope of our current discussion. These calculations must be performed
at the loop level, and the Coleman-Weinberg potential must be determined [2, 7]. Detailed
methodologies can be found in Refs. [30, 5, 52]. The primary objective of this dissertation
is to demonstrate the composite construction and the symmetry-breaking pattern.

23 The 1/4π is just a normalization factor, do not let it bother you.
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Chapter 5

CONCLUSIONS

This dissertation provides a fundamental understanding of the Standard Model and
Higgs physics, focusing on the principles of the Composite Higgs Model. It also delves
into the role of group theory in particle physics and its significance in advancing our
understanding of these concepts.

At the heart of our analysis lies the examination of the Minimal Composite Higgs
Model (MCHM), serving as the focal point of our inquiry. Through meticulous scrutiny of
its intricacies, we uncover its potential to address the limitations of the Standard Model,
thereby offering fresh insights into the mechanics of electroweak symmetry breaking.

In essence, this dissertation contributes another brick to the ongoing construction of
our understanding of the Composite Higgs Model and its implications for particle physics.
As we continue to unravel the mysteries of the universe, the Composite Higgs Model stands
as a promising avenue for exploring new physics beyond the Standard Model paradigm.
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Appendix A

CONVENTIONS AND NOTATIONS

The text follows, basically, the same notation of Ref. [13].

Since this is a dissertation that discuss a high energy physics’ topic, we will use
natural units

ℏ = c = 1.

The metric signature is

ηab = (diag)(1,−1,−1,−1) =




1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1



.

The greek indices are assumed to have the values of µ = 0, ..., 3 while spatial indices are
denoted by Latin letters, i, j, ... = 1, 2, 3, unless explicitly mentioned otherwise, in both
cases.

The Dirac matrices used are the ones in the standard chiral representation

γ0 =

(
1 0

0 −1

)
, γi =

(
0 τ i

−τ i 0

)
, γ5 =

(
0 1

1 0

)
.

With the matrices in hands, we define the Dirac conjugation

ψ̄ = ψ†γ0.

Pauli matrices will appear for a while during the text, they are

τ 1 =

(
0 1

1 0

)
, τ 2 =

(
0 −i
i 0

)
, τ 3 =

(
1 0

0 −1

)
.
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We also define
τµ = (1, τ i), τ̄µ = (1,−τ i).

The derivatives are denoted by

∂µ =
∂

∂xµ
, ∂µ∂

µ = ∂20 −∇2.

We will also use the slash notation, developed by Feynman, given by:

/A = Aµγ
µ, (A.1)

in particular
/∂ = γµ∂

µ.

In the case of any further convetion and notation be used, it will be explained
during the text.
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Appendix B

A LITTLE BIT ABOUT THE SO(4)

GROUP

Our intention here is to make some definitions of the SO(4) group that is usefull in
the composite caculations.

As already said a couple of times, there is an isomorphism between the SO(4) and
the chiral group, i.e.,

SO(4) ≃ SU(2)L × SU(2)R, (B.1)

meaning that they have the same algebra [32, 33, 37]. Therefore, it is possible to construct
a presentation of the chiral group using the representation of the SO(4). In order to do it,
consider a Π⃗ four-plet in the fundamental representation of SO(4), a (2,2) representation
of SU(2)L × SU(2)R is constructed as [2]

Σ =
1√
2

(
iταΠ

α + 12×2Π
4
)
=

1√
2
τ̄iΠ

i, (B.2)

where α = 1, 2, 3 and i = 1, 2, 3, 4. Following the Section of notations, we have that τ are
the Pauli matrices and

τ̄i = {iτα,12×2} . (B.3)

The matrix Σ is also called a pseudo-real bidoublet, the pseudo reality comes from the
fact that

Σ∗ = τ2Στ2, (B.4)

and since it is a representation of the chiral group, it transforms as usual

Σ → ULΣU
†
R. (B.5)
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The SU(2) group has the algebra defined by the Lie brackets1,

[
tα, tβ

]
= iϵαβγtγ, (B.6)

where the greek letters runs from one up to three, ϵ are the Levi-Civita symbol, and
tα = τα/2 are the group’s generators [34]. Turning to the SO(4) group, they can be
separated in two different SU(2) set of generators, namely ta = {tαL, tαR}. The two sets of
generators obey the SU(2)L × SU(2)R algebra [2]

[
tαL, t

β
L

]
= ϵαβγtγL, (B.7)

[
tαR, t

β
R

]
= ϵαβγtγR, (B.8)

[
tαL, t

β
R

]
= 0. (B.9)

To see how the field transforms under the group transformation, we make use of the
exponential map

UL = eiδ
L
α tαL (B.10)

UR = eiδ
R
α tαR (B.11)

being the δα the infinitesimal transformation parameter. Applying the transformation in
the field, we have, at the first order

ULΣ = eiδ
L
α tαLΣ =

(
12×2 + iδLαt

α
L

)
Σ = Σ + iδLαt

α
LΣ (B.12)

ΣU †
R = Σe−iδRα tαR = Σ

(
12×2 + iδRα t

α
R

)
= Σ− iδRαΣt

α
R (B.13)

Therefore, in the first order, the change in the field induced by the transformation is

δLΣ = iδLαt
α
LΣ = iδLα

τα

2
Σ, (B.14)

δRΣ = −iδRαΣtαR = −iδRαΣ
τα

2
. (B.15)

To the fourplet, the transformation acts as

δLΠ⃗ = iδLαT
α
L Π⃗, (B.16)

δRΠ⃗ = iδRαT
α
RΠ⃗, (B.17)

just in case the reader has forgotten, here Π⃗ has four components, so it is not a usual
three-dimensional vector, and the Tα has not had the same form of tα, since they are

1 By the way, this is the exact algebra than the SO(3) group, and, therefore, they are isomorphic to
each other.
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different generators. With this in hands, we can find the form of the generators, in order
to do it we put Eq. (B.2) in Eq. B.14, namely,

δLΣ = δL

(
1√
2
τ̄ iΠi

)
=

1√
2
τ̄ iδLΠ

i

=
1√
2
τ̄ i
(
iδLαT

α
L Π⃗
)i

=
i√
2
δLα τ̄

i (Tα
L )ij Π

j, (B.18)

from the first to the second line, we have used the transformation in Eq. (B.16). The
equation before holds for any infinitesimal transformation parametrized by δLα . Due to Eq.
(B.14) together with the result we got above, we have

δLΣ = iδLα
τα

2
Σ =

i√
2
δLα τ̄

j (Tα
L )jiΠ

i, (B.19)

replacing the Σ by the Eq. B.2, leads to

i√
2
δLα
τα

2
τ̄jΠ

j =
i√
2
δLα τ̄

i (Tα
L )ij Π

j. (B.20)

Therefore, by inspection

τ̄ i (Tα
L )ij =

τα

2
τ̄j. (B.21)

This equation can be inverted solved in terms of the generator, leading to

(Tα
L )ij =

1

4
Tr
[
τ̄ †i τ

ατ̄j

]
= − i

2

[
ϵαβγδ

β
i δ

γ
j +

(
δαi δ

4
j − δαj δ

4
i

)]
. (B.22)

The same procedure can be done to the right generator, Tα
R , leading to

(Tα
R)ij =

1

4
Tr
[
τ̄iτ

ατ̄ †j

]
= − i

2

[
ϵαβγδ

β
i δ

γ
j −

(
δαi δ

4
j − δαj δ

4
i

)]
. (B.23)

Since these generators span a vectorial space, they must satisfy the completeness and
normalization relations, namely

Tr
[
Tα
LT

β
L

]
= Tr

[
Tα
RT

β
R

]
= δαβ, Tr

[
Tα
LT

β
R

]
= 0, (B.24)

3∑

α=1

[
(Tα

L )ij (T
α
L )kl + (Tα

R)ij (T
α
R)kl

]
= −1

2

(
δikδ

jl − δilδ
jk
)
, (B.25)

3∑

α=1

[
(Tα

L )ij (T
α
L )kl − (Tα

R)ij (T
α
R)kl

]
= −1

2
ϵijkl, (B.26)

where ϵijkl is the four dimensional Levi-Civita anti-symmetric tensor.

Once the generators of the SO(4) groups are defined, we turn ourselves to putting
the Goldstones into a group representation. As said in the text, in the minimal composite
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Higgs models, the SU(2)L group is identified to be the SM left-handed group, while the
U(1)Y is identified as the being the group generated by the third generator of SU(2)R,
where we are disregarding the U(1)X , since the Higgs boson is a singlet under this group.
We, thus, need a (2,2) representation of the chiral group and a hypercharge of 1/2. The
goldstone matrix, Σ, has precisely the properties we need [2]; this can be easier seen by
noting that the matrix can be written as

Σ =
(
H̃,H

)
=

(
h∗d hu

−h∗u hd

)
, (B.27)

where
H̃ = iτ 2H∗, (B.28)

and H = (hu hd)
T , writing down the components index notation

Σîĵ = δ1ĵH̃î + δ2ĵHî, (B.29)

with the hat letters varing from one until two, i.e., î = 1, 2. By using Eq. (B.2) we have,
that

Σ =
1√
2

(
iταΠ

α + 12×2Π
4
)

=
1√
2

[
i

(
0 Π1

Π1 0

)
+ i

(
0 −iΠ2

iΠ2 0

)
+

(
Π3 0

0 −Π3

)]
+

1√
2

(
Π4 0

0 Π4

)

=
1√
2

(
Π4 + iΠ3 iΠ1 +Π2

iΠ1 − Π2 Π4 − iΠ3

)
. (B.30)

Therefore, by inspection of the equation above and Eq. (B.27) we get

H =

(
hu

hd

)
=

1√
2

(
iΠ1 +Π2

Π4 − iΠ3

)
. (B.31)

A relevant question may appear: how does the Σ matrix transform under the chiral group?
Let us start by applying a transformation of the left group

Σ → ULΣ, (B.32)

using Eq. (B.29), we can write it down by using indices

Σîĵ → (UL)îk̂ Σk̂ĵ = (UL)îk̂

(
δ1ĵH̃k̂ + δ2ĵHk̂

)
(B.33)

= δ1ĵ((UL)îk̂ H̃k̂ + δ2ĵ (UL)îk̂Hk̂, (B.34)
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to respect the transformation low of the group, both H̃ and H transform a doublet of
SU(2)L [5]. To determine the behavior of the Goldstone matrix under the SU(2)R group,
we use the generators in Eq. (B.23) and the transformation law in Eq. (B.17), by starting
with the first generator

iδR1 T
1
RΠ⃗ = −δ

R
1

2




0 0 0 −1

0 0 1 0

0 −1 0 0

1 0 0 0







Π1

Π2

Π3

Π4




=
δR1
2




−Π4

+Π3

−Π2

+Π1



. (B.35)

Such a transformation will triguer a change in H, which can be calculated with help of Eq.
(B.21),

δH =
1√
2

(
iδΠ1 + δΠ2

δΠ4 − iδΠ3

)
=

iδR1
2
√
2

(
Π4 + iΠ3

iΠ1 − Π2

)
= −iδ

R
1

2
H̃, (B.36)

therefore, the bidoublet does not have a well-defined transformation rule under the first
generator of the SU(2)R group. For T 2

R we have

iδR2 T
2
RΠ⃗ = −δ

R
2

2




0 0 1 0

0 0 0 1

−1 0 0 0

0 −1 0 0







Π1

Π2

Π3

Π4




= −δ
R
2

2




+Π3

+Π4

−Π1

−Π2



, (B.37)

leading to

δH =
1√
2

(
iδΠ1 + δΠ2

δΠ4 − iδΠ3

)
=

δR2
2
√
2

(
−Π4 − iΠ3

−iΠ1 +Π2

)
= −δ

R
2

2
H̃, (B.38)

thus, the second generator also does not lead to any well-defined transformation rule. For
the last generator, the third one, we get

iδR2 T
3
RΠ⃗ = −δ

R
3

2




0 −1 0 0

1 0 0 0

0 0 0 1

0 0 −1 0







Π1

Π2

Π3

Π4




= −δ
R
3

2




−Π2

+Π1

+Π4

−Π3



, (B.39)

and, then

δH =
1√
2

(
iδΠ1 + δΠ2

δΠ4 − iδΠ3

)
=

δR3
2
√
2

(
iΠ2 − Π2

Π3 + iΠ4

)
= −iδ

R
2

2
H, (B.40)

therefore, the reason why identify the third generator of SU(2)R as the hypercharge
becomes evident. The H has the correct hypercharge to be the SM Higgs boson, i.e., +1/2.
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It is equivalente to say that the bidoublet, or fourplet, decomposes as

4 = (2,2) → 21/2, (B.41)

under the SM SU(2)L × U(1)Y subgroup.

We have found the representation in which we desire to put the Goldstones on,
which includes the Higgs in the SM correct representation. The procedure must be followed
for the fermions as well. We must consider complex SO(4) fourplet when dealing with
these fields. In the same fashion, we did in Eq. (B.2), the complex Ψ can be expressed as

Ψ =
1√
2

(
ψ4 + iταψ

α
)
=

1√
2
τ̄iψ

i, (B.42)

or, explicitly,

Ψ =
1√
2

(
ψ4 + iψ3 ψ2 + iψ1

−ψ2 + iψ1 ψ4 − iψ3

)
=

1√
2

(
Ψu

− Ψu
+

Ψd
− Ψd

+

)
= (Ψ−, Ψ+) , (B.43)

where ψi is a complex component of the representation (2,2) of the chiral group. Differently
from the Goldstones case, these bidoublet does not satisfy the pseudo-reality condition in
(B.4); because of this, we dub it as complex doublet (2,2)c [2]. Under the SU(2)L×U(1)Y

each of the “doublets”, of Ψ, has opposite hypercharges, represented by the minus and plus
signal in the last two equations. Therefore, the representation decomposes as

4c = (2,2)c → 2+1/2 ⊕ 2−1/2. (B.44)

This 4c representation of SO(4), i.e. a fourplet, can be construct using (B.43),

ψ⃗ =
1√
2




−iΨu
+ − iΨd

−

Ψu
+ −Ψd

−

iΨd
+ − iΨu

−

Ψd
+ +Ψu

−



. (B.45)

The constructions and definitions presented here may look vague and nonsensical.
However, as we will see, they will be helpful when constructing the Minimal Composite
Higgs model.
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Appendix C

GOLDSTONE MATRIX

We desire to show that the Goldstone matrix can be expressed as Eq. (4.3.8). We
start our task by writing the broken generators, Eq. (4.3.2), explicitly

T̂ 1 = − i√
2




0 0 0 0 1

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

−1 0 0 0 0



, T̂ 2 = − i√

2




0 0 0 0 0

0 0 0 0 1

0 0 0 0 0

0 0 0 0 0

0 −1 0 0 0



, (C.1)

T̂ 3 = − i√
2




0 0 0 0 0

0 0 0 0 0

0 0 0 0 1

0 0 0 0 0

0 0 −1 0 0



, T̂ 4 = − i√

2




0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 1

0 0 0 −1 0



. (C.2)
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We use these matrices to rewrite the argument in the exponential

i

√
2

f
Πi(x)T̂

i = i

√
2

f




Π1(x)√
2




0 0 0 0 −i
0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

i 0 0 0 0




+
Π2(x)√

2




0 0 0 0 0

0 0 0 0 −i
0 0 0 0 0

0 0 0 0 0

0 i 0 0 0




+
Π3(x)√

2




0 0 0 0 0

0 0 0 0 0

0 0 0 0 −i
0 0 0 0 0

0 0 i 0 0




+
Π4(x)√

2




0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 −i
0 0 0 i 0






=

=
1

f




0 0 0 0 Π1

0 0 0 0 Π2

0 0 0 0 Π3

0 0 0 0 Π4

−Π1 −Π2 −Π3 −Π4 0




=
π

f
. (C.3)

Replacing in the exponential and expanding as Taylor series, we have [54]

ei
√
2

f
Πi(x)T̂

i

= e
π
f = 1 +

π

f
+

1

2!

(
π

f

)2

+
1

3!

(
π

f

)3

+ . . . =
∞∑

n=0

1

n!

(
π

f

)n

. (C.4)

There is a recursion relation of the matrix multiplication. To obtain this formula, we start
by calculating the multiplications

π2 = ππ = −




Π2
1 Π1Π2 Π1Π3 Π1Π4 0

Π2Π1 Π2
2 Π2Π3 Π2Π4 0

Π3Π1 Π3Π2 Π2
3 Π3Π4 0

Π4Π1 Π4Π2 Π4Π3 Π2
4 0

0 0 0 0 Π2



, (C.5)

π3 = ππ2 = −Π2




0 0 0 0 Π1

0 0 0 0 Π2

0 0 0 0 Π3

0 0 0 0 Π4

−Π1 −Π2 −Π3 −Π4 0




= Π2π, (C.6)
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where
Π2 = Π2

1 +Π2
2 +Π2

3 +Π2
4. (C.7)

Using the equations before, we find

π4 = π3π = −Π2, (C.8)

π5 = π4π = −Π2π3 = Π4π, (C.9)

π6 = π5π = π4π2, (C.10)

π7 = Π4π3 = −Π6π, (C.11)

therefore, one concludes that

π2n+1 = (−1)nΠ2nπ, (C.12)

π2(n+1) = (−1)2Π2nπ2, (C.13)

with n = 0, 1, 2, 3, . . . . Making use of the last relation, the series in (C.4) can be split into
terms of odd and even powers, as in [52]

e
π
f = 1+

∞∑

n=0

(−1)n Π2n

(2n+ 1)!f 2n+1
π +

∞∑

n=0

(−1)nΠ2n

(2n+ 2)!f 2(n+1)
π2

= 1+
π

Π

∞∑

n=0

(−1)n

(2n+ 1)!

(
Π

f

)2n+1

+
( π
Π

)2 ∞∑

n=0

(−1)n

[2 (n+ 1)]!

(
Π

f

)2(n+1)

. (C.14)

The first term can be easily identified as the Taylor series of the sine [54]

sinx =
∞∑

n=0

(−1)n

(2n+ 1)!
x2n+1. (C.15)

The second term needs to be massaged a little in order to make it recognizable,

∞∑

n=0

(−1)n

[2 (n+ 1)]!
x2(n+1) =

∞∑

n=1

(−1)n−1

(2n)!
x2n = (−1)

∞∑

n=1

(−1)n

(2n)!
x2n

= 1−
[
1 +

∞∑

n=1

(−1)n

(2n)!
x2n

]

= 1−
∞∑

n=0

(−1)n

(2n)!
x2n

= 1− cosx. (C.16)
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Putting all the pieces together yields

e
π
f = 1+

π

Π
sin

(
Π

f

)
+
( π
Π

)2 [
1− cos

(
Π

f

)]

= 1+
1

Π
sin

(
Π

f

)




0 0 0 0 Π1

0 0 0 0 Π2

0 0 0 0 Π3

0 0 0 0 Π4

−Π1 −Π2 −Π3 −Π4 0




− 1

Π2

[
1− cos

(
Π

f

)]




Π2
1 Π1Π2 Π1Π3 Π1Π4 0

Π2Π1 Π2
2 Π2Π3 Π2Π4 0

Π3Π1 Π3Π2 Π2
3 Π3Π4 0

Π4Π1 Π4Π2 Π4Π3 Π2
4 0

0 0 0 0 Π2



, (C.17)

This equation can be simplified by using the definition of the vector Π⃗, and making some
operations on it, namely

Π⃗ =




Π1

Π2

Π3

Π4



, (C.18)

Π⃗T =
(
Π1 Π2 Π3 Π4

)
, (C.19)

Π⃗ · Π⃗T =




Π1

Π2

Π3

Π4




·
(
Π1 Π2 Π3 Π4

)
=




Π2
1 Π2Π1 Π3Π1 Π4Π1

Π1Π2 Π2
2 Π3Π2 Π4Π2

Π1Π3 Π2Π3 Π2
3 Π4Π3

Π1Π4 Π2Π4 Π3Π4 Π2
4



. (C.20)

With these results in hands, the first two terms in Eq. (C.17) can be expressed as

1+
1

Π
sin

(
Π

f

)




0 0 0 0 Π1

0 0 0 0 Π2

0 0 0 0 Π3

0 0 0 0 Π4

−Π1 −Π2 −Π3 −Π4 0




=


 14×4 sin

(
Π
f

)
Π⃗
Π

sin
(

Π
f

)
Π⃗T

Π
1


 , (C.21)
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meanwhile the third term becomes

− 1

Π2

[
1− cos

(
Π

f

)]




Π2
1 Π1Π2 Π1Π3 Π1Π4 0

Π2Π1 Π2
2 Π2Π3 Π2Π4 0

Π3Π1 Π3Π2 Π2
3 Π3Π4 0

Π4Π1 Π4Π2 Π4Π3 Π2
4 0

0 0 0 0 Π2




=


−

[
1− cos

(
Π
f

)]
Π⃗Π⃗T

Π2 0

0 −
[
1− cos

(
Π
f

)]

 . (C.22)

Putting all the pieces together, brings us to the final result

U [Π] =


14×4 −

[
1− cos

(
Π
f

)]
Π⃗Π⃗T

Π2 sin
(

Π
f

)
Π⃗
Π

− sin
(

Π
f

)
Π⃗T

Π
cos
(

Π
f

)

 . (C.23)

It is worth stressing that this equation holds for any SO(N) → SO(N−1) symmetry
breaking with the generators in the fundamental representation [2, 5]. It is not hard to
see it. The general form of the broken generators for symmetry breaking patterns of
SO(N) → SO(N − 1) is

(
T̂ i
)
IJ

= − i√
2

(
δiIδ

N
J − δiJδ

N
I

)
, (C.24)

where i = 1, ..., N − 1 and I, J = 1, ..., N . Thus, substituting in the Goldstone matrix
argument

i

√
2

f
Πi(x)T̂

i =
1

f




0 · · · 0 Π1

. . . Π2

...
...

...
ΠN−1

−Π1 · · · −ΠN−1 0



. (C.25)

This is the same matrix of the Eq. (C.3), but in N ×N dimesion. The calculations will
be the same, but for N dimensions, leading to the same format of´ the Goldstone matrix.

Since we have arrived this far, it is worth also mentioning the inverse of the
Goldstone matrix. Since it is orthogonal, its transpose [2],

U−1[Π] =


14×4 −

[
1− cos

(
Π
f

)]
Π⃗Π⃗T

Π2 − sin
(

Π
f

)
Π⃗
Π

sin
(

Π
f

)
Π⃗T

Π
cos
(

Π
f

)

 . (C.26)
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