
Particle Accelerators, 1986, Vol. 20, pp. 121-132
0031-2460/86/2002-0121$20.00/0
© 1986 Gordon and Breach Science Publishers S.A.
Printed in the United States of America

A NEW APPROACH TO DYNAMIC APERTURE
PROBLEMS

JONATHAN F. SCHONFELDt

Fermi National Accelerator Laboratory Batavia, II 60510

(Received September 13, 1985; in final form January 21, 1986)

We develop the theory of a passive magnetic system intended to suppress nonlinear orbit distortion in
high-energy proton storage rings. The system is designed to immediately reduce "Collins distortion
functions," which describe the size of nonlinear orbit distortion in first-order perturbation theory.
Such a scheme could permit one significantly to decrease the physical aperture of a storage ring over
most-but not necessarily all-of its length. This work was motivated by design needs of the proposed
Superconducting Super Collider (SSC).

1. GENERAL PHILOSOPHY

Concerns about the high cost of the proposed Superconducting Super Collider
(SSC) and about discouraging results from single-beam numerical simulation! of
the SSC Reference Design,2 have recently generated heightened interest in the
general problem of predicting the dynamic aperture of a high-energy proton
(nonradiative) storage ring. Loosely speaking, dynamic aperture is the region of
phase space within which beam can be injected without risk of being lost soon
afterward. The small dynamic aperture predicted by orbit tracking of the SSC
Reference Design is due largely to the rich multipole content expected from
proposed designs for SSC dipoles.

Hopes for an increase in SSC dynamic aperture are fueling theoretical research
in two areas: numerical simulation,3 and analytic perturbation theory.3,4 How­
ever, these are problematical. Simulation can, in principle, tell us when a design
cannot work, but no one knows at present how to turn this into a concrete
prescription for design modifications. High-order perturbation theory is also not
yet sufficiently intuitive to suggest specific remedies for orbital difficulties.
Perturbation theory is attractive at this time mainly because of the hope that it
may be able to provide the same sort of information as numerical simulation, in
greater detail, in much less computing time.

Recently, we proposed5 an example of a third, intermediate approach to
dynamic aperture problems: a passive magnetic correction scheme, suggested by
first-order perturbation theory, to be applied when orbit tracking indicates
trouble, and to be tested with further orbit tracking. This would be a designer's
tool, whereas simulation and perturbation theory are only suited at present
primarily for screening. In this paper, we analyze our proposal in detail.

t Current address: MIT Lincoln Laboratory, P.O. Box 73, Lexington, MA 02173.
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Even if this particular example is ultimately impractical, we feel strongly that
the general philosophy of this intermediate approach is sound and should be
pursued further.

Here is a quick sketch of our ideas: Our scheme is based on a simple
reformulation of first-order perturbation theory due to Collins.6 In this formula­
tion, Collins writes the first-order corrections to the betatron amplitudes Ix and Iy

(constants in zeroth order) as sums of terms of the form

I1ml/2Ilnl/2 d(s) exp [i(nvx + mVy )(2Jl'sIC)] exp iq>, (1)

where m and n are integers, the v's are unperturbed tunes, C is the storage ring
circumference, q> is an arbitrary constant phase, and the complex periodic
functions-a" sort of basis for first-order nonlinear orbit distortions-generically
written as d, are called "distortion functions." As a working principle, we adopt
Collins's viewpoint that a well-behaved storage ring has small d's, although this is
not yet a theorem in any sense.

Let N be the total number of dipole magnets (presumed to be the most
imP9rtant sources of unwanted higher multipoles) in the storage ring. If the error
multipoles on these magnets are random and uncorrelated, with vanishing
averages, then, as we shall show, the mean square magnitude of any particular
distortion function is roughly (ignoring variation in beta functions) proportional
to N. Our idea is to decrease distortion functions by partitioning the accelerator
into M sectors, with correction magnets in each sector powered so that the
distortion functions in any sector receive contributions only from the magnets in
that sector. In this way, mean square distortion functions become roughly
proportional to N/M instead of N. That is, we expect reduction by a factor 11M
times some position-dependent factor ; that is to be determined numerically.

In the next section, we shall develop in detail the general theory of uncorrected
sextupole distortion functions. In Section 3, we develop in detail the mechanics of
our correction scheme. In Section 4, we prove a theorem that tells us how much
improvement to expect in certain regions of the storage ring and a theorem that
places an important restriction on the positioning of correction magnets. In
Section 5, we apply our scheme to sextupole distortion in a (somewhat modified)
model lattice for SSC magnet design evaluation that Gelfand2 developed for use
with the orbit-tracking program TEVLAT. 7 In Section 6, we offer some
concluding remarks.

As we shall see, our scheme significantly reduces distortion functions away
from the correction magnets, perhaps permitting a reduction in physical aperture
throughout most of the storage ring. Reduction can be much more modest near
the correction elements. For this reason, we have not tracked orbits in a model
lattice corrected in this way, since TEVLAT at present assumes a position­
independent physical aperture.

Ideally, one would like to correct nonlinear orbit distortion actively, using
model orbit tracking directly-or even post construction measurements of real
orbits in the real storage ring-to determine correction strengths. Active and
passive schemes alike might be improved by combination with magnet shuffling.8

Originally, we had wanted to develop a completely optimized procedure for
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(4)

reducing distortion functions with a restricted number of correction, magnets. To
this end, we explored schemes that determined correction strengths by minimiz­
ing quadratic figures of merit of the form

~ ftis Id(s)1
2
WAs) (2)

(in an obvious notation), where the W's are positive weight functions. The W's
might be chosen, for example, to emphasize regions with some beta function
large. However, we eventually abandoned this idea, for two reasons:

(i) It required a great deal of computing time. One must invert an L x L
matrix in order to arrange for L normal sextupole magnets to reduce the
five normal sextupole distortion functions by minimizing Eq. (2). By
contrast, the M -sector scheme detailed below, with 12M = L, requires
inversion of L/12 matrices, each only 12 x 12; thus, computing time grows
only linearly with L.

(ii) We know of no way, short of large-scale calculation, to make even a crude
preliminary estimate of the extent of the distortion-function reduction in
this least-squares scheme. In particular, we therefore could not a priori
justify to ourselves the expected large expenditure of computing time. By
contrast, in the scheme described below, we can say with confidence that
reduction will be substantial in certain regions of the storage ring.

Of course, there may be some variation on this minimization theme that does not
suffer from these defects.

2. DEFINITION OF DISTORTION FUNCTIONS

We derive Collins's6 formulation of first-order betatron perturbation theory
assuming, for simplicity, that nonlinearities are due only to normal sextupole
magnets and ignoring skew quadrupole magnets. This is the first discussion of this
formulation in the published literature (even though some of the manipulations
below are standard). The general Hamiltonian for this problem is

H = !(P; + kx (s)x2) + !(P; + ky(S)y2)

+ e~is) (x3- 3xy2), (3)

where most notation here and below is standard9 (B; is 82By /ox 2 on the design
orbit). The usual canonical action and angle variables for this system are

Ix = (2J3x)-1[X2+ (J3xPx - !J3~X)2],

ex = -<I>x(s) - arctan [J3xPx - !J3~x]/x,

where <I>x is defined by

is ds'
<l>As) = 0 f3As') - (2Jrvx /C)s (5)
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and similarly for y. (The reference point s = 0 is arbitrary.) In terms of Eq. 4, Eq.
3 becomes

eB"
H = IxC2:Jrvx/C) + Iy{2:Jrvy/C) + 3EVz H(IxPx)3/2 cos 3(<<px + ex>

+ ~(Ixf3x)3/2 cos (<px + ex) - 3(Ix{3x) 112(Iy{3y ) cos (<px + ex) (6)

- 3(Ix{3x) 112(Iy{3y ) cos [<px + Z<Py + (ex + zey)]

-3(Ix{3x)1I2(Iy{3y) cos [<px - Z<Py + (ex - zey)]}.

To first order in the sextupole strengths, the actions Ix and Iy are given by
t1: + Dlx and t}, + DIy, where t1: and t}, are independent of s, and where DIx satisfies

Di = _ aH I
x aex Sx=4>x+2nvxSIC,Sy=4>y+2nvySlc'

and similarly for DIy. Since the general differential equation

(~ + iw) d(s) = R(s)

has, for periodic R(s), the unique periodic solution

d(s) =Le
Gw(s, s')R(s') ds',

with

(7)

(8)

(9)

O<s'<s<C
O<s<s'<C'

(10)

we can integrate Eq. (7) to obtain

Mx = 6Ee.v2 1m Hd30(s)(t1:)3/2 exp 3i(<<Px + 2:Jrvxs/C)

+~dlo(S)(t1:)3/2exp i(<Px + ZJrvxs/C)

- 3a lO(s)(t1:) 112t}, exp i(<Px + ZJrVxS /C)

-3d12(S)(I~)1I2t},exp i[<Px + Zlj>y + ZJr(vx + ZVy)s/C]

-3dl_2(S)(I~)1I2t}, exp i[<Px - Zlj>y + ZJr(vx - ZVy)s/C]}, (11)

where, for example d12 is defined by Eq. 9 with w = 2Jr(vx + 2vy)/C, and R(s) is
given by B;{3;/2{3y . exp i(<I>x + 2<1>y), etc. In a similar fashion, DIy is formed from
d12 and dl - 2 alone.

In this way, first-order perturbation theory has been decomposed into the
effects of initial conditions (fJ's and lj>'s) and intrinsic properties (v's and d's) of
the storage ring. The periodic functions ala and the d's are the normal sextupole
distortion functions. Note that these functions are normalized differently here
than in Ref. 6. However, the equations that follow are not sensitive to
normalizations.
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3. DEFINITION OF THE CORRECTION SCHEME

125

(12)

Imagine now partitioning the storage ring into M nonoverlapping sectors. For
simplicity we imagine them to be of equal length, although this is not necessary.
According to Eq. 8, the contribution of any magnet within a sector to a distortion
function outside that sector is a constant times exp (-iws), for some w. If, in the
sector in question, we place two real correction magnets (of the appropriate
multipolarity) for everyone complex distortion function that we want to reduce,
we can ensure that all the constants add to zero. In this way, we ensure that no
magnet contributes to any designated distortion function outside that magnet's
own sector. This procedure is formally equivalent to an "orbit bump" calculation.

In the case of d 30 , for example, the cancellation of these constants takes the
specific form

0= Jds P;I2(s)B;(s) exp [3ifP~;,)J

where the integration is restricted to the sector in question. The cancellation
conditions for the other distortion functions are similar. If we imagine that the
sextupole moments are lumped,

B;(s) =L 6(s - s;)b; +L 6(s - sj)bj,
; ;

(13)

(14)

(15)

where the be,s correspond to correction magnets, then Eq. (12) becomes

~ bjp;/2(Sj) exp [3ifl p~;,)l
= - ~ biP~/2(S;) exp [3irP~;')J.

The sum in Eq. (14) is, of course, restricted to locations within the sector in
question.

We now explain why this scheme leads to the 1/M scaling law claimed in
Section 1. We suppose, for fixed {s;} (the centers of dipoles, for example), that
the various b;, whose distorting effects we want to suppress, are independent
random variables, with zero mean and common mean square a2

• Then the mean
square magnitude of any sextupole distortion function is a sum of contributions
due to the various S;, with no cross terms, with each contribution proportional to
a2

• If there were no correction magnets at all, then we would have, for example,
2

(ldu(sW) = [a ] L PASi)P;(Si),
4sin2 ~(vx+2vy) J

using Eq. (10). Ignoring variation in the f3's, this is proportional to N, as claimed
earlier.

When correction magnets are in place, the contribution of any s; to any (ldI 2
)

must take into account the correction strengths that the preexisting random
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sextupole at Sl induces according to Eq. (14), etc. The additions that arise in this
way are formed from the beta functions at the Si in question, from betatron phase
advances from some reference point to Si, and from the elements of the inverse of
the matrix of coefficients, in Eq. (12), of the bj in Si'S sector.

How do these ingredients vary from one Si to another? If the uncorrected
storage ring is composed of identical (up to random multipole errors)cells-as it is
in the model discussed in Section 5-then beta functions repeat from cell to cell.
Further, if betatron phase advances per cell are close to simple fractions of 2Jr
(Jr/3 in the model of Section 5), then, when exponentiated, the betatron phase
advances from a fixed reference point [s = 0 in Eq. (14)] repeat after several cells.
Thus, in any sector, the full contributions of different random multipoles to some
(ld(s)12

) at any S very nearly repeat after a number of cells that is independent
ofM.

[According to Eq. (10), this last statement is complicated by a phase shift when
the random-multipole Si passes the point S at which (ldI2

) is evaluated. Strictly
speaking, we should say that the contributions very nearly repeat as Si moves
away from S in either direction.]

Finally, if correction magnets are placed in sectors in a way that is independent
of M in some sense (for example, four per cell in the first three cells, as discussed
below), then it follows from the foregoing that any (ld(s)12

) is roughly
proportional to the number of cells per sector-itself proportional to 11M-times
an s-dependent factor that is independent of M"as long as S is taken to refer to the
same point relative to the correction system (for example, in the middle of the
seventh cell from the start of the sector, in the configuration discussed below) for
all M. We report on a check of this scaling law in Section 5.

Notice that we have ignored sextupole magnets that are deliberately included in
designs in order to cancel the storage ring's natural (quadrupole-induced)
chromaticity. The strengths of these chromaticity correction magnets are not
uncorrelated random numbers. In the original sse model that we modified for
the discussion in Section 5, they repeat from cell to cell (with strengths
comparable to those of the random sextupoles), so that their contributions to
distortion functions add coherently. With betatron phase advances close to 60°
per cell, it follows from Eqs. (9) and (10) that their contributions to sextupole
distortion functions nearly cancel in groups of six cells (for dlO' dlO, and dl-2) or
two cells (for d30 and d l2). Thus, the total chromaticity correction contribution to
any distortion function in any sector is comparable to the contribution of just a
few cells of random sextupoles; therefore, any associated non-IIM piece in the
scaling law should be negligible unless the total number of cells in a sector is
small. For this reason, standard chromaticity correction magnets are ignored in
the calculations described in Section 5.

A real storage ring may also need correction magnets to cancel chromaticity
induced by random, construction-related sextupole inaccuracies. Accordingly, in
the calculations of Section 5, we include two such magnets per sector, beyond the
minimal ten needed to reduce the five complex normal sextupole distortion
functions. Sector-by-sector cancellation of chromaticity induced by random fields
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L f3x(sj)bj = - L f3x(si)b 1 ,
j i

L f3y(sj)bj = - L f3y(si)b i,
j i
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(16)

where each sum covers only one sector at a time and where standard
natural-chromaticitly-compensating sextupoles are not included.

4. TWO THEOREMS

The model storage ring discussed in the next section consists of 480 identical (up
to random sextupole moments) cells, each with approximately 60° horizontal and
vertical betatron phase advances per cell. The number 480 was chosen for its
many factors that could serve as the number M of structurally identical correction
sectors. (This is a variant of an SSC model due to Gelfand, which has 481 cells.)
For programming simplicity, we imagined each sector beginning with several cells
in which identical numbers of correction magnets are placed in identical positions,
followed by a long string of cells containing no corrections at all. Of course, other
configurations are possible.

The following theorem describes in quantitative terms the distortion function
reduction to be expected from this sort of arrangement, at least in certain parts of
the storage ring.

Theorem 1. Call the correction end of a sector its head, and the other end its
tail. Assume that the random sextupole moments are concentrated in Dirac delta
functions, as in Eq. (13), with assumptions on the hi as stated in the previous
section. (We state the theorem in terms of sextupoles only for concreteness; an
analogous theorem can be proved for any multipole moment.) Number the
discrete random-sextupole sites in a sector from the tail. Then, with corrections,
ignoring variation in the beta functions, the mean absolute square of any
sextupole distortion function, between random sextupoles K and K + 1 in any
sector, is at most equal to 4(KIN) sin2 wC/2 times the mean absolute square of
that distortion function with all correction magnets absent [w is the combination
of frequencies appearing in the definition of the d's according to Eqs. (9) and
(10)], as long as random magnet K + 1 is not in a correction cell.

This is significant because even if our scheme does not markedly decrease
distortion functions everywhere, we may still be reassured that distortion
functions can reliably be reduced by at most a factor 41M over a substantial
fraction of the storage ring. For example, if M is 24 and wC/2 is nearly
n/2 mod 2n (as it is in our model for d30 and d 12), and if the correction magnets
occupy the first three cells in any sector, then, on the average, distortion
functions in 85% of the ring can reliably be reduced in absolute square by
anywhere from 0 to 4(17/480) == 0.14, roughly in steps of 4/480 == 0.008. Of
course, one would like to have tightly focused orbits everywhere. Failing that,
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perhaps our scheme can enable one to cut SSC cost by reducing physical aperture
in, say 85% of the machine.

Proof of Theorem 1. By the definition of our correction scheme, the corrected
distortion function in question vanishes identically between the last magnet at the
tail of a sector and the first magnet in the adjacent head of the next sector.
Integrating the defining equation [Eq. (8)] into the tail of a sector, past the K
tailmost random sextupoles, yields e;ws times

K

2: (phase);f3':/2(s;)f3;/2(s;)b;,
;=1

for some integers m and n, so that its mean absolute square is

K

a22: f3':(s;)f3;(s;).
;=1

(17)

(18)

Comparison with Eq. (15) and its generalization to the other d's, yields the
desired result.

Theorem 2. In this scheme, when the betatron phase advances per cell are
exactly 60°, a necessary condition for linear independence of the equations that
determine the correction strengths (the bC's) is that every correction cell at the
head of a sector contain at least four correction magnets.

Thus, with nearly 60° phase advances per cell, as in the model of the next
section, we cannot spread out sextupole corrections too much without paying the
price of very large correction strengths, since they would arise from inversion of a
nearly singular matrix.

Note, incidentally, that linear independence may impose different constraints
on correction placement in the case of multipoles other than sextupole, and also
when the phase advances per cell differ significantly from 60°.

Proof of Theorem 2. The real and imaginary parts of the linear conditions
d30 = d 12 = 0 have coefficients of the b C that change sign from one correction cell
to the next, when phase advances are close to 60°. If there were fewer than four
correction magnets per cell, then the real coefficients in these four real equations,
restricted to anyone cell, would be linearly dependent, since any four n-tuples
with n:5 3 are linearly dependent. Linear dependence of d30 = d 12 = 0 would
follow immediately, since only the signs change in moving to other correction
cells.

Had we applied that same viewpoint to d 10 , d10 , and the complex conjugate of
d l - 2 , we would have spoken about three complex conditions whose coefficients
would each have been multiplied by the same exp (±in /3) in moving from cell to
cell. Real linear dependence of these six (real and imaginary) real conditions
seetorwise would imply only complex linear independence of these three complex
conditions eellwise, which would imply at least three correction magnets per cell.
Similarly, linear independence of the two chromaticity constraints (in which
coefficients of the b C in adjacent cells are identical) would require at least two
corrections per cell. Thus, the strongest constraints come from the argument in
the preceding paragraph.
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5. NUMERICAL RESULTS

Theorem 1, above, justifies our ";/M" intuition outside cells that contain
correction elements. In this section, we report a check of our intuition globally,
including the correction cells.

In particular, we have applied our scheme to the normal sextupole distortion
functions in a model SSC containing 480 cells, as shown in Fig. 1. The random
sextupole moments are concentrated in the centers of the dipoles, with

a/Bp=O.OII (19)

(Gaussian distribution), where Bp is the magnetic rigidity of a 20-TeV proton.
Following Theorem 2, four correction magnets are placed in each of the first
three cells in each sector: at the centers of each of the two dipoles, and at the
centers of the D and F quadrupoles.

4.2m _ jr-4 .2m
.....-----92. 2m II

4.2m4.2m
.....----- 92.2 m -----.t- - ------------F t- Dipole D Dipole

'Drift

FIGURE 1 Standard cell in our version of N. Gelfand's sse model. Lengths are approximate. F and
D quadrupoles have strength of -0.04 m-2. A dipole has bend angle of -6.5 mrad.

For a particular choice of the 960 random sextupole moments, we have
computed the ratios of the maximum values of the absolute squares of the five
normal sextupole distortion functions with corrections to their maximum absolute
values without corrections, for M equal to every factor of 480; and we have
least-squares fit each ratio to the functional form k /M. The results for k are,
approximately, 24.1, 41.5, 16.9, 9.2, and 10.2 for dlo, d3o , d 12 , d l-2 , and dlO,
respectively. The computed with-correction-to-without-correction ratio and the
k/M fit for dlo are shown together in Figs. 2 and 3. Agreement is encouraging, for
such a rough theory.

Strictly speaking, this is not a fully statistical calculation, since we have used
only one configuration of 960 random magnets. Presumably, fluctuation effects
can average out for large values of N /M. For large M, on the other hand, only a
small number of random magnets contribute in anyone sector, so that
fluctuations may be important.

Note that the data point for M = 1 in Fig. 2 is far below the smooth fit. This is
true for the other d's as well. The computer program that generated our random
sextupoles constrained their sum to be zero, for reasons unrelated to the present
project. Presumably, this had its most dramatic effect for M = 1, which ought to
be the sector multiplicity most sensitive to biases connecting all the magnets.
Accordingly, M = 1 was omitted from the least-squares fitting procedure.

Our results indicate that global reduction of all sextupole distortion functions is
not achieved until M is significantly greater than about 40, at which point one
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worries about the cost of so many correction elements in so many sectors.
Significant reduction of distortion over a large (but not exhaustive) fraction of the
ring, as in Theorem 1, may be the best that one can afford to do with this scheme.

Ultimately, one should submit a lattice corrected in this way to a numerical
orbit-tracking program with physical apertures that are not constant throughout
the model machine. Moreover, since the small dynamic aperture of the SSC
Reference Design appears to be due not only to sextupole errors, but also at the
same time to skew quadrupole, octupole, and even decapole, l a fair test of this
scheme should also include correction magnets for some of these multipoles as
well.

6. CONCLUDING REMARKS

Candidly, our scheme may turn out to be of little use for a variety of reasons:

(i) Corrections introduced in this way to help in lowest-order perturbation
theory may lead to new problems in higher orders.

(ii) If it should prove necessary to repeat this scheme for many multipoles
beyond sextupole, the expense could prove prohibitive.

(iii) A variable aperture can introduce technical problems (involving, for
example, collective beam instabilities) that we have not explored.

(iv) If our scheme is to be useful not only in storage, but also during
acceleration, it requires knowledge of time-dependent multipole errors,
which may pose an excessive measurement burden.

However, these issues obscure our main point: The dynamic aperture problem
in high-energy proton storage rings is highly nonlinear and thereby deeply
complicated. One may certainly seek a solution in rigorous derivation and/or
enhanced numerics. As a spur to the imagination, I urge, in addition, a third
approach: Guess a cure (even a questionable one), develop it analytically at least
until it's well defined, and then try it out on a storage ring computer simulation. It
can't hurt.
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