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Abstract. In this article we generalize the spin statistics theorem and show that a state obeys
Fermi-Dirac statistics if and only if the state is invariant under the action of SL(n,C). We also
briefly discuss the experimental evidence and how the theorem relates to spin entanglement.

Key Words: spin statistics theorem, SL(n,C) invariance, entanglement.

1. Introduction

The origin of quantum statistics seems to have begun in 1920 when S.K. Bose sent a paper
to Einstein seeking his help in getting it published. Einstein recommended it to Zeitschrift
but later also published his own version in which the notion of indistinguishable photon states
were introduced [12]. This was the beginning of what is now referred to as Bose-Einstein
statistics. Another development took place in 1925 with the formulation of the Pauli exclusion
principle which asserts that no two electrons in an atom could be in the same quantum state.
In the 1930’s this was subsequently generalized by Fermi and Dirac into what is now referred
to as Fermi-Dirac statistics [1]. At about the same time Jordan and Wigner second quantized
the Schrodinger equation and showed that Bose-Einstein statistics and Fermi-Dirac statistics
respectively obeyed a set of commutator relations and anti-commutator relations applied to
creation and annihilation operators [12]. This was the precursor of a connection between spin
and statistics, first formulated by Markus Fiertz in 1939 [5], and then further developed by Pauli
a year later [10]. In his paper Pauli claims the necessity of Fermi-Dirac statistics for particles
with arbitrary half-integral spin, and of the necessity of Finstein-Bose statistics for particles with
arbitrary integral spin. Also by invoking relativistic invariance he shows that bosons cannot be
quantized as fermions and vice-versa.

Most subsequent work on spin-statistics takes for granted Pauli’s conclusions but also
struggles to understand the physical (as opposed to the mathematical) principles involved.
For example, Feynman in his Lecture in Physics series states: ...An explanation has been
worked out by Pauli from complicated arguments of QFT and relativity...but we haven’t found
a way of reproducing his arguments on an elementary level...this probably means that we do
not have a complete understanding of the fundamental principle involved...[4] Indeed within the
context of Feynman’s obsrvation, Duck and Sudarshan give a comprehensive analysis of the
many different approaches to spin-statistics including work by De Wet, Wightman, Schwinger,
Feynman, Hall, Luder and Zumino and conclude that the various proofs, including their own,
[were] not completely free from the complications of relativistic quantum field theory [3]. Also

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
BY of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
Published under licence by IOP Publishing Ltd 1


http://creativecommons.org/licenses/by/3.0

TARDI10 IOP Publishing
IOP Conlf. Series: Journal of Physics: Conf. Series 845 (2017) 012030 doi:10.1088/1742-6596/845/1/012030

Berry and Robbins article on the subject published in 1997 cannot be considered elementary
in Feynman’s sense [11], [2]. With this in mind, in Theorem 1 we prove another version of
the spin-statistics theorem which is free of quantum field theory complications. We show that
Fermi-Dirac statistics is directly related to SL(n,C) invariance.

However, before doing so, we note that this result is itself a generalization of Theorem 2 in
[7] where it was previously shown that the rotational invariance associated with the existence
of pairwise entangled states was sufficient for the Pauli exclusion principle. It is also suggested
both in [7] and [8] that pairwise entanglement can be used to explain the stability of spin-3
baryons. In other words, Spin—% baryons may be viewed as excited states of spin—% baryons” [7]
which will decay into a stable spin—% proton.

2. A spin statistics theorem

The importance of this paper is not the discussion about entanglement per se but rather the
proof of Theorem 1 which states that a necessary and sufficient condition to have Fermi-Dirac
statistics is invariance under the action of SL(n,C). The rotational invariance is embedded in
the observation that SU(2,C) C SL(n,C). The theorem is very general. It applies to any tensor
product vector space of the form V =V; ® --- ® V,,. In particular if we choose a vector of the
form

VEUIAV2A L AV, U= (v5),1 <j<n

where the wedge product indicates an anti-symmetric vector then

V11 V12 Un1
vo= A VANYAN
Unl Un2 Unn
V11 V12 - Uin
V21 V22 -+ U2p

= . . . . etNeyN...\Ney,

Unl Un2 - Unn
U111 V12 -+ VUln
V21 V22 -+ U2p
= |vlet Aex A... ey, where [v| =
Unl Un2 -°° Unn

|v| is usually called the Slater determinant and it remains invariant for any choice of orthonormal
basis {ej,e2...e,} of V;. Historically, in the physics literature, the Slater determinant has
always been associated with Fermi-Dirac statistics, and used to characterize the anti-symmetric
nature of the wavefunction.

As a consequence of the invariance of the Slater determinant defined with respect to an
orthonormal basis, it follows that if we take any matrix element, 7" of the group SL(n,C) (which
by definition is the group of all elements with determinant 1), and apply this operator to each
component of the antisymmetric vector v then

Tv=|TvletNea A...Nep, = |T|v|let Nea A...Ne, =v.

Moreover, as the second theorem notes, the antisymmetric tensor v is the only vector with this
property. Consequently, the two theorems taken together suggest that Fermi-Dirac statistics
for n indistingushable particles be formally defined as any statistic that is invariant under the
action of SL(n,C). The formal proofs are presented below.
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Theorem 1 Let V =V ®---®V,, where for all i, j, each V; = V; and V; is an n-dimensional

vector space. Let T'="T1 ® --- ® T;, where for each i,j, T; = T} and T; is a linear operator on
Vi. Let

v = viAUvA... AV,
11 V12 Vin
= oAl s I AA
Unl Un2 Unn

then for v # 0
Tv=v <= Te)SL(n,C).
1

In other words, Fermi-Dirac statistics is invariant under the action of SL(n,C). Note by
1

definition vi Ava A ... Nvy = m(ﬁlnz"vu ®...Qv;,

Proof: Let {e1,ez...e,} be an orthonormal basis of V;, then

V11 V12 Un1
vo= A VAN
Unl Un2 Unn
V11 V12 -+ Uln
V21 V22 -+ U2p

= . . . . etNeyN...\Ney,

Unl Un2 - Unn
vi1 V12 v Vlip
V21 V22 - U2p
= |vlet AexA...Aey,, where |v|=] .
Unl Un2 - Unn
The linearity of T gives
Tv = |’U|T1€1 NToes A... NTre,
t11 t12 tn1
= |y : A : AN
tnl 75112 tnn
= ]vHTl\el/\eg/\...Aen, Th=Ty=...=1T,

Therefore, since v # 0 implies |v| # 0 then
Tv=wv=|T1|=1and Ty € SL(n,C)

Conversely
T, € SL(n,C)=Tv=v
This proves the theorem.

As mentioned in the introduction, this result can be seen as a generalization of a theorem
where Fermi-Dirac statistics can be derived using rotational invariance [7]. The first thing to note
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is that SU(n,C) C SL(n,C) and therefore the Fermi-Dirac statistic is automatically rotationally
invariant. In itself this already gives us a deeper insight into Fermi-Dirac statistics. The fact is
SU(2,C) and SO(2,C) groups are subgroups of SL(n,C) and consequently particles which are
invariant under the action of these groups are pairwise entangled. This means that singlet states
become the building blocks of Fermi-Dirac statistics. For example, in two dimensions if we let

cosc  sinch
—sinef coscl

R(0) = (

then direct calculation shows that R(f)e; A R(0)e, = e; A es.
It is also important to note that 2e; A es = ;1 ® es — e2 ® e represents a singlet state and
is therefore entangled by definition. In the case of n dimensions if

) € SL(2,C)

1 - 0 . 0 0
¢ 0 -+ cos(ed) -+ sin(ch) --- 0
Ri(0)= | . .. : . ... |esLmno (1)
J 0 --- —sin(cd) --- cos(cd) --- 0
n 0 0 0 1

then
e1/\...Rij(ﬁ)ei/\.../\Rij(e)ej/\en:el/\...ei/\.../\ej/\en .

This captures the pairwise rotational invariance associated with the ij singlet state represented
by the wedge product. Moreover, since e; A es... A e, is associative this n-fold state can be
interpreted as being built from pairwise entangled states.

There is a second theorem closely related to the first. It is a uniqueness theorem affirming
that only Fermi-Dirac states are invariant under the action of SL(n,C). Its proof requires the
following lemma:

Lemma 1l Let V=V ®...®V, as in Theorem 1. Let {ei,..., ey} be an orthonormal basis of
Vi and R;; be as in equation (1). If R;ju = u where
U= D Co)om)o() @ ® Co(n) ;
o(1)--o(n)eSy

Sp is the permutation group and ¢, (1)...o(n) are constants then

Cg(l)u.i...j...g(n) = _Ca(l)-~~j~~-i-~~a(n)

Proof: If u = 0 then the lemma follows trivially, Assume u # 0. Note that in the case n = 2
Riz(cioe1 ® ez + co1e2 ® €7)
= (c12+ c21) cosBOsinfe; ® e1 + (c12 cos® 0 — ¢o91 sin? fler ® eq

—(c12 sin? 0 — ¢9q cos? f)ea ® e1 — (c12 + c21) cos @ sinfes ® ez

= c19e1 ®es + co1ea Q@ eq by assumption.

It follows by the linear independence of e; and ez that ci1o = —co1.
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To extend this to the n dimensional case, note that R;jex = ex in the case of k # i and
k # j. Direct calculation gives

(R(ij) © - -- @ R(ij))u

= > Co(1)..o(n)Res(1) ® -~ Rej - @ Rej -+ @ Reg ()
o(1)i-jor-o(n)ESn

= Z Ca(l).._a(n)eg(l) [SURE Rei e ® Rej e ® €J(n)
o(1)i-jor-o(n)ESn

= u since u is an eigenvector with eigenvalue 1.

Mathematically, this is equivalent to the n = 2 case already worked out above. It follows from
linear independence that

Co(1)ivwjraln) = ~Co(1)jiva(n)

The result has been proven.

We now state and prove the theorem:
Theorem 2 Let V = Vi ® ---® V, as in Theorem 1, and T =T, ® --- ® T, where for each
i,j, T; = Tj and T;(8) € SL(n,C). If for all T € ®" SL(n,C), Tv =v, v # 0 then

v=r(vi Ava A... Av,), Kk an arbitrary constant. (2)
This means that if v # 0 is invariant under the action of SL(n,C) and k = 1 then it must be a
Fermi-Dirac statistic.

Proof: We need to show that if v is invariant under the action of any operator T' € ®" SL(n,C)
then v is given as in (2). Indeed, from Theorem 1, we know that the Fermi-Dirac state is invariant
under the action of SL(n,C). It remains to show that it is unique upto a multiplicative constant.

In general if u e V®@---®V then

u= Y e ® e, (3)

11...0n €Ny,

where the X, = {1,---,n} and {e;, ® --- ® €;,|i; € R, } forms a basis for the space. Note that
there are n™ summed terms in equation (3). It remains to show that if Tu = u for an arbitrary T
then u = v. This is achieved by showing that the action of suitably chosen elements of SL(n,C)
on u impose restrictions on equation (3) until only v remains.

In particular, for the Lie group {exp(8J)|tr(J) =0} € SL(n,C), if we let L(0) = (L1(0) ® ... ®
L, (0)), where each L;(f) = exp(#J) there exists a complete set of eigenvectors {e1,ez...e,} of
L;, forming a basis for V;, with eigenvalues e*? e*2f ... e*f such that [6]

MFX+...+ N, =0 (4)

and L; = diag{ei,es...e,}. It is clear that for every permutation o € S,,, where S, is the
permutation group, the set of tensor products

{es(1) @ es2) @ ... @ €o(n)}

characterize a basis for all independent eigenvectors of L(#) = L1 ® ... ® L,, with eigenvalue 1.
Indeed, all other linearly independent eigenvectors of L(f) can be expressed in the form

ea(l)...®ei®...ei...®eg(n), eiaéej
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with

unless \; = \;. However we have chosen L such that each ); is a distinct n-th root of unity and
therefore A\; # \;. It follows that equation (3) under the action of L(#) reduces to

U= D> Co()om)Co(l) @ D E(n) (5)
o(1)...0(n)ESn

To conclude the proof, we turn to the lemma. Let T' = R;; be as above. Note R(ij) € SL(n,C).
Invoking the lemma now requires that

Co(1)...0(1)...0(j)...0(n) = ~Co(1)...0(4)...0(i)...0(n)

for every i # j. This gives u = v. The theorem has been proven.

The above theorem applies to any n-dimensional vector space with an n-fold tensor product
defined on it. We now extend this to include an n-fold vector space with an m-fold tensor
product (n > m)

Corollary 1 Let V=V, ® --- @ V,,,, where each V; is an n-dimensional vector space (m < n),
and W; C V; an m-dimensional subspace. Let T' =T ® --- ® T, where for each i,j, T; = T
and T; is a linear operator on V; leaving W; invariant, i.e. T; = Tyw @ TZ-(V_W), with the
understanding that Ty is the operator T restricted to the subspace W. If

v=vi AvaA... Ao, €W and v # 0

then

Twv=v < Ty € ®SL(n,C).
1

In other words, Fermi-Dirac statistics restricted to a subspace is invariant under the action of
SL(n,C) restricted to the same subspace.

Proof: T =Ty ® Ty _w The proof then follows by applying Theorem 1 to Ty and noting that
Ty is restricted to W.

3. Bose-Einstein statistics
Based on the above, an alternative definition of a Fermi-Dirac statistics can be given:

Definition 1 In a tensor product space of the form Vi @ ... ® V,,, where each V; = Vj, a
Fermi-Dirac statistic is a state which is invariant under the action of the group SL(n,C).

Theorem 2 affirms that once a normalization is chosen such a state is unique. Moreover, in
order to generate non Fermi-Dirac statistics, it is sufficient to relax the conditions specified by
the definition. Specifically, in keeping with the usual definition we can define Bose-Einstein
statistics as follows:

Definition 2 In a tensor product space of the form Vi ® ... ® V,,, where each V; = Vj, a

Bose-FEinstein statistic is a state which is invariant under the action of the permutation group
Sh.-
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It is important to note that both the Fermi-Dirac and Bose-Einstein states are invariant under
the action of the set of even permutations A, C S,. However, in the case of the Fermi-Dirac
statistic the invariance under the action of A,, is not per se sufficient to have such states. We also
require the invariance under the action of SL(n,C), which as we have already previously noted
is connected with the presence of spin singlet states. This means that from the perspective
of physics, Fermi-Dirac statististics can be understood as the statistics of n-indistinguisable
particles forming spin singlet states, while Bose-Einstein statistics can be understood as the
statistics of n-indistinguisable particles where the spin singlet state dependency has been broken.
In the case of Bose-Einstein statistics the spin states of indistinguisable particles are independent
of each other. We now express this observation in the following lemma and corollary. It is also
worth pointing out that in the case of a statistic which is neither Fermi-Dirac or Bose-Einstein,
the invariance under A, is violated. An example of this is also given below.

Lemma 2 Let 0 € S, be a permutaion of (1,...,n), with the identity permutation denoted by
id. If

1 1 .
V= Z Co(Vo(1) -+ @ Vg(n)) such that c;qg = o and ¢, = ia otherwise
g

is defined on the space V1 ®...0V,, and is invariant under the action of A, then v obeys either
the Fermi-Dirac or the Bose-FEinstein statistic.

Proof: Let

vy = Z o(cig(vi ®v2...®@vy))
O’GAn

vy = Z o(cig(va @1 ... @ vy))
O’GAn

where o(cig(v1 ® ... @ v,) = Cid(%i(l) R...0 voi(n)). This means that vg and vy are invariant
by construction under the action of A, since they are respectively the sum of all even and odd
permutations of 11 ® ... ® v, . Therefore, the invariance of v with respect to A,, requires that

v — (vp £ vy)
is also invariant. By using linear independence we find that this can only occur if
v = (vo+vi) or v =(vo— V1)

which define the Bose-Einstein and Fermi-Dirac statistics respectively. The result follows.

Corollary 2 Letv be as above such that no two particles are in a singlet state then v = (vo+vi),
which means this system of particles obeys the Bose-Einstein statistics.

Proof: Since v is invaraint under the action of A, then it must be either a Fermi-Dirac or
Bose-Einstein statistic. However, there are no singlets, and so it cannot be invariant under
SL(2,C) C SL(n,C). Therefore, it cannot be a Fermi-Dirac statistic by definition. Therefore,
it obeys Bose-Einstein statistics.

Inherent in this lemma and its corollary is the fact that Fermi-Dirac statistics requires not
only indistinguishability but also that the particles form singlet states. In other words, Fermi-
Dirac statistics presuposses that particles are entangled and consequently dependent on each
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other while Bose-Einstein statistics is a consequence of breaking the entanglement. Within the
context of atoms or molecules this entanglement can be associated with the electron orbitals.

It might be instructive to apply the above theorem to a three particle wave function that is
not of the above type. Consider:

v = ’U1®(’U2®1)3+U3®’02)+’02®(’U3®1}1+1)1®113)
+v3 ® (V1 ® v — V2 @ V1)

On putting v; = v,
V=1 ® (vg @3 +v3 Q) +v2 ® (v3 V1 + V1 ®V3)

which is not invariant under As and a fortiori SL(3,C). It is also not invariant under Ss.

The above theorems and lemma also implicitely explain how to construct various types of
parastatistics. For example the five electrons in the boron atom obey the Fermi-Dirac statistics
associated with SL(5,C) invariance. On the other hand, if we consider the two electrons of the
helium atom together with the three electrons of the lithium atom then theses electrons obey
SL(2,C) ® SL(3,C) statistics. The process of assigning electrons to different atoms partially
distinguishes them.

4. Relationship to Special Relativity and QFT

The above theorems and corollary suggest a general criteria for classifying Fermi-Dirac statistics
and Bose-Einstein statistics. In order to complete the transition, we first need to establish
some algebraic connections between the tensor formalism and matrix representations. Indeed,
if we impose some further structure on the tensor products, we can relate the above theorem to
relativity and quantum field theory.

4.1. A Clifford Algebra Approach
Given the relationship between the Pauli spin matrices and a Clifford Algebra, we begin with a
2-component spinor of the group SL(2,C) such that ¢/ = S(I)¢, where S(I) = ¥t ¢ SL(2,C),
04 = (1,) forms a basis for the Clifford algebra and the vector z, = ¢To,¢ is a Lorentz 4-vector
of a massless particle [9]. Moreover, any vector in this space can be expressed as X = x%0,.
It should be noted that the restriction a,b € {1,2,3} means {04,054} = 0 and [0, 03] = 2ioe.
Oftentimes, physicists prefer to work with the matrices S; = (2/2)0;, which are called the Pauli
spin matrices. However, for this paper it is more convenient to work with o;, and we will call
these the Pauli matrices.

In general if S(I) € SL(2,C) with adjoint ST and X is a hermitian (non-singular) 2 x 2 matrix
then

X' =8x5T (6)

is a transformation mapping the vector X into the vector X’ [6] and det(X') = det(X). We now
prove the following lemma.

Lemma 3 Let X and X* represent a (hermitian) 4 vector and its conjugate defined respectively
by
X — ( zg — 11 T2 + ix3 )’ Xt _ ( xo—l—a@ —T9 — 173 )
To —1T3 o+ T —X9 + 123 Tro — T1

If S(1) € SL(2,C) and T = (SY)~! then S and T preserve conjugacy. In other words,

/ / / -

/ Ty —Tp Ty+ix

X'=8XxS" = oo ; 2
Ty —1T3 T+ Ty
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implies
/ / / -
o To+Ty —Ty—wry | *rt
X = < —xh iz xh— ) > = TXT
Proof: A simple calculation shows X* = X ~!det(X). Therefore
X" = det(X') (X)) = det(X")(SX St = det(X)(ST) !X 1s = TX*TT

The lemma is proven.
Remark:

e It immediately follows from the lemma that
X'X™ = XX* = a2 — 22 — 23 — 23

is Lorentz invariant.

e In general X™* # X*. As a counter example consider
w
X* = SX*St where S = ( 60 e(—)w )

This means that while X* is a vector it is not necessarily the conjugate vector of X’. Indeed,
in order for X”* = X* S needs to be an element of SU(2) which is a subgroup of SL(2,C). We
express this as a corollary.

Corollary 3 If S € SU(n) then T = S
Proof: By definition of SU(n), ST = S~! and therefore T = (ST)~! = S. The result follows.

4.2. Conjugate Solutions and Majorana Fields

There is a remarkable connection between the conjugate states X and X* and the solutions to

the Majorana equations. Recall that for a free particle the Majorana equations are given by
Dn = 0,0"n = —mx and D*x = 0,0"x = —mn (7)

where

D Oy — 01 0O+ 103 D* — Oy + 01 —0y — 103
T\ D —i03 G+ 01 ’ T\ =0y + 105 Jdp — O

Clearly 1{D,D*}; = DD* = 03 — V2. Moreover, if we define x’ = S(A)x and ' = T(A)n =
(ST)~1(A)n then equations (7) are covariant under SL(2,C) which means

otd,n = —mx’ and o, dMX = —mn (8)
This is equivalent to the Lorentz invariance of the Klein-Gordan equation
(@5 — V) = m*y
which can be factored into (7).

Note also that [D,D*] = 0 . We refer to the pair (X, X*) as Majorana fields.
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4.8. Pauli Products
Noting that
X'X" = XX* = a2 — 2% — 23 — 23

and that for any (pseudo) inner product (X +Y, X +Y) = (X +Y)(X* +Y™) is a scalar, it
follows from the bi-linearity and symmetry that

(X+Y,X+Y)=(X,X)+2(X,)Y)+ (YY)

and therefore
2(X,)Y)=XY"+YX"

Equivalently, we can define a Pauli inner product by!

1 * *
(X,Y)p = Z({X7Y}+{Y7X 1) (9)
1 * * * *
= XY HYX VXX (10)
= ToYo — T1Y1 — T2Y2 — T3y3z = (T, Y) (11)

which is clearly Lorentz invariant. Indeed, it is invariant under SL(2,C) (and not just SU(2,C)),
provided we agree that conjugacy is preserved according to the rule established in the previous
lemma. In other words if 7 = (ST)71,

{Xl, Y/}P

1
1(SXST TY*TT + TY*TTS X ST)
1
+Z(SYSTTX*TT + TX*T1SY ST)

1 1
= Z(SXY*TT +TY*X St + Z(TX*YST + Sy X*Tt)
1

= J(S(xY"+ YXHTH + T(X*Y + Y*X)ST)

1
= §S(x0y0 — T1Y1 — T2Y2 — $3y3)TT

1
—{—§T(l’0y0 — T1Y1 — T2Y2 — xSyS)ST

= {X7 Y}P
Therefore the Pauli inner product preserves conjugacy.

By making a slight modification? of equation (20) of article ([10]), we can also define a Pauli
outer product by

X, Y]p = ~([X, V"] + [X*,Y]) = %(XY* VX 4+ XY — Y X (12)

N | —

This reduces with a little algebra to
[X7Y]P = —[X,?] (13)

1 Apart from a notation change, this expression is identical with equation (20) of Pauli’s original paper [10],
applied to what Pauli refers to as the Jordan and Wigner bracket.

2 Pauli’s equation for commutators is symmetric and contains the expression [X,Y*] 4 [Y, X*]. He failed to note
that it is always O for all X and Y regardless of the statistics. In contrast, we write [X,Y™] + [X™,Y] which is
anti-symmetric.

10
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where X = T101 4 L2092+ x303 is a vector in three dimensional space. Note that this also means
(X, X*] =[X,X]=0.

In particular, in the case of a singlet state, X and Y, [f( ,f/] # 0. It also follows from
equations (9) - (11) that in the case of singlet states

{X,Y}p=0,
while in the case of non-singlet states
{X,Y/}p <0.

In other words, two particles cannot simultaneously obey Fermi-Dirac and Bose-Einstein
statistics.

4.4. Restricted tensor products

In Theorem 1, we let V =V, ® ... ® V,, where each V; is an n-dimensional vector space, which
means we chose the dimension of each vector to be the same value as the number of tensor
products of the space itself. Specifically in the case of a two dimensional Euclidean space, the
wedge product of two vectors x = (r1,z2) and y = (y1, y2) generates a singlet state:

XNy =XRYy -y ®@X = (T1y2 — y172)e1 A ey

where e; and ey represent respectively the unit vectors (1,0) and (0,1). On the other hand, if
we switch to a spinor formulation and use the Pauli spin matrices as a basis then we can identify

x<—>X:<x1 x2) and y<—>Y:<y1 y2>
To —X1 Y2 —U

A direct calculation gives [X,Y] = 2(z1y2 — y122)0102. It is worth noting that in the case of
two dimensional Majorana fields [X, X*] = 0. In other words, Majorana fields can never form a
singlet state and consequently never obey (by Theorem 1) Femi-Dirac statistics.

To complete the theory, we need to extend our results to Minkowski space. With this in
mind, let x, y € R} and consider the tensor product z ® y = x'yle; ® ej and a linear map
¢(z @ y) = 2"yl 0;0;. This is equaivalent to identifying for i # j

ep®ej=e; ey and e; ¥ ej = —ej X e;
In keeping with the Pauli outer product defined above, we define the conjugate wedge product
by

1
x/\cyzi(x/\y*—i-x*Ay) )

Now let x = a/e, = 29 + &, where & = z1e1 + T2e2 + x3e3 then this reduces to the bi-vector

XANcy=—-TNY (14)

Clearly we can identify 4(x Acy) + [X,Y]p

Moreover, from basic geometry, we can see that any linear transformation with an eigenvector
Z that is orthogonal to the plane spanned by & and § will be such that A ¢ remains invariant in
accordance with Corollary 1. On the other hand those rotations that shift the eigenvector will
not remain invariant. However, the norm of the bivector will remain invariant under SL(2,C).
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5. Conclusion

Based on the above, it should be clear that a necessary and sufficient condition for the Pauli
exclusion principle to be valid is the requirement that the quantum state of a system of n
particles be invariant under the action of the SL(n,C) group. As we have already noted this
requires the existence of spin singlet states, which means that spin entanglement is a necessary
requirement to exhibit Fermi-Dirac statistics. Indeed, Fermi-Dirac statistics can be defined as
the statistics of n indistinguishable singlet states [7].
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