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Abstract

A method is implemented in Zgoubi that allows the com-

putation of space charge effects in 2D distributions and with

some restrictions in 3D distributions. It relies on decom-

posing field maps or analytical elements into slices and ap-

plying a space charge kick to the particles. The aim of

this study is to investigate the accuracy of this technique,

its limitations/advantages by comparisons with other lin-

ear/nonlinear computation methods and codes, and to apply

it to high power fixed field ring design studies.

INTRODUCTION

Accelerator Driven Systems are still in the early develop-

ment stage. One of the main challenges is the average beam

current required in order to achieve high transmutation rates.

By choosing the effective multiplication factor as to accom-

modate any possible positive reactivity insertion during the

operation of the reactor, it can be shown that the minimum

average beam current is ∼ 10 mA. So, in order to investi-

gate the possible benefits of FFAGs for Accelerator Driven

Systems, one has to develop techniques to understand and

master the space charge effects.

IMPLEMENTATION

Zgoubi [1] is a ray-tracing code which can track parti-

cles through electric and magnetic fields introduced as field

maps or as analytic elements. We carry out a self consistent

multi-particle simulation that is based on the space charge

KV model [2] : the beam is supposed to have a uniform dis-

tribution with elliptical cross section, and a constant linear

charge density. In that case, the free-space self-field solu-

tion within the beam is:

Ex = −
∂φ

∂x
=

λ

πǫ0

x

(rx + ry)rx
(1)

Ey = −
∂φ

∂y
=

λ

πǫ0

y

(rx + ry)ry
(2)

The kick received transversly by the particles after each in-

tegration step ∆s is thus given by:

∆x′ =
2Q

(rx + ry)rx
x∆s (3)

∆y′ =
2Q

(rx + ry )ry
y∆s (4)

where Q is the generalized pervance term defined by,

Q =
qλ

2πǫ0m0c2β2γ3
. So, in order to evaluate the space

charge force, one has to evaluate the beam radii and vice-

versa.
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Slicing

If we cut the magnet into thin slices, we may assume that

the beam radii do not change much within each slice. Thus,

each particle will experience a transverse space charge kick

given by the formula (3) and (4) above. The main assump-

tion here is that each particle in the beam does not see its

immediate neighbors, but the smooth potential which is de-

rived from the bunch (with uniformdistribution) as a whole.

Taking the statistical averages (rms quantities) is the natural

way to derive analytically the evolution of such quantities

as the beam emittance or the beam edge radius. Here we

restrict ourselves to the KV model for which we define:

rx = 2 < x2 >1/2 (5)

ǫx = 4[< x2 >< x′2 > − < xx′ >2]1/2 (6)

Given that the space charge forces are linear, the rms edge

emittance in this model is constant and represents the max-

imum Courant-Snyder invariants. This was successfully

checked. Also, the transverse particle equation of motion

(when dispersion is neglected and only valid within the

beam) is given by [3]:

x"(s) +

(

κx(s) − 2Q

[rx(s) + ry (s)]rx(s)

)

x(s) = 0 (7)

If we consider a KV beam composed of N particles and with

zero rms emittance, such as xi(s=0)=xi and x′
i
(s=0)=0 ∀i ∈

~1 ; N� . Then the envelope edge radius in a drift is given

by:

rx(s) = xmax
i cosh













(

2Q

rx0(rx0 + ry0)

)1/2

× s













(8)

where rx0 and ry0 are the envelope edge radii at the entrance

of the drift. Fig. 1 shows a comparison of the axial beam 
envelope in a drift obtained from tracking with the 
analyti-cal formula (8). Similar tests were performed in 
quadrupole element which gave agreement as well. A 
natural test of the convergence of this method is to vary 
the number of slices until the beam envelope stabilizes: 
Fig. 2 below illustrates the convergence in a drift element 
(which is easy to picture). This result can be interpreted in 
the following way: it shows the speed at which the space 
charge force evolves in a KV beam (in a drift).

SPACE CHARGE EFFECTS IN SCALING

FFAG

Analytical Model of the 150 MeV KURRI FFAG
The current work is a first step to understand the space

charge effects in the 150 MeV scaling FFAG at KURRI in
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Figure 1: Axial beam envelope in a drift. The analytical for-

mula (8) in blue shows that the space charge kick is applied

correctly.
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Figure 2: Convergence of the slicing method in a drift.

Japan. The FFAG ring consists of 12 DFD triplets and ac-

celerates a proton beam up to 150 MeV for subcritical reac-

tor application. 3D field map (see Fig.3) was first used to

perform low intensity benchmarking using different codes.

The results of tracking showed excellent agreement between

the different codes. More details about this work and com-

parisons with results of recent experiments can be found in

the recent paper [6]. On the basis of the successful com-

parison of the different codes the FFAG analytical model

in Zgoubi [5] was coupled with the KV model in order to

examine the key ingredients in the space charge effects.

Tune Shift
We investigate the change in betatron oscillation fre-

quency due to space charge forces. When dispersion is ne-

glected, the linear Laslett tune shift is given by:

∆Qx =
1

4π

∫ C

0

βx(s)Kx ,SCds

=

1

4π

∫ C

0

βx(s)
2Q

rx(rx + ry)
ds

(9)

The Laslett tune shift is proportional to the orbit radius (con-

tained in the integral) and inversely proportional to β2γ3. In

order to check the validity of our simulations, the tune shift

is computed as a function of the energy: We launch several

beams of particles that have a uniform distribution, at differ-

ent energies. The emittance is the same. This allowed us to
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Figure 3: Median plane field map of the KURRI 150 MeV

scaling FFAG (only one sector is represented): the straight

lines show an example of the slicing into 4 elements.
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Figure 4: Tune shift as a function of the energy in the

KURRI scaling FFAG. Good agreement between the ana-

lytical formula 9 and the tracking results is shown. (The

perveance taken here is Q = 6.4 × 10−8).

have the same rms edge radii for different energies. Since

the betatron functions do not change much with the energy,

the Laslett tune shift should scale as R/(β2γ3) (the linear

charge density is kept the same). The results of tracking are

compared to the analytical formula 9 which showed a good

agreement with the expected scaling law (see Fig.4).

Damping Law in Scaling FFAG
In reality, the beam size reduces with acceleration, the

normalized emittance of the beam is conserved. To show

this, we first write the linearized Hill’s equations of motion

with acceleration:

d2x

ds2
+

(γβ)′

γβ

dx

ds
+

1 − n

ρ2
x = 0

d2y

ds2
+

(γβ)′

γβ

dy

ds
+

n

ρ2
y = 0

(10)

where n is the field index. In a scaling FFAG, if we neglect

the scalloping of the orbits, n can be expressed in terms of

the scaling factor:

n = −
ρ

B

dB

dx
≈ −
ρ

B

dB

dR
= −
ρ

R
k(R) (11)
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where k is the average scaling factor that is allowed to

change radially in order to account for any design imperfec-

tions. Substituting the above expression of n into Eq (10),

and assuming that the amplitude and phase of the solution

vary slowly (the energy increase is much slower than the

betatron oscillations), one can use the WKB approximation

[4] in order to solve the above differential equation with vari-

able coefficients. An approximate solution is given by:

x(s) = x0A(s) exp

[∫

ihx (s)ds

]

(12)

Using the hard edge model, one can show that
ρ

R
does not

change much with energy, which was confirmed by tracking.

Thus, solving for the vertical y-component, one obtains:

h2
y(s) = − k(R)

ρR
= − k(R)

αR2
(13)

A(s) =
1
√
βγ
× 1

√

|hy(s)|
=

√
R
√
βγ
×

(

|α |
k(R)

)1/4

(14)

In conclusion, the damping law for a scaling FFAG is given

by:

ǫnorm ∝

βγ

R

(

k(R)

|α |

)1/2

× ǫ (15)

where ǫ is the geometrical beam emittance. Thus, for a KV

beam, the y-space charge kick is given by:

Ky ,SC =
2Q

(rx + ry)ry
∝

qλ

m0c2βγ2R

(

k(R)

|α |

)1/2

(16)

This shows that, in the KV model, if the scaling factor in-

creases with R, the space charge effects would be amplified.

In other words, if the applied magnetic field average varia-

tion increases faster with increasing energy, then the enve-

lope amplitude damps faster, which implies a more impor-

tant space charge kick . The radial dependence of the linear

space charge kick shows that, for a scaling FFAG, the Laslett

tune shift is independent of the orbit radius. In other words,

due to the fact that the damping amplitude of the beam is

proportional to the orbit radius (damps less fast), this coun-

terbalances the fact that the tune shift increases with the path

length.

NB: In reality, one should make the distinction in this

analysis between the F and D-magnet, but this will be pre-

sented more in detail in later publications. For the moment,

note that α alternates its sign for the F and D magnet.

FUTURE PLANS

Much of the high intensity issues for proton drivers cen-

ters on preserving the beam quality by understanding and

controlling emittance growth and halo formationdue to non-

linear forces. In general, beam dynamics in FFAG are intri-

cate due to the non-linearities of the field. However, non-

uniform beam distributions may exhibit even a more com-

plicated behavior: consider a Gaussian charge distribution

for instance: ρ(x , y) =
Ne

2πσxσy

exp(− x2

2σx
2
− y2

2σy
2
). The

transverse force due to the self fields of such a distribution

is a non-linear function of x and y, and to the second order

expansion in round beam geometry, the space charge kick

is given by [7]:

∆x′ =
Q

(σx +σy)σx

exp[− x2 + y2

(σx +σy)2
]x∆s (17)

∆y′ =
Q

(σx +σy)σy

exp[−
x2 + y2

(σx +σy )2
]y∆s (18)

Thus, the betatron tune shift of particles near the center of

the beam is larger than in the equivalent uniform beam, and

large amplitude particles will experience a zero tune shift.

Also, such a distribution, evolving in time, may become non-

Gaussian. Another key question that one needs to tackle is

whether a particular distribution is stable or unstable against

perturbations. From the thermodynamic point of view, a

collisional kinetic system will tend to converge to an equi-

librium distribution according to Boltzmann’s H theorem.

However, on a short time scale, the Vlasov Poisson equation

is the correct equation to describe the space charge effects.

Thus, simulations using the OPAL code [8] are foreseen in

the near future.
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