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Abstract: We investigate exact and analytic solutions for the field equations in the teleparallel dark

energy model, where the physical space is described by the locally rotational symmetric Bianchi I,

Bianchi III and Kantowski-Sachs geometries. We make use of the property that a point-like Lagrangian

exists for the description of the field equations, and variational symmetries are applied for the

construction of invariant functions and conservation laws. The latter are used for the derivation of

new analytic solutions for the classical field equations and exact function forms for the wavefunction

in the quantum limit.
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1. Introduction

In teleparallelism, the gravitational Action Integral is defined by the torsion scalar
T [1,2], which is constructed by the antisymmetric Weitzenböck connection [3]. The telepar-
allel theory of gravity is equivalent to General Relativity, and the presence of the cosmo-
logical constant plays does not affect the equivalence of the two theories. However, that
is not true when other geometric invariants are introduced into the gravitational Action
Integral, or scalar fields, which are nonminimally coupled to gravity. There is a plethora of
gravitational theories inspired by teleparallelism [4–9], see also the recent review [10] for
more details. On the other hand, scalar fields play an important role in the description of
the various epochs of the universe. The inflationary era is usually attributed to a scalar field
known as inflaton [11], which drives the dynamics to provide expansion of the universe,
while the dark energy is assumed to be described by a scalar field. Moreover, various
unified dark energy models have also been proposed in the literature [12–14].

In this piece of work, we are interested in a modified teleparallel theory of gravity
known as a scalar-torsion theory or teleparallel dark energy model [15–18] in an anisotropic
background space. The Action Integral is linear to the torsion scalar T, however, a scalar
field is introduced, which interacts to the gravity in the Lagrangian. The theory can
be observed as an extension of the scalar-tensor models in teleparallelism. While there
are many similarities between the scalar-tensor and scalar-torsion theories, i.e., they are
second-order theories with the same degrees of freedom, the theories are totally different.
For instance, while the two theories can admit duality transformations, these provide
different physical properties [19]. Recently in [20], the cosmological dynamics were studied
for the scalar-tensor and scalar-torsion theories in a spatially flat isotropic and homogeneous
universe. Various cosmological applications of the scalar-torsion theory can be found, for
instance, in [21–23]. Constraints of the scalar-torsion theory with cosmological observations
in a isotropic universe are performed in [24]. It was found that the observations favor a
nonminimal coupling in scalar-torsion theory.

The purpose of this piece of work is to provide, for the first time, analytic and exact
solutions for the classical and quantum limit of the field equations in a scalar-torsion theory
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with an anisotropic background space. Specifically, we consider the physical space to be
described by the locally rotational spacetimes of Bianchi I, Bianchi III and Kantowski-Sachs
spacetimes. These locally rotational spacetimes are homogeneous and anisotropic with
two scale factors and four isometries. In the limit of isotropization, the spacetimes are
reduced to the spatially flat, closed and open Friedmann–Lemaître–Robertson–Walker
geometries. Anisotropic spacetimes are of special interest because they can describe the
pre-inflationary [25] era and they can be used as toy models for the description of the small
anisotropies in the observed universe [26]. Kasner and Kasner-like are exact solutions
of Bianchi I geometry. In teleparallelism, this kind of solution was investigated before
in [27,28], while some other studies on exact and analytic solutions of a Bianchi I geometry
in teleparallelism can be found, for instance, in [29–31]. In a series of studies, the evolution
of the dynamics for the anisotropic parameters investigated in a higher-order modified
theory of gravity [32] and references therein. It was found that independently of the
initial conditions of the cosmological model on the anisotropy and on the spatially space
curvature, the universe evolves to an isotropic and spatially flat geometry.

The study of anisotropic cosmologies is important for a gravitational theory. Accord-
ing to the cosmological principle in large scales, the universe is assumed to be isotropic and
homogeneous. Inflation is the mechanism that has been proposed to solved the isotropiza-
tion of the universe; however, anisotropies may play an important role in the pre-inflation
epoch. In his famous paper, R. Wald [33] found that the existence of a positive cosmolog-
ical constant in the context of General Relativity in anisotropic background geometries
leads to isotropic universes in large scales, which lead to the cosmic no-hair conjecture.
Additionally, the anisotropic spacetimes studied in this work are related with important
initial singularities. Indeed, the dynamical variables of the Bianchi I spacetime describe the
behaviour of the Mixmaster universe near the cosmological singularity. On the other hand,
Bianchi III and Kantowski-Sachs spacetimes can also describe the dynamics of the physical
parameters to the interior of a black hole [34–36]. While exact and analytic solutions for
isotropic geometries have been bound before for the case of scalar-torsion theory, according
to our knowledge, no anisotropic solutions have been derived in the literature. The study
of the integrability properties for the field equations and the derivation of solutions is
essential, because we can infer that actual solutions exist for the description of the physical
parameters in scalar-torsion theory with anisotropic background geometry.

The gravitational field equations for the model of our analysis are nonlinear second-
order differential equations. Hence, mathematical techniques which deal with nonlinear
dynamical systems should be enrolled in order to determine the exact and analytic solu-
tions. The field equations for this specific cosmological model have the property to be
described by the variation of a point-like Lagrangian functions. Hence, in order to construct
conservation laws and invariant functions, which are to be used to the derivation of solu-
tions; Noether’s theorem for point transformations is considered [37]. The main concept of
the Noether symmetry analysis is to constrain the unknown functions and parameters of
the gravitational theory, such that the Action Integral is invariant under the application
of point transformations, where, according to Noether’s second theorem, conservation
laws exist [38]. Thus, it is feasible to infer about the integrability properties of the field
equations and to determine analytic solutions. Furthermore, the existence of the point-like
Lagrangian means that the field equations can be written also by using the Hamiltonian
formalism. Thus, under the classical quantization process, the Wheeler-DeWitt equation
of quantum cosmology can be written [39]. The Noetherian conservation laws for the
classical field equations provide differential invariants for the Wheeler-DeWitt equations,
which are necessary in order to determine the closed-form expression for the wavefunction,
as described by the Wheeler-DeWitt equation [40]. For a review on the Wheeler-DeWitt
equation, we refer the reader to [41]. The structure of this paper is as follows.

In Section 2, we briefly present the basic definitions of teleparallelism and we define
the cosmological model of this study, which is that of teleparallel dark energy. Anisotropic
background spacetimes are considered and the field equations are derived for the physical
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spaces described by the locally rotational Bianchi I, Bianchi III and Kantowski-Sachs
geometries. In Section 3, we apply the conditions provided by Noether’s first theorem in
order to constrain the unknown functional form of the scalar field potential, where Noether
symmetries exist. These results are applied in order to infer the Liouville integrability of the
field equations. Classical exact and analytic solutions of the field equations are constructed
in Section 4. Furthermore, in Section 5, we write the Wheeler-DeWitt equation, and with
the application of the differential invariants provided by the classical conservation laws,
we determine the exact solutions for the wavefunction. Finally, in Section 6, we summarize
our results.

2. Teleparallel Dark Energy

In teleparallelism, the fundamental geometric objects are the vierbein fields ei defined
by the constraint g(ei, ej) = ei.ej = ηij [1], in which ηij = diag(−1, 1, 1, 1) is the Lorentz
metric in canonical form.

In terms of coordinates with a nonholonomic basis ei(xκ) = hi
µ(xκ)dxi, the metric

tensor gµν(xκ) is

gµν = ηijh
i
µh

j
ν. (1)

We define the teleparallel torsion tensor

T
β

µν = Γ̂
β
νµ − Γ̂

β
µν = h

β
i(∂µhi

ν − ∂νhi
µ) , (2)

which is the antisymmetric part of the affine connection coefficients [3].
In General Relativity, the gravitational Lagrangian is defined by the Ricciscalar of the

Levi-Civita. In teleparallelism, the gravitational Lagrangian is defined by the torsion scalar

T related with the torsion tensor T
β

µν .
Specifically, the scalar T is defined as

T = S
µν
β T

β
µν (3)

in which S
µν
β = 1

2 (K
µν
β + δ

µ
βTθν

θ − δν
βT

θµ
θ ) and K

µν
β = − 1

2 (T
µν
β − T

νµ
β − T

µν
β ) is the contorsion

tensor, which equals the difference of the Levi Civita connection in the holonomic and the
nonholonomic frame.

The gravitational action integral in the teleparallel equivalence of General Relativity is
defined as [1]

S =
1

16πG

∫

d4xe(T + Lm), (4)

where Lm is the Lagrangian component for the matter source and e =
√−g.

Similar to the case of General Relativity, scalar fields have been introduced in telepar-
allelism. Inspired by the Brans-Dicke theory, i.e., the scalar-tensor theories of General
Relativity, a Machian teleparallel gravitational theory has been considered. It is called
teleparallel dark energy, or scalar-tensor teleparallel gravity and it is defined by the gravita-
tional Action Integral [15–19]

S =
1

16πG

∫

d4xe
[

F(φ)
(

T +
ω

2
φ;µφµ + V(φ)

)]

, (5)

where F(φ) is the coupling function of the scalar field with the torsion scalar, ω is a constant
nonzero parameter, analogue of the Brans-Dicke parameter, and V(φ) is the scalar field
potential which drives the dynamics.

An equivalent way to write the Action Integral (5) is

S =
1

16πG

∫

d4xe

[

F̂(ψ)T +
1
2

ψ;µψµ + V̂(ψ)

]

, (6)
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where now the new field ψ is related with φ as dψ =
√

ωF(φ)dφ. Note that, when
F̂(ψ) = F0ψ2 or F(φ) = F0e2φ, the given gravitational model is the analogue of the Brans-
Dicke theory, or of the dilaton equivalent model in teleparallelism.

The teleparallel dilaton model is of special interest because it admits similar properties
with the usual dilaton theory. Indeed, in the case of a spatially flat Friedmann–Lemaître–
Robertson–Walker (FLRW) background geometry, it has been demonstrated that the field
equations admit a discrete symmetry, which is analogue to the duality Gasperini-Veneziano
transformation [19].

Anisotropic Spacetimes

In the following analysis, we consider the physical space to be homogeneous and
anisotropic, as described by the generic line element

ds2 = −N2(t)dt2 + e2α(t)
(

e2β(t)dx2 + e−β(t)
(

dy2 + f 2(y)dz2
))

(7)

in which the function f (y) has one of the following functional forms fA(y) = 1,
fB(y) = sinh(y) or fC(y) = sin(y) such that the spacetime is locally rotational; α(t), β(t)
are the two free scale factors and N(t) is the lapse function. For f (y) = fA(y), the line
element (7) is that of the Bianchi I space, for f (y) = fB(y) the Bianchi III space is recovered
while, when f (y) = fC(y), the line element (7) is that of the Kantowski-Sachs universe.
The parameter α(t) is the expansion rate of the three-dimensional hypersurfaces and β(t) is
the anisotropic parameter. When β(t) = const., the line element (7) describes an isotropic
physical space, that is, the flat, open and closed FLRW geometries are recovered.

In order to calculate the torsion scalar, we should define the proper vierbein fields.
In order for the limit of General Relativity to be recovered, the vierbein fields should be
defined properly. We follow the discussion in [10]; for the Bianchi I spacetime, we assume
the vierbein basis

e1 = Ndt , e2 = eα+βdx , e3 = eα− β
2 dy , e4 = eα− β

2 dz

with torsion scalar

TBI
=

1
N2

(

6α̇2 − 3
2

β̇2
)

. (8)

For Bianchi III, we consider the basis

e1 = Ndt ,

e2 = i eα+β cos z sinh y dx + eα− β
2 (cosh y cos z dy − sinh y sin z dz) ,

e3 = i eα+β sinh y sin z dx + eα− β
2 (cosh y sin z dy − sinh y cos z dz) ,

e4 = −eα+β cosh y dx − i eα− β
2 sinh y dy ,

in which we calculate the torsion scalar

TBI I I
=

1
N2

(

6α̇2 − 3
2

β̇2
)

+ 2e−2α+β. (9)

Finally, for the Kantowski-Sachs spacetime, we assume the vierbein fields

e1 = Ndt ,

e2 = ea+β cos z sin y dx + ea− β
2 (cos y cos z dy − sin y sin z dz) ,

e3 = ea+β sin y sin z dx + ea− β
2 (cos y sin z dy − sin y cos z dz) ,

e4 = ea+β cos y dx − ea− β
2 sin y dy,
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from which we calculate the torsion scalar

TKS =
1

N2

(

6α̇2 − 3
2

β̇2
)

− 2e−2α+β. (10)

Thus, we define the general torsion scalar

TA(K) =
1

N2

(

6α̇2 − 3
2

β̇2
)

+ 2Ke−2α+β,

where K = 0 is for the Bianchi I space, K = 1 is for the Bianchi I space and K = −1
corresponds to the torsion scalar of the Kantowski-Sachs space.

By replacing the generic TA(K) in the Action Integral (5) and assuming that the scalar
field inherits the isometries of the background space, that is, φ = φ(t), we derive the
point-like Lagrangian for the field equations

L
(

N, a, ȧ, β, β̇, φ, φ̇
)

= F(φ)e3α

(

1
N

(

6α̇2 − 3
2

β̇2 − ω

2
φ̇2
)

+ N
(

2Ke−2α+β + V(φ)
)

)

(11)

while the field equations are

0 = F(φ)e3α

(

6α̇2 − 3
2

β̇2 − ω

2
φ̇2 − V(φ)− 2Ke−2α+β

)

, (12)

0 = α̈ +
3
2

α̇2 +
3
8

β̇2 +
1
4

(ω

2
φ̇2 − V(φ)

)

+
d

dt
(ln F(φ))α̇ − 1

6
Ke−2α+β , (13)

0 = β̈ + 3α̇β̇ +
d

dt
(ln F(φ))β̇ +

2
3

Ke−2α+β , (14)

0 = ω(φ̈ + 3α̇φ̇)φ̇ + V̇ +
d

dt
(ln F(φ))

(

6ȧ2 − 3
2

β̇2 + V(φ) + 2Ke−2α+β

)

, (15)

where, without loss of generality, we have selected the lapse function N(t) to be constant,
i.e., N(t) = 1.

3. Symmetry Analysis

In this section, we proceed with the derivation of variational symmetries for the field
equations. Because the field equations for the cosmological model of our consideration
follow from a point-like Lagrangian, the variational symmetries are derived with the
application of Noether’s theorem. In this scenario, variational symmetries are called
Noether symmetries; for a recent review on Noether’s work, we refer the reader in [38].

Noether’s theorem in modified theories of gravity cover a wide range of applications
with many important results on the classification for the free functions of the modified
theories and the construction of conservation laws, which have been used for the derivation
of analytic and exact solutions [37,42–47]. For the convenience of the reader, we discuss the
main definitions of Noether’s theorems.

3.1. Noether’S Theorems

Consider the action integral

A =
∫

L(t, q(t), q̇(t))dt. (16)

where L(t, q(t), q̇(t)) is the Lagrangian function, t is the independent variable and q(t)

denotes the dependent variable, while q̇(t) =
dq(t)

dt is the first-order derivative
Then, under the infinitesimal transformation at any point P in the space of variables

{t, q}
t̄ = t + εξ(t, q), q̄ = q + εη(t, q) (17)



Symmetry 2022, 14, 1974 6 of 14

with the infinitesimal generator, the vector field

X = ξ(t, q)∂t + η(t, q)∂q, (18)

the action integral (16) becomes

Ā =
∫ t̄1

t̄0

L(t̄, q̄, ˙̄q)dt̄. (19)

Thus, according to Noether’s first theorem, the variation of the action integral A
remains invariant under the application of the infinitesimal transformation (17), if and only
if there exists a function f such that [37]

ḟ = ξ
∂L

∂t
+ η

∂L

∂q
+
(

η̇ − q̇ξ̇
)∂L

∂q̇
+ ξ̇L . (20)

The function f is a boundary term that has been introduced to allow for the infinitesi-
mal changes in the value of the action integral provided by the infinitesimal transformation.

The novelty of Noether’s work is that there exists a simple formula for the one-to-one
correspondence between the symmetry vectors and conservation laws for the equations
of motion. Indeed, if X satisfies condition (20) for the Lagrangian function L(t, q(t), q̇(t)),
then function [37]

I(X) = f −
[

ξL + (η − q̇ξ)
∂L

∂q̇

]

(21)

is a conservation law for the equations of motion; that is, İ(X) = 0. Formula (21) is the
so-called Noether’s second theorem.

3.2. Symmetry Classification

In this study and for the point-like Lagrangian (11) with F(φ) = e2φ, where without
loss of generality, we assume N(t) = e3α+2φ, that is,

L
(

N, a, ȧ, β, β̇, φ, φ̇
)

=

(

6α̇2 − 3
2

β̇2 − ω

2
φ̇2
)

+ e6α+4φ
(

2Ke−2α+β + V(φ)
)

, (22)

we consider the infinitesimal transformation

t̄ = t + εξ(t, α, β, φ) , (23)

ᾱ = α + εηα(t, α, β, φ) , (24)

β̄ = β + εηβ(t, α, β, φ) , (25)

φ̄ = φ + εηφ(t, α, β, φ) (26)

with generator the vector field X = ξ∂t + ηα∂α + ηβ∂β + ηφ∂φ.
Hence, the application of the symmetry condition (20) for the Lagrangian function (22)

gives a system of linear partial differential equations, which determine the generator X for
various functional forms of the potential V(φ) and values of the curvature term K.

For the Bianchi I background space, K = 0, it follows that, for a zero potential function
V(φ) = 0, the admitted Noether symmetries by the field equations are

X1 = ∂α , X2 = φ∂α +
12
ω

α∂φ , X3 = β∂α + 4α∂β , (27)

X4 =
ω

3
φ∂β − β∂φ , X5 = ∂β , X6 = ∂φ . (28)

The symmetry vectors are the isometries of the three-dimensional flat space, {X1, X5,
X6} are the translation symmetries, while {X2, X3, X4} are the three rotations of the three-
dimensional minisuperspace.
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The corresponding conservation laws are calculated from expression (21) and they are

I(X1) = α̇ , I(X2) = φα̇ + αφ̇ , I(X3) = βα̇ + αβ̇ (29)

I(X4) = φβ̇ − βφ̇ , I(X6) = β̇ and I(X6) = φ̇ . (30)

On the other hand, for K = 0 and V(φ) = V0eλφ, the additional admitted Noether
symmetries from the Lagrangian of the field equations are

X5 , X7 =
(4 + λ)

2ω
X3 +

3
ω

X4 , X8 = (4 + λ)X1 − X6 , (31)

for which the resulting conservation laws are

I(X5) , I(X8) = (4 + λ)ȧ + ωφ̇ , (32)

I(X7) = 2(4 + λ)Bα̇ − (2α(4 + λ) + ωφ)β̇ + ωβφ̇ . (33)

The admitted Noether symmetries are different in the presence of the curvature term,
K 6= 0. In this case, for the zero potential V(φ) = 0, the admitted Noether symmetries are

Y1 = X1 − 4X5 , Y2 = X6 − 4X5 , (34)

and

Y3 = X2 −
12
ω

X4 , (35)

where the resulting conservation laws are

I(Y1) = α̇ + β̇ , I(Y2) = 12β̇ − ωφ̇ , (36)

I(Y3) = φ
(

α̇ + β̇
)

− (α − β)φ̇. (37)

Finally, for the exponential potential V(φ) = V0eλφ the field equations admit the
unique symmetry vector

Y4 = (λ + 4)X1 − 4(λ − 2)X5 − 6X6 (38)

with conservation law

I(Y4) = (λ + 4)α̇ + (λ − 2)β̇ − ω

2
φ̇ . (39)

From the symmetry analysis, we conclude that the field equations form a Liouville
integrable dynamical system according to the Noether point symmetries for the case of
Bianchi I for V(φ) = 0 and V(φ) = V0eλφ, and for the Bianchi III and Kantowski-Sachs
cases K 6= 0 only when V(φ) = 0.

4. Classical Solutions

We proceed with the application of the conservation laws for the derivation of analytic
solutions for the latter cases.

4.1. Bianchi I Spacetime

For the case of Bianchi I spacetime, for 4 + λ 6= 0 , we define the new dependent
variable Φ = φ + 6

4+λ α, such that the point-like Lagrangian (22) reads

L
(

α, α̇, β, β̇, Φ, Φ̇
)

=

(

6 − 18ω

(4 + λ)2

)

α̇3 − 3
2

β̇2 +
6ω

4 + λ
α̇Φ̇ − 1

2
ωΦ̇

2 + V0e(4+λ)Φ. (40)
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This gives the field equations

(

6 − 18ω

(4 + λ)2

)

α̇2 − 3
2

β̇2 +
6ω

4 + λ
α̇Φ̇ − 1

2
ωΦ̇

2 − V0e(4+λ)Φ = 0 , (41)

α̈ − V0

2
e(4+λ)Φ = 0 , β̈ = 0 , (42)

and

Φ̈ +
V0

(

(4 + λ)2 − 3ω
)

(4 + λ)ω
e(4+λ)Φ = 0. (43)

Thus, for the anisotropic parameter β, we derive the closed-form expression
β(t) = β1t + β0.

4.1.1. Arbitrary Parameters

For
V0((4+λ)2−3ω)

(4+λ)ω
6= 0, the analytic solution is

Φ(t) = − 1
4 + λ

ln





2V0

(

(4 + λ)2 − 3ω
)

(4 + λ)2ωΦ1
cosh2

(

4 + λ

2

√

Φ1(t − t0)

)



 (44)

and

α(t) =
ω

(

(4 + λ)2 − 3ω
) ln

(

cosh
(

4 + λ

2

√

Φ1(t − t0)

))

+ α1t + α0 (45)

with constraint equation

12α2
1

(

(4 + λ)2 − 3ω
)2

− ω(λ + 4)Φ1

2(λ + 4)4 − (λ + 4)2ω
− 3

2
β2

1 = 0. (46)

Presently, consider the special solution with α1 = 0, a0 = 0, and without the loss
of generality t0 = 0. This is an anisotropic solution because from the latter constraint, it
follows β1 6= 0. That is, we consider the scale factor

α(t) =
ω

(

(4 + λ)2 − 3ω
) ln

(

cosh
(

4 + λ

2

√

Φ1t

))

(47)

and the lapse function

N(t) =





ω(4 + λ)2

2V0

(

(4 + λ)2 − 3ω
)Φ1





2
4+λ
(

cosh
(

4 + λ

2

√

Φ1t

))

3ω−4(λ+4)

(4+λ)2−3ω
. (48)

Thus, the expansion rate θ(t) = 1
3N α̇ is determined to be

(θ(a))2 ≃ 1 − a−6+ 2
ω (4+λ)2

, α = ln a. (49)

The anisotropic parameter σ = 1
N β̇(t) is

σ(a) ≃ α−3+ 4
ω (4+λ) , α = ln a. (50)

Thus, for large values of α, the anisotropic parameter vanishes, that is, σ(α) → 0,
for −3 + 4

ω (4 + λ) < 0.
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4.1.2. Case V0

(

(4 + λ)2 − 3ω
)

= 0

Furthermore, in the case for which V0

(

(4 + λ)2 − 3ω
)

= 0 the analytic solution is

different. Indeed, for V0 = 0 we derive the closed-form solution

α(t) = α1t + α0, (51)

Φ(t) = Φ1t + Φ0 (52)

with constraint equation

(

6 − 18ω

(4 + λ)2

)

α2
1 −

3
2

β2
1 +

6ω

4 + λ
α1Φ1 −

1
2

ωΦ
2
1 = 0. (53)

For the latter solution and for α0 = 0, Φ0, we derive the expansion rate and the
anisotropic parameters to be

θ2(a) ≃ a
− 3λ

4+λ +
2Φ1
α1 , σ2(a) ≃ a

− 3λ
4+λ +

2Φ1
α1 , α = ln a (54)

from which we infer that the universe becomes isotropic for − 3λ
4+λ + 2Φ1

α1
< 0.

On the other hand, for
(

(4 + λ)2 − 3ω
)

= 0, the analytic solution is

Φ(t) = Φ1t + Φ0, (55)

α(t) =
e(4+λ)(Φ0+tΦ1)

2(4 + λ)2
Φ2

1

V0 + α1t + a0 , (56)

with constraint equation − 1
6 (4 + λ)Φ1((4 + λ)Φ1 − 12α1)− 3

2 β2
1 = 0.

Assume now Φ0 = 0, α1 = 0 and Φ1 = 0. In this case, the expansion rate and the
anisotropic parameter are

θ2(a) ≃ a−
3λ

4+λ (ln a)
2+λ
4+λ , α = ln a , (57)

and
σ(a) = a

12
4+λ −3(ln a)−

2
4+λ , α = ln a. (58)

Finally, for λ + 4 = 0, the closed-form solution for the physical parameters are

α(t) =
1
6

ln

(

− 6α1

V0 cosh2(3
√

α1(t − t0))

)

, (59)

β(t) = β1t + β0 , (60)

φ(t) = φ1t + φ0 , (61)

with constraint equation

6α1 −
3
2

β2
1 −

ω

2
φ2

1 = 0. (62)

4.2. Bianchi III & Kantowski-Sachs Spacetimes

For K 6= 0 and zero potential function, i.e., V(φ) = 0, we consider the new variables
φ = Φ − α and β = B − 4Φ, where the point-like Lagrangian (22) becomes

4eBK − 3β̇2 − (ω − 12)α̇2 + 2
(

12Ḃ + ωα̇
)

Φ̇ − (ω + 48)Φ̇2 = 0. (63)
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In the new variables, the field equations read

α̈ =
2
3

KeB , Φ̈ =
2

3ω
(ω − 12)KeB , (64)

B̈ =
2
3
(ω − 16)KeB (65)

with constraint equation

4eBK + 3β̇2 + (ω − 12)α̇2 − 2
(

12Ḃ + ωα̇
)

Φ̇ + (ω + 48)Φ̇2 = 0. (66)

Thus for (ω − 16) 6= 0, the analytic solution for the field equations is

B(t) = ln
(

ωB1

4(16 − ω)
cosh−2

(√
B1

2
(t − t0)

))

, (67)

α(t) = − 2ω

3(ω − 16)
ln
(

cosh
(√

B1

2
(t − t0)

))

+ α1t + α0 , (68)

Φ(t) = −2(ω − 12)
3(ω − 16)

ln
(

cosh
(√

B1

2
(t − t0)

))

+ Φ1t + Φ0. (69)

On the other hand, for ω − 16 = 0, the analytic solution is

B(t) = B1t + B0 , (70)

α(t) =
2

3B2
1

eB0+B1tK + α1t + α0 , (71)

Φ(t) =
1

6B2
1

eB0+B1tK + Φ1t + α0 . (72)

Finally, the expansion rate has a similar behaviour with the solution found before.
According to our knowledge, these are the first anisotropic cosmological analytic

solutions in the literature in the teleparallel dark energy theory.

5. The Wheeler-DeWitt Equation

Consider the constraint Hamiltonian dynamical system of the form H = NH with

H =
1
2
GAB pA pB + U (q) and H ≡ 0 , (73)

where GAB is the minisuperspace, pA is the momentum conjugate to the variable qA and
U (q) is the effective potential.

From the point-like Lagrangian (11), we find

pα =
12
N

F(φ)e3αα̇ , pβ = − 3
N

F(φ)e3α β̇ , pφ = −ω

N
F(φ)e3αφ̇. (74)

Hence, the Hamiltonian is written as

H = N

[

1
2

e−3a

F(φ)

(

1
12

p2
α −

1
3

p2
β −

1
ω

p2
φ

)

− e3αF(φ)
(

2Ke−2α+β + V(φ)
)

]

, (75)

that is, by using the constraint Equation (12):

H =
1
2

e−3a

F(φ)

(

1
12

p2
α −

1
3

p2
β −

1
ω

p2
φ

)

− e3αF(φ)
(

2Ke−2α+β + V(φ)
)

= 0 . (76)
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The Wheeler-DeWitt equation follows under the canonical quantization of the con-
straint, that is, HΨ(q) = 0, where Ψ(q) is the wavefunction of the quantized system.

For the Wheeler-DeWitt equation to remain invariant under conformal transformations,
the conformally Laplace operator is applied, such that HΨ(q) = 0 to be written as

W(q, Ψ) ≡
(

1
2

∆ +
n − 2

8(n − 1)
R−U (q)

)

Ψ(q) = 0, (77)

in which R is the Ricciscalar of the minisuperspace GAB and n = dimG.
We consider the case F(φ) = e2φ and without a loss of generality, we set N = e3α+2φ,

thus, the Wheeler-DeWitt equation becomes

W(α, β, φ, Ψ) ≡
(

1
24

∂2

∂α2 − 1
6

∂2

∂β2 − 1
2ω

∂2

∂φ2 − e6α+4φ
(

2Ke−2α+β + V(φ)
)

)

Ψ(α, β, φ) = 0. (78)

5.1. Quantum Operators from Symmetry Vectors

We briefly discuss the application of the theory of symmetries of differential equations
for the construction of quantum operators necessary for the derivation of exact solutions
for the Wheeler-DeWitt equation.

Assume now the generic vector field

Y =ξq(q, Ψ)∂q + η(q, Ψ)∂Ψ (79)

defined in the jet space {q, Ψ}, in which the Wheeler-DeWitt Equation (77) lies.
The vector field Y is the infinitesimal generator of the point transformation between

two points P(q, Ψ) → P′(q′, Ψ
′) [48,49]:

(

q′, Ψ
′) = (q, Ψ) + ε(ξq(q, Ψ), η(q, Ψ)), (80)

where ε is an infinitesimal parameter such that ε2 → 0.
We say that the Wheeler-DeWitt Equation (77) is an invariant under the point transfor-

mation with generator X if and only if

lim
ε→0

W ′(q′, Ψ
′)−W(q, Ψ)

ε
= 0. (81)

When the latter condition is true, the vector field Y is a Lie point symmetry for the
differential equation.

In [50], it was found that the generic symmetry vector for Equation (77) is of the form

Y = ξ(q)∂q +

[

(2 − n)

2
ψ(q)Ψ + µ0Ψ + Ω(q)

]

∂Ψ, (82)

where ξ(q) is a conformal Killing vector field of the minisuperspace GAB, with the confor-
mal factor ψ(q), which satisfies the condition LξU (q) + 2ψU (q) = 0, in which Lξ is the
Lie derivative with respect to the vector field ξ. Ω(q) satisfies the original equation and
denotes the infinite number of solutions of the original conformal Laplace equation.

For a given Lie symmetry Y of the conformal Laplace equation, we can determine in

the normal variables the equivalent Lie-Bäcklund vector field Ŷ =
(

∂Ψ

∂qJ −
( 2−n

2 ψ + a0
)

Ψ

)

∂Ψ,

which has the property to transform a solution into a solution. That is, ŶΨ = µ1Ψ, from
which it follows that

∂Ψ

∂qJ
−
(

2 − n

2
ψ + α0

)

Ψ = µ1Ψ (83)

which is nothing else than a quantum operator.
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Recall that in the normal variables, the conservation laws of the classical system
generated by point symmetries can be written as the linear function of the momentum pJ ,
that is IJ = pJ , from where it follows that under canonical quantization

− i
∂Ψ

∂qJ
− IJΨ = 0. (84)

From the latter, it is clear that Noetherian conservation laws can be used to determine
differential invariants for the Wheeler-DeWitt equation, and this is an approach to relate
the classical and quantum solutions.

5.2. Exact Solutions

We assume now the case of the Bianchi I universe, K = 0, with the exponential
potential V(φ) = F0eλφ. Then, with the use of the Noether symmetry vectors, we construct
differential operators, which for the general case provide the analytic solution for the
Wheeler-DeWitt Equation (78):

Ψ(α, β, φ) = exp

(

c1β − 3
c2

(4 + λ)2 − 3ω
(2c2λ + 8α + ωφ)

)

(Ψ1 Jκ(Z) + Ψ2Yκ(Z)), (85)

where Jκ(q), Yκ(q) are the Bessel functions of the first and second kind, while

κ = 2
3

√

ω(9c2−c2
1((4+λ)2−3ω))

((4+λ)2−3)
2 , Z = 2

√

2ωV0

(4+λ)2−3ω
e3α+ 1

2 φ(4+λ), Ψ1, Ψ2, c1 and c2 are con-

stants, and while c1 and c2 are related with the constants of integration for the classical
solution.

Similarly, for the case with K = 0 and V(φ) = 0, we determine the exact solution

Ψ(α, β, φ) = exp
(

ω(c1(4φ+α+β)−3c2φ)+48(c1−c2)α−12c2β
3(16−ω)

)

(Ψ1 Jκ̄(Z̄) + Ψ2Yκ̄(Z̄)) , (86)

in which κ̄ = 1
3(ω−16)

√

ω
(

ωc2
1 + 12(2c1 − c2)(2c1 − 3c2)

)

and Z̄ = −2
√

2Kω
16−ω e2(α+φ)+

β
2 .

For specific values of the free parameters, the exact solutions have different functional
forms. However, they can easily be derived. Indeed, the Wheeler-DeWitt equation with the
use of the differential operators is reduced to the Bessel second-order differential equation.

6. Conclusions

Anisotropic spacetimes describe the physical space in the early stages of the universe,
and the determination of exact and analytic solutions is of special interest, because the
evolution of anisotropies in a given gravitational theory can be studied analytically. In this
study, we investigated anisotropic cosmological solutions for the scalar-torsion theory in
the context of teleparallelism, where the physical space is described by the locally rotational
spaces of the Bianchi I, Bianchi III and Kantowski-Sachs geometries.

For the scalar-torsion theory, we made use of a corresponding vierbein field defined in
the proper frame for each background geometry, such that the limit of General Relativity to
be recovered when the nonminimally coupled scalar field becomes constant. The resulting
field equations have the property to have a point-like Lagrangian description. Furthermore,
we assume the existence of a potential function, which drives the dynamics of the scalar
field and consequently of all of the physical parameters of the theory.

We applied the Noether symmetry analysis in order to perform a classification of the
scalar field potential, by assuming the requirement that there exist nontrivial variational
point symmetries for the point-like Lagrangian of the field equations. The latter requirement
is equivalent with the existence of the conservation laws for the field equations. That is
ensured by Noether’s second theorem. From the classification scheme, we are able to
identify specific functional forms for the scalar field potentials, where the resulting field
equations form a Liouville integrable system. For the potential functions, we solved the
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field equations by using the additional conservation laws, and we wrote the resulting
analytic solutions in closed-form expressions.

It is known that there exists a unique relation between the Noether symmetries of
the classical field equations and of the Lie symmetries of the Wheeler-DeWitt equation of
quantum cosmology. Thus, we derived the Wheeler-DeWitt equation and we determined
the differential operators, which were used to write the wavefunction in a closed-form
expression in terms of the exponential and of the Bessel functions.

In a future study, we plan to further investigate the physical evolution of the field
equations for the scalar-torsion theory in an anisotropic background geometry by applying
other analytical techniques, such as the analysis of the stationary points for the determina-
tion of asymptotic solutions. The results of this analysis as that of the following study will
give important information for the initial value problem in scalar-torsion cosmology.
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