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Abstract. It is shown, in the context of general relativity, how to modify any cosmological
model so that its local (in time) properties are unchanged, but its global time evolution is
isochronous, i. e. completely periodic with a fixed period independent of the initial data. In
this manner the Big Bang singularity might be avoided, even if this singularity is featured by
the original model.

1. Introduction
The possibility has been recently demonstrated [1] to identify (nonrelativistic, Hamiltonian)
many-body problems which feature an isochronous time evolution with an arbitrarily assigned
period T yet mimic with an arbitrarily good approximation, or even exactly, the time evolution
of any given many-body problem (belonging to a very large, quite realistic, class: arbitrary
dimensions of ambient space, arbitrary number of particles with arbitrary masses, arbitrary
interparticle forces) over a time T̃ which may also be arbitrarily large (but of course such
that T̃ < T ). This finding is valid both in a classical and quantal context; hence—rather
disturbingly—it applies to most of nonrelativistic physics. Purpose and scope of this presentation
is to report the possibility to extend it to a general relativity context (classical, non quantal)
as described in [2, 3]. In particular we show how to modify any cosmological model so that its
local (in time) properties are unchanged, but its global time evolution is isochronous (and might
avoid, in the past and future, the Big Bang, even if this singularity is featured by the original
model).

2. Synthetic recall of previous results
The Hamiltonian characterizing the standard, overall translation-invariant, nonrelativistic N -
body problem reads as follows (here, merely for notational simplicity, we consider unit-mass
particles in a one-dimensional space environment, but this is not a significant limitation, see
below):

H(p, q) =
1

2

N∑
n=1

p2n + V (q), V (q + a) = V (q). (1)
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Here of course p respectively q denote the N -vectors the components of which, pn respectively
qn, are the standard canonical coordinates.

Let us now review some standard related developments, trivial as they are. We hereafter
denote with P the total momentum, and with Q the (canonically-conjugate) centre-of-mass
coordinate:

P ≡
N∑

n=1

pn, Q ≡ 1

N

N∑
n=1

qn . (2)

Thanks to the translation invariance of the Hamiltonian the total momentum Poisson-
commutes with the Hamiltonian, [H,P ] = 0, where—here and hereafter—the Poisson bracket
of two generic functions of the canonical variables is defined as usual,

[F,G] ≡
N∑

n=1

[
∂F

∂pn

∂G

∂qn
− ∂F

∂qn

∂G

∂pn

]
; (3)

and let us recall that the evolution of any function F (p, q) of the canonical coordinates is
determined by the equation F ′ = [F,H], where the appended prime denotes differentiation with
respect to the ”timelike” variable corresponding to the evolution induced by the Hamiltonian
H.

It is now convenient to introduce the ”relative coordinates” and the ”relative momenta” via
the standard definitions

xn ≡ qn −Q; yn ≡ pn − P

N
. (4)

Note that these are not canonically conjugated quantities, since [xn, yn] = δnm − 1/N , and they

are not independent since obviously their sum vanishes:
∑N

n=1 xn = 0,
∑N

n=1 yn = 0.
It is moreover convenient to introduce the ”relative-motion” Hamiltonian h(y, x) via the

formula

h(y, x) ≡ 1

2

N∑
n=1

y2n + V (x) =
1

4N

N∑
n,m=1

(pn − pm)2 + V (q) , (5)

implying

H(p, q) =
P 2

2 N
+ h(y, x) . (6)

Note that this definition of the relative-motion Hamiltonian h(y, x) entails that it Poisson-
commutes with both P and Q: [P, h] = [Q, h] = 0.

For completeness and future reference let us also display the equations of motion implied by
the original Hamiltonian H(p, q):

q′n = pn ; p′n = −∂V (q)

∂qn
= q′′n , (7)

where (for reasons that will be clear below) we denote as τ the independent variable
corresponding to this Hamiltonian flow and with appended primes the differentiations with
respect to this variable:

qn ≡ qn(τ); pn ≡ pn(τ); q′n =
dqn
dτ

; p′n =
dpn
dτ

. (8)

Hence Q′ = P/N and P ′ = 0, yielding

Q(τ) = Q(0) +
P (0)

N
τ ; P (τ) = P (0) , (9)
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as well as

x′n = yn =
∂h(y, x)

∂yn
, y′n = −∂V (x)

∂xn
= −∂h(y, x)

∂xn
. (10)

Note that these equations, (10), have the standard Hamiltonian form even though, as mentioned
above, the coordinates yn and xn are not quite canonically conjugated variables.

This ends our review of quite standard results for the classical nonrelativistic N -body
problem. Let us also emphasize that, above and below, the restriction to unit-mass particles,
and to one-dimensional space, is merely for simplicity: generalizations—also of the following
results—to the more general case with different masses and arbitrary space dimensions is quite
elementary, essentially trivial. As for the number of particles N , it is an arbitrary positive
integer: interesting cases are N = 2 (the generally solvable two-body problem), N ≈ 1025 (the
standard macroscopic system, where statistical mechanics and thermodynamics rules), N ≈ 1085

(maybe the entire Universe, the topic of cosmology; which however should be treated in a general
relativity context, see below).

3. An isochronous Hamiltonian
A ”Ω-modified” isochronous Hamiltonian H̃(p, q; Ω) is now defined [1] by the formula

H̃(p, q; Ω) ≡ 1

2

[(
P +

h(y, x)

d

)2

+Ω2 Q2

]
, (11)

where d is an irrelevant arbitrary constant (introduced for dimensional reasons: it has the
dimensions of a momentum1) and Ω is hereafter a positive constant the choice of which will
be our privilege. Let us emphasize that hereafter the evolution of the various quantities is that
caused by this new Ω-modified Hamiltonian; the corresponding independent variable is hereafter
denoted as t and interpreted as ”time”, and differentiations with respect to this variable will
be denoted, as usual, by superimposed dots; and of course the time evolution of any function
F ≡ F (p, q) of the canonical variables will be determined by the standard equation Ḟ = [H̃, F ].

The solution of the time-evolution yielded by the isochronous Hamiltonian H̃(p, q; Ω) is [1]

Q(t) = Q(0) cos(Ωt) + Q̇(0)
sin(Ωt)

Ω
= C d

sin (Ω(t− t̄))

Ω
, (12a)

P (t) = P (0) cos(Ωt) + Ṗ (0)
sin(Ωt)

Ω
+

h(y(0), x(0))

d
[cos(Ωt)− 1] , (12b)

where C =
√

2H̃(p, q;ω)/d is a dimensionless constant, and

x̃n(t) = xn(τ); ỹn(t) = yn(τ) , (12c)

where (changing for convenience notation) we now denote as x̃n ≡ x̃n (t) and ỹn ≡ ỹn (t)
the dependent variables whose time-evolution is determined by the Ω-modified Hamiltonian
H̃(p, q; Ω) and as xn ≡ xn (τ) and yn ≡ yn (τ) the dependent variables whose τ -evolution is
determined by the original, unmodified Hamiltonian H(p, q). And here (most importantly)

τ ≡ τ(t) =
A sin(Ωt) +B [1− cos(Ωt)]

Ω
=

Q(t)

d
, (12d)

where the constants A and B are given by simple explicit formulas in terms of the initial position
Q (0) and velocity P (0) of the centre-of-mass of the system and the value of the Hamiltonian

1 Note that (5) implies that h(y, x) has the dimension of a squared momentum.
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H̃(p, q; Ω) (which is of course a constant of motion) [1]. The crucial observation is that τ(t)—
hence the entire solution, see (12)—is a periodic function of t with period T = 2π/Ω.

The solution formulas displayed above (see in particular (12c) and (12d)) show that the
dynamical evolution implied by the isochronous Hamiltonian (11) features exactly the same
trajectories in the (phase) space of the coordinates xn and yn as those yielded by the standard N -
body Hamiltonian (1); but in the case of the standardN -body Hamiltonian (1) the corresponding
evolution corresponds to a uniform travel along those trajectories; while in the case of the
isochronous Hamiltonian (11) the evolution of the system corresponds to an oscillatory travel—
periodic with the fixed period T—along those same trajectories, only a portion of which gets
therefore explored. It also entails that the dynamics yielded by the isochronous Hamiltonian
(11) does not differ—on a time scale much shorter than the period T—from that yielded by the
original Hamiltonian (1) (up to a constant shift and rescaling of time). Indeed clearly τ ≡ τ(t)
on a sufficiently short time scale varies linearly in t, since in the neighborhood of any time
t̄—except when τ̇ (t̄) vanishes—clearly

τ(t) = C̄ + D̄ (t− t̄) +O

[(
t− t̄

T

)2
]

, (13a)

C̄ =
A sin(Ωt̄) +B [1− cos(Ωt̄)]

Ω
, (13b)

D̄ = A cos(Ωt̄) +B sin(Ωt̄) . (13c)

Remark 3.1. A different modified Hamiltonian can be introduced which also yields an
isochronous evolution with the arbitrary period T but reproduces the dynamics of the original,
standard N -body Hamiltonian (1) over an arbitrary time T̃ (of course such that T̃ < T ) exactly
(rather than with arbitrary accuracy). And the property of isochrony remains true in a quantal
context. [1] �

4. Extension to general relativity
The following presentation is terse, focusing on the main ideas.

The standard approach. The following space-time metric is generally introduced as
appropriate to describe a homogeneous and isotropic Universe:

ds2 = dt2 − a(t)2 d�x2 . (14)

Our approach. We generalize the class of metrics to be considered, writing instead

ds2 = b(t)2 dt2 − a(t)2 d�x2 , (15)

where b (t)2 is commonly termed the ”lapse” function.
Standard objection in the general relativity context. This new metric is physically equivalent

to that written above, since it can be reduced to it by a change of the time variable from t to τ
with

dτ = b(t)dt; τ(t) =

∫ t

dt′b(t′) , (16)

whereby the metric (15) becomes

ds2 = dτ2 − α(τ)2 d�x2 , (17)

of course with a(t) = α(τ) = α(τ(t)). Indeed, such a redefinition of the time-variable has no
physical meaning in general relativity, where a change of coordinates (in this case, from t to τ)
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is physically irrelevant : what is relevant is the geometry of space-time, not the variables used
to describe it.

Our rejoinder. Yes, in the general relativity context this is indeed the case, but only if b(t) is
a one-to-one invertible function (in which case the two metrics (14) and (15) are related to each
other by a diffeomorphism). However, this is certainly not the case if b(t) is a periodic function
(with arbitrarily assigned period T and vanishing mean value):

b(t+ T ) = b(t) ; B (t) ≡
∫ t

0
b
(
t′
)
dt′ , B (t+ T ) = B (t) . (18)

Then the two metrics (14) and (15) are indeed locally equivalent (in time), but they are not
globally equivalent (in time). And clearly with such an assignment one arrives at an isochronous
cosmology.

This is essentially our argument: given an arbitrary cosmology, one can construct another
one (indeed an infinity of other ones) which is locally equivalent (in time) but not globally
equivalent (in time) to the previous one: for instance one, but not the other, might feature a
Bing Bang. Clearly the corresponding space-times would be physically different; but they would
not be distinguishable by any (local in time) measurement. . . And the new cosmology might be
isochronous. . . i. e., entail a time evolution which is periodic with an arbitrary, a priori assigned,
period T .

Let us now be a bit more specific. As usual in cosmological investigations based on the
Einstein equations, we assume that the energy-momentum tensor of the Universe is that of an
ideal fluid with a 4-velocity given by Uμ = |b(t)| δμ0, so that the ideal fluid has zero spatial
velocity and the frame of reference is co-moving, while the zero component of the 4-velocity
is always nonnegative (as it should be). The Einstein equations for the metric (15) are then
drastically simplified and read

3

[
ȧ(t)

a(t)

]2
= k b(t)2 ρ(t) , (19a)

ρ̇(t) + 3

[
ȧ(t)

a(t)

]
[ρ(t) + P (t)] = 0 . (19b)

Here and hereafter superimposed dots denote differentiations with respect to the time t; ρ and
P are respectively the energy density and pressure of the universe; k = 8πG/c4; G is the
gravitational constant; c the speed of light.

This system of two ODEs must be complemented by an equation of state relating the pressure
P of the universe to its energy density ρ: we shall here use for simplicity the simple ideal fluid
relation P = ωρ, with constant ω. But note that, after this assignment, this system of two
ODEs is not quite closed: it is still possible to assign, essentially arbitrarily, the function b(t).
Of course this arbitrariness corresponds to the freedom in general relativity to reparametrize
time; but—as discussed above—it goes beyond this if b(t) is not invertible, hence if the relevant
reparametrization is not a global diffeomorphism.

If we consider a perfect fluid with constant equation of state parameter ω > −1, it follows
from the system (19) that the energy density of the fluid is

ρ(t) = ρ (0)

[
a(0)

a(t)

]3(ω+1)

, if ω > −1 , (20)

while for ω = −1 one has a constant energy density,

ρ = Λ if ω = −1 . (21)
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It is now convenient [2, 3] to introduce a new variable τ by setting (see (18))

τ(t) ≡ B (t) , (22)

and new auxiliary functions α (τ) , r (τ) , p (τ) by setting

a(t) ≡ α (τ(t)) , ρ(t) ≡ r (τ(t)) , P (t) ≡ p (τ(t)) . (23)

Then the functions a(t) and ρ(t) are solutions of (19) provided α(τ) and r(τ) are solutions of
the following system:

3

[
α′(τ)
α(τ)

]2
= k r(τ) , (24a)

r′(τ) + 3

[
α′(τ)
α(τ)

]
[r(τ) + p(τ)] = 0 . (24b)

Here the prime denotes differentiation with respect to τ , and p(τ) and r(τ) satisfy the same
equation of state p(τ) = ω r(τ) as P (t) and ρ(t). And since the definition of τ(t) (see (22) with
(18)) implies that this function is periodic with period T ,

τ(t+ T ) = τ(t) , (25)

the same property is inherited via the definitions (23) by the physical quantities a(t), ρ(t) and
P (t):

a(t+ T ) = a(t) , ρ(t+ T ) = ρ(t) , P (t+ T ) = P (t) . (26)

This property holds for the solutions of the system (19) characterized by any initial conditions:
the physical quantities a(t), ρ(t) and P (t) are therefore isochronous. Moreover, since b(t) can
be assigned arbitrarily, the period T of these isochronous solutions is a parameter which can be
freely assigned.

It is immediate to identify the system (24) with the standard Friedman-Robertson-Walker
(FRW) system characterized by the metric (17) with the energy momentum tensor of a perfect
fluid in co-moving coordinates (see [4] for a review on FRW equations), while the system (19) is
a generalized FRW system corresponding to the metric (15). But let us re-emphasize that the
new variable τ cannot be given globally the significance of ”time”, hence the fact that it might
change sign—indeed, it certainly does so, since it depends periodically on the time t—has no
unphysical connotation.

Let us now show two explicit examples of isochronous cosmological solutions of Einstein’s
equations obtained in this manner. In both cases we assign for simplicity the function b(t) and
B (t) as follows:

b(t) ≡ cos (Ωt) , B (t) =
sin (Ωt)

Ω
, Ω =

2π

T
. (27)

As first example, consider a universe filled with a dark energy fluid with constant density
ρ = Λ and equation of state parameter ω = −1. Assuming that the metric tensor is given by
(15), the system (19) has the following solution:

a(t) = a0 exp

[√
kΛ

3

sin (Ωt)

Ω

]
, a0 ≡ a (0) . (28)

Note that at the times tn = (1/2+n)π/Ω with n integer the scale factor a(t) reaches its maximum

(for n even) and minimum (for n odd) values a± ≡ a0 exp
[
±√

kΛ/3Ω2
]
. Also note that, even if

the metric (15) is degenerate since b(tn) = 0, all physical quantities such as the energy density
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and pressure, the Ricci scalar curvature R, etc., are not singular since they can be expressed as
functions of the scale factor a (t) (e. g. R = k [ρ(a)− 3P (a)]), which is finite for all time, see
(28)). Therefore tn is a fictitious singularity corresponding to the time when the universe passes
from an expanding to a contracting epoch and viceversa.

As second example, consider the case of a perfect fluid with equation of state parameter
ω > −1. Then the scale factor is

a(t) = a0

[
1 + (1 + ω)

√
3kρ0
4

sin (Ωt)

Ω

] 2
3(1+ω)

, a0 ≡ a (0) . (29)

The maxima and minima of the scale factor are now again reached at tn = (1/2 + n)π/Ω and

have the values a± = a0
[
1±√

3kρ0
1+ω
2Ω

] 2
3(1+ω) . Also in this case tn corresponds to the transition

from the expanding to the contracting phases and viceversa and to a fictitious singularity of the
metric, since b(tn) = 0 but the scale factor a(t) and the relevant physical quantities may remain
finite for all time. Indeed for any assignment of the parameter Ω such that

Ω >

√
3kρ0
2

(1 + ω) , (30)

the scale factor a(t) is positive for all time (see (29)) and the big bang singularity of the FRW
model is avoided. Hereafter we assume that this restriction, (30), is always enforced. Of course
with a different assignment of b(t) one obtains different solutions, all of which yield the same
dynamics locally (in time); but possibly quite different dynamics globally (in time).

Furthermore, it has been shown that, by choosing b(t) so that a(t) = α(τ(t)) > 0 for any
t, such isochronous metrics can be manufactured to be geodesically complete [2] and therefore
singularity-free 2, so that the geodesic motion as well as all physical quantities described by scalar
invariants are always well defined [2] and the Big Bang singularity may be avoided. This implies
that these isochronous metrics may describe a singularity-free universe which—while featuring
a time evolution which reproduces identically (up to diffeomorphic time reparameterization;
locally in time, except at a discrete set of instants tn) that of the FRW metric (24)—features an
expansion which stops at some instant, to be followed by a period of contraction, until this phase
of evolution stops and is again followed by an expanding phase, this pattern being repeated ad
infinitum.

Let us also note that this class of metrics realize de facto the reversal of time’s arrow, as
discussed for instance in [5].

It is also evident that these isochronous metrics must be degenerate at a discrete set of
instants tn when the time reversals occur, say from expansion to contraction and viceversa; a
phenomenology whose inclusion in general relativity might be considered problematic, because
at these instants tn—when the metric is degenerate—the ”equivalence principle” corresponding
to the requirement that the metric tensor have a Minkowskian signature is violated. On
the other hand a physically unobservable violation of a ”principle” can be hardly considered
physically relevant ; and the isochronous metrics are solutions of a version of general relativity
whose dynamics, while still governed by Einstein’s equations3, does allow the violation of the
equivalence principle at a discrete set of hypersurfaces.

Let us note that the consideration in the context of general relativity of degenerate metrics
is not new. For instance, they were already introduced in [7, 8] and subsequently investigated
in a series of papers [9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25], in order to

2 A spacetime is singularity-free if it is geodesically complete, i.e. if its geodesics can be always past- and
future-extended [4].
3 Einstein’s equations by itself do not determine the signature of spacetime, see the discussion in [6, 7].
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study signature-changing spacetimes which are a classical realization of the change of signature
in quantum cosmology conjectured by Hartle and Hawking [26] (see also [27, 28, 29]), which has
philosophical implications on the origin of the universe [30].

Let us also mention that in [3] a different realization of isochronous cosmologies has been
considered: via nondegenerate metrics featuring a jump in their first derivatives at the inversion
times tn, which then implies a distributional contribution in the stress-energy tensor at tn. These
metrics are diffeomorphic to the continuous and degenerate isochronous metrics everywhere
except on the inversion hypersurfaces t = tn; hence they describe the same physics except
at the infinite set of discrete times tn; and clearly they may also be manufactured so as
to agree with all cosmological observations (locally in time). Since these two realizations of
isochronous cosmologies are locally but not globally diffeomorphic, they correspond to different
spacetimes and may be considered to emerge from different theories: the nondegenerate ones are
generalized (in the sense of distributions) solutions of Einsteinian general relativity (including
universal validity of the equivalence principle, but allowing jumps—whose physical significance
and justification is moot—at the discrete times tn); the degenerate ones feature no mathematical
or physical pathologies but fail to satisfy the ”equivalence principle” at the discrete times tn.

Finally let us emphasize that the argument based on the transition in the reduced Einstein
equations from the time t to the auxiliary variable τ—illustrated above when the right-hand
side is characterized by the simple ideal fluid relation P = ωρ—remains valid in the more
general case in which the system (24) corresponds to a universe filled with a mixture of ultra-
relativistic and nonrelativistic perfect fluids plus a cosmological constant and an inflaton scalar
field (the currently most popular candidate to describe our Universe); then the solution of
the (so-modified) system (24) gives, for any time evolution over a limited time period such
that |t − t̄| � T , exactly the ”right” sequence of inflation / radiation domination / matter
domination / late time acceleration epochs characterizing the Λ-CDM universe. Note that it
shall then also display any phenomenology interpretable as observable consequence of a past
Big Bang singularity implied by this evolution; in spite of the fact that, as discussed above,
a suitable assignment of Ω hence of the isochrony period T entails that the evolution of the
so-modified system (24) would never feature such an event.

5. Conclusions
We have shown that for any given FRW cosmology described by the metric (14) it is possible to
find an infinite number of isochronous cosmologies described by the periodic metric (15) with
(18), and that one can always assign the arbitrary function b(t) so that the new metric (15) is
singularity-free and yields an isochronous time evolution which coincides—locally in time—with
that yielded by the FRW metric (14). One might wonder how general this finding is. To answer
this question, we note that the mechanism to manufacture (theoretically) these isochronous
cosmologies can be applied to any synchronous metric, i.e. to any metric with g00 = 1 and
g0j = 0. Therefore, as long as one can perform a coordinate transformation that makes a
solution of the Einstein equations synchronous, one can also find an isochronous solution of
the relevant field equations which is locally—but only locally (in time)—physically identical to
the original solution up to a diffeomorphic reparametrization of the time variable. Since it is
possible to write most metrics in synchronous form by a diffeomorphic change of coordinates,
this makes our finding quite general.

Let us also note (see Remark 3.1 above) that, while the results that are valid for the quite
general (nonrelativistic) many-body problems mentioned at the beginning of this presentation
can be extended from a classical to a quantal context in a (theoretically and mathematically)
rigorous manner, an analogous quantal extension of the approach described above is unfeasible
as long as there is no mathematically rigorous theory encompassing general relativity and
quantization. And let us conclude by emphasizing that we are not arguing that our Universe
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evolves periodically indeed isochronously, nor do we wish to enter the related philosophical issues
(not our cup of tea!); we merely point out a (disturbing indeed unpleasant!) fact: in the context
of theoretical and mathematical physics such a possibility does not seem to be excluded.
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