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The Hamiltonian operator plays a central role in quantum theory being a generator of unitary quantum
dynamics. Its expectation value describes the energy of a quantum system. Typically being a nonunitary
operator, the action of the Hamiltonian is either encoded using complex ancilla-based circuits, or imple-
mented effectively as a sum of Pauli string terms. Here, we show how to approximate the Hamiltonian
operator as a sum of propagators using a differential representation. The proposed approach, named the
Hamiltonian operator approximation (HOA), is designed to benefit analog quantum simulators, where one
has direct access to simulation of quantum dynamics, but measuring separate circuits is not possible. We
describe how to use this strategy in the hybrid quantum-classical workflow for performing energy mea-
surements. Benchmarking the measurement scheme, we discuss the relevance of the discretization step
size, stencil order, number of shots, and noise. We also use HOA to prepare ground states of complex
material science models with direct iteration and quantum filter diagonalization, finding the lowest energy
for the 12-qubit Hamiltonian of hydrogen chain H¢ with 10~ Hartree precision using 11 time-evolved
reference states. The approach is compared to the variational quantum eigensolver, proving that HOA is
beneficial for systems at increasing size, corresponding to noisy large-scale quantum devices. We find that,
for the Heisenberg model with 12 or more spins, our approach may outperform variational methods, both
in terms of the gate depth and the total number of measurements.

DOI: 10.1103/PRXQuantum.2.030318

I. INTRODUCTION

Quantum computing is moving forward, and as evi-
denced by the quantum supremacy experiment [1], it is
approaching the scale where high-performance classical
computing may be challenged. However, despite ever-
increasing complexity for material science simulations
[2-5], reaching quantum advantage requires both well-
tailored problems and modified quantum protocols to
enable efficient computation.

While to date many quantum algorithms with favor-
able scaling have been proposed, they typically require
deep gate sequences [6]. Considered suitable for the future
fault-tolerant devices, their realization may be years (or
even decades) away. Present day error-prone devices of
increased size, corresponding to noisy intermediate-scale

“kyriienko@ukr.net

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license. Fur-
ther distribution of this work must maintain attribution to the
author(s) and the published article’s title, journal citation, and
DOL

2691-3399/21/2(3)/030318(14)

030318-1

quantum (NISQ) computers [7], require different strate-
gies to solve a state preparation problem [8]. One solution
corresponds to the adoption of a hybrid quantum-classical
(HQC) approach [9,10], where shallow-depth circuits are
used at the expense of increased sampling demand. The
prominent example of the HQC protocol is the variational
quantum eigensolver (VQE) [11—14] that triggered the
search for a wide range of variational quantum algorithms.
HQC approaches are considered as a viable near-term
strategy in quantum computing for chemistry [15,16], opti-
mization [17—19], and quantum machine learning [20].
However, while operating at the reduced circuit depth,
variational quantum algorithms also bear significant chal-
lenges, including: (1) vanishing gradients when optimizing
deep quantum circuits [21-23]; (2) the need for a suitable
ansatz capable of preparing a solution state [24]; and (3) a
drastic increase in the number of terms to measure when
considering the Hamiltonian averaging technique [25].
Numerous recent improvements include adaptive strate-
gies for the ansatz search [26,27] and automated ansatz
optimization [28—30], symmetry-preserving VQE [31,32],
natural gradient optimization [33—35], measurement
frugal VQE [36—45], quantum subspace search [46], layer-
wise learning [47], and many others. Variational protocols
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have also been applied to simulate the dynamics, showing
promise for strongly correlated systems [48—52]. However,
the general limitation of variational approaches also calls
for alternative solutions for systems at increasing size.

A different strategy to the state preparation relies on
applying a nonunitary operation to effectively cool down
the higher-energy states. This can be done by represent-
ing them as a linear combination of unitaries (LCU) [53].
Being a valuable technique used in large-depth protocols
for state-of-the-art Hamiltonian dynamics simulation [54]
and linear systems of equations [55], the value of LCU
approaches was also assessed for near-term devices and
analog simulators where unitary evolution is an available
resource. In this way by measuring wavefunction overlaps
one can perform inverse quantum iteration [56], quantum
Krylov iteration [57], and quantum filter diagonalization
[58] to study low-energy properties of correlated materials
and molecules. This approach was connected to the quan-
tum version of time grid methods that were used for the
Schrodinger equation in the past [59]. From the variational
protocols perspective, the LCU ansatz was also applied to
chemistry [60] and linear algebra problems [61], notably
showing the ability to avoid vanishing gradient regions.

While the requirements for the circuit depth and qubit
overhead necessary to perform the SWAP test [62] increase
overall, the quantum time grid methods provide a way to
reach the global energy minimum when starting from a
suitable initial state. As these approaches rely on the simu-
lation of unitary dynamics for the system, they can be seen
as relatives of the quantum phase estimation algorithm
(QPEA) [63—66]. However, quantum time grid methods
use the classical postprocessing of overlaps and unlike
QPEA do not require implementation of the controlled
unitary dynamics. This makes them suitable for noisy
large-scale quantum (NLSQ) devices, where doubling the
system size is a less pertinent problem than challenges of
the variational search. Time grid methods are particularly
favorable for analog quantum simulators [67,68] where
one has access to the simulation of quantum dynamics
and the overlap measurement [69,70]. Importantly, in this
case variational approaches and Hamiltonian averaging are
not applicable, and quantum time grid approaches offer the
way to study low-energy physics.

In this paper we propose a method to approximate a
Hamiltonian operator with a sparse sum of unitary propa-
gators. This serves as a building block for many LCU pro-
tocols, and is required when measuring the energy of the
system in variational approaches, performing direct Hamil-
tonian iteration [71], implementing Lanczos algorithms,
measuring the density of states [72], etc. We use a distinct
differential decomposition approach, where Hamiltonian
action is simulated with term-by-term quantum evolution,
and the resulting energy expectation is read out as a sum of
normalized overlaps. This strategy favors analog quantum
simulation devices, where energy measurement through

string-based Hamiltonian averaging is typically inaccessi-
ble. Comparing the proposed approach to the variational
quantum eigensolver for the spin-1/2 Heisenberg model at
increasing system sizes, we find that the Hamiltonian oper-
ator approximation combined with quantum filter diago-
nalization offers better performance for lattices with more
than 12 qubits, suggesting that the strategy can be used
for ground-state search in cases where variational methods
suffer from the vanishing gradient problem.

II. METHODOLOGY

Our goal is to represent a Hamiltonian operator H as
a sum of unitary operators, taking as few terms as possi-
ble. Typically, this is done by partitioning the Hamiltonian
into groups of qubit string operators (mutually commut-
ing inside each group), as described in the Hamiltonian
averaging technique used to estimate the energy of the sys-
tem [14,73]. However, certain Hamiltonians, for instance
in quantum chemistry, have unfavorable scaling for the
number of groups (partitions) to be measured, as it grows
like O(N*) (N is a number of qubits) for vanilla Hamil-
tonian averaging [25]. Instead, we use the differential
representation based on the quantum evolution operator
(propagator) denoted as U = exp(—iﬂt), where ¢ is a
parameter that defines the evolution time, H is a Hermitian
time-independent operator, and we use i = 1 throughout
the paper. Acting with the time derivative operator on the
propagator, we can formally write du /dt = (—iﬂ)l:l 0.
The Hamiltonian operator then reads

. N d ~
H =i (W) UD| (1)

=1

defined using its derivative at some fixed point of time #,
and it is convenient to use #p = 0. We approximate the
propagator derivative using the finite difference scheme
with S stencil points. The accuracy of the approximation
scales as O(85~1) [74], where 8¢ is the distance between
neighboring points. The derivative is approximated as a
sum of unitary operators

S—s—1
= 5% > @uUt + nst) + 0G5, (2)

t—1y n=—s

au (b
dt

where s is a shifting parameter that is arbitrary in general,
and we usually choose it to be (S — 1)/2 for symme-
try reasons. To find the expansion coefficients g,(s), we
decompose our function at stencil points 7y + nét (n =
—s,—s+1,...,8S—s54 1) into Taylor series around ¢,
f(to+ndt) = Y70 [(ndtY /j1Nd f (8)/dF |1y, [75]. Form-
ing equations for each stencil point, we keep only the first
S terms in the expansions. Next, we need to compose a lin-
ear combination of these equations such that the coefficient
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before the first derivative is equal to 1, and coefficients
before all the other terms on the right are equal to zero. For
this, we solve the eigenvalue equation M - q = §, where
the matrix M reads

1 1 e 1
—s —s+1 S—s—1
M=| (=92 (=s+1)? S—=s=1> [,
(—s)571 (=s+ 15! S —s5—1)5"1
3)
qQ=(g—s,G—st1,---,9s—s—1) is a vector of coefficients

we want to find, and we set § = (0,1,...,0) T (as the first
derivative term is considered). By inverting the matrix
we find the required coefficients g,(s) and by inserting
Eq. (2) into Eq. (1) we write the S-stencil differential
approximation for the operator H as

H~ ()™ D = [ux(S, 8.  (4)

. S—s—1
1
&t
s

n=—

We refer to this procedure as the Hamiltonian operator
approximation (HOA).

II1. RESULTS

We proceed simulating complex quantum systems and
study their low-energy properties using the proposed
Hamiltonian operator approximation approach. As test sys-
tems we choose several paradigmatic material science
models. These include the Heisenberg model of spin-1/2
particles in the external magnetic field, and the strongly
correlated hydrogen chain as a standard example from
quantum chemistry. For the simulation, we choose the pro-
gramming language Julia and use the Yao.jl package [76]
as a simulation backend, capable of performing quantum
protocols with state-of-the-art efficiency [76—78].

A. Energy estimation

As a useful application for the H dynamical approxima-
tion, we consider the measurement of the expected energy.
Usually, this is done through the procedure of Hamil-
tonian averaging, as commonly used in VQE [14]. We
propose to use a hybrid quantum-classical approach, where
energy is measured as a combination of wavefunction
overlaps. Using HOA [Eq. (4)], we can write the Hamilto-
nian expectation as () ~ (i/81) Y5 ¢, (s) (W | (nd1)),
where energy estimation requires calculating the over-
lap between the measured state |y) and the evolved
state |y (n81)) = e~ 3. Importantly, since we use
the approximated derivative of the evolution operator,
the HOA approach favors short time evolution (see the
discussion below).

Heisenberg chain:
O—O0—0—0—0—0—0—0

(@) 4g0

Hydrogen chain:

[—dt=1 —&t=01—5t=0.01]

FIG. 1. Energy difference between the exact Hamiltonian
expectation and approximate energy AE, shown for different
systems pictorially presented at the top. The full statevector sim-
ulation is performed. (a) Energy difference AE as a function
of the time step at different stencil expansions (S = 3,5,7,9).
We consider the N = 8 Heisenberg model Hamiltonian with
h/J = 0.1, a uniform state for the measurement, and plot energy
in units of the Heisenberg coupling J. (b) Energy difference AE
as a function of §¢ for several stencil expansions. The Hamil-
tonian corresponds to the Hy hydrogen chain (N = 8 qubits) at
d = 1.0 A, measured for the Hartee-Fock state. Energy is plotted
in Hartree units. (c) Energy difference as a function of the stencil
point number S, plotted for 62/ = 1.0,0.1,0.01. The Hamiltonian
is the same as in (a). (d) The energy difference AE shown for dif-
ferent stencil point expansions. The Hamiltonian is the same as
in (b).

First, we consider the Heisenberg Hamiltonian of an V-

qubit chain with open boundaries, H = —J ZJN:_ll ()A(j)A(jH

TG+ 420 ~hE) 5 where § 1y, 2 are
Pauli operators acting at site j. The results of the sim-
ulation are shown in Figs. 1(a) and 1(c) for N = 8 and
h/J = 0.1. We consider a uniform quantum state cre-
ated by the string of Hadamard operators as |¢) = (]0) +
|1))®V /2N/2 and measure the energy expectation by eval-
uating terms using noiseless statevector simulation and
analog unitary evolution. In Fig. 1(a) we plot the difference
between the true expected energy and HOA expectation
AEF as a function of §¢, plotted for an increasing number of
stencil points. We observe that the difference decreases as
O(85~1), until it reaches the numerical precision-impacted
region (see the full discussion on the error scaling in
Appendix A). In Fig. 1(c) we plot the energy difference
for varying S and observe an exponential improvement in
the energy difference, which also requires smaller §¢ (and
a correspondingly smaller circuit depth). We note that this
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monotonous dependence holds for the infinite number of
measurement shots; the finite shots case is discussed later.

The number of required overlaps to estimate remains
small even for increasing S, and the complexity of HOA
is defined by the maximal propagation phase T = Sét.
While an analog simulation of dynamics highly benefits
the proposed approach by construction, we can also use
digital simulation of dynamics. Asymptotically optimal
simulation of quantum dynamics can be achieved with
qubitization [79] or LCU-based approaches [54], at the
expense of increased system size due to the ancillary reg-
ister. A resource-frugal alternative for many near- and
midterm applications can be the Trotterization approach,
which was previously used for quantum time grid meth-
ods [56,58]. Recent advances in Trotterized simulation of
quantum dynamics suggest that scaling can be improved to
O(NT/r 4 NT? /#?*) for r steps [80], and for local Hamilto-
nians, there is strong evidence that circuits can be further
optimized [81,82]. For the Heisenberg model, Trotteriza-
tion can be readily performed by alternating couplings
on even and odd sublattices [83,84], and implemented in
various hardware platforms.

To understand the scaling of HOA with Trotterized
quantum evolution, we study the contribution of errors
coming from the product formula truncation and differen-
tiation (see Appendix B for the full discussion). As HOA
favors a small propagation time to reduce differentiation
error, we observe that the number of required Trotter steps
remains small for increasing system size. For the N = 13
spin-1/2 Heisenberg model, §#J = 0.1, and S = 25, this
allows for a negligible Trotterization error already at r = 5
steps. The gate count scales as 23Nr 4+ 3N and gives 1534
gates. For a hundred-qubit system with similar settings, we
get approximately 10* gates, which may become possible
for improved NLSQ devices.

Next, we proceed to studying quantum chemistry prob-
lems, and consider molecular hydrogen (open) chains H,,
with homogeneous bond distance d between n atoms.
Specifically, we use examples from QunaSys competi-
tion obtained using the STO-3G minimal basis set in the
spinful case [85]. Qubit-encoded Hamiltonians are then
obtained using the Jordan-Wigner transformation from
OpenFermion [86]. The chain of four hydrogen atoms Hy
atd = 1.0 A bond distance is encoded using an eight-qubit
Hamiltonian. We evaluate the energy expectation of the
Hartree-Fock state, providing benchmarking in Figs. 1(b)
and 1(d). We find that the overall results are similar to the
Heisenberg case, suggesting that the internal structure of
the Hamiltonian does not have a major impact on the HOA
accuracy.

B. Measurement and noise

To assess the full performance of the Hamiltonian oper-
ator approximation, we account for other imprecision

sources coming from the measurement (finite number of
shots) and effects of the environment (qubit decay).

The overlap measurement can be performed using sev-
eral methods. The most popular choices correspond to
SWAP and Hadamard tests [62,87]. The SWAP test for the
N-qubit system requires an additional N + 1 qubits, where
one qubit is used for the readout [60]. A destructive ver-
sion of the SWAP test can be performed using 2N qubits
[69,87]. The Hadamard test uses a single ancilla added to
the register, but doubles the circuit depth [58,87]. We also
note that in certain cases direct ancilla-free measurement
is possible, for instance when circuits possess a specific
structure [88,89] or one of the eigenstates is known [56].
Further advances in the area include overlap estimation
through randomized measurements [90], atom interferom-
etry [70], or recent projected kernel techniques [91] and
shadow tomography [92]. The latter was proven to be
optimal for predicting fidelities and entanglement entropy.
We consider the improvement in the overlap measure-
ment as an important direction for advancing Hamiltonian
approximation techniques.

We simulate the full measurement scheme using the
SWAP test to estimate the overlap between the initial
state |) and the propagated state. Following the steps
in Ref. [60] we prepare a superposition (1/+/2)(|v) |0) +
i [¥) 1)) for the system register and an ancilla. We
apply the Hadamard gate to the ancilla (last qubit),
and measure the expectation for Zy. |, getting (Zy.1) =

—Im(1ﬁ|Z/A{ |Yr). The results are shown in Fig. 2 for the

Heisenberg chain: [Q—Q—Q]—Q—Q—Q—Q—Q

(a) (b) « without noise o With noise
107 IN=3 1
s $
o 107 { !
u o
-3
10°] %44 Py
107 J
10> 10° 10" 10° 10 10%° 10”8
Nmeas ot(J” 1)
FIG. 2. Influence of the number of measurements on the

energy estimate via the SWAP test. (a) Energy difference AE
(in units of J) as a function of the number of measurements
for three- and eight-qubit Heisenberg models (bottom and top
lines, respectively). We set parameters to 2/J = 0.1, S = 5, and
8tJ = 0.5. To estimate the standard deviation, each simulation is
repeated 150 times. (b) Mean energy difference as a function of
8tJ for the Heisenberg model estimated by taking Npeas = 10°
measurements. Blue dots correspond to the noiseless simulation,
with error bars showing the standard deviation. Magenta dots and
error bars are for the noisy simulation performed with the wave-
function Monte Carlo approach for y /J = 0.1. Other parameters
are the same as in (a). To estimate the standard deviation, each
simulation is repeated 50 times.
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case of the Heisenberg model with #/J = 0.1, § = 5, and
8tJ = 0.5. We plot the difference between the true energy

of the uniform state in the system with Hamiltonian H and
the energy of the uniform state calculated with HOA, AE,
shown as a function of the number of measurement shots
Npeas for which (ZN+1) is averaged. We observe that the

upper bound of the error decreases approximately as Ninedd
[Fig. 2(a)]. Fixing Nmeas = 10° we calculate the depen-
dence of the error on the time step &z. In the absence of
noise [blue dots in Fig. 2(b)] the results are in line with the
variance scaling o ¢/Npeas (¢ being a system-dependent
constant) found in Ref. [60]. For relatively large §¢, the
error behaves similarly to the ideal statevector simulator;
the sampling noise increases the error at §¢/ < 0.3, mean-
ing that optimal &7 depends on Npe,s. This suggests that
resolving a small difference between two states (initial and
propagated) becomes difficult at very small 6z.

Next, we simulate the effect of noise using the wave-
function Monte Carlo approach [93]. For this, we run
multiple trajectories of unitary evolution, subject to proba-
bilistic action of jump operators /Y ()A(j + if’j) /2 that can
de-excite each qubit with decay rate y. We simulate the
Heisenberg model example and plot the energy deviation
as a function of 8¢ [Fig. 2(b), magenta bars]. The effect
of decay is pronounced at large times 8/ > 1, where
a significant number of jumps leads to erroneous over-
lap estimates at impacted trajectories (we consider large
decay rate y/J = 0.1, and simulate 10° trajectories). As
8t and the maximal propagation time 7 decrease, so does
the jump probability, leading to improved energy preci-
sion AE. However, for small §#/ < 0.1, we find that even
a small number of jumps increases the estimate impreci-
sion, given that each collapsed trajectory leading to the
corrupted overlap estimate enters with 8¢~! weight. We
observe that optimal 8t ~ 0.2/ ! lies close to the Npcas-
defined case, depending on the decay rate y, and we note
that a small time step region is the overall preferred choice
for HOA.

C. Direct Hamiltonian iteration

We generalize our consideration to approximate higher
powers of the Hamiltonian operator HF. This can be
defined through the kth-order derivative of the propaga-
tor, U Jdtt = (—i’l:()kZ:{ (1), and following the numerical
differentiation at S stencil points we express it as

S—s—1

: 3 qP e ™ L oGS . (5)

e
= (—i81)k

The first nontrivial and useful example corresponds to
the approximation of the H> operator, allowing for the
straightforward measurement of the variance. This is often
required for variational schemes, as together with the

energy it may help to detect the convergence of the
algorithm [94]. Hamiltonian averaging through the Pauli
string measurement has a daunting scaling in this case.
We note that, to get the same order of accuracy as for
the expansion of H, we just need to increase the number
of stencil points by one. This holds when going beyond
k = 2, where each power increment requires at least one
additional stencil point, and we generally prefer using an
odd number of stencil points for the interval to be symmet-
ric. However, the scaling becomes unfavorable for small
8t, with the error growing as O(8£5!), thus shifting the
optimal &7 region.

We proceed to using HOA as part of the direct iteration
algorithm to prepare the dominant eigenstate of the Hamil-
tonian matrix. We start from an initial state |\Wy) having a
nonvanishing overlap with the ground state. We simulate
the repeated application of H such that at iteration step k

we get |Wy) = H |W_1) /I |¥5_1) ||, where the denomi-
nator accounts for the state normalization. At sufficiently
large k> K we get |Wx) =K W) /| HK W) || ~
|ground state), and the corresponding expected energy

(Wo| K+ W)

Eground ~ (V| 7:[ |[Wk) = oK
(Wol H* W)

(6)

approaches the ground-state energy. We apply the
described procedure to prepare a low-energy state for the
Heisenberg model at the critical point #/J = 1 (Fig. 3).
Starting from the product state corresponding to a mean-
field solution, we lower the energy by one order of magni-
tude using just four iterations. We also observe that, when
h/J > 1, the convergence further improves. At the same
time, we note that direct iteration is typically an unsta-
ble procedure with critical dependence on the condition
number, and works best for diagonally dominant matrices.

Heisenberg chain: O—0O—0O—0—0—0

—HOA
---ldeal

FIG. 3. Difference between the true ground-state energy and
the energy from the direct iteration method, where the energy
measurement is performed for the ideal and approximated Hamil-
tonians (lines overlayed). We consider a six-qubit Heisenberg
Hamiltonian at the critical point #/J = 1, and HOA parameters
st=10"17J71, 8 =5.
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D. Quantum filter diagonalization with Hamiltonian
operator approximation

Another application where our algorithm provides sig-
nificant improvement is the quantum filter diagonalization
(QFD) proposed by Parrish and McMahon [58]. The goal
of the QFD procedure is to find the low-energy spec-
trum of the system. Importantly, the procedure allows
estimating both the ground-state energy and excited state
energies using the same resources (overlap measurements),
thus being an efficient alternative to constrained vari-
ational methods [46,87,95]. In QFD one uses the trial
wavefunction as a sum of 2k;,,x + 1 propagated states

kmax
W) =" > e T pyy), ()
J k=—kmax

where {|y;)} is a set of initial states and « is a spec-
tral width parameter, which is generally greater than
the difference between the maximal and minimal eigen-
values |Emax — Emin|. Next, the variational Rayleigh-Ritz
approach is applied to find coefficients c; x such that the
energy functional £ = (V| H W) /(W¥|W) is minimized.
This corresponds to solving the generalized eigenvalue
problem

kmax
SN Gt
j k:_kmax
kmax o~ a
=EY > culyy| ™ e MM [y (8)
j k=—kmax

where overlaps are calculated using a quantum circuit.
Substituting H with the differential approximation (4)
we avoid the Hamiltonian averaging procedure performed
through Pauli string measurements, and the only difference
for overlaps in the left- and right-hand sides is the shift in
evolution time by (k — k') /k. As setting the time step for
QFD requires knowledge of the spectral width «, in the fol-
lowing we use the Gershgorin circle theorem to provide its
estimate in a scalable way [58].

The results of QFD using the Hamiltonian operator
approximation are shown in Fig. 4. First, we consider the
Hy hydrogen chain (N = 8 qubits) for different bond dis-
tances d = 0.5,1.0,2.0 A and benchmark the difference
between the true ground state and the variational state
as a function of kp,x [Fig. 4(a)]. We observe fast con-
vergence to the true ground state, where starting from
the Hartree-Fock initial state we can reach high precision
(less than 10> Ha) with only a few components in the
ansatz. We find that QFD results with the ideal Hamilto-
nian (dashed curves) and HOA (solid curves) only deviate
at larger kmax, and strong correlations at larger bond dis-
tance lead to a slower convergence rate. As kp,y increases,

Hydrogen chain: e—e—e¢——o

(@) 100 (b) 100
w© 107° \ © //,/./'/‘
Lz L 105
'-'<-]| 10-10 ~y— 'J<-]| /
10-15 R R [
12 3 456 7 102 10" 100

Kimax ot (Ha‘1 )

—/=- d=0.5A, (approx./exact)
—/—- d=1.0A, (approx./exact)
/ d=2.0A, (approx./exact)

‘—S=3 —S=5 S=7‘

Fermi-Hubbard
lattice:

Hydrogen chain:
—o—o—o—o—¢

(c) (d)

107" 10705

-2

—~ 10 -1.0
% _3 § 10
~ 10
Wy '-'<~11 1015

107

1075 10720

o 1 2 3 4 5 5 10 15 20
kmax kmax
FIG. 4. (a) Energy difference between the lowest state from

the quantum filter diagonalization and true ground state,
shown as a function of ansatz component number kp,x. Solid
curves correspond to HOA, and dashed curves denote the
ideal Hamiltonian expectation. We consider molecular hydro-
gen Hy at 4 =0.5,1.0,2.0 A, and use Gershgorin estimates
k =12.55,5.93,4.19 Ha, with S=5, §t=0.01 Ha"'. (b)
Dependence of the HOA error on §¢ for the Hy string at d =
1.0 A, kpax = 3, S = 5, and Gershgorin estimate k = 5.93 Ha.
(c) Energy difference between the QFD+HOA approach and true
ground state as a function of kn,x. We consider the Hg molecule
with d = 1.0 A, § =5, and Gershgorin estimate x = 12.86 Ha.
(d) Energy difference between the QFD+HOA approach and
true ground state for the four-site (eight-qubit) two-dimensional
Fermi-Hubbard model with J/U = 0.1, u/U = 0.05, h/U =
0.001, «/U = 4.60, uniform initial state, S =5 stencils, and
8tU =0.01.

the expressibility of the ansatz improves, both due to a
larger number of states and a longer propagation time.
However, at large ky.x the solution of the generalized
eigenvalue problem may be challenging due to instabili-
ties, and care must be taken to choose it in the optimal way.
In Fig. 4(b) we confirm that, for fixed QFD parameters, the
quality of HOA improves with growing S and decreasing
5t. Going to the larger-scale example of the N = 12-qubit
He hydrogen chain (d = 1.0 A), we again see exponential
convergence to the ground-state energy as kp,y increases,
reaching chemical precision AE = 10~ Ha already with
five propagated states [Fig. 4(c)].

Finally, we consider the challenging example of a
spinful fermion lattice described by the Fermi-Hubbard
model. This is described by the Hamiltonian that includes
on-site Coulomb repulsion U between opposite spins,
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nearest-neighbor hopping J, chemical potential u (see the
definitions and description in the OpenFermion package
[86]). We consider a minimal two-dimensional lattice with
four sites, and use the Jordan-Wigner transformation to
write the N = 8 Hamiltonian, where we additionally break
the symmetry between up and down spin components with
a weak effective magnetic field 4. Choosing our initial state
to be the uniform state, and staying at the half-filling, we
observe that the QFD+HOA approach can gradually bring
the system towards the low-energy state [Fig. 4(d)]. Impor-
tantly, HOA performs so well that no significant difference
between the approximation and the ideal Hamiltonian can
be spotted, as the two curves overlay. Given the huge
progress in analog quantum simulation of Fermi-Hubbard
lattices with cold atoms [68] and the possibility to per-
form interferometric measurements [69], this suggests a
promising route towards studying exotic fermion phases.

We note that the problem of preparing the exact ground
state of the many-body Hamiltonian is QMA complete
[96]. This is defined by the overlap between the initial state
and the ground state, which may be exponentially small.
However, the same concern holds for quantum phase esti-
mation algorithms. Choosing physically motivated initial
states that allow for efficient ground-state preparation is an
important goal for future studies in the field.

IV. DISCUSSION

In this section we discuss the prospects of using
the Hamiltonian operator approximation with near- and
midterm devices, and compare them to state-of-the-art
techniques in the field.

A. VQE comparison

First, we compare the QFD+HEA approach to the vari-
ational quantum eigensolver, being the standard NISQ
tool. For this task, we choose the problem of the ground-
state energy search for the Heisenberg ring at increasing
system size. Specifically, we consider an additional mag-
netic field, such that the system is at the critical point
(h/J = 1) with highly entangled eigenstates. For the VQE,
we use the state-of-the-art optimization tool set relying on
analytic gradients (automatic differentiation) [97,98] and
adaptive gradient descent [99]. It is known that automatic
differentiation helps to mitigate the noise as compared to
numerical differentiation techniques for updating the vari-
ational parameters [37]. Specifically, we used the Adam
optimizer [99], which is widely used in machine learn-
ing and enables the efficient search for optimal variational
angles.

We also note that unlike chemistry problems that have
a possibility to use the unitary coupled cluster ansatz [15],
material science problems typically rely on the hardware
efficient strategies, as employed for the Heisenberg model
in Refs. [13,100]. This corresponds to the ansatz choice

as layers of generic rotations (concatenated parameterized
rotations RZ—RX—RZ) followed by the network of con-
trolled NOT (CNOT) gates. Another possibility is to employ
alternating operator ansatz, and specifically the Hamil-
tonian variational ansatz (HVA) with individual tunable
blocks based on separate Hamiltonian terms [101]. This
can be seen as a physically motivated ansatz for spin
systems.

The results for the statevector VQE simulation are
shown in Figs. 5(a) and 5(b). We consider Heisenberg rings
with the number of spins ranging from 6 to 14, and use
the hardware efficient ansatz [13,100]. We optimize vari-
ational angles for a maximum of 3000 iterations, setting
Adam’s learning rate to the highest-performing value of
0.001. We observe that, for smaller system sizes (N =
6,8), VQE can prepare the state being close to the true
ground state, also staying within a relatively shallow depth
[Fig. 5(a)], and a correspondingly small budget [Fig. 5(b)].
As N grows, convergence to the ground state requires an
ever increasing depth, and the corresponding gate count

Heisenberg ring:
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FIG. 5. (a) Ground energy obtained from the VQE approach,

shown as a function of the variational circuit depth. We con-
sider the spin-1/2 Heisenberg chain with 6, 8, 10, 12, and 14
qubits (ring geometry). Results are shown for 3000 iterations of
the Adam optimizer, with analytical derivatives and a learning
rate of 0.001. (b) Total number of gates in a single variational
circuit shown for increasing circuit depth. (c),(d) Ground-state
energy of the Heisenberg ring estimated by the QFD+HOA
method. Systems of 12 and 14 qubits are considered as a func-
tion of dynamical basis set size kma.x. We use a second-order
Trotterization with » = 7 Trotter steps.
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for reaching an approximate ground state at N = 14 sur-
passes 6000 gates (depth of approximately 100). While
we do not yet observe the zero gradients regime, the
ground-state preparation requires a largely overparameter-
ized circuit. Previously, VQE with a depth of 73 VQE
was simulated for the same Heisenberg model at criticality
for N = 7 qubits [100]. We perform additional tests with
HVA (see the details in Appendix C), and observe similar
convergence.

Now, let us check the cost of the quantum time grid
approach, corresponding to the HOA+VQE approach for
the same system. We use the Trotterization approach
detailed in Appendix B. We find that, for small systems,
the gate count from Trotterization dominates the budget of
the QFD+HOA approach, making it more costly than VQE
for N smaller than ten qubits. However, at N = 12 it con-
verges to the ground state with just nine propagated states
and below 2000 gates. For N = 14, the convergence holds,
needing 2250 gates for the evolution. The weak scaling
suggests that our approach has a larger constant as a start-
ing budget, but outperforms VQE as the system grows to
relevant sizes. We also note that our approach does not rely
on optimization, and naturally avoids the barren plateaus
problem expected as the system scales to a size of approx-
imately 20 qubits [21]. These factors make the proposed
approach suitable for NLSQ devices, while the point where
it becomes beneficial depends on the task and hardware
properties.

Comparing the measurement cost we see that, for
increased system sizes, VQE needs over 3000 iterations
for convergence. Taking N = 14 as an example, for each
iteration, the gradient measurement requires the number of
independent runs to be equal to six times the number of
variational parameters (about 6 x 2000), times the num-
ber of measurement shots (needs to be greater than 103 for
Adam, as shown in Ref. [37]). This leads to a measurement
budget of 3 x 10'? shots. Our approach requires in gen-
eral Noverlaps = (4kmax + 1)S overlaps, being the number of
time points of the QFD method multiplied by the number
of points in the HOA method. This number decreases fur-
ther if we adjust the time step of the HOA method to be
equal to the time step in the QFD method. In such a case
many overlaps become degenerate, and the procedure only
needs the calculation of (4kmax + 1) + 4 unique overlaps.
For N = 14, we calculate 21 unique overlaps, meaning
that, for the same measurement budget, 10'! shots can be
used to reach extra-high precision on each run. Conducting
additional studies to compare the Hamiltonian averaging
with HOA, we note a similar o< 1/Npye,s drop in the vari-
ance for observables and overlaps, with the latter requiring
a constant overhead. The point at which the total measure-
ment budget for HOA becomes favorable then depends on
the number of variational parameters and the number of
VQE iterations, ultimately defined by the efficiency of the
variational workflow.

B. QPEA comparison

Next, we compare the proposed approach to quantum
phase estimation following Ref. [16]. The goal of QPEA is
to determine eigenvalues of a unitary operator U, when act-
ing on the corresponding eigenstate. While the full QPEA
circuit requires an extended ancillary register and quan-
tum Fourier transform [65], the closest QPEA variation
to quantum time grid methods is represented by Kitaev’s
phase estimation [63,66]. This requires only a single ancil-
lary qubit and uses the adaptive protocol. However, to
estimate the eigenvalue, it uses the controlled unitary oper-
ation for the evolution operator, unlike separate overlap
measurements. While in general the implementation of
controlled unitaries is complex [102], for the simulation
of dynamics, we can rewrite it as a simulation of a mod-
ified Hamiltonian with the reduced locality. Taking the
Heisenberg model as an example, this requires simulation
of effective three-body terms involving the ancilla cou-
pled to other spins. Using the Trotterized evolution, we
can decompose each Trotter step into single-qubit rota-
tions, Hadamards, phase gates, and CNOT operations. For
QPEA, this translates to controlled two-qubit gates and
Toffoli gates, adding a significant (about ten) constant
overhead, which increases further if restricted connectiv-
ity is considered. Also, QPEA is not applicable to ana-
log quantum simulators. The relation between approaches
thus depends on the platform and available quantum
resources.

C. Scaling

Finally, we ask the question: can the Hamiltonian oper-
ator approximation become a viable strategy for the task
of energy estimation in the near- and midterm future
where larger systems are available but remain noisy?
The issue of performing efficient energy measurement has
recently gained attention [25,38,41—44], and the advances
are nicely summarized in Table I of Ref. [25]. In par-
ticular, considering vanilla Hamiltonian averaging with
commuting Pauli heuristics one gets a simple measure-
ment circuit (constant depth of Pauli rotations), but pays
for it with O(N*) scaling for the number of partitions [14]
(which we call the depth-frugal method). On the other
hand, the methods based on the basis rotation grouping
have much better scaling for the number of partitions
being O(N), while requiring measurement circuits with
a gate count of N?/4 [42] (we say they correspond to
partition-frugal methods). Another related partition-frugal
technique corresponds to the unitary partitioning approach
proposed in Ref. [39]. The Hamiltonian operator approxi-
mation thus takes the ultimate position in partition-frugal
methods, where the number of independent terms (over-
laps) to measure is minimized, at the expense of increased
depth if a digital Hamiltonian simulation is used. The
practical utility of HOA then depends on the maximal
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propagation time 7 and the number of stencil points S
being used. Numerically, we find that this number does not
depend on the system size or has weak, at most log(V),
dependence. The depth of the corresponding measurement
circuit increases with T translating to gate count O(N2T)
considering Trotterization [82]. However, the propagation
time 7 = S§¢ in HOA favors small values, and in many
cases few Trotter steps suffice to reduce errors coming
from the product formula (Appendix B). Searching for
examples where the Hamiltonian operator approximation
offers the advantage is an important task for the future
research.

V. CONCLUSIONS

We have proposed the Hamiltonian operator approxima-
tion technique that allows representing a Hamiltonian H
as a linear combination of unitary operators. Using numer-
ical differentiation rules, we rewrite Hasa sparse sum of
quantum propagators, and benchmark it for relevant prob-
lems of energy estimation and ground-state preparation.
We find that the expected energy of the quantum system
can be measured with high precision once we have access
to the simulation of its dynamics, as, for instance, avail-
able in analog and digital quantum simulators. This holds
in the presence of imperfections, including shot noise and
decoherence. We also show how the Hamiltonian operator
approximation incorporates naturally in quantum Krylov-
type approaches, and helps preparing the ground state of
the 12-qubit Hg hydrogen chain using the quantum filter
diagonalization. Comparing the proposed approach to the
variational quantum eigensolver and Hamiltonian averag-
ing, we see that it can become beneficial both in terms
of the gatecount and total number of shots for increasing
system size. However, the cross-over point depends on the
task and quantum platform.
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APPENDIX A: APPROXIMATION ERRORS

The Hamiltonian operator approximation relies on dif-
ferentiation of the evolution operator, and introduces errors

that depend on the finite differencing procedure. Our goal is
to bound an approximation error as ||7:[ — [A{diff‘(S, 8N < e,
where € is a predefined constant. This will be achieved for
a minimal product of the step size and the total number
of points in the differentiation grid, S§¢. Additionally, we
note that a small S expansion is generally favored due to its
simplicity, and larger 8¢ helps at the stage where physical
implementation errors are introduced. The approximation
error is a function of S, §¢, and the Hamiltonian struc-
ture. Using the expansion procedure discussed before, for
the infinite-precision arithmetic case, the truncation error
reads

as -
ﬁe_lﬂi , (Al)

|H — Ha(S, 80)|| < Cs(80)° max

where Cs is a coefficient depending on the expansion.
This suggests that the approximation improves as S
increases, and small §¢ is beneficial. Similarly, we can
write the bound for an expectation value of the Hamilto-
nian operator, and introduce a required expected energy
precision as (Y| H [y) — (Y| Hair(S, 80) [Y) < €energy- We
further note that the scaling for HOA is in fact more
involved as we approach the limit §¢# — 0 [74] and
finite precision arithmetic is used. In this case the
round-off error becomes important, and difference esti-

mation is limited by minimal tolerance €. .../IIHI|,

typically of the order of 107'®. For instance, in the
case of the quadratic approximation of the derivative
the total scaling reads as ||7:£ —ﬁdig(l,&)n < Eappr +
Enum, Where &yppr = %(&)2 max; ||dS(CXp[—it7:(])/dlS|| is
the approximation error as in Eq. (Al), and ey, =
(€*/58t) max, || exp[—iﬂ:(] || comes from the finite precision.
We find that at small 8¢ the finite-precision rounding error
&num Starts to dominate, and there exists §¢* such that the
sum of the two contributions is minimized. However, we
note that this limit is physically infeasible when the full
measurement procedure is considered (see the discussion
in the main text).

APPENDIX B: TROTTERIZATION ERRORS

We aim to understand the scaling of the Hamiltonian
operator approximation for systems with a Trotterized sim-
ulation of dynamics at increasing system size. For this, we
compare errors coming from the differential representation
and Trotterization.

Specifically, we choose to simulate quantum dynamics
digitally using the second-order Trotterization approach
[80], and taking the Heisenberg Hamiltonian as an
example. The Hamiltonian evolution for time 7 can be
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simulated as

1 1
efﬂftr ~ (1_[ e(th/2r))A{/)A(j+1 l_[ e(iJr/Zr)j’/- i//’+1
j=N Jj=N

1 N
% l—[ e(ur/zr)z,éjﬂ l—[ e(ihr/r)Z,
=N j=1

N N
% l—[e(i.lr/Zr)Zij_H He(ijt/Zr)}f/ Y

Jj=1 Jj=1
N o r
iJt/2rX; X;
x [ m),
Jj=1

where equality is valid for Jt < 1 and » > 1. For the
chains with the periodic boundary, we set indices as
N + 1 = 1. To simulate the circuit, it is convenient to use
Mglmer-Serensen gates XX ;i (@) = exp(—i<pf(jf(j+1)
[104—106] acting on qubits j and (j + 1) for phase ¢.
Moglmer-Serensen gates are native to the trapped ions
platform, and can be implemented efficiently beyond
nearest-neighbor connectivity. To simulate Heisenberg
terms YY;;,i, we then conjugate XX, ;,; with the
pairs of phase gates S acting at qubits j Land G+
1). Namely, YY; ; 11(9) = ;5 1XX; 11(9)S] 5], where
S = diag(1,7). Similarly, we get ZZ;;,, by conjugat-
ing XX; ;1 with Hadamard gates H as ZZ;;(p) =
HjHj 1\ XX j 1 (@) HjH; 1.

In Fig. 6 we show how the error caused by Trotteriza-
tion [Fig. 6(a)] compares to the overall error of the HOA
[Fig. 6(b)]. We see that, as the propagation times for HOA
itself are relatively small, only a small number of Trotter
steps are needed for the error caused by Trotterization to
become much less than the HOA error. For five- and eight-
qubit Heisenberg rings, the error caused by Trotterization
is small already at » = 1. For a larger system of 13 qubits

(BD)

Heisenbergring: O—0—0—0~~-0—0—0
(@) [ —N=5 —N=8 N=13
a
10710 (b), 02
S0 =1
W 420 Wwqod
<10 <108
10_2'5 :]]8_8 \ﬁ\
2 4 6 8 10 2 4 6 8 10
r r
FIG. 6. (a) Difference between the energy obtained with the

Trotterized HOA and exact energy of a state in the Heisenberg
ring of N =5,8,13 qubits. Parameters of the HOA approxi-
mation are S = 25, ¢ = 0.1. (b) Difference between the energy
obtained with the Trotterized HOA and the energy from HOA
with ideal evolution. The parameters are the same as in (a).

with the same HOA parameters, it is enough to have five
Trotter steps for the Trotter error to become negligible.
In the simulation for Fig. 6 we use values 62/ = 0.1 and
S = 25, but note that typically these can be smaller, leading
to an even more pronounced decrease of the Trotterization
error.

When considering the energy measurement as a part of
the ground-state preparation process, we see that the max-
imal evolution time increases. In the QFD+HOA approach
this is posed by larger kyax as the system grows. In this
case we expect increasing importance of the Trotterization
error that translates to larger gatecounts.

APPENDIX C: VQE WITH HAMILTONIAN
VARIATIONAL ANSATZ

In the main text for the VQE comparison we use
the hardware-efficient ansatz based on layers of arbi-
trary single-qubit rotations and CNOT gates. Additionally,
we check the performance of the Hamiltonian variational
ansatz for improving VQE convergence. The HVA cir-
cuit includes layers of Hamiltonian terms corresponding to
)A(j)A(jH, f/J %,-H, ZijH, and ZJ evolution. Additional i%X
and R rotations are included to improve expressivity. We
used stochastic gradient descent in the Adam form with a
learning rate of 0.001 and 3000 iterations to achieve con-
vergence. The results are shown in Fig. 7. We observe the
initial decrease in the variational state energy as increas-
ing depth (d ~ N), but note that circuits are not expressive
enough to prepare the ground state with high fidelity. After
a depth of twenty layers, VQE reaches the barren plateaus,
and halts the efficient search. With a further increase in
the depth the overparametrization of the ansatz improves
the search, reaching a high-quality solution at large depth.
We note that small gradients in this regime require an
increased number of shots to navigate the derivative-based
optimization.

101,

100

S,

" 10
1072

10—3,

FIG. 7. Energy difference of the final VQE run and the true
ground state (log scale), shown as a function of the HVA depth.
The problem is the same as in Fig. 5, N = 12.
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