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Abstract This work presents a novel characterization of
complexity for gravitationally bound astrophysical config-
urations arising from two factors: (i) inhomogeneity and (ii)
anisotropy in the complex arrangement of stellar structures.
For this purpose, we employ the non-metricity-motivated
gravitational model with a linear choice of coincident gauge
f (Q) gravity, given by f (Q) = β0Q+ β1, where β0 and β1

are model parameters. Our analysis begins by postulating that
a fluid distribution exhibiting density uniformity and pressure
isotropy is characterized by a minimal (or zero) gravitational
complexity factor. The novelty of this study lies in its ability
to study the effect of non-metricity on the intricate mecha-
nism of dense-matter static stars while also considering the
effectiveness of the complexity factor in determining fluctua-
tions in the Tolman mass for both complex and non-complex
compact structures within a non-metricity framework. The
variation in the Tolman gravitational mass is caused by a
suggested formulation of anisotropic pressure and density
non-uniformity. It is observed that in Einstein’s gravitational
model, a stellar system that features both can exhibit zero
complexity (YT F = 0) if their contributions cancel out. On
the other hand, the linear f (Q) model compels the grav-
itational configuration to maintain YT F �= 0 due to non-
metricity contributions, even when the fluid exhibits density
uniformity and pressure anisotropy. Furthermore, we discuss
the construction of anisotropic self-gravitating polytropes by
coupling the YT F = 0 condition with a polytropic EoS. This
underscores the importance of the zero-complexity criterion
in modeling astrophysical compact systems.
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1 Introduction

Self-gravitating stars are fundamental to astrophysics, serv-
ing as the gravitational cornerstones of galaxies and the uni-
verse. Investigating the properties of self-gravitating com-
pact stars is a highly complex and engaging field that blends
nuclear physics, astronomy, and cosmology [1,2]. Under-
standing the behavior of dense-matter stellar astrophysical
entities like neutron stars and black holes is essential for
uncovering the mysteries of the cosmos [3]. Self-gravitating
spherically symmetric stars provide an essential framework
for modeling compact objects. By analyzing hydrostatic
equilibrium, pressure anisotropy, and higher-order gravita-
tional effects, we gain valuable insights into stellar stability,
mass distribution, and exotic astrophysical structures. The
equilibrium and dynamic behaviors of sense-matter forma-
tions governed by their gravity and possessing spherical sym-
metry are modeled by self-gravitating spherically symmetric
star solutions, derived from Einstein’s model or alternative
gravity models. Self-gravitating astrophysical systems are
characterized by the fact that their structural and dynamic
behavior is primarily governed by the gravitational attraction
between the matter that makes up the system [4–8]. Galax-
ies, globular clusters, compact stars like white dwarfs and
neutron stars, and hypothetical stellar systems like quarks or
strange stars are all examples of these dense configurations
[9]. These systems are fundamentally complex due to the
nonlinear coupling between internal matter characteristics
and gravitational effects, the interaction of different physi-
cal forces, and the role that geometric and physical variables
play in their equilibrium and evolution [2,10].

Multiple independent research efforts, such as those con-
ducted by the Supernova Search Team, the Supernova Cos-
mology Project, WMAP, and SDSS, collectively led to the
profound realization of cosmic accelerated growth [11,12].
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Explanations for the accelerating cosmic expansion center
around two main ideas: the influence of cosmic dark energy,
a force characterized by its strong anti-gravitational pres-
sure, or modifications to general relativity (GR) incorpo-
rating higher-order curvature effects, which affect cosmic
geometry. In GR, dark energy is modeled through a negative
equation of state (EoS) parameter [13]. On the other hand,
extensions of Einstein’s model (alternative models of grav-
ity) go beyond this standard framework by putting forth a sin-
gle mechanism that might account for both the current dark
energy-dominated era and the early inflationary epoch, min-
imizing the need for independent solutions for both of these
periods of cosmological expansion [14,15]. Modified models
of gravity are a challenging field of study on account of the
intricate structure of the gravitational models and the com-
plexity of differentiating them from cosmic dark energy phe-
nomena. These models require precise parametric choices to
be viable, as they must comply with various observational
evidence. Furthermore, the capabilities of modern technol-
ogy are being tested to maintain internal consistency and
validate theoretical predictions.

The evolution and application of mathematical simula-
tions in compact stellar configurations have increased dra-
matically in recent years. These models serve various pur-
poses, such as predicting the behavior of stellar formations
like neutron stars and black holes, as well as simulating grav-
itational interactions in astronomical events. Understanding
the basic principles of gravity has been a longstanding and
key aim of theoretical physics. Despite general relativity
being a highly successful theory for understanding gravita-
tional interactions, there are compelling reasons for the need
to extend it. Researchers are actively investigating a spec-
trum of altered gravitational models, which include those
introducing new dynamical scalar and vector fields [16], the-
ories based on massive gravitons [17], string theory-inspired
brane-world models [18], and geometric frameworks that
move beyond Riemannian geometry. This divergence from
Riemannian geometry leads to theories such as those based
on Einstein–Cartan geometry [19], different types of Pala-
tini or metric-affine theories [20], such as f (R) models [21],
and theories where the evolution is solely driven by torsion
and non-metricity effects [22,23]. This approach emphasizes
that choosing torsion or non-metricity as the underlying geo-
metric framework leads to two distinct, yet observationally
equivalent, formulations of gravity namely, the teleparallel
equivalent of GR [24] and symmetric teleparallel gravity
[25]. Despite having different fundamental ideas, both repre-
sentations produce dynamical predictions that are identical
to those of GR.

Recently, physicists and cosmologists have shown great
interest in f (Q) gravity as an intriguing alternative to Ein-
stein’s GR [26,27]. It offers a potential solution to persis-
tent theoretical challenges in relativistic astrophysics. As a

modification of gravity, f (Q) gravity extends the gravita-
tional action to include a dependence on a non-metric field,
alongside the metric. The relativistic action for f (Q) grav-
ity is described by an analytic function f (Q) of the non-
metric field, allowing anomalies relative to the generic rela-
tivistic gravity phenomena predicted by GR and introducing
an extended set of independent parameters [28,29]. These
modifications provide fresh perspectives for exploring astro-
physical and cosmic behavior. One of the key features of
the f (Q) theory is that it allows gravity to be separated
from inertial effects, unlike GR. A significant strength of
( f (Q)) gravity is that, unlike f (R) gravity, it does not exhibit
the pathologies associated with fourth-order equations of
motion. This is because it leads to second-order equations
of motion [30]. Therefore, the development of f (Q) the-
ory offers a fresh foundation for various modified models of
gravity. The f (Q) theory has seen a surge in applied research,
with studies covering diverse topics such as cosmic science
[31–33], singularity-free stellar solutions [26], bounce cos-
mologies [34], spherically symmetric and static black hole
metrics [35], wormhole spacetime models [36–38], energy
constraints [39], and the Newtonian limit [40].

To simplify the description of matter configurations in
modeling relativistic compact structures, the assumption of
isotropic pressure, which implies equal principal stresses, is
commonly employed. This assumption simplifies the equa-
tions governing the stellar structure, making isotropic models
easier to solve and more straightforward to interpret. In con-
trast, anisotropic models allow the pressure to vary in direc-
tion, distinguishing between radial and tangential compo-
nents. In the extremely dense interiors of compact stars, such
as neutron stars, the pressures in different directions are not
necessarily equal because of the influence of strong nuclear
and gravitational forces. This anisotropy significantly affects
the equilibrium and stability of compact stars, enabling more
accurate predictions of their mass, radius, and other physical
characteristics, especially in light of recent observations of
highly massive neutron stars. Both isotropic and anisotropic
models contribute to our understanding of stellar physics.
Although isotropic models remain valuable for studying less
extreme stars and serve as foundational tools in astrophysics,
anisotropic models are essential for accurately describing
compact objects under extreme conditions. They provide
refined insight into the interior properties of such stars, the
upper limits of their mass, and the physical effects related
to magnetic fields. In certain cases, anisotropy is crucial for
avoiding central singularities or achieving equilibrium con-
figurations that are stable against radial perturbations, fea-
tures that are not achievable within purely isotropic frame-
works.

Over the past few decades, theoretical research has shown
that local anisotropies can emerge in certain density ranges
due to various physical processes, even though observa-

123



Eur. Phys. J. C           (2025) 85:583 Page 3 of 12   583 

tional data often support the adoption of an isotropic pressure
model, which is a hallmark Pascalian property of fluids. In
general, it is well known that the assumption of isotropic
pressure represents a basic assumption, while its anisotropic
nature appears to be highly critical in characterizing the fluid
configuration under various conditions. This is very helpful
in the analysis of dense matter relativistic objects, resulting
in several intriguing astrophysical scenarios. Furthermore,
it was recently demonstrated by Herrera [41] that the pres-
ence of certain thermodynamic variables, including dissipa-
tive flux components, matter density non-uniformity, and the
development of a shearing nature of fluid makes the isotropic
pressure condition unstable. As a result, pressure isotropy
transitions into anisotropy due to these factors. This sug-
gests that a fluid system, initially having pressure isotropy
during stellar formation will likely develop anisotropy as it
evolves under expected conditions. Thus, the gravitational
anisotropy in the hydrostatic equilibrium equation essentially
refers to the disparity between the transverse and radial pres-
sures (P⊥ − Pr ). This disparity in stellar fluids is caused
by several physical phenomena. It was theoretically demon-
strated by Ruderman [42] that the nuclear matter within
dense-matter fluids featuring densities > 1015 g/cm3, rel-
ativistic interactions can cause anisotropic effects. Factors
responsible for generating pressure anisotropy include the
interaction between the interior core and exterior crust, par-
ticularly during the formation of a superfluid, superconduc-
tive states and boson stars, which can significantly alter stel-
lar configurations [43–46]. Moreover, pressure anisotropy is
also characterized by physical features like the presence of
solid cores, viscosity, and transitions involving exotic phases
of matter, including pion condensation [47].

The complex construction of self-gravitating cosmic
structures suggests that even minor internal variations can
lead to significant changes in their physical properties, offer-
ing crucial insights into the universe and its evolution. To
examine small fluctuations in thermodynamic observables,
it is essential to formulate a gravitational complexity factor
(GCF) that successfully captures the multifaceted makeup
and the underlying physics of the building blocks of stars.
It is important to emphasize that complexity in stable, static
self-gravitating systems arise from the interplay of multiple
components, which can lead to an increase in structural intri-
cacy. For years, numerous parameters across various research
domains have been employed to assess the complexity of dif-
ferent systems [48–50]. Most existing formulations are based
on theoretical notions such as entropy and structural infor-
mation, based on the hypothesis that complexity should, in
some way, measure an essential characteristic characteriz-
ing the interior configuration of a configuration. Physicists
typically illustrate minimal complexity using two extremes:
the orderly structure of a perfect crystal and the complete
randomness of an ideal gas, both regarded as simple sys-

tems. The complete order of a perfect crystal, characterized
by atoms arranged in specific symmetrical patterns, leads
to a probability distribution strongly biased towards a per-
fectly symmetrical state, signifying low information content.
Unlike the crystal, the ideal gas represents a state of full
randomness, with each microstate has the same likelihood,
thus encoding the highest possible information. Since both of
these fundamental structures exhibit extreme levels of order
or information, it becomes evident that the concept of com-
plexity must incorporate additional factors beyond just order
and information. Disequilibrium, a concept introduced by
the authors [51–53], is used to assess the complexity of a
structure by quantifying its deviation from an equiprobable
distribution of attainable states. They concluded that ideal
gases and perfect crystals have zero complexity, interpreting
complexity through the joint contribution of information and
disequilibrium.

Understanding the internal structure of self-gravitating
compact fluids is significantly enhanced through the con-
cept of the GCF. The typical physical variables examined
in this approach include pressure, heat emission, and energy
density. The inclusion of these physical parameters increases
the level of GCF within the stellar fluids. On the other hand, it
should be emphasized that matter density alone is insufficient
for determining the term GCF, the pressure component of the
stress-energy tensor (SET) must also be considered. There-
fore, after identifying the limitations of existing complexity
models used to analyze dense stellar structures, Herrera [54]
proposed a novel framework incorporating fluid variables
such as pressure, energy density, and other relevant factors.
Subsequently, this innovative formulation of the GCF was
adapted to describe non-static, dense-matter fluids within the
classical GR framework [55]. Several extended theories of
gravity have employed the GCF to study the physical proper-
ties of relativistic systems under different theoretical frame-
works [56–62]. The underlying principle of this new con-
ception of GCF is that a fluid with isotropic pressure and
homogeneous matter density provides a model for a funda-
mentally simple system.

Our objective is to carry out a thorough investigation of
how the presence of non-metricity influences the GCF asso-
ciated with dense-matter fluid configurations and to explore
the potential applications of zero-GCF in modeling poly-
tropic self-gravitating systems. For this purpose, we employ
a widely recognized non-metricity-inspired model of gravita-
tion, known as f (Q) gravity. The following sections provide
a structured presentation of this work. We begin by review-
ing the coincidence gauge representation of f (Q) theory and
its gravitational equations for a dense-matter configuration
featuring spherical symmetry in Sect. 2, we briefly discuss
the notion of non-metricity-inspired structure scalars for self-
gravitating stars in Sect. 3. In Sect. 4, we outline the mathe-
matical framework for constructing compact stellar solutions
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satisfying zero GCF under the f (Q gravity scheme. More-
over, the construction of self-gravitating polytropes from the
coupling of zero GCF plus the polytropic EoS is also dis-
cussed in Sect. 5. The concluding section offers final reflec-
tions and potential outlooks.

2 Coincident gauge framework of f (Q) gravity

The fundamental geometrical entity within f (Q) theory is
the non-metricity tensor, Qαμν , instead of the GR curvature
tensor or torsion (as in teleparallel gravity). The coincident
gauge removes the connection, thus leaving the metric as the
single fundamental variable. In generic metric-affine gravity,
the affine connection and the metric are treated as indepen-
dent variables. Correspondingly, the fundamental variables
associated with f (Q) gravity are

1. The metric tensor gμν

2. The affine connection �α
μν , a key element, defines the

covariant derivative.

The non-metricity tensor, central to f (Q) gravity, is formu-
lated as

Qαμν := ∇αgμν = ∂αgμν − �β
αμgβν − �β

ανgμβ. (1)

This determines how much the connection deviates from
being metric compatible. An alternative way to define the
aforementioned relationship in terms of the metric inverse is
as

Q μν
α = −∇αgμν.

The relationship between the non-metricity and the disfor-
mation term provided by

Lα
μν := 1

2
Qα

μν − Q α
(μ ν),

while the contortion part of the connection is defined as

K α
μν := 1

2
T α

μν − T α
(μ ν),

where T α
μν = 2�α[μν]. Therefore, the full affine connection

splits into three pieces

�α
μν := {

α
μν

} + Lα
μν + K α

μν,

where
{
α
μν

}
corresponds to the Levi–Civita part. Next, we

define the non-metricity conjugate as

Pα
μν = −1

4
Qα

μν + 1

2
Q α

(μ ν) + 1

4
(Qα − Q̄α)gμν

− 1

4
δα

(μQν),

with traces

Qμ = Qμα
α, Q̄ρ = Q̄α

μα.

The scalar quantity Q is given by

Q = −Qαμν P
αμν.

The action for f (Q) gravity, incorporating Lagrange multi-
pliers, reads [63]

S =
∫

d4x
√−gLgravity +

∫
d4x

√−gLmatter, (2)

where

Lgravity = 1

2
f (Q) + λ βμν

α Rα
βμν + λ μν

α T α
μν,

where f (Q) is an analytic function of non-metricity, λ
βμν

α

denotes the Lagrange multipliers, and g = det (gμν). The
variation of the non-metricity-supplemented action (1) with
respect to gμν provides

Xμν := − 2√−g
∇α

(√−g fQPα
μν

)

+ (
P αβ

ν Qμαβ − 2Pαβ
μQαβν

)

× fQ + 1

2
gμν f = 8π

◦
Tμν, (3)

where fQ := ∂Q f (Q). Equation (3) can be rewritten as

Xμν :=2 fQQPα
μν∂αQ+ 1

2

(
f − Q fQ

)+ fQGμν = 8π
◦
Tμν.

(4)

It is easily shown that the Einstein gravitational equations can
be recovered under the limit f (Q) → Q. To characterize the
energy-matter distribution of the relativistic self-gravitating

configuration, the SET,
◦
Tμν , is defined as

◦
Tμν := 2√−g

δ(
√−gLmatter)

δgμν
,

whereas the variation of (1) with respect to the connection
gives

√−g fQP μν
α = ∇βλ νμβ

α + λ μν
α − H μν

α ,

H μν
α = −δ(Lmatter)

2δ�α
μν

.
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The skew-symmetric nature of the indices μ and ν leads to
the following result

∇μ∇ν

(
H μν

α + √−g fQP μν
α

)
= 0,

which for ∇μ∇νH
μν

α = 0, reduces to

∇μ∇ν

(√−g fQP μν
α

)
= 0.

For an arbitrary frame of transformation ε(x), the curvature-
less and torsion-less geometric connection allows us to for-
mulate �

μν
α as

�α
μν =

(
∂xα

∂εβ

)
∂μ∂νε

β. (5)

Thus, within the coincident gauge framework (�α
μν = 0),

Qαμν has the following formulation

Qαμν = ∂αgμν. (6)

In general metric-affine gravity, where the connection and
metric are treated independently, the coincident gauge sim-
plifies the theory by avoiding the complexities introduced by
connection variations. The metric becomes the single funda-
mental variable when the coincident gauge reduces the rela-
tionship. The equations of motion become more manageable
when the affine connection is reduced to zero because the
covariant derivatives reduce to ordinary derivatives. Equa-
tion (5) defines an inertial relationship, requiring the affine
connection to be determined without gravity [63]. However,
under the coincident gauge the off-diagonal components of
the field equations strongly constrain the function f (Q),
leading to complex functional forms. The interior configura-
tion of a static, dense-matter gravitational system is described
by the following metric

We work within a static spacetime framework, expressed
in curvature coordinates (x0, x1, x2, x3) ≡ (t, r, θ, φ),
defined as

ds2 = eadt2 − ebdr2 − r2
(
dθ2 + sin2 θdφ2

)
, (7)

with (x0, x1, x2, x3) := (t, r, θ, φ) and a := a(r), b :=
b(r). The non-metricity scalar, corresponding to the metric
mentioned above, reads as

Q = − 2

r2

(
1 + ra′) e−b. (8)

Under spherical symmetry, the SET for an anisotropic fluid
can be defined as a diagonal matrix

◦
Tμ

ν =

⎛

⎜⎜⎜⎜⎜
⎝

◦
ρ 0 0 0

0 − ◦
Pr 0 0

0 0 − ◦
P⊥ 0

0 0 0 − ◦
P⊥

⎞

⎟⎟⎟⎟⎟
⎠

. (9)

This implies that
◦
T 0

0 = ◦
ρ (energy density),

◦
T 1

1 = − ◦
Pr

(radial pressure), and
◦
T 2

2 = ◦
T 3

3 = − ◦
P⊥ (tangential pres-

sure) with
◦
Pr �= ◦

P⊥. The coupling of the anisotropic SET
(9) with the metric (7) provides the following nonzero com-
ponents of the f (Q) model

X00 = 8π
◦
T 00 : e

a−b

2r2

{
2rQ′ fQQ(ea − 1)

+
[
(eb − 1)(2 + ra′) + (1 + eb)rb′] fQ + r2eb f

}

= 8π
◦
T 00, (10)

X11 = 8π
◦
T 11 : − 1

2r2

{
2rQ′ fQQ(ea − 1)

+
[
(eb − 1)(2 + ra′ + rb′) − 2ra′] fQ + r2eb f

}

= 8π
◦
T 11 (11)

X22 = 8π
◦
T 22 : − 1

2r2

{
−2rQ′ fQQ + fQ

[
2a′(eb − 2)

−ra′2 + b′(2eb + ra′) − 2ra′′] fQ + r2eb f
}

= 8π
◦
T 22, (12)

X12 = 8π
◦
T 21 : Q

′

2
cot θ fQQ = 0, (13)

whereX22 = X33 andX12 = X21 due to spherical symmetry.

3 Structure scalars in f (Q) gravity

If the affine connection is zero in the chosen coordinate sys-
tem, then f (Q) gravity only admits vacuum solutions, mean-
ing the SET Tμν must be zero.

X00 = 8π
◦
T 00 : f

2
− fQ

{
Q + 1

r2 + e−b

r
(a′ + b′)

}

= −8π
◦
ρ, (14)

X11 = 8π
◦
T 11 : f

2
− fQ

(
Q + 1

r2

)
= 8π

◦
Pr , (15)
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X22 = 8π
◦
T 22 : f

2

− fQ

{
Q

2
− e−b

[
a′′

2
+

(
a′

4
+ 1

2r

)
(a′ − b′)

]}

= 8π
◦
Pt , (16)

X12 = 8π
◦
T 21 : Q

′

2
cot θ fQQ = 0. (17)

In other words, if we assume a vanishing affine connection
in the spherically symmetric coordinate system and impose
vacuum solutions within f (Q) theory, the non-diagonal com-
ponents of the field equations lead to the conclusion that
fQQ = 0. It follows that f (Q) is required to be linear,
as nonlinear forms like f (Q) = Q2 result in inconsisten-
cies within the gravitational equations. As a result, nonlinear
f (Q) functions are not well-suited for obtaining viable solu-
tions to the stellar equations. In this direction, some exact
dense-matter solutions based on f (Q) gravity using the coin-
cident gauge restriction have been explored in [64]. These
solutions describe that when Q is constant (Q = Q0), Q0

acts as a cosmological constant in Schwarzschild-like solu-
tions, suggesting that f (Q) gravity can model dark energy.
Therefore,

f (Q) = β0Q + β1, (18)

where β0 and β1 are integration constants. A comprehensive
account of the compatibility between those as mentioned
above, linear functional form of f (Q) and the coincident
gauge within a static and spherically symmetric spacetime is
presented in [65]. Now, substituting Eqs. (7) and (18) into the
gravitational system (14)–(16), provides the following set of
differential equations

8π
◦
ρ = 1

2r2

[
2β0 − 2β0(1 − rb′)e−b − r2β1

]
, (19)

8π
◦
Pr = 1

2r2

[
2β0 + 2β0(1 + ra′)e−b − r2β1

]
, (20)

8π
◦
Pt = e−b

4r

[
2β1re

b + β0(ra
′ + 2r)(a′ − b′) + 2β0ra

′′] .

(21)

The hydrostatic equilibrium equation can be easily derived
from the preceding expressions, and it takes the following
form

d
◦
Pr
dr

= 2

r
(

◦
Pr − ◦

P⊥) − a′

r
(
◦
ρ + ◦

Pr ), (22)

where

a′ = 16πr3
◦
Pr − β1r3 + 4β0m

2r(r − 2m)
. (23)

Within the context of the above-mentioned linear formula-
tion of f (Q) gravity, the mass function corresponding to the
dense-matter astrophysical configuration is defined as

m(r) =
( r

2

)
Rφ

θφθ = r

2

(
1 − e−b

)
,

or identically,

m(r) = 4π

β0

∫ r

0
x2 ◦

ρdx + β1r3

12β0
. (24)

An alternative concept of GCF, derived from the orthogonal
decomposition of the Riemann tensor and yielding structural
scalars, was proposed by Herrera [54]. These scalar functions
were initially defined in [66], and have several applications
in the study of extremely dense, self-gravitating stars. Within
the framework of classical GR, they successfully formulated
a full array of equations, based on the orthogonal decomposi-
tion of the Riemann tensor, that govern the physical features
and development of self-gravitating stellar fluids, exhibit-
ing anisotropic stresses in terms of different scalar functions.
Additionally, they have proved that these scalar quantities are
intrinsically linked to key characteristics of the matter con-
figuration, including matter density, density non-uniformity,
pressure anisotropy, dissipative flux, and Tolman mass. All
possible solutions of the gravitational equations of motion
can be explicitly written in terms of these scalars for a spher-
ical, relativistic, dense matter distribution. The representa-
tion of the tensor Rμωνυ as a set of tensorial entities is well
recognized [54,67].

Yμν = RμωνυU
ωUυ,

Xμν =∗ R∗
μωνυU

ωUυ = 1

2
ξ ςε
μω R∗

ςενυU
ωUυ,

where where R∗
μνωυ = 1

2ξςεωυR
ςε

μν . We can rewrite the
expressions for the quantities Yμν and Xμν by separating
them into their trace and trace-free components.

Yμν = 1

3
YT hμν + YT F

(
XμXν − 1

3
hμν

)
,

Xμν = 1

3
XT hμν + XT F

(
XμXν − 1

3
hμν

)
, (25)

herehμν is the projection tensor, whileXμ = (
0, e−a/2, 0, 0

)

is the unit four vector such that

UμXμ = 0, XμXμ = 1.

We can express structure scalars as

XT = 8πβ0
◦
ρ − β1

2
, (26)
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XT F = 1

2β0
(� + β1) − E, (27)

or, alternatively

YT = 4π

{
1

2β0

(
◦
ρ + 3

◦
Pr − 2�

)
− 3β1

}
, (28)

YT F = 1

2β0
(� + β1) + E, (29)

where E denotes the Weyl curvature scalar. Self-gravitating
systems, which are controlled by their gravitational field, are
essential to astronomy because they are the first phases of
the creation of compact objects like black holes [58], neutron
stars [68–70], wormholes [36–38], and white dwarfs. Grav-
itational collapse causes these systems to form extremely
compact and dense structures. Herrera’s formalism of struc-
ture scalars is a useful tool for studying the internal structure
and evolution of such objects. The scalars mentioned above
capture key characteristics of the system’s physical makeup,
including dissipative processes, density inhomogeneity, and
anisotropy. To comprehend the intricate behavior and internal
dynamics of compact astrophysical objects, structure scalars
are an effective tool. The value of GCF in terms of density
non-uniformity, and anisotropic pressure reads

YT F = 1

β0
(8π� + β1) − 1

2β0r3

∫ r

0

(
4π

◦
ρ

′ + β1

2

)
x3dx .

(30)

Therefore, using Eqs. (27) and (29), we can write

1

β0
(� + β1) = YT F + XT F . (31)

which determines the local anisotropy associated with self-
gravitating dense-matter object. It can further be shown that
Eq. (30) yields the Tolman mass in the following form (see
[54] for details)

mT =
( r

R

)3
MT + r3

∫ R

r

e(a+b)/2

s
YT Fds. (32)

In this formulation, MT refers to the total Tolman mass
attributed to the anisotropic self-gravitating star within radius
R.

4 Zero gravitational complexity constraint

In this section, we develop spherically symmetric stellar
models describing self-gravitating polytropes by employing
the constraint YT F = 0. Then, by employing the zero-GCF

condition (YT F = 0), we have

8π� + β1 = 1

r3

∫ r

0

(
4π

◦
ρ

′ + β1

2

)
x3dx . (33)

For a static, anisotropic dense-matter fluid configuration, the
f (Q) equations of motion (Eqs. (19)–(21)) result in a set of
three ordinary differential equations (ODEs) involving five

unknown functions:a, b,
◦
ρ,

◦
Pr , and

◦
P⊥. As a result, even after

applying the YT F = 0 condition, the self-gravitating star sys-
tem remains underdetermined, requiring one more condition
to solve the system. It is important to note that the null GCF
requirement implies either uniform matter density with pres-
sure isotropy, or non-uniform matter density accompanied by
pressure anisotropy. It should also be observed that Eq. (33)
can be regarded as a non-local EoS, somewhat analogous to
that suggested by the authors [71]. We will now present some
examples purely for the sake of illustration.

4.1 Phenomenological metric ansatz

To explicitly solve the set of gravitational equations based
on linear f (Q) gravity, we consider a specific metric ansatz.
This ansatz is particularly useful in modeling dense-matter
stellar spheres, such as neutron stars with anisotropic fluid
configuration. This was originally proposed by Gokhroo and
Mehra to examine the behavior of anisotropic gas spheres
with variable matter density. It provides a physical basis for
understanding the significant redshifts observed in quasars.
The Gokhroo and Mehra ansatz assumes a specific form of
the matter density, given by

ρ = ρ0

(
1 − Kr2

a2

)
(34)

Here, K is a constant with K ∈ (0, 1), a is the radius of
the anisotropic sphere, and ρ0 = ρ(r = 0) represents the
central density. The matter density vanishes at the center of
the sphere if we set K = 1. Substituting Eq. (34) in Eq. (24),
we get

m(r) = 4πρ0r3

3β0

(
1 − 3Kr2

5a2

)
+ β1r3

12β0
, (35)

which can be expressed in an alternative form as

m(r) = αr3

2β0

(
1 − 3Kr2

5a2

)
+ β1r3

12β0
, (36)

where 8πρ0/3 = α. Next, the combination of Eqs. (24) and
(36) produces

e−b(r) = 1 − 1

β0

{
αr2

(
1 − 3Kr2

5a2

)
− β1r3

6

}
. (37)
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8π(
◦
Pr − ◦

P⊥) = −β0e
−b

×
{
a′′

2
+

(
a′

2

)2

− b′

2

(
a′

2
+ 1

r

)
− b′

2r
− 1

r2

}

− 1

r2 .

(38)

Let us introduce the functions s(r) and u(r), defined as

eb(r) = exp

{∫ (
2s − 2

r

)
dr

}
, (39)

e−a(r) = u(r). (40)

As a result, Eq. (38) transforms into the following form:

u′ + P(r)u = Q(r), (41)

where

P(r) = 2s + 2s′

s
− 6

r
+ 2

sr2 and Q(r)

= − 2

β0u

(
8π� + 1

r2

)
. (42)

The solution of Eq. (39) is defined as

u(r) = e− ∫
P(r)dr

{∫
e
∫
P(r)dr Q(r)dr + C

}
, (43)

where C is an integration constant. Finally, Eqs. (39) and
(40) allow us to rewrite the metric in the following form

ds2 = e
∫ (

2s− 2
r

)
dr
dt2 −

∫
e
∫
P(r)dr Q(r)dr + C

e
∫
P(r)dr

dr2

− r2
(
dθ2 + sin2 θdφ2

)
. (44)

Consequently, the thermodynamic quantities associated with
anisotropic sphere read

8π
◦
ρ = 2m′β0

r2 − β1

2
, (45)

8π
◦
Pr = 2β0

r2

{
(r − 2m)s

r2 + m

r
− 1

}
+ β1

2
, (46)

8π
◦
Pt = 2β0

r2

{
rs′ + rs2 − s

r2 + 1

r3

}
(r − 2m)

+ 2β0

r2 (m − m′r) + β1. (47)

The above results are constructed within the framework of
f (Q) gravity using the Gokhroo and Mehra ansatz. This
ansatz enables the generation of anisotropic solutions suit-
able for describing dense stellar configurations. In the context
of f (Q) gravity, these models allow us to explore deviations
from GR due to non-metricity effects, which influence the

pressure, density, and anisotropy profiles of the stellar inte-
rior.

4.2 Anisotropic polytropes with zero gravitational
complexity

Anisotropic polytropes characterize a class of self-gravitating
stellar models with an anisotropic matter distribution. The
theoretical modeling of polytropes rests on the polytropic
EoS, which, in the context of an anisotropic stellar configu-
ration, takes the form

◦
Pr = Kρ1+ 1

n . (48)

where K is an arbitrary constant and n is the polytropic
index. The polytropic EoS holds significant importance in
the astrophysical exploration of stellar remnants, whether in
a Newtonian or general relativistic context. In recent decades,
significant detailed considerations have been made of poly-
tropic astrophysical models composed of anisotropic mat-
ter. Herrera and Barreto [72] proposed a generic framework
for modeling anisotropic relativistic Newtonian polytropes
in GR. In particular, they examined the effects of anisotropy
on the configuration of self-gravitating stars. Furthermore,
Herrera et al. [73] examined the effects of small deviations
in matter density and anisotropic pressure on cracking in self-
gravitating stellar systems satisfying a polytropic EoS. Two
polytropes were considered, both exhibiting cracking under
certain parameter variations.

Now, to find an explicit solution for the anisotropic self-
gravitational configuration, we need an additional constraint
besides the polytropic EoS. The requirement for this addi-
tional constraint is fulfilled by considering the zero-GCF
condition, which is defined as

YT F = 0 ⇒ 1

β0
(8π� + β1)

− 1

2β0r3

∫ r

0

(
4π

◦
ρ

′ + β1

2

)
x3dx = 0. (49)

To convert the equations into a dimensionless form, we define
the following quantities.

• � =
◦
Prc◦
ρc

, the central pressure-to-density ratio

• �n
0 = σ0

σ0c
, the dimensionless baryonic density

• ◦
Pr = ◦

Prc�
n+1
0 , the radial pressure

• ρ0 = ρ0c�
n
0, the baryonic mass density

• ρ = ρ0c�
n
0 + nPrc�

n+1
0 , the total energy density

For the radial coordinate, we also use the following rescaling:
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r = ε

�
, �2 = 4πρc

�(n + 1)
, (50)

and a dimensionless mass function

η(ε) = �3m

4πρc
.

Then, by applying the chain rule, we have

d
◦
Pr
dr

= (n + 1)�
◦
Prc�

n
0
d�0

dε
.

Finally, the hydrostatic equilibrium equation takes the fol-
lowing form

1 − 2�(n + 1)η/ε

1 + ��0

{

ε2 d�0

dε
+ 2ε��−n

0

(n + 1)
◦
Prc

}

+ β1ε
3�

16π
◦
Prc

+ �ε3�n+1
0 + β0η = 0, (51)

and

dη

dε
= ε2�n . (52)

The system of two first-order ODEs given by Eqs. (51) and
(52) involve the three unknown functions �, η, and �, and
are parameterized by n and �. We continue the scheme of
stellar modeling by assuming the GCF is zero, resulting in
the subsequent expression consistent with the earlier notation

2ε

n
◦
ρc

d�

dε
= �n−1

0
d�0

dε
− 6�

n
◦
ρc

− 3εβ1

4π�
◦
ρcε

. (53)

We now arrive at a system of three ODEs (51), (52), and (53)
involving the three unknown functions �, η, and �. These
equations can be integrated for any chosen pair of parameter
valuesn and �, provided the physical conditions are satisfied.

Finally, let us mention that the extension of the Newtonian
polytropes through the dynamics of the linear f (Q) gravi-
tational model presents two options. These are Eq. (48) and
◦
Pr = K

◦
ρb

1+ 1
n , with

◦
ρb being the baryonic mass density. A

detailed explanation of this second possibility can be found
in [74]. The expressions analogous to Eqs. (51) and (53) for
this particular case are defined as

1 − 2�(n + 1)η/ε

1 + ��b

{

ε2 d�b

dε
+ 2ε��−n

b

(n + 1)
◦
Prc

}

+ β1ε
3�

16π
◦
Prc

+ �ε3�n+1
b + βbη = 0,

2ε

n
◦

ρbc

d�

dε
= �n−1

b
d�b

dε

{
1 + K (n + 1)�b

◦
ρbc

1/n
}

− 6�

n
◦

ρbc

− 3εβ1

4π�
◦

ρbcε
,

with �n
b = ρb

ρbc
.

5 Conclusion

We have developed the notion of GCF for dense-matter,
stationary fluids exhibiting spherical symmetry, using the
framework of the non-metricity-motivated f (Q) model of
gravity. This formulation is based on the assumption that a
homogeneous fluid distribution (in terms of matter density)
with isotropic pressure represents the fundamental level of
simplicity. In this respect, an apparent contender to measure
the degree of the GCF in stellar fluids is defined in terms of a
mathematical quantity denoted byYT F . This is obtained from
a mathematical framework known as the orthogonal decom-
position of the Riemann tensor. For static, dense-matter stel-
lar fluids, YT F specifies a combination of two distinct matter
variables: pressure anisotropy and non-uniformity of mat-
ter density. The presence of these thermodynamic quantities
gives rise to the concept of the GCF within self-gravitating
stellar objects in Einstein’s GR. However, we have shown
that in the linear formulation of f (Q) gravity, non-metricity
terms also contribute to the complexity of stellar fluids and
modify the form of YT F . Some important highlights of this
investigation are as follows.

• Contributions from non-uniformity of matter density,
nonmetricity f (Q) terms, and pressure anisotropy are
encoded in the scalar function YT F in a well-defined way.
This reflects the fact that the isotropic pressure in stellar
fluids corresponds to the lowest level of GCF.

• For electrically charged relativistic fluids, the GCF incor-
porates the combined effects of the charge and the higher-
curvature corrections characteristic of f (Q) gravity.

• In the context of a general non-static matter configuration
with dissipation, the GCF is composed of contributions
from the matter density non-uniformity, the anisotropy of
pressure, and the dissipative fluxes within the relativistic
fluid within the dynamics of f (Q) gravity.

• This scalar reflects the impact of anisotropic pressure,
non-metricity matter density, and non-uniformity on the
Tolman mass within a compact fluid distribution.

• The nullity of YT F in non-static contexts ensures the sta-
bility of the shear-free condition [75]. This shear-free
condition is the relativistic counterpart of homologous
evolution, which appears to be a more systematic mode
of stellar evolution (further explanation in [76]). More-
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over, replacing the homologous condition with a quasi-
homologous one, in combination with minimal GCF,
leads to various non-static stellar models exhibiting both
dissipative and non-dissipative characteristics [77].

We have demonstrated distinct closed-form stellar mod-
els that successfully fulfill the condition of zero GCF.
These models highlight the significance of vanishing GCF in
describing stellar fluids influenced by non-metricity effects
arising from f (Q) gravity. To develop physically viable
dense-matter fluid solutions, several additional conditions
can be applied in addition to the zero GCF. These include the
adoption of a non-local EoS [71], the vanishing of tangential
pressure, and the vanishing of radial pressure. Furthermore,
the Finch–SKea metric ansatz [78], Tolman–Kuchowicz met-
ric [79], the embedding class one condition [70], and the
anisotropic ansatz are presented in [80]. The notion of zero-
GCF also found several applications in different astrophysi-
cal systems such as dark energy stellar structures [81], dark
matter objects [82], black holes [83], and gravitational decou-
pled stellar fluids.

The employed non-metricity-inspired f (Q) gravity the-
ory enhances the underlying geometry, providing a robust
platform to analyze the extensions to GR, especially under
intense gravitational conditions. It is demonstrated that the
coupling of linear f (Q) gravity and the zero GCF offers
a significant theoretical platform for modeling astrophysi-
cal structures with anisotropic fluid configuration. Our find-
ings demonstrate the potential of non-metricity as a cru-
cial component in obtaining explicit solutions that describe
dense-matter configurations of self-gravitating star systems,
encouraging further study in light of continuous advance-
ments in gravitational waves and observational astrophysics.
This method could potentially be expanded in the future stud-
ies to explore more generalized f (Q) models, alternative
equations of state, and the impact of angular momentum and
magnetization effects on these gravitational configurations.
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