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Abstract
Tensorial, spinorial and helicity formalisms of the curvature and conformal
curvature dynamics are developed. Equations of linearized gravity within that
formalisms are given. Gravitational radiation in linearized gravity in terms of
curvature dynamics is investigated. Equivalence of the Białynicki-Birula for-
mula for the gravitational energy in linearized gravity and the Landau–Lifschitz
formula is proved. Analogous result is found for the momentum in linearized
gravity.
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1. Introduction

In this work we adopt and develop in some directions the idea presented by van Holten in his
distinguished paper [1] which can be summarized in his own words as: ‘However, the relat-
ive acceleration between local inertial frames at different points in space at different times

∗
Author to whom any correspondence should be addressed.

Original Content from this work may be used under the terms of the Creative Commons Attribution
4.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the

title of the work, journal citation and DOI.

© 2025 The Author(s). Published by IOP Publishing Ltd 1

https://doi.org/10.1088/1361-6382/adedf3
https://orcid.org/0000-0003-2837-8518
mailto:adam.chudecki@p.lodz.pl
mailto:maciej.przanowski@p.lodz.pl
http://crossmark.crossref.org/dialog/?doi=10.1088/1361-6382/adedf3&domain=pdf&date_stamp=2025-7-23
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


Class. Quantum Grav. 42 (2025) 155005 A Chudecki and M Przanowski

is encoded in the space-time curvature and cannot be eliminated by any choice of reference
frame. Therefore, an essential description of gravitational is to be cast in terms of the dynamics
of curvature’. To realize this programme, we deal with the general curvature and conformal
curvature dynamics in tensorial, spinorial and helicity formalisms and then we employ the res-
ults obtained to the case of linearized theory of weak gravitational radiation. Although themost
of results are well known from the papers and textbooks on general relativity the presentation
of those results in terms of the curvature variables gives a new insight into theory of gravit-
ation. To confirm the last statement it is worth quoting the words from an inspiring work by
Białynicki-Birula [2]: ‘I have shown that the quantization of the linearized gravitational field
that employs only the Riemann tensor (and not the metric tensor) can be achieved without any
reference to the canonical formalism. In this approach the complications arising in the process
of extracting true degrees of freedom never appear’.

Our paper is organized as follows. In section 2 we find the main equations describing the
curvature and conformal curvature dynamics within the tensorial and spinorial formalisms.
These equations are derived from the Bianchi identities and from the Einstein equations. In
section 3 the same equations are investigated in terms of Plebański’s helicity formalism [3]
and the gravito-electromagnetism. The close analogy between gravity and electromagnetism
is carefully studied in the helicity formalism language. The equations obtained in sections 2
and 3 are then specified to the case of linearized gravity in section 4. Section 5 is devoted to
the theory of gravitational radiation in linearized gravity. We investigate this theory in terms
of the curvature dynamics employing the electric and magnetic parts of free gravitational field
considered in sections 3 and 4. In particular equations (5.39), (5.40) and (5.41) give the power
carried by the gravitational radiation in linearized gravity. Equation (5.41) presents a well
known result [4–6]. Finally, in section 6 we prove that the Białynicki-Birula formula for grav-
itational energy in vacuum in linearized gravity expressed purely with the use of electric and
magnetic parts of free gravitational field [2] leads to the same result on gravitational energy
as the Landau–Lifschitz pseudotensor and the Einstein pseudotensor if the appropriate factor
c4

64π2G
is assumed in that formula. Analogous considerations are done for the formula defining

the momentum of gravitational field in terms of the electric and magnetic parts of this field.

2. Curvature and Weyl curvature dynamics: tensorial and spinorial formalism

We deal with a spacetime equipped with the metric

ds2 = gµν dx
µ⊗ dxν , gµν = gνµ, µ,ν = 0,1,2,3 (2.1)

of signature (−+++). The Levi–Civita connection coefficients read

Γµ
νϱ = Γµ

ϱν =
1
2
gµτ (∂νgϱτ + ∂ϱgντ − ∂τgνϱ) (2.2)

where gµτ is, as usually, the tensor inverse to gµτ

gµνg
νϱ = δϱµ (2.3)

and ∂ν :=
∂

∂xν
. For a definition of the curvature tensor Rα

βγδ we assume the convention

Rα
βγδ = ∂γΓ

α
βδ − ∂δΓ

α
βγ +Γα

µγΓ
µ
βδ −Γα

µδΓ
µ
βγ . (2.4)

Under such a convention the commutator of covariant derivatives reads

[∇γ ,∇δ]v
α = vβRα

βγδ. (2.5)
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Then the Ricci tensor and the curvature scalar are given as

Rβγ = Rα
βγα, Rβγ = Rγβ (2.6)

and

R= Rβ
β (2.7)

respectively. The Riemann curvature tensor is defined as

Rαβγδ = gαµR
µ
βγδ =

1
2
(∂β∂γgαδ + ∂α∂δgβγ − ∂α∂γgβδ − ∂β∂δgαγ)

+ gµν
(
Γµ

βγΓ
ν
αδ −Γµ

βδΓ
ν
αγ

)
. (2.8)

Then the Weyl tensor (Weyl curvature tensor, the Weyl conformal tensor) is given by the for-
mula

Cαβγδ = Rαβγδ +
1
2
(gαγCβδ + gβδCαγ − gβγCαδ − gαδCβγ)

+
R
12

(gαγgβδ − gαδgβγ) (2.9)

where

Cαβ = Rαβ −
1
4
gαβR (2.10)

stands for the traceless Ricci tensor

Cα
α = 0. (2.11)

With the use of (2.10) the Einstein equations read

Rαβ −
1
2
Rgαβ =−8πG

c4
Tαβ (2.12)

where Tαβ is the energy-momentum tensor (G is the gravitational constant and c denotes the
speed of light) can be rewritten as

Cαβ =−8πG
c4

(
Tαβ −

1
4
Tgαβ

)
(2.13a)

R=
8πG
c4

T, T= Tαα. (2.13b)

The crucial role in the curvature and Weyl curvature dynamics is played by the Bianchi
identities. In standard form they read

Rα
β[γδ;ϱ] = 0 (2.14)

where the square bracket [. . .] stands for the anti-symmetrization and the symbol ‘;ϱ’ means
the covariant derivative, ;ϱ ≡∇ϱ. Contraction with respect to α and ϱ gives (see (2.6))

Rα
βγδ;α = 2Rβ[γ;δ]. (2.15)

One can show that the identities (2.15) are equivalent to (2.14). Employing the Einstein field
equations (2.12) and (2.13b) we write (2.15) in the form
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Rα
βγδ;α =−16πG

c4
Ťβ[γ;δ]

Ťβγ = Tβγ −
1
2
Tgβγ . (2.16)

Equivalently, using (2.9) and (2.10) one can rewrite the Bianchi identities (2.15) in terms of
the Weyl tensor as [7–9]

Cα
βγδ;α = Cβ[γ;δ] +

1
12

gβ[γR;δ] (2.17)

or

Cα
βγδ;α = Cβ[γ;δ] +

1
3
gβ[γC

ϱ
δ];ϱ (2.18a)

Cα
β;α =

1
4
R;β . (2.18b)

Inserting (2.13a) and (2.13b) into (2.17) we obtain

Cα
βγδ;α =−8πG

c4

(
Tβ[γ;δ]−

1
3
gβ[γT;δ]

)
. (2.19)

Using in (2.19) the well known relation

Cαβ
βδ = 0 (2.20)

one quickly gets the matter equations

Tβδ;β = 0. (2.21)

Acting on (2.14) with the operator gσϱ∇ϱ we get

∇ϱ∇ϱR
α
βγδ +∇ϱ∇δR

α ϱ
β γ +∇ϱ∇γR

α ϱ
βδ

=∇ϱ∇ϱR
α
βγδ +∇ϱ∇δR

ϱ α
γ β −∇ϱ∇γR

ϱ α
δ β = 0. (2.22)

Employing the general formula of the commutators [∇ϱ,∇δ]R
ϱ α
γ β and [∇ϱ,∇γ ]R

ϱ α
δ β which

follow from (2.5) and then using (2.16), Einstein’s equations (2.12) and algebraic properties
of the curvature tensor we rewrite (2.22) as

∇ϱ∇ϱRαβγδ =
16πG
c4

(
Ťγ[α;β]δ − Ťδ[α;β]γ + Ťµ[γR

µ
δ]αβ

)
+ 2RαµϱδR

µϱ
β γ − 2RαµϱγR

µϱ
β δ −RαβµϱR

µϱ
γδ. (2.23)

Taking into account that Rαβγδ = Rγδαβ one can write (2.23) in another form [1]

∇ϱ∇ϱRαβγδ =
8πG
c4

(
Ťαγ;(βδ) + Ťβδ;(αγ)− Ťαδ;(βγ)− Ťβγ;(αδ)

+Ťµ[αR
µ
β]γδ + Ťµ[γR

µ
δ]αβ

)
+ 2RαµϱδR

µϱ
β γ − 2RαµϱγR

µϱ
β δ −RαβµϱR

µϱ
γδ (2.24)

where the bracket (. . .) means the symmetrization. Inserting into (2.24) Rαβγδ calculated
from (2.9) we obtain the equation for ∇ϱ∇ϱCαβγδ (this equation is rather involved (see [1],
equation (21)) and we are going to consider it a little further (see equation (2.52))).
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The main object which enables to move to the spinorial formalism is the spinorial 1-form
(the soldering form) [10–13]

gAḂ = gAḂµ dx
µ, A= 1,2, Ḃ= 1̇, 2̇. (2.25)

We assume that in locally Galilean coordinate system the matrices (gAḂµ), µ= 0,1,2,3 take
the form(

gAḂµ
)
=

[(
−1 0
0 −1

)
,

(
0 1
1 0

)
,

(
0 −i
i 0

)
,

(
1 0
0 −1

)]
. (2.26)

[Important remark: Note that gAḂ0 in the present paper is equal to g AḂ
4 in Plebański’s

monograph [12]. Consequently to compare our formulae with the respective formulae of [12]
one must put 0→ 4].

The tensorial indices are to be manipulated with the use of gµν or gµν and the spinorial
indices according to the rules

χA = ∈BA χB, χA = ∈AB χB, A,B= 1,2

χȦ = ∈ḂȦ χḂ, χȦ = ∈ȦḂ χ
Ḃ, Ȧ, Ḃ= 1̇, 2̇ (2.27)

where the antisymmetric spinors ∈AB, ∈ȦḂ, ∈AB and ∈ȦḂ are defined as

(∈AB) =
(
∈AB
)
= (∈ȦḂ) =

(
∈ȦḂ
)
=

(
0 1
−1 0

)
. (2.28)

Recall that transformation of spinorial objects is given by

Ψ ′AȦ
BḂ = lAE l

Ȧ
Ė l

−1F
B l

−1 Ḟ
Ḃ
ΨEĖ

FḞ(
lAE
)
∈ SL(2;C) , lȦḞ = lAF, l

−1 Ḟ
Ḃ
= l−1F

B , l
−1F

B l
B
E = δFE (2.29)

where overbar denotes the complex conjugation. Define the following spinorial 2-forms

SAB =
1
2
SABµν dx

µ ∧ dxν =
1
2
∈ȦḂ g

AȦ ∧ gBḂ = S(AB)

SȦḂ = SAB =
1
2
SȦḂµν dx

µ ∧ dxν =
1
2
∈AB gAȦ ∧ gBḂ = S(ȦḂ). (2.30)

With the use of these objects one defines the spinorial images of the Weyl tensor as

CABCD =
1
16

S αβ
AB S γδ

CD Cαβγδ = C(ABCD)

CȦḂĊḊ = CABCD =
1
16

S αβ

ȦḂ
S γδ

ĊḊ
Cαβγδ = C(ȦḂĊḊ). (2.31)

The inverse relation to (2.31) reads

Cαβγδ =
1
4
SABαβ S

CD
γδCABCD+

1
4
SȦḂαβ S

ĊḊ
γδCȦḂĊḊ. (2.32)

Then one can show the useful relation

∗Cαβγδ =
1
4
SABαβ S

CD
γδCABCD−

1
4
SȦḂαβ S

ĊḊ
γδCȦḂĊḊ (2.33)

where the Hodge ∗-operation is defined by

∗Cαβγδ =
1
2
i
√
|det(gµν) | ∈αβϱσ C ϱσ

γδ . (2.34)
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Bianchi identities in spinorial formalism read [9, 12, 13]

∇DḊCABCD+∇ Ė
(A C

Ḋ
BC) Ė = 0 (2.35a)

∇DḊCȦḂĊḊ+∇
E
(ȦC

D
|E|ḂĊ) = 0 (2.35b)

∇BḊCABĊḊ+
1
8
∇AĊR= 0 (2.35c)

where

CABĊḊ =
1
4
g µ

AĊ
g ν
BḊ Cµν = C(AB)ĊḊ = CAB(ĊḊ) (2.36)

is the spinorial image of the traceless Ricci tensor Cµν and

∇AḂ = gAḂµ∇µ. (2.37)

One can easily prove that the identities (2.35a) or their complex conjugate (2.35b) are equi-
valent to the identities (2.18a), and the identities (2.35c) are equivalent to (2.18b).

Inserting (2.13a) into (2.36) and using the relation

g µ

AĊ
gBḊµ =−2 ∈AB∈ĊḊ (2.38)

we get

CABĊḊ =−8πG
c4

(
TABĊḊ+

1
8
∈AB∈ĊḊ T

)
(2.39)

where

TABĊḊ =
1
4
g µ

AĊ
g ν
BḊ Tµν (2.40)

is the spinorial image of the energy-momentum tensor Tµν . Substituting (2.39) into (2.35a)
we obtain the equation

∇DḊCABCD =−8πG
c4
∇(A|Ė|T

ḊĖ
BC) . (2.41)

Analogously, substituting (2.39) into (2.35b) we obtain the complex conjugate of (2.41)

∇DḊCȦḂĊḊ =−8πG
c4
∇E(ȦT

DE
ḂĊ). (2.42)

Finally, from (2.39), (2.13b) and (2.35c) one gets the matter equation (2.21) in spinorial lan-
guage

∇BḊTABĊḊ = 0. (2.43)

To proceed further we act on both sides of equation (2.41) with ∇FḊ. Employing then the
definition (2.37) and the formula [12]

g µ

FḊ
gDḊν =

1
2

(
gDḊνg µ

FḊ
+ g ν

FḊ gDḊµ
)
+

1
2

(
gDḊνg µ

FḊ
− g ν

FḊ gDḊµ
)

=−
(
gµνδDF + SD µν

F

)
(2.44)

we obtain

∇µ∇µCABCF+ SD µν
F ∇[µ∇ν]CABCD =

8πG
c4
∇ Ḋ
F ∇ Ė

(A TBC)ḊĖ. (2.45)

6
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Using the relation [12]

∇[µ∇ν]CABCD =−2CM(ABCR
M
D)µν ,

RMDµν =−1
2
CMDEFS

EF
µν +

R
24

SMDµν +
1
2
CMDĖḞS

ĖḞ
µν (2.46)

and performing the straightforward calculations, taking also into account that the right hand
side of (2.45) must be totally symmetric in the indices (F,A,B,C) since the left hand side is
totally symmetric in those indices one arrives at the equation(
∇µ∇µ +

4πG
c4

T

)
CABCD+ 6CMN(ABCCD)MN =

8πG
c4
∇ Ṁ

(A ∇
Ṅ

B TCD)ṀṄ. (2.47)

The complex conjugate of equation (2.47) reads(
∇µ∇µ +

4πG
c4

T

)
CȦḂĊḊ+ 6CṀṄ

(ȦḂ
CĊḊ)ṀṄ =

8πG
c4
∇M

(Ȧ∇
N
ḂT|MN|ĊḊ). (2.48)

Employing (2.40) and the definitions (2.37) of ∇AḂ, and (2.30) of SABµν and SȦḂµν one can
rewrite equations (2.47) and (2.48) as follows(
∇µ∇µ +

4πG
c4

T

)
CABCD+ 6CMN(ABCCD)MN =

2πG
c4

S ϱµ
(AB S σν

CD) ∇µ∇νTϱσ (2.49)

and(
∇µ∇µ +

4πG
c4

T

)
CȦḂĊḊ+ 6CṀṄ

(ȦḂ
CĊḊ)ṀṄ =

2πG
c4

S ϱµ

(ȦḂ
S σν
ĊḊ) ∇µ∇νTϱσ. (2.50)

Multiplying equation (2.49) by
1
4
SABαβ S

CD
γδ , equation (2.50) by

1
4
SȦḂαβ S

ĊḊ
γδ , then adding

together the obtained results and employing (2.32) we get the equation(
∇µ∇µ +

4πG
c4

T

)
Cαβγδ + 3Re

{
SABαβ S

CD
γδC

MN
(ABCCD)MN

}
=

πG
c4

Re
{
SABαβ S

CD
γδ S

ϱµ
(AB S σν

CD)

}
∇µ∇νTϱσ. (2.51)

Long and tedious manipulations show that equation (2.51) can be brought to the form(
∇µ∇µ +

4πG
c4

T

)
Cαβγδ +CαβµϱC

µϱ
γδ + 2CαµϱγC

µϱ
β δ − 2CαµϱδC

µϱ
β γ

=
4πG
c4

{
1
3

[(
δϱµαβδ

σν
γδ + δσναβδ

ϱµ
γδ

)
− |det(gκτ ) |

(
∈ϱµ••αβ∈

σν
••γδ + ∈σν••αβ∈

ϱµ
••γδ

)]
+
1
6
gλιg

κτδηικε

(
δϱµλαβηδ

σνε
γδτ + δσνεαβτδ

ϱµλ
γδη

)}
∇µ∇νTϱσ (2.52)

where ∈ϱσ••αβ=∈µναβ gµϱgνσ , δ
ϱµ
αβ and δϱµλαβη are 2-dimensional and 3-dimensional Kronecker

deltas, respectively. Equation (2.52) has a rather involved form. One can look for other simpler
forms by employing the commutation rule (2.5) but we do not investigate further this problem
in the current work. [Another form of (2.52) is given in [1] by equation (21)].

From equations (2.18a) and (2.18b) one can easily obtain the following identities

Cαβ
γδ;αβ = 0. (2.53)
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Equation (2.53) is given in a paper by Kundt and Trümper [7] where the authors make an
important point that if we consider the Weyl tensor as the ‘free part’ of the gravitational field
then equations (2.21) are the equations of motion for the sources, equations (2.19) describe
the interaction between the sources and the free part of the field and equations (2.53) are
differential equations for the free part of the field. We consider this point in the further part of
the present work. Analogously, from (2.15) one gets [7]

Rαβ
γδ;αβ = 0. (2.54)

To obtain the counterpart of (2.53) in spinorial formalism we first insert (2.32) into (2.53) and
then we multiply the formula obtained by S γδ

EF and we employ the relation [12]

S γδ
EF SĊḊγδ = 0. (2.55)

Thus one gets

∇β∇α

(
SABαβ SCDγδ S

γδ
EF CABCD

)
= 0. (2.56)

Using the identity [12]

SCDγδ S
γδ

EF = 8δC(E δ
D
F) (2.57)

we have

∇β∇α

(
SABαβCABEF

)
= 0. (2.58)

Finally, employing the definition (2.30) of SAB and the definition (2.37) of ∇AḂ one arrives at
the equation

∇A
Ṁ∇

BṀCABEF = 0. (2.59)

It can be easily shown that (2.59) is equivalent to (2.53). The complex conjugate of (2.59)
reads

∇ Ȧ
M ∇MḂCȦḂĖḞ = 0. (2.60)

3. Gravito-electromagnetism in terms of Plebański’s helicity formalism

A close analogy between electromagnetism and gravity has been investigated by many
authors (see for example [14–22]). In 1980 Plebański [3] developed the helicity formalism
for Riemannian structures in complex or real four dimensions. This formalism provides us
with a powerful and elegant tool for presentation the so called gravito-electromagnetism [21]
i.e. the correspondence between electromagnetism and Einstein gravity.

Define three 2× 2 matrices (Φ AB
a ), a= 1,2,3(

Φ AB
a

)
=

{
1√
2

(
i 0
0 −i

)
,

1√
2

(
1 0
0 1

)
,

1√
2

(
0 −i
−i 0

)}
(3.1)

and their complex conjugate (Φ ȦḂ
ȧ ), ȧ= 1̇, 2̇, 3̇(

Φ ȦḂ
ȧ

)
=

{
1√
2

(
−i 0
0 i

)
,

1√
2

(
1 0
0 1

)
,

1√
2

(
0 i
i 0

)}
(3.2)

(Note that in [3] the respective matrices (Φ AB
a ) and (Φ ȦḂ

ȧ ) do not have the factor
1√
2
.

Therefore, in general, the equations of [3] differ slightly from our equations.)

8
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One quickly gets the relations

Φ AB
a ΦbAB = δab, Φ AB

a Φa
CD = δA(Cδ

B
D)

Φ ȦḂ
ȧ ΦḃȦḂ = δȧḃ, Φ ȦḂ

ȧ Φȧ
ĊḊ

= δȦ
(Ċδ

Ḃ
Ḋ) (3.3)

where the spinorial indices A,B, . . . , Ȧ, Ḃ, . . . are to be manipulated according to (2.27) and the
‘helicity indices’ a,b, ȧ, ḃ are to be manipulated with the use of the Kronecker delta.

LetΨAB =Ψ(AB) be a symmetric spinor of the second rank at some point p of the spacetime
M. One can assign to ΨAB a complex vector (Ψ1,Ψ2,Ψ3) ∈ C3 by the formula

Ψa =Φa
ABΨ

AB, a= 1,2,3. (3.4)

In a new spinor basis

e ′A = l−1B
A eB

the components of the spinor ΨAB are

Ψ ′AB = lAC l
B
DΨ

CD,
(
lAC
)
∈ SL(2;C) , lAC l−1C

D = δAD. (3.5)

Then according to (3.4) we define (Ψ ′1,Ψ ′2,Ψ ′3) ∈ C3 as

Ψ ′a =Φa
ABΨ

′AB. (3.6)

Inserting (3.5) into (3.6) and employing the relation which follows from (3.4) and (3.3)

ΨAB =Φ AB
a Ψa. (3.7)

one obtains

Ψ ′a =Φa
AB l

A
C l

B
DΨ

CD =Φa
AB l

A
C l

B
DΦ

CD
b Ψb = tabΨ

b

tab =Φa
AB l

A
C l

B
DΦ

CD
b . (3.8)

We quickly find that (tab) ∈ SO(3;C). Moreover, given (tab) ∈ SO(3;C) the matrix (lAB) ∈
SL(2;C) is defined uniquely up to the sign. Therefore the relation between (lAB) and (tab) given
by (3.8) defines the group isomorphism

SL(2;C)
/
Z2

= SO(3;C) . (3.9)

Writing the last formula of (3.8) in the form

tab =Φa
AB l

(A
(C l

B)
D)Φ

CD
b (3.10)

we get the group isomorphism

SL(2;C)⊗
s
SL(2;C) = SO(3;C) . (3.11)

Finally, since the group SL(2;C)
/
Z2

is isomorphic to the proper ortochronous Lorentz group

SO↑(1,3) then by (3.9) one has

SO↑ (1,3) = SO(3;C) . (3.12)

The analogous construction can be done for the dotted symmetric spinorΨȦḂ =Ψ(ȦḂ) =ΨAB.
We define

Ψȧ =Φȧ
ȦḂ

ΨȦḂ =Ψa, ȧ= 1̇, 2̇, 3̇ (3.13)

9
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In a new spinor basis

e ′Ȧ = l−1 Ḃ
Ȧ
eḂ, l−1 Ḃ

Ȧ
= l−1B

A . (3.14)

we have

Ψ ′ȦḂ = lȦĊ l
Ḃ
ḊΨ

ĊḊ,
(
lAC
)
=
(
lȦĊ

)
∈ SL(2;C) (3.15)

Then

Ψ ′ȧ =Φȧ
ȦḂ
Ψ ′ȦḂ =Φȧ

ȦḂ
lȦĊ l

Ḃ
ḊΦ

ĊḊ
ḃ

Ψḃ = tȧ
ḃ
Ψḃ

tȧ
ḃ
=Φȧ

ȦḂ
lȦĊ l

Ḃ
ḊΦ

ĊḊ
ḃ

= tab. (3.16)

Of course, (tȧ
ḃ
) ∈ SO(3;C).

It is quite clear that one can generalize the procedure describing above on the case
of any spinor ΨA1B1...AnBnȦ1Ḃ1...ȦmḂm symmetric for the indices (A1B1), . . . ,(AnBn) and
(Ȧ1Ḃ1), . . . ,(ȦmḂm) by assigning to such a spinor the following tensor

Ψa1...anȧ1...ȧm =Φa1
A1B1

. . .Φan
AnBnΦ

ȧ1
Ȧ1Ḃ1

. . .Φȧm
ȦmḂm

ΨA1B1...AnBnȦ1Ḃ1...ȦmḂm . (3.17)

The rule of transformation of this tensor reads

Ψ ′a1...anȧ1...ȧm = ta1b1 . . . t
an
bn
tȧ1
ḃ1
. . . tȧm

ḃm
Ψb1...bnḃ1...ḃm . (3.18)

The analogous correspondence can be done for mixed spinors.
From the geometrical point of view one has a clear picture. The formula (3.4) defines an

isomorphism between the vector bundle of the symmetric contravariant undotted spinors of
the second rank over the spacetime M and the vector bundle of the standard fibre C3and
the structure group SO(3;C) also overM. Similarly the formula (3.13) defines an isomorph-
ism between the vector bundle of the symmetric contravariant dotted spinors of the second
rank overM and the vector bundle of the standard fibre C3 and the structure group SO(3;C).
Further generalizations give the isomorphism between the tensor products of the spinorial
vector bundles and the respective tensor products of the vector bundles with the standard fibre
C3 and the structure group SO(3;C) or SO(3;C). This observation enables us to translate the
spinor formalism into the helicity formalism. Consequently, the matrices (Φ AB

a ) and (Φ ȦḂ
ȧ ) are

the soldering objects which connect spinors with respective SO(3;C) (and SO(3;C)) tensors
analogously as the matrices (gAḂµ) given by (2.26) connect the spacetime tensors with cor-
responding spinors. Then the helicity formalism arises as the formalism on the SO(3;C) (and
SO(3;C)) tensor bundles by the isomorphism described above.

We have the following basic correspondences

SAB ←→ Sa =Φa
AB S

AB, SȦḂ ←→ S ȧ =Φȧ
ȦḂ
SȦḂ = Sa (3.19a)

CABCD ←→ Cab =Φ AB
a Φ CD

b CABCD = C(ab) (3.19b)

CȦḂĊḊ ←→ Cȧḃ =Φ ȦḂ
ȧ Φ ĊḊ

ḃ
CȦḂĊḊ = C(ȧḃ) = Cab

CABĊḊ ←→ Caḃ =Φ AB
a Φ ĊḊ

ḃ
CABĊḊ = Cbȧ (3.19c)

R ←→ R. (3.19d)

10
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The exterior covariant differentiation D in the helicity formalism is given by

DΨa1...anȧ1...ȧm
b1...brḃ1...ḃs

=Φa1
A1B1

. . .Φan
AnBn Φ

ȧ1
Ȧ1Ḃ1

. . .Φȧm
ȦmḂm

Φ C1D1
b1

. . .Φ CrDr
br

(3.20)

Φ Ċ1Ḋ1

ḃ1
. . .Φ ĊsḊs

ḃs
DΨA1B1...AnBnȦ1Ḃ1...ȦmḂm

C1D1...CrDrĊ1Ḋ1...ĊsḊs

= dΨa1...anȧ1...ȧm
b1...brḃ1...ḃs

+Γa1c1Ψ
c1...anȧ1...ȧm
b1...brḃ1...ḃs

+ . . .+ΓancnΨ
a1...cnȧ1...ȧm
b1...brḃ1...ḃs

+ Γȧ1ċ1Ψ
a1...an ċ1...ȧm
b1...brḃ1...ḃs

+ . . .+ΓȧmċmΨ
a1...anȧ1...ċm
b1...brḃ1...ḃs

− Γc1b1Ψ
a1...anȧ1...ȧm
c1...brḃ1...ḃs

+ . . .−ΓcrbrΨ
a1...anȧ1...ȧm
b1...crḃ1...ḃs

− Γċ1
ḃ1
Ψa1...anȧ1...ȧm
b1...br ċ1...ḃs

+ . . .−Γċs
ḃs
Ψa1...anȧ1...ȧm
b1...brḃ1...ċs

where Γab and Γȧ
ḃ
are related to the spinorial connection forms ΓAB and Γ

Ȧ
Ḃ
as follows

Γab = 2Φa
ACΦ

CB
b ΓAB, Γ

ȧ
ḃ
= 2Φȧ

ȦĊ
Φ ĊḂ
ḃ

ΓȦḂ = Γab. (3.21)

One can easily check that

ΦaDAΦ
A
b BΦ

BD
c =

1√
2
∈abc . (3.22)

Using (3.22) and employing also (3.3) we rewrite (3.21) as

Γab =
√
2 ∈acb Γc, Γȧḃ =

√
2 ∈ȧċḃ Γ

ċ, Γc =ΦcABΓAB = Γċ. (3.23)

One can easily show that in the orthonormal basis in which (2.26) holds true we have the
following important relation between SAB and Φ AB

a (SȦḂ0a and Φ ȦḂ
ȧ ), a= 1,2,3, ȧ= 1̇, 2̇, 3̇

SAB0a = i
√
2Φ AB

a , SȦḂ0a =−i
√
2Φ ȦḂ

ȧ (3.24)

where SAB and SȦḂ are given by (2.30). Employing (3.24), (2.32) and (2.33) in (3.19b) we
obtain

Cab =−
1
2
SAB0aS

CD
0bCABCD =−(C0a0b+ ∗C0a0b)

Cȧḃ =−
1
2
SȦḂ0aS

ĊḊ
0bCȦḂĊḊ =−(C0a0b−∗C0a0b) . (3.25)

Define the electric part Eab and magnetic part Bab of the free gravitational field represented
by the Weyl tensor Cαβγδ

Eab = C0a0b = E(ab), Bab = i ∗C0a0b = B(ab), a,b= 1,2,3 (3.26)

(compare with [1, 2, 5, 18, 21, 23]). Then (3.25) can be rewritten as

Cab =−Eab+ iBab, Cȧḃ =−(Eab+ iBab) . (3.27)

Note that a decomposition analogous to (3.27) and the statement of relations between space-
time transformations and SO(3;C) transformations have also been done in [4] (see equation
(92.17) and the text below). The 3× 3 matrices (Eab) and (Bab) are real, symmetric and
traceless.

11
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From the spinorial relations [3, 12]

DSAB = dSAB+ΓAC ∧ SCB+ΓBC ∧ SAC = 0

DSȦḂ = dSȦḂ+ΓȦĊ ∧ S
ĊḂ+ΓḂĊ ∧ S

ȦĊ = 0 (3.28)

by (3.19a), (3.20) and (3.23) we obtain

DSa = dSa+Γac ∧Sc = dSa+
√
2 ∈abc Γb ∧Sc = 0

DS ȧ = dS ȧ+Γȧċ ∧S ċ = dS ȧ+
√
2 ∈ȧḃċ Γ

ḃ ∧S ċ = 0. (3.29)

The second Cartan structure equations in spinorial language read

RAB = dΓAB+ΓAC ∧ΓCB =−
1
2
CABCDS

CD+
R
24

SAB+
1
2
CABĊḊS

ĊḊ

RȦḂ = dΓȦḂ+ΓȦĊ ∧Γ
Ċ
Ḃ
=−1

2
CȦḂĊḊS

ĊḊ+
R
24

SȦḂ+
1
2
C Ȧ
CD ḂS

CD (3.30)

where RAB =
1
2
RABµν dx

µ ∧ dxν and RȦ
Ḃ
:=

1
2
RȦ

Ḃµν
dxµ ∧ dxν = RAB are the spinorial curvature

2-forms. In helicity formalism one quickly gets the second Cartan structure equations in the
form

Ra = dΓa+
1√
2
∈abc Γb ∧Γc =−

1
2
CabSb+

R
24
Sa+ 1

2
Ca
ḃ
S ḃ

Rȧ = dΓȧ+
1√
2
∈ȧḃċ Γ

ḃ ∧Γċ =−1
2
C ȧ
ḃ
S ḃ+ R

24
S ȧ+ 1

2
C ȧ
b Sb =Ra (3.31)

whereRa =ΦaABRAB andRȧ =ΦȧȦḂRȦḂ =Ra.
Now the crucial point is to study the Bianchi identities since in the present approach to the

curvature dynamics the Bianchi identities are considered as the field equations. The Bianchi
identities in helicity formalism read

DRa = dRa+
√
2 ∈abc Γb ∧Rc = 0

DRȧ = dRȧ+
√
2 ∈ȧḃċ Γ

ḃ ∧Rċ =DRa = 0. (3.32)

Inserting (3.31) into (3.32) we get

−DCab ∧Sb+
1
12

dR∧Sa+DCa
ḃ
∧S ḃ = 0

−DC ȧ
ḃ
∧S ḃ+ 1

12
dR∧S ȧ+DC ȧ

b ∧Sb = 0. (3.33)

From (2.39) and (3.19c) one finds

Caḃ =−
8πG
c4
Taḃ, Taḃ := Φ AB

a Φ ĊḊ
ḃ

TABĊḊ. (3.34)

12
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Employing also (2.13b) we conclude that the identities (3.33) lead to the following
equations

DCab ∧Sb =
8πG
c4

(
−DT a

ḃ
∧S ḃ+ 1

12
dt∧Sa

)
DC ȧ

ḃ
∧S ḃ = 8πG

c4

(
−DT ȧ

b ∧Sb+
1
12

dt∧S ȧ
)
. (3.35)

Equations (3.35) are the field equations for the curvature dynamics in the helicity formalism.
Note that by (3.20) and (3.23)

DCab = dCab+
√
2 ∈acd ΓcCdb+

√
2 ∈bcd ΓcCad (3.36)

and analogously for other objects of (3.35). Equations (3.35) are the main field equations of
curvature dynamics in helicity formalism. By the relations (3.27), equations (3.35) can be
rewritten in terms of the electric part Eab and the magnetic part Bab of the gravitational field.
Thus our equations (3.35) are the helicity counterparts of the respective equations given in [18,
21]. We show that equations (3.35) are the gravitational analogous of the electromagnetic field
equations. Maxwell equations in the presence of currents jµ are [12]

fµν;ν =
4π
c
jµ, ∗fµν;ν = 0 (3.37)

where fµν =−fνµ is the tensor of electromagnetic fields

fµν =
∂Aν

∂xµ
− ∂Aµ

∂xν
(3.38)

with Aµ denoting the electromagnetic potential vector and

∗fµν =−1
2
i |det(gαβ) |−

1
2 ∈µνγδ fγδ. (3.39)

Simple manipulations show that the first part of the Maxwell equations (3.37) can be equival-
ently written as(

∗f[αβ
)
;γ]

=
4π
3c
i |det(gµν) |

1
2 ∈δαβγ jδ (3.40)

or inserting

∗jαβγ = |det(gµν) |
1
2 ∈δαβγ jδ (3.41)

we get (
∗f[αβ

)
;γ]

=
4π
3c
i ∗ jαβγ . (3.42)

Then the second part of equations (3.37) can be equivalently rewritten in the form

f[αβ;γ] = 0. (3.43)

Adding (3.42) and (3.43) we obtain(
f[αβ + ∗f [αβ

)
;γ]

=
4π
3c
i ∗ jαβγ . (3.44)

13
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Equations (3.44) are equivalent to the Maxwell equations (3.37).
The spinor images of f µν are

fAB = f(AB) =
1
4
S µν
AB fµν

fȦḂ = f(ȦḂ) =
1
4
S µν

ȦḂ
fµν = fAB. (3.45)

The inverse formula reads

fµν =
1
2

(
fABS

AB
µν + fȦḂS

ȦḂ
µν

)
. (3.46)

Hence

fµν + ∗fµν = fABS
AB

µν . (3.47)

Inserting (3.47) into (3.44) one has(
fABS

AB
[αβ

)
;γ]

=
4π
3c
i ∗ jαβγ (3.48)

or

D
(
fABS

AB
)
=

4π
c
i ∗ j, ∗j = 1

3!
(∗jαβγ) dxα ∧ dxβ ∧ dxγ (3.49)

where SAB is the spinor 2-form (2.30).
In helicity formalism we define

fa =Φ AB
a fAB, fȧ =Φ ȦḂ

ȧ fȦḂ = fa. (3.50)

Finally, equation (3.49) in helicity formalism reads

D ( faSa) =
4π
c
i ∗ j. (3.51)

The dotted version of (3.51) has the form

D
(
fȧS ȧ

)
=−4π

c
i ∗ j. (3.52)

Comparing (3.35) with (3.51) and (3.52) we conclude that equations (3.35) can be con-
sidered as the gravitational counterpart of the electromagnetic field equations (3.51) and (3.52).
Moreover, the right hand side of (3.35) plays in gravity the role of the current.

Within our convention the observer of the 4-velocity uµ defines the electric field Ej and
magnetic field Bj as

Ej = fjµu
µ, Bj = i ∗ fjµuµ, j = 1,2,3. (3.53)

Thus for uµ = (1,0,0,0) we get

Ej = fj0, Bj = i ∗ fj0. (3.54)

These identifications justify the definition (3.26) of electric and magnetic parts of the free
gravitational field.

By (3.47) we also get

Ej− iBj = fj0 + ∗fj0 = fABS
AB
j0. (3.55)

Then in an orthonormal basis when (3.24) holds true one obtains

fa =Φ AB
a fAB = i

1√
2
(Ea− iBa) = i Fa, a= 1,2,3 (3.56)

14
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where

F⃗= (F1,F2,F3) =
1√
2

(
E⃗ + i B⃗

)
(3.57)

is the Riemann–Silberstein vector [24–29].
Finally, we are going to rewrite equations (2.49) and (2.50) in terms of the helicity formal-

ism. Multiplying (2.49) by Φ AB
a Φ CD

b , employing (3.3), (3.19a) and (3.19b) we get(
∇µ∇µ +

4πG
c4

T

)
Cab+ 6Φ AB

a Φ CD
b Φc

(ABΦ
d
CD) CceC

e
d

=Φ AB
a Φ CD

b Φc
(ABΦ

d
CD)

2πG
c4
S ϱµ
c S σν

d ∇µ∇νTϱσ (3.58)

where

S ϱµ
c =Φ AB

c S ϱµ
AB .

Using (3.1) and performing straightforward calculations one finds the formula

Φ AB
a Φ CD

b Φc
(ABΦ

d
CD) = δc(aδ

d
b)−

1
3
δabδ

cd. (3.59)

Inserting (3.59) into (3.58) we get(
∇µ∇µ +

4πG
c4

T

)
Cab+ 6

(
CacCcb−

1
3
δab CcdCdc

)
=

2πG
c4

(
S ϱµ
(a S

σν
b) − 1

3
δabScϱµS σν

c

)
∇µ∇νTϱσ. (3.60)

Employing also the relation [12]

ScϱµScσν = SABϱµSABσν = 2δϱµσν − 2i |det(gαβ) |−
1
2 ∈ϱµ••

σν (3.61)

where ∈ϱµ••
σν =∈ϱµκτ gσκgντ , and equation (2.21) we obtain(

∇µ∇µ +
4πG
c4

T

)
Cab+ 6

(
Cac Ccb−

1
3
δab Ccd Cdc

)
=

2πG
c4

(
S ϱµ
(a S

σν
b) ∇µ∇νTϱσ −

2
3
δab∇µ∇µT

)
. (3.62)

The complex conjugation of (3.62) gives the helicity formulation of (2.50) as(
∇µ∇µ +

4πG
c4

T

)
Cȧḃ+ 6

(
Cȧċ C ċḃ−

1
3
δȧḃ Cċḋ C

ḋċ

)
=

2πG
c4

(
S ϱµ
(ȧ S

σν
ḃ)
∇µ∇νTϱσ −

2
3
δȧḃ∇

µ∇µT

)
. (3.63)

It is certainly interesting and important to study further equations (3.35), (3.62) and (3.63)
in order to write them in a more explicit form which will enable us to compare the helicity
approach with the approaches proposed by other authors [18, 21].

We leave this problem for the next work since in the present paper we deal mainly with the
application of curvature dynamics to the linearized gravity.
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4. Linearized gravity

In linearized gravity [4–6] we assume that the spacetime metric gµν has the form of small
perturbation of the Minkowski metric ηµν = diag(−1,1,1,1)

gµν = ηµν + hµν , |hµν | ≪ 1. (4.1)

Then the inverse metric reads

gµν = ηµν − hµν , hµν = ηµϱηνσ hϱσ. (4.2)

In linearized gravity the lowering and rising of tensorial indices is done by ηµν and ηµν ,
respectively.

The connection coefficients (2.2) are now

Γµ
νϱ =

1
2
ηµτ (∂νhϱτ + ∂ϱhντ − ∂τhνϱ) (4.3)

and the Riemann curvature tensor (2.8) reads

Rαβγδ =
1
2
(∂β∂γhαδ + ∂α∂δhβγ − ∂α∂γhβδ − ∂β∂δhαγ) . (4.4)

Coordinate transformations in linearized gravity are of the form

x ′α = xα + ξα, α= 0,1,2,3 (4.5)

where ξα = ξα(xβ) are small real functions. Under the transformation (4.5) we get

g ′
µν = ηµν + h ′

µν , h
′
µν = hµν − ∂µξν − ∂νξµ (4.6)

where ξµ = ηµϱξ
ϱ. Inserting (4.6) into (4.4) one quickly concludes that

R ′
αβγδ = Rαβγδ. (4.7)

Therefore the Riemann curvature tensor in linearized gravity is invariant with respect to the
transformation (4.5). Since the transformation (4.5) of hµν has the form of some gauge trans-
formation we will say that the Riemann curvature tensor is gauge invariant. The same concerns
also the Ricci tensor, the curvature scalar and the Weyl tensor.

The Ricci tensor in linearized gravity reads

Rαβ = Rδ
αβδ =

1
2

{
□hαβ − ∂α∂γ

(
hγβ −

1
2
hδγβ

)
− ∂β∂γ

(
hγα−

1
2
hδγα

)}
(4.8)

where □= ηµν∂µ∂ν = ∂µ∂µ is the d’Alambert operator and h= ηµνhµν . Then the curvature
scalar R= Rα

α has the form

R=□h− ∂α∂βhαβ . (4.9)

Given (4.4), (4.8) and (4.9) we can easily find the traceless Ricci tensor Cαβ and the Einstein

tensorGαβ = Rαβ −
1
2
Rηαβ as functions of hαβ . Bianchi identities (2.16) and (2.19) take now

the form

∂αR
α
βγδ =

16πG
c4

∂[γ Ťδ]β (4.10)

and

∂αC
α
βγδ =

8πG
c4

(
∂[γTδ]β +

1
3
ηβ[γ∂δ]T

)
. (4.11)
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Equations (2.24) in linearized gravity have much simpler forms

□Rαβγδ =
16πG
c4

(
∂α∂[γ Ťδ]β − ∂β∂[γ Ťδ]α

)
(4.12)

and by (2.9), (2.13a) and (2.13b) the linearized equations (2.51) read

□Cαβγδ =
16πG
c4

{
∂α∂[γ Ťδ]β − ∂β∂[γ Ťδ]α

−1
2
□
[(
ηα[γ Ťδ]β − ηβ[γ Ťδ]α

)
+

1
3
Tηα[γηδ]β

]}
. (4.13)

(compare equation (4.12) with equation (44) in [1]).
In spinorial formalism the main equations (2.41) and (2.42) within the linearized gravity

take the form

∂DḊCABCD =−8πG
c4

∂(A|Ė|T
ḊĖ

BC) (4.14)

and

∂DḊCȦḂĊḊ =−8πG
c4

∂E(ȦT
DE
ḂĊ) (4.15)

respectively. Here ∂DḊ = gDḊµ ∂µ.
Then equations (2.49) now read

□CABCD =
2πG
c4

S ϱµ
(AB S σν

CD) ∂µ∂νTϱσ (4.16)

and equations (2.50) lead to the complex conjugate of (4.16)

□CȦḂĊḊ =
2πG
c4

S ϱµ

(ȦḂ
S σν
ĊḊ) ∂µ∂νTϱσ. (4.17)

Then we investigate the helicity formalism in linearized gravity. The field equations (3.35)
now take a simpler form

dCab ∧Sb =
8πG
c4

(
−dT a

ḃ
∧S ḃ+ 1

12
dt∧Sa

)
dC ȧ

ḃ
∧S ḃ = 8πG

c4

(
−dT ȧ

b ∧Sb+
1
12

dt∧S ȧ
)

(4.18)

which can be rewritten as

d

(
Cab−

2πG
3c4

Tδab

)
∧Sb =−8πG

c4
dT a

ḃ
∧S ḃ

d

(
C ȧ
ḃ
− 2πG

3c4
Tδȧ

ḃ

)
∧S ḃ =−8πG

c4
dT ȧ

b ∧Sb. (4.19)

Employing (2.26), (2.30), (3.1), (3.2) and (3.19a) one can find Sa and S ȧ. Inserting the results
into (4.19) and performing straightforward calculations we get the important relations
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∂0Cab = i
∑
c,e

∈ace ∂cCeb−
8πG
c4

{
∂0

(
Tbȧ−

1
12

Tδba

)

+i
∑
c,e

∈ace ∂c
(
Tbė+

1
12

Tδbe

)}
∑
b

∂bCab =−
8πG
c4

∑
b

∂b

(
Taḃ−

1
12

Tδab

)
(4.20)

and their complex conjugate.
Using (3.27) and the obvious relations

ReTaḃ =
1
2

(
Taḃ+ Tbȧ

)
, ImTaḃ =

1
2i

(
Taḃ−Tbȧ

)
, T= T (4.21)

we equivalently rewrite equations (4.20) as

∂0Eab−
∑
c,e

∈ace ∂cBeb =
4πG
c4

{
∂0

(
Taḃ+ Tbȧ−

1
6
Tδab

)
+ i

∑
c,e

∈ace ∂c
(
Tbė−Teḃ

)}

∂0Bab+
∑
c,e

∈ace ∂cEeb =
4πG
c4

{
i∂0

(
Tbȧ−Taḃ

)
−
∑
c,e

∈ace ∂c

(
Tbė+ Teḃ+

1
6
Tδbe

)}
∑
b

∂bEab =
4πG
c4

∑
b

∂b

(
Taḃ+ Tbȧ−

1
6
Tδab

)
∑
b

∂bBab =
4πG
c4

i
∑
b

∂b
(
Taḃ−Tbȧ

)
. (4.22)

If we compare the form of equations (4.22) with the form of Maxwell equations it becomes
quite clear why Eab is called the electric part of the free gravitational field and Bab is the
magnetic part of this field. Finally, one can rewrite equations (4.11) in a similar form to the
equations (4.22). Simple but tedious manipulations in which the symmetry relations Eab = Eba,
Bab = Bba, vanishing of the traces Eaa = 0, Baa = 0 and vanishing of the contraction Cabac = 0
are intensively employed give the following result

∂0Eab−
∑
c,e

∈ace ∂cBeb =
4πG
c4

[
∂bTa0− ∂0

(
Tab−

1
3
Tδab

)]
∂0Bab+

∑
c,e

∈ace ∂cEeb =
4πG
c4

∑
c,e

∈bce ∂c
(
Tea−

1
3
Tδea

)
∑
b

∂bEab =
4πG
c4

[
∂a

(
T00 +

1
3
T

)
− ∂0Ta0

]
∑
b

∂bBab =
4πG
c4

∑
b,c

∈abc ∂bTc0. (4.23)

[Note that the constraint equations given by the third and the forth systems in (4.22) or (4.23)
can be derived from the first and the second systems of evolution equations of (4.22) or (4.23),
respectively].
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5. Curvature dynamics for gravitational radiation in linearized gravity

In this section we deal with the gravitational radiation of a bounded source described by the
energy-momentum tensor Tαβ = Tαβ (⃗r, t) in linearized gravity. Here the curvature dynamics is
determined by the equations (4.10), (4.12) and the Einstein equations (2.12) which we rewrite
in the form

Rαβ =−8πG
c4

Ťαβ . (5.1)

The retarded solution of equation (4.12) reads

Rαβγδ =
4G
c4

ˆ
R3

(
∂ ′
β∂

′
[γ Ťδ]α

(
r⃗ ′, t ′

)
− ∂ ′

α∂
′
[γ Ťδ]β

(
r⃗ ′, t ′

))
t′=t− |⃗r−r⃗ ′|

c

|⃗r− r⃗ ′|
dr⃗ ′ (5.2)

where ∂ ′
β :=

∂

∂x ′β
, . . . etc and ∂ ′

0 :=
1
c

∂

∂t ′
, dr⃗ ′ = dx ′1dx ′2dx ′3. It can be easily shown that the

integration by parts leads to the following relation

ˆ
R3

(
∂ ′
α∂

′
β Ťγδ

(
r⃗ ′, t ′

))
t′=t− |⃗r−r⃗ ′|

c

|⃗r− r⃗ ′|
dr⃗ ′ = ∂α∂β

ˆ
R3

Ťγδ

(
r⃗ ′, t− |⃗r− r⃗

′|
c

)
|⃗r− r⃗ ′|

dr⃗ ′. (5.3)

Employing this relation in (5.2) we get Rαβγδ in the form of (4.4) with

hαβ =
4G
c4

ˆ
R3

Ťαβ

(
r⃗ ′, t− |⃗r− r⃗

′|
c

)
|⃗r− r⃗ ′|

dr⃗ ′. (5.4)

The functions hαβ = hαβ (⃗r, t) are retarded solutions of the equations

□hαβ =−16πG
c4

Ťαβ (5.5)

or, equivalently

□
(
hαβ −

1
2
hηαβ

)
=−16πG

c4
Tαβ , h= hαα. (5.6)

Under (4.4) the equations (4.10) can be rewritten as

∂δ

(
□hβγ +

16πG
c4

Ťβγ

)
− ∂γ

(
□hβδ +

16πG
c4

Ťβδ

)
+ ∂β∂γ

[
∂α

(
hαδ −

1
2
hδαδ

)]
− ∂β∂δ

[
∂α

(
hαγ −

1
2
hδαγ

)]
= 0 (5.7)

and the Einstein equations (5.1) take the form(
□hβδ +

16πG
c4

Ťβδ

)
− ∂β

[
∂α

(
hαδ −

1
2
hδαδ

)]
− ∂δ

[
∂α

(
hαβ −

1
2
hδαβ

)]
= 0. (5.8)

Employing (5.5) in (5.7) and (5.8) we get

∂β∂γ

[
∂α

(
hαδ −

1
2
hδαδ

)]
− ∂β∂δ

[
∂α

(
hαγ −

1
2
hδαγ

)]
= 0 (5.9)
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and

∂β

[
∂α

(
hαδ −

1
2
hδαδ

)]
+ ∂δ

[
∂α

(
hαβ −

1
2
hδαβ

)]
= 0 (5.10)

for β,γ,δ = 0,1,2,3.
Changing in (5.10) the indexβ into γ, then differentiating the equation obtainedwith respect

to xβ and, finally, comparing the results with equation (5.9) one easily concludes that

∂γ∂β∂α

(
hαδ −

1
2
hδαδ

)
= 0

=⇒ ∂β∂α

(
hαδ −

1
2
hδαδ

)
= Aβδ, β,δ = 0,1,2,3 (5.11)

where Aβδ are constants. Since hαδ tends sufficiently fast to zero at spacial infinity we infer
that the constants Aβδ are equal to zero

Aβδ = 0, β,δ = 0,1,2,3. (5.12)

Equation (5.11) imply the relations

□∂α

(
hαδ −

1
2
hδαδ

)
= 0. (5.13)

Consequently, by (5.6) one obtains the differential conservation laws

∂αT
α
δ = 0 (5.14)

It can be quickly shown [4] that employing (5.14) and assuming that the energy-momentum
tensor Tαδ tends to zero at spatial infinity fast enough one gets the relationˆ

R3

Tjk (⃗r, t) d⃗r=
1
2c2

∂2

∂t2

ˆ
R3

T00 (⃗r, t)xjxkd⃗r, j,k= 1,2,3. (5.15)

Contraction of (5.15) with δjk givesˆ
R3

Tjj (⃗r, t) d⃗r=
1
2c2

∂2

∂t2

ˆ
R3

r2T00 (⃗r, t) d⃗r, j,k= 1,2,3 (5.16)

where r2 = x21 + x22 + x23.
To proceed further we will consider the gravitational radiation in vacuum far away from the

sources. Thus we assume that

Tαβ
(
r⃗ ′, t
)
= 0, r ′ > r0, ∀t (5.17)

and we consider the points of the configuration 3-space such that

r≫ r0. (5.18)

Moreover we assume that the velocities of sources are much smaller then the speed of light c.
Then it can be shown that the perturbation of the metric hαδ given by (5.4) can be written in
the following form of asymptotic series (see also [30, 31])

hαδ =
4G
c4r

ˆ
Ťαδ

(
r⃗ ′, t− r

c

)
dr⃗ ′ +

1
c4r2

∞∑
k=0

Y(k)αδ

(
t− r

c

)
rk

+
1
c5r

∞∑
j,k=0

Z( j,k)αδ

(
t− r

c

)
cjrk

. (5.19)

[Remark: The series (5.19) arises as the result of Taylor expansions of Tαδ
(
r⃗ ′, t− |⃗r−r⃗ ′|

c

)
around t− r

c
and

1

|⃗r− r⃗ ′|
around r⃗. We assume that our series is at least asymptotic since one

20



Class. Quantum Grav. 42 (2025) 155005 A Chudecki and M Przanowski

has no strict mathematical proof that this series is convergent. The ‘physical proof’ of such a
convergence lies in the comment that by changing appropriately the ordering of the elements
of the series (5.19) one gets the expansion of hαδ in the multipole fields [30, 31]. We do not
write explicitly the functions Y(k)αδ(t−

r
c ) and Z

( j,k)
αδ (t− r

c ) since we will consider further the

terms standing at
1
c4r

].

Employing the relations (5.15) and (5.16) one gets

hil =
2G
3c4r
D̈il
(
t− r

c

)
+ δil

G
c4r

{
2
ˆ
R3

T00
(
r⃗ ′, t− r

c

)
dr⃗ ′− 1

3c2

ˆ
R3

r ′2T̈00
(
r⃗ ′, t− r

c

)
dr⃗ ′
}

+
1
c4r2

∞∑
k=0

Y(k)il
(
t− r

c

)
rk

+
1
c5r

∞∑
j,k=0

Z( j,k)il

(
t− r

c

)
cjrk

, i, l= 1,2,3 (5.20)

hi0 =
4G
c4r

ˆ
R3

Ti0
(
r⃗ ′, t− r

c

)
dr⃗ ′ +

1
c4r2

∞∑
k=0

Y(k)i0
(
t− r

c

)
rk

+
1
c5r

∞∑
j,k=0

Z( j,k)i0

(
t− r

c

)
cjrk

, i = 1,2,3

h00 =
G
c4r

2
ˆ
R3

T00
(
r⃗ ′, t− r

c

)
dr⃗ ′ +

ˆ
R3

r ′2
T00
(
r⃗ ′, t− r

c

)
c2

dr⃗ ′


+

1
c4r2

∞∑
k=0

Y(k)00

(
t− r

c

)
rk

+
1
c5r

∞∑
j,k=0

Z( j,k)00

(
t− r

c

)
cjrk

where

Dil
(
t− r

c

)
=

1
c2

ˆ
R3

(
3x ′i x

′
l − δilr

′2)T00(r⃗ ′, t− r
c

)
dr⃗ ′ (5.21)

is the quadruplemoment of the gravitational sources and the overdot ‘·’ stands for the derivative
with respect to the time t.

In TT-gauge [4–6] we have

h(TT)00 = 0, h(TT)i0 = 0, h(TT)ii = 0, ∂lh
(TT) l

i = 0. (5.22)

Therefore we are left in the TT-gauge with h(TT)il , i, l= 1,2,3, only and in that gauge we get

h(TT)il = P m
i hmnP

n
l−

1
2
Pil (P

mnhmn)

Pmn = δmn− emen, em =
xm
r
. (5.23)
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Inserting into (5.23) the first equality of (5.20) one quickly obtains

h(TT)il =
2G
3c4r
D̈(TT)
il

+
1
c4r

(
P m
i P

n
l−

1
2
PilP

mn

)1
r

∞∑
k=0

Y(k)mn
(
t− r

c

)
rk

+
1
c

∞∑
j,k=0

Z( j,k)mn
(
t− r

c

)
cjrk

 (5.24)

where

D̈(TT)
il = P m

i D̈mn
(
t− r

c

)
Pnl−

1
2
Pil
(
PmnD̈mn

(
t− r

c

))
. (5.25)

Finally, assuming that we consider the point very far away from the sources r≫ r0 and assum-
ing also that the velocities of the sources are very small compared to the speed of light c one
finds

h(TT)il ≈ 2G
3c4r

(
P m
i P

n
l −

1
2
PilP

mn

)
D̈mn

(
t− r

c

)
=

2G
3c4r
D̈(TT)
il . (5.26)

Now we are at the position to consider the electric Eil and magnetic Bil parts of the free
gravitational field far away from the sources. Since at such a point Cαβγδ = Rαβγδ one can
rewrite (3.26) as

Eil = R0i0l, Bil = i ∗R0i0l, i, l= 1,2,3. (5.27)

The first of that equations in linearized gravity reads (see (4.4))

Eil =
1
2
(∂0∂ih0l+ ∂0∂lh0i− ∂0∂0hil− ∂i∂lh00) . (5.28)

The one of advantages of using the curvature variables instead of the metric ones is the inde-
pendence of the curvature from the gauge. Consequently we can equivalently write (5.28) in
the TT-gauge defined by (5.22). Thus we get (compare with [5])

Eil =−
1
2c2

ḧ(TT)il . (5.29)

Inserting (5.24) into (5.29) one obtains

Eil =−
G

3c6r

....
D (TT)

il

− 1
2c6r

(
P m
i P

n
l −

1
2
PilP

mn

)1
r

∞∑
k=0

Ÿ(k)mn
(
t− r

c

)
rk

+
1
c

∞∑
j,k=0

Z̈( j,k)mn
(
t− r

c

)
cjrk

 . (5.30)

Finally, within the approximation (5.26) we have

Eil (⃗r, t)≈−
G

3c6r

....
D (TT)

il

(⃗
r, t− r

c

)
=− G

3c6r

(
P m
i P

n
l −

1
2
PilP

mn

)
....
Dmn

(
t− r

c

)
(5.31)

and the metric h(TT)il can be expressed as

h(TT)il (⃗r, t) =−2c2
ˆ

dt
ˆ
Eil (⃗r, t)dt (5.32)
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The magnetic part Bil reads

Bil = i ∗R0i0l =−
1
2
∈imn Rmn0l =

1
2c
∈imn

∂ḣ(TT) nl
∂xm

=
1
2c
∈mn(i

∂ḣ(TT) nl)
∂xm

(5.33)

[Remark: To get the last equality in (5.33) we used the symmetry of Bil, Bil = Bli].
Substituting (5.24) into (5.33) one gets

Bil (⃗r, t)≈−
G

3c6r
∈mn(i

....
D (TT) n

l) e
m. (5.34)

From (5.31) and (5.34) by straightforward calculations we find that

EilE il = BilBil
(ˆ
Eil (⃗r, t)dt

)(ˆ
E il (⃗r, t)dt

)
=

(ˆ
Bil (⃗r, t)dt

)(ˆ
Bil (⃗r, t)dt

)
=

1
4c4

ḣ(TT)il (⃗r, t) ḣ(TT)il (⃗r, t) . (5.35)

To find the energy flux for the gravitational radiation in linearized gravity we employ the
Landau—Lifschitz pseudotensor [4] tµν

tµν =− c4

16πGg

{
∂ϱ
(√
−ggµν

)
∂σ
(√
−ggϱσ

)
− ∂ϱ

(√
−ggµϱ

)
∂σ
(√
−ggνσ

)
(5.36)

+
1
2
gµνgϱσ∂δ

(√
−ggϱτ

)
∂τ (
√
−ggδσ)

−
[
gµϱgστ∂δ

(√
−ggντ

)
∂ϱ
(√
−ggσδ

)
+ gνϱgστ∂δ

(√
−ggµτ

)
∂ϱ
(√
−ggσδ

)]
+ gϱσg

τδ∂τ
(√
−ggµϱ

)
∂δ
(√
−ggνσ

)
+

1
8
(2gµϱgνσ − gµνgϱσ)(2gτδgβγ − gδβgτγ)∂ϱ

(√
−ggτγ

)
∂σ
(√
−ggδβ

)}
.

In the TT-gauge in linearized gravity we get the energy flux vector from (5.36) as

cti0 =− c4

32πG
∂h(TT)mn

∂xi
ḣ(TT)mn, i = 1,2,3. (5.37)

Employing (5.26) and (5.32) one finds

cti0 =
G

72π c5r2
...
D

(TT)
mn

...
D

(TT)mn
ei

=
c7

8πG

(ˆ
Emn (⃗r, t)dt

)(ˆ
Emn (⃗r, t)dt

)
ei. (5.38)

Using also (5.35) we can rewrite equation (5.38) in more symmetric form

cti0 (⃗r, t) =
c7

16πG

{ˆ
Emn (⃗r, t)dt ·

ˆ
Emn (⃗r, t)dt

+

ˆ
Bmn (⃗r, t)dt ·

ˆ
Bmn (⃗r, t)dt

}
ei. (5.39)

Consequently, the instantaneous power carried by the gravitational radiation in linearized
gravity reads
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L=

ˆ
r=R0

cti0 (⃗r, t)dSi

=
c7

16πG

ˆ
r=R0

{ˆ
Emn (⃗r, t)dt ·

ˆ
Emn (⃗r, t)dt+

ˆ
Bmn (⃗r, t)dt ·

ˆ
Bmn (⃗r, t)dt

}
eidSi (5.40)

where R0≫ r0. Employing again (5.35) and then (5.31) one easily gets

L=
c7

8πG

ˆ
r=R0

(ˆ
Emn (⃗r, t)dt

)(ˆ
Emn (⃗r, t)dt

)
R2
0 dΩ

=
G

72π c5

ˆ {
...
Dil
(
t− R0

c

) ...
D
il (
t− R0

c

)
− 2
(
el
...
D

l
i

(
t− R0

c

))(
em

...
D
im (

t− R0
c

))
+
1
2
eielemen

...
D
il (
t− R0

c

) ...
D
mn (

t− R0
c

)}
dΩ

=
G

72π c5

(
4π − 2 · 4π

3
+

1
2
· 4π
15
· 2
)
...
Dil
(
t− R0

c

) ...
D
il (
t− R0

c

)
=

G
45π c5

...
Dil
(
t− R0

c

) ...
D
il (
t− R0

c

)
. (5.41)

Equation (5.41) is of course the well known result in linearized gravity [4, 5]. Note, that dΩ
in (5.41) stands for the solid angle dΩ= sinθdθdϕ.

6. On Białynicki-Birula formula for gravitational energy in linearized gravity

Białynicki-Birula in his distinguished and inspiring paper [2] defines the gravitational energy
in vacuum in linearized theory as

EG =
c4

32π2G

ˆ Eil (⃗r)E il
(
r⃗ ′
)
+Bil (⃗r)Bil

(
r⃗ ′
)

|⃗r− r⃗ ′|
d⃗rdr⃗ ′. (6.1)

This formula was further investigated by Smołka and Jezierski [32] and they have proved that

the gravitational energy given by the analogous formula as in (6.1) but with the factor
c4

64π2G

instead of
c4

32π2G
in the case of localized initial data is equal to the Jezierski—Kijowski energy

of linearized gravitational field [33]. In the present section we show that by taking the factor
c4

64π2G
instead of

c4

32π2G
before the integral in (6.1) one gets the gravitational energy of

linearized gravitational radiation in vacuum equal to the energy calculated with the use of
Landau–Lifschitz or Einstein energy-momentum pseudotensors. This result was previously
communicated in [23] without giving a proof there.

To this end we first rewrite (6.1) in the general form

EG = α

ˆ Eil (⃗r, t)E il
(
r⃗ ′, t
)
+Bil (⃗r, t)Bil

(
r⃗ ′, t
)

|⃗r− r⃗ ′|
d⃗rdr⃗ ′ (6.2)

where α is some positive parameter which is to be found.
From (3.26), (4.13) and (4.23) one infers that in vacuum the following equations are fulfilled

∂lE il = 0, ∂lBil = 0 (6.3)
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and

□Eil = 0, □Bil = 0. (6.4)

We consider the solutions of equations (6.4) as the superpositions of the plane wave solutions

Eil (⃗r, t) =
ˆ

d⃗k

(2π)3

{
Ẽ−il
(⃗
k
)
exp
{
i
(⃗
k · r⃗−ωt

)}
+ Ẽ+il

(⃗
k
)
exp
{
−i
(⃗
k · r⃗−ωt

)}}
=

ˆ
d⃗k

(2π)3
Ẽil
(⃗
k, t
)
exp
{
i k⃗ · r⃗

}
(6.5)

and

Bil (⃗r, t) =
ˆ

d⃗k

(2π)3

{
B̃−il
(⃗
k
)
exp
{
i
(⃗
k · r⃗−ωt

)}
+ B̃+il

(⃗
k
)
exp
{
−i
(⃗
k · r⃗−ωt

)}}
=

ˆ
d⃗k

(2π)3
B̃il
(⃗
k, t
)
exp
{
i k⃗ · r⃗

}
(6.6)

where

Ẽil
(⃗
k, t
)
= Ẽ−il

(⃗
k
)
exp{−iωt}+ Ẽ+il

(
−k⃗
)
exp{iωt}

B̃il
(⃗
k, t
)
= B̃−il

(⃗
k
)
exp{−iωt}+ B̃+il

(
−k⃗
)
exp{iωt}

and ω = ck, k= |⃗k|.
From the fact that Eil(⃗r, t) and Bil(⃗r, t) are real functions one quickly gets the relations

Ẽ+
il

(⃗
k
)
= Ẽ−

il

(⃗
k
)
, Ẽil

(⃗
k, t

)
= Ẽil

(
−k⃗, t

)
, B̃+

il

(⃗
k
)
= B̃−

il

(⃗
k
)
, B̃il

(⃗
k, t

)
= B̃il

(
−k⃗, t

)
. (6.7)

Inserting (6.5) and (6.6) into (6.2), performing the respective integration and employing
also (6.7) we obtain

E= 4πα
ˆ

d⃗k

(2π )3 k2

(
Ẽil
(⃗
k, t
)
Ẽ il
(⃗
k, t
)
+ B̃il

(⃗
k, t
)
B̃il
(⃗
k, t
))

. (6.8)

According to (5.5) the perturbation of the metric hµν in vacuum fulfills the wave d’Alambert
equation. Therefore we represent hµν (⃗r, t) as a superposition of the plane wave solutions

hµν (⃗r, t) =
ˆ

d⃗k

(2π)3

{
h̃−µν

(⃗
k
)
exp
{
i
(⃗
k · r⃗−ωt

)}
+ h̃+µν

(⃗
k
)
exp
{
−i
(⃗
k · r⃗−ωt

)}}
=

ˆ
d⃗k

(2π)3
h̃µν

(⃗
k, t
)
exp
{
i k⃗ · r⃗

}
(6.9)

where

h̃µν
(⃗
k, t
)
:= h̃−µν

(⃗
k
)
exp{−iωt}+ h̃+µν

(
−k⃗
)
exp{iωt} .

Since all the functions hµν (⃗r, t) are real we find the relations analogous to (6.7)

h̃+µν
(⃗
k
)
= h̃−µν

(⃗
k
)
, h̃µν

(⃗
k, t
)
= h̃µν

(
−k⃗, t

)
. (6.10)
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For gravitational field in vacuum one can choose the transverse-traceless gauge (the TT-gauge)
defined by (5.22) [5]. In that gauge the relation (5.29) holds true and substituting (6.5) and (6.9)
into (5.29) we get

Ẽil
(⃗
k, t
)
=

ω2

2c2
h̃(TT)il

(⃗
k, t
)
. (6.11)

Analogously, inserting (6.6) and (6.9) into (5.33) one obtains

Bil
(⃗
k, t
)
=− ω

2c

{
∈mn(i h̃

(TT)−
l)m

(⃗
k
)
· kn exp{−iωt}

− ∈mn(i h̃
(TT)+
l)m

(
−k⃗
)
· kn exp{iωt}

}
. (6.12)

Substituting (6.11) and (6.12) into (6.8), using also the fact that equations (5.22) and (6.9)
imply the relations

kl h̃(TT)−il

(⃗
k
)
= 0, kl h̃(TT)+il

(⃗
k
)
= 0 (6.13)

we obtain

E= 2πα
ˆ

d⃗k

(2π)3
ω2

c2

{
h̃(TT)−il

(⃗
k
)
· h̃(TT)−il

(⃗
k
)
+ h̃(TT)+il

(⃗
k
)
· h̃(TT)+il

(⃗
k
)}

= 4πα
ˆ

d⃗k

(2π)3
ω2

c2
h̃(TT)−il

(⃗
k
)
· h̃(TT)−il

(⃗
k
)
. (6.14)

From (6.14) one quickly concludes that the B–B gravitational energy is independent of time.
Now we compare the result (6.14) with the gravitational energy in linearized gravity as cal-

culated with the use of the Landau–Lifschitz pseudotensor tµν given by (5.36). Using in (5.36)
the TT-gauge and performing simple manipulations one finds

t00 =
c4

16πG

{
1
2
η00 ∂δh

(TT) τ
σ · ∂τh(TT)δσ +

1
2c2

ḣ(TT)δβ · ḣ
(TT)δβ

−1
4
η00 ∂ϱh

(TT)
δβ · ∂

ϱh(TT)δβ
}

=
c4

16πG

{
1
4c2

(
ḣ(TT)il · ḣ(TT)il− ḧ(TT)il · h(TT)il

)
+
1
4
∂l
(
∂lh

(TT)
im · h(TT)im− ∂mh

(TT)
il · h(TT)im

)}
. (6.15)

Neglecting in (6.15) the last term being a space divergence we get the gravitational energy in
linearized gravity within the Landau–Lifschitz formalisms as

E(LL) =
c2

64πG

ˆ {
ḣ(TT)il (⃗r, t) · ḣ(TT)il (⃗r, t)− ḧ(TT)il (⃗r, t) · h(TT)il (⃗r, t)

}
d⃗r. (6.16)

Inserting into (6.16) the Fourier expansion (6.9) and employing (6.10) one finally gets
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E(LL) =
c4

32πG

ˆ
d⃗k

(2π)3
ω2

c2

{
h̃(TT)−il

(⃗
k
)
· h̃(TT)−il

(⃗
k
)
+ h̃(TT)+il

(⃗
k
)
· h̃(TT)+il

(⃗
k
)}

=
c4

16πG

ˆ
d⃗k

(2π)3
ω2

c2
h̃(TT)−il

(⃗
k
)
· h̃(TT)−il

(⃗
k
)
. (6.17)

Comparing this with (6.14) we conclude that

E= E(LL) ⇐⇒ α=
c4

64π2G
. (6.18)

This is exactly what we wanted to prove.
Analogously one can show that the gravitational energy of the linearized gravitational field

in vacuum calculated with the use of the Einstein energy-momentum pseudotensor [4, 34] is
equal to E(LL) given by (6.17) and also to E defined by (6.2) for α given by (6.18).

[This last statement is in the full agreement with the results of [35] for a weak gravitational
wavewhich prove that in this case the Einstein, Landau–Lifschitz and other energy-momentum
pseudotensors in the TT-gauge give identical results for the density of gravitational energy].

Motivated by the Białynicki-Birula formula for the gravitational energy by the formula for
the super-Poynting vector given by equation (41) in [21]) and by the definition of momentum
in [22] we propose the following formula for the momentum of linearized gravitational field

Pi = α ′
ˆ ∈ilm E n

l (⃗r, t) Bmn
(
r⃗ ′, t
)

|⃗r− r⃗ ′|
dr⃗ ′d⃗r (6.19)

where α ′ is a parameter which is to be chosen so that

Pi = Pi(LL) =
1
c

ˆ
(−g) ti0 (⃗r, t) d⃗r. (6.20)

where Pi(LL) is the momentum of linearized gravitational field calculated for the Landau–
Lifschitz pseudotensor (5.36) in the TT-gauge. Using the TT-gauge (5.22) in (6.20) with (5.36)
one gets

Pi(LL) =
c2

32πG

ˆ {
−ḣ(TT)mn (⃗r, t)∂ih(TT)mn (⃗r, t)

+∂m

(
2h(TT)il (⃗r, t) · ḣ

(TT)lm (⃗r, t)
)}

d⃗r. (6.21)

Neglecting the last term of (6.21) being a space divergence, inserting (6.9) into (6.21) and
employing also (6.10) we obtain

Pi(LL) =
c3

32πG

ˆ
d⃗k

(2π)3
ki
ω

c

{
h̃(TT)−mn

(⃗
k
)
· h̃(TT)−mn

(⃗
k
)
+ h̃(TT)+mn

(⃗
k
)
· h̃(TT)+mn

(⃗
k
)}

=
c3

16πG

ˆ
d⃗k

(2π)3
ki
ω

c

{
h̃(TT)−mn

(⃗
k
)
· h̃(TT)−mn

(⃗
k
)}

. (6.22)

Then substituting (6.5) and (6.6) into (6.19), performing the integration and using also (6.7)
one gets

Pi = 4πα ′
ˆ

d⃗k

(2π)3 k2
∈ilm Ẽln

(⃗
k, t
)
· B̃ n

m

(⃗
k, t
)
. (6.23)
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Employing (6.11) and (6.12) in (6.23) and using also (6.10) and (6.13) we finally find

Pi = πα ′
ˆ

d⃗k

(2π)3
ki
ω

c

{
h̃(TT)−mn

(⃗
k
)
· h̃(TT)−mn

(⃗
k
)
+ h̃(TT)+mn

(⃗
k
)
· h̃(TT)+mn

(⃗
k
)}

= 2πα ′
ˆ

d⃗k

(2π)3
ki
ω

c
h̃(TT)−mn

(⃗
k
)
· h̃(TT)−mn

(⃗
k
)
. (6.24)

Thus one quickly concludes that the equality (6.20) in linearized gravity holds true iff

α ′ =
c3

32π2G
. (6.25)

Gathering, we find that from (6.17), (6.18) and (6.11) the energy of a gravitational wave
in vacuum in linearized theory can be expressed in terms of the electric part of gravitational
field as

E=
c4

4πG

ˆ
d⃗k

(2π)3 k2

3∑
i,l=1

|Ẽ−il
(⃗
k
)
|2. (6.26)

Analogously, momentum of this gravitational wave given by (6.24) with (6.25) can be written
in the form

Pi =
c3

4πG

ˆ
d⃗k

(2π)3 k2

3∑
l,m=1

|Ẽ−lm
(⃗
k
)
|2 k

i

k
. (6.27)

Therefore, one concludes that both E and Pi are given by the Fourier transform Ẽ−lm (⃗k) of the
electric part of gravitational field.

For example, consider the pp-wave in vacuum of the metric [31, 36]

ds2 =−(1+H)
(
dx0
)2

+ 2Hdx0dx3 +
(
dx1
)2

+
(
dx2
)2

+(1−H)
(
dx3
)2

(6.28)

where H= H(x0− x3,x1,x2) satisfies the Laplace equation

H,11 +H,22 = 0 (6.29)

where comma stands for the partial derivatives with respect to the appropriate coordinates.
From (6.28) one quickly infers that

h00 =−H, h03 = h30 = H, h33 =−H (6.30)

and remaining hαβ are equal to zero. Inserting (6.30) into (5.28) we get the nonvanishing Eil
given by

E11 =
1
2
H,11, E12 = E21 =

1
2
H,12, E22 =

1
2
H,22. (6.31)

Analogously for Bil given by (5.27) with (4.4) and (6.30) one obtains

B11 =−
1
2
H,12, B12 = B21 =−

1
2
H,22 =

1
2
H,11, B22 =

1
2
H,12 (6.32)

and the remaining components of Bil vanish. The spacetime is flat when

H2
,11 +H2

,22 +H2
,12 = 0 (6.33)

otherwise this is a pp-wave of the Petrov-Penrose type N. However, since the function H(x0−
x3,x1,x2) is harmonic with respect to (x1,x2) and cannot fulfill equation (6.33) for the case
of pp-wave, by the Liouville theorem it must be unbounded. This in consequence leads the
conclusion that the integrals (6.26) and (6.27) are divergent.
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To get more positive result we put

E−il
(⃗
k
)
=

(
Π m
i Πn

l−
1
2
ΠilΠ

mn

)
Wmn (k) e

−Ak2 (6.34)

whereΠil = k2δil− kikl,Wmn(k) =Wnm(k) are some polynomials of k and A= const> 0. One
quickly finds that (compare with (5.23))

Ẽ−il
(⃗
k
)
kl = 0,

3∑
i=1

Ẽ−ii
(⃗
k
)
= 0 (6.35)

and the functions E−il (⃗k) belong to the Schwartz space. Then the energy (6.26) and the
momentum (6.27) are well defined. Moreover, by (6.11) and (6.10) we have

h̃(TT)−il

(⃗
k
)
=

2
k2
Ẽ−il
(⃗
k
)
= h(TT)+il

(⃗
k
)
. (6.36)

Finally, one obtains

h̃(TT)il

(⃗
k, t

)
=

2
k2

(
Ẽ−
il

(⃗
k
)
exp{−iωt}+ Ẽ−

il

(
−k⃗

)
exp{iωt}

)
=

2
k2

(
Π m
i Πn

l−
1
2
ΠilΠ

mn
)(

Wmn (k)exp{−iωt}+Wmn (k)exp{iωt}
)
e−Ak2 . (6.37)

Inserting (6.37) into (6.9) we get the respective metric h(TT)il (⃗r, t) of the gravitational wave in
the TT-gauge.

7. Concluding remarks

In this work we have presented the curvature and conformal curvature dynamics developed
by van Holten [1] in the spinorial and then helicity formalisms. In our opinion especially the
helicity formalism in the form considered by Plebański [3] provides one with a useful and
natural language since in that formalism the electric and magnetic parts arise in a natural way
as the real and imaginary, respectively, parts of the ‘helicity image’ of the Weyl tensor (see
equation (3.27) of this paper), and the transformation rules founded on the structure group
SO(3;C) are directly included. Therefore of a great interest should be a comparison of the
‘helicity approach’ with other approaches considered for example in [18, 21]. We are going to
deal with this issue in the next work. In the current work we apply the general results to the
much simpler problem i.e. to the linearized gravitational radiation.
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