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Abstract

Tensorial, spinorial and helicity formalisms of the curvature and conformal
curvature dynamics are developed. Equations of linearized gravity within that
formalisms are given. Gravitational radiation in linearized gravity in terms of
curvature dynamics is investigated. Equivalence of the Biatynicki-Birula for-
mula for the gravitational energy in linearized gravity and the Landau-Lifschitz
formula is proved. Analogous result is found for the momentum in linearized
gravity.
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1. Introduction

In this work we adopt and develop in some directions the idea presented by van Holten in his

distinguished paper [1] which can be summarized in his own words as: ‘However, the relat-
ive acceleration between local inertial frames at different points in space at different times
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is encoded in the space-time curvature and cannot be eliminated by any choice of reference
frame. Therefore, an essential description of gravitational is to be cast in terms of the dynamics
of curvature’. To realize this programme, we deal with the general curvature and conformal
curvature dynamics in tensorial, spinorial and helicity formalisms and then we employ the res-
ults obtained to the case of linearized theory of weak gravitational radiation. Although the most
of results are well known from the papers and textbooks on general relativity the presentation
of those results in terms of the curvature variables gives a new insight into theory of gravit-
ation. To confirm the last statement it is worth quoting the words from an inspiring work by
Biatynicki-Birula [2]: ‘I have shown that the quantization of the linearized gravitational field
that employs only the Riemann tensor (and not the metric tensor) can be achieved without any
reference to the canonical formalism. In this approach the complications arising in the process
of extracting true degrees of freedom never appear’.

Our paper is organized as follows. In section 2 we find the main equations describing the
curvature and conformal curvature dynamics within the tensorial and spinorial formalisms.
These equations are derived from the Bianchi identities and from the Einstein equations. In
section 3 the same equations are investigated in terms of Plebanski’s helicity formalism [3]
and the gravito-electromagnetism. The close analogy between gravity and electromagnetism
is carefully studied in the helicity formalism language. The equations obtained in sections 2
and 3 are then specified to the case of linearized gravity in section 4. Section 5 is devoted to
the theory of gravitational radiation in linearized gravity. We investigate this theory in terms
of the curvature dynamics employing the electric and magnetic parts of free gravitational field
considered in sections 3 and 4. In particular equations (5.39), (5.40) and (5.41) give the power
carried by the gravitational radiation in linearized gravity. Equation (5.41) presents a well
known result [4-6]. Finally, in section 6 we prove that the Biatynicki-Birula formula for grav-
itational energy in vacuum in linearized gravity expressed purely with the use of electric and
magnetic parts of free gravitational field [2] leads to the same result on gravitational energy
as the Landau-Lifschitz pseudotensor and the Einstein pseudotensor if the appropriate factor

A
6472G
the momentum of gravitational field in terms of the electric and magnetic parts of this field.

is assumed in that formula. Analogous considerations are done for the formula defining

2. Curvature and Weyl curvature dynamics: tensorial and spinorial formalism

We deal with a spacetime equipped with the metric

ds* = g, A" @dx", g, = guu, 1,v=0,1,2,3 (2.1)

of signature (— 4+ ++). The Levi-Civita connection coefficients read
1

rh,=T%, = 5g‘” (Ov8or + 0p8ur — 0-8up) (2.2)
where g#7 is, as usually, the tensor inverse to g,,-

gul/gyg = 65 (2.3)

0 . .

and 0, := W For a definition of the curvature tensor R%, ; we assume the convention

R%.s = 0, ['%s — 0s'G., + FO/:WF#,@& — FCL(SF“M. (2.4)

Under such a convention the commutator of covariant derivatives reads

[V, Vs]v® =v’R%. 5. (2.5)
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Then the Ricci tensor and the curvature scalar are given as

RB“/ = aﬁ’yoﬂ RﬁV :R’Yﬁ (26)
and

R=R’ 2.7)

respectively. The Riemann curvature tensor is defined as

1
Raﬁ'yé = ga,uRMg—y(; = E (aﬁa'ygaé + aaaégﬁ'y - aaa’ygﬁé - aﬁaéga'y)
+ g (F"BWF”M - 51“”M) . 2.8)

Then the Weyl tensor (Weyl curvature tensor, the Weyl conformal tensor) is given by the for-
mula

1
Can& = Ran& + = (ga'ycﬁé +g55Ca'y - gﬁ’ycaﬁ - gaécﬁv)

2
R
+ E (ga’ygﬁ5 _gaégﬁ’y) (29)
where
1
Cag = Rag — ZgaﬁR (2.10)
stands for the traceless Ricci tensor
ce,=0. (2.11)
With the use of (2.10) the Einstein equations read
1 8T G
Raﬁ_ERgaﬁ:_ic“ Top (2.12)

where T3 is the energy-momentum tensor (G is the gravitational constant and ¢ denotes the
speed of light) can be rewritten as

8T G 1
Cop=—"3~ (Taﬂ 7 gaﬁ) (2.13a)
87G
R="2T1, T=T%. (2.13b)
C

The crucial role in the curvature and Weyl curvature dynamics is played by the Bianchi
identities. In standard form they read

Raﬁhé;g] =0 (2.14)

where the square bracket [...] stands for the anti-symmetrization and the symbol ‘.,” means
the covariant derivative, ., = V,. Contraction with respect to o and o gives (see (2.6))

R% 510 = 2R @.15)

One can show that the identities (2.15) are equivalent to (2.14). Employing the Einstein field
equations (2.12) and (2.13b) we write (2.15) in the form

3
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o _ 16m G 7
B8 e B3]

. 1
TB’Y = Tﬁ’y — ETgﬁ,y (216)

Equivalently, using (2.9) and (2.10) one can rewrite the Bianchi identities (2.15) in terms of
the Weyl tensor as [7-9]

o 1
Brsia = Colvie) T 15 880 Rsal (2.17)
or
1
“roia = Colyio) T 3880 C0 (2.18a)
1
Ba = ZR;Q. (2.18b)
Inserting (2.13a) and (2.13b) into (2.17) we obtain
o &G 1
Brsia = T (Tﬁh;él - 38ﬂhT;6J> : (2.19)
Using in (2.19) the well known relation
5 =0 (2.20)

one quickly gets the matter equations
7.5 =0. @21)

Acting on (2.14) with the operator g7¢V , we get

VQVQRQBWS + VQV5R023 Q»y + v@vvRaﬁég
= VQVQRQBA{(; + VQV(;RQV% - VQVWRQ(;(’B =0. (2.22)

Employing the general formula of the commutators [V, Vs]R? % and [V, V,,|R%, which
follow from (2.5) and then using (2.16), Einstein’s equations (2.12) and algebraic properties
of the curvature tensor we rewrite (2.22) as

167G /- . .
VeV Rapys = T4 (T'y[a;ﬁ]5 ~ Tsjasp)y + Tuthts]w)

+ 2RW95R5“"{/ — ZRQMQVRB“% - Ra,BMR”i(;- (2.23)
Taking into account that R, 35 = Rysq3 One can write (2.23) in another form [1]
871G . - . .
VOV oRapns =~ (Tays(se) + Toostam) — Tas(sn) — Tovitas)
TR 5+ Tu[w”ﬁs]m)
+2RWQ5RB“‘; - ZRWMRB’“;S —Ra[gwR“ié (2.24)

where the bracket (...) means the symmetrization. Inserting into (2.24) R,pg~s calculated
from (2.9) we obtain the equation for V¢V ,C,3,s (this equation is rather involved (see [1],
equation (21)) and we are going to consider it a little further (see equation (2.52))).

4
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The main object which enables to move to the spinorial formalism is the spinorial 1-form
(the soldering form) [10—13]

gl =g v, A=12B=1.2 (2.25)

We assume that in locally Galilean coordinate system the matrices (gAB#), w=0,1,2,3 take
the form

@-[C0 )0 ()G ) e

[Important remark: Note that g*5 in the present paper is equal to g/*t in Plebanski’s
monograph [12]. Consequently to compare our formulae with the respective formulae of [12]
one must put 0 — 4].

The tensorial indices are to be manipulated with the use of g,,,, or g#” and the spinorial
indices according to the rules

XA = GBA XB;> XA = €AB XB7 A7B: 172

=i xa=€a Xt A B= 1,2 (2.27)
where the antisymmetric spinors €4, €5, 4B and EAB are defined as

(€an) = (€%°) = (€4s) = (eAB) = ( 1 0 ) : (2.28)
Recall that transformation of spinorial objects is given by

IAA __jA jA —1F ;—1F g,EE
v BB_lElEl gl B\Il i

(1) € SL(2:C), 1 =Py, 17 L =170 7' BB, = oF (2.29)

where overbar denotes the complex conjugation. Define the following spinorial 2-forms

SAB ESABW Ak A dy” = 5 €15 AN gBB = §(AB)
S4B — §AB — ESABW ' A dx” = > Exp g N BB = sUB) (2.30)

With the use of these objects one defines the spinorial images of the Weyl tensor as

Capcp = 16 SABa’B SCDMS Capys = Cacp)
i 1 af v¥é
Canep = Caeo = 1768535 Sepy - Canvs = Clagep): (2.31)

The inverse relation to (2.31) reads

1 | .
Capys = ZSABaﬁ SCDws Capcp + ZSABag SCDA,(S Ciseh- (2.32)
Then one can show the useful relation
1 1 .. ..
*Capys = ZSABQB SCDya Capep — ZSABag SCDM; Ciichd (2.33)

where the Hodge x-operation is defined by

1. ”
#Cagys = 5i/1det(8w)| €apor €57 (2.34)

5
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Bianchi identities in spinorial formalism read [9, 12, 13]

VPP Capep + V(4 Cyel = 0 (2.35a)

VP Casen+ V40 sy =0 (2.35b)

VEC, g + %VA-CR =0 (2.35¢)
where

Cased = %gA'c“ 85> Cuv = Ciapyen = Cap(én) (2.36)

is the spinorial image of the traceless Ricci tensor C,,,, and
vAB _ gABM V. (2.37)

One can easily prove that the identities (2.35a) or their complex conjugate (2.35b) are equi-
valent to the identities (2.18a), and the identities (2.35¢) are equivalent to (2.18b).
Inserting (2.13a) into (2.36) and using the relation

8,;@“ 8y = —2 €ABE¢p (2.38)
we get
8r G 1
Caser =~ <TABCD +3g €as€ep T) (2.39)
where
1 u y
Tascn = 184 8o Tuv (2.40)

is the spinorial image of the energy-momentum tensor 7',,,,. Substituting (2.39) into (2.35a)
we obtain the equation

; 8 G hi
VPP Cupep = —— Vi Tyey". (2.41)
Analogously, substituting (2.39) into (2.35b) we obtain the complex conjugate of (2.41)
; 8r G
VPP Cinip = —— Vi AT - (2.42)

Finally, from (2.39), (2.13b) and (2.35¢) one gets the matter equation (2.21) in spinorial lan-
guage

VEPT gy = 0. (2.43)

To proceed further we act on both sides of equation (2.41) with V ;. Employing then the
definition (2.37) and the formula [12]

n Dhv _ DD p DD DD Iz DD
8rp8 '= 2 (g VgFD 8 8 M) T 2 (g VgFD 8 8 H)

= — (g op+5%) (2.44)
we obtain
m D uv 871G D E
\V4 VHCABCF‘FS F V[#VU] Cupcp = 7VF V(A TBC)DE' (2.45)

6
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Using the relation [12]

V.V Capcp = -2 CM(ABCRMD),“”
R
RMD/W = C DEFSEF;W 24 D/w +5 CMDEFSEF;W (246)

and performing the straightforward calculations, taking also into account that the right hand
side of (2.45) must be totally symmetric in the indices (F,A, B, C) since the left hand side is
totally symmetric in those indices one arrives at the equation

At G 817G _ e i
(v”v + T) Cascp +6C" 5 Copyy = V0 AV 5 Ty (2.47)
The complex conjugate of equation (2.47) reads
A G 87r G
(v“v +— T) Ciscp + 6CMA('ABCCD)MN vM vV s Timnien) - (2.48)

Employing (2.40) and the definitions (2.37) of VAB, and (2.30) of SABW and SABW one can
rewrite equations (2.47) and (2.48) as follows

4 27 G
<wv + WT) Canco +6C s Cepyuy = =5 Sius"Scof” ViuVT o (2.49)
and
47 G 21 G v
(wvu + =7 T) Casen +6C" 3 Conyiny = 1S 5 BQ“SCD) VT, (2.50)

Multiplying equation (2.49) by 4 SC 46> equation (2.50) by 4 SCD ~s-> then adding
together the obtained results and employlng (2.32) we get the equation

4G
(v“vu + C4T) Caps +3Re {844,555 Oy Cenpun }
nGp
= TR 5,55 0SS } V¥ T 2.51)

Long and tedious manipulations show that equation (2.51) can be brought to the form

4G .
<V“V/A + 4T> Capys + Caﬁugcuszs + zcaumcﬁwzs - zcocugécﬁl Q’y

47TG o
= C4 { |:(69:u'5,y§ + aﬂag‘g) - |det(gu'r) ‘ (Eifaﬁ E..,Y(; + E..aB e'.“{ts):|
1
2 g O (B0 + a7k 0%) } V, VT, 2.52)

where €27 5=€vap 88", 00 and 0 (%/7\, are 2-dimensional and 3-dimensional Kronecker
deltas, respectively. Equation (2.52) has a rather involved form. One can look for other simpler
forms by employing the commutation rule (2.5) but we do not investigate further this problem
in the current work. [Another form of (2.52) is given in [1] by equation (21)].

From equations (2.18a) and (2.18b) one can easily obtain the following identities

505 =0 (2.53)
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Equation (2.53) is given in a paper by Kundt and Triimper [7] where the authors make an
important point that if we consider the Weyl tensor as the ‘free part’ of the gravitational field
then equations (2.21) are the equations of motion for the sources, equations (2.19) describe
the interaction between the sources and the free part of the field and equations (2.53) are
differential equations for the free part of the field. We consider this point in the further part of
the present work. Analogously, from (2.15) one gets [7]

R 5=0. (2.54)
To obtain the counterpart of (2.53) in spinorial formalism we first insert (2.32) into (2.53) and
then we multiply the formula obtained by S EFW; and we employ the relation [12]

g’ S 5 = 0. (2.55)
Thus one gets

VsVa (SABO‘B SP 5 S CABCD) ~0. (2.56)
Using the identity [12]

SP 5 S’ = 83509, (2.57)
we have

VsV (SABQBCABEF) =0. (2.58)

Finally, employing the definition (2.30) of S8 and the definition (2.37) of V4B one arrives at
the equation

VA,V i = 0. (2.59)

It can be easily shown that (2.59) is equivalent to (2.53). The complex conjugate of (2.59)
reads

V,AVMBC, o = 0. (2.60)

3. Gravito-electromagnetism in terms of Plebanski’s helicity formalism

A close analogy between electromagnetism and gravity has been investigated by many
authors (see for example [14-22]). In 1980 Plebanski [3] developed the helicity formalism
for Riemannian structures in complex or real four dimensions. This formalism provides us
with a powerful and elegant tool for presentation the so called gravito-electromagnetism [21]
i.e. the correspondence between electromagnetism and Einstein gravity.

Define three 2 x 2 matrices (&%), a = 1,2,3

en-(500 )50 )58 0) e

and their complex conjugate (P ;‘B), a=1,2,3

@[3 )50 (e ) e

(Note that in [3] the respective matrices (®A%) and (® ;‘B) do not have the factor

Sl

Therefore, in general, the equations of [3] differ slightly from our equations.)

8
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One quickly gets the relations
M Oppp = bu, O B = 50,
Oy =0y, 5 Dy = 6005, (3-3)

where the spinorial indices A, B, ... ,A,B,...aretobe manipulated according to (2.27) and the
‘helicity indices’ a,b, a, b are to be manipulated with the use of the Kronecker delta.

Let U48 = W(45) be a symmetric spinor of the second rank at some point p of the spacetime
M. One can assign to U8 a complex vector (¥!, U2, ¥3) € C? by the formula

V=%, 48 4=1,2,3. (3.4)
In a new spinor basis
e//‘ = l_lfeg

the components of the spinor W42 are

U =P IB P (1) € SL(2;C), Vel !5 =6p. (3.5)
Then according to (3.4) we define (¥'!, U2 ¥"?) € C3 as
U= @, TAB, (3.6)

Inserting (3.5) into (3.6) and employing the relation which follows from (3.4) and (3.3)
VAB — @ AB g, (3.7)
one obtains
\I[/a — ®aAB lAC lBD \I/CD — @dAB lAC lBD @bCD \I/b — t,ab \Ijb
1 =04, P B, 0,7, (3.8)
We quickly find that () € SO(3;C). Moreover, given (%) € SO(3;C) the matrix (I;) €

SL(2;C) is defined uniquely up to the sign. Therefore the relation between (/) and (%) given
by (3.8) defines the group isomorphism

SL(2;(C)/Zz =50 (3;C). (3.9)
Writing the last formula of (3.8) in the form
£ =%, l(?c ng) ®,P (3.10)

we get the group isomorphism

SL(2;C) ® SL(2;C) = SO (3;C). (3.11)

Finally, since the group SL(2;C) / Z, is isomorphic to the proper ortochronous Lorentz group
SO'(1,3) then by (3.9) one has

50" (1,3) =50 (3;C). (3.12)

The analogous construction can be done for the dotted symmetric spinor YAB — y(AB) — PAB,
We define

V= UM =Ta, a=1,33 (3.13)

9
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In a new spinor basis

ef =10y TE=7TE (3.14)
we have
wAB— A B g () = (IAC) € SL(2;C) (3.15)
Then
\I/ (I)a \I//AB @uABlAClBDébCD\I/b ta \Ijb
A B F CD _
t“ @“ABlCqu)b =19 (3.16)

Of course, () € SO(3;C).

It is quite clear that one can generalize the procedure describing above on the case
of any spinor WAIBI-ABABL Ay gummetric for the indices (A1By),...,(A,B,) and
(A1B1),...,(A,B,) by assigning to such a spinor the following tensor

aj...apay...ay, __ Fai dp m AB)...A,B, A]B[ A B
v 7©AIBI"'@A;¢BH®AB @AB \ (3.17)
The rule of transformation of this tensor reads
/e ndiy i :tflél t“}; al; “1{7” gbr-bubr b (3.18)

m

The analogous correspondence can be done for mixed spinors.

From the geometrical point of view one has a clear picture. The formula (3.4) defines an
isomorphism between the vector bundle of the symmetric contravariant undotted spinors of
the second rank over the spacetime M and the vector bundle of the standard fibre C3and
the structure group SO(3;C) also over M. Similarly the formula (3.13) defines an isomorph-
ism between the vector bundle of the symmetric contravariant dotted spinors of the second
rank over M and the vector bundle of the standard fibre C* and the structure group SO(3;C).
Further generalizations give the isomorphism between the tensor products of the spinorial
vector bundles and the respective tensor products of the vector bundles with the standard fibre
C3 and the structure group SO(3;C) or SO(3;C). This observation enables us to translate the
spinor formalism into the helicity formalism. Consequently, the matrices (® /%) and (® %) are
the soldering objects which connect spinors with respective SO(3;C) (and SO(3;C)) tensors
analogously as the matrices (gABM) given by (2.26) connect the spacetime tensors with cor-
responding spinors. Then the helicity formalism arises as the formalism on the SO(3;C) (and
SO(3;C)) tensor bundles by the isomorphism described above.

We have the following basic correspondences

S s §U= 4, 5B, S ST =% §MP = Sa (3.19a)
Cascp < Cap = ,* ©,P Capep = Cian) (3.19b)
Cagen < Cop =2 ABCI) e aich = Caiy = Cab

Cape — Cop =@M, Copipy = Cra (3.19¢)

R +—— R. (3.19d)
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The exterior covariant differentiation D in the helicity formalism is given by

'D\Ijal anal flm q)al

- g, P, RO D D O, O (3.20)

ABy - AnBu

ClDl CD; A1By...AuB,A By .. ApB,,
(I)in (I); D\IIQDI .C,D,C\Dy...CiDy

_ ay...apa,. am ap Cl...apdy. am Ay \TyA1---Cndi...0p
d\Il bby.. +F \I’ ...byby.. +"'+Fcu\11b1...b,l}1...bs

Fil} \I,lllmdng"lnl:lm Fil_m \I,ulmun{llmé'm
+ €17 by...byby...bs + + Cm = by...byb;...b

_ Fcl \I,al---a/xf'll---{'lm _Fc, \I/al...a,,{ll...f'z,,,
by T ¢y byby...by + br = by...crby.. b

_ 1—\01 \Ijal ...a,lill ...‘dm R ch \I}a] ...tl,l{l] ...d,,,
by by...béy...by + by by..byby...éy

where I') and de are related to the spinorial connection forms I'; and FAB as follows

I =20% ., T, T =20% . 0,1 =T1. (3.21)
One can easily check that
1
Pupa @ p @ BP = 75 Sabe (3.22)
Using (3.22) and employing also (3.3) we rewrite (3.21) as
I =V2 €4 T, T% = V2 €, T, I = ©4¥T 15 =T, (3.23)

One can easily show that in the orthonormal basis i1‘1.which (2._26) holds true we have the
following important relation between $*% and ® A% (§4%, and ®%), a = 1,2,3,a=1,2,3

SB L =iV2BB SAB — /25 A (3.24)

where $48 and S8 are given by (2.30). Employing (3.24), (2.32) and (2.33) in (3.19b) we
obtain

1
Cab = _ESABOaSCDOb Cusep = — (Coaow + *Coaop)
1
Cah = ZSABOaSC b Cascn = — (Coaor — *Coaop) - (3.25)

Define the electric part £,, and magnetic part B,;, of the free gravitational field represented
by the Weyl tensor Cq g5

Eab = Coaob = E(av)s Bap = i * Coaop = B(ap), a,b=1,2,3 (3.26)
(compare with [1, 2, 5, 18, 21, 23]). Then (3.25) can be rewritten as
Cuop=—Euw+ iBa;,, C p=— (Ea;, + iBab) . (3.27)

Note that a decomposition analogous to (3.27) and the statement of relations between space-
time transformations and SO(3;C) transformations have also been done in [4] (see equation
(92.17) and the text below). The 3 x 3 matrices (&) and (B,,) are real, symmetric and
traceless.

1
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From the spinorial relations [3, 12]

DS = ds* + T/ ASP 4+ TE A S =0
DS = as® 4 T4, A S 4 1B A 51 = 0 (3.28)
by (3.19a), (3.20) and (3.23) we obtain

DS =dS 4T NS  =dS + V2 € TP AS =0
DS = dS* + T4 NS¢ =dS* +V2 €., TP AS* = 0. (3.29)

The second Cartan structure equations in spinorial language read

1 R 1 S
RA, = dI%, + TAATE, = _7CABCDSCD_~_7SAB+7 A ¢Ch

2 24 2 BCD
_ A A Cc _ A CD A A oCD

1 . 1 . —
where Ry = S Ry, dx* Adx” and R, := 3 RABW dx* A dx” = R4, are the spinorial curvature
2-forms. In helicity formalism one quickly gets the second Cartan structure equations in the

form
1 1 R 1 i
a_ dqre ach Ic=—_-¢c“ b a | — ra cb
R 5 Canc IV 5CHS"+ 578 +5C4S
. . 1 i . | R .. 1 . —
RéE=dlM+ — e T'ANT¢=——C28"'+ — 84+ _-CtS" =R (331
+ 75 Caie 5C3S"+ 378 +56 (3.31)

where R® = ®*“BR,p and R* = PR, = R4,

Now the crucial point is to study the Bianchi identities since in the present approach to the
curvature dynamics the Bianchi identities are considered as the field equations. The Bianchi
identities in helicity formalism read

DR =dR*+ V2 € TP AR =0
DR =dR* + V2 €,;, T" A\R* =DR =0. (3.32)
Inserting (3.31) into (3.32) we get

1

12
) ] , .

—DCANS" + T3 ARNS*+DC;! ASP=o0. (3.33)

~DCY NS’ + — dRAS*+DC%AS" =0

From (2.39) and (3.19¢) one finds

871G o
Cop = *ZT Toi» Top = PP T 5. (3.34)
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Employing also (2.13b) we conclude that the identities (3.33) lead to the following
equations

qr G p o1
DCENS? == [ DT NS+ — a
CHLNS o ( b/\S 12dl‘/\$>

~ ,  8mG ‘ 1 ;

a b a b a
DC5 NS = (—D?b NS +12dt/\8>. (3.35)
Equations (3.35) are the field equations for the curvature dynamics in the helicity formalism.

Note that by (3.20) and (3.23)
DCY = dC’ + V2 Eqea TC + V2 €peg T€CH (3.36)

and analogously for other objects of (3.35). Equations (3.35) are the main field equations of
curvature dynamics in helicity formalism. By the relations (3.27), equations (3.35) can be
rewritten in terms of the electric part £,, and the magnetic part 3, of the gravitational field.
Thus our equations (3.35) are the helicity counterparts of the respective equations given in [18,
21]. We show that equations (3.35) are the gravitational analogous of the electromagnetic field
equations. Maxwell equations in the presence of currents j* are [12]

4
vo= s =0 (3.37)

Yo
where f,,, = —f,,, is the tensor of electromagnetic fields

04, 0A,

v=F — 3.38
Ju Oxt  Oxv (3.38)
with A, denoting the electromagnetic potential vector and
1, 1
W' = —ildet(gap) |72 €7 £ (3.39)

Simple manipulations show that the first part of the Maxwell equations (3.37) can be equival-
ently written as

4 . 1 .
(ias) ) = 3571det(@u)|* Esasn )’ (3:40)
or inserting
*fapy = |det (guv) |% eéaﬁ'yjé 3.41)
we get
4,
(Hiag) ) = 357 *Jasr- (3.42)
Then the second part of equations (3.37) can be equivalently rewritten in the form
fiapm =0 (3.43)
Adding (3.42) and (3.43) we obtain
4.
<f[a6 + *f[aﬁ) - = %l *Jafy- (3.44)
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Equations (3.44) are equivalent to the Maxwell equations (3.37).
The spinor images of f,,,, are

1 v
fas = fa) = ZSABH Juw

1 » —
fai =iy = 355 Suw =an- (3.45)
The inverse formula reads
1 ..
fn =35 (fABSABW +fi BSABW) . (3.46)
Hence
f,uV + *fuu :fABSABﬂw (347)
Inserting (3.47) into (3.44) one has
dr . .
(fABSAB[ag)W] =30 *amy (3.48)
or
AB 4. ., . 1 . o 8
D (fpS*) = —ixj, % = g(*JQﬁv)dx Adx? A dx? (3.49)
c !

where $48 is the spinor 2-form (2.30).
In helicity formalism we define

fo=® Bfup, i = DA f = T (3.50)
Finally, equation (3.49) in helicity formalism reads

D(f,S%) = 4%1‘ *J. (3.51)
The dotted version of (3.51) has the form

D(f,SY) = —47”1' %J. (3.52)

Comparing (3.35) with (3.51) and (3.52) we conclude that equations (3.35) can be con-
sidered as the gravitational counterpart of the electromagnetic field equations (3.51) and (3.52).
Moreover, the right hand side of (3.35) plays in gravity the role of the current.

Within our convention the observer of the 4-velocity u* defines the electric field &£ and
magnetic field B; as

E=fipu', Bi=ixfju", j=1273. (3.53)
Thus for u* = (1,0,0,0) we get
& =fo, Bi=ix*fo. (3.54)

These identifications justify the definition (3.26) of electric and magnetic parts of the free
gravitational field.
By (3.47) we also get

5]’ - lB] :ﬁo + *]3'0 :fABSABjO. (355)

Then in an orthonormal basis when (3.24) holds true one obtains

f,l:@QABfAB:i\%(ga—iBa):iE, a=1,2,3 (3.56)
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where

F=(F\,F»,F;) = (5+it§) (3.57)

1
V2
is the Riemann-Silberstein vector [24—29].

Finally, we are going to rewrite equations (2.49) and (2.50) in terms of the helicity formal-
ism. Multiplying (2.49) by ® A8®,“P, employing (3.3), (3.19a) and (3.19b) we get
A7 G .
(v“v + 22 T> Ca+ 6@ BB,V B ) ConC,

26
:@aAB@bCqu(AB@dCD Ls S TN VT oo (3.58)

where
o _ & ABQ oM
S =08, 5"

Using (3.1) and performing straightforward calculations one finds the formula

1
DD, PO g Py = 67,00 — 564,1,5“’. (3.59)

Inserting (3.59) into (3.58) we get

a7 G

(V“V +— T) Cap+6 <CMC",, - %6,1;, CCdC"‘)

2 1
G (5 Sy = 3w S ST )v . (3.60)
C

Employing also the relation [12]
SS, gy, = SAPS = 259 — 2i|det (gap) |7 €210 (3.61)
where €9/2*=c*7 g e, and equation (2.21) we obtain

ArG 1
4T> Cap +6 (cac €%~ 30 Cea ch)

<V" V.+
ZZG (5 NS, TV, T — gaab wvﬂr) (3.62)
The complex conjugation of (3.62) gives the helicity formulation of (2.50) as
(wv# + 47;4GT> Cyy+6 (caé cl - géab chch)

27TG
ct

(s RS A TQU—S(SM;V“VMT) (3.63)

It is certainly interesting and important to study further equations (3.35), (3.62) and (3.63)
in order to write them in a more explicit form which will enable us to compare the helicity
approach with the approaches proposed by other authors [18, 21].

We leave this problem for the next work since in the present paper we deal mainly with the
application of curvature dynamics to the linearized gravity.

15
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4. Linearized gravity
In linearized gravity [4-6] we assume that the spacetime metric g, has the form of small
perturbation of the Minkowski metric 7,,,, = diag(—1,1,1,1)

8uv = Nuw +hywy || < 1. 4.1)
Then the inverse metric reads

g =" —h", W =0t " hye. 4.2)

In linearized gravity the lowering and rising of tensorial indices is done by 7, and n*",
respectively.
The connection coefficients (2.2) are now

I, = %nw (Ophor + Ophyr — O0-hyyp) (4.3)
and the Riemann curvature tensor (2.8) reads

Rapys = % (080yhas + 0a0shpy — 0aO0yhgs — 0g0shan) - 4.4
Coordinate transformations in linearized gravity are of the form

x'*=x*+£% a=0,1,2,3 (4.5)
where £ = £%(x”) are small real functions. Under the transformation (4.5) we get

8w = M + Py My =y = 0 = 008, (4.6)
where £, = 1,,,¢£°. Inserting (4.6) into (4.4) one quickly concludes that

Ri g5 = Rapys- @7

Therefore the Riemann curvature tensor in linearized gravity is invariant with respect to the
transformation (4.5). Since the transformation (4.5) of 4,,,, has the form of some gauge trans-
formation we will say that the Riemann curvature tensor is gauge invariant. The same concerns
also the Ricci tensor, the curvature scalar and the Weyl tensor.

The Ricci tensor in linearized gravity reads

1 1 1
Rag =R’ 45 = 3 {Dhaﬁ — 000, (h}, — 2h5g) — 950, <ma — zhag) } (4.8)

where U = n*0,,0,, = 0"0,, is the d’ Alambert operator and 2 = 7" h,,,,. Then the curvature
scalar R = R, has the form

R=0h—0%"hags. (4.9)

Given (4.4), (4.8) and (4.9) we can easily find the traceless Ricci tensor C,g and the Einstein
1

tensor Go3 = Rap — ER 7o as functions of A,z. Bianchi identities (2.16) and (2.19) take now

the form

167G . .

aR,5 = — 3 0 oy (4.10)

and

8T G 1
9aC%5 = e (ahT&]B + gnﬁhaa] T) . 4.1D

16
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Equations (2.24) in linearized gravity have much simpler forms

167rG -
URagys = —5— (3 ({9[7T5]5 agath}a) (4.12)

and by (2.9), (2.13a) and (2.13b) the linearized equations (2.51) read

167TG
OCapys = —5— {001, Ts515 — 080, Tsja

. - 1
—QD (a2 Ts = sy Toa) + 3T77a[777515] } : (4.13)
(compare equation (4.12) with equation (44) in [1]).

In spinorial formalism the main equations (2.41) and (2.42) within the linearized gravity
take the form

8tG
0PPCppep = ——— — i Tac bE (4.14)
and
; 8t G
P Capei = - Y (4.15)
respectively. Here 9P = gPPr g,
Then equations (2.49) now read
2 G
DCABCD = ot S(AB SCD)UV 8;A81/TQ<7 (4.16)
and equations (2.50) lead to the complex conjugate of (4.16)
2 G o
DChsen = —a Sis Seny” Ou0uTos 4.17)

Then we investigate the helicity formalism in linearized gravity. The field equations (3.35)
now take a simpler form

dce NSt = SWG( 7% A S+ 112th8”>
dch NS = SWG( AT, A S+ 2dm5f’> 4.18)
C

which can be rewritten as

2 G 87 G
d(C“,, 3”4 T5b>/\8b —LdT“ASb

. 2 ;
d(C"b ;fT(S“)/\S” —@dn AS. (4.19)

Employing (2.26), (2.30), (3.1), (3.2) and (3.19a) one can find S® and S*. Inserting the results
into (4.19) and performing straightforward calculations we get the important relations

17
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1
00 =1 e 0o~ i { 0 Tha = 350

c,e

+i Z eace c <7Ze Tébe) }
8 G 1
Zab 5= —— 5 2.0 ( b Téab) (4.20)
b

and their complex conjugate.
Using (3.27) and the obvious relations

Reﬁﬁ%(ﬁﬁm), Im7,;, == (Tj—Twa), T=T 4.21)

we equivalently rewrite equations (4.20) as

8Ogab - Z Eace 8 Bcb = ﬁ {80 (Eb + 77)11 T(sab) +i Z Eme 7;76’ eb) }
{zao (Toa — T Z Eace Bt (7; +Top+ 2 Tabg) }

( ab + 7770 Téab)

8()Bab + Z Eace 8 gcb -
Zahgah = ﬂ-G

Z OpBap =
b

(T — Toa) - 4.22)

If we compare the form of equations (4.22) with the form of Maxwell equations it becomes
quite clear why &, is called the electric part of the free gravitational field and B, is the
magnetic part of this field. Finally, one can rewrite equations (4.11) in a similar form to the
equations (4.22). Simple but tedious manipulations in which the symmetry relations &, = Ep,,
By = Bpa, vanishing of the traces £¢, = 0, B% = 0 and vanishing of the contraction C%,, =0
are intensively employed give the following result

aOgub - Z Cace 8cBeb 47TG |:abTa0 80 ( ab — T(Sab):|

c,e

4 G 1
aO ab 1 Z Cace 7) geb T Z Ebce c (Tea - § T(Sea>

4 G 1
Zabgab = 7-‘-74 |:aa (TOO + = T) - 8OTaO:|
> c 3

a7 G
ij DBy =~ ; Eave DT (4.23)

[Note that the constraint equations given by the third and the forth systems in (4.22) or (4.23)
can be derived from the first and the second systems of evolution equations of (4.22) or (4.23),
respectively].
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5. Curvature dynamics for gravitational radiation in linearized gravity

In this section we deal with the gravitational radiation of a bounded source described by the
energy-momentum tensor 7, g = T, g(7, t) in linearized gravity. Here the curvature dynamics is
determined by the equations (4.10), (4.12) and the Einstein equations (2.12) which we rewrite
in the form

871G -

The retarded solution of equation (4.12) reads

4G / (9404, T (7:1") — 020}, T (ﬁ’t,»l’:f—‘%ﬁ' ar (52)
R3

§=—
afy e

0 10 -

where 05 := 5B etc and 9 := et dr’ = dx"'dx"?dx"3. It can be easily shown that the
X

integration by parts leads to the following relation

(5 F-r
0LOKTys (17,1 ; Tys e
a¥pl~yd ) g =] c .
I, I,

“—dr’ = 9,08 T dr'. (5.3)
r—r

P

Employing this relation in (5.2) we get R, s in the form of (4.4) with

N
Taﬂ l"',tf B
4G .
= 7/ dr. (5.4)
R3

o = 7= 7]

The functions h,3 = hap(7, 1) are retarded solutions of the equations

167G -
Uhap = — Ty 5.5
B A las (5.5
or, equivalently
1 160G
D(hoz,ﬁ’zhnoz,3> :76‘74 Taﬂ, h:haa. (56)

Under (4.4) the equations (4.10) can be rewritten as

167G ; 167G
Os (Dh[e7 + C4T57> — 0y (Dhﬁg + o ng)

1 1
oo o (1 )| o (- Las)] <0 6

and the Einstein equations (5.1) take the form

167G - o 1 S TR

Employing (5.5) in (5.7) and (5.8) we get

950, [aa (hog - ;hagfﬂ — 9505 [aa (hc; - ;hag)] =0 (5.9)

19
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and

1 1
03 [aa (h(f;—zhéf;’)] +0s {% (ho‘ﬁ—zhég)] =0 (5.10)
for 8,7,6 =0,1,2,3.
Changing in (5.10) the index [ into -y, then differentiating the equation obtained with respect
to x” and, finally, comparing the results with equation (5.9) one easily concludes that

1
0,030 <h03—2h53g> =0
1
— 9304 (hogzh&ig) = Ags, 8,6 =0,1,2,3 5.11)

where Ags are constants. Since &, tends sufficiently fast to zero at spacial infinity we infer
that the constants Ag; are equal to zero
Ags =0, 5,0=0,1,2,3. (5.12)

Equation (5.11) imply the relations

Da(,< %;h(i‘};) =0. (5.13)

Consequently, by (5.6) one obtains the differential conservation laws
0,T% =0 (5.14)

It can be quickly shown [4] that employing (5.14) and assuming that the energy-momentum
tensor 7,5 tends to zero at spatial infinity fast enough one gets the relation

/R} Ty (F,1)dF = 2102552/]1@3 Too (7, 1) xpxidr, jok=1,2,3. (5.15)
Contraction of (5.135) with & gives
If'j(?,r)df‘laz/ PToo (7,1)d7, jk=1,2,3 (5.16)
R 2¢2 07 Jps

where 1 = x} +x3 +x3.
To proceed further we will consider the gravitational radiation in vacuum far away from the
sources. Thus we assume that

Tos (ﬁ,t) =0, ' >ro, Vt (5.17)
and we consider the points of the configuration 3-space such that
r>ry. (5.18)

Moreover we assume that the velocities of sources are much smaller then the speed of light c.
Then it can be shown that the perturbation of the metric 4,5 given by (5.4) can be written in
the following form of asymptotic series (see also [30, 31])

<y (p_r 00 k) (;_r
4G g i Y Ly e 28 L 3 Zas (120)
has = C4r/Ta6 (r )t C)dr + c4r2; & +c5r 1 o . (5.19)

Jrk=
[l

[Remark: The series (5.19) arises as the result of Taylor expansions of Ty (r_” = )

r 1 o o L
around 7 — - and ﬁ around 7. We assume that our series is at least asymptotic since one
c F—r'

20
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has no strict mathematical proof that this series is convergent. The ‘physical proof’ of such a
convergence lies in the comment that by changing appropriately the ordering of the elements
of the series (5.19) one gets the expansion of 4, in the multipole fields [30, 31]. We do not

write explicitly the functions Yg‘g(t — ) and Zg(’;k)(tf £) since we will consider further the

1
terms standing at ——].
ctr
Employing the relations (5.15) and (5.16) one gets

2G . 1 .. o -
hil:EDll( )+6,1 ! { /3T00(r l‘—*)d}" —37 QTQQ(F’,I—S)CII’/}

> Y(k) (=5 1 Xz (-1)
il il c -
C4,,2 Z T 'ZOT, i,l=1,2,3 (5.20)

Jok=

4G o r = 1 s i0 — f)

o (j k) r
1 § :ZlO (t Z) .
+ E T, I = 172,3

where

1
Dy (1— 1) 29/3 (3x/x! = dur™) Too (7,0~ £) o (5.21)
R

is the quadruple moment of the gravitational sources and the overdot -’ stands for the derivative
with respect to the time z.
In TT-gauge [4-6] we have

WD =0, n" =0, '™ =0, an™'=0. (5.22)

1)

Therefore we are left in the TT-gauge with hfl ,i,1=1,2,3, only and in that gauge we get

1
W) = PP Ry Py — 5P (P )

P = O — €mln, €m = xﬂ (5.23)
r

21
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Inserting into (5.23) the first equality of (5.20) one quickly obtains

2G ..
pm _ 26 g

il - 3ty il
© k r o (j>k) r
1 mpn 1 _pmn 1 mn (t_ Z) 1 Zmn (t— Z)
+c4r(PiPl_2P”P ) PO D R D D m AR R
k=0 k=0
where
D:(l ) = Pimjjmn (t_ E)Pnl - %Pil (Pmnbmn (l— f)) . (5.25)

Finally, assuming that we consider the point very far away from the sources r > ry and assum-
ing also that the velocities of the sources are very small compared to the speed of light ¢ one
finds

(1) 26 (pmpn Lo ) f ry _ 20 pom
hil ~ E (Pl Pl - EPZ'[P )Dmn (t* z) — E‘Dil . (526)

Now we are at the position to consider the electric £; and magnetic ; parts of the free
gravitational field far away from the sources. Since at such a point C, g5 = Rog+s One can
rewrite (3.26) as

Eit = Roior, Biy = i * Rojor, i,1=1,2,3. (5.27)

The first of that equations in linearized gravity reads (see (4.4))
1
€= 7 (000ihor + OoOihoi — OoOohit — DiOihoo) - (5.28)

The one of advantages of using the curvature variables instead of the metric ones is the inde-
pendence of the curvature from the gauge. Consequently we can equivalently write (5.28) in
the TT-gauge defined by (5.22). Thus we get (compare with [5])

R
&y = —@h; ). (5.29)

Inserting (5.24) into (5.29) one obtains

gl = = .
! 366rD’l
oo yAk r 0 H(j:k) r
1 1 1 mn (t_ *) 1 Zmn (t_ *)
_ pmpnr _ —P; P _ LA — 7 5.30
266r<’ Lot > rZ r —’—c,Z dJrk (5.30)
k=0 J,k=0
Finally, within the approximation (5.26) we have
R G ....rm) (o G 1
G (Pt~ ———1D; t—L)=——P"P'— =PyP™ mn (— % 5.31
51(}” ) 3C6VDII (r c) 3c6r< 1 2 ! D ( c) ( )

and the metric hi(,m can be expressed as

hf,m (F,1) = —2C2/dt/5”(?,t) dr (5.32)

22
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The magnetic part B;; reads

. i (TT) n
1 1 o™ o
Bi:. R[ = — = Simn = = imn = A5 i 5.33

1= b Roior 2 < 0 9 < Oxp 2c S (i 0x,, ( )
[Remark: To get the last equality in (5.33) we used the symmetry of By, B; = Bj;].
Substituting (5.24) into (5.33) one gets

By (7,1) = E (i 'ij'(TT)l)”e"’_ (5.34)

3cor

From (5.31) and (5.34) by straightforward calculations we find that

" = BB (/6,-,(7, ) dt> </ (7 1) dt) = (/ By (7,1) dt> </ Bl (71 dt)

1. 7T) /- 7 il /=
= i (E0) ). (5.35)
To find the energy flux for the gravitational radiation in linearized gravity we employ the
Landau—Lifschitz pseudotensor [4] t*¥

P

 167Gg

1
+ 58" 80005 (V=88°7) 0 (v/=88""

pr

{00 (V=88") 0 (V=88*") — 0, (V=28"%) 0 (V=28"")  (536)

— [8"%85-05 (v/—88"") 0o (V/—88"°) + 8”80+ 05 (v/—88"") 0o (v/—28°°)]
+ 8008700 (v/—88"°) 05 (V—88"")

1
+ 5 (28"%8"7 — £"787) (28583 — 8568) Do (V—288") 05 (vV—28°%) }

In the TT-gauge in linearized gravity we get the energy flux vector from (5.36) as

4 (TT)
i0 ¢ Ohun P (TT)mn
=— h =1,2,3. 5.37
321G Ox; ! B (5-37)

Employing (5.26) and (5.32) one finds

ct

o0 _ G ...(TT)...(TT)mn
232 ™M

( / Enn (7, t)dt) ( / gmn (?,t)dt) el. (5.38)

Using also (5.35) we can rewrite equation (5.38) in more symmetric form

C7 =4 mn (=
léﬂG{/Emn(r,t)dt-/S (F,r)dr
+ / By (7,1)drt - / B™ (7,1) dt} el. (5.39)

Consequently, the instantaneous power carried by the gravitational radiation in linearized
gravity reads

ct e'

o
8n G

et (7,1) =

23
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L= / et (7,1)dS;
r=Ry

C7 72 mn (> = mn (— i
_W/r:m{/&"" (r,t)dt~/5 (r,t)dt—i—/an(r,z)dl-/B (r,t)dt}edS, (5.40)

where Ry > ro. Employing again (5.35) and then (5.31) one easily gets

L= 8::G / . ( / Emn (1) dt) ( / £ (7,1) dt) R3dQ
= n—fs / {bﬂ (1= %) B (1= ) —2(eB/ (1 %)) (enB" (1= %))

+leie,emen '25” (t — &) p™ (t - %) } dQ

2 Cc
G dr 1 4« ool
= 155 Duli- By (1 — Roy (5.41)

Equation (5.41) is of course the well known result in linearized gravity [4, 5]. Note, that d{)
in (5.41) stands for the solid angle df2 = sinfdfd¢.

6. On Biatynicki-Birula formula for gravitational energy in linearized gravity

Biatynicki-Birula in his distinguished and inspiring paper [2] defines the gravitational energy
in vacuum in linearized theory as

A pEAE(F) +B(MB ()
- 327r2G/ 7~ r|

Eg drdr. 6.1)

This formula was further investigated by Smotka and Jezierski [32] and they have proved that
the gravitational energy given by the analogous formula as in (6.1) but with the factor &4672(;
0
4
instead of 32CiZG in the case of localized initial data is equal to the Jezierski—Kijowski energy
7
of linearized gravitational field [33]. In the present section we show that by taking the factor
4
c . c . . o
W 1nstead. of. 122G .be.fore. the integral in (6.1) one gets the grav1tat10T1a1 energy of
linearized gravitational radiation in vacuum equal to the energy calculated with the use of
Landau—Lifschitz or Einstein energy-momentum pseudotensors. This result was previously
communicated in [23] without giving a proof there.
To this end we first rewrite (6.1) in the general form

. / Eu(71) E (ﬁ,r) + By (71) BY (ﬁ,r) o

7=

(6.2)

where « is some positive parameter which is to be found.
From (3.26), (4.13) and (4.23) one infers that in vacuum the following equations are fulfilled

9ET=0, 9B'=0 (6.3)
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and
0&; =0, OBy =0. (6.4

We consider the solutions of equations (6.4) as the superpositions of the plane wave solutions

& (7,1) Z/(zd:){gzl (k>e"p{ (k r_w)}Jrg; (]g)eXp{_i (];'F_wo}}

=[Gy Ee) oo} -
and
) = [ o {85 Qoo i (F7-n)} 8 (B o (7 7))
- [ & (5s) oo i) 6
where

&k ( ) & ( )exp{—lwt}—&—é’j( k) exp {iwt}
By (k ( ) g ( )exp{—1wt}+l§’ (—I;) exp {iwr}

and w = ck, k= |k|.
From the fact that £;(¥,¢) and B;(7, t) are real functions one quickly gets the relations

& () =& (7). & (ki)=& (ko). B () =5y (F). Bu(Re)=Bu(-Fr). 67
Inserting (6.5) and (6.6) into (6.2), performing the respective integration and employing
also (6.7) we obtain

E= 47ra/ (Z:)k_;kz (El, (E, t) 5’1 (E, t) +l§i; (/:, t) Eil (/}’7 t)) . (6.8)

According to (5.5) the perturbation of the metric 4, in vacuum fulfills the wave d’ Alambert
equation. Therefore we represent /,,,, (7, ) as a superposition of the plane wave solutions

Ry (F,1) = /(zdf)3 {Z;W (l:) exp{i (I; F— wt) } —|—EZ'V (l:) exp {_i (E 7 wt)}}
= / (zdf)ﬁw (k1) exp {ik-7} 6.9)

where
Zuu ( ) h,, ( ) exp{—iwr} +EZV <71‘€’) exp {iwt} .

Since all the functions hW( t) are real we find the relations analogous to (6.7)

i (6) =T (5 o () = (0.
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For gravitational field in vacuum one can choose the transverse-traceless gauge (the TT-gauge)
defined by (5.22) [5]. In that gauge the relation (5.29) holds true and substituting (6.5) and (6.9)
into (5.29) we get

5 (1)~ @k
& (k,z>_2—czh” (k,t). 6.11)
Analogously, inserting (6.6) and (6.9) into (5.33) one obtains
A =¥ ID=(FY . i
By (kt) - 2c{€’"”<’ ) (k) ey exp{ —iwr}
— Coni B (—1?) K, exp{iwt}}. (6.12)

Substituting (6.11) and (6.12) into (6.8), using also the fact that equations (5.22) and (6.9)
imply the relations

i~ (€) =0, KA (K) =0 6.13)
we obtain
E= 27ra/ (Zdl?f %2 {Eflm— (E) (T —it (l_{) + R (1}’) R it (E)}
s
—dna / (;1?) - gﬁflﬁ% (12) =it (12) (6.14)
™

From (6.14) one quickly concludes that the B-B gravitational energy is independent of time.

Now we compare the result (6.14) with the gravitational energy in linearized gravity as cal-
culated with the use of the Landau—Lifschitz pseudotensor /¥ given by (5.36). Using in (5.36)
the TT-gauge and performing simple manipulations one finds

1 am o
hfm)-h(mﬂ

2¢2

4

1

00 _ 166 = {2170086}1(77)07 .aTh(TT)ﬁa +
T

1 (17) 5
_1770089}‘55 . 9ep(TN6p
C4 1 - (TT) . . .
_ o (Dl _ 3 (TT) 4 (TT)il
167G {402 (h” h iy )

1 . .
+50 (s WD — 0, (I T } . (6.15)

Neglecting in (6.15) the last term being a space divergence we get the gravitational energy in
linearized gravity within the Landau—Lifschitz formalisms as

CZ . . . il - . . il = .
Eun = e / (™ @) WO ) BT (7. T ) o (6.16)

Inserting into (6.16) the Fourier expansion (6.9) and employing (6.10) one finally gets
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Eqn = 32C7jG/ (;f)3 %2 {EEITT)— (/}') .m+zlgln)+ (g) W}
- léc;G/ (z(ff %’sz(fm_ () -hom= (). (6.17)

Comparing this with (6.14) we conclude that
A

64712G’

This is exactly what we wanted to prove.

Analogously one can show that the gravitational energy of the linearized gravitational field
in vacuum calculated with the use of the Einstein energy-momentum pseudotensor [4, 34] is
equal to E(;;) given by (6.17) and also to E defined by (6.2) for « given by (6.18).

[This last statement is in the full agreement with the results of [35] for a weak gravitational
wave which prove that in this case the Einstein, Landau—Lifschitz and other energy-momentum
pseudotensors in the TT-gauge give identical results for the density of gravitational energy].

Motivated by the Biatynicki-Birula formula for the gravitational energy by the formula for
the super-Poynting vector given by equation (41) in [21]) and by the definition of momentum
in [22] we propose the following formula for the momentum of linearized gravitational field

E:E(LL) — a= (618)

_ e 7 (7,1) Bun (ﬁ,t) B
P’:o// | 7 dr'dr (6.19)
F—r
where o’ is a parameter which is to be chosen so that
] 0
P =Py =~ / (—) (7, 1) dF. (6.20)

where P 11y 18 the momentum of linearized gravitational field calculated for the Landau—
Lifschitz pseudotensor (5.36) in the TT-gauge. Using the TT-gauge (5.22) in (6.20) with (5.36)
one gets

. c? . .
i _ _ 3 (TT) (= iy (TT)mn (=
P(LL) 301G / { hmn (V, t) O'h (}", t)

10, (2h<”>§ (7, 1) - T (7, t)) } d7. 6.21)

Neglecting the last term of (6.21) being a space divergence, inserting (6.9) into (6.21) and
employing also (6.10) we obtain

Py = 32C;G/ (zd];ki“: {MT) (1}’) 'W”’WH (,;) Wm(,‘g)}
i

= léiG/ (2i3kii {zgp— (E) Z(Tr)—mn(Z)} 6.22)

Then substituting (6.5) and (6.6) into (6.19), performing the integration and using also (6.7)
one gets

P —dra’ / (2:)€ - cim &, (1}' t) B, (1?, t). (6.23)
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Employing (6.11) and (6.12) in (6.23) and using also (6.10) and (6.13) we finally find

Pizﬂa,/ ak kii{z;ngn— () - Ao (&) + B+ (,;)zamm@}

(2r)’
=2ra / B (12) (T =mn (12’) (6.24)
(2m)” ¢
Thus one quickly concludes that the equality (6.20) in linearized gravity holds true iff
3
, c
=—. 6.25
“ T 36 (62)

Gathering, we find that from (6.17), (6.18) and (6.11) the energy of a gravitational wave
in vacuum in linearized theory can be expressed in terms of the electric part of gravitational
field as

¢t di S
F=— | ——— ~ (k) |2 6.26
47rG/ (2@3]{2 i; 2 ( ) | (6.26)

Analogously, momentum of this gravitational wave given by (6.24) with (6.25) can be written
in the form

R Ak O~ N LK
P=— [ ——— E- (k) P=. 6.27

Therefore, one concludes that both E and P' are given by the Fourier transform 5,;,(1?) of the
electric part of gravitational field.
For example, consider the pp-wave in vacuum of the metric [31, 36]

ds? = — (1 4+ H) (dx°)” 4 2Hdd® + (dx')* + () + (1 — H) ()’ (6.28)
where H = H(x" — x*,x', x?) satisfies the Laplace equation
Hi1+H»=0 (6.29)

where comma stands for the partial derivatives with respect to the appropriate coordinates.
From (6.28) one quickly infers that

hoo = —H, ho3 = h3o = H, h33 = —H (6.30)

and remaining A, are equal to zero. Inserting (6.30) into (5.28) we get the nonvanishing &
given by

1 1 1
En==zH1,E2=61==-H1, &= -H . 6.31
n=sHn n=8&1=-Hn, & =7Hx (6.31)
Analogously for B;; given by (5.27) with (4.4) and (6.30) one obtains

1 1 1 1
Biw=—=zHp, Bp=Byy=—=H»=-H, Bn=-H 6.32
11 S, B 21 S22 =500, bn =300 (6.32)

and the remaining components of B;; vanish. The spacetime is flat when
H,211 +H,222 +H,212 =0 (6.33)

otherwise this is a pp-wave of the Petrov-Penrose type N. However, since the function H(x" —
x%,x',x?) is harmonic with respect to (x',x*) and cannot fulfill equation (6.33) for the case
of pp-wave, by the Liouville theorem it must be unbounded. This in consequence leads the

conclusion that the integrals (6.26) and (6.27) are divergent.
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To get more positive result we put
= 1
& (k) = (HimHnl - 2HizH’”") Wy (K) =% (6.34)

where I1;; = k*8; — kikj, Wy (k) = W, (k) are some polynomials of k and A = const > 0. One
quickly finds that (compare with (5.23))

& () ¥ =o, 23:5; (k) =0 (6.35)
i=l1

and the functions &, (k) belong to the Schwartz space. Then the energy (6.26) and the
momentum (6.27) are well defined. Moreover, by (6.11) and (6.10) we have

(0= 26 (07 ()
Finally, one obtains
B (]_{7 t) = % (g'l,_ (E) exp {—iwt} +E; (—E) exp {iwt})

_ k% (ni'" " %H,—,H’"”) (wm,, (k) exp { —iwr} + Wom (k) exp{iwt}) e (6.37)

Inserting (6.37) into (6.9) we get the respective metric hl.(lTT)(F7 t) of the gravitational wave in

the TT-gauge.

7. Concluding remarks

In this work we have presented the curvature and conformal curvature dynamics developed
by van Holten [1] in the spinorial and then helicity formalisms. In our opinion especially the
helicity formalism in the form considered by Plebanski [3] provides one with a useful and
natural language since in that formalism the electric and magnetic parts arise in a natural way
as the real and imaginary, respectively, parts of the ‘helicity image’ of the Weyl tensor (see
equation (3.27) of this paper), and the transformation rules founded on the structure group
SO(3;C) are directly included. Therefore of a great interest should be a comparison of the
‘helicity approach’ with other approaches considered for example in [18, 21]. We are going to
deal with this issue in the next work. In the current work we apply the general results to the
much simpler problem i.e. to the linearized gravitational radiation.

Data availability statement

No new data were created or analysed in this study.
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