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Department of Mathematics, Faculty of Nuclear Sciences and Physical Engineering, Czech
Technical University in Prague, Trojanova 13, 12000 Praha 2, Czech Republic

E-mail: petr.bour@fjfi.cvut.cz

Abstract. Modified statistical homogeneity tests on weighted data samples are commonly
used in high energy physics applications. We do typically apply the tests in order to test
homogeneity of weighted and unweighted samples, e.g. Monte Carlo simulations compared to
the real data measurements. The asymptotic approximation of p-value of our weighted variants
of homogeneity tests are investigated by means of simulation experiments. The simulation
is performed for various probability sample distributions. We show that the asymptotic
characteristics of the weighted homogeneity tests are valid for the specific distribution of weights.

1. Introduction
In high energy physics, homogeneity testing precedes many analysis and modeling techniques,
particularly in machine learning (ML) applications. It is the case when we apply a data
preprocessing procedure called data weighting. Via assigning weights w1, . . . , wn > 0
to simulated observations x1, . . . , xn, n ∈ N, we are able to fine-tune our Monte Carlo
(MC) simulation data set with respect to our requirements. However, statistical theory
concerning homogeneity tests does not handle any weighting procedures, nor associates
weights with observations, except for sporadic works on weighted histograms, as e.g. [1].
Therefore, the classical homogeneity tests must be adjusted for weighted data sets. Despite
relatively straightforward incorporation of weights into the classical homogeneity tests and their
modification, asymptotic properties of these tests can be no longer guaranteed. Thus, our
goal is to investigate the validity of asymptotic properties of homogeneity testing for weighted
observations through computer simulation.

The need for homogeneity testing may typically arise from a simple signal/backgrounds binary
classification task. In this common ML application, we often use MC simulation for both ML
classifier training and testing. We may then apply the trained classifier to real measured data
set (DATA). Naturally, we expect both MC ∼ F and DATA ∼ G to be identically distributed:
F ≡ G. Otherwise, the classification model will not perform well.

2. Weighted tests of homogeneity
Let us assume it is vital to guarantee homogeneity of DATA and MC distributions prior to
subsequent utilization of some ML methods. For this purpose, we first define an analogy
with empirical distribution function (EDF) for weighted data set. Let X = (X1, . . . , Xn)
be iid random variables distributed by cumulative distribution function (CDF) F (x) and let
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(w1, . . . , wn) be their corresponding weights, where W =
∑n

i=1wi. We define the weighted
empirical distribution function (WEDF) to be

FWn (x) =
1

W

n∑
i=1

wiI(−∞,x](Xi), (1)

where IA(X) is the indicator of the set A. Note that in the case of wi = 1 for all i = 1, . . . , n
(i.e. unweighted DATA), the definition of WEDF goes over to usual EDF.

In order to avoid an investigation of an unknown parametric family, we shall pursue
our homogeneity testing only with nonparametric approaches. Thus, proceeding further in
this section, we present the Kolmogorov-Smirnov test based upon EDFs of two data sets

X1 =
(
X

(1)
1 , . . . , X

(1)
n1

)
, X2 =

(
X

(2)
1 , . . . , X

(2)
n2

)
, with respective distribution functions F,G.

By the homogeneity hypothesis [3], as our null hypothesis is H0, we understand

H0 : F = G vs H1 : F 6= G at significance level α ∈ (0, 1). (2)

We require our homogeneity tests to meet the condition P (WC |H0) ≤ α, where WC is a critical
region for the specific test statistic T . We reject hypothesis H0 if T ∈ WC . The nature of
homogeneity testing prompted us to look for the p-value, i.e., the lowest significance level α
for which we reject hypothesis H0. Thus, for every α > p-value we may automatically reject
hypothesis H0.

2.1. Two sample Kolmogorov-Smirnov test
Let Fn1 , Gn2 denote the EDFs of two data samples X1,X2 with respective sample sizes n1, n2.
We consider the test statistic

Dn1,n2 = sup
x∈R
|Fn1(x)−Gn2(x)|. (3)

It is clear from the Glivenko-Cantelli lemma [2] that, under the true H0, it holds that

Dn1,n2

a.s.−→ 0 for n1, n2 → ∞. Furthermore, due to [4], it follows that for the true H0 and
λ > 0

lim
n1,n2→∞

P

(√
n1n2
n1 + n2

Dn1,n2 ≤ λ
)

= 1− 2

∞∑
k=1

(−1)k−1e−2k
2λ2 . (4)

Therefore, we obtain the approximate p-value as 2
∑∞

k=1 (−1)k−1e−2k
2λ20 , where λ0 =√

n1n2
n1+n2

Dn1,n2 . However, for weighted data sample we are forced to replace EDFs Fn1 , Gn2 ,

and the numbers of entries n1, n2, with their respective WEDFs FW1
n1
, GW2

n2
, and the sums of

weights W1,W2 in (3) and (4). Instead of (3), we thus obtain the test statistic

DW1,W2
n1,n2

= sup
x∈R

∣∣FW1
n1

(x)−GW2
n2

(x)
∣∣. (5)

The definition (1) of WEDF makes it clear that the statistic DW1,W2
n1,n2

a.s.−→ 0 for n1, n2 →∞ and
W1,W2 → ∞. Nevertheless, it is important to notice some of the weaknesses inherent in the
above approach. This modified test for the weighted data sample does not have to obey the
asymptotic property (4). Let us emphasize that the p-value obtained using the statistic DW1,W2

n1,n2

cannot be considered a regular approximate p-value without subsequent detailed research. At
this point, we are not able to present a rigorous mathematical proof. However, we intent to
supply the HEP community with some recommendations on the suitability of the weighted
tests. This is why we propose partial validation of our approach in section 3. A key insight we
provide is the stable numerical verification performed for a few fundamental data distributions.
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3. Simulation experiments
We have already mentioned the problem of insecure asymptotic properties when applying
weighted modifications of the standard tests. We now turn our attention at the numerical
simulation. For our purposes here, the best way would be to validate the asymptotic properties
using standard unweighted tests. This requires us to plug into the testing an unweighted data
set (only instead of weighted MC; DATA is unweighted already). We shall do this by appropriate
transformation of the weighted ensemble MC into the unweighted ensemble MC† [5].

3.1. Rearranging technique
We make two requirements for the transformation. Firstly, we desire to preserve or exploit
information contained in MC weighting since the weight assigned to an observation refer to what
extent the distribution should be present in the neighbourhood of this observation. Secondly,
we require that the sum of weights in MC corresponds to the number of observations in
the unweighted MC†. Continuing in this manner, we now proceed as follows. Denote by
X =

(
X(1), . . . , X(n)

)
the ordered sample in MC with weights (w1, . . . , wn) and let W =

∑n
i=1wi.

Let N = bW c denote the desired number of observations in the new transformed ensemble MC†.
Given both our requirements regarding MC†, we are constructing special weighted averages
from X. For simplicity, we presume 0 ≤ wi ≤ 1 for all i = 1, . . . , n. Into the set of the first
weighted average we include the smallest possible number of observations

(
X(1), . . . , X(k1)

)
such

that 1 ≤
∑k1

i=1wi < 2. Thereby,
∑l

i=1wi < 1 for all l < k1. The portion of weight wk1 of the

observation X(k1) which contributes above 1 to the sum
∑k1

i=1wi will not be included into the

first weighted average. Hence, we denote this residual portion by rk1 =
∑k1

i=1wi−1. Thereafter,
the first observation Y(1) in MC† can be defined as the following weighted average

Y(1) =

∑k1
i=1X(i)wi −X(k1)rk1∑k1

i=1wi − rk1
. (6)

From the definition of rk1 we arrive at

Y(1) =

k1∑
i=1

X(i)wi −X(k1)rk1 =

k1−1∑
i=1

X(i)wi +X(k1)(wk1 − rk1). (7)

The residual portion rk1 will be added to the next weighted average for Y(2). In general, for Y(j)
we write

rkj =

kj∑
i=kj−1+1

wi − rkj−1 − 1 (8)

Y(j) = X(kj−1)rkj−1
+

kj−1∑
i=kj−1+1

X(i)wi +X(kj)(wkj − rkj ). (9)

Repeating the same steps we transform the original weighted ensemble MC with X =(
X(1), . . . , X(n)

)
into the new unweighted ensemble MC† with Y =

(
Y(1), . . . , Y(ñ)

)
. We have

distributed the weights from the MC so that there is the unit weight for each observation
Y(j). Therefore, we are authorized to apply standard homogeneity tests, which guarantees the
asymptotic properties.
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3.2. Generic p-value validation
We have verified an eligible usage of modified weighted tests in previous section with data
sets originating from high energy physics [5]. Now, we provide a reader with more general
verification. In our simulation, we consider several different distributions for X = (X1, . . . , Xn):
Beta, Cauchy, Exponential, Laplace, Logistic, Lognormal, Normal, Uniform and Weibull, whilst
the weights W = (W1, . . . ,Wn) are taken from the Beta distribution, as we can easily tune the
expected value,

W ∼ Beta(α, β) =⇒ E [W ] =
α

α+ β
. (10)

The appropriate number of data points was determined by preliminary convergence studies.
Otherwise, the simulation steps proceed as follows:

(i) Generate n random weighted data points (X,W ), e.g. n = 3500000.

(ii) Estimate weighted distribution from all the observations (X,W ) using kernel density
estimator.

(iii) Repeat all the following items k times, e.g. k = 1000:

(a) Choose mw = n
k weighted observations from (X,W ) as the current MC sample, e.g.

mw = 3500.
(b) Generate mu ≈

∑mw
i=1wi unweighted observations from the estimated weighted

distribution and consider them to be the current DATA sample, e.g. mu = 1000.
(c) Apply weighted homogeneity test MC vs DATA.
(d) Rearrange MC into unweighted sample MC† and apply standard unweighted test.

Thus, we obtain k individual p-values from the weighted tests and also another k corresponding
p-values from the unweighted tests. We may now check asymptotic properties of both weighted
and unweighted tests.

For all the distributions under consideration we arrived at two main results. First, the
condition P (WC |H0) ≤ α for significance level α is uniformly satisfied as it is shown in figure 1,
i.e. both EDFs are located under diagonal line in the graph. Second, both weighted modifications
and unweighted tests have the same resulting p-value distribution. This was tested via common
classical homogeneity tests for unweighted data. Nevertheless, the extraordinary correspondence
is already obvious from the graph in figure 1. Quite similar results were achieved for all other
simulated distributions: Beta, Cauchy, Exponential, Laplace, Logistic, Normal, Uniform and
Weibull.

4. Discussion
We carried out a numerical validation of the modified statistical homogeneity tests for generated
data sets under Beta-weighting. Our simulation verifies that the approximate asymptotic
properties remain the same for both weighted and unweighted tests. In practice, we may either
utilize modified weighted tests or we may apply the rearranging technique from section 3.1
directly with the unweighted standard tests (where the asymptotics are theoretically proven).
However, our verification was performed for the specific choice of weights distribution only. In
the future research, we aim to investigate the effect of various homogeneity tests and different
weights distribution on the overall significance and power. We also plan to explore the possibility
of theoretic validation of some representative weighted tests for wide-ranging data distribution
families. It may be reached by appropriate restrictions imposed on the distribution of weights,
since, in practice, there exists only a limited number of high energy physics applications under
rather specific weighting.

Please note we only aimed to provide empirical recommendations for weighted tests of
homogeneity. A reader may use these only for an experimental setup with data and weights
distributions similar to ours. On the other hand, this may cover large number of cases as HEP
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data often come from these fundamental distributions or their mixture. In any case, the reader
may always utilize our validation procedures to verify whether the output of his test corresponds
to a regular approximate p-value.

Figure 1. EDF of p-value for weighted and unweighted tests of homogeneity. Homogeneity of
p-value distributions was tested via common classical homogeneity tests for unweighted data.
Underlying data are taken from the lognormal distribution.
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