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EFFECTIVE THEORIES OF GRAVITY

SUMMARY

This thesis is devoted to the study of effective field theory methods for gravitational
interactions. Effective field theories were developed in the context of particle physics.
They provide a consistent framework to study low energy effects of some high energy
fundamental theory. Applying these methods to quantum general relativity enables one
to do calculations for processes taking place at energies below the Planck mass without a
detailed knowledge of the ultra-violet complete theory of quantum gravity.

Four related topics are considered in this thesis. We first study effects of quantum
gravity in particle physics interactions. In particular, we focus on non-local operators
involving fields of the standard model generated by quantum gravity. Bounds on the
magnitude of the Wilson coefficients of non-local four fermion interactions are established.

Secondly, we calculate the production rate of gravitational waves by binary systems
using effective field theory methods. New massive gravitational modes, beyond the mass-
less graviton, appear in the low energy spectrum of the quantum gravitational effective
field theory. These modes could be generated in binary inspirals.

The third direction consists in a study of dark matter candidates within this effective
gravity. The non-local operators generated by quantum gravitational interactions lead to
new poles in the graviton propagator. These poles describe states with a non-vanishing
decay widths. These states may contribute to the contemporary dark matter content pro-
vided that their lifetime is comparable with the current age of our universe. Correspondent
constraints on the dark matter candidates are established.

The last question addressed in this thesis consists in an implementation of effective
field theory techniques to modified gravity models. One of the simplest stable exten-
sions of general relativity is studied. The new interaction lying beyond general relativity
significantly changes the correspondent effective theory. Implications of our results for
gravitational interactions are discussed.
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Chapter 1

Introduction

Theory of gravity is one of the most sophisticated parts of physics. It has always played
an important role in development of theoretical physics. The search for the quantum theory
of gravity created numerous tools of contemporary theoretical physics such as models with
auxiliary dimensions [I], 2], AdS/CFT correspondence [3] 4, 5], canonical quantum gravity
[6, [7, 8], supersymmetry [9], 10, 1T, 12} 13], and string theory [14] [15] [16].

At the classical level gravity is consistently described by General Relativity (GR). It
provides a relevant description of multiple phenomena such as geodesic motion [17, [1§],
Gravitational Wave (GW) production [19] 20, 21], stellar evolution [22 23], 24], 25], and
the cosmological expansion [26], 27, 28]. However, GR is not free from disadvantages.

There is a series of phenomena that cannot be easily described within GR. At the
spacial scale of galaxies a phenomenon of dark matter exists. It manifests itself through
galaxy rotation curves [29] [30, 3T, 32], Cosmic Microwave Background (CMB) spectrum
[33, 34], and galaxy mass distributions [35]. Numerical studies also point to a necessity of
introduction of dark matter for a consistent description of galaxy evolution [36] 37]. At the
scale of the Universe as a whole a phenomenon of accelerated expansion, or dark energy,
takes place. It has been detected independently via CMB spectrum [33],34] and supernovae
observations [38] [39]. Within GR the late-time accelerated expansion can be described
with a non-vanishing cosmological constant. This solution of the late-time accelerated
expansion problem is widely considered to be insufficient. Firstly, at the classical level
the cosmological constant value is a free parameter that cannot be calculated [40, [41].
Secondly, a certain of issues are raised in Quantum Field Theories (QFTs) with a non-
vanishing cosmological constant [42] [43] [44].

Description of the early Universe within GR also faces a few challenges. It is commonly
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accepted that the Universe has passed through a stage of inflationary expansion [45]. Its
consistent treatment requires either introduction of a new scalar Degree of Freedom (DoF)

[46, 47] or a modification of the GR Lagrangian with higher curvature terms [48].

These facts give grounds to assume that the GR description of gravitational phenomena
is relevant only at the scale of compact objects such as stars and stellar systems. Its
description of large scale objects like galaxies clusters and the large-scale structure of
the Universe or higher energy processes like expansion of the early Universe may not be
completely relevant. Therefore, it is safe to conclude that at the classical level one should

study alternative gravity models.

The branch of gravity theory devoted to alternatives or modifications of classical GR
is commonly known as modified gravity [49, 50]. The manifold of alternative gravity
models is constrained by the Lovelock theorem [40, [41] which is discussed in more detail
in Chapter |3} The theorem defines the conditions which allow one to fix the form of the
Einstein equations uniquely. To construct an alternative gravity model is to violate one of
the conditions. Therefore, all modified gravity models can be classified via the Lovelock
theorem. Models that introduce one additional scalar DoF to the gravity sector, also
known as Scalar-Tensor Gravity (STG) models, provide one of the simplest modifications.
As it is discussed in Chapter [3] it is possible to define the simplest stable alternative to
GR within STG. In Chapter [7] a motivation to study this model is presented.

At the level of quantum theory GR and the other gravity models experience multiple
problems that obstruct the creation of a consistent quantum gravity model. Creation of
quantum gravity is a necessary step in gravity theory because of the following. The con-
temporary theory of matter, namely, the standard model of particle physics, is completely
given in terms of quantum theory of fields. Therefore, a quantum gravity model is required

to obtain a universal description of both standard model and gravitational phenomena.

Quantum GR experiences problems with renormalizability [51, 52]. Namely, at the
one-loop level it can only be renormalized on-shell in an absence of matter. At the two-
loop level it cannot be renormalized via standard methods. The simplest renormalizable
quantum gravity model contains a ghost DoF and cannot be considered satisfactory [53),
54]. Ghost states carry negative energy thereby making the energy spectrum unbounded
from below. This feature leads to an instability, as excitations can gain arbitrary large
energy dumping negative energy to the ghost sector. Issues of the simplest approach to

quantum gravity are discussed in Chapter 4

Nonetheless, the necessity of quantum treatment of gravity should be addressed. Ef-
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fective Field Theory (EFT), which is well-known in particle physics [55, 56], appears to be
the simplest technique to account for the gravitational interaction at the quantum level.
Moreover, EFT describes verifiable gravitational effects, for instance, a modification of the
two-body interaction potential [57]. A detailed discussion of the EFT implementation for

gravity is presented in Chapter

Description of gravity in terms of quantum theory, as it was highlighted, is relevant,
because an opportunity to search for quantum gravitational effects should be addressed.
EFT allows one to account for the gravitational interaction within the QFT framework
and to search for new gravitational effects. These effects can manifest themselves at all
spacial and energy scales, provided the EFT framework can be consistently applied. At
the level of particle physics gravity can affect interactions of the standard model particles
such as leptons. Therefore, traces of gravity may be found in particle scattering processes
and can be subjected to an empirical verification. At the level of stellar systems effective
gravity can affect the GWs production rate. Recent development of terrestrial apparatus
allowed one to subject GWs production to a direct verification [55, [56]. At the level of
galaxies and galaxies clusters effective gravity may account for the dark matter. Finally,
it is important to understand the role of various GR modifications within EFT. Particular
modifications can affect the corresponding effective theory in a non-trivial way thereby

ruining or improveing its applicability.

The landscape of gravity theory highlights multiple perspective directions of study.
This thesis addresses a narrow set of the problems related with an EFT implementation for
GR, modified gravity models, and particle physics. The more detailed motivation behind
the addressed problems is given in the following chapters. In Chapter[2] GR is discussed, its
advantages and disadvantages are highlighted. In Chapter [3] modified gravity models are
discussed and Horndeski models are highlighted. The context gives grounds to separate
one particular Horndeski model suitable for an EFT treatment. Chapter [ is devoted to
a discussion of the most conservative approach to quantum gravity. It is plagued with
pathologies that prevent its direct implementation for realistic quantum gravity models.
In Chapter [f| EFT formalism is discussed. Finally, Chapter[6]is devoted to a discussion of a
relation between gravity and the standard model of particle physics. The most perspective

area for search of gravity-induced effects is highlighted.

Chapter [7] is completely devoted to the statement of the problems addressed in this
thesis. I highlight four particular problems that rise in the presented context and justify

their relevance for the contemporary gravity theory. The first problem covers an opportu-
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nity for effective gravity to induce non-local interactions between matter states. Chapter
presents results of paper [58] devoted to a resolution of this problem. The second prob-
lem is related with the binary system GWs production studied within EFT. Its solution
presented in paper [59] and discussed in Chapter @ The third problem addresses an op-
portunity to describe the dark matter naturally within effective gravity. Corresponding
results [60] are presented in Chapter . The last problem is related with one particular
Horndeski model that admits a cosmological constant screening mechanism. Correspond-
ing effective theory is studied and it shows a few significant differences from effective GR.
Corresponding results are covered in paper [61] and presented in Chapter

It should be highlighted that the choice of problems presented in this thesis is affected
by considerations of consistency. Alongside the aforementioned results a few papers were
published during my PhD, but they are devoted to problems of classical modified gravity
[62, 63]. Some results that may be relevant in the context of this thesis were published
before I entered the PhD position [64, [65, [66] 67, 68, [69]. It was decieded to only present
results covered in papers [58, 59, [60} 61], as they were obtained within the EFT framework

and can be consistently discussed in a narrow area of gravity theory.



Chapter 2

General Relativity

GR is widely accepted as the most successful theory of gravity. It is given by the

Einstein-Hilbert action:

1
S = /d4x\/—g ———— (R —2A) + Luatter | - (2.1)
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Here G is the Newton constant, R is the scalar curvature, A is the cosmological constant,
and Lpatter 1S the matter Lagrangian. Notations used in this thesis are presented in
Appendix [A]l Pure GR describes massless excitations with helicity +2 [70, [71].

The theory has a wide phenomenology. It describes effects of geodesic motion such as
gravitational redshift, time dilation, and lensing [I7), [I8] [72]. Combined with the stellar
theory it predicts existence of specific compact objects like neutron stars and black holes
[22, 24], 23] 25, [73]. Tt also successfully describes the GWs production by binary systems,
that was recently directly observed [19, 20, 211 [74], [75]. Finally, GR can be implemented
for a description of the evolution of the Universe as a whole [26], 27, 28, [76].

At the same time there is a vast array of phenomena that cannot be easily described
within GR. These phenomena are dark matter and the late-time accelerated expansion of
the Universe, which is commonly attributed to the dark energy. It is also widely accepted
that the Universe has passed through an inflationary phase of expansion which cannot be
consistently described within GR.

Multiple data sources point to the existence of dark matter. First of all, galaxy obser-
vations have shown that the galaxy rotation curves are not consistent with GR predictions
[29,130, [3T),832]. Secondly, numerical simulations of the evolution of the large scale structure

of the Universe have shown that cold dark matter is required for the galaxy formation to
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be consistent with the empirical data [36], 37, (77, [78, [79]. Thirdly, the CMB spectrum pro-
vides independent data on the dark matter content of the Universe [33,[34]. Finally, galaxy
mass distributions recovered via gravitational lensing strongly favour the collisionless dust

dark matter model [35].

It is generally believed that the dark matter is a manifestation of new weakly interact-
ing particles that lie beyond the standard model. Multiple particle physics models have
various candidates for the dark matter particles [80, 81, 82]. Despite the fact that multi-
ple observations support the existence of dark matter, its constituent particles were never
detected directly [83], 84 [85] [86], [87]. Because of this there is still a room for a description
of the dark matter in terms of the gravitational interaction. For instance, there are a few

modified gravity models providing such a description of the dark matter [88] [89] 90].

Existence of the late-time accelerated expansion of the Universe is also well-established
via multiple sources. The first empirical evidence was obtained via the supernovae obser-
vations [38, 39]. The effect was later confirmed independently via CMB spectrum [33], [34].
It is widely accepted that a non-vanishing cosmological constant provides the best fit for
the empirical data. At the same time, existence of a non-vanishing cosmological constant
presents a separate theoretical issue. At the classical level its value cannot be calculated, it
can only be recovered via empirical data. At the level of quantum theory the cosmological

constant faces a few issues that are currently unresolved [42] 43, [44].

Finally, there is strong theoretical evidence indicating that a consistent treatment of
the early stages of the Universe expansion requires the introduction of an inflationary phase
[46, O9T]. Existing empirical data allows one to constrain inflation parameters [33] 92] [47],

but it lacks the precision to uniquely define the correct inflationary model [47, 93] 94 O5].

Attempts to construct a suitable quantum gravity model also experience certain diffi-
culties. The perturbative approach to quantum gravity [96) 07, 98] faces the problem of
renormalizability. Pure quantum GR at the one-loop level can be renormalized only on-
shell [51] and becomes completely non-renormalizable, if the matter content is added. At
the two-loop level even pure GR becomes non-renormalizable [52]. The approach based on
the canonical quantisation faces an even larger manifold of difficulties [6, 99, [7]. Perhaps,
the most well-recognised problems are the problem of time and the problem of Wheeler-
DeWitt equation [100, 10T}, 102], 103]. The problem of time is related with the complexity
of the notion of time in quantum gravity. The problem of the Wheeler-DeWitt equation,
which is an analogue of the Schrodinger equation, is due to the fact that it does not admit

a positive norm on the space of solutions.
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These features of GR give grounds to search for alternative gravity models at the
classical level, to account for the dark components of the Universe, to study behaviour of
gravity in the high energy regime in order to account for inflation, and to study models of

quantum gravity to obtain a new fundamental description of gravity.



Chapter 3

Modified Gravity, Horndeski
Models, and Fab Four

To define a gravity model is to uniquely fix its physical features. GR can be viewed as
the simplest gravity model, because it is fixed by the minimal set of physical requirements.
In 1971 David Lovelock found a theorem that fixes the Einstein tensor uniquely, if cer-
tain physical conditions are met [40), 41]. In the contemporary formulation the Lovelock

theorem states that GR is fixed uniquely by the following conditions [104]:
1. spacetime has four dimensions
2. gravity is described by the spacetime metric
3. the action admits diffeomorphism invariance
4. the action results in the second-order field equations

To obtain an alternative gravity model is to violate a few conditions of the Lovelock
theorem. Therefore, the whole manifold of modified gravity models can be classified in
accordance with the Lovelock theorem [49]. For instance, gravity models in a spacetime
of higher dimensions that admit second order field equations violate the first condition.
Models of this type are known as Lovelock gravity [40} 105]. Gravity models that replace
the Einstein-Hilbert Lagrangian with a smooth function, also known as f(R) gravity, result
in higher order field equations and violate the last condition of the theorem [106] 107].
Models that add an additional scalar DoF to the gravity sector are known as STG and

they violate the second theorem condition [49] 50].
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It should be noted, that modified gravity models can be classified on a different basis.
For instance, a classification can be based on the spacial scale at which a model develops
deviations from GR. In such a way, one can operate with gravity models modified either
in infrared or in ultraviolet sector. The classification based on Lovelock theorem is used
in this thesis, as it highlights the simplest way to introduce a modification regardless of
the area in which modifications are made. In other words, Lovelock theorem points to
a particular technique of modification, but not on the essence of modification. Because
of this the theorem is used in the thesis, as is allows one to define the simplest mean of

modification.

Phenomenology of modified gravity models is vast and it is covered in multiple reviews
[49, 50, 108, 109]. They provide various descriptions of the dark matter [I10, 1T1] and
the dark energy [112] 113] 114, 109, 115]. A modification of GR is also required for a
consistent description of inflation, as the most well-known inflation models belong either

to STG [46] or to f(R) gravity [48].

STG models should be highlighted within modified gravities, because they provide a
minimal extension of GR alongside a vast phenomenology. They should be considered
as, perhaps, the simplest GR modification, as they only introduce a single new DoF to
the model. At the same time, this additional DoF results in a series of new phenomena.
Namely, STGs can screen the existence of the new scalar field [116], 117, 118 [119], violate
energy conditions [120, 121], and drive inflation [46 122]. It is also worth noting that
f(R) gravity models can be mapped onto a specific subclass of STGs [123], 124 [125|, 126,
106}, [107].

STG models that admit second order field equations are of a special interest. Models
with higher derivatives are plagued with the Ostrogradsky instability [127, 128 129, [130].
STGs with second order field equations are free from this pathology. The class of STGs
admitting second order field equations were found by Gregory Horndeski in 1974 [I31]. The
original result was rediscovered independently within the Generalized Galileons framework
[122]. Because of this the class of STG models with second order field equations is known

either as Horndeski models or, rarely, as Generalized Galileons [132, [133].

Horndeski models in the Generalized Galileons parametrization are given by the fol-
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lowing Lagrangians [122]:

Lo =Gs
L3 =G3 0OX ,
Ly=G4 R+Gyx [(06) — (V. V,0)Y ,

1
Ls =G5 GuVI'V'¢— < Gsx [(O¢)* - 3(0¢)(VuVu$)? + 2(V,uV.0)?] -

Here Go, G3, G4, and G5 are functions of the scalar field ¢ and the canonical kinetic
term X =1/2 0,¢ 0"¢; G4 x and G5 x are correspondent derivatives with respect to X;
G is the Einstein tensor. It should be highlighted that only £4 and L5 terms describe
a non-standard interaction between gravity and the scalar field, while terms Lo and L3
describe the scalar field self-interaction.

Horndeski models contain a special subclass known as the Fab Four [134] which is
defined by its ability to screen the cosmological constant. Fab Four models completely
screen an arbitrary cosmological constant on the Friedmann-Robertson-Walker (FRW)
background. The screening holds even if the cosmological constant experiences a finite

shift. The Fab Four class is given by the following Lagrangians:

['John = VJ(¢) Gw/ vu¢vu¢ )

Lpan = Vp(¢) PP V6 Vad V, V5 ¢
(3.2)
EGeorge = VG(¢) R
£Ringo - VR(¢) é .
Here (3 is the Gauss-Bonnet term, P*oP = —1 /2 g@BAT R);o, €7P#" is the double-dual

Riemann tensor, and Vj, Vg, Vg, Vp are interaction potentials. These Lagrangians have
different screening properties. The Ringo term alone does not screen the cosmological
constant, it just does not ruin the screening. The George term introduces a Brans-Dicke-
like interaction which does not provide a sufficient screening on its own [134]. The Paul
term demonstrates a pathological behaviour in star-like objects [135, [136]. Because of
this only the John term is widely considered in the context of a cosmological constant
screening.

Fab Four models on their own can hardly be considered relevant for a description of
the cosmological expansion. The reason behind this is their screening features. In the
contemporary Universe the observed value of the cosmological constant is non-vanishing
which goes in constrast with the Fab Four features. In order to generate a non-vanishing

cosmological constant Fab Four screening should be broken in the late-time Universe.
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A combination of the John term and beyond Fab Four terms allows one to construct a
model which can provide an adequate description of all stages of the cosmological expan-
sion from the inflation to the late-time accelerated expansion. In the early Universe the
John term provides the leading contribution, the cosmological constant is screened, and
the scalar field drives the inflation. In the late-time Universe the leading contribution is
given by beyond Fab Four terms, the model loses its screening features, develops a small
cosmological constant, and enters the late-time acceleration expansion. One particular

example of such a model is presented in paper [I37] by the following action:

1 1
S= [ dzy/—g|—-—— (R—2A) + 5 " VoV, + B G* YV ,0V,0| (3.3)
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Here [ is the John coupling with the dimension of an inverse mass squared. Within
the modified gravity approach S should be treated as a free model parameter. In full
agreement with the presented reasoning the model describes both the inflation and the
late-time accelerated expansion.

This section should be summarised as follows. Firstly, classical models of gravity are
worth to be studied, as they can provide some solutions for dark matter and dark energy
problems in the classical regime. Dark matter and dark energy manifest themselves at
scales of galaxies, galaxies clusters, and the Universe as the whole. If they are due to
the gravitational interaction, then they should admit a suitable classical description given
in terms of modified gravity models. Secondly, among all modified gravity models the
Horndeski models should be highlighted. The reason behind this is twofold. First reason
is the fact that these models are minimal, as they only introduce one additional DoF to the
gravity sector. Second reason is the fact that the Horndeski models admit second order field
equations, so they avoid the Ostrogradsky instability. Thus, the Horndeski models provide
a minimal stable modification of GR. Finally, the Fab Four class of Horndeski models is of
a special interest. The reason behind this is its ability to screen the cosmological constant
on the FRW background. It is also important to highlight, that modified gravity models
are not reduced to STGs alone. The aforementioned reviews [49, [50] [108| [109] provide a
more detailed discussion of the contemporary state of the field. The reason behind such
a choice of the research area is the belief that the Horndeski models are the simplest GR
modification that may provide a suitable alternative classical gravity model.

In other words, model provides a minimal stable modification of GR that admits
a mechanism generating a small cosmological constant in the late-time Universe. In the

presented context it is crucial to understand properties of the model (3.3)). In order to be
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viewed as a suitable alternative for GR, the model should be consistent with the empirical
data at all spacial and energy scales. The original papers [134] [137] have justified its
applicability in the cosmological regime. Paper [66] has shown that the simplest quantum
corrections do not ruin its screening features. Because of this it is possible to consistently
study it within EFT. This thesis study the behaviour of the corresponding effective model
and its relevance for theory of gravity. A detailed discussion of the problem addressed in

this thesis is given in Section [7}
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Chapter 4

Quantum General Relativity

Attempts to construct a quantum theory of gravity date back to the 1960s [96, [97,
08, 138]. A detailed discussion of quantum gravity history can be found in [139] [140].
In this thesis only the perturbative functional integral quantisation is discussed for the
sake of consistency. Other approaches to quantum gravity, for instance, the canonical
quantisation program, lie beyond the scope of the thesis. Moreover, their role is discussed
in detail in [6l [TOT] [7].

The functional integral quantisation of gravity is performed via the external field quan-
tisation method [I41]. It is assumed that the gravitational field is described by the clas-
sical background g,,, and the small perturbations h,, propagating over this background.
Spacetime geometry is described by the metric g,,, which consists of both background and

perturbative contributions:

Juv = Guv + K h/w . (4.1)

Here « is a constant with the dimension of an inverse mass. It is introduced to give the
field h,, the canonical mass-dimension. It is defined through the Newton constant G as

follows:
K = 327G . (4.2)

A generic gravity model is given by the microscopic action A[g]. The corresponding
quantum model is given by the following generating functional (given up to the infinite

normalizing factor for the sake of simplicity):

Z = /D[h“,,] exp [i A[g,, +rhuw]] . (4.3)
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Following features of this approach should be highlighted. Firstly, the approach can
be considered background-independent in the following sense. Generating functional
depends of the background metric g, so do all amplitudes generated with it. But no
conditions on the background are established, therefore it can be arbitrarily chosen. In
that sense, the approach is not affected by a choice of the background. Secondly, as it was
shown in [142] the background field quantisation technique provides a consistent way of
quantisation even with a non-vanishing cosmological constant, although it does not resolve

the cosmological constant problem [42] [43].

For the sake of simplicity only a flat background is considered in this thesis. Despite
the fact that such a quantisation method can be applied to an arbitrary background,
this would only introduce an additional complexity to the calculations. Moreover, gravity
models discussed in this thesis admit the flat spacetime as a solution of the classical field

equations.

Functional quantisation given by (4.3) admits the standard way of derivation of the
Feynman rules [143]. It is required to introduce a formal external current J*” coupled to
perturbations h,, and expand the generating functional (4.3|) in a series with respect to

the perturbations:

0A[g 52 Al
Z[J] = /D[h] exp |iA[g] —l—iﬂ By + (9]

- huvhag + -+ @ hy J | . (4.4)
0G v

09w 09ap

The first term in the exponent does not depend on the perturbations h,,, so it can
be included in the infinite normalization factor. The second term describes an interaction
between the background and perturbations. Its structure shows that if the background
Juv does not deliver a minimum to the microscopic action .4, then the background itself
serves as an external source generating perturbations. This feature should be understood
as follows. If the background delivers a minimum to the microscopic action, then it can be
considered as a suitable ground state. In that case perturbations h,, are free to propagate
over such a background. If g,, does not deliver a minimum to the microscopic action,
then it should be considered as an excited state. In that case this excited state pursuits
to reduce its energy, so it excites perturbations h,,, i.e. it serves as an external source.

Finally, the other terms describe multi-particle correlation functions at the tree level.

Following the standard algorithm any IN-particle correlation function can be evaluated
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up to an arbitrary order in perturbation theory with the following expression:

—19 —10 1

O P (1) E)I0) = e s sz 21| - (49)

J=0
This algorithm of quantisation is discussed in more details in Appendix
Such an approach to quantum gravity can hardly be considered complete, as GR
cannot be renormalized via the standard technique. In papers by 't Hooft, Veltman [51]
and Goroff [52] it was shown that first and second-loop order corrections to the graviton
self-energy cannot be normalized. In the absence of matter one-loop level corrections to

GR require a counter-Lagrangian of the following form [51]:
1 7 1
A‘Cgrav =V g = R2 + — RaﬁRaﬁ g . (46)

This counter-Lagrangian vanishes on-shell, as the Einstein equations are reduced to R, =
0. If the matter content is taken into account, the counter-Lagrangian does not vanish
even on-shell, so the model cannot be renormalized with the standard approach. At the
level of two-loop contribution even on-shell renormalization fails for pure GR, as the model
requires a counter-Lagrangian proportional to the third power of the Riemann tensor which
does not vanish on-shell [52].

Multiple attempts were made to find a more suitable way to implement the functional
quantisation. Namely, an attempt was made to use the quadratic gravity model given by

the following action:

1
Az/d4x\/—g —7R+01R2+02R12W . (4.7)

167G
Here c¢; and ¢y are free dimensionless constants. This model was first considered in [54, 53]
where it was shown that it can be renormalized. At the same time, the model contains
a ghost DoF, so it can hardly be considered relevant for realistic applications [130]. This
model is used throughout the thesis, so a more detailed discussion of its quantization is
presented in Appendix [F]

These considerations give grounds for further development of quantum gravity mod-
els. The simplest approach to quantum gravity fails, so it is necessary to develop more
sophisticated techniques to study gravity in the quantum regime. At the same time, there
exists a framework that allows one to account for the gravitational effects in the low energy

regime no matter the true theory of quantum gravity.
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Chapter 5

Effective Field Theory for

Quantum Gravity

EFT was widely developed and used in particle physics [55] 144]. It provides a frame-
work that allows one to obtain an effective action describing dynamics of a physical system
in the low energy regime [55], [145], [146].

The simplest approach to EFT is based on a decoupling of heavy DoFs and it is known
as the Wilsonian approach [147, 148, 149]. To obtain an effective action I' that is valid
up to the energy scale A from the microscopic action A the following should be done. All
DoF's should be separated on light [ and heavy h once with respect to the energy scale A.
Heavy DoF's should be excluded from initial and final states, as they cannot be excited in
the low energy processes. Because of this heavy DoFs influence all processes only at the
loop level. To put it otherwise, heavy DoFs should be integrated out, so the microscopic

action A and the effective action I' are related as follows:

/D[l] exp[iT[l]] = /D[l] DIh] exp|i Al 1] ]. (5.1)

Within the Wilsonian approach the effective action I' can be calculated explicitly, if the
microscopic action A is known. If the microscopic action is unknown, then the effective
action can be restored based on symmetry principles [I46]. This approach provides a
correct description of multiple phenomena [150, I51]. Moreover, it can be used to evaluate
the effective action in quantum gravity models, for example, in string theory [152} 153, [154].

Another approach to EFT treats the effective action as an expansion of multi-particle
correlation functions in a series with respect to the number of loops [56] and it is known

as the Coleman approach. To calculate the effective action up to the N-loop order is to
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evaluate all multi-particle correlation functions up to N-loop level. The simplest example
of the Coleman approach is given in the original paper [56], where a model of a scalar field
with a four particle interaction was considered. At the tree-level this model provides the

following set of diagrams:
) . (5.2)

At the one-loop level the effective action receives an additional contribution given by the

following series of diagrams:

J—><><7A< .

In contrast to the Wilson approach the Coleman approach does not exclude any DoF's, but
accounts for effects induced by quantum corrections. For instance, in the original paper
[56] the effective action is used to show a spontaneously symmetry breaking induced by
quantum corrections. A similar technique is used to study anomalies [I55, 156, [157].

Logic of the Coleman approach can be applied to gravity models [145, 146]. In full
analogy with the external field quantitation method one defines a gravity model by its
microscopic action A[g,,| given in terms of the full metric g,,. The full metric g, de-
scribes behaviour of the true quantum gravitations propagating over some background
spacetime g. No constraints on the background are set, so the approach can be considered
background-independent.

Despite the fact that the microscopic action for gravity is unknown, one can restore
the effective action via symmetry principles [145] 146, [I58]. The simplest way is to study
higher-order operators induced by loop corrections [145, [146]. The following procedure
should be done to construct the effective model.

Firstly, in full agreement with the Wilson approach, one should integrate out high-
energy gravity modes that have energies about the Planck scale. Secondly, one should
define the normalization scale p which should be placed below the Planck scale. At the
normalization scale the microscopic action of the theory is defined. Within this thesis
it is assumed that the microscopic action matches GR. Finally, one should preform the
standard loop calculations to extend the effective action down to the low-energy regime.
A diagram illustrating that algorithm is given on Fig.

The one-loop effective action can be restored and leads to the following classical result
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Figure 5.1: The diagram illustrating effective gravity action construction. Here mp is the

Planck scale and p is the normalization scale.
[51]:

1

Fl-loop = /d4xv —g —@ R+ C1R2 + CQRW,RMV . (5.4)

In the same way the introduction of non-local operators is justified. Namely, in papers
[159, 160] it was shown that the effective gravity action should be extended with non-local

operators to the following form:

1

Fl-loop,non-local = /d4$v —g _m R +c R? + c2 RHVRHV (5'5)

O O O
+b1 Rln| — | R+by Ruln | — | R + b3 Ruvasln | — | R#*P
K M M
This EFT implementation for gravity provides some verifiable predictions. Perhaps,
the best example is given by the effective two-body interaction potential [57]:

Gm1 mo 1 G(m1+m2) 41 1 Gh
Vi) =-———— 143 5 —————+ 1~ 5 5| - (5.6)

r r 10w &3 r2
This potential was used, for instance, to estimate the influence of quantum corrections on
Lagrangian points of the Earth-Moon system [161, [162] and to study gravitational light
scattering [163], [164].
Existence of non-local operators in the effective action can account for a few phenom-
ena. First of all, non-local operators result in the appearance of new poles in the graviton
propagator. As discussed in Chapter these new poles can be associated with excitation

states and treated as the dark matter particles. At the same time, non-local operators
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influence the gravitational interaction between states of the regular matter. Namely, they
affect processes involving a virtual graviton exchange. As discussed in Chapter |8 their
influence results in the appearance of an effective non-local interaction between standard
model particles.

There are a few feature of the effective EFT for gravity that should be discussed. First
of all, the unitarity of the effective theory. There are a few papers devoted to the effective
field theory unitarity [165) [166], 167, 168]. In these papers it was shown the unitarity can
be violated at the tree level at a certain finite energy scale which is defined by the model
field content. Originally this phenomenon was associated with the effective field theory
breakdown that may serve as an indication of the “new physics” required to restore the
unitarity. However, in papers [169, [I70] it was shown that such an interpretation can
hardly be considered consistent, as the unitarity violation scale can be uncorrelated with
the “new physics” scale. Moreover, a few indications were found pointing to order by
order restoration on unitarity within perturbation theory. This mechanism of unitarity
restoration is known as the self-healing mechanism. These results provide a consistent
EFT unitarity picture, so the unitarity was not addressed in details in this thesis.

The second issue to be discussed is the poles structure of propagators evaluated within
EFT. It was studies in papers [I71, [172] [54] where it was shown that the effective graviton
propagator receives additional poles. For models discussed in this thesis the Lambert W
function plays a key role in the corresponding analysis. The poles structure is not the
main focus of the thesis, nonetheless, the issue should be briefly discussed for the sake of
completeness.

The Lambert W function is defined as a solution of the following equation:
W(z)exp[W(z)] =z . (5.7)

The function has two branches that are separated by a branch cut discontinuity in the
complex plain. The branch cut runs by the real axis from —oo to —1/e. The main branch

is defined by the following condition [I71], [172]:
W(0)=0. (5.8)

For real z which are z > —1/e the main branch of the W (z) function is real. Finally, the

following approximation used in paper [60] discussed in this thesis:

W(z) "= log(z) + O(x) . (5.9)
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In paper [58] the W function appears in an expression for the solution of the following

equation:

NG q?

q 0.9 8|~z 0 (5.10)

This equation defines the position of poles of a graviton propagator within a specific EF'T
model discussed in Chapter [8] Here G is the gravitational constant, u is the normalization
scale, and NN is a positive number related with the number of DoF's present in the model.
This equation has two solutions. First one reads ¢> = 0 and it corresponds to the standard

massless spin-2 gravitation. The second solution is given by the following expression:

) 1 1207 ( )
¢ = . 5.11
GN 1207
" W2NG

Both these solutions correspond to point-like poles in the graviton propagator mentioned
in Chapter As it was mentioned before, the function is real if its argument is bigger

then —1/e. Equivalently, the new poles are real if the following condition is satisfied:

1200 1
ING < - (5.12)
In papers [169] 170] discussed in this thesis the large N limit is essential for the self-healing
mechanism. Consequently, it is safe to assume that the condition is always satisfied and
the new poles appear on the real plain [I71], 172].

In a similar way the poles structure is studied in paper [60] discussed in Chapter
In full analogy with the previous case it is shown that the graviton propagator generated
by an effective gravity action containing non-local operators admits new poles. Physical
implications of the existence of these poles is discussed in Chapter [10|in more details. We

briefly discuss how positions of these poles were evaluated. For the sake of simplicity we

only discuss the case of spin-0 mode which mass is defined by the following equation:

-1
mg = . (5.13)

— 301 — C2
3b1 + ba + b3
(3b1 + b2 + b3)K2u?

exp

(3b1 + by + bg)liz w

Here ¢; are couplings of local operators, b; are couplings of non-local operators and we

consider the limit ¢; > b; (the reasons for such a limit is discussed in Chapter .
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The assumption b; < ¢; allows one to expand the expression in terms on the following

small parameter:

3b1 + ba + b3

5.14
3c1 + ¢ ( )

To account for the leading corrections we use the leading term of the W function expansion,

namely W (z) ~ log(x). This allows one to obtain the following expression:

1 . 3b1 + by + b3

k2(3c1 + ¢2) B m/@2(301 +c9)?

md =

(5.15)

In this expansion only two leading terms are preserved. As it is mentioned before, the W
function is reals only for certain values of its argument. Therefore the complex part of
the mass appears due to the W function complex part. Poles structure of spin-2 states is
obtained in full analogy with this case.

Results of this section can be summarized as follows. First of all, EFT formalism pro-
vides a uniform framework for treatment of low energy quantum effects. This framework
is widely used in particle physics and can be consistently apply for the gravitational inter-
action. Secondly, despite the fact that the microscopic action for gravity is unknown, it
is possible to restore the effective action via symmetry principles. Finally, EFT can pro-
vide a verifiable description of gravitational effects taking place in the low energy regime.
Therefore, for a given gravity model it is possible to restore the correspondent effective
action and subject it to direct empirical verification. This is the main reason for an

implementation of the EFT technique to gravity.
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Chapter 6

Standard Model and Gravity

The standard model of particle physics is another extremely successful model of physics.
It describes all known types of matter and all interactions except gravity with a few
simple techniques. These techniques are gauge fields and spontaneous symmetry breaking.
The standard model and the corresponding techniques are extensively covered in multiple
sources [173] [174} 175 [I76, 177]. Discussion of the particle physics lies beyond the scope
of this thesis, so the standard model is to be discussed briefly for the sake of consistency.

Within the standard model the matter states, namely, leptons and quarks, are de-
scribed as fermionic fields. These fields are subjected to the gauge symmetry of the
group SU(3) x SU(2) x U(1). Interactions between matter states are propagated with
the corresponding gauge vector bosons which are photons, W+, Z° bosons, and gluons.
Spontaneous symmetry breaking is performed via the Higgs scalar doublet subjected to
SU(2) gauge symmetry.

Technique of the gauge fields is based on symmetry principles and it allows one to
construct renormalizable models of vector interactions. A generic gauge model with a
symmetry group G is constructed as follows. Firstly, one chooses an N dimensional rep-
resentation of a group G. Secondly, one unites N fields of the same spin in a multiplet
and subjects in to the gauge symmetry G. Thirdly, one constructs a covariant derivative
that respects the gauge group G. To do this it is required to introduce a number of vector
fields subjected to gauge transformations. The number of gauge vector fields is equal to
the dimension of the representation of the group G. Finally, the gauge symmetry uniquely
fixes the form of the gauge field kinetic term and the interaction sector. In such a way the
gauge field technique allows one to construct an interaction model by a given symmetry

group G.
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The gauge group of the standard model is a product of three groups SU(3) x SU(2) x
U(1). Group SU(3) is responsible for the strong interaction and its gauge vector bosons
are gluons. Group SU(2) x U(1) describes the electroweak sector of the standard model.
Due to the Higgs mechanism, that is to be discussed further, SU(2) xU(1) is spontaneously
broken down to SU(2) that describes the weak interactions carried by W+ and Z° bosons

and U(1) describing the electromagnetic interaction carried by photons.

The Higgs sector is responsible for the spontaneous symmetry breaking in the standard
model. It is required to introduce fermion masses in a way consistent with the gauge sym-
metry. Only left chiral components of fermionic fields participate in the weak interactions.
The standard fermionic mass term, on the contrary, mixes the chiral components, so it is

non-invariant with respect to the gauge symmetry.

Spontaneous symmetry breaking is implemented as follows. First of all, the Higgs
field is introduced. It is a complex scalar doublet subjected to the gauge SU(2) group.
Secondly, a quartic Higgs self-interaction potential is introduced. The potential admits a
spontaneous symmetry breaking, as any given minimum of the potential is non-invariant
with respect to the custodial symmetry, i.e. to the symmetry of the potential itself.
Finally, the Higgs field is coupled to chiral components of weak doublets in an invariant
way [176, [177].

In the low energy regime the Higgs field forms a non-vanishing vacuum expectation
value due to the spontaneously broken symmetry. This vacuum expectation value provides
the leading contribution to the Higgs interaction with fermionic fields, thereby generating
fermionic masses. The Higgs field itself acts as three massive and one massless scalars due
to the Goldstone theorem [I78] 179, [I80]. Finally, the massive DoF's of the Higgs field are

combined with the weak bosons to form massive W= and Z° bosons.

This is a very brief description of the standard model which is presented here for the
sake of consistency. A more in-depth discussion of the standard model is irrelevant for the

studies presented in this thesis, so it is not to be discussed further.

Basic physical phenomena described by the standard model, on the contrary, are rele-
vant in the context of gravity theory. As it was highlighted, the standard model describes
a vast array of phenomena, but it does not account for the gravitational interaction. EFT
technique allows one to account for the gravitational interaction within the standard model
and, consequently, to search for manifestations of the gravitational interaction in particle

physics experiments.

The most illustrative example of the gravitational influence on the standard model
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is given by the two body effective potential, discussed in the previous section. Effective
gravity predicts the existence of new gravitational DoFs. Consequently, matter states can
exchange not only with the standard matter gauge bosons and gravitons, but also with the
new gravity DoFs. This results in a modification of the gravitational interaction potential
and an alteration of particle interactions [57, [163].

The influence of non-local operators of effective gravity is of a special interest and
it is one of the problems addressed in this thesis. The one-loop effective gravity action
with non-local operators should account for the gravity interaction sector of the
standard model. Because of this an effective non-local interaction is induced within the
standard model. For instance, one should expect the existence of non-local interactions
between fermionic states, such as electrons, induced purely by gravity. This provides a
room for tests of effective gravity via empirical study of non-local matter interactions. The
particular problem concerning gravitationally induced non-local interactions is stated in

the next section and presented in the Chapter
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Chapter 7

Addressed Problems

The contemporary landscape of gravity theory has multiple relevant problems. This
thesis addresses a narrow set of them, as was discussed before. These problems are stated
as follows.

The first problem is related with the non-local interactions of matter induced by ef-
fective gravity. As it was discussed in Chapter [} an implementation of EFT for gravity
in the context of particle physics can lead to the appearance of non-local interactions. It
is shown in [159] that effective gravity receives non-local operators at the one-loop level.
At the same time, the effective gravity action should describe the gravitational interaction
between standard model particles.

In Chapter |8 results of paper [58] are presented and an opportunity to introduce non-
local operators induced by the gravitational interaction is discussed. It is shown that the
non-local operators from the effective gravity action induce non-local interactions between
matter states with all spins. In particular, it is shown that the effective gravity generates
an effective four-fermion non-local interaction. Interactions of that kind are constrained
by the empirical data [I8]. Because of this the corresponding empirical constants can be
applied to the effective gravity.

The second problem is related with the binary system GWs production described
within EFT. Within classical GR it is possible to describe GWs production in binary
systems inspirals. Recent data on direct detection of GWs is consistent with GR at the
present precision level [19, [74] [75]. Quantum effects can influence GWs production rate
at the late stages of inspiral process. The modified Newtonian potential obtained
within EFT serves as an indirect evidence of this phenomenon.

The problem addressed in this thesis is the evaluation of a binary system GWs produc-
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tion rate given by the local effective action . As discussed above, this effective action
accounts for the leading quantum corrections generated at the one-loop level. In Chapter
[ the problem is discussed in more detail. A specific set of approximations is required to
obtain analytical expressions for the GWs production rate. These approximations con-
strain applicability of the obtained results, but allow one to establish the characteristic
spacial scale at which GWs production may develop deviations from the standard GR
prediction.

Thirdly, an opportunity to describe dark matter within the effective gravity is ad-
dressed in Chapter Effective action ([5.4)) results in a different structure of poles of
the graviton propagator. These poles describe new DoF's present in the model. Non-local
terms generated in the effective action further alter the pole structure.

As discussed in paper [60] and Chapter non-local terms result in poles with non-
vanishing imaginary parts which indicates the existence of a non-vanishing decay width
of the corresponding DoFs. At the same time, one is free to consider new DoFs of the
effective action as dark matter candidates. Comparison of new effective DoF's lifetime with
the age of the Universe allows one to make certain conclusions about the validity of such
an interpretation. In Chapter it is shown that new DoFs can contribute to the dark
matter content, if certain constraints on their lifetime are established. These constraints,
in turn, should be extended on the structure of the effective action .

The last problem discussed in this thesis is related with an application of the EFT
technique to the modified gravity model . In Chapter |3[the STG model presented in
[137] is discussed. It was highlighted that it should be considered as one of the simplest
GR extensions. The model introduces a single additional DoF and one single additional
interaction that screens the cosmological constant. It is crucial to understand the influence
of quantum effects on this model, as they can ruin some of its original properties thereby
making it irrelevant for practical applications. The influence of quantum effects on the
screening properties of the model was already studied by my colleagues and me [66].

In Chapter |11{an implication of EFT for the model is discussed. Effective theory
based on GR predicts the existence of two additional DoF's at the level of one-loop effective
action [145 146, 54, B3]. It is shown that the model predicts the existence of a
bigger number of DoF's at the one-loop level. They appear due to the higher dimensional
operators generated by the John interaction. Therefore the introduction of the John
interaction radically changes the behaviour of the gravity theory at the quantum level.

Chapter [L1| contains results presented in [61].
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We show that the non-locality recently identified in quantum gravity using resumma-
tion techniques propagates to the matter sector of the theory. We describe these non-local
effects using effective field theory techniques. We derive the complete set of non-local
effective operators at order NG? for theories involving scalar, spinor, and vector fields.
We then use recent data from the Large Hadron Collider to set a bound on the scale of

space-time non-locality and find M, > 3 x 10~ GeV.
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Finding a quantum mechanical description of General Relativity, in other words, a
quantum theory of gravity, remains one of the holy grails of modern theoretical physics.
While it is not clear what this fundamental theory might be, we can use effective theory
techniques to describe quantum gravity at energies below the Planck scale Mp = 1/ VG
where G is Newton’s constant. This approach is justified by the requirement that whatever
the correct theory of quantum gravity might be, General Relativity must arise in its low

energy limit.

We do not have much information about physics at the Planck scale as experiments
at this energy scale are difficult to imagine. We, nevertheless, have indications that a
unification of General Relativity and Quantum Mechanics may lead to a more complicated
structure of space-time at short distances in the form of a minimal length. Indeed, there
are several thought experiments [182] [183] [184] [185] 186, 187, 188] showing that, given
our current understanding of Quantum Mechanics, General Relativity and causality, it is
inconceivable to measure distances with a better precision than the Planck length Ip =
\/W where f is the reduced Planck constant and c is the speed of light in vacuum.
Such arguments imply a form of non-locality at short distances of the order of [p. We will
show that the scale of non-locality could actually be much larger that [p depending on

the matter content in the theory.

An important question is whether this non-locality could be found when combining
quantum field theory with General Relativity as well. In [I60], it was shown that General
Relativity coupled to a quantum field theory generically leads to non-local effects in scalar
field theories. In the current paper, we build on the results obtained in [160] and extend
them to matter theories involving spinor and vector fields as well. We show that non-local
effects are universal and affect all matter fields. We derive a complete set of non-local
effective operators at order NG? where N = N, + 3Ny + 12Ny with Ng, Ny and Ny
denoting respectively the number of scalar, spinor, and vector fields in the theory. Then,
using recent data from the Large Hadron Collider, we set a limit on the scale of space-time

non-locality.

Recently, several groups have studied perturbative linearized General Relativity cou-
pled to matter fields. They found that perturbative unitarity can breakdown well below
the reduced Planck mass [165, 166, 167, 168]. The self-healing mechanism [169, [170]
demonstrates that unitarity can be recovered by resumming a series of graviton vacuum
polarization diagrams in the large N limit (Fig. (8.1)), see as well [I89] [190] for earlier

works on large N quantum gravity. An interesting feature of this large N resummation,
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Figure 8.1: Resummation of the graviton propagator.

while keeping NG small, is that the obtained resummed graviton propagator
i (LOP LAY 4 [ovBu _ [aBpuv
DB (g2) = i( ), (8.1)
o (1= 5 e ()
1207 2

where p is the renormalization scale incorporates some of the non-perturbative physics

of quantum gravity. It has poles beyond the usual one at ¢> = 0. Indeed, one finds

[T71, 191, 192] that there is a pair of complex poles at

1 1207
¢ = (8.2)

Nw ()

where W is the Lambert function. As explained in [I71], these complex poles are a sign
of strong interactions. The mass and width of these objects can be calculated. It was
suggested in [I71] that the complex poles could be interpreted as black hole precursors.
These Planckian black holes are purely quantum object and their geometry is not expected
to be described accurately by the standard solutions of classical Einstein’s equations. In
particular, they will not decay via Hawking radiation as they are non-thermal objects.
While they do not radiate, they are very short-lived objects and will decay to a few
particles. Their widths are of the order of (120m/GN)'/2. Because the complex poles
are related by complex conjugation, one of them has an incorrect sign between its mass
and its width and it corresponds to a particle propagating backwards in time. This
complex pole thus leads to acausal effects which should become appreciable at energies
near (120w /GN)Y/2. Using the in-in formalism [193, 194] it is possible to restore causality

1/2 " This was done,

at the price of introducing non-local effects at the scale (120m/GN)
for example, in [159] within the context of Friedmann, Lemaitre, Robertson and Walker
cosmology. The Lee-Wick prescription can also be used to make sense of complex poles
[195, 196]. The scale of non-locality is thus potentially much larger than [p if there are
many fields in the matter sector, i.e., if IV is large.

In [160], it was shown that the resummed graviton propagator in Eq. (8.1 induces
non-local effects in scalar field theories at short distances of the order of (1207 /GN)Y/2,
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We extend this work to spinor and vector fields and demonstrate that the non-local effects

propagate universally in quantum field theory as would be expected from quantum black

holes and the thought experiments described previously. We consider a theory with an

arbitrary number of scalar fields, spinor and vector fields and calculate their two-by-two

scattering gravitational amplitudes using the dressed graviton propagator (8.1)). We then

extract the leading order (i.e. order G?N) term of each of these amplitudes and present

the results in terms of effective operators.

The stress-energy tensors for the different field species with spins 0, 1/2 and 1 are

given as usual by

T = au(b 8V¢ - nMVLscalar 5

scalar
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where we have used the following free field matter Lagrangians:
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We can now present the complete set of non-local operators at order NG?. The non-

local operators involving scalar fields only are given by
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The non-local operators involving spinor fields only are given by

(8.14)
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The non-local operators involving vector fields only are given by
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(8.23)

The non-local operators involving amplitudes with scalar and vector fields only are
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given by

NG? U .

Oscalar—vector,l = - 3077_‘_ a”d) O0y¢ In E (F/LO'FVU - mAAuAV) s (8‘24)

NG2 2 - 2 2 42
Oscalar. = —(0¢)*In | — | (F2 —m%4?), 8.25
scalar-vector,2 607 ( ¢) n MQ ( my ) ( )

NG2 = 2 2 42

Oscalar—vector,3 = _3077_[_ Lscalar In ﬁ (F - mAA ) ) (826)
NG? ) O

Oscalar-vectorA = _ﬁ (8¢> In E Lvector ) (827)
2NG? O

Oscalar—vector,5 = _1577_‘_ L scatar In E Lyector - (828)

The non-local operators involving amplitudes with scalar and spinor fields only are

given by

NG? N i
Oscalar—fermion,l = 77_‘_ BMQb 81/¢ In D) iq/yyuvyd) - QV”I/WV?!) ’ (8'29)

30 w
NG? ) O i i
Oscalar-fermion,Q = - 60777 (8(25) In ? §¢70VU¢ - §vaw70w ) (830)
NG? O i i
Oscalar—fermion,3 = W Lscalar In E §¢70v0¢ - QVHWUTZJ ) (8'31)
NG? ) O
Oscalar—fermion,4 = 3077_‘_ (8¢) In E Lfermion ) (832)
2NG? O
Oscalar—fermion,5 = _ﬁ Lycatar In ? Ltermion - (833)

The non-local operators involving amplitudes with spinor and vector fields only are



33

given by
NG* [ i _ i O )
— v v ez
Ovector-fermion,l - = 3077_{_ §¢’Y“v w - §V”¢7 Tb In E (F,quy - mAA,uAU) )
(8.34)
NG? 1 (Il ) 5 o
Ovector—fermion,2 :W dy}/gvadj a¢70¢ In ) (F - mAA ) ) (835)
™ 1t
NG? ] ) 5 o
Ovector-fermion,B = - 307T fermlon ; (F - mAA ) ) (836)
NG? ([
Ovector—fermion,4 30 ¢70v0w E Lvector ) (837)
2NG?
Ovector-fermion,E) = - W Lfermlon In E Lvector . (838)

By looking at these effective operators, one can see explicitly that the gravitational
non-locality leads to non-local effects in the matter sector as well. This is the case for
all matter fields of any spin. The non-locality is manifest due to the presence of the
log(d) term in all of these effective operators. The universality of the non-locality in
the matter sector is precisely what one expects in the context of a minimal length. The
underlying argument in all minimal length demonstrations is the following. When length
scales shorter than the minimal length are probed, one ends up concentrating so much
energy within that region of space-time that a Planckian black hole will eventually form
in that region of space-time. This is precisely what we are finding when interpreting the
complex pole as a black hole precursor which is an extended object of size (1207/GN)'/2.
Its extension in space corresponds to the minimal length that can be probed. We conclude
that space-time is smeared on distances shorter than the dynamical Planck scale given by
M, =M P\/W which corresponds to the energy of the complex pole.

This non-locality prevents an observer from testing distances shorter than the corre-
sponding length scale. It also implies that singularities cannot be probed experimentally
as space-time is smeared. One may argue that the notion of space-time looses its meaning
on distances smaller than 1/M,. This interpretation fits well with the observations made
recently in [197].

It is interesting to point out that the non-local effects in the four-fermion interactions

can be probed at the Large Hadron Collider. The ATLAS collaboration has searched for
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four-fermion contact interactions at /s = 8 TeV and obtained lower limits on the scale
on the lepton-lepton-quark-quark contact interaction A between 15.4 TeV and 26.3 TeV
[181]. The most restrictive bound on A is obtained by combining the dielectron and dimuon
channels. We have contributions to these process coming from Ofermion,1 and Ofermion,2-
We first note that the renormalization scale y should scale with N as well, we take p? =
1207 /(NG). Since we are looking at conservative order of magnitudes, we will identify
the scale generated by the derivatives in the four-fermion operators with the center of
mass energy of the proton-proton collision. We are thus dealing effectively with operators
of the type gqll which are suppressed by a factor 2NG?/(6072)slog(sNG/(1207)). This
translates into a conservative bound N < 5 x 105! on the number of light fields in a hidden
sector. This implies that the scale M,, which parametrizes the non-locality of space-time,
is larger than 3 x 10~!! GeV. This bound is tighter than that obtained from gravitational

waves and from E&tvos type pendulum experiments [192] by two orders of magnitude.

Note that our bound on the scale of space-time non-locality (Mp \/m ) is much
weaker than those on the Planck mass (Mp) obtained using the standard geometrical
cross section (i.e. o = mR% where Rg is the Schwarzschild radius) for quantum black
holes [198|, [199] 200} 201, 202, 203, 204} 205], 206l 207, 208, 209, 67, 210, 211, 212| 213].
Collider bounds on a new object with a geometric cross section are typically of the order
of 9 TeV [213]. This is not surprising as we are indeed studying different higher order
effective operators. So far, we have not found, within the effective theory approach,
higher dimensional operators corresponding to the geometrical cross section which has
been extensively studied. The intermediate states in the propagator of the graviton, which
we have studied, couple with the usual Planck mass to the particles of the standard model
while in the more extensively studied models, quantum black holes are assumed to couple
much stronger (i.e. with Mp ~ TeV) to the particles of the standard model. Since at this
stage we have not identified a mechanism which lowers the value of the Planck mass (we
are using dimensional regularization in contrast to [214] where a dimensionful cutoff had

been used), there is no strong gravitational effect in the TeV region to be expected.

It is worth mentioning that weakly nonlocal theories, such as the effective field theory
for general relativity considered in this paper, can be also the starting point to construct an
ultraviolet completion of Einstein’s gravity, which turns out to be unitary at perturbative

level and finite at quantum level [215, 216, 217].

In this paper, we have shown that the non-locality recently identified in quantum

gravity propagates to the matter sector of the theory. We have described these non-local
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effects using the tools of effective field theory. We have derived the complete set of effective
operators at order NG? for theories involving scalar, spinor, and vector fields. We then
have used recent data from the Large Hadron Collider to set a bound on the scale of

space-time non-locality and found M, > 3 x 107! GeV.
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Using effective field theoretical methods, we show that besides the already observed
gravitational waves, quantum gravity predicts two further massive classical fields leading
to two new massive waves. We set a limit on the masses of these new modes using data
from the Eo6t-Wash experiment. We point out that the existence of these new states is
a model independent prediction of quantum gravity. We then explain how these new
classical fields could impact astrophysical processes and in particular the binary inspirals
of neutron stars or black holes. We calculate the emission rate of these new states in

binary inspirals astrophysical processes.
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Much progress has been made in recent years in quantum gravity using effective field
theory methods. These methods enable one to perform quantum gravitational calcula-
tions for processes taking place at energies below the Planck mass, or some 10 GeV
while remaining agnostic about the underlying theory of quantum gravity. One could
argue that the first attempts in that direction were due to Feynman who has calculated
quantum amplitudes using linearized general relativity [138]. Modern effective field theory
techniques were introduced in the seminal works of Donoghue in the 90’s [145], 218 [57].
With time, it became clear that some model independent predictions could be obtained
[219] 159, 160, B8, 214, 197, 192, 220]. This approach is very generic and it could be
the low energy theory for virtually any theory of quantum gravity such as e.g. string
theory [I5l [16], loop quantum gravity [§], asymptotically safe gravity [221], 222] 223] or

super-renormalizable quantum gravity [215] 216l 217] just to name a few.

In this paper we point out that the low energy spectrum of quantum gravity must
contain two new classical fields besides the massless classical graviton that has recently
been observed in the form of gravitational waves [224] 225] 226]. These new states corre-
spond to massive objects of spin-0 and spin-2. As we will show these new states are purely
classical fields that could have interesting consequences for different branches of physics,

from particle physics and astrophysics to cosmology.

To identify these new fields, we calculate the leading quantum gravitational corrections
to the Newtonian gravitational potential using effective field theory methods. These cor-
rections can be shown to correspond to two new classical states that must exists besides
the massless spin-2 classical graviton. We set limits on the masses of these classical fields
using data from the Eot-Wash pendulum experiment [227] and we then turn our attention
to astrophysical and cosmological probes of quantum gravity studying quantum gravita-
tional contributions to the inspirals of neutron stars or black holes. We demonstrate that
the new massive spin-2 and spin-0 states predicted in a model independent way by quan-
tum gravity can modify the potential between the two astrophysical bodies and lead to
testable effects. We comment on the implications of quantum gravity for inflation, dark

matter and gravitational wave production in phase transition.

Although general relativity is in many regards similar to the gauge theories describing
the electroweak and strong interactions, there is one basic difference which is the source of a
technical difficulty with quantum gravity. The main obstacle is that the coupling constant,
in the case of gravity, is a dimensional full parameter, namely Newton’s constant G while

in the case of the other interactions the fundamental coupling constant is a dimensionless
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parameter. The fact that Newton’s constant carries a dimension leads to problems with
the renormalization of the theory of quantum gravity, at least at the perturbative level.
While having a renormalizable theory is necessary to claim to have a fundamental theory
of quantum gravity, and to perform calculations at energies above the Planck mass Mp =
1/V/G N ~ 10Y GeV, it is now well appreciated that using effective theory techniques leads
to very interesting insights into a theory of quantum gravity [145] 218 219, [160], 58]. As a
matter of fact, since all experiments, astrophysical or cosmological events we are aware of
involve energies below the Planck mass, an effective theory of quantum gravity valid up
to Mp may be all that we ever need.

From a technical point of view, calculations in quantum gravity using effective theory
techniques are rather simple. One integrates out the quantum fluctuations of the metric
to obtain an effective action. Matter fields, depending on the problem at hand and in
particular on the energy involved in the problem, can also be integrated out. One is left

with an effective action given by

1
S = /d%: V=g KZM? + 5HTH> R — AL+ R+ caRuwR™ + cyOR

O
ERWW + Loy +OMIH| , (9.1)

O O
+b1R log 72’]% + bQR“V log 727—\)}“/ + bBRp,vpo log
12 125 3

where R, R, and R, s are respectively the Ricci scalar, the Ricci tensor and the Rie-
mann tensor. The cosmological constant is denoted by Ac. The scales p; are renormal-
ization scales which in principle could be different, we shall however take p; = p. The
Lagrangian Lgjs contains all of the matter we know of and M, is the energy scale up to
which we can trust the effective field theory. Note that we have written down all dimension
four operators which have dimensionless coupling constants and we have thus introduced a
non-minimal coupling of the Higgs doublet to curvature on top of the purely gravitational
terms. The term R is a total derivative and thus does not contribute to the equation of
motions. Remarkably, the values of the parameters b; are calculable from first principles
and are model independent predictions of quantum gravity, see e.g. [228] and references
therein. They are related to the number of fields that have been integrated out. The non-
renormalizability of the effective action is reflected in the fact that we cannot predict the
coefficients ¢; which, in this framework, have to be measured in experiments or observa-
tions. There will be new ¢; appearing at every order in the curvature expansion performed
when deriving this effective action and we thus would have to measure an infinite number
of parameters. Despite this fact, the effective theory leads to falsifiable predictions as the

coefficients b; of non-local operators are, as explained previously, calculable.
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The effective action contains three classical fields: the well known massless spin-2 field
(the classical graviton) h*”, a massive spin-2 classical field k*¥ and a massive classical
spin-0 field o on top of the mater fields contained in Lgps. This can be see explicitly by
sandwiching the Green’s function of the metric in the linearized effective action between

two classical sources T [220]

2567T2G2 Tlgi)T(Q),LW _ %T(lleT(QIBV - Tlsllj)T@),uy o %T(llluT(Qy)u
N ¥ k- 2 b 45 log ( =£2
K <cg+( 2+4b3) og<u—2)) (92)
n T(lgMT(QlEV
k-? _ 1 )

K2 (301 +c2+4(3b14+b2+b3) 10g<%22> )

where x? = 32wG. A careful reader will have noticed the minus sign in front of the massive
spin-2 mode. This is the well known ghost due to the the term R, R*”. However, the cor-
responding state k¥ is purely classical and it does not lead to any obvious pathology. This
is simply a repulsive classical force. We will show that the emission of this massive spin-2
wave leads to the production of waves with positive energy. This state simply effectively
couples with a negative coupling constant Mp to matter. It is crucial to appreciate that
this mode is purely classical and should not be quantized as it is obtained by integrating
out the quantum fluctuations of the graviton from the original action.

Using Eq., it is straightforward to calculate the leading second order in curvature

quantum gravitational corrections to Newton’s potential of a point mass m. We find:

G 1 4
D(r) = ——;” (1 + ge—’%(mo)’” - 3e—R6<m2>’“> (9.3)
where the masses are given by
2
m% = oD o R (94)
by +4b
(b2 + 4b3) k2 W <_(b2+4(bg2)223%>
1

m% = P ey Fop s (95)

(3b1 + by + bs) k2 W (—(%ib;f ;)

and where W (z) is the Lambert function. This effective Newtonian potential is a gener-
alization of Stelle’s classical result [54], it includes the non-local operators as well as the
local ones and thus contains the leading quantum gravitational corrections at second order
in curvature.

Note that our result is compatible with the results obtained in [218| [57), 229], we simply
focus on a different limit where the coefficients of R? and R, R* are not necessarily tiny.

It is easy to show that the effective action leads to higher order corrections in G to the
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Newtonian potential energy of two large non-relativistic masses m; and my. The quantum

corrected Newtonian potential is given by

mimsg 3 G?v mima(my + ma)

U(T)Z—GN 5

- - (9.6)

mi1ms G2 <Ns & 2NV 41)
N .

mr3 27 7 10

This extends the result presented in [218] 57, 229] to include the numbers NN; respectively
of real scalar fields, Dirac fermions and vector fields present in the model. The number
of matter fields IV; are related to the b; which are the Wilson coefficients appearing in
the effective action by the relations N; = by; + 4b3;. Here we took the same limit as
in [218, 57, 229] assuming that the ¢; are very small. The corresponding terms lead to
delta functions which do not contribute to the potential energy. As emphasized in [57],
the second term in the potential represents the leading relativistic correction and it is not
a quantum correction. Note that these corrections are appearing at order G?V and are
thus subleading in comparison to the contributions of the new waves appearing in ®(r)
on which we will thus focus.

The masses of the new modes correspond to pairs of complex poles in the green’s
functions of the massive spin-2 k*” and spin-0 o states. In general, the masses are complex
depending on the values of the parameters ¢;, b; and p, in other words they contain a width.
The imaginary contributions, however, vanish when adding up the contributions of these
states to the Newtonian potential. It is straightforward to show that Stelle’s classical
result is recovered in the limit of b; = 0.

It is easy to work out the coupling of k#¥ and o to matter. We find
4 1 puv 1 o v v a v P
S= | dzx —§h#,,Dh + ih“ Uh,” — A" 0,00hy" + W' 0,0,h7, (9.7)
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This result shows that quantum gravity, whatever the underlying ultra-violet theory might
be, has at least three classical degrees of freedom in its low energy spectrum. The massless
mode has recently been directly observed in the form of gravitational waves. While there
was little doubt about their existence since the discovery of the first binary pulsar in
1974, the direct observation by the LIGO and Virgo collaborations [224], 225] [226] erased

any possible remaining doubt. While the massless mode affects the distance between two
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points, and thus the geometry, the massive modes are of the 5th force type and they do
not affect the geometry of space-time. A 5th force will not change the proper distance
between the mirrors of an interferometer such as those of LIGO or Virgo, but it could
still lead to measurable displacement of the mirrors if the wavelength is shorter than the

distance between the mirrors on one arm of an interferometer.

We find that the strength of the interaction between the new massive modes and matter
is fixed by the gravitational coupling constant. It is crucial to appreciate that the fields
h* kM and o are purely classical degrees of freedom. This is why the overall negative
sign of the kinetic term of k¥ is not an issue, it simply implies that this field couples
with a negative Planck mass to matter. We shall demonstrate that the corresponding
massive spin-2 wave produced in binary inspiral does not violate energy conservation.
Note that while k*¥ couples universally to matter, o does not couple to massless vector

fields [130], 230].

The fact that these fields are purely classical has some interesting consequences if one
tries to interpret the massive modes as dark matter candidates or the inflaton in the case
of the scalar field. If the massive modes constitute all of dark matter, dark matter would
an emergent phenomenon. In that sense dark matter would be fundamentally different
from regular matter. The same remark applies to inflation if the scalar field encompassed

in the curvature squared term is responsible for the early universe exponential expansion.

We now turn our attention to the experimental bounds on the masses of the two
heavy states. Newton’s potential with its quantum gravitational corrections can be probed
with sub-millimeter tests of the gravitational inverse-square law [227]. In the absence of
accidental fine cancellations between both Yukawa terms, the current bounds imply my ,
mg > (0.03 cm)™! = 6.6 x 10713GeV. Note that the Eét-Wash experiment performed by
Hoyle et al. [227] is probing separations between 10.77 mm and 137 pm, a cancelation
between the two Yukawa terms on this range of scales seems impossible without modifying

general relativity with new physics to implement a screening mechanism.

The bound on the quantum gravitational corrections to Newton’s potential imply that
quantum gravity could only impact the final moments of the inspiraling of binary of two
neutron stars or of two black holes. Their effect will only become relevant at distances
shorter than 0.03 cm. There are two possible effects. When the two astrophysical bodies
are close enough, Newton’s law could be affected by the propagations of the new massive

modes and the new massive modes could be produced in the form of new massive waves.

The quantum gravitational correction to the orbital frequency of a inspiraling binary
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system is given by

1 4
(A)Z = Grign <1 + §€7Re(m0)7' — 3€Re(m2)7‘> (98)

where m = mq +my is the total mass of the binary system. The total energy of the system

is given by

Gm,u 1—R( ) 4—R( )
E = — 1 - e(mo)r _ = e(ma)r .
o < +3e 3¢ (9.9)

where p = mimg/m is the reduced mass of the system. The quantum gravitationally cor-
rected waveform can be deduced from the energy-conservation equation E = — Pgyy where
Pow is the power of the quadrupole radiation of the gravitational waves corresponding to
the massless spin-2 mode:

32G y p2wbrd

=3 (9.10)

Paow =

which can be solve for r(¢) from which w(t) can be calculated. The quantum corrected
chirp signal which has frequency fgw and amplitude Agw can then be obtained in a

straightforward manner:

fow(ty = <0 (0.11)
Aaw(t) = 2o (), (9.12)

where dy, is the luminosity distance of the source.

While it is easy to calculate fow and Agw explicitly, it is clear that the quantum
gravitational corrections to the emission of gravitational waves can only become relevant
when the two objects are closer than 0.03 ¢cm given the bound derived on the mass of
the massive spin-2 object using data from the E6t-Wash experiment E This distance is
well within the Schwarzschild radius of any astrophysical black hole and clearly tools from
numerical relativity need to be employed to obtain a reliable computation. Note that
for black holes the mass is concentrated at their center and very close to the singularity.
While the horizons will have started to merge, the two singularities could be within a
reasonable distance of each other. In that sense our approximation may not be so rough.
In any case it is clear that incorporating our quantum gravitational effect in numerical
relativity calculations [232] represents a real technical challenge as the interior of black

holes is usually excised to avoid having to discuss the singularities. However, the new

I The effects of the 1/7“2 and l/r3 terms discussed above, which are corrections to the propagation of

the massless mode will be considered elsewhere[231].
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states can only be relevant when the distance between the two black hole singularities
become of the order of the inverse of the mass of the massive spin-2 object.

Besides the usual massless gravitational waves, there are two new kind of radiations,
namely the massive spin-0 and spin-2 could in principle be produced in energetic astro-
physical or cosmological events. However, in the case of a binary system, because the
center of mass of the system is conserved, the spin-0 wave cannot be produced. On the
other hand, the massive spin-2 could be emitted in the last moment of a merger when the
two inspiraling objects are closer than the inverse of the mass of the massive spin-2 field.
A lengthy calculation leads to a remarkable result. The energy E carried away by the
massive spin-2 mode from a binary system per frequency is identical to that of massless

spin-2 mode:

dEmassive o Gn 6 e i
T de 45 w <Q1]Q ) 0(w —m2) (9.13)

up to a Heaviside step function which prevents the emission of massive waves when the
energy of the system is below the mass threshold. Note that as usual ();; is the quadrupole

moment of the binary system. The total wave emission by a binary system is thus given

by

dE dEmassless dEmaSS’i’Ue
dE _ 14
dw dw + dw (9-14)

where the first term on the righthand side is the usual general relativity result for massless
gravitational waves. Once the massive channel becomes available, half of the energy is
damped into the massive mode.

The massive spin-2 wave will only be produced when the two black holes are close
enough from another. If we denote the distance between the black holes of masses m 4
and mp by d, we obtain the frequency of the inspiral w:

Gn(ma+mp)

w? = pE . (9.15)

To estimate how close the two black holes have to be to generate enough energy to produce
a massive wave compatible with the E6t-Wash bound, we set w = (0.03 cm)~! and use the
masses of the first merger observed by the LIGO collaboration m4 = 36 My mp = 29 M,
(where Mg, is the mass of the sun). We find that for a wave of mass (0.03 cm)~! to be
produced the two black holes would have to be at 16 cm from another. Clearly this is
again well within the horizon of any astrophysical black holes and a reliable simulation

will require a challenging numerical investigation. In any case, our results demonstrate
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that massive spin-2 waves can be produced in the merger of astrophysical objects such as
black holes and this effect must be taken into account in future numerical studies. Clearly
the massive modes will only be produced in the final stage of the inspiral process at the
time of the merger and ringdown. This represents a unique opportunity to probe quantum

gravity with astrophysical events in a fully non-speculative manner.

Let us emphasize at this stage that we have considered binary systems in the New-
tonian regime. Our main motivation was to demonstrated that first principle quantum
gravitational calculations are possible. It is, however, clear that the leading order cor-
rection that we have considered here cannot be trusted in the insprial process when two
astrophysical objects reach very short distances and higher order post-Newtonian correc-
tions or, more likely, a full numerical general relativity becomes necessary. Let us also
stress that we have considered the most optimistic case scenario, still compatible with the
E6t-Wash experiment, by studying masses for the new fields of the order of (0.03 cm)~!.
However, the masses of these new fields could be anywhere between (0.03 cm)~! and the
inverse Planck length or some (1.6 x 1073% m)~!. If numerical studies managed to con-
sider distances equal or shorter to (0.03 cm)~!, then gravitational signals from binary
system would enable one to probe quantum gravity more accurately than the Eot-Wash

experiment.

As mentioned previously, such short distances are well within the Schwarzschild radius
of any astrophysical body. This implies that mergers of neutron stars are unlikely to
enable one a probe of quantum gravity. On the other hand, depending on how we think of
black holes, binary systems of such objects might enable one to probe very short distance.
Astrophysical black holes are the end product of the gravitational collapse of matter such
as e.g. stars. Under such a collapse, matter falls towards the singularity but we expect
quantum physics to smear out the singularity. In that sense, one expects the gravitational
collapse of matter to lead to a very dense ring of matter at the center of the black hole.
We can thus think of a black hole as an extremely dense object with matter concentrated
within a Planck length of the center of the black hole. The horizon itself is not a physical
object, a falling observer never notices that he passes through the horizon. It is simply
a reaction of space-time to the presence of the very dense core of the black hole. While
physical phenomena taking place within the horizon cannot be observed directly by an
external observer, the horizon would react to a change in the matter distribution inside
such an horizon. We can thus think of a black hole merger as the merger of two extremely

dense astrophysical bodies. When the two dense cores get close enough, a common horizon
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forms, this common horizon will keep on evolving as a the two cores continue to move
towards each other inside the common horizon. This is not the standard picture which
usually solely focusses on the dynamics of the horizon (indeed numerical studies usually
excise space-time inside the horizon), but it must be equivalent. On the other hand,
thinking of black holes as extremely dense core objects with an horizon that is a response
of space-time to this dense center would enable one to study extremely short distance
physics, potentially up to the Planck length. This is not doable in standard numerical
studies which artificially remove the inside of black holes, purely for technical reasons.

The feasibility of this alternative approach will be investigated elsewhere.

While we discussed the production of the massive waves in the context of astrophysical
processes, it is also possible to envisage the production of these new quantum gravitational
massive classical modes during first order phase transitions if such phases took place early
on in the cosmological evolution of our universe. Clearly, the occurrence of a first order
phase transition in the early universe is a speculative topic as there is no such phase
transition within the electroweak standard model. Our work represents an additional
complication for the study of early universe phase transitions as beyond the massless
gravitational waves, the new massive modes could be produced. Indeed, the collision
of bubbles and damping of plasma inhomogeneities could have generated a stochastic
background of massive gravitational waves beyond the massless ones that are expected.
This implies that some of the energy of these processes could be lost in massive modes.

This fact has been overlooked so far when doing simulations for LISA [233].

Tests of quantum gravity often focus on exotic possibilities [234] such as the presence
of Lorentz violation effects [235] or other kinds of symmetry breaking. In the case of
gravitational waves, different extensions of general relativity [2306, 237, 238 239] have been
considered. In this paper, we have shown that there are model independent predictions
of quantum gravity which can be searched for in experiments or in observations. The
main prediction is the existence of two new classical states namely a massive spin-2 and
massive spin-0 classical fields. The phenomenology of these fields is clear, their interactions
with matter is fixed by the underlying theory of quantum gravity. The only unknown
parameters are their masses. It is thus essential to study these states and hopefully to
discover them in an experiment or observation. This program is extremely conservative as
any theory of quantum gravity must at least contain these two new states beyond massless
gravitational waves. While we cannot calculate their masses from first principles, we have

shown that there are bounds on the masses of these new classical fields. This approach to



46

quantum gravity opens up new directions to understand dark matter and inflation which

could be emergent, i.e., purely classical, phenomena.
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We show that quantum gravity, whatever its ultra-violet completion might be, could
account for dark matter. Indeed, besides the massless gravitational field recently observed
in the form of gravitational waves, the spectrum of quantum gravity contains two mas-
sive fields respectively of spin 2 and spin 0. If these fields are long-lived, they could
easily account for dark matter. In that case, dark matter would be very light and only

gravitationally coupled to the standard model particles.
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While finding a unified theory of quantum field theory and general relativity remains
an elusive goal, much progress has been done recently in quantum gravity using effective
field theory methods [145] 218 57, 219, 159, 160, 58| 214 197, 192, 220, 171, 191, 172, 59].
This approach enables one to perform model independent calculations in quantum gravity.
The only restriction is that only physical processes taking place at energy scales below the
Planck mass can be considered. This restriction is, however, not very constraining as this
is the case for all practical purposes in particle physics, astrophysics and cosmology.

In this paper, we show that quantum gravity could provide a solution to the long
standing problem of dark matter. There are overwhelming astrophysical and cosmological
evidences that visible matter only constitutes a small fraction of the total matter of our
universe and that most of it is a new form of non-relativistic dark matter which cannot be
accounted for by the standard model of particle physics. Gravity could account for dark
matter in two forms. The first gravitational dark matter candidates are primordial black
holes, see e.g. [240] for a recent review. They have been investigated for many years, and
although the mass range for such objects to account for dark matter has shrunk quite a
bit, they remain a viable option for dark matter, in particular Planckian mass black hole
remnants are good dark matter candidates. Here we discuss a second class of candidates
within the realm on quantum gravity. Recent work in quantum gravity has established
in a model independent way that the spectrum of quantum gravity involves, beyond the
massless gravitational field already observed in the form of gravitational waves, two new
massive fields [I71]. Their properties can be derived from the effective action for quantum
gravity. We will show here that these new fields are ideal dark matter candidates.

Deriving an effective action for quantum gravity requires starting from general rela-
tivity and integrating out fluctuations of the graviton. Doing so, we obtain a classical

effective action given at second order in curvature by

1
S = /d% V=g [<2M2 + gHTH> R — AL+ a1R? + 2R RMY + cyOR (10.1)

O O O
—biRlog —5R — bRy log R — b3Rupe log —R*P7 + Lo + oM |,
M1 M H3

where R, R, and R, s are respectively the Ricci scalar, the Ricci tensor and the Rie-
mann tensor. The cosmological constant is denoted by Ax. The scales u; are renormal-
ization scales which in principle could be different, we shall however take p; = pu. The
Lagrangian Lgjs contains all of the matter we know of and M, is the energy scale up to
which we can trust the effective field theory. The term [OR is a total derivative and thus

does not contribute to the equation of motions.
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Remarkably, the values of the parameters b; are calculable from first principles and
are model independent predictions of quantum gravity, see e.g. [228] and references
therein. They are related to the number of fields that have been integrated out. The
non-renormalizability of the effective action is reflected in the fact that we cannot predict
the coefficients ¢; which, in this framework, have to be measured in experiments or observa-
tions. There will be new ¢; appearing at every order in the curvature expansion performed
when deriving this effective action and we thus would have to measure an infinite number
of parameters. Despite this fact, the effective theory leads to falsifiable predictions as the
coefficients b; of non-local operators are, as explained previously, calculable.

In [220, 59], it was shown how to identify the new degrees of freedom by finding the
poles of the Green’s function obtained by varying the linearized version of the action given
in Eq. with respect to the metric. Besides the usual massless pole, one finds two

pair of complex poles. The complex pole for the massive spin-2 object is given by

2
ms = y— , (10.2)
(ba + 4b3)K2W (—(b2 - g;;g;g)
while that of the massive spin-0 reads
-1
mg = e (10.3)
@+ b+ oy (o)

where W (z) is the Lambert function and x? = 327G, G is Newton’s constant. The
b; for the graviton are known: by = 430/(1152072), by = —1444/(1152072) and b3 =
434/(115207%). The b; are thus small and unless the c¢; are large, the masses msy and
mo will be close to the Planck mass Mp and the corresponding fields will decay almost
instantaneously [I71]. As we are interested in the case where the new fields are light, it
is useful to consider the limit where the ¢; (or one of them at least) are large and b; < ¢;.

In that case we can rewrite the masses as

2 2
) .
= ——— —in—— (by + 4b3) , 10.4
m2 K2co ”m%g (b2 + 4bs) (10.4)
so we need to pick co < 0 and
1 1
mé = —in (3b1 + by + b3) (10.5)

k2 (3c1 + ¢2) k2 (3c1 + ¢2)?

where we assumed that the renormalization scale u ~ 1/k, i.e. we assume that the effective
field theory is valid up to the reduced Planck scale. As done in [I71], we can identify the

mass and width of the respective field using m? = (M; —iI';/2)?. Note that the complex
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conjugate solutions m3 and mf which lead to a positive sign between the mass and the
width in the propagator can be eliminated by a proper choice of the contour integral, i.e.
of boundary conditions[I72], in full analogy with the usual ie procedure which enables one
to select the causal behavior of the Green’s function.

We can now express the width in terms of the mass of the field. For the massive spin-2

field k, we find

5 Mp
My = | 22 10.6
2 o 2 (10.6)
by + 4b 7303
P, ~ 2t b 2 (10.7)

AR 7Ly /e T
V23 T 360mv2ME

and for the massive spin-0 field o, one has

1 1 Mp
My ~ = , 10.8
0 \/(301 + c9)K? \/(361 +c) 2 (10.8)

3b1 +b2 +b M3
FO%( 1+ 02 + 3)7TMP2702, (10.9)
2 (361 +62)3 727TMP

where Mp = 2.435 x 10'® GeV is the reduced Planck mass. The widths Iy and I'y are the
gravitational widths for the decay of the massive spin-2 and spin-0 classical modes into
the classical graviton.

To obtain the total width, we need to include the decay modes into particles of the
standard model. The coupling of the two states to the standard model Lagrangian has

been worked out in [59]. One has
]‘ v 1 v v [0 17
S = / diz [(—thDh“ + PO — W90, + I apayhpu> (10.10)
1 174 1 14 v o 174
+ <—2k:WDk“ + Sk 'Ok, = K 0,0,k + K 0,0,k

—]‘? (Fuk — k;kf))

2

1 M 1
+§8u0'8p‘0' — 700'2 -V 87TGN(h,u1/ - kyy + % g nuu)TMV:| .

We thus see that besides decaying gravitationally, the massive spin-2 and spin-0 fields can
decay to standard model particles. It is straightforward to calculate the decay widths of
the new massive modes into standard model particles using the results of [241].
The decay width of the scalar mode ¢ into massive vectors fields V', such as the W
and Z bosons, is given by
3

MO 1/2 2
Lo —VV) = 54&ng, (1 —4r) 2 (1= dry +121%) (10.11)
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where § = 1/2 for identical particles and ri, = (my/Mp)?. The decay width of o into

fermions is given by

_ m%MONC

T(oc— ff) = W“ —4rp) 2 (1= 2r)) (10.12)

with r; = (mg/Mp)? and No = 3 if the fermions are quarks. While o couples to the
trace of the energy-momentum tensor of the standard model and it thus does not couple
to massless gauge bosons at tree level, it will couple to the photon and the gluons at one
loop. In particular the decay width into two photons is given by [242], 243]

2 3
apy My Ne

2
, 10.13
7687302 2y (10.13)

(o =) =

where app=1/137 and cpp=11/3 if ¢ is lighter than all the fermions of the standard

model. The decay width of ¢ into a pair of Higgs bosons is given by

Mg
487 M 12:,

I'(c — hh) = (1—4rp)Y2 (1 + 2rp)2, (10.14)

where 73, = (my,/Mo)?.
It is also straightforward to calculate the partial decay widths of the spin-2 object k.
Its partial width to massless vector fields is given by

M;
80w M2’

T(k—VV)=N (10.15)

where N=1 for photons and N = 8 for gluons. In the case of massive massive vector fields,
one has

M;
40w M2

T(k—VV)=4 53

13 14 4
V1—dry ( + —ry + 137”‘2/> , (10.16)
where 6 = 1/2 for identical particles, ry = m%/ /M3. For the decay to fermions, we find
. M3 8
T(k— ff) = No——=2— (1—4r)3? (142 10.17
(k= ff) ClGOwM},( ry) t3rr ) ( )
where 1y = m? /]\422 and, as previously, No = 3 if the fermions are quarks. In the case of

a decay to the Higgs boson, the partial decay width is given by

MS
T'(k — hh) = 4307T72M2 (1—4r))%?2, (10.18)
P

where 7, = m3 /M3.
If the massive spin-0 and spin-2 fields are components of the dark matter content of the
universe nowadays, their masses have to be such that none of these partial decay widths

should enable these fields to decay faster than the current age of the universe. From the
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requirement that the lifetime of the spin-0 ¢ is longer than current age of the universe, we

can thus get a bound on ¢y using the gravitational decay width. We find
T=1/T=72x10"""/c3 GeV™! > 13.77 x 10% (10.19)

and thus ¢y > 4.4 x 10%%. The same reasoning leads to a similar bound on 3¢; + c3. We
can then deduce a maximal mass for the dark matter candidate, My < 0.16 GeV. Note
that Eot-Wash [227] implies co < 10%1, we thus have a bound 4.4 x 103 < ¢y < 105!
and 1 x 10712 GeV < My < 0.16 GeV. Again a similar bound applies to the combination
3c1 + ¢o and thus to Ms. Clearly such light dark matter candidates could not decay to
the massive gauge bosons of the standard model, its charged leptons such as the electron
or the quarks. They could however decay to gluons (during the deconfinement phase
of the early Universe), photons and potentially neutrinos. The decay to photons might
be of astrophysical relevance and could be observable by gamma-ray experiments. Note,
however, that decay widths of the dark matter candidates to photons are smaller than the
respective gravitational ones. It is also worth mentioning that the decay to neutrinos can
be as rapid as the gravitational modes if again neutrino masses are low enough.

While we have established that quantum gravity provides two new candidates for dark
matter, it remains to investigate their production mechanism. Thermal production is a
possibility, but we would have to consider all higher order operators as we would need
to consider temperatures larger than the Planck mass T > Mp since these objects are
gravitationally coupled to all matter fields. Also we may not want to involve temperatures
above the inflation scale which we know is at most 10'4 GeV. The weakness of the Planck-
suppressed coupling hints at the possibility of out-of-equilibrium thermal production as
argued in [244]. However, the mass range allowed for the dark matter particles within
that framework is given by TeV< mpy; < 10'! GeV [244] and it is not compatible with
our ranges for the masses of our candidates. The fact that our dark matter candidates
are light points towards the vacuum misalignment mechanism, see e.g. [245]. Indeed, in
an expanding universe both ¢ and k have an effective potential in which they oscillate.
The amount of dark matter produced by this mechanism becomes simply a randomly
chosen initial condition for the value of the field in our patch of the universe. In [246],
it was shown that the vacuum misalignment mechanism leads to the correct dark matter
abundance ppy; = 1.17 keV/cm? if the dark matter field takes large values in the early
universe. For example, a dark matter field with a mass in the eV region would need to take
values of the order of 10! GeV to account for all of the dark matter in today’s universe

[246].
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In summary, we have shown that gravity, when quantized, provides new dark matter
candidates. As these fields must live long enough to still be around in today’s universe
their masses must be light otherwise they would have decayed long ago. It is quite possible
that gravity can account for all of dark matter in the form of primordial black holes and

the new fields discussed in this paper without the need for new physics.
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The article addresses the John interaction from Fab Four class of Horndeski models
from the effective field theory point of view. Models with this interaction are heavily
constrained by gravitational wave speed observations, so it is important to understand,
if these constraints hold in the effective field theory framework. We show that John
interaction induces new terms quadratic in curvature at the level of the effective (classical)
action. These new terms generate additional low energy scalar and spin-2 gravitational
degrees of freedom. Some of them have a non-vanishing decay width and some are ghosts.

Discussion of these features is given.
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Introduction

Modified gravity encompasses a broad range of models. Traditionally such models are
classified according to the type of modification. For example, models with an additional
scalar field are called scalar-tensor gravity; models whose Lagrangian is a continuous
function of the scalar curvature R are called f(R) gravity, etc [49]. One can also classify
modified gravity models by their particle content. General Relativity (GR) describes
massless spin-2 particles (i.e. gravitons) interacting both with matter and themselves.
Modified gravity models change the standard GR content by adding new physical fields
[230} 130]. Scalar-tensor models and f(R) gravity serve as the simplest example of such a
modification, as they introduce an additional spin-0 particle in the model particle spectrum
[107, 247, 248]. In matter of fact, it is possible to map an f(R)-gravity model onto a scalar-
tensor model with the Brans-Dicke parameter wpp = 0 [107, 124, 123]. Therefore f(R)
gravity and scalar-tensor models should not be treated as completely independent theories.

Clearly, the simplest way to modify GR is to introduce an additional scalar degree of
freedom (DOF). However, the new DOF should not be introduced in an arbitrary manner.
The action describing the new DOF must produce second order field equations as a higher
derivative action either introduces ghost instabilities or describes additional DOFs (up to
a proper reparametrization).

Scalar-tensor models with second order field equations are given by the Horndeski

Lagrangian [I31] in the Generalized Galileons parameterization [122]:

£=£2+£3—|—£4+£5, (11.1)

Ly =G,
L3 =—-G30X ,

Ly =G4R+ Gux[(O6)* — (V. V)], (11.2)

1
L5 = G5GuwV'V"¢ — 2 Gsx [(06)° = 3(06)(V,u Vo) + 2V, V0e)’] .

Here G2, G3, G4, and G5 are functions depending on the scalar field ¢ and the standard
kinetic term X = 1/2 0,¢0"¢; Gax and Gsx are correspondent derivatives with respect
to X; G is the Einstein tensor. It is worth noting that only £4 and L5 describe a non-
standard interaction between gravity and the scalar field, while terms Lo and L3 describe
the scalar field self interaction.

Horndeski models contain a special subclass called Fab Four [134] which is defined by

its ability to screen the cosmological constant. To be exact, Fab Four models completely
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screen an arbitrary cosmological constant on the Freedman-Robertson-Walker background
and such a screening holds even if the cosmological constant experience a finite shift. Fab

Four class is given by the following Lagrangian:

L= 'CJohn + EGeorge + LRingo + ['Paul ) (113)

Lionn = Vi(¢) G V*oV 6

‘CG T = VG(¢) R ’
o R (11.4)
ERingo = VR(¢) G 3
Lpau = Vp(¢) PPV, 0V bV, Vo .
Here G is the Gauss-Bonnet term, prref — _q /2 EQBATR,\TME"W” is the double-dual

Riemann tensor, and Vj, Vg, Vg, Vp are interaction potentials. The following features
of this class should be noted. The Ringo term alone does not screen the cosmological
constant, it just does not ruin the screening. The George term introduces a Brans-Dicke-
like coupling which may not be enough to support screening in a particular setting [134].
Therefore only the John and Paul terms drive the screening. Finally, the Paul term
demonstrates a pathological behavior in star-like objects [135, [136]. Therefore, the John
term is the most relevant term for the cosmological constant screening.

A combination of the John term and beyond Fab Four terms allows one to construct a
model which may provide an adequate description of both the cosmological expansion while
keeping the cosmological constant small. When the John term is the leading contribution,
there is a screening of the cosmological constant; when the leading contribution is provided
by beyond Fab Four terms the model losses its screening properties and develops a small
cosmological constant. A particular example of such a model is given in [I37] by the

following action (we use different notations):

1 1
- _ _ MV g
oo B2+ 50" VuoVud + 8 GV,6V0e| . (115)

S = / dtz/—g | -
In full agreement with the aforementioned logic the model describes both inflation and
the late-time accelerated expansion of the universe.

Recent direct detection of gravitational waves (GW) [224, 225] 226] 249, 249] 250]
and the measurement of the GW speed [74, [75] allow one to establish sever constraints
on Horndeski models [251, 252]. The authors of [251, 252] considered the propagation
of tensor perturbations on a cosmological background in Horndeski models and identified

them with GWs detected in the terrestrial experiment. Due to the structure of Horndeski
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models the speed of perturbations strongly depends on G4 and G5, so in order to obtain
a model with the constant GW speed one must put the following constraints on the

Horndeski parameters:
Gix =0, G5 = const . (11.6)

Constraints (11.6) would rule out the John interaction (and Fab Four in general) from the
list of relevant scalar-tensor models.

In this paper we indirectly address constraints and their role in the context of
the effective field theory treatment of gravity. We claim that although the constraints
hold for the classical Horndeski action ((11.1)), one cannot use the action ((11.1) as
a coherent effective action. One must introduce Horndeski interaction at the level of the
fundamental action of the model and restore the form of the effective (i.e. classical) gravity
action. We present a derivation of such an effective action in the following section. As
the effective action does not match the Horndeski action , the role of the constraints
should be reconsidered. We discuss this issue in the last section.

Effective Field and John Interaction

The standard Effective Field Theory (EFT) technique is based on the following premise
[146]. Let us assume that one has a physical system containing heavy h and light [ degrees
of freedom described by a fundamental action A[l, h]. In the low energy regime, i.e. when
energies are below the heavy degree of freedom (DOF) mass scale, the system is described
by an effective action I'[l] given in terms of the light DOF only. In order to obtain the

effective action one must integrate out the heavy DOF:

/D[l] expli T[I] ] = /D[Z]D[h] expli AL H]] - (11.7)

If the fundamental action is unknown, one can restore its form, as it must contain all
terms permitted by general covariance, conservation laws, and other fundamental physical
principles.

A similar logic holds for gravity models [145, [141]. One assumes, that gravity is de-
scribed by some fundamental action A[g] which is given in terms of the metric g describing
behavior of the true quantum gravitons propagating over some background spacetime g.

In order to obtain an effective action, one must integrate out all quantum gravitons:

exp [iT[g,u]] = / Dlg) exp i Algyw + gyo]]. (11.8)
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The effective action I'[g] is given in terms of the classical metric g, which is generated
by the underlying dynamic of quantum gravitons. Let us emphasis, that in such an
implication one must integrate out light DOF unlike the before-mentioned case. Moreover,
the fundamental action A must contain data on the matter content of the Universe, as it

describes both gravity and its interaction with matter.

Despite the fact that the fundamental action for gravity is unknown, one can restore the
form of the effective action. One must include R? and wa terms in I, as the correspondent
operators are generated at the level of the first matter loop [5I]. Moreover, one must
include nonlocal operators [159] 160, 58], as one can sum up an infinite series of matter
loops in the graviton propagator. We do not discuss this feature in details, as it lies beyond
the scope of this paper and it was covered in details in [145], 141, 159, 230, 58]. The
standard approach to modified gravity is to consider only the classical action describing
gravity without respect to the underlying quantum dynamic of the gravitational field
[49, 251), 252]. This approach is coherent and appears to be fruitful in modified gravity.
Within the EFT framework one is obliged to consider the classical action as the effective

action, so it cannot be taken arbitrary.

In such a way we claim that if the effective (classical) action of gravity contains Horn-
deski interactions, then the fundamental action for gravity also must contain a Horndeski
sector and vice versa. In this paper we address a particular action as it is well
motivated. We consider as a part of the fundamental gravity action. In order to

derive interaction rules we expand the action over a flat background:

1 1 K
A= /d4az —ihwo,mﬂhaﬂ — 5000 - Zhﬂ”qwaﬁ 9% 0% ¢ (11.9)

K
+58 (040" o + 0,0 hyio = By = Oy = 1y (0aDsh™ — O)| 67 66”

Correspondent Feynman rules are presented in the Appendix. An expansion about the
flat background is due, as we are interested in the local effects. The presence of the
cosmological constant can be neglected for the sake of simplicity, as it strongly affects

only large-scale physics.

Following the standard procedure presented in [145] [141), 146] one can calculate the
effective action based on the form of the fundamental action ((11.5). The effective action
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is given by the following;:

1 1
= /d“w\/—g ~Teea T 59" VudVub + FGM V6V, (11.10)

+a1 R + eoR’, + et RBOR + &Ry, SORM + 6, R(BO)*R + &Ry, (BO)* RM .

Here ¢y, co, €1, G2, €1, and ¢y are unknown dimensionless constants. First three terms in
appear in the effective action due to the fact that they present in the fundamental
action. Terms R? and RZV appear due to the first matter loop associated with the standard
interaction between gravity and matter [51]. Terms with SO appear due to the presence
of the John interaction and its contribution to the first order matter loop (correspondent
diagrams are given in the Appendix ,). Strictly speaking, the part of action
containing the scalar field belongs to the Horndeski class, but the action also
has terms missing in the Horndeski action. This implies that existing constraints
cannot be directly applied in such a framework. The dynamic of tensor perturbations
over a cosmological background described by differs from the one described by
the Horndeski action, so the proper constraints should be found. This however doesn’t
ruin the constraint’s applicability outside the EFT framework and they must be used to
constraint Horndeski models in the original modified gravity framework. The effective
action itself requires a further analysis.

In full analogy with the classical results [53] [54] (see also [253] for a more detailed
derivation) higher derivative terms change the content of the model. Terms R? and Riy
introduce additional massive spin-2 and spin-0 degrees of freedom. Following the algorithm

presented in [253] one can calculate a propagator of gravity modes given by the effective

action (|11.10)):

1 1 Pivaﬂ
Guvas(k) =15 | Puvap + (11.11)
1
L+ 5 w2k2(co — k2 + 22(5K2)?)
0 PO
1 Puvap + Puvas

21— K2k2(3¢t + co — (361 + ) Bk2 + (381 + ) (BK2)?)

1 [3-4(1 - #°K* (e + e2) — (301 + @) B + (301 + &) (0K))]

2 1-— H2k2(361 +co — (361 + 52),8/432 + (351 + 52)(6]{;2)2) paf

In this expression operators P2, P, PY and PO are taken directly from [253]. Each

pole in the propagator corresponds to a new particle state. Because of the similarity
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between action and the well-known Stelle action [53| 54l 253], it can be seen that
propagator describes additional scalar and spin-2 particles. The denominator of
the propagator is a forth order polynomial in k2, which means that the propagator has
four complex poles. With the use of the fundamental theorem of algebra one can establish,
that poles for the spin-0 mode are located in points k? = :l:'m%, :l:z'm%, where my is a real
constant; a similar statement holds for the spin-2 mode: k% = £m2, +im3, where my is
another real constant. These poles corresponds to massive scalar, massive spin-2 particle,
massive scalar ghost, massive spin-2 ghost, two massive spin-0 particles with non-zero
decay width, and two massive spin-0 particles with non-zero decay width.

These results follow the standard EFT logic [145, 141, [159] 230]. The presence of ghost
states in such models is a well-known feature. The appearance of new massive states is
also a typical feature of EFT models discovered in the classical papers [53, [54]. Therefore
the effective model has the standard EFT features and can be considered alongside the

regular EFT models.

Discussion and conclusion

In this paper we have used effective field theory techniques to restore a form of the classical
gravity action. We used a particular Horndeski model [I37] as a part of the fundamental
gravity action in order to generate the effective action. Such an approach is necessary
to study scalar-tensor gravity models and modified gravity in general. We obtained the
effective action generated by the fundamental action . This fundamental
action contains higher derivative terms, which leads to the following consequences.

First of all, the constraints obtained in [251), 252] cannot be used within EFT
framework. These constraints were obtained from a study of tensor perturbations in
Horndeski models, however the effective action differs from the Horndeski action
and thus the dynamics of tensor perturbations is also different. Therefore the
constraints do not hold in the EFT framework, although this does not affect their
relevance for the classical modified gravity framework.

Secondly, we analyzed the content of the effective action. The particle spectrum of
the model is given by the propagator of the low energy gravity perturbations .
The new low energy degrees of freedom are a massive scalar particle, a massive spin-2
particle, a massive scalar ghost, a massive spin-2 ghost, two massive scalar particles with
non-vanishing decay width, and two massive spin-2 particles with non-vanishing decay

width. The presence of ghost states and states with non-zero decay width is typical for
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models of such kind [54}, [145] 14T, 160, 58, 197]. We prefer not to draw any conclusion on
the relevance of the model based on the fact that it contains ghosts, as the issue is typical
for a number of before-mentioned effective field models of gravity. We, however, argue
that the presence of new gravitational degrees of freedom must affect late stages of GW
production during the last stages of binary systems coalescence, as was shown in [59].
Summarizing all the results we make the following conclusions. The existence of non-
trivial Horndeski interaction at the level of the fundamental action induces non-trivial
corrections to low energy gravitational phenomena. The effective model discussed in this
paper provides the simplest example of such phenomena. This model shares problems
typical of all gravitational EFT. Finally, some well-known constraints on Horndeski models
(11.6)) cannot be applied to it. We finish by emphasizing that this model seems to be a

rather special modification of the standard gravity EFT.

Appendix

Operator O used in (11.9) is given by the following expression:

1
Ouap = 9 (nuoﬂuﬁ + 77#5771/01) U — nuwnastd + (8uau77aﬁ + aaaﬁﬁ/w)
(11.12)
1
- 5 (aaaunﬁu + aaaz/nﬁu + aﬁaunaz/ + 3531/%#) .
Action ([11.9) generates the following Feynman rules for propagators:
i Cuvag i
A — _ . mmm————— = — . 11.13
Here C\ qp is defined as follows:
Cuvap = Mpalvp + MusMva — NuwTas - (11.14)

For the standard interaction between gravity and the scalar field the correspondent

rule reads:

SRR Y — s DG (11.15)
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For John interaction the correspondent rule reads:

g
\\ v . K 9 3
SRR Y i 2 B K Myas(k) 70, (11.16)
4
e p
def
Muyaﬁ(k) = NuvNap — I,uzzaﬁ - (w/ﬂ/naﬁ + nuuwa,ﬁ) (1117)
1
+ 5 (@WnaTlvs +Wpptiva + Wallus + WepTa) ,
k. k
def "ulv
wu (k) = —5 (11.18)

The existence of the John interaction vertex provides two new one-loop level diagrams.
In such a way there are three one loop level diagrams generated by action ([11.5). Their

divergent parts are evaluated in the dimensional-regularization scheme and read:

2N i 11

AAS "~ w4 p2 11.1
AT R (1L19)
2N i Lo

A — | Ry (BOYR™ + —R(BOR | , 11.2
\_,/M_ngow? Ry (BOVRY + P R(BO) R (11.20)

A e T— v V4 — . 11.21
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Chapter 12

Conclusion

Theory of gravity plays an important role in contemporary theoretical physics. Devel-
opment of gravity theory resulted in the creation of GR which is widely accepted as the
theory of gravity providing the best fit for all known empirical data. At the same time,
well-known phenomena of dark matter, dark energy, and inflation challenge our under-
standing of gravity and question GR. applicability at the large spacial scales and in the
high energy regime. Construction of a suitable quantum theory of gravity, on the other
hand, challenges not only our understanding of gravity, but also of the quantum theory
and the nature of spacetime itself.

Contemporary landscape of gravity theory highlights multiple perspective directions
of research. This thesis addresses a narrow set of problems relevant within a framework of
effective gravity. As pointed in Chapter [1 the choice of addressed problems is influenced
by considerations of consistency.

EFT approach allows one to consistently account for gravitational effects at the level of
quantum theory. The effective action for gravity can be restored in a model independent
way via symmetry principles [146] 158, [145]. Because of this it accounts for quantum effects
predicted by various gravity models. For instance, within string theory the effective gravity
action can be recovered and studied via the standard EFT tools [152, I53]. This makes
effective gravity a universal approach capable to account for a vast array of models.

The first problem covered by the thesis is related with an implementation of EFT
technique to gravity in a context of particle physics. The standard model of particle physics
describes all known types of matter and all interactions except gravity. EFT technique
allows one to account for the gravitational interaction and search for its manifestation at
the level of standard model particles interactions.

Effective gravity admits the existence of non-local operators at the level of one-loop
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effective action [I59]. The effective action, in turn, describes the gravitational interaction
in general and, consequently, accounts for the gravitational sector of the standard model.
In Chapter |8 and paper [58] it was shown, that this is, indeed, the case. Effective gravity
generates non-local interactions between mater states with all spins. In particular, it gen-
erates an effective four-fermion non-local interaction. Empirical data from /s = 8 TeV
LHC run[85] allows one to constrain the non-local interaction and, consequently, the ef-
fective gravity.

Results of paper [58] allow one to constrain the number N of light non-gravitational
fields existing in nature. This is due to the fact that the leading contribution to the
non-local interaction coupling is defined by the number of light fields of a model. The

constraint reads
N <5 x 100, (12.1)

Equivalently, one can constrain the characteristic energy scale of the non-local operators

M,:
M, >3 x 107 GeV. (12.2)

This constraint improves the previous results obtained via terrestrial experiments of Ect-
Wash type [192, 227].

The second problem addressed in this thesis is related with the binary system GWs
production. Recent direct detection of GWs for the first time allowed one to test GR in the
strong field regime [19] [74, 224]. At the current precision level the empirical data appear
to be consistent with GR [19, 20} 21], making a search for beyond GR effects manifesting
in binary inspirals more relevant.

Evaluation of GWs production in a binary inspiral within the EFT framework was
addressed in Chapter |§| and in paper [59]. Due to complexity and non-linearity of the
gravitational interaction analytical calculations can only be performed for the initial stages
of an inspiral process. Nonetheless, such calculations define the spacial scale at which
gravity may develop deviations from GR.

It is well-known that the effective action for gravity contains one ghost DoF [54] 53|
145], 152]. This is a well-recognised problem that is currently unsolved. Results presented
in this thesis shows that consistent calculations of the GWs production in binary inspiral
are possible within EFT. As discussed in Chapter [0} within the setup suitable for a study
of binary inspirals the ghost states can be understood as states carrying gravitational

repulsion. To be exact, at the classical level the effective action with ghost states (9.1))
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generates exactly the same field equations as a model without ghost states, but with
gravitational repulsion . This allows one to treat ghost states not as states with a
negative kinetic energy, but as states with a positive energy caring gravitational repulsion.

The standard algorithm of GWs production can be implemented in that particular
setup [254] 26]. Because of the symmetry a binary system can only produce quadrupole
radiation that is carried by spin 2 excitations. The effective gravity contains an additional
massive spin 2 excitation alongside with the standard massless spin 2 excitations, i.e.
gravitons. Because of this a binary system doubles its GWs production rate as soon as
it obtains enough energy to excite the new modes. As discussed in Chapter [9] the mass
threshold of new DoF's allows one to define the spacial scale at which a binary system
starts to produce the new modes. Mass of the new modes is constrained via the empirical
data on E6t-Wash type experiments [227]. This constraint is used to evaluate the distance

d between components of a realistic binary system at which new gravity modes are excited:
d ~ 16 cm. (12.3)

Relevance of this result is twofold. Firstly, the result highlights a need for empirical
study of gravity in the high energy regime. The distance d is much smaller than typical
radius of a star or a black hole. Consequently, similar distances can be probed only at
the later stages of binary inspirals or, equivalently, in the high energy regime. Secondly,
the result points on a necessity of numerical study of effective gravity. The rate of GWs
production at the late stages of binary inspirals can only be studied numerically. The
distance d highlights the characteristic precision level of numerical calculations that may
be suitable to account for beyond GR effects described by the effective gravity. In other
words, this result sets a limit on beyond GR quantum effects manifesting at the level of
binary systems.

The result also highlights a necessity for an improvement of understanding of the late
stages of a binary inspiral. The spacial scale d is much smaller than the characteristic
radius of a black hole or a neutron star. Because of this the production of new massive
modes can be covered from a distant observer with the event horizon. Consequences of
this phenomenon and its influence on the event horizon radius are not well-understood
and require further research.

The third problem addressed in Chapter [10|and in paper [60] is related with an oppor-
tunity to describe the dark matter within effective gravity. It is well-known that effective
gravity predicts the existence of new gravity modes both due to local and non-local opera-

tors [159] 58, 160]. An opportunity to associate new DoF's generated by non-local operators



66

with the dark matter particles is addressed. An introduction of non-local operators to the
gravity effective action results in the appearance of new poles in the graviton propaga-
tor. Unlike local operators, they generate poles with non-vanishing imaginary parts. Such
poles describe unstable particles which decay width is related with the imaginary parts of

corresponding poles [255].

If DoFs induced by the non-local operators describe dark matter particles, then it
is natural to expect that these particles have a lifetime comparable with the age of the
Universe. Otherwise they would decay producing the standard model particles and fail to
contribute to the contemporary dark matter content. This line of reasoning allows one to
set constraints on the imaginary part of the new poles and, consequently, on coefficients
of the effective gravity action. Namely, it is possible to establish a constraint on the
number of light particles present in a model. This is due to the fact that the couplings of
the non-local operators are proportional to the number of light DoFs. Equivalently, the

characteristic energy scale of the non-local interaction can be constrained.

The constraints are discussed in Chapter and paper [60]. Constraints are consistent
with the data from Eot-Wash type experiment, so the opportunity to describe the dark
matter within gravity EFT cannot be excluded at the present precision level. Moreover,
an exact mechanism generating proposed dark matter candidates is unknown. Therefore

further study of this opportunity to describe dark matter is required.

Finally, an application of EFT framework to a modified gravity model is presented in
Chapter (11| and paper [61]. Modified gravity models play a special role in gravity theory,

as they provide a description of classical gravitational phenomena alternative to GR.

The thesis addresses one particular scalar-tensor model that belongs to the Horndeski
gravity. STG models should be viewed as simplest alternatives for GR. They introduce
one additional scalar DoF' in the gravity sector thereby perform a minimal modification.
An arbitrary STG may have higher order field equations which lead to the Ostrogradsky
instability [I127]. The subclass of STGs that admits second order field equations is known
as the Horndeski gravity [131} 122]. In other words, Horndeski gravity should be viewed

as the simplest stable extension of GR.

Models of this type are known for their wide phenomenology [62] [104) 50]. Namely,
a narrow subclass of the Horndeski gravity known as the Fab Four can screen an arbi-
trary cosmological constant completely [134]. Moreover, the screening holds even if the
cosmological constant experiences a finite shift. Because of this the Horndeski gravity

may potentially provide an explanation of the small observed value of the cosmological
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constant.

Based on the reasoning presented in Chapter [11| and in paper [137] a model suitable
for a realistic description of the cosmological expansion was proposed. The model La-
grangian is given by and it belongs to the Horndeski gravity. It contains one term
that belongs to the Fab Four class, so the model admits the corresponding cosmological
constant screening mechanism. As it was shown in paper [I37] in the early universe Fab
Four term dominates, the cosmological constant is screened completely, and the Universe
experiences inflationary expansion. After the end of inflation the Fab Four term becomes
sub-dominant, the screening fails, the model develops a small cosmological constant and

enters the late-time accelerated expansion.

Research presented in Chapter [11] and paper [61] is devoted to an implication of EFT
technique for the model presented in [I37]. Namely, the role of the Fab Four interaction
in generation of the effective action is studied. The research follows results [66] where it
was shown that quantum effects do not compromise model screening features. This gives

grounds for a consistent treatment of the model within the EFT framework.

It is shown that the new interaction responsible for the cosmological constant screening
introduces new higher derivative operators at the one-loop effective action. The structure
of the effective action is strongly affected by the introduction of the the Fab Four interac-
tion. Namely, the corresponding effective model describes the existence of four new spin

2 DoFs and four new scalars.

This result shows that modified gravity models must not be considered irrelevant in
the context of effective gravity. The existence of new higher derivative operators at the
one-loop level proves that the structure of the correspondent quantum model, alongside
its renormalization group flow, is strongly affected by a specific modification of GR. This
gives grounds to expect a strong influence from specific GR modifications on the effects
gravity.

In other words, results of this thesis are the following. Firstly, manifestations of the
effective gravity are constrained at the level of particle physics in Chapter Secondly,
results of Chapter [J] constraint effective gravity at the level of binary systems. Thirdly,
results of Chapter [10] constraint the applicability of effective gravity for description of the
dark matter, equivalently, the applicability of effective gravity at the level of galaxies.
Finally, results of Chapter study modified gravity models within EFT framework.
Because of this results presented in this thesis can be viewed as a complimentary study of

the effective gravity at different spacial and energy scales within various gravity models.
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The most general conclusion drawn by this thesis is the necessity for further research of
gravitational effects described within the EFT framework. Results of Chapter [§| show an
opportunity to study effective gravity at the level of particle physics. Results of Chapter [9]
highlight a perspective study direction at the level of binary systems. Results of Chapter
point on an opportunity to use EFT to describe the dark mater. While results of
Chapter show that modifications of gravity can have a non-trivial influence on the

effective gravity.
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Appendix A

Used Notations

In this thesis the following notations and conventions are used.

The flat spacetime metric reads
def ;.
um = diag(+ — ——) . (A.1)
Christoffel symbols, Riemann, Ricci tensors, and scalar curvature are defined as follows:

1

def
F;Oju = 5 gaﬁ (a,uguﬁ + 81/9#5 - aﬂgm/) )
def
Ruws = 0455 — 0y + T5, 005 — T, T7s (A.2)
def
Ruu = Raugu = Ra,uﬁugaﬁ )
RYR,, g .

Standard definitions of the Einstein tensor G, Weyl tensor C,.q3 (in d-dimensional

spacetime), and the Gauss-Bonnet term G are used:

def 1
G/u/ :R/u/ ) R Guv,

1
def
C,uVOc,B :eR;U/oaﬁ - ﬁ (g,LLaRVB + gl/,BR,ua - guﬁRua - guaRuﬁ)

1
T AN T aN advB — l/aR7

(A.3)

G ER? — 4Ry R™ + Ryyap R .
Square of the Weyl tensor is given by the following expression:

4 2
pref — R — ——— Ry R + ——————— R’ A4
CMVOtﬁC RMVOéﬁ d—2 H + (d _ 1)(d _ 2) ( )

In four dimensional spacetime it is related with the Gauss-Bonnet term as follows:

2
ChvapC® =G +2 R RM — 3 R%. (A.5)
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The following generalisation of the unit for rank-2 tensors is used:

def 1

I,uya,@ = ) (guaguﬁ +guﬁguo¢) .

The following tensor is often used in the flat spacetime:

def
Cuva = Muatlvp + MpsTva — Mo -

(A7)
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Appendix B

Nieuwenhuizen Operators

The full set of projection operators in flat spacetime known as Nieuwenhuizen operators
was introduced in [256]. In this paper the following momentum representation is used

[253]:

1
Pﬁyaﬁ =3 (Oua Wup + 08 Wua + Oug Wyua + Ova Wys) ,
2 1 1
P;U/aﬁ = 5 (Gﬂa @Vﬂ + @MB @Va) - g @}u/ @aﬁa
. 1 (B.1)
P,u,uaﬁ = g @,Lw @oz,By
=0
Pluvep =W Wap,
F}“’Céﬁ = @#ywaﬁ + @a,ﬁwyy-
Projectors © and w are defined as follows:
kK,
O =T —
R (B.2)
kuk,
=
They satisfy the standard orthogonality relation:
@/MT Qv = Gu v ,
w,U«U wUV = w’u v ) (B3)

Ous W =0.

. . . . =0
In this representation Nieuwenhuizen operators P;, P2, P?, and P  form the complete

orthogonal basis of projection operators. They are subjected to the following orthogonality
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condition:

40
P;I/Oéﬁ + P,guoe,B + P;i)uaﬁ + P,u,l/aB = IMVOcﬁ' (B4)

This condition is equivalent to the set of orthogonality relations:

(P;VPUPZP"W =0,
PipeProas = P s | Plupe P77 =0,
Pl o Plus = P20, | PleP PP =0, (B.5)
B SVPUP f())aaﬁ =P Bvaﬁ ’ ﬁ?wpap thoef =0 ) |
P e Posas = Po, 28 . | P, POrooB =0

P2, Plroof — .

=0
Operator P is introduced for the sake of simplicity. It is orthogonal to operators P! and
P2
=0 =0
1 B _ p2 8 _
PrpeP 770 =Pl P P77 =0 (B.6)

uvpo

Its relation with the other operators is given by the following:

=° :Opa 0 -0
P,uupap af = 3 (P,uyaﬂ + Puuaﬁ) )
PBupaP paaﬁ = Pp.ypch paaﬁ = epuwaﬁ ) (B7)

P, P a=P

0po —
npo ;U/pap r aff — wul/@aﬁ .
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Appendix C

Small Metric Perturbations

The formalism presented in this appendix provides a framework for a treatment of small
metric perturbations over a classical background. The metric of the background spacetime
is denoted as g,,,, small perturbations are described by matrix /. The spacetime metric

accounting for the background and perturbations is given by the following formula:
G = Gy + Kby - (C.1)
Here & is defined through the Newton’s constant:
K% = 327G (C.2)

All indices are raised, lowered, and contracted with the background metric g,,,. Variable
h, has the canonical mass dimension.

Notations from paper [51] are used. Background quantities are noted with a bar on
top of a symbol; quantities linear in h are noted with an underline; quantities quadratic
in h are noted with a double underline. For instance, g,,, notes the background part of a
metric; g"” = —kh*” notes the part of g"” linear in h*¥; and gt = k?h*"° h," notes the
part of g"¥ quadratic in h*¥.

The inverse metric is given by the following formal series:
g =G+ (=R =G — kR + K2 RPRY + O(hP). (C.3)
n=1

The following notations were used:

def —o—
W= has 94977,

nyuv def o ov C4
(Y e pes g (C4)
—_—

n matrices

The series is convergent if perturbations h,, are small with respect to .
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The following expression relating can be used for determinant of the metric:

g = det g, = detexplog g,, = exp trlog g, = exptrlog(g,,(d, + xhy)) = (C.5)
[ee] K./n

=7 exptrlog(dh + khl) =g exp |tr Y (1) —(h")k| = (C.6)
n

n=1
00 » KT ) .
=g —1)" —tr{ (A" . 7
7 e | S ) (©7)

Because of this relation, the element of invariant volume is given by the following:

[dtav=g= [ds V=5 ;72(—1)"“%

n

tr{(P")y}| =

n

L (C.8)
K K2 1
= [dz /-5 |1+ sh= 7 | k™ - §h2 + 0|
with b h,g"". Christoffel symbols express as follows:

o 7o o & n (pn—1\o8

re, =T, +I%, - 52(—/1) (W (V,hys + Vihus — Vahu)
n=2

(07 5 [e% [e% a (Cg)

re, = 3 [V#h,, +Vuh, =V hw/] )
42

L= _?haﬁ [Viuhwp + Vihus = Vigh] .

Covariant derivatives are calculated with respect to the background metric. The Riemann
tensor components read:
Ry s = Vilus = Vilys,

(C.10)

Eﬂyaﬂ = VMEIC;B B v’/;zﬁ + *fjg*gﬁ - ESOEZ/B .

The correspondent expressions give Riemann tensor, Ricci tensor, and scalar curvature in

terms of perturbations are given by the following:

K
Ry5 = 5 [V Vulh% = ViV hys = Vi Vsh,® + Vi Vs + Vi Vsh,0]

K (C.11)

R, =R°% = 5 VoV uhow + VVyhey — VVyh — Ohy)

R = Rug" = K[V*hy, — Oh) — kRuh* .
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These expressions allow one to show that the following contributions linear in small

perturbations vanish over the flat background:

/d%; Vg R= —/d4x\/—g G KW, (C.12)

— 1
/d4x V—g R*= /d4x —g kh* | =2R Ry +2 (Vi — nw0) R+ 577#,,}22 ,

/ d*z /=g R, R" = / d*z\/~g khu [V*V,R" +V'V,R™"

R T
_nﬂuvpaRpU . DRN + 5 nul/ RpO'RpU

Correspondent contributions quadratic in perturbations are given by the following

expressions (in terms of Nieuwenhuizen operators) over the flat spacetime:

2 1
4 4 v 2 0 o'
—KQ/d x«/—gR:/d o | =5 W (Phvap — 2Puag) O |

1
/ d*z/—gR? = / d*z —5 W (6P),05) K2R (C.13)
1 1

9 —5 P/zllotﬂ — ZPSVQB K}ZDQ}ZO{B

/d4x\/—gRiy = /d4x —= b



101

Appendix D

Feynman Rules for Quantum

General Relativity

Feynman rules for quantum GR are often used in this thesis. They are derived with the

use of external field quantisation technique within functional integral formalism [253), 257].
The gravitational field g, consists of the background metric g,,, and small perturba-

tions h,,. The generating functional describing such a system reads:

Z = /D[h] exp [1AGR[G . + Khyw]] - (D.1)

We assume that the background field satisfy vacuum Einstein equations and separate the

part quadratic in perturbations:
i
Z = /D[h] exp —2/d4x R - (OGR) was Or8 + iAint[P] | - (D.2)

Here Ajy; denotes all O(h?) terms that correspond to gravitons self-interaction. The

following brief notations are used:
B - (OGR) s TIn®? "2 / @' [ (2) (O6n)wasTh (2)| (D.3)

For the Einstein-Hilber action operator O,,,.3 was evaluated in Appendix E] in terms

of Nieuwenhuizen operators reads:

(OGR) yvas = ijﬂ — 2P,9m5 i (D.4)

To evaluate this formula the following finite-dimensional Gauss integrals should be



102

used:

[dNx f(x) exp |-z A -z
10 1

o —_—— _— . _1 .
i = 757 | &P 2J A . (D.5)

JdNz exp —533'A-:E J=0

Because of the gauge symmetry (’)Woé/gkﬁ = 0, so operator O,,qs is irreversible. In full
analogy with other gauge models a gauge-fixing term should be introduced via Faddeev-
Popov technique [258]. The gauge-fixing technique is discussed in Appendix For the sake
of convenience I use Feynman gauge, as it allows one to decoupled ghost states completely.

I use the following gauge-fixing term:

1 1
Agp = / d*z | 9,h7H — SO h || 0%hpu = 50ph | =

(D.6)
. 1
= / d'e = S (Ogf)uvas One?
Operator Oyt is given by the following:
. 3 0 1_, 1_
(ng)m/aﬂ = Pw/ozﬁ + 5 Puuaﬁ + 5 P,u,l/ozﬁ - 5 P,u,l/ozﬂ : (D7)
The generating functional with such a gauge-fixing term reads:
i
7z - / DI} exp | 5 W (O s asTH + iAinelh] | (D.8)
Operator Ogr4gr can be reversed and is given by the following:
1 2 1 0 1 -0 =
(OGR—l-gf)p,ua,B = Puuaﬂ + P;wocﬁ P Ppyaﬁ +5 P,uyaﬂ S P/,LZICEB =
1 C;waﬁ
= 9 (nuanuﬁ + NupMva — nuunaﬁ) = 9

In Appendix |B| we presented the set of Nieuwenhuizen operators which form the com-
plete basis of projection operators. Arbitrary projection operator O, .5 can be presented

in terms of these operators:
Opvas = 21 P! P2 P° ToP. FoP D.10
wapf = L1408 + T2 uvaf + T uvaB + Zo pvaf + Zo uvaf ( : )

The operator can be inverted if and only if z1 # 0, 22 # 0, and z¢Tg — 3 T2 # 0. In that

case the inverted operator is given by the following formula:

1 1 ToP° o+ 2P0 — ToP

— B pvaf prap
Opag) L= —PL +—p2 i .
( I aﬁ) T praf Lo uvaf 20To — 3 fg

(D.11)
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In accordance with this formula the inverse operator reads:

Cw/aﬁ

5 (D.12)

(OGR+gf);l}aﬁ = (OGR—O—gf),u,uaﬁ =

To complete the derivation I introduce the external current J#” and evaluate the

generating functional:

) Civap
Z[J] = /D[h] exp | —5 R 5 Oh + A + 3T By | =
(D.13)
1 9 l C,uuaﬁ
— . - /2 Dfl a3
exp | Aint RN Xp 5 J 5 J

This expression allows one to use the standard technique to derive interaction rules to any

order in perturbation theory [143].
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Appendix E
Gauge Fixing

In this thesis the standard technique of gauge fixing within Feynman integral formalism
is used. The metric admits a gauge symmetry similar to the gauge symmetry of the
electromagnetic field, because of this the standard gauge fixing technique can be used
[257, 258]. For the sake of consistency we briefly discuss it here.

Gravity is a gauge theory and it is invariant with respect to coordinate transforma-
tions. At the level of the metric a change of coordinates induces the following gauge

transformations:

Guv = Guv + 8u G+ 0 Cu . (El)

Here ¢, is an arbitrary four-vector.

The action of a gravity model that respects the coordinate transformation invariance
should be invariant with respect to these metric transformations. The part of the action
quadratic in the small metric perturbations should also respect the symmetry. If the

quadratic part is given by the following expression

hH" (Oquadratic) Dhaﬁ ) (E2)

puraf

then operator Oqyadratic should have the following symmetry features:

(Oquadratic)uyaﬁ = (Oquadratic)yuaﬁ = (Oquadratic)aﬁuy (E3)
and should satisfy the following gauge condition:
o (Oquadratic>uyaﬁ =0. (E4)

Only operators P? and P from the set of Nieuwenhuizen operators (presented in Appendix
satisfy these conditions. However, these operators are projectors, thus the quadratic

part of the action cannot be inverted.
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This feature of the quadratic part of an action is typical for gauge theories [I73]. At
the physical level it corresponds to the following feature for the theory. Because the metric
is invariant with respect to the gauge transformation , a family of different metric
can describe the same physical spacetime. At the same time within the Feynman integral
formalism the integration should be performed over all conceivable metric g,,. Thus
within the Feynman integral the integration measure is redundant, as each particular
configuration of the physical spacetime has multiple contributions to the integral, in full
analogy with the other gauge theories [173].

To eliminate this redundancy the following steps should be done. First of all, the
integration over all conceivable metrics should be transformed to an integration over classes
of metrics that describe different configurations of the physical spacetime. At the level of

Feynman integral it should be done as follows:

/sz/%M/DMM®w§i~ (E5)

Here on the left hand side the integration is performed over all conceivable metrics g, .

On the right hand side the integration over g,, is also performed over all conceivable

metrics while the integration over (,, corresponds to all possible gauge parameters. Because

of the J-function on the right hand side the integration over g,, accounts for a single

representative from every class of physically equivalent metric which is chosen by the

gauge conditions G. Finally, the determinant §G/d(, is required to preserve the invariance
of the integration measure.

Secondly, a gauge fixing term should be introduced in the action. This is required,

as the quadratic part of the action is still gauge-invariant and cannot be inverted. The

following standard expression for the Gaussian integral should be used:
N1 /D[w] exp [—iw?] =1. (E.6)

Here N is the infinite normalisation factor that is to be omitted for the sake of simplicity.
Consequently, the Feynman integral can be rewritten in the following form (presented here

up to the infinite normalisation factor):

/DMAmﬁNﬂz

0G
= [Plawl [P [Pl 50) det || explidlg —iet] . (®D
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Finally, it is required to specify the gauge condition G. There are multiple ways to
define the gauge conditions, but for the sake of simplicity the Feynman gauge is used in

this thesis:

1
G =0,h" — 3 ’h+w. (E.8)
In an arbitrary gauge the determinant presenting in the integral may contain metric g, .
Because of this it is required to introduce Faddeev-Popov ghost to evaluate the integral and
to obtain the Feynman rules [257] 258]. However in the Feynman gauge the determinant
is reduced to the following expression:
oG Ouht” — % oVh+w

det — det =det (0d6y) . E.9
3, 5 (Ld5) (E.9)

The expression is free from the spacetime metric g, therefore it can be included in the
infinite normalisation faction of the integral.

In such a way the gauge fixing procedure presented here results in the following ex-
pression for the Feynman integral (presented up to the infinite normalisation factor):

2

1
/D guv) exp [iAlg /D g exp [iA[g] —i | O, — 56“]1 : (E.10)

This procedure is used throughout the thesis to obtain various sets of Feynman rules.
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Appendix F

Feynman Rules for Quadratic

Gravity

This thesis refers to quadratic gravity first studied by Stelle [53] [54] multiple times. This
appendix contains derivations of Feynman rules and a brief discussion of its perturbation

spectrum [253]. For the sake of simplicity only flat background is concerned.

Functional integral formalism allows one to obtain Feynman rules for quadratic gravity

via the following generating functional:

Z = / DIh] exp [i Astele[nw + Khyw]] - (F.1)
Here Agsiene notes Stelle action in the following parametrisation:

2
Asente g € / d'ov/=g | —— R+ei B +co RuR™ | (F.2)

In full analogy with GR one can separate the following kinetic part of the action
4 1 3
Astelle = /d @ | =5 P (Ostette) uwas Oh? +0(h%) | . (F.3)

Terms O(h?) describe particle interaction and lie beyond the scope of our interest. Oper-



108

ator Oggerle has the following structure in coordinate representation:

0.0, 0.0
(OStelle);woz,B = I;waﬁ — NuwwNap + 0 Nas + 0 Ny (F4)

1 (0,04 9,05 0,00 8,05
_5 Tﬁuﬁ"" 0 Nva + 0 77#6+ 0 Nua

eaR? 10,00 0,05 00n 0,05
- ? quaﬁ - 5 T”?uﬁ + Tnua + 0 Nup + 0 e

c1\ 9,0, 000 e e\ [ 0.0, 000

2 1+2= 1+d— | nons — [ 144—=
+ teo o o TG | s T O T8t g

Ny 0.

In momentum representation operator Qs is given in terms of Nieuwenhuizen operators

as follows:

(&) H2

(OSteHe),uz/aB = |1+ ? kz Pil/aﬁ -2 (1 - (301 + 02)/'432]{2) P/?Vaﬁ . (F5)

Operator Ogiepe is composed from P? and PY Nieuwenhuizen operators which are
gauge-invariant, so the operator is irreversible. In full analogy with the standard GR case
one should introduce a gauge-fixing term and use the standard technique discussed in
Appendix [E] In full analogy with GR gauge-fixing term of the following form allows one
to decouple Faddeev-Popov ghosts completely:

2

1 1
Agf: /d4$ 3uhuy N §6Vh - /d4$ 2 hW(ng)WaBDhaﬁ : (FG)

In terms of Nieuwenhuizen operators Ogf reads

3 1 1_p

0
(ng),ul/ozﬁ = P[}VO[B + 5 P/Syaﬂ + § P,ul/aﬁ - 5 P,uuaﬁ : (F7)

Combined Oggente and Ogr operator is not gauge-invariant and can be inverted:

2

CoK 1
(OStelle—i-gf)w,aﬁ =1+ 2 k> Piuaﬁ + 3 + 2/62k‘2(301 + ¢2) Pﬁuaﬁ
(F.8)
R 1
+ Puvap + 5 Puvas = 5 Puvas -
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2 0
(O—l ) _ P/»U’O‘B - 1 P,U'Vaﬁ
Stellergtivad = 21— K2R2(3cr + o)
2
L+ ——k (F.9)
=9 —0
P 1 P s+ [B—4H1—k*x*Ber + )} P as
praf g 1 — k2 k2(3c1 + ¢2)

This expression allows one to define two constants mg and me with dimension of mass

2

mas =

NN

-—,
2R (F.10)
1
"~ Kk2(3c1 + o)

oN

m
In terms of this constants quadratic gravity action reads [130]:

1

2 1
— 4 2 2
Astelle = T2 /d T/ —g | R — 67WL% R” + W C#uaﬁ . (F.11)

In terms of small perturbations h,, with a fixed gauge the action takes the following form

[253]:

_ —1
d*k 1 1 Cpuvap Pimﬁ 1P£Vaﬁ + 3P3mﬁ + ngaﬁ
Astelletof = -

" | hoB
(2m)t) 2 2 k2 k2—m§+2 k% —m

+ -Ainteraction . (F12)

The standard functional integral technique results in the following expression for the

gauge-invariant parto of the graviton propagator:
— (0] hywhapg |0) = (F.13)

I

2 0
B } Cpuaﬁ B P va3 } P,uuaﬁ
2 k2 k2—mZ 2 k2—md’

— MV RAAARAR aff

Stelle
This propagator consists of three parts that carry perturbations with different spin and

masses:

4+---- (F.14)

Stelle s=2,m=0 s=2,m=mza s=0,m=myo
First term corresponds to propagation of massless particle with spin 2, i.e. the standard
graviton. The second term has an opposite sign with respect to the former one. Because

of this correspondent perturbation carry negative kinetic energy, has spin 2 and mass mao,
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i.e. it is massive spin-2 ghost. Finally, the last term has the same sign as the first term,
so it carry positive kinetic energy. It also carry zero spin and has non-vanishing mass my.
In other words, the last term describes propagation of massive scalar particle. Therefore
quadratic gravity perturbation spectrum contains the standard graviton, massive spin-2
ghost and massive scalar, which was first proven in [53] [54].

One can introduce the following variables corresponding to these components:
o ky,, desribes s = 2, m = 0 perturbations;

e 1, describes s = 2, m = mg perturbations;

e Y describes s = 0, m = myg perturbations.

The following relation holds for their propagators:

(0] Py () P (y) [0) =

(F.15)
= (0] kv (2)kap(y) [0) + (0] Y (2)ap(y) 0) + muwnas (O] x(x)x(y)[0) -
Because of this modes k., ¥, X, and hy, are related as follows:
Py (2) = ko (%) + By (2) + 1 X () - (F.16)

This allows one to use quadratic gravity action (given up to interaction terms) in terms

of ks Y, x modes reads:

1 1
SStelle — /d4x D) K (Piuaﬁ o QPBVQB) Ok + 9 ¢MV(P3V045 o 2P/9VQB)D¢QB

(F.17)
m3 2 2 1 2 "
- 9 (h,uz/ —h ) - 5 X(D + mO)X + K(kuu + Q;Z);w - anX)T
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