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In this Letter we study implications of the possible excess of 21-cm line global signal at the epoch of 
cosmic dawn on the evolutions of a class of dynamically interacting dark energy (IDE) models. We firstly 
summarize two dynamical mechanisms in which different background evolutions can exert considerable 
effects on the 21-cm line global signal. One of them is the change in decoupling time of Compton 
scattering heating, the other stems from the direct change of optical depth due to the different expansion 
rate of the Universe. After that, we investigate the influence of linear IDE models on 21-cm line signals 
and find that under the current observational constraints, it is difficult to yield a sufficiently strong 21-cm 
line signal to be consistent with the results of Experiment to Detect the Global Epoch of reionization 
Signature (EDGES) since only the optical depth could be effectively changed in these models. Accordingly, 
this implies us to construct a background evolution which could fulfill the reasonable change of optical 
depth and Compton heating decoupling time at the same moment by introducing an early dark energy 
dominated stage into the evolution governed by the IDE models. The comparison with astronomical 
observations indicate that this scenario could only alleviate, but not complete eliminate, the tension 
between EDGES and other cosmological surveys.

© 2019 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

The underlying physics of the 21-cm line signal in the early 
Universe has become a hot topic since the Experiment to Detect 
the Global Epoch of Reionization Signature (EDGES) reported an 
excess of the 21-cm absorption line around the epoch of cosmic 
dawn. The strength of this signal is given by T21 = −500+200

−500 mK
at the redshift z = 17.2 [1], which is 3.8σ below the strongest 
possible absorption under standard expectations T21 = −0.209 K. 
It is known that the potential probe of these cosmological 21-cm 
lines from neutral hydrogen are significant to explore the epoch 
of reionization, which is almost invisible to other astronomical in-
struments (namely, see [2–4] for comprehensive reviews). As a 
result, this observational anomaly has inspired extensive studies 
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on the theoretical interpretations and phenomenological implica-
tions in the literatures [5–27]. In addition, some discussions re-
garding the validity of the EDGES results have also been stimulated 
[28–30].

Given that the brightness temperature of 21-cm line signal is 
defined by the difference between the background radiation tem-
perature and the spin temperature of hydrogen atom, there are two 
straightforward methods to generate a possible strong signal. One 
is to enhance the background radiation through processes such 
as dark matter decay or annihilation [31–36], while the other is 
lowering the gas temperature by interactions between dark matter 
and baryons [37–43]. However, most of these mechanisms would 
inevitably encounter some tensions when confronted with other 
astronomical observations. Accordingly, some novel scenarios were 
put forward which involve additional cooling or heating mecha-
nisms induced by different species of the dark matter [19] and 
axions [44,45], or the modification of the background evolution 
via Early Dark Energy EDE [46] and Interacting Dark Energy (IDE) 
models [47–49].
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In the present Letter we revisit the mechanisms on how differ-
ent cosmological background evolutions could exert influence on 
the global 21-cm line signal in the early Universe. We point out 
that a specific background evolution would directly yield an impact 
on the optical depth of the hydrogen cloud and also the decou-
pling time of the Compton-heating process [46]. Both could have 
considerable influence on the final strength of the 21-cm line sig-
nal at the epoch of cosmic dawn. Accordingly, in the present study 
we consider both aspects at the same time in order to investigate 
the possible implications for 21-cm line signal.

We start with the linear IDE models since they are regarded 
as the effective mechanisms of changing the evolution of Hubble 
parameter during the matter dominated era related to the 21-cm 
line signal at cosmic dawn.1 We examine whether these IDE mod-
els could be consistent with current observational constraints. Al-
though there exists the severe tension between the limits of EDGES 
and other experiments, the analysis of what degree could the opti-
cal depth and Compton heating decoupling time be affected leads 
us to a more suitable form of the evolution for the Hubble parame-
ter to be consistent with an anomalously strong 21-cm absorption 
feature. Then we fulfill this scenario by introducing a cosmologi-
cal phase dominated by dynamical dark energy at early time and 
discuss the feasibility of this scenario under current observational 
constraints on the paradigm of IDE. Our analysis shows that, al-
though this scenario can help to interpret an excess 21-cm line 
signal, the tension between EDGES and other astronomical con-
straints remains. We expect that this analysis could inspire the 
forthcoming consideration on the possible connection between an 
excess 21-cm line signal and the cosmic background evolution in a 
more reasonable way.

The structure of this Letter is as follows. In Section 2 we present 
a review of the global 21-cm line signal in the early Universe, 
pointing out that two mechanisms by which different background 
evolutions could affect 21-cm signal. In Section 3, we consider a 
class of linear IDE models and study if these models can be consis-
tent with EDGES results using the current observational constraints 
from cosmic microwave background (CMB), baryon acoustic oscilla-
tions (BAO) and type Ia supernova (SNIa). We also apply the analy-
ses of the optical depth and decoupling time of Compton scattering 
heating in the IDE models. In Section 4, we investigate the form of 
evolution for the Hubble parameter that could yield an excessive 
21-cm signal by involving the domination of dynamical dark en-
ergy at early stage. We then present our results along with further 
discussions in Section 5.

2. 21-cm line brightness temperature and the background 
evolution

The cosmological 21-cm line is caused by the hyperfine splitting 
of neutral hydrogen atoms, whose wavelength corresponds to the 
transition from the triplet state to the singlet state of the electron. 
We use the brightness temperature T21 to describe the strength of 
the global sky-average signal, which is defined by the difference 
between the spin temperature T S of the hydrogen atom and the 
background radiation temperature Tγ [85,86]. Its form is expressed 
as follows,

1 Cosmological models involving non-gravitational interactions between dark en-
ergy and dark matter were extensively studied in literatures [50–68]. For instance 
see [50] for the early study, see [51] for the alleviation of coincidence problem of 
the current cosmic acceleration, and see [52] for a review. One particular motivation 
of this study is to realize an effective scenario for the equation-of-state parameter of 
dark energy across the cosmological constant boundary, which is dubbed as quin-
tom cosmology [69–78]. Additionally, we refer to [79–84] for related reviews on 
various dynamical models driving the late-time cosmic acceleration.
T21 = T S − Tγ

1 + z

(
1 − e−τ

) ≈ T S − Tγ

1 + z
τ , (1)

where τ is the optical depth of the diffuse inter-galactic medium

τ = 3

32π

T∗
T S

nH Iλ
3
21

A10

H(z)
. (2)

In this formalism, T∗ corresponds to the energy of the 21-cm pho-
ton transition, A10 is the downward spontaneous Einstein coeffi-
cient [87,88], nH I is the number density of neutral hydrogen and 
λ21 is the wavelength of the 21-cm line. Due to the Wouthuysen-
Field effect induced by the Lyα photons scattering within the gas 
at cosmic dawn, the spin temperature is approximately equal to 
the gas temperature, i.e. T S � Tb [89–91].

In order to obtain the brightness temperature of the 21-cm sig-
nal, we need to know the evolution of the gas temperature Tb , 
which is determined by the Compton evolution equations [88,92]:

dTb

dz
(1 + z) = 2Tb + Tb − Tγ

HtC
, (3)

where Tγ = 2.725(1 + z) K is the background radiation tempera-
ture and tC is the Compton-heating timescale, whose expression is 
given by

tC = 3(1 + f He + xe)mec

8σT ar T 4
γ xe

, (4)

where σT is the Thomson scattering cross section, ar is the radia-
tion constant, me is the electron mass, c is the speed of light, f He

is the fractional abundance of helium by number and xe is the free 
electron fraction normalized to the hydrogen number density, i.e. 
xe = ne/nH and it evolves as [87]:

dxe

dz
(1 + z) = C P

H

[
nH AB x2

e − 4(1 − xe)B B e
− 3E0

4Tγ
]
, (5)

where E0 is the ground energy of hydrogen, C P is known as the 
Peebles C-factor, AB and B B are the effective recombination co-
efficients and the effective photoionization rate to and from the 
excited state, respectively. More detailed discussions on the under-
lying physics can be found in [87,88].

From the above description, it is obvious that the modification 
to the background evolution, i.e. a different evolution form of the 
Hubble parameter H(z), shall alter the final brightness tempera-
ture of 21-cm line signal in two possible ways. One is that the 
Hubble parameter directly appears in the expression of the opti-
cal depth (2), and hence a different value of the Hubble parameter 
at a given redshift can change the brightness temperature of the 
21-cm line at the corresponding redshift [2,4]. Specifically, if the 
value of the Hubble parameter at redshift z = 17.2 were about 2/3 
of that derived in the standard �CDM paradigm, then the signal 
of the 21-cm line can fall into the observed parameter space as 
claimed by EDGES.

The second effect comes from the second term on the r.h.s. of 
(3), which depicts the Compton scattering effects on the evolu-
tion of gas temperature. At H(z) � 1/tC (z), the Compton scattering 
heating nearly decouples from gas temperature and the cooling 
law of the gas changes from Tb ∝ (1 + z) to the pure adiabatic 
case Tb ∝ (1 + z)2. Thus, an earlier time at which H(z) � 1/tC (z)
shall lead to a lower gas temperature at a given low redshift re-
gion. Then, according to the relation T S � Tb at cosmic dawn, a 
stronger 21-cm line absorption signal would be obtained. Accord-
ingly, we can estimate the decoupling time to be z � 161 from 
the upper limit of EDGES’s results, T = −0.3 K, while in the stan-
dard �CDM cosmology this decoupling moment is estimated to be 
z � 120.
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Table 1
The latest cosmological constraints on model parameters of the IDE paradigm at 68% C.L. as derived from [98].

Model ω λ 
ch2 H0

I-1: Q I−1 = 3λHρd −0.9191+0.0222
−0.0839 −0.1107+0.085

−0.0506 0.0792+0.0348
−0.0166 68.18+1.43

−1.44

I-2: Q I−2 = 3λHρd −1.088+0.0651
−0.0448 0.05219+0.0349

−0.0355 0.1351+0.0111
−0.00861 68.35+1.47

−1.46

II: Q I I = 3λHρc −1.104+0.0467
−0.0292 0.0007127+0.000256

−0.000633 0.1216+0.00119
−0.00119 68.91+0.875

−0.997

III: Q I I I = 3λH(ρd + ρc) −1.105+0.0468
−0.0288 0.000735+0.000254

−0.000679 0.1218+0.00125
−0.00133 68.88+0.854

−0.97
We mention that, the neutral hydrogen number density nH I in 
Eq. (2) also seems to affect the 21-cm brightness temperature via a 
different background evolution. However, around the correspond-
ing redshift (z � 17) during the cosmic dawn, the recombination 
process had already finished, and thus this mechanism can hardly 
produce a signature of observable interest.

3. The IDE models and an excess of 21-cm line signal

The thermal history of the Universe, being the most relevant 
aspect to the 21-cm line signal at cosmic dawn, starts from the 
recombination stage to some time near z ∼ 15. In this period, 
the Universe was dominated by pressure-less matter, hence, we 
can approximate H2 ≈ (8πG/3)ρm . Therefore, one mechanism to 
change the background evolution is to alter the amount of matter 
during this period. This is the key element in IDE models, which 
allows energy flow between dark matter and dark energy.

The possible interaction process between dark matter and dark 
energy can be parametrized through the continuity equations for 
their energy densities as follows,

(1 + z)H
dρc

dz
− 3Hρc = −Q ,

(1 + z)H
dρd

dz
− 3H(1 + ω)ρd = Q , (6)

where ρd and ρc represent the energy density of dark energy and 
cold dark matter, respectively, while ω and Q are the effective EoS 
parameter of dark energy and the non-gravitational interacting en-
ergy transfer respectively. Different IDE models can be obtained 
by choosing different forms of Q . In the present study, we pro-
ceed our analysis by taking some phenomenological parameterized 
forms of Q . For simplicity, we consider the linear interaction forms 
for the IDE models as examples, which have been well studied in 
the literature [93]. The specific forms of the energy transfer Q con-
sidered are,

Mode I − 1 : Q I−1 = 3λHρd ,

− 1 < ω < 0 , λ < 0 , (7)

Model I − 2 : Q I−2 = 3λHρd ,

ω < −1 , 0 < λ < −2ω
c , (8)

Model II : Q I I = 3λHρc ,

ω < −1 , 0 < λ < −ω/4 , (9)

Model III : Q I I I = 3λH(ρd + ρc) ,

ω < −1 , 0 < λ < −ω/4 , (10)

where 
c is the density parameter of cold dark matter. We men-
tion that, the choice of the parameter space of the IDE models is 
expected to avoid the instability at perturbation level. Based on 
the stability analyses of perturbations [94–96], there exist desir-
able parameter space for EoS parameter of dark energy ω and the 
interaction parameter λ to ensure the stability of the models. This 
issue can also be addressed by the so-called parametrized post-
Friedmann approach. This approach has been used to calculate the 
perturbation equations of IDE models, where large-scale instabil-
ity can be avoided in general IDE models and a wide range of 
parameter space is available [58,97]. Note that, Model I − 1 and 
Model I − 2 have the same form of interaction term but different 
allowed parameter spaces.

3.1. The EDGES’s results v.s. other cosmological constraints

The aforementioned four models have been comprehensively 
studied and well constrained in the work of [98] by using the data 
from Planck 2015, baryon acoustic oscillations (BAO) and Type Ia 
supernovae (SNIa). The related analyses can also be found in the 
literature [99–103]. Table 1 provides the main constraints on the 
model parameters from [98], which closely relates to our discus-
sion. In the following study, we shall compare these constraints 
with the results derived from EDGES to see whether if a reason-
able IDE model would be consistent with an excess in the 21-cm 
global signal.

We fix today’s Hubble parameter since its uncertainty is too 
small to make a difference on the following results, and we also 
pick up the three most relevant parameters ω, λ and 
ch2. Then 
we calculate the corresponding 21-cm line brightness temperature 
at the redshift z = 17.2. The results are displayed in Fig. 1. In these 
figures, we plot the boundary values of the constraints on ω, λ
and 
ch2 from Table 1. The parameter spaces that lie bottom-right 
relative to the lines could give rise to a 21-cm brightness tem-
perature signal that is stronger than the upper limit of the EDGES 
result T21 = −0.3 K, and could therefore be supported by this ex-
periment.

The constraints for parameter 
ch2 and λ from Table 1 are 
labeled by error bars of the same colors as their corresponding 
models. Note that in the second panel of Fig. 1, the constraints are 
very tight for Model II and Model III. As pointed out in [99], these 
two models would significantly alter the CMB power spectrum at 
low � and hence are tightly constrained. As a result, we can see 
that a tension exists between the limit of the EDGES and other 
experiments for the IDE model with a linear interaction term.

3.2. Mechanisms of affecting the global 21-cm lines

Although the IDE models with a linear interaction term seem 
to be inconsistent with an excess 21-cm line signal reported by 
EDGES, it is still interesting to study the implications of an abnor-
mal 21-cm signal on the evolution of the cosmological background. 
In the following section we will explore in detail the mechanisms 
in which the IDE models can affect the global 21-cm signal. As we 
have mentioned, the background evolution can alter the signal of 
the 21-cm brightness temperature in two possible ways. One is the 
direct change of the optical depth, and the other is changing the 
decoupling time of Compton heating.

In Fig. 2, we show H(z) and the Compton-heating rate 1/tC (z)
for the �CDM model and different IDE models with different in-
teracting parameters. Around z ∼ 17, different cases have differ-
ent values of Hubble parameter. So according to Eq. (2), change 
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Fig. 1. Comparison between EDGES and other experiments for different IDE models 
with different EoS parameters ω. The values of λ and 
ch2 picked up by the lines 
yield the upper limit of EDGES’s results T21 = −0.3 K. The parameter spaces that 
lie right and below the lines can lead to a stronger 21-cm brightness temperature 
signal. The error bars are derived from the constraints on λ and 
ch2 and their 
colors correspond to different IDE models as has been explained in the plot.

of optical depth would result in some observable effects and a 
smaller value of the Hubble parameter tends to give rise to a 
stronger brightness temperature. As for the effects from the change 
in Compton scattering decoupling time, we notice that the time at 
which H(z) � 1/tC (z), i.e. the intersection of the solid and dashed 
lines in this plot marks, the decoupling time of Compton-heating 
for each case. As mentioned above, an earlier presence of the in-
tersection could help producing a stronger brightness signal. On 
the other hand, although the IDE could change the evolution of 
H(z) and 1/tC , the total effect only changes the decoupling time 
at that H(z) � 1/tC (z) a little. So we expect the main contribution 
to the change of the 21-cm brightness temperature would be from 
Fig. 2. The Hubble parameter and Compton-heating rate for different interacting 
strengths and different IDE models. The decoupling of the gas temperature from the 
radiation temperature occurs when H(z) ≈ 1/tC (z) for a given model and a given λ, 
i.e. the intersection of the lines with the same color.
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Fig. 3. The change of the 21-cm line signal 
T21 from different factors (Compton-
heating, cosmic expansion and taking both of them into consideration). for differ-
ent models. And we use the red line to label the upper limit of EDGES’s results 

T21 = −0.1 K. The areas surrounded by dashed lines and 
T21 = 0 measure the 
degree of influence of different factors. Note that the parameter range of λ is slightly 
different among different models, since we need to take the singularity of the mod-
els into our consideration.

the change of the optical depth instead of the Compton heating 
decoupling time.

To better demonstrate the effect of two mechanisms clearer, 
we define the change of 21-cm brightness temperature as 
T21 =
T ∗

21 −T 0
21, where T 0

21 � −0.2 K is the output value of 21-cm bright-
ness temperature at z = 17.2 for the standard �CDM model, T ∗

21
is the corresponding value for different factors (optical depth and 
Compton heating) and different models. In Fig. 3, we plot the val-
ues of 
T21 as a function of the interacting parameter λ after con-
Fig. 4. The Hubble parameter and Compton-heating rate for �CDM, the IDE model 
λ = 0.15 and the interacting plus early dark energy model λ = 0.15, 
ee = 0.5 ×
10−5, zc = 100.

sidering different factors for different models. We also plot the up-
per limit of the EDGES result with the red line, i.e. 
T21 = −0.1 K, 
and therefore, the parameter space that makes the 
T21 below the 
red line is consistent with the EDGES results at 99% C.L.

From Fig. 3, we notice that a positive interacting parameter 
could lead to a relatively stronger 21-cm brightness temperature 
signal than that in �CDM model, and thus, would help alleviat-
ing the tension between standard cosmology and the observations 
of EDGES. Moreover, by comparing with the decoupling time of 
Compton heating, the change of optical depth has a larger influ-
ence on the signal. It is consistent with our previous analysis that 
the decoupling time of Compton heating could hardly be changed 
and a smaller Hubble parameter tends to result in a stronger 
21-cm line signal from Eq. (2).

4. An early dark energy dominated stage

According to the previous analysis, we can learn that the IDE 
models can only yield significant effects by changing the optical 
depth. However, given that there are two factors that could influ-
ence the 21-cm line signal, the best choice might be changing the 
decoupling time of Compton heating and the optical depth of hy-
drogen cloud at the same time.

In order to significantly change the decoupling time of Comp-
ton heating, i.e. the intersection of H(z) and 1/tC (z), we construct 
a smooth evolution stage of H(z) at the redshift z ∼ 100. As [46]
points out, this scenario could be fulfilled with an early dark en-
ergy model. It can be expressed as [104,105]:

ρee(a)

ρcrit
= 
ee(1 + a6

c )

a6 + a6
c

, pee(a) = ρee
a6 − a6

c

a6 + a6
c

, (11)

where ρcrit is the critical density at z = 0, while 
ee and ac

are the model parameters. For z � zc , this new composite be-
haves as a cosmological constant ω = −1 while for z � zc , ω =
1 and the energy density approaches to 
eeρcrit . We add the 
new early dark energy component to the IDE paradigm, we yield 
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Fig. 5. The 21-cm line brightness temperature given by different early dark energy parameters 
ee and zc for different IDE models. The parameter spaces above the black 
line are excluded by the measurements of θ∗ and H0.
H2 ≈ (8πG/3)(ρm +ρee). Fig. 4 displays the Hubble parameter and 
Compton-heating rate for the IDE plus early dark energy model, 
where we can see the evolution of the cosmological background 
can both lower the Hubble parameter at z ∼ 17 and significantly 
push the decoupling time of Compton heating to an earlier time. 
Here we would like to comment that the form depicted by the 
“EDE+IDE” in Fig. 4 might offer a possible solution to alleviate the 
tension between the EDGES results and other cosmological obser-
vations.

When we introduce the early dark energy dominated stage, the 
expansion history of the IDE paradigm changes. Given that we 
need the model parameter zc > 10 to realize the aim of chang-
ing the Compton-heating decoupling time only at relatively large 
redshift, a significant constraint is the precise measurement of the 
acoustic scale by CMB experiments, which is given by

θ∗ ≡ rs(η∗)
η0

, (12)

where η0 is the comoving angular diameter distance to the sur-
face of last scattering, rs(η∗) is the comoving sound horizon at 
the recombination stage. Focusing on the contribution of an early 
exponential expansion background after the recombination, the co-
moving sound horizon rs(η∗) would not be affected. Afterwards, 
by taking the current tight constraints on θ∗ into consideration 
[98,106], our strategy is to keep η0 constant, which turns out to 
yield an integral constraint on H−1(z). For the other parameters, 
we choose the suitable values to give rise to the strongest signal 
consistent with the experimental constraints given by Section 3.1.

If we add the new early dark energy component to the cos-
mological paradigm, the only way to keep η0 constant is to alter 
the present Hubble parameter H0 since the other parameters have 
been completely fixed. Furthermore, the uncertain range of H0

should also be within the constraints provided in Table 1, which 
would then give rise to a rough constraint on 
ee and ac .

The results are shown in Fig. 5. Note that, the contours here 
tend to form a circle, which is slightly different from the work of 
[46] where the variation of the optical depth was ignored. If we 
have a larger 
ee , the early dark energy effect will extend to lower 
redshift, which enhances 21-cm signal according to Eq. (2). From 
these results, we find that by adding an early dark energy domi-
nated stage to the IDE paradigm within the current observational 
constraints, the upper limit of EDGES’s results T21 = −0.3 K at 
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99% C.L. cannot be easily reached. Moreover, the parameter spaces 
providing the strongest brightness temperature signal might al-
ready be excluded by current constraints. The evolution form of 
Hubble parameter shown in Fig. 4 by combining the IDE model 
and early dark energy model is still inconsistent with the large 
signal reported by EDGES.

Another crucial constraint arise from the observation of the 
CMB power spectra. If there is an early dark energy dominated 
stage playing a role during the period after the CMB having been 
formed, the evolution of the gravitational potential would be sig-
nificantly modified due to a different growth function from that of 
a matter dominated stage. This would bring a considerable contri-
bution to the integrated Sachs-Wolfe (ISW) effects, and therefore, 
the “EDE+IDE” model would face a severe constraint from the CMB 
power spectra especially at the large scales (small l’s region).

Specifically, let us consider zc = 100 and 
ee = 10−5 as the 
strongest 21-cm line signal is given by the parameter space around 
this point. In [104], the authors numerically calculated the par-
tial derivatives of the TT spectrum with respect to 
ee under the 
model of “CDM+EDE” (FIG. 4 of [104]). Although these two models 
are different from each other, we still can make a magnitude es-
timation since their differences are sub-dominant given that these 
models can be well constrained. For the value of TT spectrum at 
l = 100, the change of DT T

l is at least around 400 (μK)2, which is 
much beyond the measurement error of the Planck satellite at this 
point. The same situation also occurs in the other low l region and 
even more serious. So one may expect the parameter space that 
could give rise to the strongest 21-cm line signal are also excluded 
by the CMB observations.

5. Conclusions

In this Letter, we studied the implications of the possible excess 
of the 21-cm global signal around cosmic dawn on the cosmolog-
ical expansion of the early Universe. Especially, we point out the 
most suitable evolution of the Hubble parameter that is able to 
enhance the 21-cm signal by reviewing two potential mechanisms 
in which a different background evolution could yield impacts on 
the brightness temperature of the 21-cm line. One of them is the 
change of optical depth in the diffuse inter-galactic medium, while 
the other is the change in the Compton scattering decoupling time. 
We consider IDE models with the interacting term Q = 3λHρd , 
3λHρc and 3λH(ρd +ρc) to demonstrate our analyses. By compar-
ing with the current experimental data and analyzing two different 
mechanisms, we find that the linear IDE models only have observ-
able effects through the change in optical depth. As a result, we 
derive the required evolution form for the Hubble parameter in 
order to realize the excessive 21-cm line signal, which includes 
a smaller value at z ∼ 17 than that of the standard cosmology 
and an early smooth evolution stage around z ∼ 100. This form of 
evolution could be obtained by adding an early dark energy dom-
inated stage to the IDE paradigm. Finally, we consider the current 
experimental constraints from CMB, BAO and SNIa on the parame-
ter space. Although the results show that this kind of model is still 
not efficient to yield a strong enough signal reported by EDGES, 
our study clearly reveals the possible connections between an ex-
cess 21-cm line signal at cosmic dawn and the underlying cosmic 
background evolution, which should inspire the community to find 
more novel ways to understand an excess 21-cm line signal.

With the large uncertainty of the EDGES measurement in mind, 
it remains difficult to make decisive conclusion on the cosmolog-
ical models that were put forward to explain the excess of the 
21-cm lines due to the severe tension with other astronomical ex-
periments. In addition, we would also like to mention that there 
exist some debates about the background noise uncertainties of the 
EDGES observations [28–30], which implies that more accurate sig-
nals of 21-cm line are expected. If 21-cm line signals from dark age 
can be measured precisely, this will be a brand new observational 
window for us to explore physics of the early Universe. In order to 
shed light on the mysterious period of the cosmic dawn, we hope 
for more precise astronomical surveys on the scan of 21-cm lines, 
such as the square kilometre array (SKA) [107,108] or other related 
projects, in the near future.
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