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ABSTRACT

We present PySCo, a fast and user-friendly Python library designed to run cosmological N-body simulations across various cosmo-
logical models, such as ΛCDM (Λ with cold dark matter) and w0waCDM, and alternative theories of gravity, including f (R), MOND
(modified newtonian dynamics) and time-dependent gravitational constant parameterisations. PySCo employs particle-mesh solvers,
using multigrid or fast Fourier transform (FFT) methods in their different variations. Additionally, PySCo can be easily integrated as
an external library, providing utilities for particle and mesh computations. The library offers key features, including an initial condition
generator based on up to third-order Lagrangian perturbation theory (LPT), power spectrum estimation, and computes the background
and growth of density perturbations. In this paper, we detail PySCo’s architecture and algorithms and conduct extensive comparisons
with other codes and numerical methods. Our analysis shows that, with sufficient small-scale resolution, the power spectrum at redshift
z = 0 remains independent of the initial redshift at the 0.1% level for zini ≥ 125, 30, and 10 when using first, second, and third-order LPT,
respectively. Moreover, we demonstrate that acceleration (or force) calculations should employ a configuration-space finite-difference
stencil for central derivatives with at least five points, as three-point derivatives result in significant power suppression at small scales.
Although the seven-point Laplacian method used in multigrid also leads to power suppression on small scales, this effect can largely be
mitigated when computing ratios. In terms of performance, PySCo only requires approximately one CPU hour to complete a Newtonian
simulation with 5123 particles (and an equal number of cells) on a laptop. Due to its speed and ease of use, PySCo is ideal for rapidly
generating vast ensemble of simulations and exploring parameter spaces, allowing variations in gravity theories, dark energy models,
and numerical approaches. This versatility makes PySCo a valuable tool for producing emulators, covariance matrices, or training
datasets for machine learning.
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1. Introduction
On the largest scales, the ΛCDM (Λ with cold dark matter)
model provides a robust description of our Universe, where dark
energy is represented as a cosmological constant (Λ) and dark
matter as non-relativistic cold dark matter (Planck Collabora-
tion VI 2020; Alam et al. 2021; Riess et al. 2022). The ΛCDM
model also assumes General Relativity (GR), which offers
an accurate representation of the Universe by incorporating
small perturbations on a Friedman–Lemaître–Robertson–Walker
(FLRW) background (Green & Wald 2014). The formation of
the large-scale structure is driven by these small perturbations,
which grow over time through gravitational interactions, giving
rise to the cosmic web observed today (Peebles 1980).

While linear theory can analytically describe the growth of
perturbations on large scales above ∼100 Mpc (Yoo et al. 2009;
Bonvin & Durrer 2011; Challinor & Lewis 2011), the non-linear
nature of structure formation on smaller scales necessitates
more advanced approaches. Higher-order perturbation theory,
both in its Eulerian (Peebles 1980; Bernardeau et al. 2002) and
Lagrangian (Zel’dovich 1970; Buchert & Ehlers 1993) formula-
tions, allows for a more accurate understanding down to scales
of ∼20 Mpc. Below this scale, structure formation becomes
highly non-linear, and the evolution of gravitationally interacting
⋆ Corresponding author; michel-andres.breton@cea.fr

particles can only be accurately modeled through N-body simu-
lations (Efstathiou et al. 1985).

Over time, numerous cosmological N-body codes have been
developed (Couchman 1991; Kravtsov et al. 1997; Knebe et al.
2001; Teyssier 2002; Ishiyama et al. 2009; Potter et al. 2017;
Springel et al. 2021; Garrison et al. 2021), with recent sim-
ulations including trillions of particles (Ishiyama et al. 2021;
Euclid Collaboration: Castander et al. 2025). While significant
effort has been invested in developing efficient Newtonian sim-
ulations for cosmology (see Angulo & Hahn 2022 for a review),
many N-body codes for alternative gravity theories are derived
from Newtonian codes. For instance, ECOSMOG (Li et al. 2012),
ISIS (Llinares et al. 2014), RayMOND (Candlish et al. 2015), and
Phantom of RAMSES (Lüghausen et al. 2015) are all based on
the RAMSES code (Teyssier 2002). The former two implement
the f (R) model (Hu & Sawicki 2007) and the nDGP model
(Dvali et al. 2000), while the latter two implement MOND
(modified newtonian dynamics, Milgrom 1983). Although it
is possible to integrate modified gravity theories into TreePM
codes like Gadget (Springel et al. 2021), as demonstrated by
MG-Gadget (Puchwein et al. 2013), RAMSES has emerged as
the preferred code for such implementations. This is due to
the fact that alternative theories of gravity generally intro-
duce additional fields governed by non-linear partial differential
equations, which cannot be efficiently solved using standard
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tree-based methods. As a result, RAMSES, a particle-mesh (PM)
code with adaptive-mesh refinement (AMR) and a multigrid
solver, becomes an ideal choice for implementing these features.
However, PM-AMR, TreePM, or Fast Multipole Method (FMM)
codes typically require significant computational resources, even
when highly optimised. This challenge is exacerbated in sim-
ulations of alternative gravity theories; for instance, Euclid
Collaboration: Adamek et al. (2025) showed that f (R) or nDGP
simulations can run up to ten times slower than their Newtonian
counterparts.

To address these computational demands, researchers have
explored PM codes (Knebe et al. 2001; Merz et al. 2005; Feng
et al. 2016; Adamek et al. 2016; Klypin & Prada 2018) to reduce
the cost at the expense of small-scale accuracy. These faster,
albeit less precise, simulations are suitable for specific appli-
cations, such as producing large numbers of realisations for
covariance matrix estimation or calculating the ratio (or boost) of
specific statistical quantities relative to a reference case explor-
ing large parameter spaces. Furthermore, exact PM codes can
accurately reproduce structure formation at small scales given a
higher resolution of the uniform mesh. Consequently, such codes
have been ideal for developing solvers for modified gravity theo-
ries (see Llinares 2018 for a review), and have been used to study
their impact relative to Newtonian simulations (Valogiannis &
Bean 2017; Winther et al. 2017; Hassani & Lombriser 2020;
Ruan et al. 2022; Hernández-Aguayo et al. 2022).

Given the need for speed, most N-body simulations have tra-
ditionally been written in compiled languages such as Fortran,
C, or C++. In contrast, Python has become the most popular pro-
gramming language in data science, owing to its straightforward
syntax, rapid development speed, and extensive community-
driven libraries, especially in astronomy. This popularity has
created a gap between simulators and the broader scientific field.
Despite its advantages, Python is often viewed as a slow lan-
guage when used natively. To address this, significant effort has
gone into developing efficient Python libraries, either as wrap-
pers for C-based codes (such as NumPy, Harris et al. 2020) or
through compiling Python code to machine language, as seen
in Numba (Lam et al. 2015) and Cython (Behnel et al. 2011).
Recently, the latter approach was used to develop the P3M code
CONCEPT (Dakin et al. 2022), demonstrating the viability of
Python for high-performance applications.

In this paper, we present PySCo1 (Python Simulations
for Cosmology), a cosmological PM N-body code written in
Python and utilising the Numba library for increased perfor-
mance and multithreading. The paper is organised as follows:
Section 2 introduces the different models implemented in
PySCo, including the modified gravity theories f (R) from Hu &
Sawicki (2007), MOND (Milgrom 1983), parameterised gravity
(Amendola et al. 2008), and dynamic dark energy (Chevallier &
Polarski 2001; Linder 2003). Section 3 details the structure and
algorithms implemented in the code, covering initial condition
generation and various N-body solvers. In Section 4, we validate
PySCo against other codes and analyse the impact of different
numerical methods on the matter power spectrum. Finally, we
conclude in Section 5.

2. Theory

2.1. Newtonian gravity

Let us consider only scalar perturbations on FLRW metric, in the
Newtonian gauge (Ma & Bertschinger 1995)
1 https://github.com/mianbreton/pysco

ds2 = a2(η)
[
− (1 + 2ψ) dη2 + (1 − 2ϕ) dx2

]
, (1)

with a the scale factor, η the conformal time and ψ and ϕ the
Bardeen potentials (Bardeen 1980). In GR, we have ψ = ϕ, and
the Einstein equation gives

∇2ϕ − 3H
(
ϕ′ +Hϕ

)
= 4πGa2δρ, (2)

with H = aH the conformal Hubble parameter, ϕ′ the time
derivative of the potential and ρ the Universe’s components
density. It is common to apply the Newtonian and quasi-static
(neglecting time derivatives) approximations, which involve
neglecting the second term on the left-hand side of Eq. (2), as
it is only significant at horizon scales. In the context of Newto-
nian cosmology, the Einstein equation takes the same form as the
classical Poisson equation, with an additional dependence on the
scale factor

∇2ϕ = 4πGa2δρm, (3)

with ρm the matter density. There are, however, cosmologi-
cal General Relativity (GR) simulations (Adamek et al. 2016;
Barrera-Hinojosa & Li 2020) that solve the full Einstein equa-
tions in the weak-field limit, taking into account gauge issues
(Fidler et al. 2015, 2016). Additionally, there are methods to
interpret Newtonian simulations within a relativistic framework
(Chisari & Zaldarriaga 2011; Adamek & Fidler 2019). In this
work, however, we focus on smaller scales where relativistic
effects are negligible, and the Newtonian approximation remains
well justified.

2.2. Dynamical dark energy

The w0waCDM model provides a useful phenomenological
extension of the standard ΛCDM framework by offering a
dynamic, time-dependent description of dark energy. In this
model, the cosmological constant is replaced by a variable dark
energy component, which affects the formation of cosmic struc-
tures by modifying the universe’s expansion history. For a flat
geometry (Ωk = 0), the Hubble parameter H(z) is given by

H(z) = H0

√
Ωm,0(1 + z)3 + Ωr,0(1 + z)4 + ΩΛ(z), (4)

where a subscript zero indicates a present-day evaluation, and
Ωm, Ωr, and ΩΛ represent the density fractions of matter, radia-
tion, and dark energy, respectively. In this model, the dark-energy
density evolves with redshift, following the relation

ΩΛ(z) = ΩΛ,0 exp
{∫ z

0

3 [1 + w(z′)] dz′

1 + z′

}
. (5)

Using the widely adopted CPL parametrisation (Chevallier &
Polarski 2001; Linder 2003), the dark-energy equation of state
is expressed as

w(z) = w0 + wa
z

1 + z
. (6)

This simple modification does not alter the Einstein field equa-
tions nor the equations of motion, and it recovers the standard
ΛCDM model when w0 = −1 and wa = 0.
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2.3. MOND gravity

The Modified Newtonian Dynamics (MOND) theory, introduced
by Milgrom (1983), was proposed as a potential solution to the
dark matter problem by suggesting a deviation from Newtonian
gravity in a Universe where the matter content is entirely in the
form of baryons (for a detailed review, see Famaey & McGaugh
2012). In MOND, Newton’s second law is modified as follows

µ

(
|g|

g0

)
g = gN , (7)

where g and gN represent the MOND and Newtonian accelera-
tions, respectively, and g0 is a characteristic acceleration scale,
approximately g0 ≈ cH0/[2π] ≈ 10−10m.s−2. The function µ(x)
is an interpolating function that governs the transition between
the Newtonian regime (where gravitational force scales as r−2)
and the MOND regime (where the force scales as r−1), with r
being the separation between masses. The interpolating function
has the following limits

µ(x) =
{

1, x ≫ 1,
x, x ≪ 1. (8)

Similarly, the inverse interpolating function ν(y) can be defined
as

g = ν

(
gN

g0

)
gN , (9)

where ν(y) follows the limits

ν(y) =
{

1, y ≫ 1,
y−1/2, y ≪ 1. (10)

In the MOND framework, the classical Poisson equation is
modified as follows (Bekenstein & Milgrom 1984)

∇

[
µ

(
|∇ϕ|

g0

)
∇ϕ

]
= 4πGδρ, (11)

a formulation known as AQUAL, derived from a quadratic
Lagrangian. In this paper, however, we consider the QUMOND
(quasi-linear MOND, Milgrom 2010) formulation, where the
non-linearity in the Poisson equation is re-expressed in terms of
an additional effective dark matter fluid in the source term. The
modified Poisson equations are

∇2ϕN = 4πGρ, (12)

∇2ϕ = ∇
[
ν
(∣∣∣∇ϕN

∣∣∣ /g0

)
∇ϕN

]
, (13)

where ϕN and ϕ are the Newtonian and MOND potentials,
respectively. This system of equations is more convenient to
solve, as it involves only two linear Poisson equations. More-
over, numerical simulations have demonstrated that the AQUAL
and QUMOND formulations yield very similar results (Candlish
et al. 2015).

The missing component in the MOND framework is the spe-
cific form of the ν(y) function. Several families of interpolating
functions have been proposed, each with different characteristics

– Simple function:

ν(y) =
1
2
+

√
1 + 4/y

2
, (14)

which corresponds to the simple function proposed by Famaey &
Binney (2005), equivalent to µ(x) = x/(1 + x).

– The n-family:

ν(y) =

1
2
+

√
1 + 4/yn

2

1/n

, (15)

a commonly used parametrisation for the interpolating func-
tion (Milgrom & Sanders 2008). The case n = 2 is particularly
well studied and is known as the standard interpolating function
(Begeman et al. 1991). Additionally, Milgrom & Sanders (2008)
introduced other functional forms

– The β-family:

ν(y) =
(
1 − e−y

)−1/2
+ βe−y, (16)

– The γ-family:

ν(y) =
(
1 − e−y

γ/2)−1/γ
+

(
1 − γ−1

)
e−y

γ/2
, (17)

– The δ-family:

ν(y) =
(
1 − e−y

δ/2)−1/δ
, (18)

which is a subset of the γ-family. While we focus on non-
relativistic formulations of MOND for simplicity, it is impor-
tant to acknowledge that various relativistic frameworks have
been developed (Bekenstein 2006; Milgrom 2009; Skordis &
Złośnik 2021), along with a recent generalisation of QUMOND
(Milgrom 2023). These topics, however, are beyond the scope of
this paper.

2.4. Parametrised gravity

A straightforward and effective phenomenological approach to
modifying the theory of gravity is through the µ − Σ parametri-
sation of the Einstein equations (Amendola et al. 2008). This is
particularly useful when considering unequal Bardeen potentials
ϕ , ψ. Under the Newtonian and quasi-static approximations,
the Einstein equations can be expressed as

∇2ψ = 4πGµ(a)a2δρm, (19)

∇2(ψ + ϕ) = 8πGΣ(a)a2δρm, (20)

where µ(a) represents the time-dependent ‘effective gravitational
coupling’, which can be interpreted as a modification of the grav-
itational constant, and Σ(a) is the ‘light deflection parameter’.
Since our focus is on the evolution of dark-matter particles, we
only need to implement Eq. (19), which involves µ(a). In prac-
tice, the gravitational coupling µ(a) could be a function of both
time and scale in Fourier space, µ(a, k), as in the ‘effective-field
theory of dark energy’ (Frusciante & Perenon 2020). However,
for simplicity, we prefer methods that can be solved numeri-
cally in both Fourier and configuration space. The inclusion of
scale-dependent corrections will be considered in future work.

For the functional form of µ(a), we use the parametrisation
from Simpson et al. (2013); Planck Collaboration XIV (2016);
Planck Collaboration VI (2020); Abbott et al. (2019), which
allows for deviations from GR during a dark-energy dominated
era

µ(a) = 1 + µ0
ΩΛ(a)
ΩΛ,0

, (21)

where µ0 is the only free parameter, representing the gravita-
tional coupling today.
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2.5. f(R) gravity

In f (R) gravity, the Lagrangian extends the Einstein–Hilbert
action (GR) by including an arbitrary function of the Ricci
scalar curvature R. The total action is given as (Buchdahl 1970;
Sotiriou & Faraoni 2010)

S =
∫

d4x
√
−g

[
R + f (R)

16πG
+Lm

]
, (22)

where Lm represents the matter Lagrangian, G is the gravita-
tional constant, g is the determinant of the metric, and f (R) is
the additional function of the curvature, which reduces to −2Λ
in the standard ΛCDM model. A commonly used parametrisa-
tion of f (R) gravity is provided by Hu & Sawicki (2007), with
the following functional form

f (R) = −m2
c1

(
R/m2

)n

c2
(
R/m2)n

+ 1
, (23)

≈ −
c1

c2
m2 +

c1

c2
2

m2
(

m2

R

)n

, R ≫ m2, (24)

where n, c1 and c2 are the model parameters, and m represents
the curvature scale, given by m2 = ΩmH2

0/c
2 = 8πGρ̄m,0/(3c2),

where ρ̄m,0 is the current mean matter density. This model incor-
porates a Chameleon screening mechanism (Khoury & Weltman
2004; Burrage & Sakstein 2018) to suppress the fifth force
caused by the scalar field fR (also known as the ‘scalaron’). The
scalaron is given by

fR =
d f (R)

dR
≈ −n

c1

c2
2

(
m2

R

)n+1

, (25)

which allows the theory to recover GR in high-density envi-
ronments, ensuring consistency with Solar System tests. Obser-
vational evidence for dark energy as a cosmological constant
imposes the constraint

c1

c2
= 6
ΩΛ,0

Ωm,0
, (26)

and we can also express

c1

c2
2

= −
3
n

[
1 + 4

ΩΛ,0

Ωm,0

]n+1

fR0, (27)

where fR0 is the present-day value of the scalaron, with cur-
rent observational constraints from galaxy clusters indicating
log10 fR0 < −5.32 (Vogt et al. 2025). In this framework, the Pois-
son equation is modified compared to its Newtonian counterpart.
There is an additional term that depends on the scalaron field

∇2ϕ =
16πGa2

3
δρ −

1
6
δR, (28)

∇2 fR = −
8πGa2

3c2 δρ +
1
3
δR, (29)

where the difference in curvature is given by

δR = R − R̄ = R̄

( f̄R
fR

)1/(n+1)

− 1

 . (30)

Here, R̄ represents the background curvature, expressed as

R̄ = 3m2
(
a−3 + 4

ΩΛ

Ωm

)
, (31)

and f̄R is the background value of fR

f̄R =
(

R̄0

R̄

)n+1

fR,0. (32)

The primary observational distinction between f (R) gravity and
GR lies in the enhanced clustering on small scales, with the
amplitude and shape of these deviations being dependent on
fR0, despite the two models sharing the same overall expansion
history.

3. Methods

This section reviews the numerical methods used in PySCo, from
generating initial conditions to evolving dark-matter particles in
N-body simulations across various theories of gravity.
PySCo is entirely written in Python and uses the open-source

library Numba (Lam et al. 2015), which compiles Python code
into machine code using the LLVM compiler. This setup com-
bines Python’s high development speed and rich ecosystem with
the performance of C/Fortran. To optimise performance, PySCo
relies on writing native Python code with ‘for’ loops, similar to
how it would be done in C or Fortran.
Numba integrates seamlessly with NumPy (Harris et al. 2020),

a widely used package for numerical operations in Python. Par-
allelisation in PySCo is simplified: by replacing ‘range’ with
‘prange’ in loops, the code takes advantage of multi-core pro-
cessing. Numba functions are typically compiled just-in-time
(JIT), meaning they are compiled the first time the function
is called. Numba infers input and output types dynamically,
supporting function overloading for different types.

In PySCo, however, most functions are compiled ahead-of-
time (AOT), meaning they are compiled as soon as the code is
executed or imported. This is because the simulation uses 32-bit
floating point precision for all fields, allowing for AOT compi-
lation. Since the simulation operates on a uniform grid, unlike
AMR simulations, there is no need for fine-grained grids. There-
fore, using 32-bit precision is sufficient and does not result in
any loss of accuracy. Additionally, 32-bit floats improve perfor-
mance by enabling SIMD (Single Instruction, Multiple Data)
instructions, which the compiler implicitly optimises for.

3.1. Units and conventions

We adopt the same strategy as RAMSES and use supercomoving
units (Martel & Shapiro 1998), where the Poisson equation takes
the same form as in classical Newtonian dynamics but includes
a multiplicative scale factor

∇2ϕ̃ =
3
2

aΩm (ρ̃ − 1) , (33)

where a tilde denotes a quantity in supercomoving units, a is the
scale factor, ϕ the gravitational potential, and ρ the matter den-
sity. We also define conversion units from comoving coordinates
and super-conformal time to physical SI units

x̃ =
x
x∗
, dt̃ =

dt
t∗
, ṽ = v

t∗
x∗
, (34)
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ϕ̃ = ϕ
t2
∗

x2
∗

, c̃ = c
t∗

ax∗
, (35)

where x̃, dt̃, ṽ, ϕ̃ and c̃ represent the particle position, time and
velocity, gravitational potential and speed of light in simulation
units. The conversion factors are defined as follows

x∗ = 100aLbox/H0, (36)

t∗ = a2/H0, (37)

ρ∗ = Ωmρc/a3, (38)

as the length, time and density conversion units to km2, seconds
and kg/m3 respectively, where Lbox is the box length in comoving
coordinates and H0 is the Hubble parameter today (in seconds).
The particle mass is given by

mpart = ρ∗x3
∗/Npart, (39)

where Npart is the total number of particles in the simulation.

3.2. Data structure

In this section, we discuss how PySCo handles the storage of
particles and meshes using C-contiguous NumPy arrays. This
approach was chosen for its simplicity and readability, allowing
functions in PySCo to be easily reused in different contexts.

For particles, the position and velocity arrays are stored with
the shape [Npart, 3], where the elements for each particle are con-
tiguous in memory. This format is more efficient than using a
shape of [3,Npart], particularly for mass assignment, where oper-
ations are performed particle by particle. To further enhance
performance, particles are ordered using Morton indices (also
known as z-curve indices) rather than linear or random order-
ing. Morton ordering improves cache usage and, thus, increases
performance. This ordering is applied every Nreorder steps, as
defined by the user, to maintain good data locality and avoid
performance losses (see also Appendix E). We did not con-
sider space-filling curves with better data locality properties
(such as the Hilbert curve), because the associated encoding
and decoding algorithms are much more computationally expen-
sive, and Morton curves already provide excellent data locality.
While more complex data structures are available (such as
linked lists, fully-threaded trees, octrees or kdtrees), preliminary
tests showed that using Morton-ordered NumPy arrays strikes a
good balance between simplicity and performance, without the
overhead of creating complex structures.

For scalar fields on the grid, arrays are stored with a shape[
N1/3

cells,N
1/3
cells,N

1/3
cells

]
using linear indexing. Although linear index-

ing does not offer optimal data locality, it is lightweight and does
not require additional arrays to store indices. Moreover, it works
well with predictable (optimizable) memory-access patterns,
such as those used in stencil operators. For vector fields, such as
acceleration, the arrays have a shape

[
N1/3

cells,N
1/3
cells,N

1/3
cells, 3

]
, simi-

lar to the format used for particle arrays, to maintain consistency
and performance.

3.3. Initial conditions

In this section, we describe how PySCo handles the genera-
tion of initial conditions for simulations, although it can also
read from pre-existing snapshots in other formats. PySCo can
2 While RAMSES converts to cm.

load data directly from RAMSES/pFoF format used in the Ray-
Gal simulations (Breton et al. 2019; Rasera et al. 2022) or from
Gadget format using the Pylians library (Villaescusa-Navarro
2018). PySCo computes the time evolution of the scale fac-
tor, growth factors, and Hubble parameters, with the Astropy
library (Astropy Collaboration 2022) and internal routines (see
Appendix A).

To generate the initial conditions, the code requires a lin-
ear power spectrum P(k, z = 0), which is rescaled by the growth
factor at the initial redshift zini. Additionally, PySCo generates a
realisation of Gaussian white noise W, which is used to apply
initial displacements to particles.

Some methods generate Gaussian white noise in configu-
ration space, which is particularly useful for zoom simulations
(Pen 1997; Sirko 2005; Bertschinger 2001; Prunet et al. 2008;
Hahn & Abel 2013). However, in PySCo, the white noise is
computed as

W(k) = A(k)eiθ(k), (40)

with A(k) an amplitude drawn from a Rayleigh distribution given
by Rdist =

√
− lnU]0, 1] with U]0, 1] a uniform random sam-

pling between 0 and 1, and θ(k) = U]0, 1]. We also fix W(k) =
W(−k) where a bar denotes a complex conjugate, to ensure that
the configuration-space field is real valued. In our case, since we
consider a regular grid with periodic boundary conditions, we
can generate the white noise directly in Fourier space. An initial
realisation of a density field is computed using

δini(k) = (2π)3/2
√

P(k)W(k), (41)

with k = |k|. This ensures that we recover the Gaussian
properties

⟨δini(k)⟩ = 0, (42)〈
δini(k)δini(k′)

〉
= (2π)3P(k)δD(k + k′), (43)

where δD is a Dirac delta and δini(0) = 0. We have also imple-
mented the option to use ‘paired and fixed’ initial conditions
(Angulo & Pontzen 2016). This method greatly reduces cosmic
variance by running paired simulations with opposite phases, at
the cost of introducing some non-Gaussian features. The con-
cept here is that instead of averaging the product of modes
to match the power spectrum, the individual modes are set
directly to (2π)3/2 √P(k). In practice, the density field is used
to compute the initial particle displacement from a homoge-
neous distribution, rather than directly sampling δini. We use
Lagrangian perturbation theory (LPT), with options for first-
order 1LPT (also called ‘Zel’dovich approximation’, Zel’dovich
1970), second-order 2LPT (Scoccimarro 1998; Crocce et al.
2006), or third-order 3LPT (Catelan 1995; Rampf & Buchert
2012). The displacement field at the initial redshift zini up to third
order is expressed as

Ψ(zini) = D(1)
+ Ψ

(1)+D(2)
+ Ψ

(2)+D(3a)
+ Ψ

(3a)+D(3b)
+ Ψ

(3b)+D(3c)
+ Ψ

(3c),

(44)

with D+ ≡ D+(zini)(1) is the linear (first order) growth factor at
the initial redshift and Ψ(n) are the different orders of the dis-
placement field at z = 0, which can be written as (Michaux et al.
2021)

Ψ(1) = −∇ϕ(1), (45)
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Ψ(2) = ∇ϕ(2), (46)

Ψ(3a) = ∇ϕ(3a), (47)

Ψ(3b) = ∇ϕ(3b), (48)

Ψ(3c) = ∇ × A(3c), (49)

with

ϕ(1) = ∇−2δini, (50)

ϕ(2) =
1
2
∇−2

[
ϕ(1)
,ii ϕ

(1)
, j j − ϕ

(1)
,i j ϕ

(1)
,i j

]
, (51)

ϕ(3a) = ∇−2
[
det ϕ(1)

,i j

]
, (52)

ϕ(3b) =
1
2
∇−2

[
ϕ(2)
,ii ϕ

(1)
, j j − ϕ

(2)
,i j ϕ

(1)
i j

]
, (53)

A(3c) = ∇−2
[
∇ϕ(2)

,i × ∇ϕ
(1)
,i

]
, (54)

and

∇(2)ϕ(2) = ϕ(1)
,xx

(
ϕ(1)
,yy + ϕ

(1)
,zz

)
+ ϕ(1)

,yyϕ
(1)
,zz

− ϕ(1)
,xyϕ

(1)
,xy − ϕ

(1)
,xzϕ

(1)
,xz − ϕ

(1)
,yzϕ

(1)
,yz , (55)

∇2ϕ(3a) = ϕ(1)
,xxϕ

(1)
,yyϕ

(1)
,zz + 2ϕ(1)

,xyϕ
(1)
,xzϕ

(1)
,yz

− ϕ(1)
,yzϕ

(1)
,yzϕ

(1)
,xx − ϕ

(1)
,xzϕ

(1)
,xzϕ

(1)
,yy − ϕ

(1)
,xyϕ

(1)
,xyϕ

(1)
,zz , (56)

∇2ϕ(3b) =
1
2
ϕ(1)
,xx

(
ϕ(2)
,yy + ϕ

(2)
,zz

)
+

1
2
ϕ(1)
,yy

(
ϕ(2)
,xx + ϕ

(2)
,zz

)
+

1
2
ϕ(1)
,zz

(
ϕ(2)
,xx + ϕ

(2)
,yy

)
− ϕ(1)

,xyϕ
(2)
,xy − ϕ

(1)
,xzϕ

(2)
,xz − ϕ

(1)
,yzϕ

(2)
,yz ,

(57)

∇2A(3c)
x = ϕ(2)

,xyϕ
(1)
,xz − ϕ

(2)
,xzϕ

(1)
,xy

+ ϕ(1)
,yz

(
ϕ(2)
,yy − ϕ

(2)
,zz

)
− ϕ(2)

,yz

(
ϕ(1)
,yy − ϕ

(1)
,zz

)
, (58)

∇2A(3c)
y = ϕ(2)

,yzϕ
(1)
,yx − ϕ

(2)
,yxϕ

(1)
,yz

+ ϕ(1)
,xz

(
ϕ(2)
,zz − ϕ

(2)
,xx

)
− ϕ(2)

,xz

(
ϕ(1)
,zz − ϕ

(1)
,xx

)
, (59)

∇2A(3c)
z = ϕ(2)

,xzϕ
(1)
,yz − ϕ

(2)
,yzϕ

(1)
,xz

+ ϕ(1)
,xy

(
ϕ(2)
,xx − ϕ

(2)
,yy

)
− ϕ(2)

,xy

(
ϕ(1)
,xx − ϕ

(1)
,yy

)
. (60)

In practice, we compute all derivatives directly in Fourier space,
since configuration-space finite-difference gradients would
smooth the small scales and thus create inaccuracies in the ini-
tial power spectrum. The second- and third-order contributions
in the initial conditions can be prone to aliasing effects due to the
quadratic and cubic non-linearities involved. To mitigate this, we
apply Orszag’s 3/2 rule (Orszag 1971), as suggested in Michaux
et al. (2021). The impact of this correction is minimal, by around
0.1% on the power spectrum at small scales, when using 3LPT
initial conditions and for a relatively late start with zini ≈ 10).
The initial position and velocity are then (up to third order)

xini = q + Ψ(1)D(1)
+ + Ψ

(2)D(2)
+ (61)

+ Ψ(3a)D(3a)
+ + Ψ(3b)D(3b)

+ + Ψ(3c)D(3c)
+ , (62)

uini =Ψ
(1)H f (1)D(1)

+ + Ψ
(2)H f (2)D(2)

+ (63)

+ Ψ(3a)H f (3a)D(3a)
+ + Ψ(3b)H f (3b)D(3b)

+ + Ψ(3c)H f (3c)D(3c)
+ ,
(64)

with H the Hubble parameter at zini, fn the growth rate contribu-
tion to the n-th order, and xuniform the position of cell centres (or
cell edges, see also Appendix B.2) when Npart = Ncells. We inter-
nally compute the growth factor and growth rate contributions as
described in Appendix A.

3.4. Integrator

In our simulations, we employ the second-order symplectic
Leapfrog scheme, often referred to as Kick-Drift-Kick, to inte-
grate the equations of motion for the particles. The steps in the
scheme are as follows
ui+1/2 = ui + ai∆t/2, Kick,
xi+1 = xi + ui+1/2∆t, Drift,
ui+1 = ui+1/2 + ai+1∆t/2, Kick,

(65)

where the subscript i indicates the integration step, while x,
u and a are the particle positions, velocities and accelerations
respectively. There are several ways to set the time step ∆t. Some
authors use linear or logarithmic spacing, depending on the user
input. In our case, we followed a similar strategy as RAMSES
(Teyssier 2002) and use several time stepping criteria. The first
criterion is based on a cosmological time step that guarantees
the scale factor does not change by more than a specified amount
(by default 2%, see also Appendix B.1), which is particularly
effective at high redshift. The second criterion is based on the
minimum free-fall time given by

∆tff =

√
h

max(|ai|)
, (66)

with h the cell size. We select the smallest value between this
criterion and the cosmological time step. Additionally, we imple-
mented a third criterion based on particle velocities ∆tvel =
h/max(|ui|), though we found this value often exceeds ∆tff in
practice. This approach ensures that the time step dynamically
adapts to the structuration of dark matter in the simulation. To
further refine the time step, we multiply it by a user-defined
Courant-like factor.

An interesting prospect for the future is the use of integrators
based on Lagrangian perturbation theory (LPT) that could poten-
tially reduce the number of time steps required while maintaining
high accuracy (as suggested by Rampf et al. 2025). However,
such methods couple the integration scheme with specific theo-
ries of gravity through growth factors. Since these factors may
not always be accurately computed (for example, in MOND), we
prefer to maintain the generality of the standard leapfrog inte-
gration scheme for now. We may explore the implementation of
such LPT-based integrators in the future for specific theories of
gravitation.

3.5. Iterative solvers

To displace the particles, we first need to compute the force
(or acceleration). There are various algorithms available for
this purpose, either computing the force directly from a parti-
cle distribution, or determining the gravitational potential from
which the force can subsequently be derived. When using the
gravitational potential approach, the force can be recovered by
applying a finite-difference gradient operator g = −∇ϕ. Given
that our results are sensitive to the order of the operator used, we
have implemented several options for central difference methods,
each characterised by specific coefficients. These coefficients are
detailed in Table 1. We aim to solve the following problem

Lu = f (67)

Where u is unknown, f is known and L is an operator. For the
classical Poisson equation, u ≡ ϕ, f ≡ 4πGρ and L ≡ ∇2 with
the seven-point Laplacian stencil

∇2ui, j,k =
1
h2

(
Li, j,k(u) − 6ui, j,k

)
, (68)
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Table 1. Stencil operator coefficients for central derivatives.

Points Accuracy −3 −2 −1 0 1 2 3

3 O(h2) 0 0 − 1
2 0 1

2 0 0

5 O(h4) 0 1
12 − 2

3 0 2
3 − 1

12 0

7 O(h6) − 1
60

3
20 − 3

4 0 3
4 − 3

20
1

60

Notes. The columns refer to the stencil operator, accuracy and coeffi-
cients cn of the indices n such as the gradient operator at the index i can
be written as ∇ = 1

h

∑n=3
n=−3 cnui+n, with h the grid size.

with the subscripts i, j, k the cell indices and Li, j,k(u) = ui+1, j,k +
ui, j+1,k + ui, j,k+1 + ui−1, j,k + ui, j−1,k + ui, j,k−1.

Lastly, f is the density (source) term of Eq. (67), which is
directly estimated from the position of dark-matter particles. In
code units, the sum of the density over the full grid must be∑
i, j,k

ρ̃i, j,k = Npart, (69)

where the density in a given cell is computed using the ‘nearest-
grid point’ (NGP), ‘cloud-in-cell’ (CIC) or ‘triangular-shaped
cloud’ (TSC) mass-assignment schemes

WNGP(xi) =
{

1 if |xi| < 0.5,
0 otherwise, (70)

WCIC(xi) =
{

1 − |xi| if |xi| < 1.0,
0 otherwise, (71)

WTSC(xi) =


0.75 − x2

i if |xi| < 0.5,
(1.5 − |xi|)2 /2 else if 0.5 < |xi| < 1.5,
0 otherwise.

(72)

Here, xi is the normalised separation between a particle and cell
positions, scaled by the cell size. In a three-dimensional space,
this implies that a dark-matter particle contributes to the den-
sity of one, eight, or twenty-seven cells depending on whether
the NGP, CIC, or TSC scheme is employed, respectively. For
consistency, we use the same (inverse) scheme to interpolate the
acceleration from cells to particles.

3.6. The Jacobi and Gauss-Seidel methods

Let us consider L =


ℓ11 ℓ12 ℓ13 . . . ℓ1n
ℓ21 ℓ22 ℓ23 . . . ℓ2n
...

...
...

. . .
...

ℓn1 ℓn2 ℓn3 . . . ℓnn

, u =


u1
u2
...

un

 and

f =


f1
f2
...
fn

. The Jacobi method is a naive iterative solver which,

for Eq. (67), takes the form

ℓ11unew
1 + ℓ12uold

2 + ℓ13uold
3 + · · · + ℓ1nuold

n = f1, (73)

ℓ21uold
1 + ℓ22unew

2 + ℓ23uold
3 + · · · + ℓ2nuold

n = f2, (74)

ℓ31uold
1 + ℓ32uold

2 + ℓ33unew
3 + · · · + ℓ3nuold

n = f3, (75)
...

ℓn1uold
1 + ℓn2uold

2 + ℓn3uold
3 + · · · + ℓnnunew

n = fn, (76)

where the superscripts ‘new’ and ‘old’ refer to the iteration. This
means that for one Jacobi sweep, the new value is directly given
by that of the previous iteration.

In practice, we use the Gauss-Seidel method instead, which
has a better convergence rate and lower memory usage. This
method is akin to Jacobi’s but enhances convergence by incor-
porating the most recently updated values in the computation of
the remainder. It follows

ℓ11unew
1 + ℓ12uold

2 + ℓ13uold
3 + · · · + ℓ1nuold

n = f1, (77)

ℓ21unew
1 + ℓ22unew

2 + ℓ23uold
3 + · · · + ℓ2nuold

n = f2, (78)

ℓ31unew
1 + ℓ32unew

2 + ℓ33unew
3 + · · · + ℓ3nuold

n = f3, (79)
...

ℓn1unew
1 + ℓn2unew

2 + ℓn3unew
3 + · · · + ℓnnunew

n = fn, (80)

which seems impossible to parallelise because each subsequent
equation relies on the results of the previous one. However,
we implement a strategy known as ‘red-black’ ordering in the
Gauss-Seidel method. This technique involves colouring the
cells like a chessboard, where each cell is designated as either
red or black. When updating the red cells, we only utilise infor-
mation from the black cells, and vice versa. This approach is
equivalent to performing two successive Jacobi sweeps—one for
the red cells and another for the black cells. For the Laplacian
operator as expressed in Eq. (68), the Jacobi sweep for a given
cell can be formulated as follows

unew
i, j,k =

1
6

(
Li, j,k

(
uold

)
− h2 fi, j,k

)
. (81)

In scenarios involving a non-linear operator, finding an exact
solution may not be feasible. In such cases, we linearise the
operator using the Newton-Raphson method, expressed as

unew = uold −
L(uold)
∂L/∂uold , (82)

This approach is commonly referred to as the ‘Newton Gauss-
Seidel method’, allowing for more effective convergence in non-
linear contexts.

3.7. Multigrid

In practice, both the Jacobi and Gauss-Seidel methods are known
for their slow convergence rates, often requiring hundreds to
thousands of iterations to reach a solution and typically unable to
achieve high accuracy. To overcome these limitations, a popular
and efficient iterative method known as ‘multigrid’ is employed.
This algorithm significantly accelerates convergence by solving
the equation iteratively on coarser meshes, effectively addressing
large-scale modes. The multigrid algorithm follows this proce-
dure (Press et al. 1992): we first discretise the problem on a
regular mesh with grid size h as

Lhuh = fh, (83)

which can be solved using the Gauss–Seidel method, and where
Lh is the numerical operator on the mesh with grid size h which
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approximates L. ũh denotes our approximate solution and vh is
the ‘error’ on the true solution

vh = uh − ũh, (84)

and the ‘residual’ is given by

dh = fh − Lũh. (85)

Depending on whether the operatorL is linear or non-linear, dif-
ferent multigrid schemes will be employed to solve the equations
effectively.

3.7.1. Linear multigrid

Considering the case where L is linear, meaning that Lh(uh −

ũh) = Lhuh − Lhũh, we have the relation

Lhvh = dh. (86)

From there, the goal is to estimate vh to find uh. We use numerical
methods to find the approximate solution ṽh by solving

Lhṽh = dh, (87)

using Gauss-Seidel. The updated approximation for the field is

ũnew
h = ũh + ṽh. (88)

The issue is that the approximate operatorLh is usually local and
finite-difference based, for which long-range perturbations are
slowly propagating and therefore very inefficient computation-
ally. The multigrid solution to this issue is to solve the error on
coarser meshes to speed up the propagation of long-range modes.
First, we use the ‘restriction’ operator R which interpolates from
fine to coarse grid

dH = Rdh, (89)

where H = 2h is the grid size of the coarse mesh. We then solve
Eq. (87) on the coarser grid to infer ṽH as

LH ṽH = dH . (90)

We then use the prolongation operator P, which interpolates
from coarse to fine grid

ṽh = PṽH , (91)

and we finally update our approximation on the solution

ũnew
h = ũh + ṽh. (92)

We have provided a brief overview of the multigrid algorithm
using two grids, but in practice, to solve for ṽH , we can extend
the scheme to even coarser meshes. This results in a recursive
algorithm where the coarser level in PySCo contains 163 cells.
There are several strategies for navigating the different mesh lev-
els, commonly referred to as V, F, or W-cycles. The V cycle is
the simplest and quickest to execute, although it converges at a
slower rate than the F and W cycles (see Appendix C).

For the restriction and prolongation operators, the lowest-
level schemes employ averaging (where the field value on the
parent cell is the mean of its children’s values) and straight
injection (where child cells inherit the value of their parent),
respectively. However, as noted by Guillet & Teyssier (2011), to

minimise inaccuracies in the estimation of the final solution, we
use a higher-order prolongation scheme defined as

P =


27/64, x0,1,2 < 0.5,
9/64, x0,1 < 0.5 < x2 < 1.5,
3/64, x0 < 0.5 < x1,2 < 1.5,
1/64, 0.5 < x0,1,2 < 1.5,
0, otherwise,

(93)

where x = (x0, x1, x2) with x0 ≤ x1 ≤ x2, is the separation (nor-
malised by the fine grid size) between the centre of the fine and
coarse cells.

We consider our multigrid scheme to have converged when
the residual is significantly lower than the ‘truncation error’,
defined as:

τ ≡ Lhu − fh, (94)

and which can be estimated as (Press et al. 1992; Li et al. 2012)

τ̃h ≡ LH(Rũh) − RLhũh. (95)

We consider that we reached convergence when

|dh| < ατ̃h, (96)

where |dh| is the square root of the quadratic sum over the resid-
ual in each cell of the mesh, α is the stopping criterion. It is
noteworthy that (Knebe et al. 2001) proposed using an alternative
approach for estimating the truncation error

τh,K01 = P (LH(Rũh)) − Lhũh, (97)

which we can approximate by

τh,K01 ≈ P (R fh) − fh, (98)

to reduce computational time, when the source term is non-zero.
The relation between these two approaches is τh ≈ 0.1τh,K03.
In practice, we use the first estimation τh. Since the Jacobi
and Gauss-Seidel methods are iterative, an initial guess is still
required. While the multigrid algorithm is generally insensitive
to the initial guess in most cases, some small optimisations can
be made. For instance, if we initialise the full grid with zeros,
one Jacobi step directly provides

uini
i, j,k = −

h2

6
fi, j,k, (99)

which is used to initialise uh for the first simulation step, and vH
the error on coarser meshes.

In addition to the Gauss-Seidel method, RAMSES also incor-
porates ‘successive over-relaxation’ (SOR), which allows the
updated field to include a contribution from the previous iter-
ation, expressed as ϕn+1 = ωϕn+1 + (1 − ω)ϕn, where n denotes
the iteration step, and ω is the relaxation factor. Typically, we
perform two Gauss-Seidel sweeps before the restriction (termed
pre-smoothing) and one sweep after the prolongation (post-
smoothing), controlled by the parameters Npre and Npost. We
set ω = 1.25 by default (see also Appendix C), similarly to
Kravtsov et al. (1997).

A pseudo code for the V cycle is depicted in Fig. 1, where
the components that require modification based on the gravita-
tional theory are the smoothing and residual functions. As
noted by Press et al. (1992), omitting SOR (setting ω = 1) for
the first and last iterations can enhance performance since this

A170, page 8 of 21



Breton, M.-A.: A&A, 695, A170 (2025)

1 def V_cycle(u_h, f_h, nlevel = 0):
2

3 h = 0.5**(ncoarse - nlevel) # Cell size

4

5 smoothing(u_h, f_h, h, Npre) # Gauss-Seidel

6 d_h = residual(u_h, f_h, h)

7 d_H = restriction(d_h)

8

9 v_H = np.zeros_like(d_H)

10 if nlevel >= levelmax:
11 smoothing(v_H, d_H, 2 * h, Npre)

12 else:
13 V_cycle(v_H, d_H, nlevel + 1)

14

15 u_h += prolongation(v_H)

16 smoothing(u_h, f_h, h, Npost)

Fig. 1. Pseudo code in Python for the multigrid V-cycle algorithm. We
highlight in cyan the lines where the theory of gravitation enters.

allows the prolongation operator (line 15) to operate on only half
the mesh, since the other half will be directly updated during
the first Gauss-Seidel sweep. Similarly, the restriction operator
can also be applied to only half of the mesh because, following
one Gauss-Seidel sweep, the residual will be zero on the other
half by design. It is thus feasible to combine lines 6 and 7 (the
residual and restriction operators) to compute the coarser resid-
ual from half of the finer mesh. In this example, we use a zero
initial guess for the error at the coarser level, but in principle,
we could initialise it with a Jacobi step (as shown in Eq. (99) for
Newtonian gravity).

This optimisation, however, should be approached cau-
tiously, as the residual is zero up to floating-point precision. In
certain scenarios, this can significantly impact the final solu-
tion. For example, in PySCo, we primarily utilise 32-bit floats,
rendering this optimisation less accurate for the largest modes.
Consequently, we ultimately decided to retain only the opti-
misation concerning the prolongation on half the mesh when
employing the non-linear multigrid algorithm, as we do not
utilise SOR in this context (see Appendix C).

3.7.2. Non-linear multigrid

If L is a non-linear operator instead, then we need to solve for

Lh(ũh + vh) − Lhũh = dh. (100)

Contrarily to the linear case in Eq. (90) where we only need to
solve for the error at the coarser level, we now use

LH ũH = LH (Rũh) + Rdh, (101)

where we need to store the full approximation of the solution
ũ at every level, hence the name ‘Full Approximation Storage’.
Finally, we update the solution as

ũnew
h = ũh + P (ũH − Rũh) . (102)

3.8. Fast Fourier transforms

We implemented three different fast Fourier transforms (FFT)
procedures to compute the force field, most of which were
already implemented in FastPM (Feng et al. 2016).

– FFT: The Laplacian operator is computed through the
Green’s function kernel

∇−2 = −k−2W−2
MAS(k), (103)

where WMAS(k) is the mass-assignment scheme filter, given by

WMAS(k) =

 ∏
d=x,y,z

sinc
(
ωd

2

)p

, (104)

with ωd = kdh between [−π, π] and where p = 1, 2, 3 for NGP,
CIC and TSC respectively (Hockney & Eastwood 1981; Jing
2005).

– FFT_7pt: instead of using the exact kernel for the Laplacian
operator, we use the Fourier-space equivalent of the seven-point
stencil Laplacian (Eq. (68)), which reads

∇−2 = −

 ∑
d=x,y,z

(
hωdsinc

ωd

2

)2
−1

, (105)

where no mass-assignment compensation is used. For both FFT
and FFT_7pt methods, the force is estimated through the finite-
difference stencil as shown in Table 1.

– FULL_FFT: The force is directly estimated in Fourier
space through the differentiation kernel

∇∇−2 = −ikk−2W−2
MAS(k). (106)

As we will see in Section 4.2, this naive operator can become
very inaccurate when the simulation has more cells than
particles.

3.9. Newtonian and parametrised simulations

In Eq. (99), we showed how to provide a generic initial guess
for the multigrid algorithm. However, leveraging our understand-
ing of the underlying physics can enable us to formulate an even
more accurate first guess, thus reducing the number of multi-
grid cycles required for convergence. In the context of N-body
simulations, we anticipate that the potential field will closely
resemble that of the preceding step, especially when using suffi-
ciently small time steps. This allows us to adopt the potential
from the previous step as our initial guess for the multigrid
algorithm. While this approach facilitates faster convergence to
the true solution, it necessitates storing one additional grid in
memory. Moreover, it is important to note that, in the linear
regime in Newtonian cosmology, the density contrast evolves as
a function of redshift with a scale-independent growth factor.
Consequently, we can optimise our first guess by rescaling the
potential field from the previous step according to the following
equation

ϕ̃(z1) =
(1 + z1)D+(z1)
(1 + z0)D+(z0)

ϕ̃(z0), (107)

where z0 and z1 denote the initial and subsequent redshifts,
respectively. This rescaling is performed for every time step of
the simulation, except for the initial time step, ensuring that we
maintain an efficient and accurate estimate for our initial guess in
the multigrid process. More details can be found in Appendix C.
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Fig. 2. MOND interpolating functions for the different families and
parameters shown in Sect. 2.3.

3.10. MOND simulations

The classical formulations of MOND (such as AQUAL and
QUMOND) have already been implemented in several codes
(Nusser 2002; Llinares et al. 2008; Angus et al. 2012; Candlish
et al. 2015; Lüghausen et al. 2015; Visser et al. 2024). In PySCo,
we further allow, if specified by the user, for a time-dependent
acceleration scale g0 → aNg0, which basically delays (or accel-
erates) the entry of perturbations in the MOND regime, and
which is set toN = 0 by default. In Fig. 2, we show the behaviour
of the interpolating functions ν(y) described in Sect. 2.3. We see
that, as expected from Eq. (13), ν(y) → 1 when y ≫ 1, mean-
ing that we recover Newtonian gravity in a regime of strong
acceleration.

To implement the right-hand side of Eq. (13), we employ a
method analogous to that described by Lüghausen et al. (2015),
and using the same notation

∇2ϕN =
1
h

[
νBx∇

(
ϕN

)
Bx,x
− νAx∇

(
ϕN

)
Ax,x

+ νBy∇
(
ϕN

)
By,y
− νAy∇

(
ϕN

)
Ay,y

+ νBz∇
(
ϕN

)
Bz,z
− νAz∇

(
ϕN

)
Az,z

]
, (108)

where Bi and Ai are the points at +0.5h ei and −0.5h ei respec-
tively, with ei ∈ {ex, ey, ez}, the unit vectors of the simulation. We
have also defined

νBx = ν


√[
∇

(
ϕN)

Bx,x

]2
+

[
∇

(
ϕN)

Bx,y

]2
+

[
∇

(
ϕN)

Bx,z

]2

g0

 , (109)

with ∇
(
ϕN

)
Bx,i

the i-th component of the force (with a minus
sign) at the position Bx. The force components are estimated as

∇(ϕ)Bx,x =
ϕN

1,0,0 − ϕ
N
0,0,0

h
, (110)

∇(ϕ)Bx,y =

(
ϕN

1,1,0 − ϕ
N
1,−1,0

)
+

(
ϕN

0,1,0 − ϕ
N
0,−1,0

)
4h

(111)

∇(ϕ)Bx,z =

(
ϕN

1,0,1 − ϕ
N
1,0,−1

)
+

(
ϕN

0,0,1 − ϕ
N
0,0,−1

)
4h

, (112)

and similarly for other points. We note that for Bx, x (as well
as for By, y and Bz, z), we perform a three-point central deriva-
tive with half the mesh size, differing from the approach taken
by (Lüghausen et al. 2015), who implemented a non-uniform
five-point stencil. This decision was made to ensure that in the
Newtonian case (that is, ν = 1), we exactly recover the seven-
point Laplacian, maintaining consistency with the Laplacian
operator employed in our multigrid scheme. Consequently, we
opted to retain three-point derivatives for the other components
as well (although we can still use a different stencil order when
computing the acceleration from the MOND potential).

Additionally, we exclusively solve Eq. (108) using either the
multigrid or FFT_7pt solvers. Using the FFT solver presents
challenges because, although we deconvolve ϕN by the mass-
assignment scheme kernel, the uncorrected mesh discreteness in
the force computation introduces inaccuracies that can signifi-
cantly affect the matter power spectrum.

3.11. f(R) simulations

In supercomoving units, the f (R) field equations from Eqs. (28)–
(29) are given by (Li et al. 2012)

∇2ϕ̃ =
3
2
Ωma (ρ̃ − 1) −

c̃2

2
∇2 f̃R, (113)

∇2 f̃R = −
1
c̃2Ωma (ρ̃ − 1) +

1
3c̃2 R̄a4

( f̄R
f̃R

)1/(n+1)

− 1

 , (114)

where f̃R = a2 fRc̃2/c2. While Eq. (113) is linear and can be
solved by standard techniques, Eq. (114) is not and needs
some special attention. To this end, Oyaizu (2008) used a non-
linear multigrid algorithm (see Section 3.7.2) with the Newton-
Raphson method (as shown in Eq. (82)), making the change of
variable u ≡ ln

(
f̃R/ f̄R

)
to avoid unphysical zero-crossing of fR.

Bose et al. (2017) proposed instead that for this specific model,
one could perform a more appropriate change of variable, that
we generalise here to u ≡

(
f̃R/ f̄R

)1/(n+1)
. We can then recast

Eq. (114) as

un+1 + pu + q = 0, (115)

where

p =
h2

6c̃2 f̄R

[
Ωma (1 − ρ̃) −

a4R̄
3

]
−

1
6

Li, j,k

(
un+1

)
, (116)

q =
a4h2R̄
18c̃2 f̄R

. (117)

We note that q is necessarily negative (because f̄R < 0), which is
useful to determine the branch of the solution for Eq. (115).

– Case n = 1: As noticed in Bose et al. (2017), when making
the change of variable u =

√
− fR, the field equation could be

recast as a depressed cubic equation,

u3 + pu + q = 0 , (118)

which possesses the analytical solutions (Ruan et al. 2022)

u =


(−q)1/3 , p = 0,
− [C + ∆0/C] /3, p > 0,
− [C + ∆0/C] /3, p < 0 and ∆2

1 − 4∆3
0 > 0,

−2
√
∆0 cos (θ/3 + 2π/3) /3, else,

(119)
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with ∆0 = −3p, ∆1 = 27q, C =
[

1
2

(
∆1 +

√
∆2

1 − 4∆3
0

)]1/3
and

cos θ = ∆1/
(
2∆3/2

0

)
.

– Case n = 2: The field equation can be rewritten as a quartic
equation (Ruan et al. 2022)

u4 + pu + q = 0, (120)

with the roots

u =


−S + 1

2

√
−4S 2 + p/S , p > 0,

(−q)1/4 , p = 0,
S + 1

2

√
−4S 2 − p/S , p < 0,

(121)

where S = 1
2

√
1
3 (Q + ∆0/Q), Q =

(
1
2

[
∆1 +

√
∆2

1 − 4∆3
0

])1/3
,

∆1 = 27p2 and ∆0 = 12q. Due to non-zero residuals in our
multigrid scheme, the q term can become positive. This situa-
tion results in inequalities such as ∆2

1 − 4∆3
0 < 0, which lack an

analytical solution, or Q + ∆0/Q < 0. In both cases, we enforce
u = (−q)1/4.

While the Gauss-Seidel smoothing procedure remains neces-
sary (as p depends on the values of the field u in adjacent cells),
this method eliminates the requirement for the Newton-Raphson
step and the computationally expensive exponential and logarith-
mic operations employed in the Oyaizu (2008) method, resulting
in significant performance enhancements. Given that the opera-
tions needed to determine the branch of solutions for cubic and
quartic equations are highly sensitive to machine precision, we
conduct all calculations using 64-bit floating-point precision.

We must use the non-linear multigrid algorithm outlined
above to solve the scalaron field, with its initial guess provided
directly by the solution from the previous step, without any
rescaling since we are solving for u rather than fR. Because the
tolerance threshold is heavily dependent on redshift, we cannot
apply the same criterion used for the linear Poisson equation;
by default, we consider convergence to be achieved after one F
cycle. In fact, we do not solve Eq. (113) directly; instead, we
incorporate the f (R) contribution during force computation as
follows

F = FNewton +
c̃2

2
∇ f̃R. (122)

This choice was made because replacing ∇2 f̃R in Eq. (113) with
Eq. (114) could lead to a right-hand side that has a non-zero
mean due to numerical inaccuracies, resulting in artificially large
residuals that cannot be reduced below the error threshold.

We direct interested readers to Winther et al. (2015); Euclid
Collaboration: Adamek et al. (2025), along with references
therein, for comparisons of numerical methods used to solve the
modified Poisson equation in Hu & Sawicki (2007) f (R) gravity.

4. Results

We consider a ΛCDM linear power spectrum computed by CAMB
(Lewis et al. 2000) with parameters h = 0.7, Ωm = 0.3, Ωb =
0.05, Ωr = 8.5 · 10−5, ns = 0.96 and σ8 = 0.8. We run simula-
tions with 5123 particles and as many cells (unless specifically
stated) within a box of 256 h−1 Mpc. It leads to a spatial resolu-
tion of 0.5 h−1 Mpc (which is then reduced to 0.25 h−1Mpc and
0.125 h−1 Mpc when using 10243 and 20483 cells, respectively).
All the power spectrum results are shown for the snapshot at
z = 0, and computed with a simple (without dealiasing) estima-
tor implemented within PySCo. Point-mass tests are also shown
in Appendix D.
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Fig. 3. Ratio of the matter power spectrum at z = 0 for different starting
redshift zini (in coloured lines), with respect to a reference simulation
with zini = 150. We use 1LPT, 2LPT or 3LPT initial conditions from left
to right and three-, five- and seven-point gradients from top to bottom
panels. We use the FFT solver in any case (see Section 3.8). In each
subplot the top and bottom panels show simulations which use TSC and
CIC mass-assignments schemes respectively. Grey shaded area denotes
a 1% discrepancy w.r.t. the reference power spectrum.

4.1. Initial conditions

Ideally, the statistical properties of N-body simulations at late
times should be independent of initial conditions, but studies
have shown this is not the case. For example, Crocce et al.
(2006) suggested that using 2LPT instead of 1LPT could allow
simulations to begin at a later time, reducing computational
effort. Similar approaches were extended to 3LPT by Michaux
et al. (2021) and to fourth-order (4LPT) by List et al. (2024),
which detailed improvements in particle resampling and aliasing
mitigation.

This section systematically examines how the perturbative
order, starting redshift, Poisson solver, and gradient order for
force computations affect the results. Particles are initialised at
cell centres, with results for initialisation at cell edges shown in
Appendix B.2.

In Fig. 3, the ratio of the matter power spectrum at z = 0 for
various starting redshifts is compared to a reference simulation
starting at zini = 150. It indicates that using five- and seven-
point gradient methods produces nearly identical results, while
the three-point gradient shows significant deviations for both
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Fig. 4. Same as Fig. 3, but varying the N-body solver instead of gradient
order, which is kept to seven-point (except for the FULL_FFT solver
which does not make use of finite gradients).

2LPT and 3LPT. Thus, at least a five-point gradient is necessary
to achieve convergence regarding the influence of initial con-
ditions on late-time clustering statistics. Additionally, the CIC
interpolation method results in more scattered data compared to
the TSC method, which produces smoother density fields and
is less prone to large variations in potential and force calcula-
tions. The results show a remarkable agreement within 0.1% at
zini ≥ 125, 30 and 10 for 1LPT, 2LPT and 3LPT respectively.
This contrasts with Michaux et al. (2021), where power sup-
pression at intermediate scales was observed before increasing
around the Nyquist frequency. In the present study, a maximum
wavenumber kmax = 2kNyq/3 was used to avoid aliasing, yield-
ing excellent agreement even at zini = 10 with 3LPT. However,
small-scale agreement can break down if these scales are not
well-resolved, for instance, if the simulation box size increases
but the number of particles and cells is kept constant.

Fig. 4 explores variations in the N-body solver. Multigrid and
FFT_7pt solvers produce nearly identical results, as both assume
a seven-point Lagrangian operator, though Multigrid computes it
in configuration space, while FFT_7pt does so in Fourier space.
Simulations initialised at later times exhibit excess small-scale
power compared to the FFT solver in Fig. 3, likely due to their
poorer resolution of small scales compared to FFT (similarly
to the effect of the three-point gradient stencil, as we will see
in Section 4.2). The FULL_FFT solver shows similar results
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Fig. 5. Top panel: ratio of the power spectrum for three-, five- and
seven-point gradient in blue, orange and green lines respectively using
multigrid, with respect to RAMSES (with AMR disabled and also using
multigrid). Because RAMSES does not stop exactly at z = 0 we rescaled
its power spectrum the linear growth factor. The grey shaded area show
the ±1% limits. Bottom panel: ratio of the power spectrum using the
PySCo FFT_7pt solver w.r.t PySComultigrid. The dark grey shaded area
show the 10−5 limits. In any case we use a TSC algorithm.

to FFT when a TSC scheme is applied. However, using CIC
with FULL_FFT fails to achieve convergence, likely due to the
solver’s sensitivity to the smoothness of the density field, as
discussed in Section 4.2.

These findings suggest that simulations must use at least a
five-point gradient to yield accurate results, with the ideal start-
ing redshift depending on the LPT order. Additionally, employ-
ing TSC provides smoother results, and the FULL_FFT solver
should be avoided with the CIC scheme. Finally, to achieve good
convergence at all scales, simulations need to adequately resolve
the small scales. This thus validates our implementation of LPT
initial conditions in PySCo.

4.2. Comparison to RAMSES

This section compares PySCo with RAMSES by running a PM-
only RAMSES simulation (disabling AMR) starting at zini = 50
with 2LPT initial conditions generated by MPGRAFIC (Prunet
et al. 2008). The same initial conditions are used for all com-
parisons between PySCo and RAMSES.

In Fig. 5, we observe remarkable agreement between PySCo
with a five-point gradient and RAMSES (which also uses a five-
point stencil with multigrid), with differences at only the 0.01%
level. This validates the multigrid implementation in PySCo.
Using a three-point gradient leads to a significant damping of
the power spectrum at small scales, while the seven-point gra-
dient shows an increase at even smaller scales. Based on these
results and those from Section 4.1, it is clear that a three-point
stencil is suboptimal, as the small runtime gain is outweighed by
the power loss at small scales. Also shown in Fig. 5 is the power
spectrum ratio between the multigrid and FFT_7pt solvers, with
both solvers agreeing at the 10−5 level independently of the gra-
dient order. This confirms the agreement already seen in Fig. 4.
Small fluctuations around unity could be due to the convergence
threshold of the multigrid algorithm (set at α = 0.005). Given

A170, page 12 of 21



Breton, M.-A.: A&A, 695, A170 (2025)

0.97

0.98

0.99

1.00

1.01

P
(k

)/
P

R
A

M
S
E

S
(k

)

ncells = 5123

RAMSES PM [5123 cells]

PySCo Multigrid

PySCo FFT

PySCo FULL FFT

0.97

0.98

0.99

1.00

1.01

P
(k

)/
P

R
A

M
S
E

S
(k

)

ncells = 10243

10 1 100

k (hMpc−1)

0.97

0.98

0.99

1.00

1.01

P
(k

)/
P

R
A

M
S
E

S
(k

)

ncells = 20483

Fig. 6. Ratio of the power spectrum with respect to RAMSES (with
AMR). In black lines we show results for RAMSES PM (no AMR), while
in blue, orange and green we show results for PySCo using multigrid,
FFT and FULL_FFT solvers respectively. In top, middle and bottom
panels we use 5123, 10243 and 20483 cells respectively for PySCo. In
dashed and solid lines we plot results using five- and seven-point gradi-
ent operator. The grey shaded area show the ±1% limits. We use TSC
in any case, and we do not plot FULL_FFT for ncells = 20483.

this close agreement, FFT_7pt results are not shown further in
this paper, except for performance analysis in Section 4.6.

In Fig. 6, the comparison between RAMSES (AMR) and
PySCo reveals that using a seven-point Laplacian operator in
a PM-only code results in a significant suppression of small-
scale power compared to AMR (as seen in RAMSES PM, as
well as PySCo multigrid and FFT_7pt). However, using FFT or
FULL_FFT solvers improves small-scale resolution by a factor
of two in wavenumbers before resolution effects become signif-
icant. With ncells = 10243, the FULL_FFT solver fails entirely
due to large scatter in the density grid, which contains eight
times more cells than particles. Therefore, FULL_FFT can only
be used with a smooth field, where npart ≥ ncells and when
a TSC scheme is employed. For other cases, a more sophis-
ticated approach would be required, such as computing the
mass-assignment kernel in configuration space for force com-
putation and then Fourier-transforming it (Hockney & Eastwood
1981), which would be computationally expensive. For ncells =
10243 and 20483, PySCo with multigrid gains factors of 2 and
4 in wavenumbers, respectively, as expected. The approximated
seven-point Laplacian operator already smooths the field sig-
nificantly, so there is little difference between using five- or
seven-point gradients. Using the FFT solver instead leads to
more accurate small scales. For ncells = 10243, using a seven-
point gradient achieves higher wavenumbers than a five-point
gradient. With ncells = 20483, FFT agrees with RAMSES at
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Fig. 7. Same as Fig. 6 but using CIC.

the percent level across the full range, although the plots are
restricted to kmax = 2kNyq/3 (where kNyq assumes ncells = 5123).
In Fig. 7, similar results are presented using CIC instead of
TSC (also for the reference RAMSES simulation). The conclusions
for multigrid and FULL_FFT remain unchanged. However, the
wavenumber gain with FFT is smaller compared to TSC, partic-
ularly for ncells = 20483, where multigrid and FFT exhibit similar
behaviour and deviate from RAMSES at the same scale. This indi-
cates that for FFT, a smooth field is critical, though to a lesser
extent than for FULL_FFT.

To achieve the most accurate results compared to RAMSES, it
is necessary to use the FFT solver with TSC and a seven-point
stencil for the gradient operator. Otherwise, a five-point gradi-
ent can be used without a loss of accuracy. We also remark a
slight shift on large scales between the reference (AMR case)
and PM runs. Because the initial conditions are the same and the
cosmological tables very similar, we expect this small difference
(roughly 0.1%) to come from the fact that for RAMSES we do
not stop exactly at z = 0 (although we correct analytically for
that), and that the time stepping is also slightly different, as for
the AMR case we enter in a regime where the free-fall time step
dominates over the cosmological time step at earlier times (see
also Appendix B.1).

4.3. f(R) gravity

In this section, we validate the implementation of the f (R) grav-
ity model from Hu & Sawicki (2007) described in Section 2.5.
To assess this, we run f (R) simulations with varying fR0 val-
ues, along with a reference Newtonian simulation. Furthermore,
because f (R) corrections are irrelevant at very high redshifts,
we use the same Newtonian initial conditions in both cases. In
Fig. 8, we compare the power spectrum boost from PySCo with
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son solvers with PySCo (in any case, the scalaron field equation is solved
with non-linear multigrid), while black lines show the e-MANTIS emu-
lator. In dotted, dashed and solid lines we use ncells = 5123, 10243 and
20483. Top, middle and bottom panels have the values | fR0| = 10−4, 10−5

and 10−6. In any case we use a seven-point gradient operator.

the e-MANTIS emulator (Sáez-Casares et al. 2024), which is
based on the ECOSMOG code (Li et al. 2012), itself a modified ver-
sion of RAMSES. The results show excellent agreement between
PySCo and e-MANTIS up to k ∼ 1 h Mpc−1. The agreement
improves further for higher ncells, except in the case of | fR0| =
10−6, where the curves for PySCo overlap when using FFT. This
indicates that PySCo converges well towards the e-MANTIS pre-
dictions. Notably, the best agreement is found when using the
multigrid solver for | fR0| = 10−4 and 10−5, while FFT performs
better for | fR0| = 10−6. This last behaviour could be explained
by the multigrid PM solver struggling to accurately compute
small-scale features of the scalaron field, as lower values of | fR0|

result in sharper transitions between Newtonian and modified
gravity regimes. No noticeable impact from the gradient order
is observed in any of the cases.

In summary, PySCo demonstrates excellent agreement with
e-MANTIS, aligning with prior validation efforts against other
codes for similar tests, such as those conducted by Euclid
Collaboration: Adamek et al. (2025). For this setup, using the
multigrid solver for the Newtonian part seems advantageous for
consistency, given that its non-linear version is already employed
for the additional f (R) field without approximations.

4.4. Parametrised gravity

The focus here shifts to simulations with parametrised grav-
ity, where deviations from Newtonian gravity are governed by
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Fig. 9. Power spectrum boost from parametrised gravity w.r.t to the
Newtonian case (µ0 = 0). Coloured lines refer to different values of µ0,
while solid and dashed lines indicates the use of FFT and multigrid
solvers respectively.

a single parameter, µ0, representing the gravitational coupling
today (as discussed in Section 2.4). In Fig. 9, the power spectrum
boost is shown for various values of µ0 compared to a Newtonian
simulation. On large scales, the power spectrum ratio approaches
unity, which aligns with expectations since the power spectrum
is rescaled at the initial redshift according to µ0 (detailed in
Appendix A). On smaller scales, the behaviour changes: negative
values of µ0 result in a suppression of power, while positive val-
ues lead to an excess of power. The magnitude of these deviations
increases with larger |µ0|, and the asymmetry between positive
and negative values becomes evident. For instance, the depar-
ture from Newtonian behaviour is around 60% for µ0 = −0.5 and
around 40% for µ0 = 0.5.

There is a slight discrepancy between the results of the FFT
and multigrid solvers for larger values of |µ0|, although no sig-
nificant impact from the gradient stencil order or the number of
cells is observed at the same scales.

4.5. MOND

This section discusses the testing of the MOND implementation
within PySCo. MOND was originally proposed as an alternative
explanation for dark matter, modifying Newton’s gravitational
law in low-acceleration regimes. However, for validation pur-
poses, the same cosmological parameters and initial conditions
from Section 4.2 are used, rather than the typical MOND uni-
verse with Ωm = Ωb as the goal is to test the MOND gravity
solver. The results are illustrated in Fig. 10. The MOND power
spectra are noticeably higher than the Newtonian reference.
This result aligns with known characteristics of MOND, which
accelerates structure formation (Sanders 2001; Nusser 2002),
explaining why MOND simulations are usually initialised with
lower values of As (or σ8) (Knebe & Gibson 2004; Llinares et al.
2008). To validate the MOND implementation, it is compared
to the PoR (Phantom of RAMSES) code (Lüghausen et al. 2015),
a MOND patch for RAMSES that uses the simple interpolating
function from Equation (14). The agreement between PoR and
PySCo is excellent for scales k ≲ 1 h/Mpc.
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Fig. 10. Power spectra for several MOND interpolating functions and
parameters (in coloured lines). In back solid line we show the Newto-
nian counterpart, while the black dashed line refers to a MOND run
with the simple parametrisation using the code Phantom of RAMSES.
For MOND simulations we use g0 = 10−10 m s−2 and N = 0. In PySCo,
we use the multigrid solver in any case.

The discrepancies observed at small scales stem from dif-
ferences between the PM and PM-AMR solvers, a pattern also
seen in Fig. 5. Furthermore, the impact of the interpolating
function on the power spectrum follows the same trend as
observed in Fig. 2. For consistency, we also verified that MOND
power spectra converge towards the Newtonian case when g0 ≪

10−10 m s−2.

4.6. Performances

Finally, we present performance metrics for PySCo on the Adas-
tra supercomputer at CINES, using AMD Genoa EPYC 9654
processors. For FFT-based methods, the PyFFTW package3, a
Python wrapper for the FFTW library (Frigo & Johnson 2005),
was used. All performance tests were run five times, and the
median timings were taken to avoid outliers from potential
node-related issues.

The first benchmark focuses on the time required to compute
a single time step, as shown in Fig. 11. In a simulation with 5123

particles and cells, the computation takes between 15 to 25 sec-
onds on a single CPU for the various solvers, with the multigrid
solver being the fastest and the FULL_FFT solver being the
slowest. The force computation using a seven-point gradient
from the gravitational potential grid contributes minimally to the
overall runtime. Since the multigrid solver outperforms FFT_7pt
with similar accuracy, the latter will not be used in the remainder
of the paper.

Fig. 12 illustrates the strong scaling efficiency of PySCo’s
FFT and multigrid solvers. The scaling improves as the num-
ber of cells increases, suggesting that the workload per CPU
becomes more efficient with larger grids. For smaller grids
(ncells = 1283), the multithreading is less effective, whereas for
larger grids (ncells = 10243), multigrid reaches an efficiency

3 https://github.com/pyFFTW/pyFFTW
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Fig. 11. Time to compute one time step of a Newtonian simulation
for different solvers. In blue, orange, green and red we highlight the
time needed to compute a density grid using TSC, an inverse TSC to
interpolate the force from grid to particles, a seven-point gradient and
the solver respectively. The FULL_FFT method directly computes the
force with the kernel described in Eq. (106), hereby removing the need
for a finite-derivative gradient part. All timings were done using a
single CPU.

of roughly 90% with 64 CPUs. Overall, multigrid consistently
exhibits better efficiency than FFTW.

When analysing the total time per time step, a slightly differ-
ent picture emerges. Efficiency still improves with larger grids
but is generally lower than solver-only performance. For smaller
grids (ncells = 1283 and 2563), there is little difference between
multigrid and FFT, indicating that particle-grid interactions are
the primary factor influencing performance, as 5123 particles
were used in all cases. A significant drop in efficiency occurs
when using fewer than four CPUs, which is followed by a more
gradual decline. This is caused by race conditions in the TSC
algorithm, where multiple threads attempt to write to the same
element in the density grid. To address this, atomic operations
were implemented to ensure thread-safe modifications, but these
operations slow the mass-assignment process by a factor of
four4. Hence, when NCPU < 4 we use the sequential TSC ver-
sion (which thus does not scale at all by definition), and the
parallel-safe version for NCPU ≥ 4, thus giving a better scaling
afterwards.

For grids with ncells = 5123, FFT achieves better efficiency
than multigrid because, while multigrid is more efficient as a
solver, it constitutes a smaller portion of the overall runtime.
However, with larger grids ncells = 10243, the efficiency aligns
more closely with the solver-only case, as the solver dominates
the runtime. Efficiency reaches approximately 50% for FFT and
75% for multigrid. To ensure optimal efficiency, the number
of grid cells should thus be at least eight times the number of
particles ncells ≥ 8npart.

For comparison, a full simulation for PySCo with 5123 par-
ticles and as many cells takes roughly 0.8 CPU hours for

4 Unfortunately, Numba does not currently contain a way to
deal with race conditions on CPUs natively. We thus had to
rely on a modified version of atomic operations developed in
https://github.com/KatanaGraph/katana. We will move on the
official implementation of Numba atomics once they are developed.
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Fig. 12. Strong scaling efficiency for the solver only (top panel) and full
time step (bottom panel). The solid and dashed lines refer to FFT and
multigrid solvers respectively. The efficiency is computed as the time
ratio for one CPUs w.r.t N CPUs, divided by N. An efficiency equal to
unity denotes perfect parallel scaling.

∼200 time steps, while a RAMSES run with the same setup and
AMR enabled takes roughly 3000 CPU hours for ∼1000 time
steps.

5. Conclusions

In this paper, we presented PySCo, a fast particle-mesh N-body
code designed for Newtonian and modified-gravity cosmological
simulations. PySCo currently supports the f (R) gravity model
(Hu & Sawicki 2007), the quasi-linear formulation of MOND
(Milgrom 2010), and a time-dependent modification of the grav-
itational constant via a parameterised model. The code includes
multiple solvers, such as multigrid and several FFT methods,
each with exact or approximated kernels. We validated PySCo
against RAMSES (using multigrid and no AMR), the e-MANTIS
emulator for f (R) gravity and Phantom of RAMSES for MOND,

and found overall good agreement. The main conclusions of our
study are the following:

– The TSC mass assignment should be preferred over CIC.
CIC leads to larger scatters in the power spectrum and
inaccuracies, particularly with FFT solvers when the number
of cells exceeds the number of particles;

– Three-point gradient operators result in a loss of power at
small scales. Using at least a five-point gradient is recom-
mended for better accuracy;

– Seven-point Laplacian operators, whether used in multi-
grid (configuration space) or FFT_7pt (Fourier space), cause
power suppression at small scales. Multigrid is favoured
because it provides undistinguishable results from FFT_7pt,
while being faster and more efficient in parallel computing;

– The FFT solver (using the exact Laplacian kernel) is a solid
choice overall, especially with TSC instead of CIC when the
number of cells exceeds the number of particles;

– The FULL_FFT solver is too simplistic to be trusted, except
in configurations where the number of cells matches the
number of particles (ncells = npart) and TSC is used;

– Resolving small scales sufficiently is critical for obtaining a
power spectrum at z = 0 that is relatively insensitive to the
initial redshift. Otherwise, there will be bias at small scales.
Solutions include increasing the resolution (for example,
reducing box size), using a higher-order gradient operator,
or applying an exact Laplacian operator;

– When small scales are well-resolved, the power spectrum at
z = 0 becomes insensitive to the starting redshift at around
0.1% for initial redshifts greater than 125, 30, and 10 for
1LPT, 2LPT, and 3LPT, respectively;

– We recommend running PySCo with ncells = 8npart for opti-
mal efficiency. Increasing to ncells = 64npart would signifi-
cantly raise the runtime, contradicting the main advantage
of PM-only simulations, which is precisely to be faster than
AMR or tree codes;

– For standalone simulations, the FFT solver is ideal, as it
aligns best with PM-AMR results. For calculating boost
factors, such as f (R) simulations against Newtonian ones,
multigrid is a faster option, with power losses at small scales
cancelling out.

In this paper, we focused on power spectrum, but it would be
also possible to compute accurate boost factors for halo mass
functions (HMF), as in Euclid Collaboration: Adamek et al.
(2025), although the HMF itself (not the boost) is very sensitive
to small scales.
PySCo is usable both through command line and as a Python

package. It also includes a wide range of built-in utilities, such
as initial condition generators and power spectrum estimators.
To minimise third-party dependencies, PySCo integrates several
in-house modules for particle and mesh algorithms.

In the future, we will port PySCo to GPUs using Numba for
CUDA kernels. However, there is currently no plan to imple-
ment MPI parallelisation, as the typical PM use case involves
small, fast simulations on a single node. PySCo is particularly
interesting because it comes with the fast development speed
of Python and C/Fortran-like performance. Compared to PM-
AMR codes like RAMSES, PySCo offers a dramatic reduction in
runtime—potentially simulating in roughly 1/1000th of the time,
albeit with less accuracy on small scales. These features make it
useful for producing emulators, generating covariance matrices,
and training neural networks for upcoming cosmological surveys
without requiring massive computational resources. Our aim is
to expand PySCo to include a wider range of gravity theories and
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non-standard dark sector components, creating a versatile frame-
work for exploring cosmological phenomena and aiding in the
development of observational constraints.
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Appendix A: Growth factors

Under the Lagrangian formulation of perturbation theory, the
position of tracers at some given time and position is given by

x(η) = q + Ψ(q, η), (A.1)

with q an initial position and Ψ(q, η) a displacement field. The
Euler equation is then

d2x
dη2 +H

dx
dη
= −∇ϕ, (A.2)

which, when taking the gradient, yields

∇x

[
d2x
dη2 +H

dx
dη

]
= −

3
2
H2Ωm(η)δ(x, η). (A.3)

Mass conservation imposes ρ̄(η)d3q = ρ̄(η)
[
1 + δ(x, η)

]
d3x,

meaning that ∇x = J−1∇q, with J(q, η) = det
[
δi j + Ψi j(q, η)

]
where δi j is a Kronecker Delta. We compute the time evolution
of growth factors through the general equation (Jeong 2010)

J∇x

[
d2x
dη2 +H

dx
dη

]
=

3
2
H2Ωm(η) [J − 1] . (A.4)

A perturbative expansion at third order gives (Rampf & Buchert
2012)

Ψ(q, η) = εD(η)Ψ(1)(q) + ε2E(η)Ψ(2)(q) + ε3F(η)Ψ(3)(q) + O(ε4),
(A.5)

J(q, η) = 1 + εD(η)µ(1)
1 (q) + ε2

[
E(η)µ(2)

1 (q) + D2(η)µ(1)
2 (q)

]
+ ε3

[
F(η)µ(3)

1 (q) + 2D(η)E(η)µ(1,2)
2 (q) + D3(η)µ(1)

3 (q)
]

+ O(ε4), (A.6)

with D ≡ D(1), E ≡ D(2) and F ≡ D(3) are the first, second and
third-order growth factors respectively, ε ≪ 1 and

µ(n)
1 (q) = Ψ(n)

i,i (q), (A.7)

µ(n,m)
2 (q) =

1
2

[
Ψ

(n)
i,i (q)Ψ(m)

j, j (q) − Ψ(n)
i, j (q)Ψ(m)

j,i (q)
]
, (A.8)

µ(n)
3 (q) = det

[
Ψ

(n)
i, j (q)

]
. (A.9)

Eq. (A.4) then becomes

J
[
δi j − Ψi, j

] [d2Ψi, j

dη2 +H
dΨi, j

dη

]
=

3
2
H2Ωm(η) [J − 1] , (A.10)

with ∂/∂xi =
[
δi j + Ψi, j

]−1
∂/∂q j and

[
δi j + Ψi, j

]−1
≈

[
δi j − Ψi, j

]
.

- The first-order solution (Zel’dovich 1970) is

D̈ +H Ḋ − βD = 0, (A.11)

with β = 3
2H

2Ωm(η). where D ≡ D+ the first-order growth
factor, and Ḋ = dD/dη.

- The second-order solution is then

Ë +H Ė − β
[
E − D2

]
= 0. (A.12)

- The third-order solutions are given by[
F̈ +H Ḟ − βF

]
µ(3)

1

+ 2
[
DË +HDĖ + D̈E +HEĖ − βDE

]
µ(1,2)

2

+
[
3D̈D2 + 3H ḊD2 − βD3

]
µ(1)

3 = 0, (A.13)

which give rise to two tangential and one transversal modes.
Their ordinary differential equations (ODEs) are given by

F̈a +H Ḟa − β
[
Fa − 2D3

]
= 0, (A.14)

F̈b +H Ḟb − β
[
Fb − D

(
E − D2

)]
= 0, (A.15)

F̈c +H
[
ĖD − EḊ

]
+ βD3 = 0, (A.16)

where the last equation can be derived using the equation for
irrotational fluids (Catelan 1995). In practice, we implement
these ODEs as functions of ln(a), leading to the following set
of equations

D′′ = −γD′ + βD, (A.17)

E′′ = −γE′ + β
[
E − D2

]
, (A.18)

F′′a = −γF′a + β
[
Fa − 2D3

]
, (A.19)

F′′b = −γF′b + β
[
Fb − 2D

(
E − D2

)]
, (A.20)

F′′c = (1 − γ)F′c + ED′ − DE′ − βD3, (A.21)

with D′ = dD/d ln a and

β =
3
2
Ωm(a), (A.22)

γ =
1
2
{1 − 3ΩΛ(a) [w0 + wa(1 − a)] −Ωr(a)} . (A.23)

The nth-order growth factors can be estimated through
f (n) = D(n)′/D(n). It is straightforward to implement a scale-
independent parametrised form of modified gravity (as in Sec-
tion 2.4) by making the small change β = 3µ(a)Ωm(a)/2.

Approximated analytical solutions for the growing mode in
a matter-dominated era (and neglecting radiation) are (Catelan
1995; Rampf & Buchert 2012)

D(2)
+ = −

3
7

D2
+, (A.24)

D(3a)
+ = −

1
3

D3
+, (A.25)

D(3b)
+ =

10
21

D3
+, (A.26)

D(3c)
+ = −

1
7

D3
+. (A.27)

Approximated fits with dependence onΩm for the growth factors
and growth rates are also available in Bouchet et al. (1995).

Appendix B: Initial conditions

Appendix B.1: Time stepping

As described in Section 3.4, we use two kinds of time stepping
criteria, one based on cosmological time (in RAMSES, the scale
factor cannot change by more than 10% in a single time step), and
another based on the free-fall time (acceleration) or maximum
velocity compared to the mesh size. For the latter two we also
use a Courant-like factor, which multiplies the final time step
and is equal to 0.8 by default.
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Fig. B.1. Same as Fig. 3, but using a seven-point gradient and varying
the maximal scale factor variation in the cosmological time criterion,
from top to bottom.

While small changes in the Courant factor do not signifi-
cantly affect the results, using a time step that is too large can
introduce a scale-independent bias in the power spectrum at
redshift z = 0, as shown in Fig. B.1. We observe a bias of approx-
imately 0.3% in the power spectrum at k ∼ 0.1 h−1 Mpc when the
time step allows for a 10% maximum variation in the scale factor.
This bias decreases to about 0.1% with a 5% variation and seems
negligible when using variations below 3%. To ensure accuracy
and avoid such biases, we used a more conservative 2% variation
in scale factor by default. Additionally, we note that while 1LPT
appears to work well on large scales, this is primarily due to the
limited box size of the simulation, as we directly see the moment
when the power spectrum is damped compared to the reference
at initial redshift z = 150.

Appendix B.2: Initial positions

In PySCo, two methods for initialising particle positions were
implemented: at cell centres or at cell edges. Given the periodic
boundary conditions, these methods should ideally produce no
differences due to translational symmetry. However, discrepan-
cies can arise depending on the mass-assignment scheme used.
For example, using the nearest grid point (NGP) method, where
the density is calculated directly from the number of particles
within each grid cell, will produce a uniform density grid if the
particles are positioned at cell centres. This is because, at small
displacements, each cell would contain exactly one particle. In

0.99

1.00

1.01

1.02
TSC
1LPT

FFT

zini = 125
zini = 100

zini = 75
zini = 50

zini = 30
zini = 15

zini = 10
zini = 5

2LPT
3-pt gradient

3LPT

10 1 100

k (hMpc−1)

0.98

0.99

1.00

1.01
CIC

10 1 100

k (hMpc−1)

10 1 100

k (hMpc−1)

P
(k
,z

=
0
,z

in
i)
/
P
(k
,z

=
0,

15
0
)

0.99

1.00

1.01

1.02
TSC
1LPT

FFT

2LPT
5-pt gradient

3LPT

10 1 100

k (hMpc−1)

0.98

0.99

1.00

1.01
CIC

10 1 100

k (hMpc−1)

10 1 100

k (hMpc−1)
P
(k
,z

=
0
,z

in
i)
/
P
(k
,z

=
0,

15
0
)

0.99

1.00

1.01

1.02
TSC
1LPT

FFT

2LPT
7-pt gradient

3LPT

10 1 100

k (hMpc−1)

0.98

0.99

1.00

1.01
CIC

10 1 100

k (hMpc−1)

10 1 100

k (hMpc−1)

P
(k
,z

=
0,
z i

n
i)
/P

(k
,z

=
0
,1

5
0)

Fig. B.2. Same as Fig. 3, but initialising the particles at cell edges.

contrast, if the particles are initialised at the cell edges, the
density field can become inhomogeneous, as it depends more
strongly on the displacement field. This difference is demon-
strated in Fig. B.2, which shows the ratio of the power spectrum
for various initial redshifts compared to a reference case where
the initial redshift is zini = 150 and particles are initialised at cell
edges The results are quite similar to those from Fig. 3, where
particles were initialised at cell centres. However, for five- and
seven-point gradient operators with 3LPT, a slight bias appears
at small scales, with a loss of power even for zini > 10 compared
to the reference case. As a result of these findings, we decided to
initialise particles at cell centres in the main text.

Appendix C: Multigrid convergence

This section presents convergence tests for the multigrid algo-
rithm (detailed in Section 3.7). Fig. C.1 shows the convergence
rate of different multigrid cycles (V, F, and W). First, we remark
that the convergence rate is nearly independent of redshift. The
only redshift-dependent variation is the maximum residual sup-
pression due to numerical roundings, which becomes evident
after many iterations. This discrepancy arises from the normali-
sation by the first-guess residual, which is less accurate at lower
redshifts due to the Universe being more structured compared to
higher redshifts. Additionally, F and W cycles show very similar
behaviour but take approximately 1.9 and 2.1 times longer than
V cycles, respectively. Without overrelaxation (ω = 1), F and W
cycles reduce the residual by a factor of 100 per iteration, while
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Fig. C.1. Convergence rate of multigrid cycles as function of the num-
ber of cycles (or iterations). Blue, orange and purple lines refer to V,
F and W cycles respectively, while in green, red and grey we use SOR
with relaxation parameter ω = 1.25. In solid, dashed and dotted lines
we show results at z = 0, 1 and 3 respectively. For the first guess we use
one Jacobi step, thereby neglecting the information from previous step.

Table C.1. Ratio of residuals for different first guesses.

Redshift No first guess Last step Last step + rescale
0 9.09 1.01 1

1 5.99 1.02 1

3 7.81 1.11 1

Notes. ‘No first guess’ means that we initialise the potential with one
Jacobi step (see Section 3.6), ‘last step’ means that we use the potential
field computed at the last step has first guess, and ‘last step + rescale’
has an additional rescaling (as described in Section 3.9). The latter is
used as reference.

V cycles achieve a factor of 10 reduction. Overrelaxation with
ω = 1.25 significantly improves the convergence rate, although
it may not immediately help in the first V cycle due to the initial
guess still being inaccurate. In practice, ω = 1.25 is applied for
linear Poisson equations, whereas for non-linear cases, ω = 1.0
is used since SOR proves less effective. In Fig. C.1, one Jacobi
step was used as the first guess (see Section 3.6), but Table
C.1 suggests that using the potential field from the last step can
significantly reduce the initial residuals. Further improvements
through rescaling this last-step solution using the linear growth
factor (discussed in Section 3.9) only offer marginal reductions
in the residual. Rescaling becomes more useful at higher red-
shifts, where time steps are larger. Overall, using the last step
as the first guess is a good strategy, sometimes saving one V
cycle, though it requires keeping the gravitational potential grid
in memory. Rescaling, however, seems unnecessary unless the
time steps are particularly large.

The final test concerns the threshold criterion for conver-
gence of the multigrid algorithm. Fig. C.2 shows the power
spectrum ratio at z = 0 for different values of α. Even with a very
large threshold value, like α = 10, the bias in the power spectrum
is only around 0.1%. The results for α = 0.1 and 1 are almost
identical, likely because these thresholds are passed within the
same V cycle, which typically reduces the residual by a factor
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Fig. C.2. Power spectrum ratio with varying multigrid threshold param-
eter α (see Eq. 96) w.r.t to the reference where α = 10−4. In blue, orange,
green, red and purple we have α = 0.001, 0.01, 0.1, 1 and 10. The grey
shaded area indicates the ±0.1% limits. In any case we use V cycles.

of 20–30 per iteration when using SOR. With α = 0.01, the bias
drops to less than 0.01%, and convergence is essentially achieved
by α = 0.001. These results are consistent regardless of starting
redshift, LPT order, or mass-assignment scheme. In practice, an
α value of 0.01 is recommended, as it produces highly accurate
results without introducing any significant bias, whereas increas-
ing α further results in a small but noticeable decrease in the
power spectrum.

Appendix D: Point-mass test

In this appendix, we evaluate the performance of PySCo in the
simplified scenario of a single point mass while maintaining
periodic boundary conditions. The normalised gravitational field
for a homogeneous and isotropic sphere of radius R is given by

F(r,R) =
{
−r/R3, r < R,
−r/r3, r > R, (D.1)

where r = |r|. To incorporate periodicity, we apply the Ewald
summation method (Hernquist et al. 1991). For simplicity, we
only account for the contribution from replicas, as in Rácz et al.
(2021)

F̃(r,R) =
∑

n
F(r + n,R), (D.2)

where a unit simulation box is assumed, n represents integer
triplets, and | (r + n) | < 2.6 ensures that the force decays to zero
between replicas.

Fig. D.1 illustrates the acceleration of 1283 massless parti-
cles surrounding a point mass in a simulation with 643 cells.
The radial accelerations closely follow the predictions for the
inner sphere at scales below the coarse cell size h. At larger
scales, the acceleration transitions to the standard 1/r2 behaviour,
albeit with damping due to periodicity. This damping is well
captured by Eq. (D.2). Notably, the TSC interpolation scheme
demonstrates significantly improved isotropy compared to CIC,
as evidenced by lower tangential acceleration values. For the CIC
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Fig. D.1. Acceleration of massless particles randomly sampled around
a point mass, as a function of distance. The left and right panels illus-
trate results using the CIC and TSC mass interpolation (and inverse
interpolation) schemes, respectively. The top panels show cases where
the point mass is positioned at the centre of a cell, while the bottom
panels depict cases where it is placed at the edge of a cell. The red,
yellow, and blue data points represent accelerations computed using the
FFT solver (uncorrected for the mass-assignment scheme), the FFT_7pt
solver, and the multigrid solver, respectively. Circles denote radial accel-
eration, while triangles indicate tangential acceleration. The black solid
line represents the theoretical prediction F(r, h) from Eq. (D.1). For
comparison, dotted lines correspond to F(r, rs), where rs = (6/π)1/3 h
is the radius of a sphere with the same volume as a cell of size 2h.
Dashed lines illustrate the periodic case F̃(r, h).

scheme, when the point mass is positioned at a cell centre, only
one cell exhibits a non-zero density with a value of ρ0. However,
for a point mass located at a cell edge, eight cells have non-zero
densities, each with a value of ρ0/8 for CIC and TSC. The sole
distinction in this configuration arises from the inverse interpo-
lation from the grid back to the particles. In contrast, for the
TSC scheme with the point mass placed at the cell centre, 27
cells exhibit non-zero densities. In terms of solver performance,
the results from the FFT_7pt and multigrid solvers are consis-
tent and identical, as expected. While the accelerations align
at larger distances, the multigrid and FFT_7pt solvers exhibit a
slight overestimation of acceleration at small scales. Put differ-
ently, these solvers generate a deeper potential compared to the
FFT solver. This increased acceleration results in higher particle
velocities, which in turn suppresses clustering at small scales.
This behaviour is consistent with the observed damping of the
matter power spectrum, as shown in Fig. 6.

Appendix E: Data locality

Finally, we highlight the importance of data locality in particle-
mesh interactions, focusing on the impact it has on runtime
performance. Fig. E.1 illustrates the runtime for the inverse TSC
algorithm under different particle array orderings. When the
particle array is randomly sorted, the inverse TSC takes approx-
imately 0.45 seconds for the first 100 steps, with a gradual
decrease down to ∼0.37 seconds. In a randomly sorted array,
consecutive particles are unlikely to be spatially close, leading to
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Fig. E.1. Runtime of the inverse TSC algorithm (from mesh to particles)
for a force field. In coloured lines we show the results with different
ordering of the particle arrays. ‘Randomly sorted’ means that in the
initial conditions we randomly shuffle the particle positions. ‘Initially
sorted only’ means that in the initial conditions the particles are lin-
early ordered, with the same contiguous properties as the cells they are
in. ‘Partially’ and ‘Fully sorted’ means than every N steps (here 50), we
sort the particle array according to Morton indexing based on their posi-
tions (see Section 3.2). The simulation has 5123 particles and as many
cells, and was run with 64 CPUs.

a higher number of cache misses because grid elements are also
distant in memory. However, as particles cluster at later times,
even a randomly sorted array experiences improved performance
due to the higher likelihood that two neighbouring particles are
closer spatially, reducing cache misses.

In contrast, if the particle array is initially sorted, the run-
time for inverse TSC starts much lower at ∼0.04 seconds and
increases up to ∼0.11 seconds over time. This improvement
comes from neighbouring particles in the array being spatially
closer at the beginning, allowing the cache to be used more
efficiently. The ten-fold improvement in performance, achieved
solely by optimising data locality, is a significant gain without
requiring complex programming techniques. Over time, as parti-
cles move, the initial sorting deteriorates, leading to less efficient
cache usage, even though clustering increases.

To maintain performance, PySCo offers the ability to re-sort
the particles every N steps (default N = 50, adjustable by the
user). With periodic sorting, the ‘fully sorted’ runtime remains
flat as a function of time. However, the sorting operation can
become a bottleneck, as Numba does not support parallel sorting
algorithms, and resorting to sequential sorting is prohibitive for
large particle counts. To address this, PySCo implements a paral-
lelised, partial sorting method. The particle array is divided into
chunks, with Nchunks = NCPUs, where each chunk is sorted inde-
pendently by each CPU. The results of this partial sorting are
comparable to those of fully sorted arrays, with a slight runtime
increase at late times due to the partial nature of the sorting. This
increase is marginal, even when using up to 64 CPUs. Therefore,
PySCo uses this partial sorting method by default as a balance
between performance and computational overhead, especially for
large simulations.
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