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Abstract Based on the geodesic equation in a static spherically symmetric metric
we discuss the rotation curve and gravitational lensing. The rotation curve deter-
mines one function in the metric without assuming Einstein’s equations. Then
lensing is considered in the weak field approximation of general relativity. From
the null geodesics we derive the lensing equation. The gravitational potential U(r)
which determines the lensing is directly give by the rotation curve U(r) =−v2(r).
This allows to test general relativity on the scale of galaxies where dark matter is
relevant.

Keywords Gravitational lensing, Geodesic flow

1 Introduction

As long as the dark matter problem is open there is a non-zero probability that
general relativity might not hold on the scale of galaxies [1; 2; 3; 4; 5]. There-
fore a direct test on this scale is highly desired. It is the purpose of this paper to
show how such a test is possible, if kinematical and lensing data of the galaxy are
available. The idea is the following: the rotation curve determines the time-time
component of the metric without assuming Einstein’s field equations, only the
geodesic equation is used. Assuming now for the lensing the weak field approx-
imation to general relativity where the metric is given in terms of the Newtonian
gravitational potential U(r) we find the extremely simple relation

U(r) =−v2(r). (1.1)

In contrast to the usual way of analyzing the data we get this result without assum-
ing a matter model for the galaxy. This offers the possibility to test the basic
physics in a situation where dark matter is important.
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We treat lensing by means of the geodesic equation as well. By computing the
null geodesics we derive the lensing equation. The most important part of the light
path is the neighborhood of the deflector where the curvature is maximal. In stan-
dard lens theory the light path is approximated by two straight rays with a kink,
but this approximation is particularly bad at the apex. Therefore, it is important to
calculate the exact geodesics.

If the circular velocity v(r) can be measured in the vicinity of the apex, then
from the above relation (1.1) an expansion of U(r) of the form

U(r) = C0 +
C1

r
+

C2

r2 (1.2)

can be obtained. That is all what is needed to calculate the lensing observables
(see Sect. 3 below). Comparison with observations then tests general relativity in
a model-independent way (see Sect. 4).

2 Geodesic flow and rotation curve

We consider a static spherically symmetric metric which we write in the form

ds2 = eν c2dt2− eλ dr2− r2 (dϑ
2 + sin2

ϑdϕ
2) (2.1)

where ν and λ are functions of r only. We take the coordinates x0 = ct,x1 = r,
x2 = ϑ ,x3 = ϕ such that

g00 = eν , g11 =−eλ

g22 = −r2, g33 =−r2 sin2
ϑ (2.2)

and zero otherwise. The components with upper indices are the inverse of this.
The determinant comes out to be

g = detgµν =−eν+λ r4 sin2
ϑ . (2.3)

Let us recall the Christoffel symbols for the metric (2.1) from the appendix of
[4]

Γ
0

10 =
1
2

ν
′, Γ

1
00 =

1
2

ν
′eν−λ , Γ

1
11 =

1
2

λ
′, Γ

1
22 =−re−λ (2.4)

Γ
1

33 = −re−λ sin2
ϑ , Γ

2
12 =

1
r
, Γ

2
33 =−sinϑ cosϑ , Γ

3
13 =

1
r
, Γ

3
23 = cotϑ

and zero otherwise, the prime denotes the derivative with respect to r always. The
geodesic equation is given by

d2xα

ds2 +Γ
α

βγ

dxβ

ds
dxγ

ds
= 0. (2.5)
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The origin of our reference frame is in the center of the galaxy. We consider
geodesics in the plane θ = π/2, then we must solve the following three equations

d2ct
ds2 +ν

′ d ct
ds

dr
ds

= 0 (2.6)

d2r
ds2 +

ν ′

2
eν−λ

(
d ct
ds

)2

+
λ ′

2

(
dr
ds

)2

− re−λ

(
dϕ

ds

)2

= 0 (2.7)

d2ϕ

ds2 +
2
r

dr
ds

dϕ

ds
= 0. (2.8)

Multiplying (2.6) by expν we find

∂

ds

(
eν d ct

ds

)
= 0

so that

eν d ct
ds

= const. = a

d ct
ds

= ae−ν . (2.9)

Next multiplying (2.8) by r2 we get

r2 dϕ

ds
= const. = J

where J is essentially the conserved angular momentum, hence

dϕ

ds
=

J
r2 . (2.10)

Finally, substituting (2.9) and (2.10) into (2.7) and multiplying by 2(expλ )×
dr/ds we obtain

d
ds

[
eλ

(
dr
ds

)2

−a2e−ν +
J2

r2

]
= 0. (2.11)

Consequently, the square bracket is equal to another constant = b. Then the result-
ing differential equation can be written as(

dr
ds

)2

= a2e−(λ+ν) + e−λ

(
b− J2

r2

)
. (2.12)

To obtain the connection with the rotation curve which is an important astro-
nomical observable, we remember the definition of the unitary 4-velocity

uα =
dxα

ds
.
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The term unitary indicates that uα has invariant length 1:

u2 = gαβ

dxα

ds
dxβ

ds
=

(ds)2

(ds)2 = 1. (2.13)

In our case uα is equal to

uα =
(

d ct
ds

,
dr
ds

,0,
dϕ

ds

)
. (2.14)

Using (2.9), (2.10) and (2.12) we easily see that

u2 =−b = 1 (2.15)

which by (2.13) fixes the constant of integration b =−1.
Clearly the last constant of integration a2 must be related to the geometry of

the geodesics. To see this we consider the streamlines r = r(ϕ). Dividing (2.12)
by J = r2dϕ/ds we obtain(

1
r2

dr
dϕ

)2

=
a2

J2 e−(λ+ν) + e−λ

(
b
J2 −

1
r2

)
. (2.16)

Introducing the variable

w(ϕ) =
1

r(ϕ)
, (2.17)

we write the equation in the form(
dw
dϕ

)2

=
a2

J2 e−(λ+ν) + e−λ

(
b
J2 −w2

)
. (2.18)

To compare this equation with Newtonian dynamics we use the expansion of the
metric for large r:

e−(λ+ν) = 1+O(r−2), e−λ = 1− rs

r
+O(r−2).

Here

rs =
2GM

c2 (2.19)

is the Schwarzschild radius in case of a point mass. Then to order 1/r we have(
dw
dϕ

)2

+w2 =
a2 +b

J2 − rSw
(

b
J2 −w2

)
. (2.20)

In Newtonian mechanics the bounded streamlines are ellipses

w̃ =
1
r

=
1
p
(1+ ecosϕ), (2.21)
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where p and e are parameter and eccentricity of the ellipse. p is connected with
the non-relativistic angular momentum J̃ by

J̃2

p
= GM. (2.22)

The Newtonian equation which corresponds to (2.20) now reads

(
dw̃
dϕ

)2

+ w̃2 =
e2−1

p2 +
2
p

w̃. (2.23)

Comparing the coefficients in (2.20) and (2.23) we first find

−rS
b
J2 =

2
p
.

By (2.22) and J̃ = cJ this gives b =−1 in agreement with (2.15). Secondly, from

a2 +b
J2 =

e2−1
p2 =− 1

pã
,

where ã is the big half-axis of the ellipse, we obtain by (2.22)

a2 = 1− GM
c2ã

= 1− rS

2ã
. (2.24)

This shows that a2 is connected with the big half-axis of the Kepler ellipse.
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The 3-velocity Ev which is measured by astronomers is defined as

Ev =
(

dx1

dt
,

dx2

dt
,

dx3

dt

)
. (2.25)

Using
ds
dt

=
c
a

eν (2.26)

we can calculate

Ev2 = Eu2
(

ds
dt

)2

, (2.27)

where Eu2 is the spatial part in (2.13). Since our metric is diagonal it is simply given
by

−Eu2 =
3

∑
j=1

g j j
dx j

ds
dx j

ds
= 1−a2e−ν . (2.28)

By (2.26) we now get the desired velocity squared

Ev2 = c2
(

eν − e2ν

a2

)
. (2.29)

As a check we determine the asymptotic behavior for large r � rS. Assuming
circular motion (ã = r) and using

a2 = 1−GM/c2r (2.30)

we find

Ev2 = c2
(
−ν(r)− GM

c2r
+O(r−2)

)
.

Since ν =−rs/r we arrive at

Ev2 =
GM

r
, (2.31)

M is the total mass (normal plus dark). This agrees with Newtonian dynamics
(Kepler’s third law). Summing up, the relation between observational quantities
and theory is very direct. The rotation curve v(r) gives the metric function ν(r) by
solving the quadratic equation (2.29)

eν =
a2

2

(
1±
√

1− 4
a2

v2

c2

)
. (2.32)

Using (2.30) and the Newtonian value (2.31) we have

a2 = 1− v2

c2 . (2.33)

Then for velocities v� c we obtain from (2.32) the simple result

eν = 1−2
v2

c2 . (2.34)

We see that we must take the plus sign in (2.32).
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Fig. 1 Null geodesic for lensing

3 Null geodesics and lensing

In the case of null geodesics describing light rays the integration constant b in the
geodesic equation (2.16) must be 0

1
r4

(
dr
dϕ

)2

= e−λ

(
a2

J2 e−ν − 1
r2

)
. (3.1)

In the lensing problem one uses the weak field approximation to general relativity

e−ν = 1− 2U(r)
c2 , e−λ = 1+

2U(r)
c2 ≈ eν , (3.2)

where U(r) is the gravitational potential. The latter can be obtained from the rota-
tion velocity according to (2.34)

U(r) =−v2. (3.3)

Introducing the quantity

d =
J
a

(3.4)

in (3.1), the following first order equation remains to be solved(
dr
dϕ

)2

=
r4

d2 −
(

1+
2U
c2

)
r2. (3.5)

Here we have neglected the quadratic term in U in accordance with (3.2). The
meaning of d becomes clear when we consider the trivial solution for U = 0:

r =
d

sinϕ
.

It describes a straight line with distance d from the origin in polar coordinates
(Fig. 1). After inversion the equation (3.5) can simply be solved by quadrature:

dϕ

dr
=

±1

r
√

r2

d2 )−1− 2U
c2

(3.6)

The sign herein depends on the branch of the geodesic to be calculated.
In case of a point-mass (Schwarzschild) lens we have

U(r) =−GM
r

(3.7)

and from (3.6) we get an elliptic integral for the polar angle ϕ(r):

ϕ(r)−ϕ0 =±d
r∫

r0

dr√
r4− r2d2 + rrsd2

, (3.8)
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where we have again used the Schwarzschild radius rs (2.19). To reduce this inte-
gral to Legendre’s normal form we need the four zeros a1,a2,a3,a4 of the quartic
under the square root. It is convenient to expand everything in powers of ε:

ε =
rs

d
(3.9)

which is a small parameter. Then we have the following four real roots

a1 = d
(

1− ε

2

)
, a2 = εd, a3 = 0, a4 =−d

(
1+

ε

2

)
(3.10)

up to O(ε2). The integral (3.8) is an incomplete elliptic integral of the first kind
F(Φ ,k) where the parameter k is given by

k2 =
(a2−a3)(a1−a4)
(a1−a3)(a2−a4)

= 2ε +O(ε2) (3.11)

(see [5], vol. II, p. 310).
As first application we compute the Einstein deflection angle. The origin of

our coordinate system is at the mass M, polar axis goes from M to the observer
(see Fig. 1). We integrate (3.8) from the apex r0 to infinity which gives us the
deflection angle 2(ϕ∞−π). The apex is defined by the condition

dr
dϕ

= 0 (3.12)

which gives

r0 = a1. (3.13)

Then we obtain

ϕ∞−
π

2
= µdF(Φ∞,k), (3.14)

where the Jacobian µ is equal to

µ =
2√

(a3−a1)(a4−a2)
=

2
d

(
1− ε

2

)
(3.15)

The argument Φ∞ follows from

sin2
Φ∞ =

a4−a2

a4−a1
=

1
2

(
1+

3
2

ε

)
=

1
2
(1− cos(2Φ∞)) (3.16)

(see [5], vol. II, p. 310). The elliptic integral can be expanded for small k as follows

F(Φ ,k) = Φ +
k2

4
(Φ− 1

2
sin2Φ)+O(k4) (3.17)

(see [5], vol. II, p. 313). This finally gives Einstein’s result

ϕ∞ = π + ε. (3.18)



Gravitational lensing and rotation curve 9

Next we want to derive the lens equation. In this problem the observer is not at
infinity but in a finite distance Dd from the lens. The light source is at a distance
Dds at the other side of the lens and an amount η off the optical axis (see Fig. 1);
we use the same notation as in [6]. We have now to compute the null geodesics
from the source at distance Dds through the apex r = r0 to the observer at distance
Dd . Then the polar angle β̃ = η

Dds
of the source follows from

π− β̃ = µd [F(Φds,k)+F(Φd ,k)] . (3.19)

Here the angle Φd is given by

sin2
Φd =

a4−a2

a4−a1

Dd −a1

Dd −a2

=
1
2
(1− cos(2Φd)) =

1
2

[
1+

3
2

ε−Θ +Θ
2
ε

]
(3.20)

where Θ = d/Dd is the angle under which the observer sees the source. Then from
(3.17) we obtain

F(Φd ,k) =
π

4
+ ε

(
1
2

+
π

8

)
−Θ

2
− εΘ

4
. (3.21)

F(Φds,k) is given by the same formula with Θ substituted by α = d/Dds. Now
we find from (3.19)

− β̃ =−Θ −α +2ε +O(ε2). (3.22)

The lens equation is usually written in terms of the angles

β = β̃
Dds

Ds
, Θ =

rs

Ddε
, α = Θ

Dd

Dds
. (3.23)

Then (3.22) gives the following lens equation

β = Θ −2
Dds

Ds

rs

DdΘ
(3.24)

for the point-mass lens which is the standard result ([7], p. 27).
Now we turn to the formulation of the lens equation in an arbitrary spherically

symmetric metric. From (3.6) we have the following integral for the polar angle
of the null geodesics:

ϕ(r)− π

2
=±d

r∫
r0

dr

r
√

r2− (1+u)d2
, (3.25)

where we have introduced the dimensionless gravitational potential

u(r) =
2
c2 U(r). (3.26)

Here r0 is the apex and it is important to note that only the potential values for
r≥ r0 contribute. For u = 0 the trivial lens equation β =Θ comes out, this follows
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from (3.24) for rs = 0. For u 6= 0 but |u| � 1 the modification of the result comes
from the neighborhood of the apex. It is therefore good enough to expand the
potential u(r) in the vicinity of r = r0. For this purpose we use the beginning of
the multipole expansion

u(r) = c0 +
c1

r
+

c2

r2 . (3.27)

The constant term is necessary in view of the flat rotation curves; note that the
potential has an absolute normalization in (3.2). It is unimportant that (3.27) breaks
down for small r because we need r ≥ r0 only.

With the three terms in (3.27) we get an elliptic integral of the first kind again:

ϕ(r)− π

2
=±d

r∫
r0

dr√
G(r)

=± µd√
1− c2

0

F(Φ ,k). (3.28)

Here the quartic is given by

G(r) = r4− (d2 + c0d2)r2− c1d2r− c2d2, (3.29)

the Jacobian µ and the parameter k are the same as before (3.13), (3.15). The four
zeros of G(r) are obtained by solving the two quadratic equations

1+u(r) = 0, r2(1−u(r))−d2 = 0.

This leads to

a1 =
c1

2(1− c0)
+

√
d2 + c2

1− c0
+

c2
1

4(1− c0)2

a2 = − c1

2(1+ c0)
+

√
c2

1
4(1+ c0)2 −

c2

1+ c0

a3 = − c1

2(1+ c0)
−

√
c2

1
4(1+ c0)2 −

c2

1+ c0
(3.30)

a4 =
c1

2(1− c0)
−

√
d2 + c2

1− c0
+

c2
1

4(1− c0)2 .

Then the lens equation is contained in the analogous equation to (3.19)

π− β̃ =
µd√
1− c2

0

[F(Φds,k)+F(Φd ,k)]. (3.31)

The angles Φd ,Φds are given by the same formula (3.20) as before. The appropri-
ate expansion of the lens equation (3.31) depends on the particular values c0,c1,c2
in (3.27).
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4 A test of general relativity

Such a test is possible if for a spherical (E0) galaxy rotation curve and lensing
data are available. From the rotation curve v(r) we get the gravitational potential
U(r) according to (3.3). In practice only three velocity values are needed in order
to fit U(r) to the multipole expansion (3.27). The quality of the fit will be good if
some velocity value v(r) is measured near the apex r0 of the deflected light ray.
Of course one must replace the euclidean distances by angular diameter distances
as usual. Then knowing the three parameters c0,c1,c2 the lens equation (3.31) can
be solved using the values (3.30) in the elliptic integrals. The calculated lensing
data can then be compared with the observed ones. A discrepancy would be either
due to the lack of spherical symmetry or to a failure of the weak field metric
(3.2) which is a consequence of Einstein’s equations. The second possibility is
interesting in connection with the dark matter problem [5].

Galaxies with joint lensing and dynamical data can be found in the Sloan Lens
ACS Survey (SLACS) and its follow-up project [9]. Unfortunately, until today
only one system SDSSJ 2321-097 has been analyzed in detail. This is an early-
type elliptic galaxy which cannot be approximated by a spherically symmetric
metric. So we must extend our model-independent analysis to the elliptic case or
hope that the astronomers come up with a E0 lens galaxy.
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