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Abstract Based on the geodesic equation in a static spherically symmetric metric
we discuss the rotation curve and gravitational lensing. The rotation curve deter-
mines one function in the metric without assuming FEinstein’s equations. Then
lensing is considered in the weak field approximation of general relativity. From
the null geodesics we derive the lensing equation. The gravitational potential U (r)
which determines the lensing is directly give by the rotation curve U (r) = —v?(r).
This allows to test general relativity on the scale of galaxies where dark matter is
relevant.
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1 Introduction

As long as the dark matter problem is open there is a non-zero probability that
general relativity might not hold on the scale of galaxies [15 [2; 135 145 [S]]. There-
fore a direct test on this scale is highly desired. It is the purpose of this paper to
show how such a test is possible, if kinematical and lensing data of the galaxy are
available. The idea is the following: the rotation curve determines the time-time
component of the metric without assuming Einstein’s field equations, only the
geodesic equation is used. Assuming now for the lensing the weak field approx-
imation to general relativity where the metric is given in terms of the Newtonian
gravitational potential U (r) we find the extremely simple relation

U(r) = —v(r). (1.1)

In contrast to the usual way of analyzing the data we get this result without assum-
ing a matter model for the galaxy. This offers the possibility to test the basic
physics in a situation where dark matter is important.
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We treat lensing by means of the geodesic equation as well. By computing the
null geodesics we derive the lensing equation. The most important part of the light
path is the neighborhood of the deflector where the curvature is maximal. In stan-
dard lens theory the light path is approximated by two straight rays with a kink,
but this approximation is particularly bad at the apex. Therefore, it is important to
calculate the exact geodesics.

If the circular velocity v(r) can be measured in the vicinity of the apex, then
from the above relation an expansion of U (r) of the form

a C
U(r)=Co+—+—2 (1.2)
r r

can be obtained. That is all what is needed to calculate the lensing observables
(see Sect. [3|below). Comparison with observations then tests general relativity in
a model-independent way (see Sect. [).

2 Geodesic flow and rotation curve

We consider a static spherically symmetric metric which we write in the form
ds? = &' c*dt* — et dr* — r* (d9? +sin® 9d¢?) (2.1)

where v and A are functions of r only. We take the coordinates x = ct,x' = r,
x?> = ¥,x> = ¢ such that

A
800 = €v7 811 = —¢€

g2 2, gy =—r’sin® ¥ (2.2)

—r

and zero otherwise. The components with upper indices are the inverse of this.
The determinant comes out to be

g =detgyy = —¢"rtsin? 9. (2.3)

Let us recall the Christoffel symbols for the metric (2.1)) from the appendix of
(4]

1 1

Fl% =35V, 1?)%) = Ev/ev—l7 Flll = El/, 1“212 — _re? (2.4)
1 1

1—:‘5% == —reilsinzﬁ, I}%:f’ l—é%:_sin13COS,l97 H%:77 B%:COtﬁ
: - -

and zero otherwise, the prime denotes the derivative with respect to r always. The
geodesic equation is given by

d*x“ o dxXP dx?

- - = 2.
ds? tipy ds ds (2-5)
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The origin of our reference frame is in the center of the galaxy. We consider
geodesics in the plane 8 = 7/2, then we must solve the following three equations

d’ct ,dctﬂ_o

vV = 2.6
ds? ds ds (26)
d2r V', (da\? A [dr\? L (do\’
—+ e "l — )] += ) —re"| 5] =0 2.7
a2 2¢ \a&) T2\a) 7 G @7)
d’>¢ 2drde
— 4+ -———=0. 2.8
ds? s ds ds 2:8)
Multiplying by exp v we find
d [ ,dct
= =0
ds <e ds )
so that
evg = const. = a
ds o
dct
d—z —ae V. (2.9
Next multiplying (2.8 by r? we get
d
rzd—(f =const. =J
where J is essentially the conserved angular momentum, hence
do J
— ==. 2.10
ds 12 (2.10)

Finally, substituting (2.9) and (2.10) into (2.7) and multiplying by 2(expA) x

dr/ds we obtain
d |, (dr\* , _, I
ds le (ds) T Tt o

Consequently, the square bracket is equal to another constant = ». Then the result-
ing differential equation can be written as

2 2
(?’) =aPe MV p ot (b— J2> . (2.12)
S T

To obtain the connection with the rotation curve which is an important astro-
nomical observable, we remember the definition of the unitary 4-velocity

=0. @2.11)

e
ods

o
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The term unitary indicates that u® has invariant length 1:

dx® dxP  (ds)?

W2 = g“ﬁﬁﬁ _ @) —1. (2.13)
In our case u® is equal to
det dr _d
u® = (ds,ds,q;o . (2.14)
Using (2.9), 2.10) and (2.12) we easily see that
w=—-b=1 (2.15)

which by 2.13) fixes the constant of integration b = —1.

Clearly the last constant of integration a*> must be related to the geometry of
the geodesics. To see this we consider the streamlines r = r(¢). Dividing
by J = r?d¢/ds we obtain

1 dl" 2 a2 —(2 2 b 1
(ﬂd(p) = et g (erz) (2.16)

Introducing the variable

w(p) = ; 2.17)

we write the equation in the form

2 2
<lev(;) _ %e—(}ﬁv)_’_e*l <Jb2—W2>' (2.18)

To compare this equation with Newtonian dynamics we use the expansion of the
metric for large r:

eV 140072, et=1- ”Tf +0(r ?).

Here

_2GM

Iy = 5

(2.19)
c

is the Schwarzschild radius in case of a point mass. Then to order 1/r we have
dw\’ 24b b
(;{;) yw2=b Jj - ( . w2) . (2.20)

In Newtonian mechanics the bounded streamlines are ellipses

1 1
p=_—=—(1 2.21
W r p( +ecosQ), ( )
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where p and e are parameter and eccentricity of the ellipse. p is connected with
the non-relativistic angular momentum J by

= GM. (2.22)

B

The Newtonian equation which corresponds to (2.20) now reads

dw\> ., -1 2
— ) +w’ = +Zw. (2.23)
<d<P> P p

Comparing the coefficients in (2.20) and (2.23) we first find

By (2.22) and J = ¢J this gives b = —1 in agreement with (2.15). Secondly, from

a2+b_62—1_ 1

J? p? pa

where a is the big half-axis of the ellipse, we obtain by (2.22)

=1-—. 2.24
c*d 2d ( )

This shows that a” is connected with the big half-axis of the Kepler ellipse.
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The 3-velocity & which is measured by astronomers is defined as

dx' dx* dx?
&= <dt’dt’dt> . (2.25)
Using
% - gev (2.26)
we can calculate
&F =& (ds)z (2.27)
dt )’

where & is the spatial part in (2.13)). Since our metric is diagonal it is simply given
by
3 dx/ dx/ 2

—& = G =1 —dPe . 2.28
j;g,] ds ds ae ( )

By we now get the desired velocity squared
o2V
&=c <ev - 2) : (2.29)
a
As a check we determine the asymptotic behavior for large r > rg. Assuming
circular motion (@ = r) and using

a®=1-GM/c3r (2.30)
we find
GM
2= (—vin-Miop).
c v(r) 2, +0(r )
Since v = —r;/r we arrive at
GM
#F = —, (2.31)
r

M is the total mass (normal plus dark). This agrees with Newtonian dynamics
(Kepler’s third law). Summing up, the relation between observational quantities
and theory is very direct. The rotation curve v(r) gives the metric function v(r) by
solving the quadratic equation (2.29)

2 4 2
eV_“2<1i\/1—a222 . (2.32)

Using (2.30) and the Newtonian value (2.31)) we have

V2

a=1-=. (2.33)
c
Then for velocities v < ¢ we obtain from (2.32)) the simple result

v2
&=1-2-. (2.34)

We see that we must take the plus sign in (2.32).
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Fig. 1 Null geodesic for lensing

3 Null geodesics and lensing

In the case of null geodesics describing light rays the integration constant b in the
geodesic equation (2.16) must be 0

1 (dr\* L, (d , 1
—=|—) =" |—=e"—5 ). 3.1
#(a5) = (5 a) o
In the lensing problem one uses the weak field approximation to general relativity
2U 2U
eV =1- y), et =14 # ~e, (3.2)
c c

where U (r) is the gravitational potential. The latter can be obtained from the rota-
tion velocity according to (2.34)

U(r) = —v2. (3.3)
Introducing the quantity
d="= 34
a

in (3.1)), the following first order equation remains to be solved

ar\* 0N ,
(d(p> :dz_(1+62>r. (3.5)

Here we have neglected the quadratic term in U in accordance with (3.2). The
meaning of d becomes clear when we consider the trivial solution for U = 0:

_d
~ sing’

It describes a straight line with distance d from the origin in polar coordinates
(Fig.[T). After inversion the equation (3.5) can simply be solved by quadrature:

d +1
d—‘p . (3.6)
,
The sign herein depends on the branch of the geodesic to be calculated.
In case of a point-mass (Schwarzschild) lens we have
GM
U(r)=—— 3.7

r

and from (3.6)) we get an elliptic integral for the polar angle @(r):

/ dr
o(r)— g = j:dr{ — (3.8)



8 G. Briunlich, G. Scharf

where we have again used the Schwarzschild radius ry (2.19). To reduce this inte-
gral to Legendre’s normal form we need the four zeros a,a»,as, a4 of the quartic
under the square root. It is convenient to expand everything in powers of €:

e=— (3.9)

which is a small parameter. Then we have the following four real roots

alzd(l—g), ap==¢€d, a3=0, mz—d(l—!—%) (3.10)

up to O(€?). The integral li is an incomplete elliptic integral of the first kind
F(®, k) where the parameter k is given by

@2 (@—a)(a—a)
(a1 —a3)(az — as)

(see [5], vol. II, p. 310).

As first application we compute the Einstein deflection angle. The origin of
our coordinate system is at the mass M, polar axis goes from M to the observer
(see Fig.[T). We integrate (3.8) from the apex ry to infinity which gives us the
deflection angle 2( ., — 7). The apex is defined by the condition

=2+ 0(&?) (3.11)

dr
— =0 3.12
a9 (3.12)
which gives
ro=ag. (313)
Then we obtain
O — 2 = HAF(Pu k), (3.14)
where the Jacobian u is equal to
2 2 £
by :7(1_7> (3.15)
Vies—a)(as—a)) d 2
The argument @, follows from
.2 as —an 1 3 1
D, = =—(14+z¢e)==(1- 2P, 3.16
sin a2 < + 28) 2( cos(2P.)) (3.16)
(see [, vol. IL, p. 310). The elliptic integral can be expanded for small k as follows
k2 1. 4
F(®,k)=D+ Z(¢f§s1n2¢)+0(k ) (3.17)

(see [5], vol. II, p. 313). This finally gives Einstein’s result
QP =T+ E. (3.18)
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Next we want to derive the lens equation. In this problem the observer is not at
infinity but in a finite distance D, from the lens. The light source is at a distance
Dy; at the other side of the lens and an amount 1) off the optical axis (see Fig.[I);
we use the same notation as in [6]. We have now to compute the null geodesics
from the source at distance D, through the apex r = rq to the observer at distance
D,. Then the polar angle § = Dids of the source follows from

T — B = pd[F(Pyy, k) + F(Dg, k)] . (3.19)
Here the angle &, is given by
—a D, —
sin? @, = d4—@la—a1
as—ay Dg—ap

1 1 3
= 5 (1 —cos(2®y)) = [1+2e—@+@28 (3.20)

where ® = d /D, is the angle under which the observer sees the source. Then from
(3.17) we obtain

T 1 n ® €0

F(®y4,k) is given by the same formula with @ substituted by & = d/Dy;. Now

we find from (3:19)

—B=-0-0+2e+0(e?). (3.22)
The lens equation is usually written in terms of the angles
5 Das rs Dy
= 0= a=0 . 3.23
ﬂ ﬁ Dy ’ DdS, Dy ( )
Then (3.22)) gives the following lens equation
Dys 15
=02 3.24
B D, D,6 (3.24)

for the point-mass lens which is the standard result ([[7]], p. 27).

Now we turn to the formulation of the lens equation in an arbitrary spherically
symmetric metric. From (3.6) we have the following integral for the polar angle
of the null geodesics:

T r dr
r)—— = j:d/ , (3.25)
o) 2 ry/r2—(1+u)d?
o
where we have introduced the dimensionless gravitational potential
(1) = SUr) (3.26)
u(r) = 5U(r). .
o2

Here rp is the apex and it is important to note that only the potential values for
r > ro contribute. For u = 0 the trivial lens equation 3 = @ comes out, this follows



10 G. Briunlich, G. Scharf

from for r; = 0. For u # 0 but |u| < 1 the modification of the result comes
from the neighborhood of the apex. It is therefore good enough to expand the
potential u(r) in the vicinity of r = r¢. For this purpose we use the beginning of
the multipole expansion

C1 2
u(r) =co+—+ - (3.27)

r r
The constant term is necessary in view of the flat rotation curves; note that the
potential has an absolute normalization in (3.2). It is unimportant that (3.27)) breaks

down for small r because we need r > rg only.
With the three terms in (3.27)) we get an elliptic integral of the first kind again:

id/ \/7

Here the quartic is given by

(3.28)

G(r) = r* — (d* + cod?®) P — c1d*r — crd?, (3.29)

the Jacobian u and the parameter k are the same as before (3.13), (3.13). The four
zeros of G(r) are obtained by solving the two quadratic equations

14+u(r)=0, r(1—u(r)—d*=0.

This leads to

B 1 d?+c, c
T +\/ T—co 4(1—co)?

@ — — C1 + C% _ c2
2T T 2(14c) VAT +c)?  T+c

2
C] (4] 2
_ _ _ 3.30
“ 2(1+co) \/4(1—1—00)2 1+co 530

o 1 B d2+cz+ c
YT 2(1—qp) 1—co ' 4(1—co)?

Then the lens equation is contained in the analogous equation to (3.19)

~ ud
n—fB= [F(Dys, k) + F(Py,k)]. (3.31)
,/1fc%

The angles @y, P, are given by the same formula (3.20) as before. The appropri-
ate expansion of the lens equation (3.31]) depends on the particular values cg, ¢y, c2

in (3.27).
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4 A test of general relativity

Such a test is possible if for a spherical (EQ) galaxy rotation curve and lensing
data are available. From the rotation curve v(r) we get the gravitational potential
U (r) according to . In practice only three velocity values are needed in order
to fit U (r) to the multipole expansion . The quality of the fit will be good if
some velocity value v(r) is measured near the apex ry of the deflected light ray.
Of course one must replace the euclidean distances by angular diameter distances
as usual. Then knowing the three parameters co, c1, ¢, the lens equation (3.31)) can
be solved using the values (3.30) in the elliptic integrals. The calculated lensing
data can then be compared with the observed ones. A discrepancy would be either
due to the lack of spherical symmetry or to a failure of the weak field metric
(3.2) which is a consequence of Einstein’s equations. The second possibility is
interesting in connection with the dark matter problem [3]].

Galaxies with joint lensing and dynamical data can be found in the Sloan Lens
ACS Survey (SLACS) and its follow-up project [9]. Unfortunately, until today
only one system SDSSJ 2321-097 has been analyzed in detail. This is an early-
type elliptic galaxy which cannot be approximated by a spherically symmetric
metric. So we must extend our model-independent analysis to the elliptic case or
hope that the astronomers come up with a EO lens galaxy.
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