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We develop a formalism to model neutrino evolution encompassing both flavor and particle-
antiparticle mixings and decohering collisions. Our results include a quantum kinetic equation
(a set of coupled scalar equations) for the generalized neutrino density matrix, valid for arbitrary
neutrino masses and kinematics, and a comprehensive set of Feynman rules to compute collision
integrals for coherently evolving states. We expose a novel shell structure describing the phase
space of mixing neutrinos and show how the prior information on the system can enter into the
theory and modify the neutrino flavor evolution. Potential applications of our results include
modelling neutrino distributions in hot and dense environments and studies of neutrino mixing
effects in colliders and in the early Universe.
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1. Introduction

Practically solvable quantum kinetic equations (QKE’s) which can model accurately coherent
neutrino evolution in presence of decohering collisions are necessary in many applications in
neutrino physics [1]. QKE’s including the flavour coherences at different approximations have been
known for some time [2—4] and spatially homogeneous equations including particle-antiparticle
mixing can be found e.g. in [5-8]. Some aspects of particle-antiparticle mixing were considered
also in [9-11]. A fully self-consistent derivation of the QKE’s, which include both the forward
scattering potentials and the decohering collision integrals and encompass both flavour and particle-
antiparticle mixing coherences has still been missing until now. Here we report a work [12] that
fills this gap. We clarify the role and distinction between the flavour and antiparticle oscillations
and also derive simpler equations without the particle-antiparticle mixing. These equations are
sufficient for description of the neutrino mixing and interactions in hot and dense environments and
also for studying heavy neutrino oscillations in collider experiments and in different contexts in the
early Universe, such as Leptogenesis or BBN.

Our derivation is based on the full Schwinger-Dyson (SD) equations and the Closed Time Path
formulation. In a few clearly justified steps we reduce the SD-equations to a set of scalar quantum
kinetic equations, which include the information of flavor and particle-antiparticle mixing [12].
Our work is based on earlier work in [5-8]. Our derivation assumes only adiabatically varying
background fields, the validity of weak coupling expansion and eventually the spectral limit. As
a result our equations are valid for arbitrary neutrino masses and kinematics. An integral part of
the derivation is the introduction of a projective representation which reduces the SD-equation into
a set of Boltzmann-type transport equations which contain all information of flavor or particle-
antiparticle mixing. It also directly exposes a novel shell structure in the weak coupling limit: in
addition to the usual mass shells new "coherence shells" emerge, that carry information about the
particle-antiparticle coherences. In the UR-limit our equations become diagonal in the particle-
antiparticle mixing to order m/E and their flavour structure is greatly simplified. These equations
are sufficient for most astrophysics and collider applications whereas the full equation is needed
e.g. for problems involving particle production during preheating [13, 14].

2. Quantum Kkinetic equations

Coherently mixing out-of-equilibrium systems can be described by the Schwinger-Dyson equation
which is equivalent to a coupled set of Kadanoff-Baym (KB) equations for real-time valued cor-
relation functions. KB equations are manifestly non-local and the statistical functions are directly
coupled to the pole functions. To get a single local quantum kinetic equation (QKE), the pole equa-
tions must be decoupled from the statistical ones and the latter must be localized. In the Wigner
space the localization translates to a truncation of the infinite order gradient expansion. This can
be justified by the assumption of adiabatic background fields, or enforcing it by integrating over the
momentum variables. The decoupling problem can be handled by splitting the statistical function
into a background part, which is strongly coupled to the pole functions, and to a perturbation, whose
equation formally decouples (this formal decoupling allows a wide range of solutions which makes
the decoupling exact). For details of the procedure see [12]. The resulting decoupled QKE for the
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local neutrino Wightman function § & (1,1) reads:
_ 1 _ _ -
S+ 51V, Si} = —i[Hi, Sg| +i%; + Ci g (1)

where a = yoyi and the Hamiltonian is Hy = @ - kd;; — miéi_i)/o. The forward scattering term
E, and the Hermitian part of the collision term C‘ﬁ’k are given in [12]. Equation (1) holds all
information about coherence evolution for mixing neutrinos, but it is not yet useful for practical
purposes.

To make the analysis and the interpretation of the results more convenient we write Eq. (1) in
the projective representation, constructed utilizing the helicity and vacuum Hamiltonian eigenbases.

Indeed, without loss of generality we can parametrize the Wightman functions in adiabatic systems

as follows:
o< _ <aa’ aa’
Siij(6:X) = D fend (1, x) P @)
haa’
where f,:h“l.?'(t,x) are some unknown distribution functions (or the density matrix elements) and

we defined the projection operator:

b _ b
Pgb = N

khij 'thPl?iVOPllc)j’ €)

ij
where the helicity and the vacuum energy projection operators read

1
2

Prn==(1+ha-ky’) and  Pg = ). 4)
Here h = %1 is the helicity, a, b = £1 are the energy sign indices, i, j are the flavor indices and
wii = (k* + m%)l/ 2 is the vacuum energy of the neutrino eigenstate. These projection operators
satisfy completeness, orthogonality, and idempotence relations. The normalization factor is chosen
as N,fibj = V2(1 + ab(y,;ily,;} - vkivkj)‘l/z, with y,;.l = m;/wg; and vi; = |k|/wg;. With this
choice the distribution functions will get the usual normalization in the thermal limit.

Utilizing the projective representation (2), multiplying with P,i'heﬁ and taking trace over the

Dirac indices, it is simple task to reduce equation (1) to a set of scalar equations:!

<ee’ ee 7 <aa’ _ _ ~: ee’ rp<ee’ S< e’e
O fieni; + (Vieni Jaark - Vi == 21005 fichs +Tr[CH,khij khji]

. Hee'\l rp<ae’ | - He e\l 1* r<ea
= i(Wienii DaSicnty + ilWin i Dal fichis

)

where k = k/|k| and the repeated indices, a and [, are summed over. Frequency sign indices e, ¢’
define the oscillation frequency:
ee’ _ e e’
2Awkij = Wy~ Wi (6)

with wleﬂ. = ewy;. The forward scattering tensor reads

Hee'\l _ e’e vH a ae’
((thij a=1I thjizkil(wki)thlj ’ )

1'We assumed that in the forward scattering terms in (5) the background solution has the same form as the perturbation.
This is strictly speaking true only in the spectral limit [12], which is what we are implicitly assuming here.
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and the velocity tensor can be written as
e'e _ eae’ a'e’e
((thij)aa’ - 5a’e’ khij + (5ue khji > (8)

where
a b

+
(Vg2 (N2

1
Vil = 5N (| | - rwicda). ©

The collision term can be expressed in multiple different ways. An especially useful form is
- ’ 1 ’ ’ ’ * <
Tr[ ;I,khijpli/fji] = 5(((Wk>}fle] )lafk<}‘lll?' + [((Wl:}fjf)il] k]ji? - (><—><))’ (10)

where the sum over / and a is again implied and the ‘W ?*-tensors are defined similarly to (7) with
SH 5 55 where s =>, <.

All terms in our master equation (5) have a simple interpretation: The first term on the right
hand side coming from the Hamiltonian commutator term determines the relevant oscillation times
scales for different solutions. The second term in the right hands side of (5) is the collision term
and the terms in the second row are forward scattering corrections. The left hand side displays
a generalized Liouville term with the velocity tensor that determines the effect of different group
velocities on the coherence evolution. The apparent complexity of (5) reflects the generality of the
equation, which is valid for arbitrary neutrino masses and kinematics and includes all information
of flavor and particle-antiparticle mixings.

We wrote the master equation (5) using frequency states rather than particle-antiparticle solu-
tions, since this is notationally much simpler. The positive frequency solutions correspond naturally
to particles, and the negative solutions with inverted 3-momenta correspond to antiparticles, ac-
<>_’;)_h_[.J..Here functions with the
bar refer to antiparticles. Using this replacement rule one can always transform the results between

cording the following relation for distribution functions: fk< hjj =

frequency solutions and particle-antiparticle solutions when needed.

UR-limit. The master equation (5) simplifies a lot in the ultra-relativistic (UR) limit. If we define
a diagonal velocity matrix vg;; = 0;;|k|/wy;, we can write equation (5) in the compact and familiar
form of a density matrix evolution equation:

O fy + M e - V18 Y = —i[HE,. £&,1+CE, (11)

where (C’,fh),- j = Tr[C_‘IjI & hl.jPzzﬁ] is the frequency diagonal collision integral and (H,,)i; is the

effective matter Hamiltonian:
(Hgp)ij = edijwri + (Vii)ij (12)

where (V[,);; is the standard forward scattering potential. With light neutrinos and relatively
small propagation distances, one can further set vg;; — ;;, in which case the spatial gradient
term reduces to %{vk, k-v St — k-v Jin- Equation (11) is frequency diagonal and no longer
contains the particle-antiparticle coherences. It still describes the strong coupling between particle-
and antiparticle sectors via the matter potential term, which leads to many interesting phenomena
in the neutrino mixing in the early Universe and in compact objects [1].
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Figure 1: Feynman rules for computing the squared matrix element for coherent neutrino states. The first
propagator should be used for all internal lines and the red propagator (DMP) is used for the outgoing line
in the diagram. In the W-boson vertex the matrix U;, reduces to the usual PMNS-matrix in the case of pure
active-active mixing (here « is lepton flavour). Similarly, in the pure active-active mixing case, the matrix
U;j in the Z-boson vertex reduces to ¢;;. Finally c,, = cos 6,,. Figure is taken from [12].

3. Collision terms

Computation of the full collision term with flavor and particle-antiparticle mixing for arbitrary
neutrino masses and kinematics has remained unsolved until now. Using our formalism the collision
integrals are easy to evaluate however. We find that they can always be divided into a dynamical
matrix elements squared and phase space elements, giving rise to the familiar structure:

—<ee’ 1 ,
Cuknij = ZY S / dPS; [ (MZ)khU{p Y}Akhj{p, Yix+ (h.c.)jie i (13)
kij

Note the flipping of indices in the Hermitian conjugate term, in accordance with (10). We collected
all summed indices into curly brackets with Y = {X;, h’, a, a’, 1} and defined a shorthand notation

a;a,
Ax, = A "

e All particle distribution functions were combined into A = A” — A~ with

Nonitmiryx = Ixip ) I p, () fxp () f,jhf,‘;“( x), (14)
and the phase space factor reads
— 441 a a aj
/dPS3 /[ ]_[ (2ﬂ)32wp”, (m) st (k' + p;, - b - p3l,) (15)

The matrix element squared (M?) H f”.j (pi¥} contains all dynamical details related to the interac-
tion process. It can be evaluated using a simple set of Feynman rules given in figure 1, where we used
the D-tensor notation: D,‘;Z = Zwab P,‘C‘Zl 0= abN“b Prn (K +m;) (k + mJ) where we defined

(kH = (awy;, k) as well as N“b = N,?f;@;{‘f’}/(Zwkl {’ )andﬁnally 2a) = awg; + bwy ;. These

Feynman rules are to be used w1th the following 1nstruct10ns.

* Draw the loop diagrams that contribute to a given interaction process to the desired order
in perturbation theory, and assign a unique momentum variable and flavor and frequency
indices for each internal propagator line in the graph, allowed by the interaction vertices.

» Assign the Keldysh-path indices to all vertices to isolate cuts that give rise to the desired
interaction processes. You only need to evaluate ¥~ = 2! directly, so the first index is always
2 and the last 1.
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Figure 2: Two-loop graphs contributing to neutrino-neutrino scattering with the explicit index structures and
cuts. The right (direct, non-2PI) diagram contains the s- and 7-channel processes and the left (interference,
2PI) diagram contains their interference. The black dot implies the starting point of the evaluation of the
matrix element squared, and the red propagator is the DMP. The figure is taken from [12].

* Read off the phase space functions contributing to the A-factor from all internal cut propagator
lines. Add the phase space factor fkjfl‘]l.’ / 2“’;:2;]" associated with the external, dependent
momentum propagator (DMP), marked red in diagrams in figure 2.

* Deduce the phase space density factor with the overall energy conserving delta function. This
depends on the number of loops in the diagram and the cut one is interested in.

* Compute the matrix element squared using the Feynman rules shown in fig. 1. Start from
the equivalent of the black dot shown in the diagrams in figure 2 and follow the direction of
momentum in the graph. For each internal cut-line insert the standard propagator shown in
the first diagram in 1. For each ("22") "11" line use the (anti) Feynman propagator. Add the
DMP at the end of the fermion line it is connected to. Take a trace over the Dirac indices.

* Divide the result by two and add the Hermitian conjugate accounting for the flip of indices
as indicated in (13).

Neutrino-neutrino scattering. As a demonstration, we give the squared matrix element for
neutrino-neutrino scattering proceeding via s- and #-channels and their interference. This process
corresponds to the Feynman diagrams and the cuts shown in 2. Using the rules given above, one
can immediately write the matrix elements squared for these processes:

’ 1 1 - ’ ’

2\ee _ int,a dir,a aa 0ne

MOichijipiyy = 5500 Tr[("‘ku{pixi} + Ariltpexiy) Picwt Y Pienji | (16)
kij

where the leftmost 2-particle irreducible (2PI) interference diagram contributes the term

int, lg 4 * ~
ARt Xy = (E) Ui U, U, Ui Dz av (91)D7,,5(42)

XY"PL Dx,p, 7" PL D3,p, Y’ PL Dx;py 7" P, (17)
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and the rightmost non-2PI direct diagram gives

Killp:Xi) = _(E) Ui UniUi Ui, Dzav(91) D7,5(q2)
Xy”PL Dxlpl)/VPL Tr [y“PLszpzyﬁPLDx3p3] . (18)
a’ al
Here the gauge boson momenta are g, = (wy,— wpil{;k— Pl), g2 = (‘“3213_ wpzlé;k— p1) and

~ ai ay .
= (W - W ,
42 = ( pili p2ly’

scattering or a 1-3 decay) each term contributes. Here we gave the most general matrix element

k— p3). The energy sign indices determine to which process (either a 2-2

structure, which is however easy to evaluate using algebraic manipulation programs. The result
simplifies dramatically in the UR-limit however, and becomes easily computable by hand [12].

4. Weight functions

An essential feature of our proof, largely left aside in this brief note, was the localization of the
KB-equations, which corresponded to an integration over the frequencies in the Wigner space [12].
The physical reasoning for the integration is that one can never have a complete information about a
given system. What matters from the point of view of the oscillation phenomenon, is the in general
poor knowledge of the frequency and/or the momentum of the state in comparison to the phase space
separation of the shell-solutions associated with the mixing. It is precisely this lack of information
that allows for the oscillating solutions to exist. Indeed, if one had a precise information of the
4-momentum (e.g. due to very precise measurement of neutrino beam parameters), the separate
mass-eigenstates would be emitted in the process, with no oscillation pattern left to study.

This reasoning implies that the physical quantities that one can study are some coarse grained
quantities which must carry the information about the preparation of the system into the theory
describing their evolution. We can express this quantitatively by stating that the observable corre-
lation function, that can be related to physically measurable quantities k& and %, is some weighted
average of the original correlation function:

Sij(k,%) = /d4xd4k W(k,%; k,x)S;(k,x), (19)

(2m)4
where W is some weight function encoding the observationally accessible information about the
system. Weight functions can affect any or all variables relevant for the problem. The parameters
relevant for this paper were helicity frequency, 3-momentum, and spatial and temporal coordinates.
For most problems the simple weight function we used (flat weight over the frequencies) and the
ensuing master equations is sufficient. More general weight functions could be interesting avenue
to derive adjustable and quantitative ways to take the effects of neutrino production and detection
processes into account when describing neutrino evolution.
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