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Abstract

Neutrino physics has entered an era of precision, after
proving that the Standard Solar Model is a viable the-
ory and going beyond the current Standard Model of par-
ticle physics by proving that neutrinos possess nonzero
masses. The Sudbury Neutrino Observatory (SNO) ex-
periment, along with other experiments, has restricted
neutrino mixing angle (612) and the mass square differ-
ence (Ams3,) to lie within the large mixing solution area.

SNO, located 2 km underground in Sudbury, Canada,
was an ultraclean heavy-water (D,O) imaging detector
for observing neutrinos produced by fusion reactions in
the Sun. Neutrino interactions with heavy water resulted
in flashes of light called Cerenkov radiation which was
detected by an array of photomultiplier tubes. SNO took
data from November 1999 to November 2006, totalling
1082 days of data taking.

This work describes an improved measurement of the
mixing parameters from a combined fit of all the data.

For the signal extraction fit on the data consisting of 4



observable of an event — radial position, recoil electron
energy, direction relative to the Sun and event isotropy —
Markov Chain Monte Carlo (MCMC) method based on
Metropolis algorithm was employed. The nuisance pa-
rameters (systematics), weighted by external constraints,
were allowed to vary in the fit. The goal of the thesis was
to extract the survival probabilities of electron neutrinos
and determine the total flux of active-flavour neutrinos
from ®B decay in the Sun measured through the neutral
current interactions of neutrinos on deuterium. The B
flux from the fit is (5.24 4 0.02) x 10% cm™2 s~1; uncer-
tainty from statistics and systematics is 3.56%. Along
with ®B flux, the fit extracted energy spectra of charged
current interactions of neutrinos on deuterium and elas-
tic scattering interactions of neutrinos on electrons. The
fit described the energy-dependent day survival probabil-
ity of solar neutrinos as a quadratic equation and asym-
metry on the day survival probability as a linear equa-
tion. Four polynomial coefficients of the survival prob-

ability were extracted from the fit: constant coefficient



as 0.3206 £ 0.0197, linear coefficient as 0.005 £ 0.008 and
quadratic coefficient as —0.0014 4 0.0033. There are two
coefficients on the day-night asymmetry: constant co-
efficient as 0.0496 £ 0.0347 and the linear coefficient as
—0.018 £ 0.028. The day-night asymmetry (0.0496) ob-
served is 1.40 away from zero. Using these findings, the
oscillation space in terms of Am3, and 6,5 will be further
constrained. Compared to the previous published SNO
results, the uncertainty on °B went down from 3.83% to
3.56% and average °B v, survival probability (py) went
down from 6.57% to 6.14%. If the data were analysed
with the same assumptions, the decrease in uncertainties
would have been approximately twice as big; however,
more conservative systematic uncertainties were assigned

1N some cases.
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Glossary

AECL Atomic Energy of Canada Limited
AV Acrylic Vessel
CC Charged Current Interaction
CP Charge Parity violation
dof degrees of freedom
ES Elastic Scattering Interaction
GT Global Trigger
GTID Global Trigger Identification
ITR In Time Ratio
KamLAND Kamioka Liquid scintillator Anti Neutrino Detector
LETA Low Energy Threshold Analysis
LMA Large Mixing Angel
MC Monte Carlo simulation code
MCMC Markov Chain Monte Carlo
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NC Neutral Current Interaction
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NHiT Number of Photomultiplier tubes hit
OWL Outward Looking PMT
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PMT Photomultiplier tubes
PSA Pulse Shape Analysis
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RMS Root Mean Square
SK Super Kamiokande
SM Standard Model
SNO Sudbury Neutrino Observatory
SNOMAN SNO Monte Carlo and ANalysis
SNP Solar Neutrino Problem
SSM Standard Solar Model

Table 1: List of acronyms.



Chapter 1

Introduction

1.1 Goal of the thesis

The goal of the thesis was to produce the most complete ®B analysis of the solar
neutrino data from Sudbury Neutrino Observatory (SNO). Signal extraction
was carried out by Markov Chain Monte Carlo method based on Metropolis
algorithm. The fit parameters consisted of ®B flux from the measurement of
the neutral current interactions in SNO and a set of polynomial parameters
to describe the day time neutrino survival probability and a set of polynomial
parameters to assign the asymmetry in the day and night neutrino survival

probability.

1.2 Synopsis of Thesis

The first chapter is an introduction to solar neutrinos, Standard Solar Model,
and solar neutrino experiments. The next chapter describes relevant features
of the Sudbury Neutrino Observatory while the third chapter briefly describes
the theory of neutrino oscillations. The third chapter also illustrates the im-
portance of neutrino as a probe in the understanding of the mysteries of the
Universe. The fourth chapter goes over the methodology of the signal extrac-
tion, describes the number of signals and backgrounds, the observable of the

data, unique features of probability density functions that are used to distin-



guish various signals and backgrounds, the cuts applied on the data and the
constraints applied on the fit. The fourth chapter also outlines the systematic
uncertainties and the methods used for evaluating the goodness of fit. The
Markov Chain Monte Carlo method exploited to extract the fit parameters of
the models (Standard Solar Model and Neutrino Oscillation Model), is intro-
duced in the fifth chapter. The sixth chapter focuses on a method to implement
a constraint on the number of events when the width of the constraint is com-
parable to the constraint itself such that the Gaussian function traverses the
negative region (non-physical). The seventh chapter goes over various cross-
checks performed to make sure that the code is consistent. The eighth chapter
presents the findings of running the MCMC code on a fit consisting of 4 sig-
nals and 1 background. This fit also floats various systematic uncertainties.
The ninth chapter describes the result of the fit when a constraint from Pulse
Shape Analysis (PSA) of the data from neutral current detectors is included
in the fit. Five additional backgrounds were included in the fit. For this fit,
nuisance parameters' were fixed. The tenth chapter goes over the result of an
ensemble test when all the backgrounds are included. The next chapter has
the results of ensemble tests for a fit on the third of the simulated datasets.
After presenting the results, most of the chapter was devoted outlining the in-
vestigation carried out to discover the cause of bias in one of the main fitting
parameter. Chapters 12 and 13 present the result of the fit on the third of the
real data and the full real data respectively. The last chapter concludes the

thesis.

'In a fit, there are parameters of interest and there are other (nuisance) parameters. The
nuisance parameters, though not of interest, must be accounted for because of their effect
on the parameters of interest. Examples are given in section 4.11.



1.3 Neutrinos in the Standard Model (SM)
1.3.1 The Standard Model in a Nut Shell

A scientific model is a description of nature, created by the human mind,
to explain what happens in nature. For example, the matter we see around
us is composed of elementary particles?. The Standard Model is a theory
that describes properties of elementary particles and their interactions among
themselves. Out of the four fundamental interactions — gravitation, electro-
magnetism, strong interaction and weak interaction — only gravity is not in-
cluded in the SM. According to SM, there are 12 fundamental particles of spin
%h, known as fermions, which are classified according to their charges. The list
includes 3 types (flavours) of charged leptons (electron, muon and tau), each
with a corresponding neutrino, and six flavours of quarks. The six flavours
of quarks are named: up (u), down (d), charm (c), strange (s), top (t) and
bottom (b). Each particle has an associated antiparticle, with the same mass
but opposite charge. For example, the antiparticle of the electron (e™) is the
positron (e*). The SM particles are shown in figure 1.1. Each column of
fermions is called a generation or a family. Electron and electron neutrino
are part of one generation; tau and tau neutrino forms another generation
and so on. In the quark sector, up and down form one generation and so on.
The basic components of ordinary matter are electrons, protons and neutrons
of which the later two are combinations of two types of quarks - uud and
udd respectively. Protons and neutrons are called baryons and electrons and
neutrinos are called leptons.

In the SM, neutrinos are electrically neutral fermions which interact with
other particles via weak interactions only. Neutrinos come in three flavours

[2]; each flavour is associated with a charged lepton: electrons with electron

2An elementary particle is not composed of any other particles, that is, it does not have
an internal structure.
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Figure 1.1: Fundamental fermions and bosons in the Standard Model. Figure
from [1].

neutrinos (e, ), muons with muon neutrinos (p, v,) and taus with tau neu-
trinos (7, ;). Each neutrino v has an antineutrino which is represented by
v. For example, the antiparticle of v, is .. Neutrinos are created in beta (/)

decays which are described as:

n—ptt+e +1 (1.1)

pt—n+e +u, (1.2)

In the 8 decay, described by equation (1.1) and shown in figure 1.2, at a
fundamental level, a down quark is converted into an up quark via emission of
a W~ boson which subsequently decays into an electron (e~) and an electron

antineutrino ().



Figure 1.2: Decay of a neutron into a proton p*, an electron e~1 and an
electron antineutrino v, mediated via a virtual W~ boson. Figure from [5].

1.4 The Role of Neutrinos in the Standard Solar
Model (SSM)

There are various models to describe and predict the behaviour of the Sun.
The Solar Standard Model refers to the model devised by John Bahcall (|6]
and [7]) according to which stars have two mechanisms available to sustain
their luminosity: pp cycle (listed in table 1.1) and Carbon-Nitrogen-Oxygen
(CNO) cycle (listed in table 1.2). The primary source (98.5%) of solar energy
is the pp chain. The rest is provided by the CNO cycle. The net pp chain
reaction is:

4p — *He + 2e* + 21, + 26.73 MeV (1.3)

The pp chain reaction converts four protons into an «, two electron neutrinos
Ve, two positrons et and energy which is released as gamma rays and kinetic
energy of the particles. The average energy of the two neutrinos is (E,) ~ 0.6
MeV [8].

The pp chain burns hydrogen into helium in the core of the Sun. As hydro-
gen burns, the interior undergoes significant changes in size, luminosity and
core temperature. The SSM fixes the initial elemental abundances according

to the observed abundances in solar-system meteorites and the unmixed pho-



tosphere of the Sun. The model assumes that the Sun is in hydrostatic equi-
librium; the outward pressure of photons and particle radiation is balanced
by gravity. The model also assumes that initially Sun was of homogeneous
composition and the change in the abundance of elements happens with time
because of fusion within and not from diffusion from the outside. The model
is evolved in time within certain constraints, for example, current photon lu-
minosity, mass, radius and the age of the Sun as listed in table 1.4. When the
model converges on the measured solar parameters, the model predicts the
mass and temperature distribution in the Sun and the solar neutrino flux from
the core. The energy spectrum of solar neutrinos due to the nuclear processes,

listed in table 1.1, is shown in figure 1.3.

Reaction ve Energy (MeV)
p+p— *H+e" + v, (pp) < 0.424

or

pte +p — 2H+v, (pep) 1.422

H+p — 3He + ~
3He + *He — a + 2p

or

SHe + *He — "Be + v

Be+e” — "Litv, (90%) 0.861
(10%) 0.383

Litp— 2 a

or

Be+p — 5B + v

8Be* = 2 «

or

Table 1.1: Nuclear reactions in the proton-proton chain along with neutrino
energy. Table from [8].



Reaction v. energy (MeV)

12C4+p — BNty
BN — BCret v, | <1.199
BC+p — MN-4y
UN-+p — 150-+y
50— BN+tet v, | <1.732
"N tp = PCt

Table 1.2: Nuclear reactions in the CNO chain along with neutrino energy.
Table from [§].

Electron neutrinos are produced in four reactions in this chain. The CNO
chain also produces neutrinos but is negligible in the Sun. Detection of CNO
neutrinos will enable us to differentiate between various metallicity models of
the Sun. The SSM makes a number of predictions which can be tested and one
of these is the electron neutrino flux produced by each of the four reactions in
the pp chain (table 1.3). The model also predicts where the different neutrino

fluxes originate in the Sun, as shown in figure 1.4.

1.5 Solar Neutrino Problem

In the late 1960s, Ray Davis Homestake Experiment in a Gold Mine in South
Dakota measured the flux of neutrinos from the Sun and detected a deficit
[9]. According to SSM, Sun only produces electron neutrinos. The deficit of
the solar electron neutrino flux (figure 1.5 and table 1.5) from the neutrino
flux predicted by the SSM (table 1.3) is known as the Solar Neutrino Problem
(SNP). The discrepancy, lasting from early seventies to about 2002, has since
been resolved by introducing neutrino oscillations to the standard model.
There were several proposals to explain the deficit but any model requiring
the change in the solar model has to overcome the success in the prediction of

the total ®B solar neutrino flux [10] listed in table 1.3 and the current observ-
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figure.

able, for example, luminosity, radius and age of the Sun as listed in table 1.4.
Additionally, the models must predict the core temperature because of its ef-
fects on the total numbers of neutrinos emitted. The core environment affects
the neutrino flux from each of the v reactions but not its energy spectrum.
The model has to explain the energy-dependent distortion of the v, flux ob-
served in experimental results. The solution to this problem, as demonstrated
by SNO, is that solar neutrinos change flavour on the fly. The phenomena
of v oscillation — whereby neutrinos oscillate back and forth between different

flavours — is physics beyond the Standard Model as SM assumes neutrinos to
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Figure 1.4: Neutrino production as a function of radial distance of the Sun.
Figure from [§].

be massless, thereby, can not change flavours. In consequence of the oscilla-
tions, we know that neutrinos do have mass, this mass although very tiny?,
contributes as much to the universe as the combined mass of all the stars in

the galaxies.

1.6 Experiments, Advantages and Constraints

Three experimental methods are employed to detect solar neutrinos: radio-
chemical, water Cerenkov and scintillator. Radiochemical experiments, only
sensitive to electron neutrinos, do not measure the energy of the detected
neutrinos but measure the rate of neutrino induced events above a fixed en-
ergy threshold. The advantage of radiochemical experiments is a low energy

threshold. They can detect neutrinos with energy less than one MeV. Examples

3Cosmological constraints to the sum of ¥ mass ¥ = Ym,, typically range below 1 eV
[11]. The beta spectrum of tritium [15], limits the sum of active neutrinos to be between
0.05 and 8.4 eV.



Reaction | Flux (cm2s71!) Maximum Energy (MeV)
pp 5.94(1.007391) x 10 0.42
pep 1.39(1.007501) x 108 1.44
hep 2.10x103 18.77
"Be 4.80(1.007093 x 10° 0.86 (90%)
0.38 (10%)

BN 6.05(1.001913 x 10%) 1.20
150 5.325.32(1.0070 72 x 10%) | 1.73
7R 6.33(1.007017 x 109) 1.74

Table 1.3: Predicted fluxes of neutrinos from the solar nuclear fusion reactions
along with the maximum energy. The errors quoted, for the predictions from
SSM BP98, are 1o theoretical uncertainties. Reactions in column one are
described in table 1.1. This table is from [12].

Parameter Value
Mass Mg (1.9891 + 0.0004) x 102 g
Radius Rg (6.9599 +0.0002) x 10 c¢m

. . X oules/s
(3.846+0.004) x 10% Joules/
0.022 Ly,

(4.52 4 0.04) x 10° yr

Luminosity Lg

Neutrino Luminosity

Age

Table 1.4: Few observed solar parameters from [14].

of radiochemical detectors are Homestake, GALLEX (Gallium Experiment),
GNO (Gallium Neutrino Observatory) and SAGE (Soviet-American Gallium

10
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Figure 1.5: Comparison of solar neutrino flux observed in the experiments
compared to the theory. Figure from [16]. The unit of gallium (SAGE and
GALLEX+GNO) and chlorine (Homestake) experiments is Solar Neutrino
Unit (SNU) which is 10736 v reaction per second per target atom. The unit
of water Cerenkov experiments (Kamiokande, SuperKamiokande and SNO) is
the flux obtained from the experiment divided by the flux predicted from the
Standard Solar Model BS05.

Experiment). The targets consisted of either chlorine or gallium. Neutrinos

were detected via the following reactions:

Ve +97Cl = e” +57 Ar (1.4)

Ve + Ga— e+ Ge (1.5)

The neutrino flux was calculated by counting the occurrences of either argon
or germanium by detecting their radioactive decays. The low-energy threshold
(only 0.233 MeV) of the Gallium experiments (GALLEX, GNO and SAGE)

enables them to observe neutrino captures from all pp chain neutrinos.

Examples of water Cerenkov experiments are Kamiokande, SuperKamiokande*

4Both located in Kamioka zinc mine in Japan.
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(Super-K) and Sudbury Neutrino Observatory (SNO). The Kamiokande ex-
periment, consisting of 680 tonnes of water, detected neutrinos via their elastic
scattering® (ES) reaction: v, + e~ — v, + €~ where z is any flavour: e, p or
7. The Cerenkov light, generated by recoil electrons, is detected by a set of
photomultiplier tubes (PMTs) directed at the target volume. The advantage
of water detectors is that they detect neutrinos in real-time, with directional,
spectral and time information determined on an event-by-event basis. The dis-
advantage is that the threshold in energy is much higher than the radiochemical
experiments, at the order of 5 MeV, which limits the detection sensitivity to
neutrinos from *B and hep branches of the pp chain (figure 1.3). The cross
section for interaction increases with neutrino energy, hence neutrinos from B
branch are easier to observe because of their higher energy range (0-14 MeV).
Since the detected low energies are dominated by experimental backgrounds
due to radioactivity, availability of the energy range 0 to 14 MeV enable us to
put a detector threshold on the energy such that a large proportions of back-
grounds are removed (figure 4.2) without incurring a comparable reduction in

the statistics.

Experiment Detection Method | Flux (observed/predicted)
Homestake Radiochemical 0.34 + 0.06
GALLEX & GNOS Radiochemical 0.58 £ 0.07
SAGE" Radiochemical 0.59 £ 0.07
Kamiokande Water Cerenkov 0.55+0.13
Super-K Water Cerenkov 0.45 + 0.08

Table 1.5: Pre-SNO results of the solar neutrino experiments in comparison to
the prediction from the Bahcall-Pinsonneault BP2000 SSM. Table from [17].

Table 1.5 summarizes the results from the first generation of solar neutrino

experiments. The discrepancy between the individual experimental results is

®The ES reaction, though sensitive to all flavours, has reduced sensitivity to v, and v,.

12



due to a difference in the energy threshold of the experiments which makes
them sensitive to neutrinos from some or all four neutrino-producing reactions
in the pp chain. Furthermore, the exact suppression is also dependent on the

energy threshold of the experiment.

1.6.1 Super-Kamiokande

Super-Kamiokande, abbreviated as Super-K, is a large, underground, water
Cerenkov neutrino detector located 1000 m underground in an active zinc mine
in the Japanese Alps mountain ranges. It consists of a cylindrical stainless steel
tank (41.4 m tall and 30.3 m in diameter) holding 50,000 tons of ultra-pure
water. The tank volume is divided into two regions: a large inner region and a
2 metre wide outer region. The inner region is optically isolated from the outer
region by a stainless steel superstructure. Mounted on the superstructure are
11,146 photomultiplier tubes (50.8 cm in diameter) that face the inner region
and 1885 (20.3 cm in diameter) that face the outer region. Neutrinos are
detected via v, — e elastic scattering. The Super-K detector, employs the same
ES reaction as the Kamiokande detector, to monitor the neutrino flux but with
a fiducial mass 33.1 times greater than the original experiment. The Cerenkov
light, emitted by recoil electrons, is detected by the photomultiplier tubes.
The interaction vertex, ring direction and flavour of the incoming neutrino is
determined from the charge collected on the PMTs, the sharpness of the ring on
the wall and the timing information recorded by each photomultiplier tube.
Using elastic scattering interactions, Super-K provided the direct evidence
that the Sun is a source of neutrinos, as shown in figure 1.6, and made critical
contributions towards the resolution of the solar neutrino problem. In February
1987, Super-K detected neutrinos created by a supernova (SN 1987A, located
in the Large Magellinic Cloud). Besides solar neutrinos, Super-K also detects

interactions of ~1 GeV neutrinos produced by interactions of cosmic rays with
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air molecules in the upper atmosphere. From these atmospheric neutrinos,
Super-K glimpsed the first hint of neutrino oscillations. More v, were detected
coming from above than from below (figure 3.3 in chapter 3.). The data were
in good agreement with two-flavour v, < v, oscillations with sin®26y; > 0.82

and 5 x 107* < Am2, < 6 x 1073 eV? at 90% confidence level [18].

=
[A]

Super-K Solar Neuftrinos — 825 days

a
ha
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Figure 1.6: Plot of angular distribution of recoil electrons relative to the Sun. A
peak at Cosine 6 &~ 1 points to solar neutrinos. After subtracting background
due mostly from radon gas in the water, the area under the peak, is the
measured number of solar neutrinos. Figure from [19].

1.6.2 KamLAND Result

The Kamioka Liquid scintillator Anti-neutrino Detector (KamLAND) is a re-
actor antineutrino experiment in Japan and detects antineutrinos () from 53
nuclear reactors in the surrounding area [20|. The experiment probes ;5 and
Am3, neutrino mixing parameters without complications from the enhance-

ment of neutrino oscillation in matter because the average distance between

14



the reactors and the detector is roughly 180 km. It extracted neutrino os-
cillation parameters by observing two complete oscillation cycles in the 7,
spectrum (figure 3.4 in chapter 3). KamLAND is located at the site of the
former Kamiokande experiment. The heart of the experiment is a 18m di-
ameter stainless steel sphere, containing liquid scintillator and, surrounded by
1879 50 cm diameter photomultiplier tubes (PMTs) for antineutrino detection.
Electron antineutrinos are detected via inverse f—decay (7, +p™ — et +n)
with a 1.8 MeV threshold. Assuming CPT® invariance, the result of global
analysis (figure 1.7) of KamLAND, SNO and other solar v experiments is

Am3; = 7.597531 x 107%eV? and tan? ;5 = 0.47739 [20].
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Figure 1.7: Global analysis of parameter space — Solar+KamLAND. Figure
from [20].

1.7 The Sudbury Neutrino Observatory (SNO)
detector

The Sudbury Neutrino Observatory will be described in detail in chapter 2.

8CPT invariance means that if a particle is replaced with its corresponding antiparticle
(charge conjugation — C), and the space coordinates (parity — P) and time (T) are reversed,
the physical laws are unchanged.
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Chapter 2

Sudbury Neutrino Observatory

This chapter briefly describes the SNO detector. For a full technical report
of the detector and all of its subsystems, refer to [21]. SNO, shown in fig-
ures 2.1 and 2.2, is an enormous optical instrument to detect short bursts of
Cerenkov light associated with neutrino interactions. It is situated in Vale
Inco’s Creighton Mine in Sudbury, Ontario, Canada. The detector was pro-
posed to: clarify the basic energy generation processes in the Sun, test the
hypothesis of v oscillation and determine the fundamental properties of neu-
trinos by studying ®B neutrinos emitted from the core of the Sun. The ability
of neutrinos to penetrate vast distances through dense matter without interact-
ing makes them an excellent probe in investigating the processes that generate
them. These include fusion reactions in the core of stars, supernovae explo-
sions, radioactive decays in the Earth’s core, mantel and crust. The ability to
penetrate matter while weakly interacting with it makes neutrinos extremely
hard to detect hence it is important to maximize the mass and sensitivity of
the detector without increasing the backgrounds. To achieve this objective,
one 10° kg of heavy water (D20) used as an active medium, was enclosed in
a transparent acrylic vessel (12 m in diameter) to intercept about 10 neutri-
nos per day. Surrounding the acrylic vessel (AV) is a geodesic stainless-steel

structure, 17.8 metres in diameter, for carrying 9438 inward-looking photomul-
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tiplier tubes (PMTs) (figure 2.2). The space between the AV and the PMT
SUPport structure (PSUP) is filled with light water (H,O). The barrel-shaped
cavity, housing SNO target detector, is 22 metres in diameter at maximum and
34 metres in height. The space between the PSUP and the cavity walls is also
filled with light water. The D50 is unique because it offers equal sensitivity to
all of the neutrino types (v., v, and ;). A separate reaction (Charged current
is described in equation (2.1)) has sensitivity to electron neutrinos (v,) only.
The light water, surrounding the heavy water, provides both buoyancy for the
vessel and radioactive shielding against external neutrons, radioactivity in the
PMTs and radiation emanating from the rocks in the cavity. The location of
SNO, 2 km underground, protects it from cosmic rays, especially cosmic ray

induced muons.

Clean room for calibrations Control room

Neck of the Acrylic Vessel

1000 tonnes D,O

PMT support structure

12 m diameter Acrylic Vessel

7000 tonnes shielding H,O

Urylon liner and radon seal

Figure 2.1: Artist’s rendering of SNO detector, showing the acrylic vessel (AV),
the PMT SUPport structure (PSUP), the control room, and the clean room
above the neck of the AV.
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Figure 2.2: View of the PMT support structure (PSUP) in SNO.

The aim of Sudbury Neutrino Observatory (SNO), proposed by Herb Chen
in 1984 [30], was to look into the solar neutrino problem [23] and test the neu-
trino oscillation model using solar neutrinos. To accomplish this goal, SNO
detector was constructed in a large cavity, 2,000 metres below ground, in an
active nickel mine near Sudbury, Ontario. Two factors are influential in de-
tecting neutrinos: reduced backgrounds and increased detection volume. The
rock overburden reduced the background rate of muons from cosmic radia-
tion to roughly 70 per day. The shielding provided by the rock overburden
is equivalent to 6010 metres of water. The increased detection volume con-
sisted of 10° kg of heavy water (Dy0O) which was borrowed from the Atomic
Energy of Canada Limited (AECL). As shown in figure 2.1, the walls of the

18
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Figure 2.3: A schematic view of SNO.

cavity are covered with an urylon plastic liner to prevent any material from
the surrounding rock leaking in the pure water.

The acrylic sphere, constructed by bonding 122 panels of ultraviolet trans-
mitting acrylic together, has a thickness of 5.5 cm in most places. An opening,
resembling a chimney or neck, at the top of the acrylic vessel is 1.5 metres in
diameter and 6.8 metres in height. The AV is suspended by 10 ropes to the
support deck which is shown in figure 2.3. The ropes are connected to 11.4 cm
thick rope groove panels at the belly of the sphere. Figure 2.4 shows the acrylic
sphere, the suspension ropes, rope groove panels and the neck.

Events within the detector were observed by watching Cerenkov light us-
ing 9438 inward-facing photomultiplier tubes (PMTs) while the 91 outward
looking tubes (OWL) tag cosmic muon events and instrumental background.
As seen in figure 2.3, these PMTs were mounted on a spherical PMT Support
structure (PSUP) concentric with the AV. Twenty three PMTs are suspended

in a rectangular frame facing inwards in the outer HyO region. These PMTs,
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along with the 8 PMTs installed in the neck region of the AV, were used to
reject instrumental backgrounds. Since neutrino interaction is a relatively rare
low-energy process, SNO was designed to be ultraclean of radioactive back-
grounds. The limits were set such that the total neutron background from
photo-disintegrations is less than 10" of the solar-neutrino rate (5,000 per
year) for v interactions in the fiducial volume of DoO (R<550.0 cm). This

leads to limits of 3x107"° g/g of Th and 4.5x107 g/g of U in the D,0 [22].

CHIMNEY

SUSPENSION ROPES
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&

ACRYLIC PANELS

BOND LINES

Figure 2.4: The diagram shows acrylic tiles, acrylic belly plates and grooves,
ropes, and a chimney on the acrylic vessel (AV).
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2.0.1 The Three Interactions

Neutrinos interact with matter via the exchange of W* or Z° bosons, as shown
in the Feynman diagrams of figure 3.2. SNO measured the flux of all neutrinos
- F,, (where zise, u, 7) and the flux of electron neutrinos - F,,_. The difference
between them (F),,, — F,, ) gives the flux of non-electron neutrinos. These fluxes
were measured via different ways in which neutrinos interact with the heavy
water. When a neutrino interacts with deuterium, electrons can be created
which emit a flash of light called Cerenkov radiation which is picked by the
PMTs and converted into electronic signals for analysis. An example of a

reconstruction of a neutrino interaction is shown in figure 2.5.

Figure 2.5: A reconstruction of a neutrino interaction, as captured by photo-
multiplier tubes, is shown here. Figure from [24].

SNO observed ®B (®B — ®Be* +¢eT +1,) and hep (*He+p —* He+e™ + 1)
solar neutrinos via these reactions:

Charged Current (CC)

The (CC) reaction, as shown in figure 2.6, is specific to electron neutrinos
only. The Q value of CC interaction is -1.4 MeV. In this interaction, the elec-
tron carries off most of energy and hence the energy of the electron is strongly

correlated with the neutrino energy. A measurement of an energy spectrum
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of the CC reaction provides a very good sensitivity to spectral distortions
produced by neutrino oscillations in the dense matter of the Sun.

In CC interactions, as described in equation (2.1) and shown in figure 3.2a,
an electron neutrino interchanges a W boson with a deuterium nucleus thereby
converting the neutron in the deuterium into a proton and transmuting itself
into an electron'. According to the SSM, about 30 CC interactions per day

are predicted for SNO in the absence of v oscillations.
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Figure 2.6: Charged current interaction in action. Figure from [25].

vVe+d—>p+p+e (2.1)

Elastic Scattering (ES)

The ES interaction, as shown in figure 2.7 and described in equation (2.2),
is sensitive to all flavours of neutrinos but with enhanced sensitivity to v,
because of the availability of an additional channel to v, that of W boson, as

shown in figure 3.2. According to SSM about 3 ES events per day are predicted

1Solar v, and v, are not energetic enough to interact with a deuterium nucleus producing
two protons and a corresponding p or 7 because y and 7 are heavier than an electron and
require v, or v, to be more energetic than an v, to initiate a CC reaction. Hence CC is
only sensitive to v,.
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for SNO for no v oscillation.
vete—u,+¢€ (2.2)

where v, refers to any active flavour of v, e refers to electron and primes on
the outgoing particles indicate that energy and momentum has changed by the

scattering interaction. In the ES interaction, the electron recoils in roughly

neutrino

o,

L7
neutring

Figure 2.7: Elastic scattering interaction in action. Figure from [25].

the same direction that the v was travelling therefore the electron "points
back" to the Sun. Both SNO and Kamiokande/Super-Kamiokande make use
of the electrons in water for the measurements of the solar flux of 8B neutrinos.
Therefore, the ES interactions allow a cross-check with the Super-Kamiokande
results. The energy and direction of recoil electrons are measured by observing
their Cerenkov light with photomultiplier tubes.

Neutral Current (NC)

The NC interaction, mediated by Z° boson, allows measurement of the
total flux of ®B neutrinos because it is equally sensitive to all three v flavours
described by the standard electroweak model. As seen in figure 2.8 and de-
scribed in equation (2.3), an incident neutrino breaks up the deuterium (d)
into a proton (p) and a free neutron (n). The liberated neutron is then ther-

malized as it scatters around in the heavy water. Gamma rays are emitted
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when the neutron is absorbed by another nucleus. The gamma rays scatter
electrons with sufficient energy to produce Cerenkov radiation to be detected
by the PMTs.

vp+d—=n+p+u, (2.3)
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Figure 2.8: Neutral current interaction in action in the salt phase of SNO. The
chlorine nucleus (Cl) of NaCl absorbs the neutron and emits a cascade of v
rays. Figure from [25].

The NC signal provides no information about either the energy or direc-
tion of the incident v. The measurement of 8B flux depends on the capture
efficiency of neutrons in SNO and the resulting gamma ray cascade. The SSM
predicts about 13.2 NC events per day for SNO. Neutral current, an inelastic
scattering of neutrinos with deuterium, has a threshold of 2.2 MeV which is
the binding energy of the deuterium. It involves liberation and recapturing
of a neutron. Three different recapture mechanisms, employed to detect the
neutrons, made SNO a three-phase-experiment.

The NC reaction is measured by observing the v-rays from the subsequent

capture of the free neutron in the first two phases, and by direct detection

24



in the third phase. The NC provides the total neutrino flux to explore the
solar models, irrespective of neutrino oscillations, since the reaction is equally
sensitive to all non-sterile v types.

SNO is also sensitive to charged current, elastic scattering and neutral
current interactions from hep neutrinos from 3He+p — *He + et interaction
in the Sun. The interactions induced by hep neutrinos are described in this

thesis as hep CC, hep ES and hep NC respectively.

2.0.2 The Three Phases

In the first phase (DO phase) of SNO, the detected neutrons captured pre-
dominately on a deuterium (cross-section 0.5 millibarn?) in the D,O with a
release of a 6.25 MeV photon which imparted enough energy to electrons via
Compton scattering or pair production (e~e™') to produce Cerenkov light for
PMT arrays to detect. Using distributions of the reconstructed energy, posi-
tion and orientation of the events, the NC was statistically separated from the
CC and ES signals. The first phase ran from November 2, 1999 to May 31,
2001. Results, published in [26], proved that neutrinos undergo oscillations in
flavour as they journey from the core of the Sun to the Earth. The number of
NC events above 5.5 MeV was about a third of the measured number of CC
events because the neutron capture efficiency with D,O alone was only 14%.
In the second phase (Salt phase) of SNO, 2,000 kg of purified NaCl were
added to the DyO. While the salt concentration was only 0.2% by weight,
salt enhanced the probability of neutron capture because the 44 barn thermal
capture cross-section on °Cl is 88,000 times larger than the capture cross-
section on deuterium resulting in an increase in the sensitivity by a factor of
three to detect NC interactions. Another benefit of adding salt is a better

separation of NC from CC and ES because absorption of a neutron on 3°Cl

2

2A barn is a unit of area equal to 10724 cm?, used to measure cross sections in physics.
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produces a cascade of photons with energy totalling 8.6 MeV as compared
to a single v of energy 6.25 MeV produced when a neutrino interacts with a
deuterium. The outcome from the second phase, published in [27], was precise
measurements of the parameters that govern neutrino oscillations.

In the third phase of SNO (Neutral Current Detection (NCD) phase), an
array of proportional counters called NCDs, was deployed in the heavy water
to detect neutrons independent of the PMTs. The NCDs were filled with a
mixture consisting of 85% of 3He and 15% CF* by pressure. A total of forty
strings, laser-welded assemblies of individual counters, were attached to anchor
points on a 1 m? grid. Out of the forty strings, four contained *He instead of
3He for assessing the backgrounds.

The NCDs only blocked 9% of the Cerenkov photons. The advantage of
NCDs is that over 60% of the detected NC events were recorded separately on
an event-by-event basis from the CC and ES signals. The separate readout
reduced contribution of NC signal in the Cerenkov data which made possible
reduction of the correlation between NC and CC from about -0.5 to better
than -0.02. Furthermore, the CC signal in the NCD phase has substantially
reduced contamination from neutron capture hence measurement of the neu-
trino energy spectrum via the CC reaction is made with increased precision

[21]. The result of the third phase is described in [29].

2.1 Cerenkov Radiation

Neutrino interactions in SNO were observed by detecting the Cerenkov light
emitted by relativistic electrons. For CC and ES, the electrons were the recoil
electrons (equations (2.1) and (2.2)) and for NC, the electrons were Compton-
scattered by the gamma rays released by the capture of neutron in a nucleus
(equation (2.3)).

If a source emits energy, via waves, in all directions then the wave fronts
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will be spherical as shown in figure 2.9 from [31]. In a non-dispersive medium,
the velocity of waves is described as: v = Av where A and v are wavelength and
frequency of the wave respectively. If the source itself is moving such that it
nearly keeps pace with its wave fronts (vs &~ v = Av) then the wave fronts look
different as shown in figure 2.10a. If the source moves (v; = fc) faster than
the waves (v = ¢ where n is the refractive index of a medium) it generates,
then all spherical wave fronts bunch along the surface of a cone (as shown in
figure 2.10b) which signifies a shock wave and the cone is then referred to as

the Mach cone. The surface of the cone is tangent to all the wave fronts with

a half angle (from figure 2.9) described as:

vs = fe (2.4)
cos 0 = v ¢ (2.5)
Vst NnUg

Thus, by simply measuring the Cerenkov cone opening angle, the velocity
of the particles may be determined. An electrically charged particle emits
electromagnetic waves due to its charge and motion. When a charged particle
is travelling through a medium, its electromagnetic field disrupts the local
electromagnetic field (EM) by displacing the electrons in the atoms of the
medium. Photons are emitted as electrons relax back to the ground state. In
normal circumstances, these photons destructively interfere with each other
resulting in no radiation. However, when a charged particle travels through a
medium at a pace (v) that exceeds the speed of light in the medium (v;) then
it outruns the electromagnetic waves that it emits, thereby creating a shock
front which makes it possible for the photons to interfere constructively and
intensify the observed radiation. The shock wave is analogous to sonic boom

produced by an aircraft travelling faster than the speed of sound in air.
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Figure 2.9: Spherical wave fronts surrounding a stationary source. Figure from
[31].

Condition for a shock front to occur is:

V>V =

(2.6)

o S| o

Tr = (1/2)muy (2.7)

where n is a refractive index of the medium, c is velocity of light in vacuum,
m is mass of the charged particle, v; and T are the threshold velocity and
threshold kinetic energy respectively. No Cerenkov radiation will be emitted
if the kinetic energy of the charged particle drops down to below Tr.

The Cerenkov radiation is utilized in the Cerenkov detectors for detecting
fast particles and determining their speeds or making a distinction between
particles of different speeds. In D50, the angle of the opening cone is 41° for
relativistic electrons. The electron direction is not constant due to scattering®
hence the detected light does not correspond to a single ring pattern as the
angle depends on the velocity of the charged particle (equation (2.5)). The
electrons will emit Cerenkov light until their kinetic energy drops below the
Cerenkov threshold of 0.262 MeV. Table 2.1 lists the index of refraction for
various media along with the corresponding kinetic energy threshold for the

Cerenkov radiation.

3Scattering causes reduction in velocity.
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Figure 2.10: This diagram shows wave fronts when the source is moving at a
speed comparable to the speed of the waves. (a) vy = v (b) vs > v. Figure
from [31].

Medium | Refractive index n | Ty (MeV)
D,O 1.333 0.262
H,O 1.338 0.258

acrylic 1.461 0.190
pyrex 1.474 0.185

Table 2.1: For the relevant materials in SNO, the table lists the ruefractive
index (n) and the corresponding kinetic energy threshold (T7r) for Cerenkov
radiation. Table from [32].

The second order differential Cerenkov spectrum is given by equation (2.8).

d’Ne  2maz? 1

ded) N2 (1- n2(A)52)

(2.8)

where d? N is the number of photons emitted in a track length equal to dx over
a spectral range of d\, z is a charge of a moving particle in units of electron

charge e, 8 = v/c, n(\) is the refractive index as a function of wavelength
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(A), and « ~ 1/137 is the fine structure constant. The number of photons N¢
emitted by an electron is approximately proportional to the electron’s track
length and hence its energy. It is ~358 photons per cm [33] in the spectral
range of 300 to 650 nm to which the PMTs are sensitive. The electron track
length in D50 is approximately 0.45 cm per MeV for electrons of kinetic energy
between 5 and 15 MeV. Thus about 1140 photons are produced by a 7 MeV

electron [34].

2.2 PMTs

Photomultiplier tubes, shown in figure 2.11, are extremely sensitive detectors
of light. These detectors enable individual photons to be detected by multi-
plying the current produced by the photons by as much as 100 million times
in multiple dynode stages. Three characteristics of PMTs are the transit time,
the rise time and the transit time spread. The transit time is a time interval
between arrival of a photon at the cathode and arrival of an amplified pulse
at the anode. The rise time is a time required for a PMT anode signal to
rise from 10% to 90% of the final charge collected. The transit time spread
is due to different paths that the electron can take from the photocathode to
the anode [37].

In SNO, the PMTs are eyes of the detector and upon sensing a single pho-
ton produce an electrical pulse that travels to the data acquisition electronics.
The radioactivity levels of PMTs have to adhere to strict specifications of
allowed maximum radioactivity levels. The measured concentration of ura-
nium was less than 120 nanograms per gram, the thorium concentration was
90.0 nanograms per gram and the potassium concentration was 0.2 milligram
per gram in the glass. Besides low-radioactivity levels, the constraints on the
PMTs are low failure rate (since they can not be replaced), a high photon

detection efficiency, a low noise rate and a narrow spread in the transit time.
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The energy and position resolution largely depends on the spread in the transit
time, the photon detection efficiency and the noise rate. The photocathode
coverage with the PMTs alone is 31% hence each PMT (20 cm in diameter) is
surrounded by a 27 cm diameter light concentrator (wavelength shifter) which
increases the overall detector light collection to 54% of 4. This configuration
is shown in figure 2.13.

The sensitivity of a photocathode in a PMT is expressed as quantum effi-

ciency (QF) which is simply defined as:

OF — number of photoelectrons emitted (2.9)
N number of incident photons '

Quantum efficiency is a function of the wavelength or quantum energy of the
incident photon. In terms of quantum efficiency, as shown in figure 2.12, PMTs

in SNO exhibited a peak quantum efficiency of ~ 21% at 450 nm.
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Figure 2.11: A diagram of a Photomultiplier Tube (Not SNO’s). Figure from
[35].

The PMTs in SNO detect the Cerenkov light emitted by relativistic elec-
trons produced directly or indirectly in neutrino interaction. Because the light
is emitted in a cone shape (figure 2.5), a characteristic ring-like pattern of ac-
tivity is seen on the array of PMTs. The ring pattern is useful to infer direction,
energy, and flavour information of the incident neutrino. A ring pattern with
fuzzy and blurry edges, due to multiple Coulomb scattering, is characteristics

of electron while a ring pattern with sharp edges indicates a muon.
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Figure 2.12: Figure shows the transmission of the SNO acrylic vessel and PMT
quantum efficiency as a function of wavelength superimposed on the Cerenkov
spectrum (in arbitrary units). Figure from [36].

2.3 The NCD Phase

This section describes the Neutral Current Detectors (NCDs) of the NCD
phase. An NCD is a proportional counter to detect neutrons via a 3He(n,p)*H
interaction which has a Q value of 0.764 MeV. The absorption of a thermal
neutron in 3He makes it unstable which then decays into a proton and a *H
(tritium). To conserve energy and momentum, the end products are always
emitted back to back; with proton carrying 0.573 MeV of kinetic energy and
the tritium having 0.191 MeV [37]. The charged proton and H ionize the gas
inside the NCD, creating around 20,000 electron-ion pairs. The electrons are
accelerated by a high voltage at the anode of the proportional counter. The
accelerated electrons produce secondary ionization with sufficient energy to
produce an avalanche. The movement of the electron-ion pairs in the NCD
induces an electrical signal on the anode which is directly proportional to the

energy of the original ionizing particles.
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Figure 2.13: A schematic of the Hamamatsu R1408 Photomultiplier Tube
along with a reflector assembly used in SNO.

The capture cross-section for thermal neutrons on *He is 5330 barns, about
seven orders of magnitude larger than the capture cross section on deuterium
(?H). Compared to thermal neutrons, *He has negligible sensitivity to gamma
rays which makes it an effective neutron detector material. The 36 NCD
strings provide a neutron capture efficiency of 26%, giving a neutral current
signal of about 3.3 events per day in the NCDs.

The neutron capture signature in the NCD array is read out through a
separate data acquisition system from the Cerenkov light signal observed with
the PMTs. Since the majority of NC events in the NCD phase are measured
separately in the NCDs, the statistical correlation between the NC signal to
the light collected in the PMTs is reduced compared to previous phases. Ad-
ditionally, the NC flux measured in the NCDs is used to calibrate the NC
contribution to the PMT signal which is then subtracted from the CC and ES

signals, thus improving the CC/NC ratio which constrains the solar neutrino
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mixing angle.

2.4 Software

SNO Monte Carlo and ANalysis (SNOMAN) software, a package of FOR-
TRAN routines, was used for data analysis and Monte Carlo simulation of the
detector. The SNOMAN code models all significant detector geometries, such
as the acrylic vessel, the acrylic tiles, the acrylic belly plates and grooves, the
Kevlar ropes, the neck, the PSUP and the source container when a source was
deployed. The simulation of a large Cerenkov detector is a very complex pro-
cess. Simulation starts with an electron or neutron of a given momentum at a
given location in the detector. The electron is tracked as it slows down. The
tracking of the electron and the Cerenkov light produced is calculated using
the proven electromagnetic shower code ESG4 [38]. The Cerenkov photons
are then transported through the D50, acrylic vessel and HyO, to the PMT
sphere (figure 2.3 for a layout of SNO detector). The code takes into account
scattering and absorption of photons in each medium while moving towards
the PMTs. Including the calibration of PMTs, the simulation constructs an
event in which each fired PMT (a PMT hit) is identified, and the time and
charge of the PMT is recorded. The simulation also takes into account the
PMT noise.

The purpose of reconstruction is to determine the event observables from
the pattern of hits and the timings of the PMTs fired. The basic principle is
to search for a point source from the hit pattern which would give the correct
time of arrival of the photons at different PMT locations. This is complicated
by the existence of PMT noise and delay of photons due to scattering en route
to the PMTs. The large size of the PMTs and their timing response set a limit
to the accuracy of the reconstruction carried out. Once the vertex of an event

is known, the initial electron direction is estimated by computing the vector
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from the vertex to the centroid of the PMT hit locations. The accuracy of the

estimation is limited mainly by multiple scattering of electrons.

2.4.1 Response to vy rays

Through Compton scattering and pair production, v rays generate a shower
of charged particles, which in turn, produce Cerenkov light. Compared to a
single electron having the same energy, the total light produced by a v ray
is less because each charged particle ceases to produce light as soon as it
drops below the Cerenkov threshold energy. In SNOMAN); the v ray induced
showers are calculated using the program EGS4 and the resulting Cerenkov

light is computed as in the single electron case.

2.5 Generating an Event Trigger

The number of PMTs hit for a given event, defined as NHITs, is a function of
the energy of the event. Low NHIT events, corresponding to low-energy events,
are dominated by low-energy background events. To reduce the background
events in the data, a simple hardware trigger is employed according to which
only events having 13 or more hits are recorded.

For the analysis, the software trigger is set to 20 hits for an event which
corresponds to ~ 3 MeV. The diameter of the PSUP is 18 metres hence the
time it takes photons, from a single event, to reach different PMTs can vary
by as much as 66 nanoseconds (or more due to multiple reflections). The time
window, for the primary trigger, was set to be 100 nanoseconds. A global
trigger (GT) is initiated if 17 or more PMTs are hit (NHITs> 17) within a
100 nanoseconds window. The hardware threshold can be adjusted, by the
software, to be higher than 13 hits. The time of trigger is recorded by a 10
MHz and 50 MHz clock. For each GT, a global trigger identification number
(GTID), the time the GT is generated, the identification number of each PMT
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fired and the digitized charge collected are stored. From all this information,
the event position, the event energy, the direction of the event relative to the

Sun etc.are extracted.

2.6 Calibration

Calibration of electronics was vital to maintain the accuracy of the data con-
sisting of charge and timing information from the individual PMTs. Electron-
ics calibration of SNO is covered in detail in [21]. In order to understand
the response of the detector to different event types as a function of both
energy and position (within the detector volume), detector calibrations were
performed. The detector calibrations include: global light collection efficiency,
the angular response of the PMTs, the optical attenuation lengths, the energy
response of the detector (as a function of both energy and position within
the detector) and acceptance of background events. A variety of optical and
calibration sources were deployed in the detector. All calibration sources for
the heavy water were deployed through the neck of the AV. Sources, intended
for the light water between the AV and the PSUP, were deployed using guide
tubes that are accessible from the deck above the detector. The calibration
source manipulator system, designed and constructed at Queen’s University,
is a rope-and-pulley system that moves calibration sources throughout the
12 metres diameter detector with approximately 5 cm accuracy. A series of
calibrations were performed to take the signals from the PMTs and transform
them in terms of event energy, position and direction for further analysis to ex-
tract neutrino properties. The calibration sources used in SNO are: laser ball,
16N, 252Cf, 8Li, AmBe, and last but not least sources constructed from ??°Ra
and ?*2U to model low-energy backgrounds from 2*®U and #*2Th. Primary
calibration sources, deployed in SNO, are outlined in figure 2.14. Calibration

of SNO is described in detail in [21].
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Calibration source Details Calibration

Pulsed nitrogen laser 337,369, 385, 420, 505, 619 nm Optical & timing calibration
16N 6.13-MeV y rays Energy & reconstruction
8Li B spectrum Energy & reconstruction
e Neutrons Neutron response
Am-Be Neutrons Neutron response
*H(p, y)*He (“pT") 19.8-MeV y rays Energy linearity

U, Th B—v Backgrounds

8y B—y Backgrounds
Dissolved Rn spike B—y Backgrounds

In situ **Na activation B—v Backgrounds

Figure 2.14: Primary calibration sources employed in SNO. Figure from [28].
2.7 Results from the Three Phases

The D5;O phase ran from November 1999 until May 2001 using only D50 in
the target volume. From 306 days of data, the measured CC, ES, and NC

fluxes (in terms of 10° cm™2s~!) are given below:

brs = 2.397023(stat.) 012 (syst.) (2.10)
boc = 1.767008 (stat.) 500 (syst.) (2.11)
dne = 5.0970 35 (stat.) oS (syst.) (2.12)

The result is from [10]. While reporting the result, the first error (stat.) is due
to statistics and the next one (syst.) is from the systematic uncertainties. The
energy threshold for the first phase was 5.0 MeV. The ES flux is consistent
with the precision measurement made by Super-K [40], and the NC flux was
consistent with the prediction for ®B flux in the Standard Solar Model. The
fact that the CC flux is less than the NC flux proved the phenomena of v
oscillation, and the additional fact that the CC flux is also less than the ES
flux because the ES* flux has contributions from g or 7 neutrinos provided

a test of consistency. The correspondence between the fluxes and flavours is

4The additional interaction due to charged current available only to electron neutrinos,
as shown in figure 3.2, makes ES predominately sensitive to v.. Equation(2.14) splits ES
into its constituents.
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listed below:

CC =v, (2.13)
5 1

ES =—v.+ —(v, +v;) (2.14)
6 6

NC =v.+v, + v, (2.15)

Hence, under the assumption of unitarity which relates the NC, CC and ES
rates directly and no oscillation between active and sterile neutrinos, a simple

change of variables gives:

de = 1761555 (stat) "o oo (syst) (2.16)

Gur = ALY 5 (stat) 5 (syst) (2.17)

Combining the statistical and systematic uncertainties in quadrature, ¢, is
3.4170 8% which means that the null hypothesis is excluded at 5.30. The con-
clusion of the result (CC < ES < NC =®B flux) published from the first
phase is that neutrinos undergo transformation en route from the Sun to the
Earth.

In the second phase, 2,000 kg of NaCl was added to the D,O volume to
increase the capture efficiency of neutrons, released in the NC interaction, by
a factor of three greater than for pure D;O. Furthermore, neutron capture
in Chlorine resulted in multiple gammas totalling 8.6 MeV of energy while
neutron capture in D,O produces a single gamma with an energy of 6.25 MeV.
The diffuse pattern of Cerenkov light from multiple gammas allows a better
separation between CC and NC events. The salt phase ran from July 2001 to
August 2002, collecting 391 days of data. The energy threshold for this phase

was 5.5 MeV. Assuming undistorted CC and ES energy spectra, the measured
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fluxes (in terms of 106 cm™2 s7') are listed below:

bps = 2.3410 %3 (stat.) T 13 (syst.) (2.18)
boc = 1.727002 (stat.) 011 (syst.) (2.19)
dne = 4.8175910 (stat.) T2 (syst.) (2.20)

The results from the salt phase [39] are consistent with the results obtained in
the D,O phase.

The final phase of SNO, the NCD phase, had 385.17 live days. The ad-
dition of the proportional counters, called Neutral Current Detectors, allows
for a measurement of neutron capture that is systematically different from

the mechanisms used in the previous two phases. The outcome (in terms of

10 em=2s71) is:

bps = L7702 (stat.) 09 (syst.) (2.21)
boc = 1.67T00% (stat.) T50x(syst.) (2.22)
dne = 5.547033 (stat.) 038 (syst.) (2.23)

The result is from [29]. The ratio of the number of CC events to the number

of NC events is:
bcc

€ — 0.301 +0.033 (2.24)
one
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Chapter 3

Neutrino Oscillation Theory

3.1 Introduction

Neutrinos started as a curiosity of physics but graduated to being a practical
tool to unveil some of the hidden mysteries of the universe. This chapter
illustrates the usefulness of neutrinos as a probe, for instance, the example
of physics beyond the Standard Model is led by neutrino oscillations because
the experimental evidence for massive neutrinos in neutrino oscillations is the
first clear signal of physics beyond the Standard Model of elementary particles.
This chapter relates the phenomenon of neutrino oscillation and goes over the

experimental evidence gathered so far to characterize it.

3.2 Neutrinos as a Window to the Universe

Neutrinos are excellent tools to map the universe because they rarely interact
with other particles and are not affected by magnetic fields, hence they travel
in straight lines. These features are useful to know the source from which the
detected neutrinos originated and the processes which produced the neutrinos
in the first place. For example, the direction of neutrinos detected at SNO is
highly correlated with Sun’s direction in the sky and the energy distribution
suggest that the neutrinos are from the decay of ®B in the Sun.

As shown in figure 3.1, for massless neutrinos the spin is always oppo-
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site the linear momentum (left-handed) whereas the antineutrinos are always
right-handed because the spin and linear momentum always point in the same
direction'. Hence in the Standard Model (SM) one of the intrinsic properties of
a neutrino is its negative helicity (left-handedness) therefore the right-handed
field is zero. The antineutrino, antimatter partner of the neutrino, has posi-
tive helicity (right-handedness), consequently has no left-handed field. Since
strong experimental evidences point to neutrinos having non-zero mass and in
order to gain mass, a neutrino has to couple with Higgs’ field which in turn
require both left and right-handed fields so the question arises — why are only
left-handed neutrinos detected in experiments?. In SM, a neutrino is distinct
from its antimatter partner but now that a neutrino has mass and both left
and right-handed field, is neutrino distinct from an antineutrino?. If there
is no distinction between neutrinos and antineutrinos, then the conservation
of lepton number? is not a fundamental law. The observation of neutrinoless
double beta decay (n — p+ e~ + 7, and then p + v, — n + e™) would clearly
show that v; = 7; and that L, the lepton number to distinguish v from an v,
is not conserved. If a neutrino and an antineutrino are same then neutrinos
are Majorana particles; a name to honour Ettore Majorana who first proposed
the possibility.

The objective of neutrino experiments is to answer these interesting ques-

!Place your right hand in front of your face and curl the fingers in the direction of
orbital motion of 7, shown in the figure 3.1, then the thumb will point to the direction of
momentum, as well as, the direction of spin. According to the right-hand rule, if fingers
of the right hand describe the sense of rotation then the thumb points in the direction of
spin. For a v, if fingers of the left hand describe a sense of rotation and thumb points
to the orientation of motion then using the right-hand rule, the spin direction comes up
to be opposite to the direction of motion (thumb). Hence neutrinos are left-handed and
antineutrinos are right-handed.

2y and 7 are distinguished by the lepton number L which is +1 for v and -1 for 7.
According to SM, the lepton number is conserved in weak interaction. Since v has no
charge, the lepton number is the only indicator to differentiate a v from an ». The speed
of a massive v would always be less than the speed of light in vacuum, therefore in theory
an observer can overtake a left-handed v and sees a right-handed v, thereby changing the
lepton number from +1 to -1.
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Figure 3.1: The handedness of Neutrinos in a pictorial form. Figure from [41].

tions by studying properties of neutrinos, for example, mass of each flavour,
mixing parameters, and magnetic moment. Since neutrinos interact very
weakly (0 ~ 2.5 x 107!8 barns for E, =10 MeV in *H [42|) with matter,
they are exploited to study the interactions that produced them. For exam-
ple, due to small interaction cross-sections, neutrinos emerge from the solar
core in 2 seconds while it takes heat ~ 10,000 to 170,000 years to percolate up
to the surface from the center [43]. Thus solar neutrinos are windows to an
understanding of the inner workings of the Sun. Similarly geo-neutrinos are
windows to the core of the Earth. Various models of supernova explosion were
tested using neutrinos from Supernova 1987a [45]. If observed, relic neutrinos
created during the Big Bang, can open up a new tool to observe the early
universe. Neutrinos are also a tool to investigate the weak interaction and
the Charge-Parity violation in the weak interaction. There are three genera-
tions of neutrinos. If there is a fourth generation of leptons and quarks then
neutrinos being of the lightest mass might be the first ones to be discovered.
Besides neutrinos, supernovae are predicted to emit gravitational waves (GW)
[48] when the core of the star collapses due to gravity. Einstein predicted
gravitational waves in his theory of General Relativity (GR) hence the goal of
experiments like Laser Interferometer Gravitational Wave (LIGO) and Laser

Interferometer Space Antenna (LISA) is to verify that the waves follow the
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model described in the General Relativity. The SN1987A neutrino data (total
11 events in three experiments), although limited, was enough to confirm the
baseline model of gravitational collapse as well as put limits on neutrino mass.
A detailed analysis of SN1987A is available at [44].

The direction of an electron scattered by a neutrino (v, +e~ — v, + €~
where y ise”, por 7.) is measured from the Cerenkov light cone, which is then
reconstructed to provide direction to the supernova. Combining the neutrino
data with the data from the gravitational waves detectors will help eliminate
the backgrounds in the gravitational waves experiments.

Neutrinos are studied extensively because they might lead to physics be-
yond the Standard Model. Observation of oscillation among neutrino species

is to-date the only concrete experimental evidence of a new physics.

3.3 Weak Interaction

Neutrino interactions are dominated by the weak force. Gravity is the only
other known force to interact with neutrinos but its effects are insignificant
in comparison to the weak interaction. Besides interacting with neutrinos,
weak force is also the only force capable of changing flavour of one quark into
another. It also has the distinction of being the only interaction® known to be
mediated by massive gauge bosons (W= and Z). Since weak interaction acts
on left-handed particles (right-handed anti-particles) it violates parity symme-
try maximally. The Charge-Parity (CP) violation by the weak interaction is a
not as strong effect. The examples of vertices of weak interaction are shown in
figure 3.2. Two of the vertices involved a charged boson W¥, hence they are
called Charged-Current (CC) interaction. The third one is called a Neutral

Current (NC) because it involves a Z° boson.

3Mass of gluons is assumed to be zero and [47] analyse upper limits on a possible gluon
mass.
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Figure 3.2: Charged current, neutral current and elastic scattering interac-
tions. For solar neutrinos, only v, interact with electrons via W*.
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3.4 Neutrino Oscillations

Neutrinos undergo flavour change along their journey from the core of the Sun
to the Earth, transforming from one flavour to another (v, to v, or v,), thus
evading detection by instruments designed to detect only v.. The idea of v
oscillation was introduced by physicist Bruno Pontecorvo [57] in 1957 and de-
veloped further to include oscillations in matter by Wolfenstein [58] and then
by Mikheyev and Smirnov [51|. Since Homestake, several experiments using
atmospheric, solar, accelerator and reactor neutrinos have confirmed observ-
ing a deficit/disappearance in the neutrino flux but in 2001 Solar Neutrino
Observatory conclusively proved that neutrino oscillation is the cause of the
deficit by providing a clear evidence of neutrino flavour change [26]. For an
early history on neutrino oscillations, refer to [49].

Neutrinos are created and observed through weak interaction as flavour
eigenstates (v, v, ;) but propagate as a linear mixture of mass eigenstates
(v1, V2, v3). While propagating, a neutrino is in a superposition of three flavour

eigenstates,

V) = Aclve) + Aulvy) + Arlvr) (3.1)

The flavour eigenstates and mass eigenstates are related by a mixing matrix
Uai, known as PMNS (PontecorvoUMakiUNakagawaUSakata matrix) matrix,
where the index v denotes the flavour state and ¢ the mass state. The mixing
angles 6;; gives the relationship between the flavour state i and the mass state
J-

V) = Z Uailvi) (3.2)

The mixing matrix is parametrized as:

1 0 0 C13 0 si3 671’6 C12 s12 O
U= 0 Ca3 S93 0 1 0 —S12 C12 0
0 —S93 Ca3 —S13 eié 0 C13 0 0 1
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where 6;; is the mixing angle, ¢;; = cos0;;, s;; = sin;; and ¢ is the Charge
Parity (CP) violating phase. The three mixing angles ( §,; - ij = 12, 13, 23),
and one complex phase angle § are four parameters determining the amount
of mixing. Since 6;3 is less than 13° [59], the central matrix is reduced to
the identity matrix and and Am2; > m?, makes it possible for mixing in the
remaining sectors, A3 and 615, to be approximated by a two flavour oscillation.
This approximation reduced the complication of neutrino mixing from three
sectors (ij = 12, 13, 23) to one sector (ij=12). For the two neutrino case, the

transformation matrix U is expressed as:

U cos @ sin f (3.3)
—sin 8 cos #

Ve =cosO vy +sinf vy (3.4)

vy = —sinf vy + cosf vy (3.5)

where v, is an admixture of v, and v, flavour states — v, = \%(VM —v), 1
and vy are mass eigenstates with masses m; and ms and 6 is the mixing angle.
The change with time (assuming two state system) for the electron neutrino
is:
Ve (t)) = |v1)e P cos 0 + |vp)e P sin 0 # v, (3.6)
Due to this change, there is a probability that at time t#0 an electron
neutrino will not be detected as an electron neutrino because it is no longer
an electron neutrino. The two states v, and vy propagate independently at
different speeds owing to their different masses, m; and my. The difference
in relative phase over time causes a periodic modification of the interference
between the two states resulting in a finite possibility that a neutrino created
as an v, will be observed as v,. Using natural units (b = ¢ = 1), the survival

probability of an v, with energy E, to be detected as an v, or v, after travelling
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a finite distance L is calculated from the above matrix to be:

Am? L
P, ., = 1 —sin?(26)sin® ( TE ) (3.7)
Am? L
P, ., =sin*(26)sin’ ( TE ) (3.8)
Am? =m5 —m? (3.9)

where Am? is the mass splitting between the first and second neutrino mass
eigenstates. Expressing Am? in eV?, L in km and E in GeV, equations (3.7)

and (3.8) are expressed as:

Am?(eV?) L(km)
T . 92
P, ., =1—sin"(20)sin (1.27 EGeV) )
Am?(eV?) L(km)
w2 2
Py, = sin(20)sin (1.27 E(GeV) )

The conversion probability(survival probability) that an v, will appear as v,
or v, /v, is dependent on energy as well as oscillation parameters Am? and
sin? (20). The frequency of the oscillation is controlled by Am? while the
amplitude, determined by measuring the difference between the total solar
neutrino flux (®B flux) and CC, is controlled by sin® (26). No flavour trans-
formation takes place if all neutrino flavours have equal mass (m; = msy) or
zero mass (m; = 0,me = 0). In order for oscillation to occur, at least one
neutrino flavour has to possess non-zero mass. The vacuum oscillation (L) is
a distance over which an v, after oscillation is detected as an v,. Hence, L,,

from the Equation (3.7) is

Am?L
sin2(%) =0 (3.10)
Am?L,
( 7 )_w (3.11)
4mE
L,= 12
v Am2 (3 )
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Redefining Equation (3.7) in terms of L,,

L
P, ., = 1—sin?(20) sinz(%) (3.13)
L
Py, = sin®(26) sinz(%) (3.14)
Putting back A and c in the (3.7) results in:
Am?2ctL
P =1 = sn(a)sin® (570 )

3.5 Mikheyev-Smirnov-Wolfenstein (MSW) Ef-
fect

The presence of matter complicates the simple formalism of neutrinos passing
through the vacuum. Neutrinos not only oscillate while propagating in space
but also oscillate while interacting with matter which changes its survival
probability, a phenomenon known as matter or "MSW" (Mikheyev-Smirnov-
Wolfenstein) effect. The neutrinos acquire effective masses from coherent scat-
tering processes in the matter. The coherent scattering of (v.e™ — v.e™) via
W= boson differentiates the electron neutrinos from the other neutrinos, as
shown in the elastic scattering diagram in figure 3.2. The MSW propagation

equation is:

zi vel _ 1 ’%”2 cos 20 + v/2GpN. AQ—’];ZQ sin? 6 Ve
dt v, 2 Am? in2 g Az—”blz cos 20 — \/2GEN, vy

2E (3.15)

where G is the Fermi constant and N, is the density of electrons in the
media through which the v travel. The factor of V2 was incorrectly omitted
in the original paper by Wolfenstein.

The additional term (\/§G rN) in the diagonal favours the electron neu-
trino since the only charged leptons in normal matter are electrons. The ad-

ditional interaction (term), shown in figure 3.2¢, results in a different forward
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scattering amplitude for electron neutrino relative to the other neutrino types
which changes its relative propagation and thereby its flavour superposition.
The difference between the potential experienced by the electron v, and other

flavours y of neutrino is:
AV =V, -V, = V2GrN, (3.16)

For neutrinos travelling through matter, Equations (3.4) and (3.5) are rewrit-
ten to show the relationship of mass eigenstates (v1,,, Vo, where m stands for
matter) in terms of flavour eigenstates (v., v, ), and the angles for vacuum and

matter oscillations are denoted by 6, and 6,, respectively.

Vim = COS O, Ve + 8in 0, v, (3.17)

Vo = —Sin by, ve + cos b, vy, (3.18)

where 6, is the matter mixing angle, defined by:

sin 26,

tan 26,, =
cos 20, — \/iGpNe#

(3.19)

where 6, is the mixing angle for the vacuum oscillation. The resonance occurs

when

E

20, —V2GpN,—— =
cos 20, \/_GF N

0 (3.20)

and 6, = 45°. At resonance the matrix (Equation (3.15)) becomes degenerate
since the diagonal terms are equal. Resonance can occur as neutrinos move
from high-density core to lower density further from the core.

Hence, when the resonance conditions are met maximal mixing can occur
even for small values of the vacuum mixing angle. The strength of the matter
oscillation depends on energy of neutrinos as well as density of the matter
through which the neutrinos are travelling. Therefore, neutrinos of different
energies can have different degrees of matter oscillation. Wolfenstein’s original

paper looked at a case of neutrinos passing through a slab of matter of constant
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density. Mikheyev and Smirnov realized that with varying density the diagonal
elements of the Equation (3.15) can become degenerate for certain values of
N, and neutrino energy (various combinations of N F) instead of one fixed v
energy E. Since the diagonal terms have an energy dependence, the suppression

of v, is a function of energy.

3.5.1 Variable Electron Density

The Sun has a variable electron density, hence N, is changing as neutrinos
propagate through variable density medium. The electron density at the core
of the Sun, where neutrinos are created, is at the highest. Hence 0, ~ 7/2
from Equation (3.19); substituting in Equation (3.18) results in electron neu-
trinos to be in vy, mass state. As the neutrinos propagate outwards, the
density is decreasing. At the surface, N, ~ 0 hence sin®26,, ~ sin? 26, from
Equation (3.19), therefore, 15, mass state consist of both v, and v, flavours.
At the core vy, consist of v, only and at the surface vy, is the admixture of
ve and v,. If the density is changing adiabatically, neutrinos will encounter
a layer where the resonance happens resulting in the flavour transformation.
Resonant conversion means that the oscillation probability reaches its maxi-

mum amplitude and does not depend on the vacuum mixing angle 6,,.

3.6 Predictions from MSW

The MSW effect leaves three distinct signatures on the observed neutrino

spectrum.

1. Matter Enhanced Oscillation

The ratio of the total number of detected neutrinos (NC in SNO) to
the electron neutrinos deduced from the CC interaction provides nearly

unequivocal evidence for neutrino oscillation. For the null hypothesis
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(no oscillation) the ratio should be one; from the vacuum oscillation, the
minimum ratio should be 0.5 (Refer to Section 3.4). From the final SNO

NCD analysis [29], the ratio is:

PoC _ 0301 + 0.033(total). (3.21)

ngC

So although the data from the solar experiments indicate oscillation en-
hanced by matter, MSW theory also makes two additional experimen-

tally testable predictions, neither of which have been observed.

. Spectral Distortion

Since the survival probability is a function of neutrino energy and the
oscillation parameters (Am? and 0), the spectral distortion is a compli-
cated function. The resonance condition is never met for the low energy
neutrinos; high energy neutrinos encounter a resonance phenomenon that
suppressed electron neutrino flux for a certain values of the vacuum os-
cillation parameters, hence the 8B neutrino spectral distribution is dis-

torted.

. Day-Night Effect

The day-night asymmetry (Apy) in neutrino flux is expressed as:
(3.22)

where ¢p and ¢y are the day and night ®B flux respectively. The dif-
ference in the number of neutrinos detected from above (¢p - neutrinos
pass through very little of the Earth’s matter) to the number detected
from below (¢ - neutrinos travel through large amounts of the Earth)
results in the day-night asymmetry. This is caused by v — e interactions

in the Earth that regenerate the v, from v, or v,. The solar oscillation
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parameters predict fairly small Apy (about 1.5% [52]) hence the prereq-
uisite of measuring the day-night asymmetry is an excellent control of
systematic effects to reduce systematic uncertainty and a large sample

of data to reduce statistical uncertainty.

3.7 Experimental Evidence for Neutrino Oscil-
lation

The weakness of the weak interaction makes it necessary for a neutrino ex-
periment to have an intense source of neutrinos or a huge detector to detect
neutrinos [54]. The source employed dictates the sensitivity of an experiment

to the three sectors of neutrino oscillation.

3.7.1 Atmospheric Neutrinos

The collision of cosmic rays with nuclei in the upper atmosphere creates a
shower of hadrons, mostly pions which decay to atmospheric neutrinos as

shown in the following equations.

T =+, (3.23)
poo—=e v, + 7. (3.24)
™=t +, (3.25)
pt=et v +7, (3.26)

At low energies (E, <1 GeV) there are approximately two v, +7,, produced for

each v, + 7, as a consequence of the above decay sequence. The flavour ratio,

vy + v,
Ve + 7,

R = (3.27)

is a function of energy. As the energy of neutrinos increases above one GeV,
relativistic muons can reach the ground before they decay [53], therefore, the

ratio increases. Super-Kamiokande (SuperK) is a water Cerenkov detector
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which detects electron neutrino and muon neutrino by their interaction with
the nuclei of hydrogen and oxygen in the 22.5 kiloton central fiducial mass of
water [46]. The neutrino flavour is tagged by detecting and identifying the
resulting charged lepton. The direction of Cerenkov ring corresponds to the
direction of the outgoing lepton which is correlated to the incoming neutrino.
Similarly the amount of Cerenkov light corresponds to the kinetic energy of
lepton (electrons or stopped muons?) which is correlated with the neutrino
energy. The distance travelled by the incoming neutrino is determined by the
arrival angle of the incoming neutrino with respect to the overhead point for
an observer (zenith). The range of flight distances from 15 km to 13 000 km
(15 km for vertically downward-going neutrinos and 13 000 km for vertically-
upward neutrinos) and the broad neutrino energy spectrum from sub-GeV
to multi-GeV makes the atmospheric neutrinos excellent probes of #,3 and
Am2, sector of neutrino oscillation. Also experiments detecting atmospheric
neutrinos are sensitive to oscillations with Am? down to 107* eV? [18]. The

result of the search is:

Y
= L 3.28
X ” (3.28)
XD _ 0.63 + 0.03(stat) 4 0.05(syst) (3.29)
xXp

where xp is the ratio of the number of muon neutrino to the number of electron
neutrino from the data and xp is the ratio from the prediction. Considering
the simple kinematics of pion decay, the ratio (R from equation (3.27)) is
well predicted which entails that the ratio f{—g is expected to be 1.0. Cos-
mic rays are randomized by interstellar magnetic field, therefore they arrive
at the Earth isotropically. Furthermore, cosmic rays, producing neutrinos

with energy above 10 GeV, are not deflected by the Earth’s magnetic field;

4Stopped muons are "fully contained" events and muons deposit all kinetic energy in the
detector whereas "partially contained" event is where a particle exits the fiducial volume
depositing only partial energy.
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consequently the cos € distribution should be symmetric and the number of
atmospheric neutrino should be equal for equal bins with 4+ cos # and — cos 6.
However the result of the experiment was not consistent with this scenario.
Besides the ratio (R), the up/down asymmetry (A= %) predicted to be

zero is greater than 6 standard deviations from the expected [78]. The mixing

Super —Kamiokande 545 days Preliminary
T T T T T T i T T T T T T T T

| multi-GeV e-like multi- GeV mu-like (FC+PC)
150 - 4 r -

100 — 1

# Data

[ Predicted

—— numu-nutau osc.

pl— R E E N T R
-1 =06 -02 02 08 1 -1 =06 -02 02 08 1

cos(zenith angle) cos(zenith angle)

Figure 3.3: Plot shows the cos @ distributions for electron neutrinos () and
muon neutrinos (v,). The cos# distribution for v, is symmetric and fits the
prediction but the distribution for the v, is not symmetric. The cos 6 distribu-
tion for the muon neutrinos does not fit the expected but neutrino oscillation
model fits the data. Figure from [77].

angle for atmospheric neutrinos is at its maximum which points to a complete

mixing of flavours.

3.8 Solar Neutrinos

In 2001 Sudbury Neutrino Observatory in Canada provided the first direct
evidence of solar neutrino oscillation. The result from the extensive statistical
analysis was that 35% of the arriving neutrinos are electron neutrinos, the

remaining consist of muon neutrinos or tau neutrinos. The total number of
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neutrinos agreed well with the SSM predictions based on the fusion reactions
inside the Sun. The result from SNO also confirmed the interpretation of the
anomaly of atmospheric neutrinos in terms of neutrino oscillations. A positive

evidence for neutrino oscillations is a prof of non-zero rest mass of the neutrino.

3.8.1 Accelerator Neutrinos

The goal of experiments at accelerators is to perform precise measurement of
oscillation parameters (Am32, and sin3,), determine the pattern of neutrino
masses and investigate charge-parity (CP) violation in the neutrino sector.

The probability of conversion of v, to v; is:

Am?L
P, = sin® 20 sin® ( 4’2 ) (3.30)
For determining the oscillation parameters:
Am?2ctL
—>1 3.31
4chFE, (3:31)
For smaller L/E,:
0~0
sinf ~ 6
.2 a2, Lo
Py, sy, ocsin® 20 (Am?)* (=) (3.32)

E,

Table 3.1 lists the neutrino path lengths of various experiments.

Experiment L (km)
K2K (Kek to Kamioka beam) 250
Fermilab to MINOS 730

CHGS (Cern to Gran Sasso) 730
JHF (Japan Hadron Facility) 290

Table 3.1: Path lengths L of various experiments. Table from [60].
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3.8.2 Reactor Neutrinos

The first neutrinos to be detected by Federick Reines and Clyde Cowan were
antineutrinos from a reactor adjacent to the Savannah River. For the detec-
tion, the detector uses the inverse beta decay (7 + p — n + e); the prompt
photons, emitted when e annihilates with an electron of matter, are followed
by a delayed photon when the neutron is absorbed by matter. The coinci-
dence window within which the prompt and the delayed photons are emitted
allowed the neutrino interactions to be separated from the backgrounds due
to radioactivity and cosmic rays. The most precise measurement of antineu-
trinos from reactors was achieved by KamLAND. From the KamLAND high

precision results, the oscillation pattern in the L/E is shown in figure 3.4.

258 v, — v, events observed.

365.2 + 23.7 were the expected events without oscillations.
17.8 £ 7.3 expected background events.
disappearance confirmed at 99.998% C.L.
energy spectrum shows distortions with 99.6% C.L.

best-fit of KamLAND: Am? = 7.970¢ x 107°eV/?
best-fit of KamLAND + solar data: Am? = 7.975:% x 107°eV2, tan? § = 0.40

+0.16
—0.07

Table 3.2: KamLAND result on 1 November 2004. Data from [20]

3.8.3 Oscillation Parameters - 615 and Am},

All of the solar neutrino results were combined to obtain the best estimate
for the solar neutrino mixing parameters. The allowed regions in Am? and
tan? 0 from x? fit to data from all three phases of SNO is shown in figure 3.5a.
From the global analysis of all solar neutrino data and the 2881 ton-year
KamLAND reactor antineutrino results, the allowed regions are shown in fig-

ures 3.5b and 3.5¢. The best-fit point to the Solar global plus KamLAND data
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Figure 3.4: KamLAND obtained oscillation parameters from two cycles of
L/E. Figure from [20].

yields Am? = 7.597530 x 107°eV? and 0 = 34.471 degrees, where the errors
reflect marginalized 1-0 range. The mixing parameter space strongly favours

the large mixing angle (LMA) region® and the maximal mixing is ruled out

with very high significance — 5.30.

5The mass square difference Am? ranges between the mass eigenstates from about 3 to
9 x107° eV? while the mixing angle 6 is in the range of tan® 6 ~ 0.25 — 0.65.
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Figure 3.5: Neutrino-oscillation contours. (a) all three phases of SNO. The
best-fit point is Am? = 4.57 x 107°eV?, tan® 0 = 0.447, fg = 0.900, with
x%/d.o.f = 73.77/72. (b) Solar Global: SNO, SK, Cl, Ga, Borexino. The
best-fit point is Am? = 4.90 x 107°eV?, tan? 0§ = 0.437, fz = 0.916. (c) Solar
Global +KamLAND. The best-fit point is Am? = 7.59 x 107%eV?, tan%0 =
0.468, fz = 0.864. KamLAND constrains Am? and Solar Global constraints
tan® 6. Figure from [29].
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Chapter 4

Signal Extraction Techniques

4.1 Introduction

In SNO data, it is impossible to distinguish CC, ES and NC event-by-event
because the signal consist of the Cerenkov light from a recoil or Compton
scattered electron. Hence the number of events, belonging to each event type,
is estimated using a Markov Chain Monte Carlo fit. MCMC relies on the
extended likelihood function to randomly draw samples of the posterior dis-
tributions for analysis. This section describes the likelihood function for the
combined three phase analysis of SNO data and all the components that go in

to it. The likelihood function begins with a list of all possible event types:
1. Charged current electrons — CC
2. Elastic scattering electrons — ES
3. Neutral current neutrons — NC

4. Background from («, n) reactions on the surface of the acrylic vessel +

NCD cables - EX
5. Background from atmospheric neutrinos — Atmos

6. Background from the internal radioactivity in the D,O — dsopd
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7. Backgrounds from increased radioactivity "hot spots" on NCD string K2
- k2pd

8. Background from increased radioactivity "hot spots" on NCD string K5
- kb5pd

9. Backgrounds from NCDs — ncdpd
10. hep CC — CC initiated by hep v
11. hep ES — ES initiated by hep v
12. hep NC — NC initiated by hep v

The observables used to distinguish the signals in the NCD phase, analysed
in this thesis, are the event’s reconstructed energy (E), reconstructed direc-
tion with respect to the Sun (cos 6), and the events’s reconstructed position
(x,y,2). A radial parameter, p, is calculated as p = (/22 + 42 + 22/Ray)?
where R4y = 600.5 cm is the radius of the acrylic vessel. The reconstruc-
tion technique that generate these observables for each event are described in

section 4.8.

4.2 Generation of Probability Distribution Func-
tion

The likelihood method requires a Probability Distribution Function (PDF) for
each event type in the dataset. The PDFs should be constructed to maximize
the use of the available information while minimizing any bias in the fit. The
correlations between observables were taken into account by building 3D PDFs
for all signals and backgrounds in the fit. For the NCD phase, the three
observables were volume-weighted variable p, the cosine of scattering angle

with respect to the Sun-Earth direction cos s, and effective recoil electron
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energy (Tyg). The 3D PDFs were built, according to the table 4.1, from Monte
Carlo generated events. The fiducial volume for the SNO analysis is 550 cm,
hence ppar =~ 0.77. Careful choice of a bin width has an impact on the bias
of the signal extraction. The bins should be narrow enough to fully define the
shape of the distribution so that no information is lost. However, statistical
fluctuation due to too narrow bin can distort the PDF shape and produce a

noticeable effect on the fit result.

Observable | Number Range Bin Width
of Bins
P 10 0 to 0.77025 0.0770
cos Oy 25 -1.0 to +1.0 0.08
Energy Tog 13 6 to 20 MeV 0.5 MeV from 6-12 MeV
bin 13 has events from 12-20 MeV

Table 4.1: Ranges and binning used for each observable in the 3D PDFs.

4.3 Signals and Backgrounds

The backgrounds in SNO consist of cosmic rays, muons, instrumental back-
grounds and natural radioactivity from 23®U and ?*Th decay chains. The
design of SNO, with signals expected in a few tens of events per day, was dic-
tated largely by shielding and radioactivity considerations. All materials used
in the construction of SNO were carefully selected to ensure that the neutrino
signal was not overwhelmed by the radioactive backgrounds. Going from the
outer to the inner regions (Various regions of SNO are shown in figure 2.3),
the levels of uranium and thorium are on the order of parts per million for the
rock, parts per billion for the PSUP, parts per trillion for the AV and parts per

10% for the DoO. The first three items (cosmic rays, muons and instrumental
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backgrounds) can be removed by the low level cuts' applied to the data. The
radioactive backgrounds, still remaining in the data after the low-level cuts,
are classified as external and internal backgrounds: internal backgrounds are
those events occurring within the D,O volume itself and the external events
are events occurring outside the D,O volume, that is, on the AV, in the H,O
and/or the glass of the PMTs. The external backgrounds consist of 8 — v
from the PMTs, 2Bi and 2%TI in AV and H,O. The internal backgrounds
are due to 2MBi and 2°TI in the D5O. Thorium and uranium in the NCD
nickel (bulk) and the presence of two areas of increased activity [strings K2
and K5], referred to as hot spots, increased the amount of radioactivity in the
detector [65].

The CC, ES, and NC event types, from the list in Section 4.1, are initiated
by neutrinos but the EX, Atmospheric and dsopd are due to neutron capture
on 2H. The intrinsic radioactivity backgrounds in the detector and from the
surrounding rocks in the cavity are due to 232U and 2*?Th decay chains, de-
scribed in tables A.2 and A.1. Besides the direct radiations, produced by these
radionuclides, alphas and neutrons (byproducts of the radiations) produce in-
direct radiations by interacting mostly through reactions (a,py) and (a,n)
with various light elements, in particular 2*Si, 3°Si, 2"Al, 20Mg, and *Na. The
neutrons released in these reactions or those from the spontaneous fission can
be captured to produce y-rays with energies extending up to nearly 10 MeV.
These v-rays can penetrate the detector and are the main source of background
emanating from the rock walls of the detector cavity. Backgrounds set a limit

on the low energy threshold for the analysis since the finite energy and spatial

'Low level cuts are: remove bursts of light which last for microseconds or longer, remove
events when a single PMT or small set of adjacent PMTs record a very high charge, remove
events when the charge integrate to zero (electronic noise), remove PMT hits without a
global trigger (orphans) or where a PMT is hit multiple times (burst event), remove events
which also include hits on outward looking PMTs, or on special PMTs installed in the neck,
and eliminate events which occur less than 20 seconds after a muon, or 250 milliseconds
after a likely atmospheric neutrino.
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resolution of the detector will allow a fraction of these events to be inseparable

from the solar neutrino events.

4.4 Neutral Current Backgrounds

The neutral current reaction (v, +d — v, + p + n) with the release of a
detectable neutron is unique to SNO and has its corresponding unique back-
grounds. Any event mimicking the neutrino disintegration of 2H is a back-
ground to NC. The most important source of these background neutrons are
photo-disintegration neutrons. A gamma ray (y-ray) with energy greater or
equal to 2.2 MeV can split a deuterium into a proton and a free neutron
through a process called photo-disintegration. The background neutrons are
not distinguishable from the neutrons released when neutrinos with at least
2.2 MeV split deuterium nuclei into protons and neutrons. There are only
two 3 — 7 decays in the 238U and 232Th chains that can produce sufficiently
energetic gammas to contribute to photo-disintegration — 2'*Bi and 2°®T1. The
208 nuclei came largely from decays of intrinsic 2*2Th though the most likely
source of 214Bi is from decays of 22Rn entering the detector from mine air and
the remaining 2'4Bi nuclei originated from decays of intrinsic ?*3U. The decay
schemes of 214Bi to 2'Po and 2°*T1 to 2°°Pb are outlined in figure 4.1.

One source of external neutrons is the (a,n) reaction. During the con-
struction, Radon #*?Rn (from the ??U chain) in the mine air came in contact
with the acrylic surface. The decay product of radon that decayed within the
interior volume of the vessel are carried by electric fields to the surface, where
they are deposited and subsequently decay to 2!°Pb which covers the surface
of the detector. This is a problem since ?'°Pb, with a half-life (T /) of 22.3
years, is a long-lived source of 2°Po. When 21°Po decays to 2°Pb, it emits a
5.4 MeV « which can interact primarily with light elements (?H,3C 17O and

180 in H,0, D,O and acrylic (C5HgO3)) emitting a free neutron. The largest
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Figure 4.1: Simplified decay schemes for 2!Bi and 2°®T1. Blue lines (going
straight down) represent 7 transitions and red lines (slant in direction) repre-
sent 3 transitions. A 4 with minimum 2.2 MeV can photo-disintegrate a 2H.
Figure from [65].

source of (a,n) reactions was the acrylic. The deployment of NCDs in the
D,O also contributed to (c,n) reactions. Even though the NCDs were elec-
tropolished, a small amount of 2!°Po remained on the surfaces of NCDs which
contributed to the total number of neutrons produced by («a,n) reactions. Us-
ing an external o counter on a representative sample of the NCDs, the rate
of neutron production was determined to be 1.38 £ 0.28 x 1072 neutrons per
day [66]. Another source of external neutrons is the photo-disintegration of
deuterium from ~ rays that originate outside the D,O volume.

Neutrons from internal photo-disintegration are not discernible from NC
neutrons so the intrinsic radioactivity was measured independently and its
neutron production was subtracted from the final NC result. External neu-
trons, on the other hand, have a distinct radial profile — as shown in blue in
figure 4.3 — which enables MCMC to statistically tell them apart from signals

and other backgrounds.
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4.5 Low-Energy (5 — v decays

Although the energy threshold of 6.0 MeV is above the energies of g particles
and 7 rays produced in natural radioactive decay, there are three ways in
which these events may be reconstructed to resemble a neutrino event in the
fiducial volume (i) the combined signals from coincident § particles and =y
rays or the random coincidences of two or more decays may exceed the trigger
threshold and hence contribute to the data (ii) a neutron, released by a low-
energy (at least 2.2 MeV) v ray induced photo-disintegration of ?H, mimicking
an NC event (iii) even though the radioactivity decay rate in ~ 10,000 PMTs
is 10® to 10? decay per day?, the events rarely reconstruct in the DO volume
because the PMTs are located far away from the D,O and the presence of
H5;0 between PMTs and D50 shields the volume of interest from the 5 — v
decays of the PMTs. However multiple events in the PMTs or from the PMTs
and other materials happening in coincidence, within the trigger time window,
will occasionally be reconstructed into the DoO volume. Single [ activity in
a particular PMT glass is easier to reject because a large signal is confined to

that particular PMT.

4.6 Atmospheric Neutrinos, Muons and Muon
Followers

The only particles which can penetrate the 2,039 metres of rock overburden
and enter the sensitive volume of SNO are neutrinos and high energy muons.
Atmospheric neutrinos constitute as background to the solar neutrinos but 1
event per 1 Gigagram per year per 10 MeV bin width is not significant for

SNO [67]. Most of the atmospheric v interactions deposit a large (> 20 MeV)

2Statistically, with 10° decays/day there are events with a high energy but they are
rejected because of their large reconstruction error.
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amount of energy and multiple charge particles at the interaction vertex® but
a small number of interactions release single neutrons (the elastic scattering
of v, + n — v, + n and resonance production of pions via v, +p - AT —
v, +7n) or low energy photons without a detectable tag. Furthermore, there
is a possibility of a v interaction creating an excited state of 1°0O* that de-
excites to give photons in 6 MeV range which is a background for the charged
current analysis.

Muons, at a rate of approximately 3 per hour in SNO, are also not a sig-
nificant background since the energy deposited in the detector is much greater
than the energy deposited by neutrino induced events. The problems with
muons are the spallation* products they generate when they interact with hy-
drogen and oxygen nuclei in the detector. Muon-induced 'O spallation prod-
ucts, such as, ®B, ?B and ?N are high-energy S emitters (13 to 16 MeV en-
ergies) with half-lives between 10 to 800 milliseconds. These spallation events
are identified by their characteristic time signature, a high energy muon signal
followed by a [ decay signal. The spallation products are mostly neutrons
which lead to a signal that is indistinguishable from the NC neutrino signal.
The leakage of the spallation neutron events into the dataset is less than 0.014
neutrons per day for the DyO phase compared to ~ 1.3 neutrons/day [68§]
from the radioactivity in the detector. We include it in the list of other back-
grounds, which are small, but which are tallied, along with an uncertainty,
and subtracted from the NC signal. When 150 PMTs are hit or/and five
outward looking PMTs are also hit, the events are tagged as muon events.
Events occurring within 20 seconds of an event, tagged as muon event, are
also removed to prevent spallation neutrons (muon followers) from entering

the dataset. An additional neutron background cut imposed a 250x 1073 dead

3These events are cut by a burst cut and the energy cut (6 > E < 20 MeV)
“4spallation is a high-energy nuclear reaction in which several nucleons are released from
the nucleus of a target atom.
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time (in software) following every event in which the total number of PMTs

which registered a hit exceeded 60 [10].

4.7 Backgrounds to Charged Current and Elas-
tic Scattering

Energetic electrons due to 5 decay and Compton-Scattered v rays (v + e~ —
v + €7) which reconstruct inside the fiducial volume constitute backgrounds
to CC (e +d - p+p+e”) and ES (v, + e~ — v, +e7). The sources of
[ decays, shown in tables A.2 and A.1 and the main sources of v rays with
energy exceeding 2.2 MeV are 2.445 MeV ~-ray from the decay of 2Bi and
2.615 MeV ~-ray from the decay of 2*®T1 shown in figure 4.1.

Additionally neutrons from NC, from photo-disintegration of ?H and from
outside the D,O vessel can be captured by ?H producing a 6.25 MeV ~-ray. In
the salt phase, a neutron capture in chlorine resulted in a cascade of v rays with
a total energy of 8.65 MeV. The gamma rays, from neutron capture, imparts
energy via Compton scattering to electrons beyond Cerenkov threshold, thus
making them similar to CC or ES electrons. In the NCD phase, a neutron
captured in the NCDs did not constitute as a background to the CC and ES
interactions resulting in reduced uncertainty on the number of CC events in

the NCD phase.

4.8 Observables

Observables are the reconstructed attributes of an event derived from the hit
patterns recorded by the PMTs of the detector. For SNO, the observables
for statistically separating the signals and backgrounds in the NCD phase are
energy (T.g) radial position (p) and direction of an event relative to the Sun

(cos 0g). Distributions shown in figures 4.2 to 4.5 were used to create prob-
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ability distribution functions (PDFs) for performing an extended maximum
likelihood fit to the data using MCMC Metropolis algorithm. These PDFs
were generated from Monte Carlo simulations assuming no flavour transforma-
tion and the shape of the standard 8B spectrum. The Monte Carlo simulation
included a detailed model of the physics of neutrino interactions and radioac-
tive decays within the detector and a meticulous description of the detector

geometry.

4.8.1 Energy

The reconstructed kinetic energy of an event, called Ty, is the most probable
energy of a single electron that produced the hit pattern of PMTs observed.
The CC, ES and ES,,; spectra depend on the shape of incident neutrino spec-
trum. The observable energy is very important for separating g decays or ~
rays from neutron capture from the higher energy neutrino-events which also
produce electrons. Figure 4.2 shows the energy distribution of NC, CC, EX,
K5PD and NCDPD along with a line at the 6.0 MeV energy threshold.

4.8.2 Vertex of Event

One of the observable is a vertex (x,y,z) where the event occurred. For con-
venience, when making the PDFs, instead of using the vertex, the normalized

cubic radius (p = ()3, R4y = 600 cm) is used because of the spherical

Rav

shape of the detector (figure 2.1). The radial distance (R) is calculated as:
R= /(22 4+y*+ 2?) (4.1)

In terms of p, an event on the surface of AV will have p =1 and an event
at the center will have p =0 , and events distributed uniformly throughout
the detector will have a flat distribution in p. Figure 4.3 illustrate radial
distributions of NC, CC, EX and NCDPD along with fiducial volume cut at
p < 0.77025.
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Figure 4.2: Distribution of energy for for NC, CC, EX, K5PD and NCDPD in
the energy window of 5-20 MeV. For this plot fiducial volume cut is applied
at p < 0.77025.

Radial position is important in separating external events from the internal
events; compare the radial distribution of external neutrons in blue to NCDPD
neutrons in green in figure 4.3. This shows that p is a very useful tool in
statistically separating external from the internal backgrounds, for instance
NCDPD. As a neutron thermalizes, it wanders off and since hydrogen in the
acrylic (CsHgOs) and light water (H,O) is an efficient neutron sink, the radial
distribution of NC (in red) is not as flat as the radial distribution of CC (in
cyan) in figure 4.3. Hence radial distribution also provides a weak handle
on NC events. Although the D;O volume extends to R=600 cm, background
events from the rest of the detector leak into this volume. By defining a fiducial

volume of 550 cm, a large number of these events were rejected.
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Figure 4.3: The normalized radial distribution for the NC, CC, and EX in the
energy window of 6-20 MeV. The power of p to separate the external events
from the internal events is very clear as external backgrounds have a steep
distribution in p. Energy range for this plot is 6 to 20 MeV.
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Figure 4.4: Distribution of Cos 6 for EX, CC, ES and NC. Both energy
(6.0< E < 20) and fiducial volume (p < 0.77025) cuts are applied to plot the
distributions. ES peak at cos § ~ 1 pointing away from the Sun proves that
Sun is the origin of neutrinos.

4.8.3 Cosine 6

Cosine 6 is a reconstructed direction of an event relative to the direction of
a v arriving from the Sun. Cosine # = 1 means forward scattered electron
and Cosine §=-1 means electron scattered in the backward direction. Recoil
electrons from ES have a strong forward scattering peak (figure 4.4.). This
confirms that the Sun is the source of neutrinos. The angular correlation is
key to separate ES events from other events in SNO.

The recoil electrons from CC also have a weak angular dependence as shown
in figure 4.5. The distribution of angles between the incident neutrino and the
recoil electron is described as: 1 —0.340 cos 0 [69]. This feature was used to
help separate CC from other signals and backgrounds in SNO.

The NC distribution is flat because a v from a neutron capture has no
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Figure 4.5: Distribution of Cos 6, for CC (dotted line in pink). Both energy
(6.0< E < 20) and fiducial volume (p < 0.77025) cuts are applied to plot the
distributions. For comparison the distributions of Cos 6 for NC and EX is
also included.

memory of the incident neutrino direction and since backgrounds had no cor-

relation with the Sun’s position in the sky, they also exhibited a completely

flat distribution.

4.9 Data Selection Cuts

One example of instrumental backgrounds is static discharges inside the PMTs,
which generate flashes of light. Such events are called "flashers" for any given
PMT. Although flashers are rare, they contribute significantly when integrated
over the entire array. The events belonging to instrumental backgrounds are
distinguishable from Cerenkov light and so can be identified and removed based
on an analysis of charge and timing distribution of the triggered PMTs, the
spatial distribution of PMT hits and/or the firing of specific photomultiplier
veto tubes. A number of cuts were applied in the analysis to remove the

instrumental backgrounds; these are fully described in reference |70]. Each cut
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returns a simple binary decision which was stored in a Data Analysis Mask
Number (DAMN) bank. A DAMN mask is applied to the dataset in a bitwise
manner to select events passing specific cuts for a specific analysis. Another
level of cuts, applied both to the Monte Carlo and the real data, are called
high level cuts. These are applied to the reconstructed quantities, for example,
event energy, event position and direction and event time. Backgrounds which
originate outside of the fiducial volume but reconstructed far from the their
true location will generally have very unusual hit patterns. The purpose of

high-level cuts are to remove these events. Examples of high-level cuts include:

e In-Time Ratio (ITR): ITR is a ratio of the number of PMTs hit in the
prompt time window of +10 nanoseconds compared to the number of
PMTs hit outside the window. The ITR cut is ITR> 0.55. A Cerenkov
event was fairly instantaneous, therefore had a high ITR~ 0.75; misre-
constructed and non-Cerenkov events, such as electronic noise, produced

light which was spread over a longer period of time and consequently had

smaller values of ITR.

e The energy estimator, for the D,O and Salt phases, returns a most prob-
able energy, as well as an uncertainty on the energy. Since misrecon-
structed events tend to have very large uncertainties, they can be thus

removed.

The high-level cuts are: p <0.77025,-1< Cos 0, <1.0 and 6 MeV < energy<20 MeV.

4.10 The Likelihood Function

The likelihood of an event is a probability of observing that event given the
measured values (Z;) of the observables (Energy, cos 0, p) and models of event

classes (PDFs) to which that event might belong. The likelihood function is
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the product of the probabilities for each event in the dataset:
Np
L=][F(.P) (4.2)
d=1

where Np is a number of events in the dataset, Z; are the values measured
for observables for an event d and F(Z,, ]3) is the probability density func-
tion returning the probability of observing the event with observables ¥; and
the current values of the fit parameters P. The SNO dataset consists of dif-
ferent signal classes. In this case, the probability of measuring a specific set
of observable values (Z;) becomes a linear combination of the probability of

measuring those values for an event of each signal type:

Ns
F(ig, P) = ciFi(7, P) (4.3)
=1
N N
=Y - E(E P) (1.4
i=1 Np

where Ny is the total number of signals in the fit, ¢; is a component of P

representing the probability of observing an event of signal type ¢ which is the

ng

Np

fraction of the events of that type in the dataset (4), n; is the number of

events belonging to signal type ¢ in the dataset, Np is the number of events in
the dataset and F;(Zy, 15) is the probability of event type ¢ having observables
values (#y) and the current values of the fit parameters P. The number of
events observed in the dataset is actually Poisson distributed around the true
mean value of the model, g. The number of events for a signal type i (n;)
represents Poisson fluctuation about the value ;. In order to fit for the true

value p; for each signal, the Poisson fluctuation of n; is taken into consideration

in the likelihood function. The extended likelihood function is:

=Nl [11#F(E, P) (4.5)



N
where p = ZM such that pu; = pu(n;/Np). Taking the log of the likelihood

i=1
function:

N

log L =—p—log Np! + XD: log (1F (%4, 15)) (4.6)
d=1

Ignoring log Np! because it is a constant number and has no influence on the

posterior distribution and substituting equation (4.4) in the above equation

results in the following equation:

Ns Np N

log £==Y i+ Y log(ny (n/Np)Fi(Za, P)) (4.7)

i=1 d=1 —

1

7

Substituting p; = pu(n;/Np) results in:

Ny Np Ns .
log £=— pi+y log (D uiFi(Za,P)) (4.8)
1=1 d=1 i=1

where P (which include ;) are the parameters fitted in the MCMC fit.
Taking into account the day-night asymmetry due to MSW effect and the

detector response, the likelihood equation changes to:

2Ng Np 2N

log £==Y i+ log (> pFi(7s, P)) (4.9)
=1 d=1 =1

where each event class was split into two cases: day and night.

This is a simple likelihood function without any constraints or floating sys-
tematic uncertainties. From this point on, I will explain different components
that go into the calculation of a number of events; application of different
systematic uncertainties (Subsection 4.10.3), constraints applied on the sys-
tematic uncertainties (Subsection 4.10.4) and the role the systematic uncer-
tainties play in the calculation of the number of events (Subsection 4.10.5),
floating PMT NC detection efficiency (Subsection 4.10.1), constraints applied
from external measurements on the number of events (Subsection 4.10.6), the

role of survival probability of v in computing the number of events of CC,
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ES and ES,; (Subsection 4.10.7), constraints applied from different analysis
(Subsections 4.10.8 and 4.10.9) to reduce the systematic uncertainties of the
final result from the MCMC fit. Subsection 4.11 is a synopsis on the com-
putation of the number of events of different event classes and at the end in
the summary 4.13 all the components of the log likelihood will be combined
in the final log likelihood function (4.80). Section 4.12 describes determining

the goodness of a fit by performing pull and bias study of the fit.

4.10.1 Flux to Event Conversion Factor (F2EF) and Fidu-
cial Volume Correction — S;

One of the parameters, neutron capture efficiency, is floated via flux-to-event
conversion factor which includes livetime, neutron detection efficiency and cor-
rection factors. F2EF is used to convert the number of events, that passed the

high-level cuts, into a flux; F2EF for NC is calculated as:

Nmodeh — R LT €ne €corr (4.10)
Nmodel
F2EF = f,, = —"1c (4.11)
PSNOMAN

where LT=392.89 days is the livetime of the NCD phase, ¢gnOMAN 18 NC
flux in Monte Carlo (5.14x vs10%cm™2sec™), €,. = 0.0485 is the neutron
capture efficiency for the PMTs in the NCD phase and R,. = 13.27 is the
rate of neutrons per day expected in SNO after high level cuts. Since the
simulation does not mirror the data perfectly, corrections ecorr are applied to
the number of the predicted events.

The fiducial volume correction is calculated each time the parameters are
changed which entails rebuilding the PDFs for the changed values of the pa-
rameters; S; is a ratio of the number of events (N} for step k in MCMC)
inside the p, Energy and Cos 6 cuts for the current values of the systematic

parameters to the number of events (Nénéfault) passing the same cuts for the
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default systematic parameters used to build PDFs from the SNOMAN Monte
Carlo. Mathematically expressed as:
Ny

Si = Nme
Ndefault

(4.12)

4.10.2 Calculation of the Number of Events for the Neu-
tral Current and the Backgrounds

This section describes the methodology for calculating the expected number of
day (equation (4.20)) and night (equation (4.21)) events for the backgrounds:
EX, dyopd, atmospheric neutrinos, k2pd, kbpd and ncdpd. To take into ac-
count the possibility that a systematic uncertainty or number of events for a
background might have different values for a day and night data, a day-night
analysis was carried out [92]. One option is to split the uncertainty into two
uncertainties $; and [, where [, is used when calculating fluxes or build-
ing /normalizing the PDFs for the day while 3, is used for the night data. A
better option is to float an average on [ and an effective day-night asymmetry

on . Mathematically expressed as:

b= M (4.13)
_ 2(571 - ﬁd)
Ap = —(ﬂn A (4.14)

Inverting these two equations gives /3, and 3, in terms of 5 and Ag.

B = (1+ Ag/2)B (4.15)
Pa=(1-A5/2)5 (4.16)
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AZQ(rn+rd (4.17)

rq+ Tn
=T ;LT (4.18)
a= (4.19)
Npay = a Z[”(% (1.0 — 0.5 A)N,(7) (4.20)
Nuight = ;;(% (1.0 + 0.5 A)N,, (i) (4.21)
N = Npay + Nxignt (4.22)

where

e « is average background rate r in the data in terms of a most likely value

from an external measurement rnom. This is the default rate used in

the MC.
e N — the number of background events.
e A — the day-night background asymmetry for this event type.
e 1y and r, — rates in the data for a day and night respectively.

® 7,om - the nominal background data rate corresponding to the most likely

value from an external measurement.

e N(77) — the number of background events in the Monte Carlo which

satisfy the cuts after the application of current systematic parameters 1.

® N,om — the number of background events corresponding to the external

measurement.

e Ny(77) and N, (77) — the number of day and night Monte Carlo generated
events that satisfy the cuts after the application of current systematic

parameters 7.
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Except dyopd and EX neutrons background, the day-night asymmetry A
is zero for all other backgrounds. In the MCMC fit, « is floated — along with
A (where applicable) — rather than the number of events.

The number of events for NC were calculated as:

N7

Npay = fsB f]l\:f’gT(Nd(ﬁ) jfn]zfn(ﬁ)) (4.23)
N, (7

Nnignt = fsp fﬁgT(NdW) i%ﬂ(ﬁ)) (4.24)

N = Npay + Night (4.25)

where fsp and fL¥7T are current MCMC values of ®B flux and flux-to-event

ratio for NC from the PMTs.

4.10.3 Systematic Uncertainties

The position, time and direction of an event were reconstructed by simultane-
ously fitting them using the hit times and locations of the hit PMTs. After the
vertex and direction reconstruction from the maximum log likelihood method,
they were used in the estimation of event energy. Hence the dominant sources
of systematic uncertainty in the signal extraction fit are concerned with the re-
construction accuracy and are listed in tables 4.2 to 4.5. Data from calibration
sources deployed within the detector were compared to Monte Carlo predic-
tions (from the vertex and direction reconstruction algorithm) and the full size
of the difference was taken as the magnitude of the uncertainty. The differ-
ences between the calibration data and the reconstructed data from Monte
Carlo were parametrized as four types:

(i) vertex offset is a constant offset between an event’s true and recon-
structed position.

(ii) vertex scale is a position dependent bias in the reconstructed position
that is proportional to the difference between the reconstructed event and the

actual location of the source in the calibration data.
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(iii) vertex resolution is a width of a distribution of the reconstructed event
positions.

(iv) angular resolution is the width of the distribution of reconstructed
event directions relative to the initial electron direction of the source.

Since these uncertainties can alter the predictions for the number of events
reconstructed inside the fiducial volume and can additionally alter the shape of
the PDFs used in the signal extraction, we incorporate systematic uncertainties
into the analysis as parameters in the likelihood function which are allowed
to "float" meaning vary within +10c where o is width of constraint from
external measurement or found from trial and error to get good acceptance
in the Markov Chain and autocorrelation coefficient to drop to zero within
the first 10,000 steps and remain stable (figure 5.2). The purpose of floating
the systematics is to properly calculate the correlation between systematic
effects and to allow the data to tell us how the scales and resolution differ
between data and Monte Carlo within the constraints from the calibration
data. By modelling the differences as a possible remapping of the observables
for Monte Carlo generated events, the PDFs are rebuilt using the scaled and
smeared values of the observables on each evaluation of the log likelihood
calculation. The parameters of the remapping are fitted to determine the
extent of remapping allowed to the MC observables while still matching the
p, Cosine 0, and FE,, of the data. Day-night events are selected by using a
day-night tag in the Monte Carlo; for the NCD phase day-night tag is 30 for
day events and 31 for night events. Tables 4.2 and 4.3 list the parameters
involved in the determination of the energy of an event, tables 4.4 and 4.5
list the systematic parameters involved in the determination of a direction
and a location of an event. One of the prediction of a "matter enhanced"
oscillation is an asymmetry in a day and night fluxes but the asymmetry can

also arise because of the variations in detector response over a 24-hour time
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scale, for instance, diurnal variations in a laboratory’s temperature. SNO’s
2 km underground location isolate it from diurnal effects but limits must be
placed on their size.

Directional systematics arise because SNO is not completely spherically
symmetric, and because the directions of CC and ES events are correlated
with the time of the day. ES events, in particular, preferentially illuminate
the upper half during the night and lower half during the day. Any differences
in the up-down response of the detector or variations in detector response
with the direction of the event will manifest these directional differences as a
day-night asymmetry. The v-rays emitted by neutron capture have random
directions, hence asymmetry in detector response produce no day-night effects

on NC events.
Energy Systematics

Energy Scale — af

Parameter | Description Central | Constraint
Value

a Energy scale (correlated) | 0 +0.0041

as Energy scale 0 40.0081

as Energy scale Diurnal 0 +0.0038
asymmetry

ay Energy scale Directional | 0 £0.0099
asymmetry for es only

Co Energy non-linearity 0 +0.0069

Table 4.2: Various parameters for the uncertainty in the energy scale.

For the day events,

af = (1.0 + a1 + a2) (1 — 0.5a3 — 0.5 ay) (4.26)
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For the night events,
ay = (1.0 +ay +az) (1 +0.5a3 +0.5a4) (4.27)

where a4 is zero for all classes except ES and ES,,;. The energy non-linearity
systematic uncertainty — applied to CC, ES, hep CC and hep ES — accounts for
possible changes in the energy scale away from the 1°N source used to calibrate
the energy scale. This uncertainty is correlated between all three phases.

Energy Resolution — b}

Parameter Central Value | Constraint
Energy resolution by 0.0119 +0.0104

for a neutron

Energy resolution 0.0162 +0.0141

for an electron

Directional asymmetry 0 +0.012

in resolution for ES only — b;

Table 4.3: Various parameters for the uncertainty in the energy resolution.
Energy resolution for a neutron and an electron is 100% correlated.

For the day events,
by = by (1 —0.5b) (4.28)

For the night events,
by = by (14 0.5b,) (4.29)

where b; is zero for all classes except ES and ES,;.

Equations for remapping energy

Equations (4.30) is applied for CC, ES, ES,,, hep CC and hep ES. Equa-

tion (4.31) is for NC and neutron backgrounds.

Tremap = a& Ty + 136130 (Ty — T,)) + " To(Ty — 5.05 MeV) /(19.0 — 5.05) McM.30)

Tremap = a2 Ty + b (Ty — 5.65 MeV) + ¢ Ty(Ty — 5.05 MeV) /(19.0 — 5.05) MeM.31)
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where T and T}, are the reconstructed energy and the Monte Carlo energy
respectively and T}.cy,qp is the remapped energy which can be directly compared
to the data. To calculate the energy resolution of neutral current (nc) and 9
backgrounds, the number 5.65 MeV is used as a mean Tj for every event
in the MC in equation (4.31). Equation (4.30) is employed to remap the
energy of electron classes, for example, cc, es and es,,. Neutron classes are
neutral current and all the neutron backgrounds (ex, atmos, dsopd, k2pd,
k5pd, nedpd, hep NC) and electron classes are CC, ES, ES,,;, hep CC and hep
ES.

Angular Resolution (Cosine 6) for ES only

Parameter | Description Central Value | Constraint
bg Resolution 0.0 +0.12
bY Directional asymmetry | 0.0 +0.069

Table 4.4: Uncertainty in the angular resolution.

For day events C0s 0yemap = 1. + (1 +05)(1 — 0))(Cos 6 — 1) (4.32)

For night events C'0s 0,emap = 1. + (1 + b5)(1 +6)(Cos — 1) (4.33)

where 6 is the angle of the Monte Carlo event relative to the direction of the
Sun and C0s 0,¢pmqp is the remapped observable to build the 3D PDF (p, Cos
05, Tp). Events that are pushed passed cos 0, = £1.0 are randomly assigned

a Cos 0 value in the interval [-1.0,1.0].
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Vertex (x,y,z) Systematics

Monte Carlo events are generated at vertex (z,,y,4,2,)° and energy T, while

vertex (x,y,z) with the energy T} are the reconstructed vertex and energy of

the Monte Carlo events.

Parameter | Description Central Width of
Value Constraint
a;?” x,y,z coordinate scale 0.0 +0.0029-0.0077
(100% correlated)
ay’” Diurnal asymmetry 0.0 +0.0015
az’” Directional asymmetry 0.0 +0.0018
for ES only
ag x offset 0.0 +4.0
ag y offset 0.0 +4.0
ag z offset 5.0 +4.0
bo” X,y resolution constant 0.06546 +0.000818124
by” X,y resolution linear -5.501x 107 | £3.66098x10~?
by” x,y resolution quadrature - | 3.9x10~7 +3.92118x 10714
bz z scale 0.0 +0.0015-0.0012
i z resolution constant 0.07096 0.00078696
b3 z resolution linear 1.155x10™* | £6.80761x10~°
o’ energy dependence in the | 0.0 +0.0087-0.0067

fiducial volume uncertainty

Table 4.5: Uncertainties in the reconstruction of a vertex.

at* = (1.0+ 0.5a

TyT
2

+ 0.5 %)

(4.34)

For analysis purposes Cartesian coordinates are defined such that the center of the
acrylic vessel is at (x,y,z)=(0,0,0) and the neck of the acrylic vessel is located symmetrically
about the positive z axis.
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where 4 is for a night event and - is for a day event. We find the corresponding

remapped MC variables:
Tremap = ag + (1.0 + a}?)ag? o + (bg? + 7Y 2 + b5 22) (v — ;) (4.35)

Yremap = @ + (1.0 + a7 )ag" y + (05" + 61" 2 + 65" 2%) (y — ) (4.36)

Zremap = Qg + (1.0 4+ a”* +02) z + (b5 + b7 2) (= — z,)  (4.37)

R =\ (@ omnap + Yemap + P (4.38)

p = (R/600.0)* (4.39)

4.10.4 Application of Constraints on the Systematic Un-
certainties

A penalty is applied on the fit if an external measurement is used to directly
constrain a fit parameter. Since all systematic uncertainties were measured
from comparing the calibration data to the Monte Carlo simulation of the
calibration data, a constraint term for each systematic uncertainty is added to
the log likelihood function. Values for the mean and sigma of these constraints
terms comes from calibration measurements or Monte Carlo simulation. For
the Cerenkov data, constraints were largely obtained from !°N calibration
data. The energy uncertainties are described in [29] and the reconstruction
uncertainties are described in [90]. When the systematic uncertainties are not

correlated among themselves, the constraint term is calculated as:

. _1 Di — Di 2
1og£_22< —) (4.40)

i pi

(4.41)

where p;, p; and o, represent the current value of the systematic uncertainty
¢ in the MCMC fit, its mean and constraint width respectively. The three

parameters (by”, b7¥ and b5”) — common to x and y coordinates — are correlated,
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and the constrained term is calculated using a covariance matrix:

2 2
1 T T T T —
—log L = 2 Z Z(biy - biy)(bjy - bjy)(vbzyl)ij (4.42)

i=0 j=0

Similarly, the constraint term for two parameters, for a z-dependent vertex

resolution, is calculated as:

1

—log L =

N | —

(b7 — b7)(b5 — b5) (Vi )i (4.43)

i=0 j
where the covariance matrices Vjey and Vi [90] are:
0.000818124 —2.24984 x 1077 —4.19131 x 107°

—2.24984 x 1077 3.66098 x 1072  3.71423 x 10712
—4.19131 x 107 3.71423 x 10712 3.92118 x 10714

0.00078696  3.47188 x 10~ 7
3.47188 x 1077 6.80761 x 10~*

If the uncertainty has asymmetric errors, the constraint is applied to the

. \/@ U o[-y (4.44)
To_+ 04

e (4.45)
or ifz>p

likelihood as:

where o_ and o, allow for asymmetric uncertainties, x is the current value
of the uncertainty in the MCMC fit, p and ¢ are the mean and width of
the uncertainty respectively. The log likelihood term, corresponding to these

constraints, is simplified, after dropping the constants, to:

log £ = —0.5(——%)? (4.46)

o

4.10.5 Application of energy dependent fiducial volume
and uncertainty in the shape of *B neutrino en-
ergy spectrum

Fiducial volume in SNO is fixed at 550.0 cm. The fiducial volume uncertainty is

applied by assigning an uncertainty to every event’s vertex (x,y,z) in the Monte

86



Carlo. The energy dependent fiducial volume and uncertainty in the shape of
the ®B v energy spectrum are coupled together because they are applied as
weight to some PDFs. The uncertainty to the shape of B v energy spectrum
is applied in accordance with the limits from the paper published by Winter
et al.in [95]. Henceforth this uncertainty will be called Winter uncertainty in
this thesis.

Each MC event gets weighted by a factor W;; (ij: current step i for class j)
when building the PDF:

Wi = 1.0 + g% (ad Toi; — 5.05 MeV) (4.47)

W,; in equation (4.47) is an energy-dependent fiducial volume factor applied
around the midpoint of the N energy (5.05 MeV), where al’T}; is the scaled
reconstructed effective electron kinetic energy. The Winter 8B spectral shape
uncertainty is propagated in MCMC by reweighing the CC, ES and NC events

using the function:

Wl =Wy (1.0 + (5 3)(0.018 — 0.001999 x E;; — 0.000088769 x EZ)) (4.48)

)

Nj

W; = Z Wj/N; for backgrounds (4.49)
i=1
W; = Z Wi;/Nj for signals (4.50)

We = Z (1. 0+ (=)(0.018 —0.001999 x E;; —0.000088769 x E2%))/N; (4.51)

where Wj; is used for the backgrounds and W, is used for the signals. These
are applied as a weight to the MC event 7 used to define the PDF belonging to
the class j, W, (equation (4.49) for the backgrounds or (4.50) for the signals) is
the factor by which the number of expected events is modified, ¢j”* takes into

account dependence of the reconstruction of a vertex of an event on the energy
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of the event, w is a systematic parameter which has a normal distribution of
N(0,1), E;; is a neutrino energy and N, is the number of events that pass
the cuts for class j. The expected number of neutral current events on the
NCD-side of the NCD phase is modified by W,,.. The calculated number of

day and night events on the Cerenkov-side, n;, is modified by:
N; =n;x W, (4.52)

where n; is the number of events belonging to the class 7, and N; is the modified
number of events for the class j after the application of the above mentioned
uncertainties. The application of N; in the calculation of the log likelihood is

described in equation (4.80).

4.10.6 Constraints from the Backgrounds added to the
Likelihood Function

Ez-situ/in-situ radioassays were performed to measure the concentrations of
214Bi and 2°®T1 in the detector. These concentrations are converted to the
expected number of events in the analysis window which were used to constrain
the number of events for each background. The constraints were assumed to

be Gaussian and applied in the likelihood function as:

log £ = Z log (Ci(p4)) (4.53)

where C; is the Gaussian probability of obtaining j; background events of type

¢ and m is the number of backgrounds. Substituting the Gaussian function

— (V=)
e @0 in equation (4.53) and taking the log will result in:
(N — pi)?
log L=—Y (N: = i) (4.54)

(207)

where N; is the number of background events of type ¢ in the current step. If

i=1

o; is comparable to p; then the Gaussian distribution will not be symmetric
because the number of events can not be negative. This issue is discussed in

detail in chapter 6.
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4.10.7 P, Survival Probability with Day Night Asym-
metry

This section describes how the PDFs are distorted and number of events are
calculated for CC, ES and ES,; using the survival probability equations and
8B flux. The basic assumption is that the flux of electron neutrinos is modified

by a factor:

Poop(E,) = po+p1 (E, —10MeV) + py (E, — 10MeV)?  (4.55)
_ 2(¢n — ¢p)

Ape = ——— =0qag+a; (E, — 10 MeV 4.56
(¢n + ¢p) ot a ) (4:56)

o 2+ Aee
Peey(Es) = (po + p1 (B, = 10MeV) 4 py (B, = 10MeV)?) =5 (4.57)

where E, is neutrino energy and A is energy-dependent day-night asymmetry
on the survival probability. The survival probabilities were parametrized in
this way to reduce correlations between py and the higher order terms by
expanding all functions around the peak (10.0 MeV) of ®B energy spectrum.
An advantage of the asymmetry ratio is that most systematics cancel out
except those that scale day and night fluxes differently. Equations (4.55) and
(4.57), quadratic equations to represent the survival probability of an electron
neutrino, are used to distort the day D and night N PDFs of CC and ES.

For ES, . following equations are used:

Peep(E,)) =1— (po+p1 (E, — 10MeV) + py (E, — 10 MeV)?)4.58)

2 + Aee
Peey(BE,) = (1= (po + p1 (E, — 10MeV) + ps (E, — 10 MeV)?)) ﬁ(4.59)

The reason for the difference is that Elastic scattering interaction has contribu-
tions from electron, p and 7 neutrinos, hence if P, is the survival probability
for an electron neutrino then the survival probability for x and 7 neutrino will
be 1 — P.. hence the non-electron components of the day and night ES flux,

respectively, are scaled by 1-P..,(F,) and 1-P.., (E,).

een
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The 3D PDF (fp(&) where & = p,cos 05, E,;)) for the day instance D is
distorted using the 2D PDF hp(FE,, E,;,) in neutrino energy (E,) and measured

energy (E,,) via:

EV7 E )PeeD (EV)
ee dFE, 4.60
/ /o(@ ho(Ey, En) (4.60)

The 3D PDF, fy(Z), for the night instance N is distorted using the 2D
PDF hy(E,, E,,) via:

q EV,E )PeeN(El,)
ee dFE, 4.61
/fN (B, Ey) (4.61)

Figures 4.6 to 4.9 show hp(FE,, E,,) and hy(E,, E,,) and their projections
on the X axis. Besides distorting the 3D PDFs, these histograms are also used
in the calculations of the number of events for the CC and ES event classes.

Using the histograms shown in figures 4.6 and 4.7, the number of CC events

is calculated:

CC = CCp + CO (4.62)
CCp = fnc See Pne ( Tee Cec )peed Rp (463)
CCN = fnc Scc (bnc ( Fec Cec )peen (1 — RD) (464)

ne €nc
where S.. is a fiducial volume correction for CC, Rp is a ratio of the number
day events to the total number of events in the Monte Carlo, ¢, is the B
flux, f,. is flux to event conversion factor and the variable p,., (a ratio of the
number of events with given values of P, from equations (4.55) and (4.57) to

the number of events with P.. equal to 1.0) is calculated as:

S 1o (Bys En) Puc(B,, day)dE, dE,,
[T h(E,, Ep)dE, dE,,
[[ hn(E,, Ey) Poe(E,,night)dE, dE,,
[[h(E,, En)dE, dE,,

Peey, = (465)

Pee,, = (466)
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Figure 4.6: Top left is a 2D distribution of neutrino energy versus measured
energy (hp(E,, E,,)) and the top right is a projection of the 2D distribu-
tion on the measured energy ([ hp(E,, E,,)dE,). Bottom left is a 2D dis-
tribution of neutrino energy versus measured energy weighted by P, (E),)
(hp(E,, Em)Peep(E,)) and the right plot shows [ hp(E,, Ey)Pee,(E,)dE,.
The right 1D histograms are projections on E, of the 2D histograms on the
left. The correlation of E,, with E,, as seen in this plot is taken into consid-
eration when distorting the 3D PDFs. The reduction in the number of events
— comparing the top plots to the bottom plots — is due to v oscillations which
is applied as distortions. In the 2D histograms, the number of events is shown
in the color pallet.
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Figure 4.7: Top left is a 2D distribution of neutrino energy versus measured
energy (hy(E,, E,,)) and the top right is [ hy(E,, E,,) dE,. Bottom left is
hn(E,, Ey) weighted by P.. (E,) (hx(E,, Ep)Pacy (E,)) and the right plot
shows [ hy(E,, Ep)Pecy (E,)dE,. The right 1D histograms are projections on
E, of the 2D histograms on the left. The correlation of E,, with E,, as seen
in this plot is taken into consideration when distorting the 3D PDFs. The
reduction in the number of events — comparing the top plots to the bottom
plots — is due to v oscillations which is applied as distortions. In the 2D
histograms, the number of events is shown in the color pallet.
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Tabulated values used for 22 (y is CC, ES and ES,,;) are listed in table 4.6.

€x
nc €nc

Similar equations are used to calculate the number of events for ES and ES,,,.

Class | Cross Section Ratio
cc 5603.875/240.569
es 481.596/240.569
€S,y 74.833,/240.569

Table 4.6: Values of 2 (y is CC, ES and ES,;) used in the MCMC fit.

nc €n

Values are from [90].
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Figure 4.8: Top left is a histogram hp(FE,, E,,) of neutrino energy versus
Bottom left is

measured energy and the top right is [ hp(E,, E,)dE,.

hp(E,, Em)P.e, (E,) neutrino energy versus measured energy weighted by
P..,(E,) and the right shows the plot of [hp(E,, Ey)Pee,(E,)dE,. The
correlation of E,,, with E,, as seen in this plot is taken into consideration when
distorting the 3D PDFs. The reduction in the number of events — comparing
the top plots to the bottom plots — is due to v oscillations which is applied as
distortions. In the 2D histograms, the number of events is shown in the color

pallet.
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Figure 4.9: Top left is a histogram hy(FE,, E,,) of neutrino energy versus
measured energy and the top right is [ hy(E,, E,)dE,. Bottom left is
hn(Ey, Ep)Peey (E,) neutrino energy versus measured energy weighted by
P.y(E,) and the right shows the plot of [hn(E,, Ey)Pecy(E,)dE,. The
correlation of E,,, with E,, as seen in this plot is taken into consideration when
distorting the 3D PDFs. The reduction in the number of events — comparing
the top plots to the bottom plots — is due to v oscillations which is applied as
distortions. In the 2D histograms, the number of events is shown in the color

pallet.
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4.10.8 Constraint from Low Energy Threshold Analysis
of the D,O and Salt Phases

The Low Energy Threshold Analysis (LETA) analysis is the simultaneous fit
of two independent datasets from the first two phases of the SNO experiment.
Since the flux of neutrinos from the Sun is assumed to be constant over the
SNO operation time, the rate of neutrino events in the two phases can not
vary independently. Full details of the LETA fit is found in the following
references [39], [61], [73] and [74]. The constraint from LETA is applied as:

~log Lygra = (6~ dup)T /G W (G~ d)fa)  (467)

where gb;f and & are the 6 x 6 matrices containing the best-fit results and their
uncertainties from a LETA fit and 7 is the transpose® of the matrix &. The
parameters constrained are 8B scale, P, parameters (pg, p1, p2), and day-night
parameters (ap and a;). The values of the above mentioned parameters from
the MCMC fit, for the current step, is enclosed in the qg matrix. The correlation
among the parameters is represented in the LETA constraint equation (4.67)

as an inverse of the correlation matrix V =!.

4.10.9 PSA Constraint

The pulse shape analysis (PSA References |71] and [72]) provides us with
an independent measure of the number of neutrons derived from the NCD
detector signals. This enables us the constrain the number of neutrons from

the NCDs. The PSA constraint is applied as:

—log £ = (2;1) (4.68)

5The transpose of a m x n matrix A is another matrix , with n rows and m columns,
designated as AT such that [AT];;=[Al;i; the rows and columns of A matrix are switched
in the A7 matrix.

96



where PSA is the central value of the PSA constraint and o is its width, m
is the number of neutron signals, N; is the number of events for the neutron
event type ¢ for the current step in the MCMC fit and x; is the ratio that
converts (N;) the number of events belonging to the PMTs to the number of
events belonging to the NCDs. Table 4.7 lists the values of x;. Except for
neutral current where flux-to-event from the NCDs (fy§) is a fit parameter,

all other k values are constant.

Neutron Signal Type K
Neutral current !B flux x &P

External neutrons 40.9/20.754
k2pd 32.8/9.402
kbpd 31.6/8.378
ncdpd 35.6/5.938
dsopd 31.0/8.305
Atmos 13.6/24.681
hepNC 4.363

Table 4.7: Values of & listed for various backgrounds [29]. Information used
to apply PSA constraint on the number of neutron events from the NCDs.

4.11 Synopsis of the Calculation of the Number
of Events

This section brings it all together, that is, the equations to calculate the num-
ber of events for each class. Each time an event passes the high level cuts,
after applying the current systematic uncertainties, the number N () is incre-
mented by one. If it is a day event then Ny(Y) is incremented by one or else

N, (X) is incremented by one. N(dgf) is the number of events that pass the
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default systematic uncertainties.
Each MC event, belonging to the backgrounds, gets weighted by a factor

— W, — which is calculated as:
Wi = 1.0 + ¥ (al To; — 5.05 MeV)

For CC, ES, ES,,; and NC, the weight calculated in equation (4.69) is multi-

plied by another weight due to uncertainty in B v energy spectrum.

(2

wW! =W, (1 0+ — 5 (0 018 — 0.001999 x E; — 0.000088769 x E2))

Nne

Whe = Z 1 0 —|— (0.018 — 0.001999 x E; — 0.000088769 x E2))/N

where W/ is the weight applied to the PDFs belonging to CC, ES, ES,,; and
NC, a¥'T; is the scaled reconstructed energy for the current event, cg”* (energy
dependent fiducial volume uncertainty) takes into account energy dependence
of the reconstruction of a vertex of an event, w is the Winter uncertainty
applied to CC, ES and NC, Ej; is a neutrino energy for the current event ¢ and
N, is the number of NC events that pass the high-level cuts after applying
the current systematics. The expected number of neutral current events on
the NCD-side of the NCD phase is modified by the Winter uncertainty using
Whe.

1. Equation to calculate the number of events for the backgrounds other

than external neutrons and dsopd.

D SN B
N —an,, V&) (Nd(X) N ) (4.60)

N o) NR) Na(D) T NE) Na(D)

2. Equation to calculate the number of events for the external neutrons and
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dsopd.

> S,
- a N(Y) o Nd(%) i=1 Nn(%) i=1
N = NmmN(dﬁf)([l 0.5A4] N(D) Na() +[1+ 0.54] N Nn(*))
(4.70)

. Equation to calculate the number of events for the neutral current:

Wi/ - VVZ{
N = pae N0 (Ndoz); w0 & -
- N(det) VD) Na(® T VD) Nl |

where f2e is a flux-to-event ratio for the 8B flux detected by the PMTs.

The number of NC events, for the PSA constraint, is calculated as:
NESA =3B 26,00 Wi (4.72)

where f2e,,.4 is a flux-to-event ratio for the 8B flux detected by the NCDs
and W, is from equation (4.69). The effects of the application of sys-
tematics, to events from Monte Carlo detected by the PMTs, are not
applied in the calculation of the number of events detected by the NCDs
because the systematic uncertainties belonging to the PMTs and NCDs

are uncorrelated.

Looking at the equations (4.69) to (4.71), it is clear that these equations
can be simplified by cancelling out the terms that can be cancelled but

the code was developed to calculate the ratios separately.

. Following equations are used to distort the day and night PDFs of CC
and ES.

P.op(E,) = po+p1 (E, —10MeV) + py (E, — 10 MeV)?

_ 2(¢n — ¢ép)
Ao = (én + ¢p)

P.cy(E,) = (po + p1 (B, — 10MeV) + py (E, — 10 MeV)?)

=ag+ a1 (E, — 10 MeV)

2+Aee
2 — A
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where D stands for a day event and N stands for a night event. For ES,,;

following equations are used:

Pep(E,) =1— (po+p1 (E, — 10MeV) + po (E, — 10 MeV)?)

24+ Aee
PeeN (Eu) = (1 - (pO + D1 (EV — 10 Mev) + P2 (EV — 10 MeV)Z)) 2_A

Equation to calculate the number of charged current (CC) events using
the ®B flux, f2e and the parameters of the survival probability equation

18:

Ny
) - E w! E w!
cctee N )Z Nd )Z i= )2
NCCZSBf2€l - pee — — +p€€n —* —*
ancencN(def)( * N(X) N (X) N (x n(X) )

(4.73)

where p., and p.., are calculated as:

[] hp(E,, Ev) Pee(E,, day)dE, dE,,
[[ h(E,, Ey)dE, dE,,
[[ hn(E,, Ey) Pee(E,, night)dE, dE,,
[[h(E,, E,)dE, dE,,

peed =

DPee,, =
Similar equations are used for ES and ES,,..

. For the PSA constraint, the number of events is calculated as:

N = aNyor [(1 = 0.54) N(%) + (1+0.54) N&?} (4.74)

The day-night asymmetry A is zero for all the backgrounds except the

external neutrons and the dsopd.

4.12 Evaluating Fit Biases

The purpose of the ensemble (multiple fake datasets) test is to undertake a pull

and bias study. Each fake dataset corresponds to a data from an experiment.

When an experiment is repeated multiple times (multiple fake datasets), there

is statistical uncertainty in data. For example, if there is a constraint from
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an external measurement in each experiment then the constraint will have a
normal distribution too. If this fact is taken into consideration when fitting N
datasets then the pull distribution should tend toward a normal distribution,
as shown in figure 4.10, with a mean of 0 and width of 1.0. A correct pull
distribution demonstrates that the fit is unbiased and the error-estimation
procedure is accurate.

This section describes how the pull and bias of a fit is evaluated. Several
fits were performed on multiple fake datasets in the process of development of

the MCMC code and for each fit, pull and bias study was carried out.

Bias(z) = % (4.75)
Pull(z) = % (4.76)

where N(x) is the fitted value, F(z) is the expected value and o(z) is the un-
certainty of the fitted value. From the bias equation, the bias is the fractional
shift in the fit result from the expected value. From the computation of bias
we examine whether the fit result agrees with the Monte Carlo input and the
pull of the fit is computed to examine whether the error generated by the fit
agrees with the spread of the fit result. For the unbiased fit, both the pull and
bias should be distributed around zero and the pull should have RMS of one.

The bias and pull of a parameter z is computed from each fake data file from
the ensemble and the resulting distributions are fitted to a Gaussian function
described in equation (4.77). The mean (u) and variance from the Gaussian
function is used to calculate the average pull and bias of the parameter x
according to equations (4.78) and (4.79). The drawn error bars in the bias
plots indicate the uncertainty on the average bias which corresponds to the
sample standard deviation of the test parameter x divided by the square root
of the number of samples o/ V/N. The drawn error bars on the pull plots

show the sample standard deviation o of the test parameter x and not the
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Figure 4.10: Figure shows the mnormal distribution (f(z) =

\/2;02 exp (_(923;2“)2)) with a mean (u) of zero and a width (o) of one.

uncertainty on the average pull.

1 —(x—u)Q)

vV 2mo? P ( 202
o

Bias(x) = p £ Wi (4.78)

Pull(z) =p+to (4.79)

fla) = (4.77)

4.13 Summary

The MCMC fit perform the fit on Cerenkov data of the NCD phase of SNO
and add data from NCDs of the NCD phase as a constraint from pulse shape
analysis and incorporate data from the first two phases of SNO as constraints
from the low-energy threshold analysis. Signal extraction extracts a 8B flux
and a set of polynomial parameters to describe the day time survival probabil-

ity (Pee,) and a set of polynomial parameters to attribute the asymmetry A..
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in the day and night survival probability. The negative log likelihood (NLL)

function, after adding all the constraints, is:

_1Og[,:ZN Zlog Z )Fy(%4, P))

=1
4 (PSA — B €1 —N1K1 — Ngkg — N3k3 + Nygky —f- Nsk5 + Neke — 4363)2

2(0)?

(a1 —a)? (@ —a)? (a3 —a3z)?  (q4— ay)?
202 203 202 202
_I_(as — a5)? n (%6 — a6)? . (Eo —&)? n (51 —&)?

202 202 202, 202,
i (& —e)? | (€ —€)’
202 202

+

| =
]

?
EQ

?
+l\3
N | —
Mw
MM

(07 = 07") (b5 = b)) (Vi i

=0

-
Il
o
<
=l

1

> 7 =) (b7 — b (Vi)

0 5=0

+((& = dop)" /WS — dus) /) (4.80)

_|_

DO | =

%

where F,; (7, }3) is the probability density function, for the class 4, giving
the probability of observing the event d with observables ; and the current
values of the fit parameters ]3, Ni,Ns, ..., N, are the number of events for
m—13 event classes and nq,no,...,ng are the number of events computed
using equation (4.74), for the calculation of PSA constraint. The ®*B flux is
designated by B and PSA is the PSA constraint for the current fake dataset
and o is the width of the constraint. The values of k for various backgrounds is
listed in table 4.7. The average number 4.363 is the number of NC interactions
from the hep neutrinos (*He+p — *He + et + v,) expected to be detected
in the NCDs. Number of interactions in SNO from hep neutrinos are fixed
in the MCMC fit. In the constraint terms, a7 to «ag are the values of «
(equation (4.19)) in the current MCMC step for EX, dsopd , atmospheric

neutrinos, k2pd, kbpd and ncdpd respectively. The @y, oy, a3, ay, s and

103



o are the constraints for EX, dyopd , atmospheric neutrinos, k2pd, kbpd and
ncdpd respectively for a given fake dataset. The day-night asymmetries for the
external neutrons and D20OPD are represented by &y and &; respectively. The
flux-to-event for the NCDs and PMTs are represented by €; and ¢, respectively.
The PMT and NCD neutron capture efficiencies in the NCD phase appear as a
component to the flux-to-event conversion factors. In the likelihood equation,
pi, P; and o, represent the current value of the PMT systematic parameter ¢
in the MCMC fit, its mean and constraint width respectively. The next two
terms are calculation of the constraint for the systematic uncertainties that are
correlated. For more details, refer to 4.10.4. The ggbf and ¢ are the matrices
containing the best-fit results and their uncertainties from a LETA fit, 67 is
the transpose of matrix ¢ and values of the parameters, constrained by LETA,
for the current step in the MCMC fit is enclosed in the q? matrix. The matrix
V is the correlation of the parameters provided by the LETA fit.

The fit for datasets generated using the full Monte Carlo is described in
chapters 8, 9 and 10 and the fit for datasets generated using the third of the
Monte Carlo is described in chapter 11.

The code, used in the extraction of fit parameters from the data, was
developed in a series of steps and for each step, the code was tested on an
ensemble of fake datasets. The MCMC code was originally created by Juergen
Wendland and later expanded by Blair Jamieson from whom I inherited the
code. I expanded the code to include survival probability equations, day-
night asymmetries to account for matter effect on neutrino oscillations and
the day-night asymmetries in the backgrounds (EX and dsopd) to account
for the possible variations in the detector response with time of the day and
day-night asymmetries of various background sources during the day versus
during the night. Besides the diurnal asymmetries, directional asymmetries

were also added to account for possible up-down asymmetries in the detector.
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Various new penalties were added along the line to reduce the uncertainties
from the MCMC outcome, which included using the constraints from the Low
Energy Threshold Analysis (LETA) of the data from the DO and Salt phases
of SNO and Pulse Shape Analysis (PSA) of the signals from the NCDs of the
NCD phase. During various stages of development, several tests were created
to cross-check the validity of the code and to flush out the bugs, if any, lurking
in the code. The progress was not like climbing a stairway to code heaven;
more likely a snake and ladders game. A bug, implanted while in pursuit of
another bug, can take weeks of investigation but nevertheless a fruitful effort
to understand a complicated code. The thesis is not a history of the work done

to reach the final goal but a description of various milestones.
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Chapter 5

Markov Chain Monte Carlo
Method

5.1 Introduction

This chapter covers the algorithm employed to extract the fit parameters from
the data. Before delving into the details of the algorithm, a brief definition of
the terms used in this chapter is in order. The definitions of terminology, in

this chapter, are based on information gained from Wikipedia especially
[http://en.wikipedia.org/wiki/Markov_chain_Monte_Carlo]

which should be referred to for more detail.

Monte Carlo Simulation: Calculations based on the application of ran-
dom numbers are generally known as Monte Carlo (MC) simulations. The MC
approach is not limited to the calculation of probabilities but can also be used
to calculate the integral of complicated functions. In experimental particle
physics, MC simulation is used for designing detectors, understanding their
behaviour and comparing data to theory. The following list, although by no
means complete, illustrate the diversity of the application of MC simulation:
nuclear reactor design, radiation cancer therapy, traffic flow, stellar evolution,

oil well exploration and Dow Jones forecasting.
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Random Walk: Random walk consist of taking random steps where the
probability of taking a step in any direction is equal and not influenced by the
previous steps. Movement of pollen grains in a glass of water is an example of
random motion known as Brownian motion. Other examples include diffusion
of dye in an unstirred glass and fluctuation in price of a stock.

Random Process: A system undergoing a discrete random process means
that the system will be at random states at different steps. The steps are often
thought of as time, but formally the steps are just integers, and the random
process is a mapping of steps to states. The change in the state from one
step to the next is called a transition, and a probability associated with each
transition in the state is called a transition probability.

Markov Chain: A Markov chain is named after Andrey Markov. The
chain is generated by using the current sample values to randomly propose the
next sample values [80]. Given its current state, the transition probability of
the future step depends only on the current state of the system. Mathemati-

cally it is described as:

P(Xn+1|X17 X2 s 7X’VL) = P(Xn+1|Xn> (5'1)

Burn-in: The practise of throwing away some number of iterations at
the start of an MCMC run when MCMC has not yet converged is known as
burn-in. This practise is a necessity because the choice of initial values of the
parameters is independent of likelihood. The chain can start in a region of
very low likelihood and then walk to the region of highest likelihood. For a
converged chain, the chain stays in the region around the highest likelihood.

Markov chain Monte Carlo simulation is a class of algorithms to simu-
late a random walk for the purpose of sampling through probability distri-
butions. The random walk is undertaken long enough to ensure as complete

tour through the likelihood distribution as possible considering limitations of
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computational resources. The purpose of taking a large number of random
steps is to achieve an equilibrium distribution after removing the burn-in pe-
riod. MCMC is one of the simulation technique to explore high-dimensional
probability distributions by generating statistically consistent samples from
the target distribution. One of the goal of MCMC is computation of the ex-
pected values of fit parameters. The expectation values are calculated with
samples drawn more proportionally from higher likelihood regions.

The validity of MCMC depends critically on the rate of convergence to
an equilibrium distribution. Constructing a Markov chain with the desired
properties is not difficult. The challenge is determining the number of steps
required to achieve an equilibrium distribution. For a complicated code, the
number of steps is limited by the computational resources. A chain with a rapid
mixing is a good chain because it will quickly attain an equilibrium distribution
starting from any arbitrary state. The Metropolis-Hastings algorithm is a
method to generate a Markov chain using a proposal density Q(z*!, z) which
depends on the current state zf, to generate a new proposal state z*!. This
proposal is "accepted" as the next value (z'*! = 2/) if a (a random number

between 0 and 1) satisfies:

P(2)Q(x"; 2)
P(xt)Q(z"; )

The current value of x is retained (2! = ') if the proposal is rejected. Any

;1) [80] (5.2)

a < min(

probability distribution P(x) can be used by the Metropolis-Hastings algorithm
to draw samples. For the proposal density, a Gaussian function centred on the
current state x': Q(z';z') ~ N(x',02I), may be used. This proposal density
generates samples centred around the current state z with variance o?. The
Metropolis algorithm requires Q(x;y) = Q(y;x) — a symmetric function. In

that case, equation (5.2) is reduced to:

(5.3)

a < min(



because
Q(z";2')
Q(a'; ")

In MCMC, we assume the proposed density to be symmetric. The challenges

=1 (5.4)

in MCMC fitting are:

1. Determine whether a MCMUC fit has converged.

A plot of the log likelihood versus steps is one of the methods to find
out if the fit has converged. An example is shown in figure 5.1. To make
sure that the MCMC fit has converged and is independent of the open-
ing values of the parameters, each MCMC chain was started at different
random initial values of the parameters. The range of the parameters
was within £30 of the mean (expected values from a theoretical model)
where o is the constraint on the mean from an independent measurement
or uncertainty on the mean which was selected after several trial and er-
rors to ensure good acceptance in the MCMC fit. A check was carried
out to test the robustness of the code for which the initial values of the
parameters were selected within +100 instead of £30. The check is de-
scribed in section 10.3. Since the check demonstrated that convergence
was achieved within 4000 steps, the initial values were selected within
+30 instead of £100 because of computational limitations. The conver-
gence of a Markov chain is different from the Maximum Likelihood
Estimation (MLE) because the former does not convergence to an es-
timate like the latter but instead calculates the probability distribution

of the value of a parameter in the volume of high likelihood.

Following are the convergence issues: when has the chain moved from
its starting values and started sampling from its stationary distribution?
and how large a sample is required for obtaining estimates within accept-

able accuracy? Autocorrelation, described in section 5.2, is an important
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Figure 5.1: Log Likelihood (shown on the vertical axis) versus various time
steps (shown on the horizontal axis). This plot shows that the MCMC fit has
converged around 4000 steps.

measurement in the consideration of the chain length. A badly mixed

chain will have a high autocorrelation and will need a longer run time

to give an estimation of fit parameters to the required accuracy.

2. Determine a burn-in period.

See section 5.2 on how to select the burn-in period.

3. Step size of the MCMUC fit

If the step size (02 — of a Gaussian function for the proposal density func-
tion) is too narrow then MCMC will not sample enough of the parameter
space to find the best fit values in a finite number of steps; if the step size
is too wide, steps are rarely accepted resulting in a low acceptance rate
because the proposals most likely populate regions of much lower proba-
bility density. The ideal acceptance rate for an N-dimensional Gaussian

proposal density function is ~ 23% [81].
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4. Extracting values from the Posterior Distribution Functions
After a posterior distribution is determined, it typically goes through
a "post processor". Post-processing is performed to determine the fit
values and their uncertainties from the posterior distributions. Typical
pull and bias studies are carried out to test the behaviour of the fit.

Various techniques are available to pick the best fit:

(a) Use the mean and Root Mean Square (RMS) of a posterior dis-
tribution as the estimation of the parameter and its uncertainty

respectively.

(b) Fit a Gaussian function to the posterior distribution and use the
mean and sigma (x4 o) of the function as the estimation of the

parameter and its uncertainty respectively.

(¢) The mode of a continuous posterior distribution is a value x at
which the distribution is at its peak. The peak (~ mode) and RMS
of the posterior distribution were considered as the estimation of
the parameter and its uncertainty respectively. The mean, median

and mode belong to a normal distribution all coincide.

For a history of MCMC and a list of useful references pertaining to MCMC, re-
fer to [82]. MCMC methods were introduced in the 1950s to efficiently sample
an unknown probability distribution. The time needed in MCMC, to sample
a distribution, grows approximately linearly rather than scaling exponentially
with the number of parameters varied. For this reason, MCMC methods are
particularly useful to evaluate integrals in many dimensions. Examples of ap-
plications in physics include estimation of cosmological parameters [83| and

for analysing the orbits of extrasolar planets [84].
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5.2 Autocorrelation Function

Autocorrelation is one of the convergence diagnostics used to determine how
many initial steps should be discarded from the output of the MCMC fit such
that the remaining samples represent the target distribution of interest and
how many steps are necessary in the chain.

Given measurements Y7, Y5 ... Yy at time X, X5 ... Xy the correlation be-

tween observables separated by k time steps is:

S (Y= V) (Vi - V) from [85] (5.5)

T =

N
where Y = Z % Autocorrelation is a correlation coefficient between two
values of thei:slame variable Y; and Y, ; at X; and X;,x where k is the lag
because one of the pair of observations (Y;) lags the other (Y;,x) by k periods
or samples. Autocorrelation is a tool to find the degree of relationship of
a signal with itself at different times. An example is shown in figure 5.2.
The value of 7, lies between -1 and 1, with +1 indicating perfect correlation
and -1 indicating perfect anti-correlation. Positive autocorrelation is a sign
of "persistence" which is a tendency of a system to frequently return to the
same state. Autocorrelation implies that a time series is predictable, as future
values are correlated with current and past values. This behaviour reduces
the effective sample size. The quantity r, is known as the autocorrelation
coefficient at lag k.

If the posterior distribution is not random in time then the information
in each observation is not totally independent from the information in other

observations.
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Figure 5.2: Plot showing autocorrelation coefficient versus lag. This is an
example of autocorrelation function applied to a MCMC fit. The parameters
of the MCMC fit, shown in the legend, are the parameters that we use for
signal extraction in SNO, and are defined explicitly in chapter 4. Selecting the
burn-in from autocorrelation plot is a judgement call based on experience.
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5.3 SIGnal EXtractrion (SIGEX) with MCMC

MCMC fit is based on Bayesian analysis which require a joint probability
P (D, 0) consisting of a prior P(#) and a likelihood P(D|#):

P(D, ) = P(D|0)P(6) (5.6)

where D denote the observed data and 6 denote model parameters. Bayes’

theorem |80] is used to determine the probability distribution of 6 conditional

on D.
___PO)P(DI)
PO1D) = [ P(0)P(D|0)do (5.7)
P(0|D) o< P(§)P(D|0 (5.8)

P(6]|D), the object of all Bayesian inference, is a distribution of unknown @
given the known D. It is known as posterior because it is obtained after the
data is observed. Frequentists employ the P(D|0) distribution and Bayesian
utilize the P(0|D) distribution for signal extraction.

A MCMC, based on Metropolis algorithm [79], is utilized for estimating
parameters and uncertainties on the parameters. Traditionally, SNO has min-
imized Negative Log Likelihood (NLL) function — via MINUIT [86] — with
respect to all the parameters for the purpose of obtaining the best fit values
of the parameters. The curvature of —log(£) at the minimum was used in
the calculation of the uncertainties on the parameters. Minimizing the NLL
is very challenging with so many parameters because the likelihood function
is based on binned Monte Carlo and is choppy everywhere which makes the
minimum ill-defined. The likelihood function, used in MCMC, is explained in
detail in chapter 4. MCMC generates random samples, of possible values of
all the fit parameters, drawn from the joint probability distribution described
in equation (5.7). The parameters of interest are determined by integrating

over all nuisance parameters.
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The algorithm is to take a random walk through a parameter space, that
is, propose the values of the fit parameters for the next (n-+1) step Zprop using

the last accepted values Z,,.
Tprop = Tn, + € (5.9)

where €= N(0, §), a Gaussian of mean zero and width that is roughly 1/3
of the expected statistical uncertainty or the constraint uncertainty. The value
1/3 is chosen to make the acceptance rate ~ 25%.

The probability of each step is calculated as: % where L4, and Ly,
are the likelihoods of the proposed step and the current step respectively. The
acceptance probability is min(l, ﬁp—x) which is compared to a random number
() between 0 and 1. The step is accepted if o does not exceed the acceptance
probability (equation (5.10)); if the step is accepted, the parameter values are

updated (equation (5.11)) or else the current point in the chain is retained to

make the next proposal.

a < min(1, %) (5.10)
Tpy1 = Tprop 1f accepted (5.11)

Using this methodology, resulting distribution of parameters from the chain

will have a frequency distribution given by L.

5.4 Prior in the MCMC fit

The prior P(f) in MCMC fit are the constraints from low-energy threshold
(LETA) analysis of combined first two phases of SNO, pulse shape analysis
(PSA) of the data from NCDs of the NCD phase, constraints applied on back-
grounds from external measurements and constraints applied on systematic
uncertainties from calibration sources and last but least the number of events

were constrained to be positive.
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5.5 Comparison of the first half to the second
half of the posterior distribution

Various measures exist to indicate the degree of convergence of the MCMC
code. In addition to the autocorrelation function and the likelihood versus
step, discussed in section 5.2, another method is to plot the first and second
half of the posterior distribution, after removing the burn-in, on the same
diagram. If the distributions are similar, then the MCMC fit has converged.
Some of the first and second halves are displayed for the parameters of the
MCMC fit. These parameters were explained in chapter 4. In figures 5.3 to 5.5,
the distributions shown in red and blue are very similar which is an indication

that the fit converged.
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Figure 5.3: Comparing the distribution of the first half (shown in red) and
the second half of the MCMC fit (shown in blue), after removing the burn-in
period, for two parameters (labelled ®B flux and pg) in a MCMC fit.
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Figure 5.4: Comparing the distribution of the first half (shown in red) and
the second half of the MCMC fit (shown in blue), after removing the burn-in
period, for two parameters (labelled p;, and py) in a MCMC fit.
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Figure 5.5: Comparing the distribution of the first half (shown in red) and the
second half of the MCMC fit (shown in blue), after removing the burn-in, for
day-night asymmetry parameters ag and a.
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Chapter 6

Mean or Centroid: Does It Matter
in the Fit?

6.1 Introduction to the Fit

The fitting procedure for SNO starts with an extended maximum likelihood fit
to untangle m different signals; each with its normalized PDF (F(Z;)) defined

for some observable vector Z;. The log likelihood function is defined as:

L= log (Y mFi(da) =D p (6.1)

1=0

where m is the number of signals in the data and Np is number of observed
events in the data. The parameters varied in the fit, u;, are the expected num-
ber of events for each signal type i. The PDF F;(Z;) for signal type 7 is used
to calculate the probability of measuring an event with observable values %4
to be of signal type i. Besides signal extraction fit to extract the number of
events belonging to the backgrounds, independent measurements were carried
out, such as low level radio assays of U and Th decay chain products in D,O
and H,O, to measure the backgrounds in these regions. Any constraints from
independent measurements are added as penalties to the likelihood function.

Assuming a Gaussian distribution for an uncertainty on the external measure-
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ment, the penalty is imposed as:

—(N = N)?

P ) (6.2)

exp (

where N is a central value and & is an uncertainty on the central value and N
is the number of events in a current step of the MCMC fit. Taking the log of

equation (6.2) and inserting in equation (6.1) results in:

Np m m _ N\2
L= 10 (Y whE) - S m - LN (63
d=1 =0 1=0

6.2 Mean or Centroid

The normal or Gaussian distribution is a continuous probability distribution
function that describes data that cluster around the mean of the distribution.

The function is described mathematically as:

1 (z — p)?
exp(— L1
V2mo? 202

Integrating the above equation results in:

flz) = ) (6.4)

/f(x)dx =1 (6.5)

where 11 is the centroid and o2 is the variance of the function. The associated
graph is bell-shaped with a peak at the centroid. The mean of the function is

defined as:
() = [z f(x)dx
[ f(z)dx

where the integrals are taken over the domain of the function f(z). For the

(6.6)

Gaussian function, the centroid and the mean are equivalent as shown:

f+oo T exp (—(%“)Q)dx

7= 2 6.7
e (S "

o\/(2m)
o \/KQ?T)

I (6.8)

Tr =
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The domain is from +o0o to —oo. In a complex experiment like SNO, sev-
eral variables are measured independently of the main experiment. In SNO,
the number of external neutrons was measured independently and fitted to a
Gaussian function. The Gaussian function yielded 40.9 + 20.6 as the number
of external neutrons from the NCDs. The number of external neutrons mea-
sured from the PMTs of the NCD phase was calculated to be 20.6 +10.4. This
information is applied as a constraint in a fit. Before fitting the actual data,
the reliability of the fit is tested on a number of fake data sets. Each fake data
set corresponds to an experiment along with its own set of independent mea-
surements and each independent measurement is fitted to a Gaussian function
which yields a mean and an uncertainty on the mean (u 4 dpu). According to
the Central Limit Theorem [89], the distribution of the means from each inde-
pendent measurement should follow a Gaussian distribution. Hence for each
fake data set, the constraint is selected as a random draw of the Gaussian
function Gauss(p, op) (Reasons for the procedure is given in [74]). The distri-
bution, using Gauss(20.6,10.4), is plotted in a figure 6.1. As the distribution
covers the region less than zero and since the number of external neutrons can
not be negative, the Gaussian function has to be truncated to positive regions.
For the truncated Gaussian function, the mean and the centroid are not the
same (Z # p). The constraint term in the likelihood function (equation (6.3))
requires N to be the centroid but if instead of a centroid, one substitutes a
mean into the equation, one necessarily gets a bias. Figure 6.2 shows the same
Gaussian as in figure 6.1, but truncated to positive values. Although both
figures have the same centroid (20.6), the means are different. The bias, due

to the difference between the mean and the centroid, is defined as:

N-N
Bias = — 6.9
ias N (6.9)
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Figure 6.1: Distribution of the number of external neutrons using the Gaussian
function (equation (6.4)) with a mean (u) of 20.6 and o of 10.4. A o = 10.4
comparable to the mean p = 20.6 will result in a Gaussian function traversing
the negative region.

where N=20.6+0.003 is the centroid from figure 6.1 and N=21.19+0.003 is
the mean from figure 6.2. Using these values, the bias and the uncertainty on
the bias are calculated as 0.029 £ 5.89¢ — 6 (equations (6.10) and (6.11)). The

bias is clearly much greater than its uncertainty.

(21.19 — 20.6)
20.6

Sbias = biasy/(0.003/20.6)2 + (0.003/21.19)2 = 5.89 x 1075 (6.11)

bias = = 0.029 (6.10)
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Figure 6.2: Effect of truncating the Gaussian function to the positive region
only. The mean of 21.19 is different from the centroid of 20.6
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6.3 Solution of the Problem

For a truncated Gaussian function, equation (6.7) is modified by changing the
limits of integration. The centroid p, corresponding to the mean (z), is found

by solving the following equation:

fooo exp <_ (mzialé)Q) dx

The integration is:

S o |
Erfe( ) (6.13)

Erfc(z == / (6.14)

We want to invert equation (6.13) to solve for the Centroid (p) in terms

r=pn+

of the mean z. Since solving equation (6.13) is difficult, a ROOT utility TF1
(defined as equation 6.13) was utilized to solve the problem. Then the TF1
routine GetX [87] was availed to obtain the Centroid (u) corresponding to
the given mean (z). The Centroid was then applied in the calculation of the
penalty term of the likelihood (equation (6.3)). We test the procedure by

following this recipe.
1. Randomly draw a mean (z) from Gauss(20,10).
2. Find the centroid (i) corresponding to the mean () using equation (6.13).
3. Plot a histogram using random draws from Gauss(p,10).
4. If the solution is correct then the mean of the histogram should be z.

Two cases, plotted in figures 6.3 and 6.4, proved that the solution is indeed

correct.
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6.543320=GetX(10.8747,-150,150)
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Figure 6.3: Centroid 6.54332, corresponding to the mean of 10.8747, resulted
in a histogram with a mean + RMS corresponding to 11 £ 7.
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24.089500=GetX(24.3105,-150,150)
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Figure 6.4: Centroid 24.0895, corresponding to the mean of 24.3105, resulted
in a histogram with a mean + RMS corresponding to 24.37 & 10.04.
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6.4 Introduction of the Toy Monte Carlo

A toy Monte Carlo (MC) was developed to test whether properly taking into
account the dissimilarity between the mean and the centroid of the truncated
Gaussian function results in a reduced bias compared to when the distinctness
is not considered. To determine if the fit is unbiased and uncertainties are
properly propagated, a pull and bias study is performed. The pull and bias

are defined as follows:

0ij
N;; — N,

where NV;; and o;; are the number of events and the uncertainty on the number
of events for the signal j obtained from fitting the fake data set number i, Nj
is the mean Poisson number for the signal j in the fake data sets.

Our toy Monte Carlo has two signal types — A and B — and the purpose
of a fit is to determine the number of events N4 and Np in our data set.
To test the query posed in the title of this note, the PDFs for the signals A
and B were formed using random draws from Gauss(6,1) and Gauss(6.1,1)
respectively. The nearly identical PDFs, shown in figure 6.5, were selected so
that a constraint (Gauss(20, 10)) on the signal B will provide a separation of
the signals. Likelihood function is described in equation (6.3) where m goes
from 1 to 2, N is the central value of the constraint and & is 10. The central
value of the constraint is independently Gaussian-fluctuated according to the
uncertainty ¢ = 10, hence the central value is changing from one fake data
set to another fake data set. The reason for the above procedure is described

in [74]. In the MCMC fit, the number of steps was 20,000 and the burn-in

period was 5000. After removing the burn-in period, the Mean and RMS of the
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Figure 6.5: PDFs for the two signal types A and B, defined over a hypothetical
observable X.

posterior distribution were used as the number of events and the uncertainty

on the number of events respectively.

6.4.1 Introduction to Different Cases

Three cases were considered.

e Case 1: The number of each event type is drawn from a Poisson distri-
bution for each fake data set. Mean number of events in the Poisson dis-
tributions were 250 and 100 for the signals A and B respectively. Case 1
is a base case because the distribution of Gauss(100,10), as shown in
figure 6.6, does not venture into negative regions. Hence the pull and

bias of Case 2 and Case 3 will be compared to pull and bias of Case 1.

e Case 2: Mean number of events, in the Poisson distributions, were

changed from 100 to 20 for the signal B. For a given fake data set the
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Figure 6.6: Distribution of Gauss(100,10) does not yield negative number of
events for the signal B.

number of events for the signal A was always selected using the Poisson
function but for the signal B, one of the two functions was used: Poisson
or Gauss(20,10). For each fake data set, a random number was drawn
from Gauss(20,10) as the mean number of events to be set in motion as
N in the penalty term of the likelihood equation (6.3). No correction
was applied to account for the discrepancy between the centroid and the

mean of the truncated Gaussian function Gauss(20,10).

e Case 3: Same as case 2 except that the difference between mean and
centroid is properly accounted for, by finding a centroid corresponding
to the mean and then using the centroid as N in the penalty term of the

likelihood equation (6.3).
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Poisson Mean | Constraint
Case 1 A 250 NO

B 100 100 £+ 10
Case 2/3 A 250 NO

B 20 20 £+ 10

Table 6.1: Quick overview of the Toy Model.

6.5 Result and Discussion

Two thousand fake datasets were used in a MCMC fit to extract the number
of events of signals, Ny and Np, from the data. Table 6.2 was utilized to
plot figures 6.12 and 6.13. From the figure 6.12 and the table 6.2, the width
of the pull distribution seems consistent with 1.0. From plots shown in the
figure 6.13, it is conclusive that the disparity between the centroid (x) and the
mean ((z)) of the Gaussian function matters in the fit. Case 1 is a base line
case; the number of events for signals A and B are 250 and 100 respectively
and the constraint on signal B is 100+£10. Since the width of the constraint
is 10% of the central value (100), the mean and the centroid of the Gaussian
distribution are equivalent. For the Case 2 and 3, the number of events for the
signal A remains same as 250 but the number of events for the signal B drops
down from 100 to 20. Now the width of the constrain (10) is 50% of the central
value (20), hence the mean and the centroid of the Gaussian distribution are
no longer equivalent. The bias of fitting signal B for Case 2 and Case 3 will
always be greater than the bias of fitting signal B for the Case 1 (shown in
green in figure 6.13) but the goal of the current exercise is to show that the
bias of signal B will be worse in Case 2 (shown in dotted red in figure 6.13)
than in Case 3 (shown in blue in figure 6.13).

The application of equation (6.13) in the fit reduced the bias of the signal B
from (0.086+£0.009) to (0.028+0.009) when the Gaussian function was used to
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randomly draw the number of events for the Signal B and from (0.083+0.009)
to (—0.005£0.009) when the Poisson distribution was employed instead of the

Gaussian distribution to randomly draw the number of events for the Signal B.
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Figure 6.7: Pull and bias plots for the signals A and B for the Case 1 using
Gaussian distribution to generate events for the signal B.
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Figure 6.8: Pull and bias plots for the signals A and B for the Case 2 using
Gaussian distribution to generate events for the signal B.
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Figure 6.9: Pull and bias plots for the signals A and B for the Case 3 using
Gaussian distribution to generate events for the signal B.
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Figure 6.10: Pull and bias plots for the signals A and B for the Case 2 using
Poisson distribution to generate events for the signal B.
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Poisson distribution to generate events for the signal B.
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Figure 6.12: Comparing Pull for Case 1, Case 2 and Case 3. Top plot compares
the pull spread when the number of events for the Signal B is drawn using
the Gauss(20, 10) distribution while the bottom compares it using the Poisson
distribution instead.
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Figure 6.13: Comparing Bias for Case 1, Case 2 and Case 3. Top plot compares
the bias spread when the number of events for the Signal B is drawn using
the Gauss(20, 10) distribution while the bottom compares it using the Poisson
distribution instead.

136



Case Signal Pull Bias | Width of Pull | /Bias
A -0.0451 | -0.0024 0.9855 0.0019

Case 1
B 0.0336 | 0.0029 1.0091 0.0023
Case 2 (Poisson) A -0.0248 | -0.0017 1.0328 0.0017
B 0.1060 | 0.0833 0.9281 0.009
Case 3 (Poisson) A 0.0596 | 0.0037 0.9627 0.0016
B -0.1491 | -0.0048 1.1136 0.0091
Case 2 (Gaussian) A -0.0560 | -0.0044 1.0788 0.0018
B 0.1035 | 0.0862 0.8921 0.009
Case 3 (Gaussian) A 0.0217 | 0.0016 1.0397 0.0017
B -0.0764 | 0.0283 1.1329 0.0093

Table 6.2: Pull and bias in a tabulated form from p + o of a Gaussian fit on
the distributions shown in figures 6.7 to 6.11.

6.6 Conclusion

As demonstrated conclusively the distinction of the mean and the centroid of
the Gaussian function is relevant to the bias of the fit. The conclusion is to
continue applying equation (6.13) in the MCMC fit in situations where the
Gaussian function is truncated due to the fact that the number of events can

not be negative.
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Chapter 7
Cross-Checks

Several cross-checks were carried out to make sure that the PDFs are nor-
malized correctly and that the likelihood function, used in the MCMC fit, is

correct.

1. Verification of the Normalization Method: It is important that the his-
tograms, used in the likelihood function, be probability density function
(PDF) with [ f(z)dz = 1, that is, the area under the curve is unity.
Since the PDFs are model of the event types found in the data and the
goal of the fit is to determine the number of events belonging to each
event type, any error in the calculation of the normalization will result
in the fit giving wrong number of events for the event classes in the
data. Hence the calculation of the normalization factor is very impor-
tant. Using the likelihood function as a method in Root TF3 function,

the integral shown in equations (7.1) and (7.2) were verified to be unity.

/// h(p,cos 0, E) dE dp dcos 0 (7.1)

Similarly the integrals of the 4D PDFs (equation (7.2)) were verified
to be unity by combining a 1-Dimensional and a 3-Dimensional ROOT

functions (TF1 [87] and TF3 [88] respectively).
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////h(p, cos 0, E| cos 0,enin) dE dpdcos 0 dcos 0enitn (7.2)

2. Verifications of elements of Survival Probability (po, p1, p2, ap and a;):
This test was performed to make sure that the equations for survival
probability ((4.55), (4.57), (4.58) and (4.59)) used to distort the 3 di-
mensional (g(p,cos 0, F) and 2 dimensional (h(E,, F)) histograms re-
sult in the same distortion of the energy E, that is, fh(EI,,E) dE, =
[[ g(p,cos 8,E)dpdcos §. The x* (defined in equation (7.3)) test on
H = [h(E, E)dE, and G = [[ g(p,cos 0,E)dpdcos 6 resulted in
x2 =0.0 with a probability of unity.

(V- Ay)

X = Z 72 (7.3)

j=1 Yj

where Y; and A; are the bin content of the jth bin of H and G respec-
tively, oy, is the error of the jth bin belonging to H, and N is a number

of bins of the histograms H and G.

The reason for zero x? is that both histograms are exactly the same if the
distortion was performed correctly. This test was performed for several
MCMC steps with parameters of survival probability starting far away
from the actual values used in the generation of the fake data sets. The
reason was to make sure that selecting the parameters far away from the
actual values will not cause [ h(E,, E)dE, # [[ g(p,cos 0, E)dpdcos 6.
This test #2 was performed on several MCMC fits for several steps of

the fit but none showed any problem.

3. Verification of the Likelihood Function: A routine was developed to test
the probability density functions used in the MCMC fit against the like-
lihood functions to make sure that PDFs used in the fit are calculated

correctly. The methodology to create a PDF h(x,y,z), to compare with
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the PDF H(x,y,z) used in the MCMC fit, is called acceptance-rejection

and it generates samples from the probability distribution function which

in this case was the likelihood function. Following steps were undertaken

to perform this check:

(a)

In a loop of 50,000 steps, generate random observables x;,y;, 2;

within the cuts:

Tmin S xj < Tmaz (74)
Ymin S yj < Ymaz (75)
Zmin S Zj < Zmax (76)

Calculate Likelihood L using the observables z;, y;, z;.
Determine the maximum of the Likelihood L,,., in the loop.
Next, in a loop of 19 millions steps, generate events x;,y;, 2;.
Calculate a likelihood £ using x;,y;, 2;.

Generate a random number R between 0 and 1.0; an event (z;, y;, 2;)

is accepted if

L < RLpas (7.7)

Populate histogram h with accepted values z;,y;, 2;

After the loop has finished, compare h(z;,y;, z;) to H(z;,v;, %)
in a x? test. The comparison was done in three steps: 3D was
compared against the 3D PDF, 2D projections (xz, yz and xy)
were compared against 2D projections and last of all, all three 1D
projections (x, y and z) were compared visually as well using a y?
test. The probability was calculated using TMath:Prob(x?, dof)

where dof stands for degrees of freedom.
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D_co Test Distribarion y2 projection

o_cc Test Distribwtion sy projecton

Figure 7.1: Comparing day 3D PDF for CC (left) to the one generated using
the likelihood function (right). Top shows yz projection, middle shows xz
projection and the bottom plot displays xy projection.
The purpose of carrying out this check is to ascertain that the PDFs
generated using the Likelihood function (we will call them the tester
PDFs) were similar in shape to the original PDFs. The x? test comparing
both PDFs indicates the goodness of the fit. This exercise also confirmed
that the normalization for each PDF is correctly calculated and the cuts

were correctly applied in various sections of the code.

Some example plots are shown in the following figures.
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N_CC Test Distribaticn y2 projection

N_CC Test Distribarion x2 projection

Figure 7.2: Comparing night 3D PDF for CC (left) to the one generated
using the likelihood function (right). Top shows yz projection, middle shows
xz projection and the bottom plot displays xy projection.
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Figure 7.3: Comparing p projection of CC day — blue shows the x projection
of the PDF used in the MCMC fit and red shows the x projection of the tester
PDF.

X_CC Night
B 1 N 1 L
0.102 |— —
B — o e | .
£ [ i
e L .
0.1 —
B I i
8 0098 —
= [ ]
m - —
0.096 |— —
0094 = oy Loy be vy s by v ey s by v v by v g g 1 |j

0.1 0.2 0.3 0.4 , 0.5 0.6 0.7
P=RR )

Figure 7.4: Comparing p projection of CC night — blue shows the x projection
of the PDF used in the MCMC fit and red shows the x projection of the tester
PDF.
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Figure 7.5: Comparing cos 0g,, projection of CC day — blue shows the y
projection of the PDF used in the MCMC fit and red shows the y projection
of the tester PDF.
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Figure 7.6: Comparing cos 0g,, projection of CC night — blue shows the y
projection of the PDF used in the MCMC fit and red shows the y projection
of the tester PDF.
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Figure 7.7: Comparing energy projection of CC day — blue shows the z pro-
jection of the PDF used in the MCMC fit and red shows the z projection of
the tester PDF.
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Figure 7.8: Comparing energy projection of CC night — blue shows the z
projection of the PDF used in the MCMC fit and red shows the z projection
of the tester PDF.
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D_ES Test Distribaticn y2 projection

D_ES Test Distribarion x2 projection

D_ES Tast Distribation 1y projectan

Figure 7.9: Comparing day 3D PDF for ES (left) to the one generated using
the likelihood function (right). Top shows yz projection, middle shows xz
projection and the bottom plot displays xy projection.
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N_ES Test Distribaticn y2 projection
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N_ES Tast Distribation 1y projectan

Figure 7.10: Comparing night 3D PDF for ES (left) to the one generated
using the likelihood function (right). Top shows yz projection, middle shows
xz projection and the bottom plot displays xy projection.
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Figure 7.11: Comparing p projection of ES day — blue shows the x projection
of the PDF used in the MCMC fit and red shows the x projection of the tester
PDF.
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Figure 7.12: Comparing p projection of ES night — blue shows the x projection
of the PDF used in the MCMC fit and red shows the x projection of the tester
PDF.
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Figure 7.13: Comparing cos 0g,, projection of ES day — blue shows the y
projection of the PDF used in the MCMC fit and red shows the y projection
of the tester PDF. Y projections of ES are very similar hence on this plot, blue
is not visible because it is covered by red.
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Figure 7.14: Comparing cos fg,, projection of ES night — blue represents
the y projection of the PDF used in the MCMC fit and red represents the y
projection of the tester PDF. Y projections of ES are very similar hence on
this plot, blue is not visible because it is covered by red.
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Figure 7.15: Comparing energy projection of ES day — blue shows the z pro-
jection of the PDF used in the MCMC fit and red shows the z projection of
the tester PDF. Z projections of ES are very similar hence on this plot, blue
is not visible because it is covered by red.
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Figure 7.16: Comparing energy projection of ES night — blue shows the z
projection of the PDF used in the MCMC fit and red shows the z projection
of the tester PDF. Z projections of ES are very similar hence on this plot, blue
is not visible because it is covered by red.
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4. Final Test: For a fake data set, we know the number of events for each
class so we generate the PDFs for each class using the TF3 function with
Likelihood function of the MCMC fit as a method. The TF3 function
generates p, cos 0, E events for the 3D PDF, within the limits specified for
each variable, and then uses the Likelihood method to draw the samples
of the PDFs. Once all the PDFs were generated, the projections of the
PDF for each class, corresponding to each axis, is normalized using the
number of events for the class. For a given axis, the projections from all
the classes were added up and fitted against the corresponding projection

of the data. See examples in figures 7.17, 7.18 and 7.19.
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Figure 7.17: Projection of Cerenkov data for observable p = (R/Rav)® (cap-
tioned as R® on the x axis) overlaid with distributions from Monte Carlo
simulation of the signals. The distribution, from the Monte Carlo simulation
of the signal, is scaled by the number of events for the signal extracted from
the fit. This test #4 was undertaken to test the likelihood function of the
MCMC fit. Legend shows x? with the number of bins in the histogram.
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Figure 7.18: Projection of Cerenkov data for observable cos 0g.un overlaid with
known number of events for signals. This test #4 was undertaken to test the
likelihood function of the MCMC fit. Legend shows x? with the number of
bins in the histogram.
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Figure 7.19: Energy spectrum T g in the Cerenkov data overlaid with energy
spectra from NC, CC, ES, ES,; and all the backgrounds. This test #4 was
undertaken to test the likelihood function of the MCMC fit. Legend shows x?
with the number of bins in the histogram.
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7.1 Summary

This chapter outlined numerous tests undertaken to check the validity of the
code. Getting an expected answer (for example 20/4=5 and 100/20=5) from
the code is a necessary condition for the correctness of the code but it is not a
sufficient condition; to ascertain that it is 20/4 and not 100/20, it is important
to check each component that goes into the calculation of the expected answer
(5) from the code and this chapter demonstrated that each component of the
complicated program is doing exactly what it is supposed to be doing. Several
improvements to the code came about while testing various components of the
code so this was not an exercise in futility. The conclusion is that the MCMC
fit can deliver the result. Various other tests were also performed which are

described in section 11.5.1.
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Chapter 8

MCMC Ensemble Test for a fit
with 7 signal parameters, 19
systematic parameters and 3
constraints

This chapter describes the result of MCMC fit when the systematic param-
eters are allowed to float. The fit floats py, p1, p2, ag, a1, number of nc
events, number of ex events, uncertainty in NC neutron detection efficiency
in the Cerenkov data and 19 systematic parameters due to uncertainties in
the shape of the PDFs. Three constraints are applied in the fit: total number
of neutrons, number of external neutrons and flux-to-event ratio. There are
five classes: neutral current (nc), acrylic vessel neutron photo-disintegrations
(ex or av), charged-current (cc), elastic scattering for electron neutrinos (es.),
and elastic scattering for p and 7 neutrinos (es,,). The data and PDFs are
three dimensional in normalized radius-cubed (p), cosine of the event’s direc-
tion from the Sun (cos 6y), and the kinetic energy (E,,). The cuts applied
in the signal extraction are: 0.0 < p < 0.77025, 1.0 < cos 0, < 1.0 and
6 MeV < E,, < 20 MeV. The SNOMAN Monte Carlo was used to build the
PDFs for the signal extraction. The 3 dimensional (3D) PDF is built with the
kinetic energy binning of 0.5 MeV between 6 MeV and 12 MeV and a single

bin between 12 MeV and 20 MeV. Two systematic parameters applied on the
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energy scale and vertex scale take into account the fact that the systematics
considered for the NCD analysis might have different values for the day and
night data caused by possible time variations in the detector response. Ad-
ditionally possible up-down asymmetries in the detector was considered for
the es signal in terms of energy scale, energy resolution, vertex scale and the
direction of the event — cos 6. For a detailed description of the systematics,

see section 4.10.3.

8.0.1 Negative Log Likelihood (NLL) Equation

The NLL, used as a joint probability distribution in the MCMC fit, is described
as:

2m N 2m
log £ = ZNi - Zlog (Z(Ni)Fi(fdv ﬁ)>
i=1 d=1

i=1
(foo = No—N1)? | (N1 —Np)* | (E—¢)?

203, 20?2 20?2
1 Di — Di 1 _
3 2 g 2 D B N - ) (Vi)
i Tpi i=0 j=0
R
+5 > 07 = B2 — 0 (Vi) (8.1)

=0 7=0

where F;(Z4, ﬁ) is the probability density function, for the class 7, giving the
probability of observing the event d with observables 7; and with the current
values of the fit parameters 13, Ni,Ns, ..., N, are the number of events for
m=y>5 event classes and i goes from 1 to N data entries. In the constraint terms,
Ny and N are the number of neutral current events and external neutrons (EX)
respectively for a current MCMC step and N, is the constraint on the EX for
a given simulated dataset. Similarly f,, is the constraint on the total number
of neutrons and oy, is its uncertainty. The current value of the flux-to-event
ratio is €, € is the constraint on € and o, is the uncertainty on the constraint.

In the likelihood equation, p;, p; and o, represent the current value of the
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PMT systematic parameter ¢ in the MCMC fit, its mean and constraint width
respectively. The next two terms are calculation of the constraint for the
systematic uncertainties that are correlated. The sources of neutrons in this
ensemble test are from neutral current and external neutrons. Table 8.3 gives
a quick overview of the salient features of this ensemble test and section 8.2

describes the constraints in detail.

8.1 Description of Simulated Datasets

Before testing the MCMC fit on the real data, it was tested on a set of simu-
lated data files. These sets were generated from events from the full SNOMAN
Monte Carlo simulation to resemble the real data as closely as possible. Pre-
vious SNO results were used to estimate the number of events for each signal
and er situ measurements were used to estimate the number of background
events expected in the analysis window. For a more detailed account of fake
data set generation, consult reference [90].

Since the extended likelihood function implicitly assumes statistical fluctu-
ations in the number of events of each signal type, these were randomly drawn
from a Poisson distribution for each data set. Ensemble testing comprises
running the full signal extraction on each of the simulated fake datasets to (I)
fine tune the fitting algorithm, (IT) to assure that the statistical and system-
atic uncertainties are properly propagated to the estimation of the number of
events for each signal type in the fit, (III) to adjust the PDF configuration
— if needed — and (IV) to make sure that the pull and bias distribution of
the fitting parameters follow an expected pattern from fitting N number of
simulated datasets. Table 8.1 lists the mean number of events used in a Pois-
son distribution for the generation of a number of events of each signal in the

simulated datasets.
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Event Class Mean Number of events
for the Poisson Distribution
cc 1845.276
es 161.607
es,r 49.721
nc 240.569
ex 20.754

Table 8.1: Poisson parameter for each class used in the creation of the simu-
lated datasets.

8.2 Constraints in the Fit

Three constraints were applied to the fit. Table 8.2 list the central values

and the widths of the constraints. The central value of the total number of

Constraint On Central Value | Width/Uncertainty
of Central Value

fre 0.467578 0.00603

Number of External Neutrons | 20.754 10.453115

Number of Neutrons 261.323 10.4533 (equation (8.3))

Table 8.2: List of constraints, their central values and the uncertainties on the
central values.

neutrons (V) in the fit is calculated as:
N = Ngx + Nnc (8.2)

where Npx and Nyc are the mean number of external neutrons and the NC

events used in the Poisson distribution for the generation of simulated datasets.
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The width (¢) is calculated as:

1
ONC =
Nne
0 = (UJ%JX + 012vc) (8.3)

8.3 Result

Two hundred and one independent fits were performed, each with a different

random seed so that the fits are statistically independent.

Number of simulated datasets 201
Number of steps 55,000
Number of steps removed as burn-in | 20,000
Number of constraints 3
Number of parameters 27
Number of event classes )

Table 8.3: Quick overview of the ensemble test.

The bias and pull were calculated for each dataset and the distributions
of these values, across the collection of 201 simulated datasets, were used to
determine whether the extraction was bias free. The peak and RMS of the
posterior distributions were used to get the best-fit value and its uncertainty.
These values were used in equations (4.76) and (4.75) to calculate the pull
and bias. The autocorrelation versus lag, shown in figures 8.1, 8.2 and 8.3,
was plotted to get an estimate of the burn-in period. Autocorrelation function
is covered in section 5.2. Pull distributions are shown in figures 8.4 and 8.8;
except neutron detection efficiency e€,., the pull of all other parameters are
approximately 1.0. The reason for pull width of €,. (Last row and 4" column

in table 8.4 — 0.7159) to be less than 1.0 is that €,. is also constrained by

162



the total number of neutrons. Bias distribution is shown in figure 8.6 while
figure 8.7 illustrates bias in terms of its uncertainty to ascertain that the biases
of fit parameters are zero within their uncertainties, that is, all fit parameters

agree with the Monte Carlo inputs.

Autocorrelation coefficient

eali]

Figure 8.1: Autocorrelation coefficient versus lag for floating the systematics.
This plot shows the autocorrelation of signals and the parameters of survival
probability equation. From this plot, burn-in of 20,000 steps was selected.

The width of the pull of external neutrons is more than 1, as seen in
figure 8.4, because the likelihood function (posterior distribution) was not
symmetric for some of the simulated datasets resulting in the long tail in the
pull distribution of the external neutrons which is shown in figure 8.5.

The arrangement of the Chapters in the dissertation gives a false sense
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Autocorrelation coefficient

eali]

Figure 8.2: A plot showing autocorrelation coefficient versus lag of various
systematic parameters. In total 19 systematics were floated in the fit; auto-
correlation of ten is shown in this diagram.

of timing; the result, shown in this chapter, is from the earliest version of
the code which was run at Western Canada Research Grid (WestGrid [120]).
While the development was going on at the University of Alberta to include
the PSA constraint and the day-night asymmetries for the external neutrons
and D,0O photo-disintegrations (dyopd), the code at West Grid was being de-
veloped to test the implementation of the systematic uncertainties listed in
table 8.5. Once the MCMC fit with the PSA constraint was fully formed, test-
ing of the code started at the University of Alberta; first running MCMC code

with a limited number of backgrounds (result described in chapter 9) and next
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Figure 8.3: Autocorrelation coefficient versus lag of additional systematic pa-
rameters.
including all the backgrounds (results described in chapter 10). These tests
did not include floating the systematic uncertainties except neutron detection
efficiencies for the PMTs and NCDs and, as mentioned above, the day-night
asymmetries for the external neutrons and D,O photo-disintegration. These
MCMC fits, with and without floating the systematic uncertainties, were run-
ning simultaneously on WestGrid and the University of Alberta. After the suc-
cessful implementation of PSA constraint, constraint from LETA was added;
the results are described in chapter 10.

As mentioned, the MCMC code went through several major developments

and cross checks were performed for each new addition to the code. During
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Pull Bias Pull Width | Bias Error
nc | -0.148414 -0.0111318 | 1.03769 0.00694771
ex | -0.25303 0.0297015 1.73406 0.0352745
po | 0.00691543 | 0.0131642 0.919249 0.00807544
p1 | 0.0683312 -0.0654726 | 1.16261 0.166914
p2 | -0.0420322 | -0.337115 0.92251 0.49617
ap | -0.020796 -0.0304478 | 1.19134 0.162445
a; | -0.00905473 | -0.191791 1.08107 0.835545
fne | -0.0382465 | -0.00125871 | 0.715907 0.00130726

Table 8.4: Pull and bias data, in tabular form, used to plot figures 8.4, 8.6
and 8.7.

the cross checks it was discovered later (while fitting third of the real data)
that the equation to calculate the number of events for CC, ES and ES,;
has an incorrect factor in it, that is, the number of events were multiplied
by the fiducial volume correction of neutral current (nc) rather than their
own. This bug escaped notice for two reasons (1) it is relevant only when
the systematics are floated and most of the tests performed did not float the
systematic uncertainties and (2) the effect is small for ES and ES,,; and matters
only for CC because the number of CC events dominates number of events
from all other event classes (table 8.1). Following equations were used instead
of the correct equations (which had S, instead of S,.) described for CC in
equations (4.63) and (4.64).

X = XD+ XN (8.4)
O, €
XD = fnc Snc ¢nc ( X X )peed RD (85)
g, €
XN = fnc She ¢nc ( . )peen (1 - RD) (86)

nc -nc

where y =CC, ES and ES,,;, S, is the fiducial volume correction for NC, Rp
is the ratio of the number day events to the total number of events in the

Monte Carlo, ¢, is the 8B flux, f,. is a flux-to-event conversion factor and
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Mean Pull

nc ex P

Figure 8.4: Pull distribution of the MCMC fit for the case where systematic
parameters were allowed to float. Table 8.4 was used to plot this figure. The
fit has five event classes, three constraints and 27 fit parameters. This plot
shows the pull distribution for the 8 parameters of the MCMC fit. The peak
and RMS of the posterior distributions were used to get the best-fit value and
its uncertainty.

the variable pee, (Pee, ) is a ratio of the number of events for day (night) classes
with given values of P, (from equations (4.55) and 4.57 or equations (4.58)
and (4.59)) to the number of events with P.. equal to 1.0.

The uncertainty in using the wrong value of fiducial volume correction is
calculated as (Se. — Spe)/See where S, and S.. are from the first step of the
Markov chain. From the 8 Markov chains from a fit on the full data, the
maximum uncertainty is 6%. The purpose of this fit was to check the imple-
mentation of the systematic uncertainties while various fits, without floating
the systematic uncertainties, were being tested at UofA. We wanted to make
sure that when we start testing MCMC code that includes the systematics the
code has already been tested in terms of step sizes and acceptance. So from

that perspective, the code at WestGrid was a success.
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Figure 8.5: Long tail on the left is the reason for the wider pull width of the
external neutrons shown in figure 8.4.
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Figure 8.6: Bias distribution of the MCMC fit while floating the systematic
parameters. Table 8.4 was used to plot this figure. The fit has five event
classes, three constraints and 27 fit parameters. This plot shows the bias
distribution for the 8 parameters of the MCMC fit. The peak and RMS of the
posterior distributions were used to get the best-fit value and its uncertainty.
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Figure 8.7: The plot shows bias divided by the uncertainty on the bias for the
case of floating the systematic parameters. This plot shows that the bias for
the fit parameters is consistent with zero for an ensemble test involving 201
simulated datasets.
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Name | Description Pull Pull
Width
Sysy Direction Asymmetry in cos ¢ for ES only | 0.0233341 | 1.03253
Syss cos 0 Resolution 0.114876 0.943028
Syss Energy Scale -0.092193 | 1.04703
Sysy Directional Asymmetry in -0.102643 | 1.059
Energy Resolution for ES only
Syss Energy Resolution -0.0257215 | 0.950999
Syse X Shift -0.0593584 | 1.08257
Sysy Vertex Scale -0.0748767 | 0.999712
Syss Y Shift 0.0396525 | 1.01556
Sysg Z Shift 0.0262243 | 1.13231
Sysip | XY Resolution — constant term -0.0554756 | 1.05777
Sysi1 | XY Resolution — linear term -0.0847274 | 0.988964
Sysi2 | XY Resolution — quadratic term -0.0401506 | 1.03712
Sysiz | Z Resolution — constant term 0.155381 1.05093
Sysi1s | Z Resolution — linear 0.110996 0.987656
Sysi1s | Vertex Diurnal 0.0385573 | 0.941561
Sysig | Vertex Direction -0.0228358 | 0.876688
Sys17 | Energy Scale Diurnal 0.0338809 | 0.972683
Sysig | Energy Scale Direction -0.0114926 | 0.93307
Sysig | Energy Scale (correlated) 0.0181612 | 1.09638

Table 8.5: Data, in a tabular form, to plot figure 8.8.
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Figure 8.8: Pull spread of the systematics. This plot shows that the system-
atics are correctly treated in the MCMC fit because the pull is approximately
zero and the width of pull is approximately one for all the systematics. The
mean of the posterior distribution was used in the calculation of the pull.
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8.4 Summary

This chapter described the result from the first MCMC ensemble test. This is
a simple fit as it does not float the day-night asymmetries for the backgrounds
from external neutrons and dsopd. Also the constraint on the total number of
neutrons is the mean Poisson number of neutrons in the simulated datasets.
The pull (figures 8.4 and 8.8) and bias plots (figures 8.6 and 8.7) show that
the code is ready to tackle the next challenge, that is, add PSA constraint,
additional backgrounds besides the external neutrons and float the day-night

asymmetries for two of the backgrounds.
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Chapter 9

Adding the Constraint from Pulse

Shape Analysis (PSA) and
Backgrounds

This chapter describes Monte Carlo Markov Chain (MCMC) fit on 448 sim-
ulated datasets (version 4) using PSA method described in section 4.10.9.
Details on simulated data generation are described in reference [90]. For this
ensemble test, following are the parameters in the likelihood function of the
NCD phase: Neutral Current (nc), DO neutron backgrounds (dsopd), acrylic
vessel neutron photo-disintegrations (ex), neutron backgrounds due to hot
spots on K2 and K5 NCD strings, atmospheric neutrino backgrounds (at-
mos), NCD background neutrons (ncdpd), hepCC, hepES and hepNC. The
last three are due to interactions of hep neutrinos in the heavy water. Since
ncdpd, k2pd and k5pd have limited statistics, to test the PSA method, these
were not added; chapter 10 describes the result when all the backgrounds were
included. The number of events for hepCC, hepES ad hepNC are fixed in
the MCMC fit and the number of events for Charged Current (cc), Elastic
Scattering (es) due to electron neutrinos, Elastic Scattering due to v, and v,
neutrinos (es,,) are calculated using the ®B flux and the survival probability
equations as described in chapter 4. Besides floating the number of events for

the signals and backgrounds, other floating parameters are three P.. variables
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(po, p1 and py), two day-night asymmetries (ag and a;) to take into account
the matter effect caused by propagation of neutrinos through matter in the
Sun and the Earth and the day-night asymmetries for the two backgrounds
(external neutrons and dsopd). The PSA method added a constraint from
pulse shape analysis to the fit (equation (9.6)). For details on this analysis,
consult reference [90]. A quick overview of the ensemble test is listed in a
table 9.1.

The flux-to-event ratios, to convert flux to number of events, are calculated

as:
PMT _ N Jére ~ 046758 (9.1)
13.2744702 + 392.80 # 0.211 + 0.82501
NCD _ 13274470239 5834*50 ROSR0I58 e o)

In equation (9.1), N, =240.569 is the actual number of NC events/SSM set
and ¢y = 514.5x10* v em~2 571 is the input SSM ®B v flux in the SNOMAN
Monte Carlo. In equation (9.2), 13.27 is the number of neutrons per day
expected to interact in the SNO detector, 392.89 days is the lifetime of the
NCD phase, 0.211 is the NCD neutron capture efficiency and 0.8250158 is
the correction applied to the efficiency to account for the differences between

the data and the Monte Carlo simulation used in the fit (See reference [90]

for details). From herein, flux-to-event ratios f,E)CMT and anCCD will be used
synonymously with e?MT and eVOP

9.0.1 Generation of the Simulated datasets

The simulated dataset consisted of 448 files; for each file, the number of events
for the signals were randomly drawn from a Poisson distribution with means
listed in column two of table 9.2. These means will hereafter be called Poisson
means. Another set of simulated data was created using a different seed and

this set is called an alternate dataset while the first set is called a reqular
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Number of MCMC steps 250000
Burn-in 30000

Number of parameters floating | 13

Total number of classes 10
Number of fixed classes 3
Number of constraints 7

Table 9.1: Quick overview of the ensemble test using constraint from PSA.

dataset. The reason for creating the alternative dataset was to determine the
role of statistics in the pull and bias of the fit. Columns 3 and 4 list the
mean number of events for each class in the regular simulated dataset and the
alternate dataset. The number of events for CC, ES and ES,, were calculated
from ®B flux, P.. parameters (py, p; and p;) and the day-night asymmetry
(ap and a1). These parameters (pg, p1, ao, a1) are listed in a table 9.3. Once
the number of events were determined for CC, ES and ES,,;, these were used
as the mean number of events in the Poisson distribution ("Poisson means"),
which was utilized to randomly draw the number of events, for all the event

classes, to create each simulated data file.

9.0.2 Constraints on the Fit

Seven constraints were applied to the fit. Table 9.4 lists central values of the
constraints along with associated uncertainties on the constraints. To achieve
a correct pull distribution, the constraint is randomly drawn from a Gaussian
distribution for each simulated dataset. If this is done properly and the fit is
correct then the pull plot, displayed in figure 10.2, should show that the width
of the pull for all the floating variables is consistent with one. Since the width
of the constraint on the external neutrons is 50.37% of the constraint, the
mean and the centroid of the Gaussian function do not coincide because the

constraint is restricted to be positive. Therefore equation (9.3) was utilized to
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Event | Mean Poisson | Mean from Mean from
Class | Parameter Regular Simulated | Alternate Simulated
dataset dataset
CcC 1845.276 1845 + 44 1843+42.09
ES 161.607 161.85 4+ 13.42 161.59+12.29
ES,.- 49.721 49.88+7.14 49.8+7.1
NC 240.569 240.3+15.3 240.9+£21.4
EX 20.754 21.05 4+ 4.46 20.623+4.613
dyopd | 8.305 8.24+2.8 8.265+2.812
Atmos | 24.681 24.57 +4.99 24.9+4.7
hepCC | 12.844 12.692+3.55 12.835+3.459
hepES | 1.068 0.70+0.67 0.7511+0.6850
hepNC | 1.156 1.03+0.98 1.0616+1.018

Table 9.2: Properties of the regular and alternate simulated datasets; column 2
lists the mean number of events used in the Poisson distribution to generate the
simulated datasets and column 3 and 4 has the actual mean number of events
from the simulated datasets — regular and alternate respectively. These were
determined by plotting the number of events, belonging to each event class,
in a separate histogram; the mean and RMS of the histogram is reported as
mean number of events and its uncertainty in columns 2 and 3.

find the Centroid (u), corresponding to the mean (Z) randomly drawn from
the Gaussian distribution, to be applied in the calculation of the likelihood

function (9.6).

\/;U ex (527) (9.3)

Erfc =)

Erfe(z) = — / (9.4)

where Z and p are the mean and the centroid of the Gaussian function respec-

r=pu+

tively. For detail on this, consult Chapter 6.
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Parameter | Actual Value
Do 0.325

P1 -0.0088

D2 0.00122

agp 0.028

ay 0.00478

Table 9.3: Table lists values of P,. parameters and day-night asymmetry used
in the generation of the simulated datasets.

Constraint On Central Width/Uncertainty on
Value the Central Value

fNCD 1.76460447 | 0.041815285

fPMT 0.46758 | 0.0129054351%

External neutrons (EX) 1.0 10.453115/24.754

Day night asymmetry of EX 0.0 0.0112

Atmospheric neutrinos 1 4.8999/24.681

D50 background (dsopd) 1.0 1.28594/8.305

Day night asymmetry for dyopd | 0.0 0.112

PSA 997.752 4.5%

Table 9.4: List of Constraints, their central values and the uncertainties on
the central values.
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9.0.3 Negative Log Likelihood Equation

The NLL, used as a joint probability distribution in the MCMC fit, is described

as:
2m N 2m
—log L= N; = log (Y (Ni)F(&s, P)) (9.5)
i=1 d=1 i=1
i (PSA — BEl — Nll‘il — NQK,Q — Nglig — hepnc)z
2(op)?
n (@ —a)® | (@ -—a)?  (a3—ay)?
203 203 203
. (& — &)? n (& &)  (a—a) n (€0 — €)?
202, 20%, 202 202
1 Di — Dio2 1 & zy ZY\ [ 1.2Y Ty -1
+§ ( o ) +§Zz<bz —b; )(bj _bj )(Vbry)m
i bi i=0 j=0
IR ) )
+3 DO 0 = b2 — ) (Vi) (9.6)
i=0 j=0

—

where F;(Z4, P) is the probability density function, for the class 7, giving the
probability of observing the event d with observables 7y and with the current
values of the fit parameters }3, hep,,. is the number of neutral current events
initiated by hep neutrinos, Ny, Ns, ..., N,, are the number of events for m=10
event classes and i goes from 1 to N data entries. In the constraint terms, oy,
a9 and ag are the ratios of the average rate to the nominal rate for the current
MCMC step and the @y, @y and @s are the constraints for EX, dsopd (photo-
disintegration) and atmospheric neutrinos respectively for a given simulated
dataset. The day-night asymmetries for the external neutrons and d,opd are
represented by &, and &; respectively. The flux-to-event for the NCDs and
PMTs are represented by €; and ¢, respectively. The ®B flux is designated by
B and PSA is the PSA constraint for the current simulated dataset and op
is the width of the PSA constraint. P.. parameters (py, p; and py) and the
day-night asymmetry (ag and a;) were used to calculate the number of events

for CC, ES and ES,,;. In the likelihood equation, p;, p; and o, represent the
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current value of the PMT systematic parameter ¢ in the MCMC fit, its mean
and constraint width respectively. The last two terms are calculation of the

constraint for the systematic uncertainties that are correlated.

9.0.4 Result of Pull and Bias Testing

Results of the pull and bias for the fit are shown in figures 9.2, 9.4 and 9.5. The
top plot shows the result of fitting the regular data and the bottom plot shows
the result of fitting the alternate data. For the pull and bias distributions, the
fit value and its uncertainty are the peak and RMS of the posterior distribution
respectively. Since ®B flux (measured by neutral current interactions) is highly
correlated with P.. parameter pg, as seen in figure 9.1, we decided to use 2
Dimensional marginal likelihood function [91] to determine the best-fit for
nc instead of the 1D we used for all the other parameters. For a likelihood
function consisting of 5 parameters, the 2D marginal likelihood is described
as:

z3(mazx) (max) xa(maw)
h(zq,x2) / / / L(x3, x4, T5)drsdrsdrs (9.7)

(min) (min)
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Correlation Factor is -0.6847

600

400

I 025 — I0.3I - 035 — Il].4l - 045 - II].SI T

Figure 9.1: Correlation of ®B flux with P., parameter py; the peak of the 2D
histogram, in the ®B flux dimension, is used as the best-fit in the calculation
of the pull and bias shown in the second row of tables 9.5 and 9.6. Unit of B

flux is 10* cm=2 s~ 1.
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Parameter | Pull Bias Width | Uncertainty
of Pull | on Bias
nc'd -0.230942 -0.0125036 | 1.00191 | 0.0027206
nc?? -0.115403 -0.00580357 | 0.997218 | 0.00271135
eNeD 0.0853571 0.00202282 | 0.968046 | 0.00107979
Po 0.0397772 0.011134 0.982776 | 0.00437695
p1 0.093125 -0.123214 1.02329 | 0.0916266
P2 -0.00883929 | -0.0585268 | 0.971979 | 0.3333
ag -0.0582154 | -0.0979688 | 1.01031 | 0.0939415
ay -0.0213843 | -0.248482 1.00527 | 0.520914
ePMT 0.0250453 0.00048552 | 1.02351 | 0.00062449
ex -0.130737 0.00133945 | 1.48868 | 0.0260593
€T Asym -0.0392864 1.00946
dsopd -0.00272324 | -0.00042858 | 0.979591 | 0.00717938
deopdasym | -0.077323 1.01282
Atmos 0.0641083 0.0132866 1.00768 | 0.00942613

Table 9.5: Pull and Bias in tabulated form, for the regular dataset consisting of
448 files, to plot figures 9.2, 9.4 and 9.5. The pulls and biases were calculated
using the peak and RMS of the posterior distributions. The actual value of
day-night asymmetry in the simulated data is zero hence bias calculation for
€X Asym and doopdasy,, is not possible (equation (4.75)).
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Figure 9.2: These are pull plots for the regular dataset blue, as well as, the
alternate dataset in red.
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EX Entries 448
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RMS 2.082
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Figure 9.3: The pull distributions of external neutrons. The top plot is for the
regular dataset and the bottom plot is for the alternative dataset. The tails
cause the pull width to be greater than 1.0 as seen in figure 9.2.
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Figure 9.4: These are bias plots for the regular data in blue as well as for the
alternate data in red. The role of statistics is evident in the bias of a; which

flipped sign from the regular dataset to the alternate dataset.
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Figure 9.5: Spread of bias divided by the error in the bias for the regular
data in blue and for the alternate data in red. The bias of NC and pg is not
consistent with zero as hoped. The reason is explained in section 11.5.1.
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Parameter | Pull Bias Width | Uncertainty
of Pull | on Bias

ncld -0.238264 -0.0129786 1.00555 | 0.00272892

nc? -0.128707 -0.00660357 | 1.00183 | 0.00272106

eNep 0.103482 0.00243735 0.980004 | 0.0010916

Po 0.0716084 0.0145938 1.00723 | 0.0045035

P1 0.0366964 -0.0308036 0.914152 | 0.0817548

P2 -0.0601786 | -0.449732 0.895417 | 0.302359

ag -0.0716522 | -0.137188 0.962276 | 0.0901021

ay 0.0365627 0.400714 0.96157 | 0.492561

ebMT 0.0147325 0.000384841 | 1.0204 0.000624776

ex -0.139419 -0.00625062 | 1.45068 | 0.025772

X Asym -0.0271433 1.00452

dsopd -0.00620543 | -0.000870556 | 0.987645 | 0.00722651

deopdasym | -0.0781708 0.998703

Atmos 0.0595101 0.0123081 1.01328 | 0.00946615

Table 9.6: Pull and bias in a tabulated form, for the alternate dataset con-
sisting of 448 files, to plot figures 9.2, 9.4 and 9.5. The pulls and biases were
calculated using the peak and RMS of the posterior distributions. The ac-
tual value of day-night asymmetry in the simulated data is zero hence bias
calculation for ex gy, and doopdasy,, is not possible (equation (4.75)).
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9.1 Summary

This chapter described the MCMC fit result using the PSA constraint and
adding backgrounds from D;O photo-disintegration and atmospheric neutri-
nos. The biases are consistent with zero except for the bias in NC. Even though
the bias in the neutral current (NC) is not consistent with zero using 1D or
2D marginal likelihood function, (From 1D distribution -0.0125+0.0027
for the regular dataset and -0.013+0.0027 for the alternate dataset),
this test was considered a success and we move on to the next ensemble test
which included all the backgrounds in the fit. The reason for the bias in NC

was investigated in detail and is covered in section 11.5.1.
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Chapter 10

Ensemble Test with Signals, all
the Backgrounds, and Fixed
Systematic Parameters

10.0.1 Introduction

This chapter describes the MCMC fit using the PSA constraint (described in
section 4.10.9). The parameters floating in the likelihood function are: neu-
tral current (nc) , external neutrons (ex), day-night asymmetry for the external
neutrons, dsopd, day-night asymmetry for the d,opd, atmospheric neutrinos,
k2pd, kdpd, ncdpd, NCD NC detection efficiency, PMT NC detection effi-
ciency, P.. parameters (pg, p1 and py) and the day-night asymmetry (ag and
ap). Information from external measurements is used to apply constraints on
the likelihood function. There are 11 or 12 constraints applied. Table 10.2
lists the parameters on which constraints are applied, the constraints applied
and the widths/uncertainties of the constraints. Table 10.1 shows the Poisson
means (Number of expected events, used as mean in the Poisson distribu-
tion, and henceforth will be called Poisson means.) for the generation of the
simulated datasets and the means from the limited number of datasets. The
number of steps in a MCMC fit is 350,0000 and 30,000 steps were removed
as a burn-in. The number of simulated datasets in the ensemble test is 14 or

15. Three event classes (hepCC, hepES and hepNC) were not floated and the
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number of events for three event classes (CC, ES and ES,;) were calculated

from the ®B flux and P,. survival probability equation.

more details.

Refer to chapter 4 for

Parameter | Poisson Means | Mean from Mean from
Regular dataset | Alternate dataset

nc 240.569 2425+ 11.84 237.5+£19.45
ex 20.754 20.73 4+ 2.768 217

k2pd 9.402 10.13 £ 2.918 8.267+2.977
kbpd 8.378 92+24 8.267£1.611
dsopd 8.305 7.067 + 2.38 8.06712.568
Atmos 24.681 23.13 4+ 4.588 23.27+4.49
cc 1845.276 1843 £+ 39.95 1836£29.81
es 161.607 162.7 £ 11.5 161.54+10.1
eS,r 49.721 50.13 4 5.427 49.87+4.32
ncdpd 5.938 5.533 £ 1.996 6.667+3.218

Table 10.1: Expected number of events used as Poisson means in the gen-
eration of the simulated datasets and the mean number of events in the 15
simulated datasets.
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Parameter | Constraint | Uncertainty on Constraint
ePMT 0.46758 0.00603

eNOD 1.764605 0.041815285

ex 1.0 10.453115/20.754
X asym 0.0 0.0112

k2pd 1.0 1.49056/9.402
kbpd 1.0 0.980968/8.378
dsopd 1.0 1.28594/8.305
doopdasym 0.0 0.112

Atmos 1.0 4.8999/24.681
ncdpd 1.0 2.0349/5.938
PSA 1097.752 49.39884

Table 10.2: Constraints and the uncertainties on the constraints applied on
the parameters listed in column 1.
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Figure 10.1: Autocorrelation coefficient versus lag for the parameters in the
fit. Fifteen simulated datasets with 13 event classes were used in the ensemble
test. The number of steps in the MCMC fit is 350,000 but only 100,000 are

shown here for clarity. This fit does not float the systematic uncertainties.
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10.0.2 Result

In the calculation of pull (equation (4.76)) and bias (equation (4.75)), for the
best-fit of a fit parameter and its uncertainty, peak and RMS of the posterior
distribution — belonging to the fit parameter — were used respectively. The

peak is determined by the following algorithm:

1. Determine the RMS ¢ and the range (R) of the posterior distribution by

projecting all the MCMC events along the single axis of the parameter.

2. 10" of the o is taken as a bin width of a histogram H and the number

of bins are calculated as nbins = (R/(0.10)).

3. The histogram H is populated with the parameter values from the MCMC

chain.

4. Smoothing the histogram H and then searching for the bin with the

highest value (maximum bin).
5. Peak is a bin center of the maximum bin.

For the regular data, the result is presented in a tabular form (table 10.3)
as well as blue plots in figures 10.2 to 10.4; for the alternate datasets, the
result in a tabular form is listed in a table 10.4 and pull and bias plots are
shown in red in Figures 10.2 to 10.4.

Simulated datasets are created from a Monte Carlo simulation. Since ran-
dom events are selected for inclusion in the simulated dataset, a different seed
will result in different datasets. Hence statistics will play a role in the pull and
bias spread. Increasing the number of datasets will reduce the role of statistics
but with only 15 datasets, it is evident that statistics play a vital role. For
example, looking at tables 10.3 and 10.4, the pull of kbpd is 0.602 for the al-

ternate data but 0.115 for the regular data. Similarly the pull of py is +0.655
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for the regular data but only -0.218 for the alternate data. The sign of pull
flipped from the regular data to the alternate data for p,. The pull of some of
the parameters exceeded 0.5, for example p, and k5pd in the regular dataset
and alternate dataset respectively, as shown in Figure 10.2. Section 10.2 cov-
ers a discussion of the statistics of pull in an ensemble consisting of 14 or 15
datasets. The error bars on the pull plots indicate the average spread of the
parameter and not the uncertainty on the average pull. From statistics, the

pull width as a function of the number of datasets n, is given as:

N e ﬁ» (10.1)

Since n=14 or 15 for this analysis, the pull width should be 0.945 or 0.949.
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Parameter | Pull Bias Width | Uncertainty
of Pull | on Bias

nc -0.261713 | -0.0155333 | 0.89048 | 0.0134721

eNep 0.106011 0.0003 1.08945 | 0.000792184

Po -0.222016 | -0.0113 1.0788 0.0262884

P1 -0.354 0.758667 0.834691 | 0.404804

P2 0.655335 4.614 0.884342 | 1.65851

ag -0.0860025 | -0.139411 1.02759 | 0.520458

ay -0.132667 | -1.49877 0.842946 | 2.20641

ebMT -0.184667 | -0.00230667 | 0.965865 | 0.00322137

ex -0.157145 | -0.0436701 | 1.42237 | 0.139222

X Asym 0.445728 0.636905

dsopd -0.246017 | -0.0378333 | 1.06408 | 0.0420035

deopdasym | -0.258038 1.10459

Atmos -0.319344 | -0.0621667 | 0.937625 | 0.0475242

k2pd 0.0846684 | 0.0121667 1.01403 | 0.041383

k5pd 0.115336 0.0141667 1.03623 | 0.0312613

ncdpd -0.431336 | -0.117801 0.963052 | 0.0746731

Table 10.3: Pull and bias in tabulated form, used to plot distributions, shown
in blue, in figures 10.2 to 10.4. The day-night asymmetry of the dsopd and ex-
ternal neutrons in the regular datasets is zero, hence the bias is not applicable

(equation (4.75)).
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Figure 10.2: Pull spread for the 15 datasets. The peak and RMS of the poste-
rior distribution were used as the best-fit and its uncertainty in the calculation
of the pull of the fit. The top plot is the pull spread for the regular datasets
and the bottom plot is for the alternate datasets. There are a number of sign
flips between the data and the alternate data, for instance, ps.
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Figure 10.3: Spread of bias divided by the error in the bias. This ensemble
test floats 16 parameters and does not include the systematics. The blue is for
the regular datasets and the red is for the alternate datasets. The bias of ps
is less than 1o for the alternate datasets but more than 20 for the data. The
bias on ag is less than 1o for the data but around 20 for the alternate case.
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Figure 10.4: Spread of bias for the 15 regular datasets (blue) containing 13
event classes. The red is for the alternate datasets. There are a number of
sign flips, for instance, ps and a;.
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Parameter | Pull Bias Width | Uncertainty
of Pull | on Bias
nc -0.316215 | -0.0184667 | 0.882103 | 0.0140898
eNeD 0.272715 | 0.00207378 | 1.122 0.00293686
Po 0.291334 | 0.0373 0.925968 | 0.0249086
pP1 0.078 -0.129333 | 0.837835 | 0.413784
P2 -0.218004 | -1.518 1.02159 | 1.89429
ag -0.444667 | -0.87936 0.851902 | 0.440405
aq 0.123333 | 1.64804 0.729518 | 2.09174
ebMT 0.0860005 | 0.00134667 | 0.984209 | 0.00330405
ex -0.289287 | -0.123689 | 1.34256 | 0.144165
X Asym -0.259242 1.68998
dsopd -0.312695 | -0.0485 1.07422 | 0.0430973
deopdasym | 0.318098 1.14534
Atmos 0.0620008 | 0.0121667 | 1.01325 | 0.0517788
k2pd 0.118001 | 0.0201667 | 0.991889 | 0.040105
kbpd 0.602032 | 0.0711667 | 1.03028 | 0.0312321
ncdpd 0.367007 | 0.16725 1.5316 0.121459

Table 10.4: Pull and bias in tabulated form, used to plot the distributions,
shown in red, in figures 10.2 to 10.4. The day-night asymmetry of the dyopd
and external neutrons in the alternative datasets is zero, hence the bias is not
applicable (equation (4.75)).
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10.1 Including penalty from both the Low En-
ergy Threshold Analysis (LETA) and the
Pulse Shape Analysis (PSA)

For this fit, the constraints from LETA were added along with the constraint
from the PSA in the likelihood function. PSA and LETA constraints are
described in detail in Sections 4.10.9 and 4.10.8.

Fourteen datasets were used for this ensemble test. This fit also includes all
6 backgrounds along with CC, ES, NC and ES,,;. The parameters constrained
by the LETA constraint are ®B Scale and the 5 parameters of the survival

probability equation (pg, p1, p2, ap and a;).
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Parameter | Pull Bias Width | Uncertainty
of Pull | on Bias
nc -0.33149 -0.00948571 | 0.883355 | 0.00665161
eNep -0.317298 | -0.00312461 | 1.17893 | 0.00323582
Po -0.18 -0.00771429 | 0.863663 | 0.0111242
P1 -0.16 0.132571 0.692048 | 0.147339
P2 0.509154 1.19314 1.20124 | 0.737018
ag 0.202465 0.224572 0.981601 | 0.280461
a -0.210286 | -0.96 0.712436 | 0.948475
ePMT -0.137993 | -0.00146743 | 1.14366 | 0.00367554
ex -0.0171429 | 0.012 0.865261 | 0.0965634
X Asym -0.212742 0.974553
ds0 -0.406556 | -0.0630932 | 1.02568 | 0.0420775
d204sym -0.325714 1.00941
Atmos -0.362743 | -0.0708 0.683359 | 0.0358792
k2pd -0.0854673 | -0.0127308 | 1.20072 | 0.0507381
kbpd -0.373504 | -0.0440585 | 1.04368 | 0.0325189
ncdpd 0.0377143 | 0.0302857 1.0265 0.0858535

Table 10.5: Pull and bias in tabular form, used to plot the distributions,
shown in blue, in figures 10.5 to 10.7. The MCMC fit includes constraint
from both LETA and PSA. The day-night asymmetry of the deopd and exter-
nal neutrons in the regular datasets is zero, hence the bias is not applicable
(equation (4.75)).
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Figure 10.5: Pull spread with both PSA and LETA constraints. Ensemble test
included fourteen datasets. Each MCMC run had 350,000 steps; 100,000 steps
were removed as burn-in to assure the convergence of the remaining steps.
Systematics were not floated in this ensemble test. The fit included 13 event
classes and floated 16 parameters with the application of 12 constraints. The
blue is for the data and red is for the alternate case. The parameters pg, p1,
p2 flipped signs between the regular data and the alternate data.
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Figure 10.6: Spread of bias with both PSA and LETA constraints. Ensemble
test included fourteen datasets. Each MCMC run had 350,000 steps; 100,000
steps were removed as burn-in to assure the convergence of the remaining
steps. Systematics were not floated in this ensemble test. The fit included 13
event classes and floated 16 parameters with the application of 12 constraints.
The blue is for the data and red is for the alternate case. The parameter ps
flipped the sign between the regular dataset and the alternate dataset.
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Figure 10.7: Spread of bias divided by the error in the Bias using both PSA and
LETA constraints. Ensemble test included fourteen datasets. Each MCMC
run had 350,000 steps; 100,000 steps were removed as burn-in to assure the
convergence of the remaining steps. Systematics were not floated in this en-
semble test. The fit included 13 event classes and floated 16 parameters with
the application of 12 constraints. The blue is for the data and red is for the
alternate case.
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Parameter | Pull Bias Width | Uncertainty
of Pull | on Bias
nc -0.216109 | -0.006 1.07102 | 0.0081885
eNep -0.203118 | -0.00191767 | 1.2591 0.00345443
Po 0.182857 0.0107143 0.885908 | 0.0115773
P1 -0.0100001 | 0.02 0.980966 | 0.202757
P2 -0.162878 | -0.321429 1.09952 | 0.679468
ag 0.125714 0.135 0.653438 | 0.185701
a 0.0528574 | 0.331429 0.965638 | 1.29104
ebMT -0.277144 | -0.00305714 | 0.955609 | 0.00297688
ex -0.178571 | -0.0428571 | 1.04565 | 0.103571
X Asym -0.261812 1.06897
dsopd -0.391452 | -0.0625 1.0424 0.0430739
deopdasym | -0.305726 1.03947
Atmos -0.408571 | -0.08 0.811228 | 0.042172
k2pd -0.0814626 | -0.0132143 | 1.17777 | 0.0495151
kbpd -0.430012 | -0.0503571 | 1.01149 | 0.031553
ncdpd -0.12287 -0.0188592 | 1.0902 0.0877943

Table 10.6: Pull and bias in tabular form, used to plot the distributions,
shown in red, in figures 10.5 to 10.7. The MCMC fit includes constraint from
both LETA and PSA. The day-night asymmetry of the dsopd and external
neutrons in the alternative datasets is zero, hence the bias is not applicable
(equation (4.75)).
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10.2 The Statistics of "Pulls"

Using a small toy Monte Carlo, it was shown that an ensemble test of 15
datasets will always result in broader pull distributions compared to say an
ensemble of 50 or 100 datasets. Pull plots for the 15, 50 and 100 datasets are
shown in figures 10.8 and table 10.7 lists pull, width of pull, x? and degrees of
freedom (dof) from fitting a Gaussian function to the pull spreads. The pull
is 39.21 when using 15 files but improves to 0.399 and 0.133 with 50 and 100
files respectively. Non-zero number of entry at pull=-5 plays a bigger role in
pull calculation when using 15 files compared to, for instance, 100 files. If the
range of the fit is restricted from -2 to 1 in the top plot in Figure 10.8, the
pull improves from 39 to 0.7 to with x?/dof = 6/17.

Number of datasets | Pull | Width of Pull | x? | Degrees of Freedom

15 39 8 7 38
20 0.399 1.382 30 57
100 0.133 1.288 23 o8

Table 10.7: Result of a toy Monte Carlo where different number of datasets

were used in the analysis to quantify the effect of statistics on the pull of the
fit.
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Figure 10.8: Pull spreads for 15, 50 and 100 sets. The green line shows a
Gaussian fit of the distributions.
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10.3 Convergence of the Markov Chain

One test of robustness of the MCMC code is the convergence fit where the
starting points were picked from a flat distribution expressed as: Uniform(u —
100, ;1 + 100) where p is the central value and o is the uncertainty of the
central value. MCMUC is a robust code if the fit converged despite the fact
that the initial values were far away (+10c0) from the nominal values. This
section describes the result of the convergence test. Plot 10.9 shows that
the convergence of log likelihood was achieved around 4000 steps. Different
parameters took different number of steps to converge, as seen in figures 10.11
to 10.15. To ensure the convergence, the burn-in period was selected to be
50,000 steps after consulting the autocorrelations plots, shown in figure 10.1.
The number of steps in the burn-in period were rejected when estimating the
parameter values. Table 10.8 gives a summary of the results of the Conver-
gence fit; column one lists the constraints selected randomly for the dataset,
column two lists the mean and RMS of the posterior distributions, after taking
out the burn-in period, and the last column points to the figures that has the

corresponding result.
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Figure 10.9: The left plot displays a histogram of log likelihood versus MCMC
step. The plot on right is a histogram which shows the negative value of
likelihood calculated for each step of the chain. The large negative likelihoods
correspond to the steps where the chain has not yet converged.
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Figure 10.10: Convergence of neutral current (NC) flux. The yellow and red
colours show the converged regions. For clarity not all MCMC steps (350,000)
are shown in this plot.
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Figure 10.11: Convergence of the external neutrons.

The yellow and red

colours show the converged regions. For clarity not all MCMC steps (350,000)

are shown in this plot.
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Figure 10.12: Convergence of the ncdpd background.

The yellow and red

colours show the converged regions. For clarity not all MCMC steps (350,000)

are shown in this plot.
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Figure 10.13: Convergence of the k2pd background. The yellow and red colours
show the converged regions. For clarity not all MCMC steps (350,000) are
shown in this plot.
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Figure 10.14: Convergence of the kbpd background. The yellow and red colours
show the converged regions. For clarity not all MCMC steps (350,000) are
shown in this plot.
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Figure 10.15: Convergence of dyopd. The yellow and red colours show the
converged regions. For clarity not all MCMC steps (350,000) are shown in
this plot.
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Figure 10.16: Posterior distributions of the dsopd and external neutrons. The
values are ratios of average rates to the nominal rates for the dsopd and ex-
ternal neutrons. The fit value is taken as the mean of distribution and the
uncertainty as the RMS.
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Figure 10.17: Posterior distributions showing the mean number of events of

k2pd [top| and k5pd [bottom| neutrons.
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Figure 10.18: Posterior distributions showing the mean number of ncdpd
neutrons and atmospheric neutrons.
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Figure 10.19: Posterior distributions of day-night asymmetry of external neu-
trons [top| and dgopd [bottom| neutrons.
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Figure 10.20: Plots for flux-to-event ratios for ®B flux in PMTs [top| and
NCDs [bottom].
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Parameter

Central Value of

the Constraint

Fit Result

Figure

Number

dsopd

ex

k2pd

k5pd

ncdpd
Atmospheric
ex D/N
dyopd D/N
PMT f2e
NCD f2e

0.876
0.008
9.79
7.09
9.685
21.504
1.48915
0.0505
0.477
1.75465

0.8737 £ 0.1539

0.008 £ 0.011
9.79 £1.445
7.115 £ 0.9963
5.847 £ 1.946
21.45+4.89
1.542 £0.4913
0.0517 £0.111
0.4765 £ 0.006
1.755 £ 0.005

Top plot 10.16
Bottom plot 10.16
Top plot 10.17
Bottom plot 10.17
Top plot 10.18
Bottom plot 10.18
Top plot 10.19
Bottom plot 10.19
Top plot 10.20
Bottom plot 10.20

Table 10.8: Comparing constraint to the result from the MCMC fit. Fit result,
in column 3, consist of mean and RMS from the posterior distribution; D/N
stands for day-night asymmetry and f2e is flux-to-event ratio.

10.3.1 Conclusion of the Convergence Test

This section shows that purposely selecting initial values far from away from

the true values has no effect on the fit. Convergence was reached after 5,000

steps which is 1.4% of the total number of steps (350,000) that were used in

the fit. For the nominal fits, starting values were randomly selected according

to a Gaussian distribution (i, £30) of width £30 where p is the central value

of a constraint or a nominal value used in the generation of the datasets and

o is the width of the constraint or the uncertainty of the nominal value.
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10.4 Comparing MCMC to QSigEx for the full
Monte Carlo using the LETA constraint

The motivation for this ensemble test was to compare MCMC to QSigkx hence
for this ensemble test, the constraints were not changed from one dataset
to another dataset. This tests whether there are coding errors or algorithm
problems in either of the two independent analyses. MCMC is the code that
the author of this dissertation ran at University of Alberta and QSigEx is the
code that Pierre-Luc Drouin from the University of Carleton ran. QSigEx is
based on maximum likelihood method in TMinuit from ROOT [93]. MCMC
is based on Markov Chain Monte Carlo method using Metropolis algorithm.
Tables 10.9 and 10.10 illustrate the comparison between MCMC and QSigkx
for the alternate case and regular datasets respectively. For both MCMC and
QSigEx, the distribution of best-fit value, from each simulated dataset, was
plotted for each parameter x. For MCMC, Root Mean Square (RMS) of the
distribution was taken as an uncertainty on the best-fit value of the parameter
x (See column 3 in tables 10.9 and 10.10). The mean shift, mean spread and
the uncertainty on the mean shift was computed by plotting the difference,
between the best-fit values from MCMC and QSigEx, divided by the average

uncertainty (equation (10.2)):

2(glx] — m[z])
(ogl] + om[2])

(10.2)

where ¢[z] and m|z] are the best-fit values for the parameter z, o,[z] and
om|x] are the uncertainties on the best-fits for the parameter z from QSigEx
and MCMC respectively. The mean of the distribution is the mean shift and
the RMS of the distribution is the mean spread, listed in column 6 and 7
of tables 10.9 and 10.10. The uncertainty on the mean shift is mean spread
divided by the square root of the number of datasets which in this ensemble

test was 14. The correlation between MCMC and QSigEx was obtained by
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plotting 2 Dimensional histogram (Hist ¢[z] : m[z]) and then using a function
from ROOT Hist.GetCorrelationFactor(). See the last column in tables 10.9
and 10.10).

Comparing best-fit results (peaks of posterior distributions after removing
the burn-in period) of ag, a; and B scale from MCMC to QSigEx in the left di-
agrams of the following figures 10.21, 10.22 and 10.23. The right plots compare
computation of the equations (10.3) and (10.4) in red and blue respectively.
The comparison is for each of the 14 fitted simulated datasets, shown in the

X axis in the figures.

(g[z] — mlz])
04[]
(qlz] — ml[z])
O[]

(10.3)

(10.4)

where ¢[z] and m[z] are the best-fit values for the parameter z, o,[z| and
om[z] are the uncertainties on the best-fits for the parameter = from QSigEx
and MCMC respectively.

Comparing these plots with plots B.50, B.51 and B.52, it is evident that the
restriction from LETA reduced the exploring region of the MCMC fit, hence

the confidence levels have reduced too.
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Figure 10.21:

Comparing the best-fit of ag and a; along with their relative
errors (from equations (10.3) and (10.4)), for each of the dataset, between

MCMC and QSigEx. The ensemble test consist of 14 regular datasets.
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Figure 10.22: Comparing the best-fit results of a; and a; along with their
relative errors (equations 10.3 and 10.4) between MCMC and QSigEx. The
ensemble test consist of 14 alternate datasets.
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Figure 10.23: Comparing ®B scale and the relative error in 8B scale from
MCMC to QSigEkx for each of the 14 fitted datasets shown in the X axis. The
top is for the regular dataset and the bottom plot is for the alternate dataset.
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Figure 10.24:

Comparing bias for the regular dataset in blue and for the

alternate dataset in red.
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Figure 10.25: Comparing bias/uncertainty for the regular dataset in blue and
for the alternate dataset in red.
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Figure 10.26: Comparing pull spread for the regular dataset in blue and for
the alternate dataset in red. Since the constraints were not changed from one
file to the next, the pull width is not 0.949.
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Figure 10.27: Showing best-fit result in green color for day-night asymmetries
(ag and ay) for each of the 14 fitted simulated datasets shown in the X axis.
Systematics were not floated. The blue dotted lines show 4o confidence levels
from the MCMC fit. The best-fit from QSigEx along with its uncertainty is
shown in red. The top is for the regular dataset and the bottom plot is for the
alternate dataset.
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Figure 10.28: Showing best-fit result in green color for P.. parameters (po
and p;) for each of the 14 fitted simulated datasets shown in the X axis.
Systematics were not floated. The blue dotted lines show 4o confidence levels
from the MCMC fit. The best-fit from QSigEx along with its uncertainty is
shown in red. The top is for the regular dataset and the bottom plot is for the
alternate dataset.
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Figure 10.29: Showing best-fit result in green color for P.. parameter (ps)
and 8B scale for each of the 14 fitted simulated datasets shown in the X axis.
Systematics were not floated. The blue dotted lines show 4o confidence levels
from the MCMC fit. The best-fit from QSigEx along with its uncertainty is
shown in red. The top is for the regular dataset and the bottom plot is for the
alternate dataset.
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10.5 Summary

This chapter described two MCMC fit results (applying the PSA constraint
and applying constraints from both PSA and LETA) which included all the
backgrounds. The final section detailed the comparison between QSigkx and
MCMC for the full PSA ensemble test including the LETA constraint. Even
though the number of simulated datasets were limited (15 for PSA and 14 for
PSA-+LETA), the result showed that QSigEx and MCMC agree and converge
to an unbiased result with correct uncertainties. Before running the code on
the 1/3 data, it was tested on 1/3 simulated datasets; the result is described in
chapter 11. This chapter also outlined the convergence test to check whether
the likelihood function works if the values of the parameters fitted starts far

from the actual values.
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Chapter 11

Ensemble Test on 1/3 of the
Simulated Dataset

11.1 Introduction

The difference between the full fit and the one third fit is that the expected
number of events for each class corresponds to the expected number of events
for the one-third of the real data. The ensemble test consisted of forty five
simulated datasets. The motivation for the one third test is to compare the
MCMC result to the result from the QSigex and for that reason the constraints
were not changed from file to file; hence the width of the pull is not 0.983.
The fit included constraint from PSA on the total number of neutrons from
the NCDs. The constraint from LETA was not included in this test. There
are thirteen event classes including the 3 hep classes which are fixed in the
MCMC fit. Besides floating the number of events for 7 event classes, the fit

also floats:

1. NC capture efficiency uncertainty on the PMT side

2. NC capture efficiency on the NCD side

'The error bars on the pull plots indicate the average spread of the parameter and not
the uncertainty on the average pull. From statistics, the pull width as a function of the
number of datasets n, is given as \/[(n —1)/n](1 — m); if n=45 files, the width of the
pull is 0.983.
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3. Day-night diurnal asymmetry for the external neutron background

4. Day-night directional asymmetry uncertainty for the D,O photo-disintegration

background

Four cases were considered for the fit. Two for the regular-simulated dataset
and two for the alternate-simulated dataset; (a) fit with fixed systematic un-

certainties and (b) fit with additional 8 systematic uncertainties in the fit.

11.2 Fit with Fixed Systematics

The number of steps in the MCMC fit is 750,000; 100,000 of which is rejected
as a burn-in period. Systematics were not floated for this ensemble test. The

negative log likelihood (NLL) function, for the 1/3 fit is:

—logEzZN Zlog Z Fi(z d,ﬁ))

=1

+(PSA - B€1 - Nllil - NQK/Q - N3lig — N4I‘€4 - N5Ii5 — NG"{G - 4363/3)2

2(op)?

(p —)® | (@ — ) | (@3—a3)® (G4 —ay)?
20% 203 203 203
+(@5 —as)®  (q — ag)? 4 (& — &)? n (&, — &)?
202 202 20520 20521

€1 — € 2 60 — 60
* ( 202 ) 202 * Z 20k

(11.1)

where F; (74, 13) is the probability density function, for the class 7, giving the
probability of observing the event d with observables Z; and the current values
of the fit parameters 13, N1, Ns, ..., N,, are the number of events for m=13
event classes and i goes from 1 to N data entries. The 8B flux is designated
by B and PSA is the PSA constraint for the current dataset and op is the

width of the constraint which is 7.2% for the one third dataset. The values of
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r for various backgrounds is listed in the table 4.7. The number 4.363/3 is the
average number of NC interactions from the hep neutrinos (*He+p — *He +
et + v,) expected to be detected in the NCDs for the 1/3 fit. In the constraint
terms, oy, ag, asz, a4, a5 and g are the values of a (equation (4.19)) in the
current MCMC step for EX, dyopd , atmospheric neutrons, k2pd, k5pd and
ncdpd respectively. The @y, @y, @3, a4, a5 and @g are the constraints for EX,
dsopd , Atmospheric neutrons, k2pd, k5pd and ncdpd respectively for a given
dataset. The day-night asymmetries for the external neutrons and dsopd are
represented by & and & respectively. The flux-to-event for the NCDs and
PMTs are represented by €; and ¢y respectively. The Bk is the central value
of the k*" systematic uncertainty and 8, is the current value of the systematic
uncertainty in the MCMC fit. Eight systematic uncertainties were floated so
k goes from 1 to 8. When the systematics are not floated then k£ = 0.

The pull and bias plots for the fit are shown in figures 11.1 to 11.3. Since
the constraints were not changed from data file to data file, the width of the
pull is not 0.983. From the bias plot, it appears that except NC all the biases
are within zero of the uncertainties. Each fit result is derived from the peak of
the posterior distributions. This is a modest attempt to make MCMC close to
the maximum likelihood technique. The MCMC fit, for the regular dataset,
resulted in —0.0177 + 0.0036 bias in NC, 4.90 away from zero, as shown in
figure 11.4. For the alternate case, the bias is —0.0195 4= 0.0033 which is 5.90
away from zero. Since the situation is different for the alternate dataset, it is
evident that statistics played a role because the difference between the regular

and alternate dataset is a seed used to generate them.

11.3 Floating 8 Systematics as parameters in
the Fit

Following systematic parameters were floated are:
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1. Phase-correlated energy scale

2. Energy scale (for the NCD phase)

3. Relative energy resolution shift

4. Radial vertex scale

5. cos 6 uncertainty for ES only

6. Day-night diurnal energy scale uncertainty

7. Day-night directional energy scale uncertainty for ES only

oo

. Day-night directional cos # uncertainty

The results are displayed in figures 11.5 and 11.6. For the regular dataset,
420,000 steps were taken in the fit for each dataset from which 50,000 steps
were removed as burn-in; for the alternate dataset, 344,000 steps were taken

in the fit for each dataset and burn-in was 80,000 steps.
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Figure 11.1: Result from the fit; the top plot is the bias spread for the regular
dataset and the the bottom plot is the bias spread for the alternate dataset.
The bias on a; changed sign from + to - between regular dataset and alterna-
tive dataset.
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Figure 11.2: Bias divided by the uncertainty in the bias for the 1/3 fit; the top
plot shows the result for the regular dataset and the bottom plot shows the
result for the alternate dataset. No systematics were floated for this fit. The
bias on NC detection efficiency in NCDs (second bin) and ncdpd (last bin)
improved from regular dataset to alternate dataset.
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Figure 11.4: NC fit result of the third of datasets. The plot shows the Gaussian
fit of the bias distribution of the ®B flux for the regular dataset (top) and for
the alternate dataset (bottom). The bias is better for the regular dataset than
the alternate dataset.
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This chapter describes the number of steps taken to figure out the cause
of the bias. Table 11.1 lists the NC bias obtained for each step along with a
reference to the corresponding figure that displays the NC bias distribution
fitted to a Gaussian function. Plots are presented in the Appendix.

For the first nine "steps", as described below, all P,, parameters were fixed

to their nominal values.

1. Motivation: To find out if there is a configuration problem with the
nominal number of events or a problem in the likelihood function.
Information is passed to the MCMC program via a configuration file and
if there is any misinformation in the configuration file then it will result
in a biased fit. For this test, only three classes were included CC, ES
and NC and NC neutron efficiencies were fixed. PSA constraint was not

used. The result in NC bias is 0.005 £ 0.004, as shown in figure B.1.

2. Motivation: To test PMT side neutron efficiency in the likelihood func-
tion.
Only three classes were included: CC, ES and NC. Floating PMT-side
NC neutron efficiency. No PSA constraint was applied. The result, as

shown in figure B.2 is 0.007 &= 0.004.

3. Motivation: To test PSA constraint.
Fit contained only three classes: CC, ES and NC. NC neutron efficiencies
were fixed. Fit included the PSA (with only NC neutrons) constraint.

The result, as shown in figure B.3, is 0.003 &+ 0.003.

4. Motivation: To test the PSA constraint with neutron efficiencies.
Fit included only three classes: CC, ES and NC. Floating NC neutron
efficiencies in the fit. Applied the PSA (with only NC neutrons) con-

straint. The result is shown in figure B.4.
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5. Motivation: To test EX in the likelihood function.
Fit had four event classes: CC, ES, NC and EX. NC neutron efficiencies
were fixed. EX was fixed to its nominal value of 1.0. No PSA constraint

was applied. The result, as shown in figure B.5, is 0.005 + 0.003.

6. Motivation: To test the PSA constraint with NC and EX neutrons.
Four event classed were included: CC, ES, NC and EX. NC neutron
efficiencies were fixed. EX fixed to its nominal value of 1. Added PSA
(with NC + EX neutrons) constraint. The result, as shown in figure B.6,
is 0.003 £ 0.003.

7. Motivation: To test NC neutron detection efficiencies, for PMTs and
NCDs, along with the PSA constraint.
Four classes were included: CC, ES, NC and EX. Floating NC neutron
efficiencies. EX fixed to its nominal value of 1. PSA (with NC + EX
neutrons) constraint was also applied. The result is shown in figure B.7;

NC bias came out to be 0.00340.003.

8. Motivation: To test EX and the PSA Constraint.
Four classes were included: CC, ES, NC and EX. Neutron efficiencies

were fixed. Floating EX with PSA constraint. The result, as shown in

figure B.8, is 0.004=£0.003.

9. Motivation: To test the day-night asymmetry.
Four classes were included: CC, ES, NC and EX. Neutron efficiencies
were fixed. Floating the day-night asymmetry for EX. The result, as
shown in figure B.9, is 0.00340.003.

None of the tests performed had a bias in NC. So the next step was perform-

ing a full MCMC fit floating the P.. parameters, 8B, etc.with one background
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removed at a time. Following steps were undertaken to flush out the cause of

the problem.

Step 1: For the first test "Step", ncdpd background was removed, the other
backgrounds were fixed to their nominal values. Result, as shown in

figure B.10, is —0.017 4 0.002. The bias in NC is 7o away from zero.

Step 2: In the second step, kbpd background was removed while keeping the
remaining backgrounds at the nominal level of 1.0. The bias in NC, as

shown in figure B.11, is —0.015 + 0.002 which is 7o away from zero.

Step 3: In the third step, k2pd background was removed while keeping the
remaining backgrounds at the nominal level of 1.0. The bias in NC, as

shown in figure B.12, —0.016 &£ 0.002.

Step 4: In the fourth step, d2opd background was removed while keeping the
remaining backgrounds at the nominal level of 1.0. The bias in NC, as

shown in figure B.13, is —0.016 &£ 0.002.

Step 5: In the fifth step, hep background was removed while keeping the
remaining backgrounds at the nominal level of 1.0. The bias in NC, as

shown in figure B.14 | is —0.017 4= 0.002.

Step 6: In the sixth step, background of atmospheric neutrons was removed
while keeping the remaining backgrounds at the nominal level of 1.0.

The bias in NC, as shown in figure B.15 , is —0.017 4 0.002.

Step 7: In the seventh step, background of external neutron was removed
while keeping the remaining backgrounds at the nominal level of 1.0.

The bias in NC, as shown in figure B.16 , is —0.016 + 0.002.

Step 8: Since none of the backgrounds, by itself, reduced the NC bias, all

of them were removed except the external neutrons. In the eight step,
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the fit had CC, ES, ES,,, NC and EX. The NC bias, as shown in fig-
ure B.17, is —0.014 4+ 0.002 which means that k2pd, k5pd, atmospheric
neutrons, doopd and ncdpd were not causing the bias because they were

not included in the fit.

Step 9: For the ninth step, except NC and P.. parameters, all other parame-
ters were fixed. The bias, as shown in figure B.18, did not disappear. It
was —0.011 £ 0.003.

Step 10: For the tenth step, only NC was floated; everything else was fixed.
The bias in NC disappeared at 0.0029 + 0.0045, as shown in figure B.19.

The success of the operation lead to the next step which was to float everything
except systematics and fixed p; and py. The promising result, shown in figure
B.20, indicate that the bias might arise from distorting the PDFs using the
P.. parameters. Hence the distorted 3D PDF from MCMC was compared to
the distorted 3D PDF from QSigex.

Figures B.19 and B.20 indicated that p.. parameters might be causing the

NC bias. To crack the problem, following steps were undertaken.

1. Calculated the number of CC, ES and ES,; using the nominal number
of NC events and the nominal values for the p.. parameters. The result,
as displayed in a table 11.2, shows an excellent agreement between the

values calculated by the fit and the Poisson means.

2. Determined the number of CC events in the 45 regular datasets (616+24)
and the 45 alternative datasets (610.18 +23.56). The biases calculated —
W ~ +0.0379 for the regular dataset and W ~ —0.208

for the alternative datasets — indicate that limited statistics (only 45

files) is also a problem.
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3. Determined which p.. parameter is causing the problem by floating only
one pe. parameter at a time. Figures B.21 to B.24 indicate that py and

a; might be the cause of the bias in NC.

11.4 Checking the distortions of the Probability
Distribution Functions

After determining that the bias arises from the P, parameters, we needed to
ensure that we were calculating the PDFs properly. Two independent codes
were developed to distort the 3D PDFs using the nominal values of p.. pa-
rameters. The method of distortion was the one used in the MCMC fit. The
purpose of the test was to verify that the distortion in the PDF from the
MCMC fit was exactly the same as the distortion from QSigex because both
MCMC and QSigEx used the same Monte Carlo, that is, the original PDFs
are the same between MCMC and QSigEx. Figures B.25 to B.36 show an

excellent agreement between the distortions from QSigkx and MCMC fits.

11.5 Checking distortion using the nominal val-
ues of p.. to the distortion using values of
Pee from the fit

The next step was to determine the fit values of the p.. parameters and com-
pare the 3D PDF distorted by nominal values to the 3D PDF distorted by the
fit result listed in table 11.3.

The result, shown in figure B.37, was that removing the last bin did not
reduced the NC bias. For the reduced energy range, the Poisson mean number
of NC events - for the bias calculation - was not taken as 240.569 but instead

calculated as: NC = 240.569 x iggg%g where 122316 is the number of MC events

in the energy window of 6 to 12 MeV range and 122375 is the number of events
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in the full MCMC fit range of 6 to 20 MeV.

This set of tests systematically verified all parts of the MCMC code and
showed that the likelihood function was accurately calculated and the MCMC
method was working. However, there is still a bias in NC. The bias arises
because MCMC implicitly integrates over the P, distributions when it cal-
culates NC. Our conclusion is that this is fundamental to MCMC methods
[94], therefore we do not expect the Markov chain (with Metropolis) to be
unbiased— it does not find the point where the likelihood is maximized, but
rather scans parameter space and generates steps of equal likelihood. So, for
each parameter we get the probability distribution for that parameter, inte-
grated over all the other parameters with appropriate weighting. We did not
appreciate this at first, and spent a significant amount of time trying to track
down the bias in NC. Ultimately, we found that the bias arises because the
mean P.. parameters are not the most likely P.. parameters. That is one of
the reason, the bias disappears when the they are constrained using the LETA
result.

There exist schemes (See references [83| and [84]) where one can modify
MCMC to converge to the point of maximum likelihood, and we considered
implementing such a scheme but we decided not to pursue it because such
modifications mean that the posterior distributions can no longer be used
as projections of the likelihood function for setting the accurate confidence
intervals. The price of the decision is that we end up with a biased "best

value", but the confidence region should be right.

11.5.1 MCMC versus Maximum Likelihood Estimate (MLE)

The extensive set of tests, outlined in the previous section, demonstrated ac-
curacy of the code and there was no evidence of differences in the likelihood

function between the Monte Carlo, the MCMC fitting code, and the datasets.

246



However, there is a fundamental difference between the way in which one ex-
tracts parameter values from the MCMC fit and from a conventional likelihood
fit. The usual point estimate in a Markov chain is the mean of the posterior
probability distribution, and this generally will not coincide with the maxi-
mum likelihood estimate. The mean of the posterior distribution is a better
estimator than the maximum likelihood estimator when the posterior is not
symmetrical which is the case for various fit parameters in the MCMC fit.
For a given likelihood function £, we find the total likelihood for an entire

dataset by taking the product of the likelihoods of the observables of individual
N

events: L(p) = Hﬁ(@,ﬁ), where p refers to the parameters of the fit. The
product is over ;Tll the events in the data, and ; refers to the observables of
an event 7. For the standard maximum likelihood fit, a set of M parameters p’
are found that maximizes £ — the full likelihood. With the Markov Chain, we
typically obtain the fit values from single dimensional distributions f; for the

Jth parameter that are obtained by integrating/marginalizing the likelihood

distribution over the other parameters:

fj(pj) = /dpldpg e dpj—ldpj—H Ce dpM ﬁ(@ (112)

The value of the parameter can be extracted in several different ways:

_ Jdpipifi(p)
S dp; f;(p;)

2. The fit mean: fit a Gaussian function with mean p; ¢ to f;

1. The mean: (p;)

3. The peak: find the value p; peqr which corresponds to the max-
imum of f;.

None of these techniques correspond exactly to finding the point in M dimen-
sional space that maximizes likelihood; since the maximum likelihood tech-
nique should be non-biased; this means, in general that the Markov Chain will

be biased. However, it should be pointed out that, in general, the confidence
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intervals that are extracted from the Markov Chain should be exactly correct,
though it is not straight-forward to find the confidence limits from the max-
imum likelihood fit. To test whether this is the explanation for our bias, we
calculated the number of events for CC, ES and ES,,; without/with floating
any systematic uncertainties. For each case, the computation was performed
twice; first using the p.. parameters and ®B scale from the mean of the poste-
rior distributions and then from the peak of the posterior distributions. The
set of values used in the computation of the derived parameters (first four
rows) and the derived parameters (next four rows) are shown in tables 11.4
and 11.5.

This is a strong evidence that it is difference between the peak and the
mean p.. parameters that is causing the bias. When we find the number
of CC events, we integrate over the P., parameters and therefore are using
the biased, mean CC values rather than the unbiased peak CC value. The
natural techniques involve integrating over them, which will essentially weigh
the pe. peak parameters with their likelihood; corresponding very closely to
the way in which the mean, rather than the peak, is calculated. If instead of
finding the peak from a 1D marginal likelihood function, we use a 2D marginal
likelihood function which takes into account the correlation of ®B flux with
the P.. parameter, as shown in figure 9.1, the bias on ®B goes down from
-0.01208+0.0034 to -0.007740.0031 for the regular dataset. For the alternate
dataset, the bias reduced from -0.0169+0.0039 to -0.0056+0.0034. Reduction
in bias when the maximum is from 2 Dimensional marginal likelihood (*B
and pg) instead of 1 dimensional marginal likelihood (®B flux) confirms that
the hypothesis that the bias in ®B is due to the marginalization over other
parameters in the MCMC method.

Peak and mean of a posterior distribution (belonging to a parameter) from

each of the 45 dataset are plotted into histograms and the histograms are
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fitted to a Gaussian function. The results of the fit (i, o) are reported in the
first four rows of the tables 11.4 and 11.5 (Column 2/3 reports the fit result
from the distribution of the means/peaks). Using either the mean or peak, the
number of CC, ES and ES,,; (next three rows in the tables) are computed from
a procedure which is similar to the one used in the MCMC fit. The last row
in the table 11.4 shows the calculation of CC bias from using the mean or the
peak of the posterior distribution. The CC bias is around 50% smaller using
the peak than using the mean even though the peak of a posterior distribution
is not exactly equivalent to the peak from the maximum likelihood method.
The consensus of the effort was that CC is unbiased using the p.. parameters

from peak but not when the p.. parameters are from the mean.

11.6 Comparing Result from QSigkx and MCMC
fit

The result of MCMC is compared to QSigEx in this section. MCMC is the
signal extraction code run at the University of Alberta by the author of this
thesis while QSigEx is the extraction code run by Pierre-Luc Drouin at the
University of Carleton. There are four cases to compare; 1) data without
floating systematic, 2) alternate data without floating systematic, 3) data with
floating systematic and 4) alternate data with floating systematic. For each
case 6 fit parameters are compared dataset by dataset ; 8B flux, P.. parameters

(po, p1 and py) and day-night parameters (ag, a;).

11.7 Calculating confidence intervals of MCMC

The upper and lower confidence limits are determined such that confidence
limits at lower and upper limits are equal and the integral between them is

68%. The difference between the upper and lower limit is the range quoted

249



for the +0 errors on the fit.

This section shows the o confidence intervals of MCMC result for all
four cases mentioned in section 11.6. Figures B.50 to B.52 shows confidence
intervals of various parameters for the regular datasets and figures B.53 to
B.55 for the alternate datasets.

Figures B.56 to B.61 display the result when eight systematics were floated
in the MCMC fit: first for the regular datasets and then for the alternate

datasets.

11.8 Quantitative Comparison between MCMC
and QSigEx

Tables 11.6 and 11.7 list a quantitative comparison between MCMC and
QSigEx. How the quantities in the tables are computed is described in sec-
tion 10.4.

Tables B.1 to B.6 show the comparison of the best-fit values of 6 parame-
ters — extracted from fitting the regular data — between QSigEX and MCMC
in tabular forms. Eight systematic uncertainties were floated for this fit. Col-
umn 3 (from equation (11.3)) has the mean of the 68% confidence intervals
in MCMC along with its uncertainty (from equation (11.4)) and column 4
has the mean+RMS from the marginalized likelihood (ML) after taking out
the burn-in period. The confidence intervals were calculated such that the
area between upper level U and lower level L is 68% and bin content of the
marginalized likelihood (after taking out the burn-in period) at L and U are

equal.

Best-fit = (U + L)/2 (11.3)

dBest-fit = (U — L)/2 (11.4)
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Test NC Bias Figure Number
Step 1 0.005 £ 0.004 B.1

Step 2 0.007 £ 0.004 B.2

Step 3 0.003 £ 0.003 B.3

Step 4 0.002 £ 0.003 B.4

Step 5 0.005 £ 0.003 B.5

Step 6 0.003 £ 0.003 B.6

Step 7 0.003 £ 0.003 B.7

Step 8 0.004 £ 0.003 B.8

Step 9 0.003 £ 0.003 B.9
Floating pg (—0.0037 +0.0024) | B.21
Floating p; (—0.0028 +0.0029) | B.22
Floating ps (0.000119 +0.003) | B.23
Floating ay (0.00026 + 0.004) | Top B.24
Floating a; (—0.005 4 0.003) Bottom B.24
Removing NCDPD —0.016 4 0.002 B.10
Removing kspd —0.015 £ 0.002 B.11
Removing kopd —0.014 £ 0.003 B.12
Removing dsopd —0.015£0.003 B.13
Removing hep —0.016 £ 0.003 B.14
Removing Atmospheric neutrons —0.017 £ 0.002 B.15
Removing External neutrons —0.016 £ 0.002 B.16
Only CC, ES and NC floating —0.014 £+ 0.002 B.17
Only NC and P, parameters floating | —0.011 4= 0.003 B.18
Fixed pee +0.0029 £ 0.0045 B.19
Fixed p; and py —0.0035 £ 0.0034 B.20

Table 11.1: List of the tests undertaken to resolve the source of NC bias along
with the biast+dbias. For each test, the table also points to the figure where

the result is illustrated.
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Parameter | Calculated | Poisson Mean
cC 615.26 615.09
ES 53.87 53.87
ES,.- 16.57 16.57

Table 11.2: Comparison of the calculated values to the Poisson means. From
the nominal values of ®B flux and the parameters of survival probability, the
number of CC, ES and ES,,; were calculated. For example, the number of CC
day and night events were computed using equations (4.63) and (4.64). The
excellent fit between column 1 and column 2 indicates that the equations were

correctly applied in the MCMC fit.

Parameter | Fit Result Nominal Value
Po 0.3343 £ 0.0412 0.325

p1 —0.006 £ 0.04 -0.00888

D2 —0.0008 £ 0.0192 | 0.00122

ag 0.0298 £ 0.088 0.028

a 0.027 £ 0.080 0.00478

Table 11.3: Fit result of the p.. parameters from the 45 datasets as compared

to the nominal values.
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Without Floating Systematic Uncertainties

Parameter | Fit Result Fit Result Nominal
Using Mean Using Peak Value

8B Scale 0.9811 £ 0.0158 0.9815 £+ 0.0221 1.0
Po 0.3435 £ 0.0436 0.329 £ 0.042 0.325
P1 —0.00259 4+ 0.0478 —0.00839 + 0.02888 -0.00888
P2 —0.0049 £ 0.0283 0.00066 + 0.01581 0.00122
CC 625.44 620.36 615.09
ES 53.42 54.21 53.87
ES,, 16.61 16.55 16.57
CC Bias (0254 01509) ~ 0.0168 | (P20B-31599) ~ 8.57¢ — 3

Table 11.4: Comparing mean versus the peak for the 45 datasets. Number of
steps 750,000 with 400,000 steps removed as the burn-in period. The fit has
16 fit parameters and includes all the backgrounds (ex, d2opd, nedpd, k2pd,
k5pd and atmospheric neutrons). In this fit the day-night asymmetries for the
external neutrons and d2opd backgrounds were also floated besides neutron
detection efficiencies — both for the PMTs and the NCDs.
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With Floating Systematic Uncertainties

Parameter | Fit Result Fit Result Nominal

Using Mean Using Peak Value
8B Scale 0.9742 + 0.0335 0.9743 £+ 0.0494 1.0
Po 0.3482 £ 0.056 0.3367 £ 0.059 0.325
pP1 —0.00737 £ 0.0347 | —0.005 £ 0.049 -0.00888
P2 —0.0035 £ 0.0262 | —0.0039 = 0.0327 | 0.00122
cC 636.9 615.07 615.09
ES 55.09 52.95 53.87
ES,. 16.65 16.55 16.57
CC Bias 0.035 -3.25e-5

Table 11.5: Comparing mean versus the peak for the 45 datasets. Number of
steps were 30,000 and 10,000 steps were removed as burn-in. This fit floats
eight systematics. The fit has 16+8 fit parameters and includes all the back-
grounds (ex, d2opd, nedpd, k2pd, k5pd and atmospheric neutrons). In this fit
the day-night asymmetries for the external neutrons and d2opd backgrounds
were also floated besides neutron detection efficiencies — both for the PMTs

and the NCDs.
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11.9 Summary

After performing an exhaustive number of tests, during the fitting of simulated
data ensemble (No LETA constraints applied), the conclusion is that the code,
run under the following conditions (not floating systematics and floating 8
systematics) does have some small biases, which we have tracked down to those
expected in a MCMC Metropolis-Hastings fit for this likelihood function and
these data. However, the biases are small compared to a fit uncertainty, and the
results, agree well with QSigEx. The ®B flux shows a bias of -0.0120840.0034
for the regular datasets and —0.0169 4= 0.0039 for the alternate datasets when

8 systematics are floated.

257



Chapter 12

MCMC Fit on 1/3 of the Real
Dataset

Before performing a fit on the full data, the code was tested on the third of
the data. This allows detailed comparison using real data while maintaining
some blindness. The result from the fit, applied on the full data, will con-
tribute to the final analysis published from SNO, for completeness sake, four
new systematics were added. Since 4 new systematics were introduced, an
additional test was performed to check the code. This chapter presents the
result of the test along with the results of the fit. There are 45 parameters
in the fit; 3 parameters — the number of events for hep CC, hep ES and hep
NC - are fixed and the number of events for CC, ES and ES,,; are calculated
using ®B flux and the application of the survival probability equation. Two
parameters f2eP™ and 2" are flux-to-event conversion factors for ®B flux for
the Cerenkov data and data from the NCDs respectively. There are 675,000
steps in the fit and the burn-in period is 75,000. PSA constraint is 375.1+£28.7.

12.1 Checking Important Systematic Uncertain-
ties

The four new systematic uncertainties are: (1) energy-dependent fiducial vol-

ume, (2) Z scale, (3) energy non-linearity and (4) uncertainty in the shape of
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8B neutrino energy spectrum (Winter uncertainty). Because these systemat-
ics cause very small effects, it is difficult to test the code so it was decided to
perform the tests where all other parameters were fixed to ensure that the like-
lihood function follows the shape of the constraint applied on the systematic
being tested. That is the reason that the log likelihood versus the uncertainty
is a parabola with a centroid within one o of the width of the constraint. For
example, the top plots in figures 12.1 and 12.2 show that the centroids (0.098
and -0.00118) of Winter uncertainty and energy-dependent fiducial volume un-
certainty are within the widths of their constraints: 041 and 070005 Several
other systematics were also tested, for instance, vertex scale, energy resolution
and energy scale. These are plotted in figures 12.3, 12.6 and 12.7. Overall 12
systematics were checked, but only the important ones are described in this
chapter. Table 12.1 lists name of the systematic uncertainty, the constraint
applied, p 4 o from the Gaussian fit on the posterior distribution and the cor-
responding figure number showing the posterior distribution and the parabola
of the constraint.

Comparing the bottom plot in figure 12.1 to the bottom plot in figure 12.4,
we see there are bands in the former but not in the latter. The reason for
a band structure is that the systematic uncertainty being tested (Winter un-
certainty) modifies the number of events (section 4.11 describes the role of
Winter uncertainty in calculation of number of events) which brings in ad-
ditional constraints in the fit since the number of background events are also
constrained (section 4.10.6). The application of additional constraints, besides
the one on the Winter uncertainty that we were testing, causes formation of
band structures. The log-likelihood plots of systematic uncertainties which do
not affect the number of events, for instance figure 12.6 shows a clean and

distinct parabola.
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The log likelihood function to test the systematic uncertainty is:

—log L = ZN Zlog Z (xd,.ﬁ))

_ 2
3 I DS SO - b~ ) (Vi)

1 1

(b7 — bZ) (b7 — bz)(V Yij (12.1)

i=0 j=
where F;(Z,, P) is the probability density function, for the class 4, giving the
probability of observing an event d with observables Z; and the current values
of the fit parameters 15, N1, Ny, ..., N, are the number of events for m—13
event classes and i goes from 1 to N data entries. In the likelihood equa-
tion (12.1), p;, p; and o,, represent the current value of the PMT systematic
parameter ¢ in the MCMC fit, its mean and constraint width respectively. The
next two terms are calculation of the constraint for the systematic uncertain-
ties that are correlated and the correlation matrices between the correlated
parameters is represented by V.

For asymmetric uncertainties (u + |o4| + |o_|), 0, applied in the log like-
lihood function 12.1 and for fitting the Gaussian function on posterior distri-

butions (shown in figures 12.2 and 12.4) is determined as:

_Joo ifx <y,
Opi (ZE) =

o ifx>p.
The legends in the plots (figures 12.2 and 12.4) only shows one o, for instance,
the uncertainty on energy-dependent fiducial volume (figure 12.2) is 015 005"

but the legend shows o as 4+0.0087.

12.2 Overview of the Result

Table 12.2 gives an overview of the result; the first column lists the name

of parameter, the second column lists the best fit and its uncertainty, the
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Uncertainty Constraint wto Figure #
Winter 0£1 0.098 £ 0.892 12.1
Energy-dependent

fiducial volume 010000 —0.001 £ 0.009 12.2
Vertex scale 0" 0007 0.001 +0.003 12.3

7 scale 0100015 —0.00003 £ 0.0015 12.4
Energy non-linearity 0 £ 0.0069 00.0018 £ 0.0063 12.5
Energy resolution 0.0119 + 0.0104 0.013 £0.010 12.6
Energy scale 0 4+ 0.0081 0.0002 £ 0.006 12.7

Table 12.1: Systematic uncertainty, the constraint applied, and p £+ ¢ from
fitting the posterior distribution to a Gaussian function. Last column points
to the figure number corresponding to the systematic uncertainty.

third column shows the mean of the posterior distribution and the last column
displays the difference between the mean and the peak in terms of the RMS of
the posterior distribution. The good news is that for all the parameters, the
difference between the mean and the peak in terms of the uncertainty is below
0.50 (decided by the SNO collaboration)! which means that the posterior

distribution from the MCMC is not very asymmetric.

12.2.1 Autocorrelation Plots

Figures 12.8 to 12.10 shows the application of autocorrelation function (equa-
tion (12.2)) to the MCMC fit of the 1/3 data. These plots indicate that step
sizes selected for all the fit parameters were good otherwise for parameters
whose step sizes are too narrow there is a lot of fluctuations going on till the

end of the fit. Selecting step sizes is very challenging in a MCMC fit because

IThe statistical uncertainty associated with the calculation of the peak, assuming that the
posterior distribution has Gaussian distribution, is 1/1/Npeqr Where Nyeqp is the number of
entries in the bin where the peak is located. The uncertainty associated with the calculation
of the mean is 1/ /N where N is the number of entries in the posterior distribution. Since the
uncertainty of the peak is higher than the uncertainty on the mean but both are extracted
from fitting the same data, hence they should be within 0.50 where o is the RMS of the
posterior distribution.
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the consequence of very narrow step sizes is that the target distribution is
not explored sufficiently although very broad step sizes result in a poor accep-
tance. Hence it takes a lot of trials and errors to finally select step sizes that
balance the exploration of the target distribution as well give a good accep-
tance. There are 675,000 steps in the MCMC fit but to clearly show the drop
of autocorrelation coefficient to zero within 10,000 steps, autocorrelation plots
are displayed for only 375,000 steps.

e = Zf\;k(Yz — V)i = ¥) from [85] (12.2)

> (Yi-Y)

i=1

N
. Y;
where N is the number of steps in the MCMC chain, Y = E N Y; and Y,

i=1
are measurements at step ¢ and ¢ + k. Since Y; lags behind Y;.x by k steps, k
is known as lag. In figures 12.8 to 12.10, lag is shown on the x axis and r, —

autocorrelation coefficient — is shown on the y axis.

12.3 Convergence Tests

To make sure that the fit has converged, MCMC result was randomly divided
into two halves after taking out the burn-in period. Using a random number,
5,000 steps were added to one half or the other half. The difference in the mean
of the posterior distribution from both halves (m; and my) were compared
using the equations:

(mg —mg) X 2

(0'2 +O’1)
0o =/ (m?+ o0?) (12.4)

(12.3)

where o; and o, are the standard deviations of the posterior distributions
from both halves, m and o are the mean and RMS around the mean (m)

of the distributions shown in figure 12.11 and 12.12. The difference between
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the means (m; and my) in terms of the average uncertainty (equation (12.3)),
calculated around zero (equation (12.4) instead of the average mean, should
be less than %ﬁ. Table 12.3 shows that the convergence test, performed on the

6 parameters, show that the fit passed the convergence test.
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Figure 12.1: The top plot is the posterior distribution of the Winter uncer-
tainty and the bottom plot is log likelihood versus the Winter uncertainty. The
constraint applied was 0 + 1. The constant term, from the Gaussian fit, only
produces a constant offset in the negative log likelihood function and therefore
has no impact on the best fit estimates from the posterior distributions.
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Figure 12.2: The top plot is the posterior distribution of energy-dependent
fiducial volume and the bottom plot is log likelihood versus the energy-

0.0087

dependent fiducial volume. The constraint applied is 07 goar

-0.001179, is 0.13550, and 0.17600_ away from zero.
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Figure 12.3: The top plot is the posterior distribution of vertex scale and the
bottom plot is log likelihood versus the vertex scale. The constraint applied
is 0709929 hence the centroid, 0.001391, is 0.47970, and 0.18060_ away from
ZEro.
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Figure 12.4: The top plot is the posterior distribution of Z scale and the bottom

plot is log likelihood versus the Z scale. The constraint applied is 0F

the centroid, -2.749e-5, is —0.0180 and 0.0230_ away from zero.
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Figure 12.5: The top plot is the posterior distribution of energy non-linearity

and the bottom plot is log likelihood versus the energy non-linearity.

The

constraint applied is 0 £ 0.0069 and the centroid from the Gaussian fit, u =
0.001769, is 0.2560 away from zero where o = 0.0069 is width of the constraint.
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Figure 12.6: The top plot is the posterior distribution of energy resolution and
the bottom plot is log likelihood versus the energy resolution. The constraint
on energy resolution is 0.01194-0.0104 hence the centroid p = 0.0131 is 0.11540
away from 0.0119.
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Figure 12.7: The top plot is the posterior distribution of energy scale and the
bottom plot is log likelihood versus the energy scale. The constraint applied
is 0 £ 0.0081.
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Parameter

Peak+RMS

Mean

(Peak-Mean)
RMS

€pmt 0.46640.0129844 0.467231 -0.0948358
CccC 558.617429.4819 569.665 -0.374767
Atmospheric neutrons 1.05+0.198532 0.99761 0.263886
K2PD 0.9925+0.164456 0.993089 -0.0035837
K5PD 1.00011+0.118572 1.00417 -0.0342191
NCDPD 1.0457140.34213 1.00257 0.126108
ES 45.8297+4.71439 47.0332 -0.255299
EX 0.96959540.472556 1.0862 -0.246749
EX day-night asymmetry -0.033572940.0114606 -0.0342751 0.061268
Dy;OPD 1.02484+40.148729 1.00733 0.117704
D3O day-night asymmetry -0.05842740.116307 -0.0190298 -0.338735
ES,+ 18.7727+5.13597 20.0146 -0.24179
€necd 1.77548+0.040568 1.76653 0.220554
Cos 6 resolution direction -0.00665+0.0692353 -0.00919638 0.0367786
Cos 6 resolution 0.0254+0.109935 0.0153701 0.0875961
Energy scale 0.00518+£0.00852786 0.00418677 0.116469
Energy resolution direction -0.00045+0.0120072 0.000777723 -0.102249
Energy resolution 0.012534+0.0105886 0.0133717 -0.0794951
X shift -0.3654+4.10277 -0.250553 -0.0278951
Vertex scale -0.00146512+0.00557221 -0.00369108 0.399477
Y shift -0.1845244+3.68196 -0.40452 0.0597497
Z shift -1.085+4.07116 -0.18085 -0.222086
XY resolution -constant term 0.076225+0.0285262 0.0695889 0.23263
XY resolution -linear term -6.675e-05+6.1534e-05 -5.94605e-05 -0.118463
XY resolution -quadratic term 3.745e-07+1.98487e-07 3.6701e-07 0.0377378
Z resolution -constant term 0.06855+0.0286124 0.0707189 -0.0758041
Z resolution -quadratic 0.0001217+8.27124e-05 0.000112913 0.106233
Vertex scale diurnal -8.1e-05+0.00150131 -4.93177e-05 -0.021103
Vertex scale direct 0.000505+0.00177122 -8.25761e-05 0.331735
Energy scale diurnal -5.58511e-0540.00387483 3.60054e-05 -0.0237059
Energy scale direct -0.00203529+0.0101849 0.000329195 -0.232156
Energy scale correlated 0.00153963+0.00417378 0.00139816 0.0338959
Fiducial volume 0.001194744+0.00764633 0.00159754 -0.0526795
Energy non-linearity 0.0023240.00715378 0.000914944 0.196407
Z scale 0.00044772740.0014067 0.000247992 0.141988
Winter uncertainty -0.25+1.0003 -0.0226684 -0.227264

Table 12.2: A listing of the peak (best fit) and its uncertainty (RMS of the
posterior distribution) for the 42 parameters involved in the 1/3 data fit. Be-
sides that, the table also lists the mean and the difference between the mean
and the peak in units of the uncertainty.
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Figure 12.8: Autocorrelation plots showing the autocorrelation coefficient ver-
sus lag of ®B scale and the P,, parameters of the fit. There are 675,000 steps
in the MCMC fit but to see the drop of autocorrelation coefficient to zero not
all steps are shown in the figure.

Parameter o¢; RMS around zero

8B scale 0.10129
Po 0.14654
P1 0.17582
P2 0.18521
ag 0.10859
ax 0.12395

Table 12.3: Table lists RMS around zero (oy) for the 6 parameters.
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Figure 12.9: Autocorrelation plot showing autocorrelation coefficient versus
lag: (top) for signals and backgrounds (bottom) miscellaneous parameters in
the fit.
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Figure 12.10: Autocorrelation coefficient versus lag for systematic uncertain-
ties involved in the reconstruction of vertex and energy.
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ai.
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Figure 12.12: Convergence test for P.. parameters pg, p; and ps.
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12.4 1/3 Fit Using LETA Constraint

This section shows the result from the one-third fit using the constraint from
LETA [90]. There are 275,000 steps out of which 50,000 steps were removed as
burn-in. After removing the burn-in period, every 50" step in the output was
used in the analysis to break down the auto correlation in the MCMC output
due to Markov property of the chain — the next step is proposed from the
current step. Nine parameters were constrained from LETA fit; ®B scale, po,
P1, P3, ag, a1, energy scale correlated between PMTs and NCDs, energy non-
linearity and the uncertainty in the shape of 8B flux ([95]). The uncertainty of
the first 6 parameters in column 2 in table 12.4 is narrower than in table 12.2

because of the LETA constraint.
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Parameter

Peak+RMS

Mean

(Peak-Mean)
RMS

f2eP™t 0.465458+0.0121631 0.46675 -0.106266
CccC 595.876+20.573 592.933 0.14308
Atmospheric neutrons 1.03065+0.195174 1.03672 -0.0310702
K2 1.01+0.160073 1.01455 -0.0284108
K5 1.017344+0.122808 1.01164 0.0463607
NCDPD 0.993056+0.303228 1.04974 -0.186952
ES 51.1872+2.23665 51.4787 -0.130314
EX 0.84533940.477628 1.05253 -0.433792
EX day-night asymmetry -0.033444440.0110389 -0.0330844 -0.0326189
D>OPD 1.0375£0.148945 1.01028 0.18277
D3O day-night asymmetry 0.0168293+0.11173 -0.00771537 0.219678
ES,+ 16.9307+1.79316 17.2637 -0.185707
femcd 1.77302+£0.0419728 1.76544 0.180544
Cos 6 resolution direction -0.0022540.0665388 -0.00811528 0.0881483
Cos 6 resolution -3.46945e-184+0.102177 0.00110065 -0.0107719
Energy scale -0.00214540.00753271 0.000330235 -0.328598
Energy resolution direction -0.00208+0.0125062 0.000231762 -0.18485
Energy resolution 0.01408540.0100358 0.0135538 0.0529283
X shift -0.707543.92051 -0.218865 -0.124635
Vertex scale -0.00173052+0.00548084 -0.00358492 0.338343
Y shift -0.717262+3.87867 -0.111345 -0.156218
Z shift -0.7045454+4.0551 0.655036 -0.335277
XY resolution -constant term 0.0571382+0.0295222 0.0656156 -0.287154
XY resolution -linear term -4.5225e-054+6.24351e-05 -4.46289e-05 -0.009548
XY resolution -quadratic term 4.2e-0742.00981e-07 3.98836e-07 0.105303
Z resolution -constant term 0.07587540.0288896 0.0698765 0.207634
Z resolution -linear term 0.0001249+8.40038e-05 0.000114327 0.125861
Vertex scale diurnal -0.0001754+0.00146668 -7.13101e-05 -0.0706969
Vertex scale direct -2.9e-0540.00175554 -1.39829e-05 -0.00855411
Energy scale diurnal 0.001856254+0.00386744 0.000932874 0.238757
Energy scale direct 0.00306081+0.0102824 0.000839598 0.21602
Energy scale correlated 0.00486458+0.00394943 0.00452603 0.0857234
Energy-dependent fiducial volume -0.00239583+0.00706907 -0.00114739 -0.176606
Energy non-linearity -0.001027540.00599211 0.000705498 -0.289213
Z scale 0.00010259740.00131451 0.000393672 -0.221432
Winter uncertainty -0.3935714+0.945854 -0.232626 -0.170159

Table 12.4: A listing of the peak (best fit) and its uncertainty (RMS of the pos-
terior distribution) for the 42 parameters involved in the 1/3 fit using LETA
constraint. Besides that, the table also lists the mean and the difference be-
tween the mean and the peak in units of the uncertainty.
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12.4.1 Asymmetric Systematic Uncertainties along with
B Winter Uncertainty With LETA Constraint

This is the first time that the code was run with Z scale, 8B Winter uncertainty,
and the energy-dependent fiducial volume with the LETA constraint. Follow-
ing figures 12.13 to 12.16 show posterior distributions fitted with Gaussian
functions for vertex scale, Z scale, ®B Winter uncertainty and the energy-
dependent fiducial volume. The burn-in is 10,000 and after burn-in every 50

step was used to plot the posterior distributions.
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Figure 12.13: Posterior distribution of Vertex scale is shown in black and the
Gaussian fit is shown in red. The constraint applied, in the MCMC fit, is
0700029 Additional LETA constraint is used for this fit.
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Figure 12.14: Posterior distribution of the Z scale is shown in black and the
Gaussian fit is shown in red. The constraint applied, in the MCMC fit, is
0700015, Additional LETA constraint is used for this fit.
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fit, is 0 £ 1.0.
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Figure 12.16: Posterior distribution of the energy-dependent fiducial volume
uncertainty is shown in black and Gaussian fit of the posterior distribution is
shown in red. The constraint applied, in the MCMC fit, is 070 0055. X2 of 538
with 67 degrees of freedom indicates that posterior probability distribution of
energy-dependent fiducial volume uncertainty is not a Gaussian distribution
as assumed in the calculation of the likelihood function. Additional LETA
constraint is used for this fit.
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12.5 Summary

This chapter described several cross-checks performed on the code: (1) to
verify that application of the systematic uncertainties in the fit is correct, (2)
to ensure convergence of the fit, (3) to ensure that autocorrelation coefficient
drops down to zero within 10,000 steps and remain stable throughout the
chain. The chapter also outlines the results from two fits: first the NCD-only
fit and second the NCD fit with constraint from LETA. The results from both
fits were compared between MCMC and QSigEx and agreement between the

results propel us to the next step, that is, fitting the full data.
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Chapter 13

Fit on the Full Data

13.1 Finally Fitting Full Data

The final fit is on the full dataset. The number of steps in the fit is 750,000
from which 25,000 steps are removed as a burn-in period. Figure 13.1 shows
posterior density functions from the MCMC fit for the 6 parameters. The
PSA constraint applied is 1115+79. The constraints from LETA are shown in
table 13.1. The result of the fit is shown in table 13.2. The next table 13.3
shows the result when the systematic uncertainties are fixed at their nominal
values. Comparing the two tables, it seems that the uncertainty from statistics
dominate, for instance the total uncertainty on ®B scale is 3.5% but from
statistics alone the uncertainty is 3.4%. The correlation among the parameters
of interest is shown in table 13.4. The projections of the fit on the three
observables (cos 0g,,, volume-weighted variable p and electron effective kinetic
energy Tog) are shown in figures 13.2 to 13.4. The number of background
events in the Cerenkov data of the NCD phase is listed in table 13.6.

The x?2, listed in table 13.5 for the one-dimensional projections of the fit in

three observables, is evaluated using statistic and systematic uncertainties.
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Figure 13.1: Posterior density functions (PDFs) from MCMC fit of 6 parame-
ters; (a) 8B scale, (b) constant term (py), (¢) linear term (p;) and (d) quadratic
term (p2) of the electron survival probability described in equation (13.1),
(e) constant term (ag) and (f) linear term (a;) of the day-night asymmetry
described in equation (13.2). These PDFs were used to determine the best-fits
described in the first 6 rows in a table 13.2.
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Parameter Constraint | Width of the Constraint
*B 0.9316508 0.0380755

Po 0.3192673 0.0217642

P1 0.0073795 0.0093338

P2 -0.000617 0.0036361

ag 0.0266399 0.0425075

ay -0.022025 0.0318915

Energy Scale Correlated | -0.001628 0.0030291

Energy Non Linearity 0 0.0069

Winter Uncertainty 0 1

Table 13.1: Constraints from the LETA fit [90].
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Figure 13.2: One-dimensional projection of the fit in direction (cos s, ) on the
Cerenkov data of the NCD phase from the binned-histogram signal extraction
with the individual signals separated into three neutrino interactions (ES is
split into ES. and ES,;), backgrounds, and hep neutrino events. Figure also

shows x?/data points of the

fit.
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Parameter

Best-fit

8B

Pee pg

Pee p1

Pee p2

Day-night asymmetry ag

Day-night asymmetry aj

9.212e-0143.560e-02
3.206e-01£1.971e-02
5.009e-03+£8.169¢-03
-1.389e-03+3.331e-03
4.963e-02+3.469¢-02
-1.754e-02+2.756e-02

ncdpd

k2pd

k5pd

d2opd

ex

Atmospheric neutrons

cc

es

esyr

NC flux-to-event ratio (NCDs)
EX day-night asymmetry
D2OPD day-night asymmetry
NC flux-to-event ratio (PMTs) €pm¢
Cos 6 Resolution Direct

Cos 6 Resolution

Energy Scale

Energy Resolution Direction
Energy Resolution

X Shift

Y Shift

Z Shift

Vertex scale

Z scale

XY Resolution - constant term
XY Resolution - linear term
XY Resolution - quadratic term
Z resolution - constant term

Z resolution - linear term
Vertex diurnal scale

Vertex direction scale

Energy scale diurnal

Energy scale direction

Energy scale source
Energy-dependent fiducial volume
Energy non-linearity

Winter uncertainty

1.030e+4-00+£3.164e-01
9.963e-01+1.573e-01
1.003e+400+£1.564e-01
9.934e-01£1.573e-01
9.400e-01+£4.327¢-01
1.008e+4-00+£1.961e-01
1.836e+03+3.842e+01
1.569e+02+4.410e+00
5.090e+01+3.478e+00
1.765e+4-00+£3.938e-02
-1.977e-02£1.118e-02
-3.460e-02+1.118e-01
4.620e-01+1.085¢e-02
-9.026e-03+6.829e-02
5.643e-02£1.033e-01
3.560e-03+6.444¢e-03
5.337e-04£1.221e-02
1.243e-02+1.080e-02
1.361e+00+£3.898e+00
-1.026e+00+£3.478e+00
3.332e-01+£3.807e+00
-1.346e-03£4.555e-03
5.182e-05+1.348e-03
6.487e-02+£2.905e-02
-5.712e-05+6.146e-05
3.946e-07£1.972e-07
7.634e-0212.808e-02
1.148e-04+8.171e-05
-1.965e-04+1.407e-03
-1.472e-04+1.755e-03
8.978e-04+£3.692e-03
2.093e-03£9.283¢-03
-8.458e-04£2.965¢-03
-3.182e-03+6.486e-03
1.190e-0346.927e-03
-1.061e-0149.722e-01

Table 13.2: Fit result of the final analysis.
68% confidence intervals.

The best-fit is the average of the
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Parameter

Best-fit

5B

Pee pg

Pee p;

Pee ps
Day-night ag
Day-night a,

9.207e-01£3.423e-02
3.199e-01£1.822e-02
4.095e-03+7.025e-03
-1.507e-03£3.109e-03
4.932e-0243.402¢-02
-1.450e-02£2.718e-02

ncdpd

k2pd

k5pd

d2opd

ex

Atmospheric neutrons
ce

es

es,r

NC flux-to-event ratio (NCDs)

EX day-night asymmetry

D,OPD Day-night asymmetry

NC flux-to-event (PMTs)

9.933e-01£3.383e-01
9.857e-01£1.576e-01
9.908e-01£1.728e-01
9.885e-01£1.508e-01
9.355e-01£4.674e-01
9.987e-01£1.928e-01
1.833e+03+3.628¢+-01
1.567e+0244.094e+-00
5.079e+01£3.370e+00
1.762e+00+4.019e-02
-1.900e-0241.125e-02
-3.714e-0241.116e-01
4.629e-0149.015e-03

Table 13.3: Fit result of the final analysis with fixed systematic uncertainties.

The best-fit is the average of the 68% confidence intervals.

°B Po b1 D2 ao i

8B | 1.000 |-0.729 | 0.278 | -0.117 | 0.067 | -0.042

po | -0.729 | 1.000 | -0.318 | -0.386 | -0.378 | 0.148

p1 | 0.278 | -0.318 | 1.000 | -0.139 | 0.280 | -0.666

p2 | -0.117 | -0.386 | -0.139 | 1.000 | -0.017 | 0.011

ag | 0.067 | -0.378 | 0.280 | -0.017 | 1.000 | -0.383

a; | -0.042 | 0.148 | -0.666 | 0.011 | -0.383 | 1.000
Table 13.4: Correlation matrix for the polynomial survival probability fit from
the MCMC fit.
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Figure 13.3: One-dimensional projection of the fit in p on the Cerenkov data
of the NCD phase from the binned-histogram signal extraction with the indi-
vidual signals separated into three neutrino interactions (ES is split into ES,
and ES,,;), backgrounds, and hep neutrino events. Figure also shows y?/data

points of the fit.

Observable | y? (data points) | Figure Number
cos Ogun 12.82/16 13.2
R 6.96/11 13.3
T, 10.16/14 13.4

Table 13.5: x? from a one-dimensional projections of the fit in three observ-
ables. Table also lists number of data points used in the computation of
x? along with figure number pointing to the figure which displays the one-

dimensional projection.
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Figure 13.4: One-dimensional projection of the fit in recoil energy (Tyg) on the

Cerenkov data of the NCD phase from the binned-histogram signal extraction
with the individual signals separated into three neutrino interactions (ES is
split into ES. and ES,;), backgrounds, and hep neutrino events. Figure also
shows x?/data points of the fit.

Backgrounds Number of Events
External neutrons 19.5
D50 photo-disintegration neutrons 8.25
Atmospheric neutrinos 24.88
K2 photo-disintegration neutrons 9.37
K5 photo-disintegration neutrons 12.10
NCD photo-disintegration neutrons 6.12
hep v events 34.21
Total data events 2381

Table 13.6: Number of background events in the Cerenkov data of the NCD
phase.
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13.2 Plotting energy-dependent day-night sur-
vival probabilities and day-night asymme-
try

The bands in figures 13.5 were computed from +o of the posterior distributions
representing equations 13.1 to 13.3 where £, ranges from 6 MeV to 14 MeV and
it is incremented by 0.025 MeV. The bands include statistical and systematic
uncertainties as well as correlation between the parameters. MCMC fit makes
no assumption about the shape of neutrino energy distribution except that it is

a smooth function and varies slowly over the range to which SNO is sensitive.

P = po 4 p1(E, — 10.0 MeV) + po(E, — 10.0 MeV)? (13.1)

The regeneration of v, in the Earth at night is modelled as a linear perturbation

to the daytime v, survival probability described in equation (13.1).

A= ap + Cll(E,/ —10.0 MQV) (132)
. 2+ A)

nght — Pday( 13.3

ee ee (2 _ A) ( )

where F, is neutrino energy shown on the X axis in figure 13.5.

13.3 Extraction of CC and ES energy spectra

The energy spectra of 8B flux is computed via charged current interactions on
deuterium and elastic scattering interactions on electrons. The bands, shown
in figure 13.6, represent both statistical and systematic uncertainties and were
computed taking into account the uncertainties in the fit parameters and the
correlation among the fit parameters. For each sampling of the MCMC output,
the 3D PDFs — separated into the day and night PDFs — were reconstructed
after smearing the observables in the Monte Carlo with the systematic uncer-

tainties, and then calculating the number of events — split into the day and
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night events — belonging to CC and ES. The day and night 3D PDFs were
scaled according to the number of events for day and night respectively. The
1D projection on the recoil electron energy was used to plot the number of
events belonging to each energy bin. From the distribution of the number
of events in each energy bin, 68% confidence intervals were computed. The
best-fit is the average of 68% CL (equation (11.3)) and the bands represent
the average of difference of the 68% confidence levels (equation (11.4)). The
spectra is presented in tabular form in Appendix C.

The day and night live times — 176.59 days and 208.85 nights — used
in the extraction of the day and night energy spectra were determined by
splitting the data on solar zenith angle; day events are when the Sun is above
the horizon and night events are when the Sun is below the horizon. From
SNOMAN, the number of electrons and deuterium in the fiducial volume are

6.023x 103" and 3.0115x 1032 respectively.

13.4 Comparison between QSigkx and MCMC

Table 13.7 compares 3-phase P.. day/night fit result from QSigEx (column
2) to MCMC (column 3). The relative difference, shown in the last column
is the difference between the fitted parameter values in terms of the average
total fit uncertainties. Since the maximum relative difference between the
two analysis is only 0.30, QSigkx result was used for the extraction of global

(solar+KamLAND) 3-flavour oscillation parameters.
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Parameter QSigEx MCMC Relative Difference
B scale 0.921 4+ 0.035 0.921 £ 0.036 -0.018
Po 0.319 £ 0.018 0.321 £ 0.020 -0.103
p1 0.002 £ 0.008 0.005 £ 0.008 +0.119
P2 —0.001 £ 0.003 | —0.002 £ 0.003 -0.081
ag 0.044 +0.034 | 0.048 +0.035 +0.165
a —0.017 £ 0.027 | —0.015 4+ 0.028 -0.151

Table 13.7: Comparing 3-phase P. day/night fit result from MCMC
QSigEx. Table from [90].
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Chapter 14

Conclusion

In the 1930s, Hans Bethe [96] and Carl Friedrich von Weizsdcker ([97] and [98])
postulated the Sun’s source of energy to be from fusion reactions in its core.
For decades, there was no way to directly test the hypothesis. The detection
of solar neutrinos by Ray Davis’s experiment (a tank of dry cleaning fluid deep
in the Homestake mine at Lead, South Dakota) was a strong indication that
the nuclear theory of the Sun was correct though the two-third deficit from
the prediction caused a suspicion. Since then SuperKamiokande experiment
in Japan and SNO experiment in Canada have proved beyond doubt that
neutrinos oscillate (one flavour of v transforms into another flavour and back
again.). Using the global solar and the KamLAND result, the parameter space
of oscillation is reduced to LMA region (figure 1.7).

Result from each phase of SNO was published separately. To improve the
result, the data from the first two phases (D2O and Salt) were combined into
a low-energy-threshold-analysis (LETA). Due to various improvements carried
out for LETA, the uncertainty on the total flux of active flavour neutrinos from
8B decay in the Sun, measured via the neutral current interactions, was more
than a factor of 2 smaller than previously published results [61]. The role of
this thesis is to further narrow it down. Table 14.1 compares the result from

MCMC to the published LETA result. A MCMC fit was performed on the
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Cerenkov data of the NCD phase using the extended likelihood function. Three
observables were used to separate different event types: the effective electron
kinetic energy (Tyg), the event direction with respect to the vector of the Sun
(cos 6), and the normalized cube of the radial position in the detector (R?).
To take into account correlations between observables, 3-dimensional PDFs
P(R3, cos 0, Teofp) were used for all the event types. Uncertainties in the
distribution of the observables were treated as parameters of the fit for the
distortions of the Monte Carlo PDF shapes. All the systematic uncertainties
were allowed to vary in the fit. The type of events included in the fit were
three v interactions (CC, NC and ES which was split into ES. and ES,,;) and
6 backgrounds.

The MCMC fit directly extracted the energy-dependent v, survival prob-
ability which was parametrized as a polynomial function (section 4.10.7) and
applied as distortion to the ®B neutrino energy spectrum. The parameters
of the polynomial (pg, p1, p2, ao and a;) were varied in the fit for each step,
the 8B v energy spectrum was distorted and the shapes of CC and ES energy
spectra were recomputed from the distorted 8B spectrum for each step in the
fit. The extracted survival probability also incorporated the uncertainty in the
shape of the undistorted ®B energy spectrum by treating the uncertainty as a
systematic uncertainty and floating it in the MCMC fit.

The shapes of energy spectra of NC and radioactive backgrounds were
only floated within their systematic uncertainties as these have no dependence
on the v oscillation model. Signals and backgrounds are covered in detail in
chapter 4.

The flux of solar neutrinos was assumed to be constant during the operation
of the three phases of SNO (1999-2006). Although SNO was primarily sensitive
to the 8B chain of solar neutrinos, a fixed contribution of solar hep neutrinos

(9.3x10% cm™2s~! from [99]) was included in the fit.
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The author of this thesis performed MCMC fit on the Cerenkov data of
the NCD phase. The data, from the NCDs of the NCD phase, are included as
a PSA constraint and data, from the DO and Salt phases, were combined in
the fit by using constraints from the LETA output. The result presented in
the LETA paper [61] is:

5B Flux oPinned — 51470199 (stat) 0152 (syst) x 10° em 257!

5B Flux pkernel — 5170120 (stat) 017 (syst) x 10° em 2571

For the LETA fit which combined data from the D;O and Salt phases, two
independent techniques were used to extract the fit parameters. One method
used binned PDFs and the other method used unbinned, "kernel estimation"
approach. For more details, refer to the LETA paper.

For the fit that combined data from all three phases, two independent tech-
niques were also used for the signal extraction. One method is the Maximum
Likelihood Estimation (MLE) method and another is the Markov Chain Monte
Carlo (MCMC) method. The strength of MLE is point estimations and the
strength of MCMC is posterior distributions for the extraction of confidence
intervals.

In the MCMC fit, the systematics are floated along with the number of
events belonging to the event classes. The uncertainty in the fit includes both
statistical and systematic uncertainties. The result from fitting the MCMC fit
on the 1/3 NCD-only data is:

®B Flux ¢ = 5.12 4 0.50 x 10° cm2s™*

There are a number of options' available to pick as best-fit from the MCMC

fit. We are using the average of 68% confidence intervals. The result from the

'Mean, mode and median of the posterior distribution, average of confidence intervals,
and fitting the posterior distribution to a Gaussian function to extract the mean y and o
as best-fit and its uncertainty respectively.
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1/3 fit using the constraints from LETA is:
®B Flux ¢ = 5.11 £ 0.29 x 10° cm s+

The use of constraint from LETA reduced the total uncertainty on 8B flux from
0.5 x10% em™2s7! t0 0.29 x10% cm™2s~!. From the BS05(OP) model, *B flux
is predicted to be 5.69x10%cm=2 st with +16% theoretical uncertainty. The
prediction of ®B flux from BS05(AGS,0P) model is 4.51x10% cm =2 s7! 4+ 16%.
The model assumed a lower heavy element abundance in the Sun’s surface

compared to BSO5(OP) model. From the MCMC fit on the full data,
*B Flux ¢ = (5.28 £0.20) x 10°cm™?s7",

with total uncertainty of 3.78% which agrees well with both models.

The combined three-phase fit of the v, energy-dependent survival proba-
bility yielded the constant term of the survival probability as 0.3206 +0.0197,
linear term as 0.005 £ 0.008, the quadratic term as —0.0014 + 0.0033. On
the day-night asymmetry, the constant term is 0.0496 + 0.0347 and the linear
term is —0.0175+ 0.0276. Another goal of the thesis was to observe a nonzero
day-night asymmetry. So far no experiment (References [27], [100]) has mea-
sured a significant nonzero day-night asymmetry. The best-fit on day-night
asymmetry from floating all the systematic uncertainties is 0.0496 + 0.0347.
To find the effect of statistics, the systematic uncertainties were kept fixed and
not "floated" in a fit consisting of 750,000 steps. The result is 0.0493 + 0.0340.
This clearly shows that uncertainty from statistics (0.0340) dominate in the
total uncertainty (0.0347) from a fit which included both statistics and sys-
tematics. The day-night asymmetry is 1.50 away from zero which means that
if SNO experiment was repeated 100 times, the asymmetry would be greater

than zero 87 times?

2Area under the normal curve between £no is erf(n/+/(2)) where n is the number of o
and erf is the error function.
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Table 14.1, compares the result from MCMC to the published result from
LETA. The addition of two new systematic uncertainties and more conser-
vative application of other systematic uncertainties resulted in changing the
central values of some of the fit parameters which negate the advantage of
adding the data from the NCD phase to the combined data from the D;O and
salt phases. Treatment of uncertainties for DoO-+salt has been improved for
the 3-phase analysis, resulting in larger uncertainties. These include separate
floating of PMT  —~ events in to day and night events instead of floating the
total number of events, evaluation of the uncertainties due to finite statistics
in Monte Carlo simulation, addition of the 8B Winter uncertainty for neu-
tral current®, removal of the positive bound for salt acrylic vessel neutrons
and merging of the day/night background constraints instead of doubling the
penalty terms etc.. Additionally for the NCD phase, the external neutrons are
not "subtracted". The external neutrons are handled as a separate class of
event in the fit, which is floated like any other class of event. When statistical
separation or a pull, from other phases, exists for either the 8B scale parame-
ter or the external neutrons or anything else that has neutron-like PDFs, the
fitted rate for the external neutrons in the NCD phase is free to vary and will
not necessarily fit at the central value of the constraint [101]. In MCMC fit,
each neutron-type background is floated separately. In LETA, not only exter-
nal neutrons but all neutrons other than from the neutral current interactions
were subtracted after the fit, based on results from Monte Carlo studies. This
should not add uncertainties compared to the published LETA fit, although it
can slightly affect the central values of the fit parameters and this is what we
observed. The constraint, applied on the 3-phase fit on the total number of

neutrons, from pulse shape analysis of data from the NCDs is 7.0% which was

3Winter uncertainty was applied on CC and ES in LETA but its effect was not considered
on NC.
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not applied to the 2-phase (LETA) fit. The shift ((0.9212-0.8868)=0.0344) in
the central value of the 8B scale from LETA to MCMC, in terms of average
uncertainty o = (0.0356 4 0.0341)/2, is ~ 1.00.

The recipe to calculate the total uncertainty, shown in the last column in

table 14.1, is

e the asymmetric uncertainties, from statistics and systematics, were con-

verted into symmetric uncertainties using the following equation:

o= \/(afn + 02 — 0pmoyp) (14.1)
where o,,, is minus uncertainty and o, is the plus uncertainty.

e statistical and systematic uncertainties are added in quadrature to obtain

the total uncertainty as:

0 = \/ O-that + O-gyst (142>

From the table 14.1, the total uncertainty in MCMC (column 3), compared
to LETA (column 8), has clearly improved for the 5 parameters but not for
8B because of the conservative application of the systematics uncertainties.
The fractional uncertainty (column 4 for MCMC and column 9 for LETA)
increased for those parameters which were nearly zero — p1, p2 and a;. The
huge difference in the relative uncertainty is clearly due to the shift of the
central values and not the actual variation in the size of the uncertainties. For
instance, for ps, MCMC has —0.00139 4+ 3.33e — 03 but LETA has —0.00206 +
3.43e — 03. The difference in the central values (0.00067) is ~ 7 times bigger
than the difference in the uncertainties (0.0001). The interpretation of relative
uncertainties makes sense when the uncertainties are small compared to the
central values, but it is certainly not the case for many of the parameters that
we are measuring, hence interpretation is tricky using relative uncertainties to

compare LETA and the 3-phase results.
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There is an improvement in the survival probability of electron neutrinos
(po) and day-night asymmetry (ag). For pg, the fractional uncertainty in LETA
was 0.067 while in MCMC the uncertainty is 0.061. The improvement in
fractional uncertainty of ag is bigger; LETA has 1.23 while MCMC had 0.699.

14.1 Physics Interpretations

This section presents an interpretation of MCMC results in terms of neutrino
oscillations. Nuno Fiuza de Barros performed a scan of the MSW oscillation
plane using results from the three-phase analysis. The plots, shown in this
section, are from his doctoral dissertation. For more detail on the extraction
of oscillation parameters, refer to [102].

Allowed regions of the v mixing parameters were determined in three con-

figurations, namely:

e "SNO only" (MCMC) result for a two-flavour analysis is shown in fig-

ure 14.1 and outlined in table 14.2.

e SNO result (QSigEx) combined with other solar experiments (global so-
lar) for a two-flavour analysis is shown in figure 14.2. Result is outlined

in the first row in table 14.3.

e Global solar result, combined with the result from the KamLAND re-
actor antineutrino experiment, for a three-flavour analysis is shown in

figure 14.3. Result is outlined in the second row in table 14.3.

e Results from three-phase analysis are combined with global solar ex-
periments for a three-flavour analysis. The best-fit of the oscillation

parameters are outlined in table 14.4.

The "SNO only" result shows degenerate minima in both LMA and LOW

oscillation regions in the top plot in figure 14.1, therefore table 14.2 shows
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the best-fit points and respective uncertainties for each of the local minimum.
SNO result when combined with all solar experiments confines the allowed
oscillation parameters to the LMA region. The bottom plot in figure 14.1
concentrates on the LMA region. The star, shown in the following figures,
represents the best-fit point —a point with the maximum value of the likelihood
in the signal extraction fit [102]. The points on the contour — represented by
(L(115) — Lonas(11;) = —n*/2) — are points for which the log likelihood decreased
by »*/2 from the global maximum L,,,,. The contours represent the n'* signal
bound on the oscillation parameters where n=1,2,3.

Comparing uncertainties of the best-fit values of oscillation parameters
from "SNO only" result (table 14.2) between LETA+NCD and MCMC, the
x?/dof is better for LETA than MCMC. Uncertainty on tan?#f;, is same in
the LMA region but improves in MCMC in the LOW region. On the A%ma,,
MCMC has reduced uncertainty compared to LETA+NCD result.

The uncertainties from the global analysis (table 14.3) on tan? ;5 have
improved from the LETA fit 0.0383 to the MCMC fit 0.0314. The total uncer-
tainty on Am3, increased from LETA (0.21) to MCMC (0.38). Comparing the
global solar three-flavour analysis in table 14.4, it is clear that an improvement
in the accuracy of oscillating parameters is gained by combining the data from
all three phases as both MCMC and QSigEx showed improvements. Though it
is not surprising that the best result is from the maximum likelihood method
where the best fit is obtained by maximizing the likelihood function against
all the parameters in the fit where as in MCMC the best-fit of parameter x is
obtained by maximising the likelihood function against the parameter x and
the rest of the parameters are marginalised.

Although SNO is not as sensitive to sin®#f;3, as other experiments which
were designed to measure sin’ 3, for instance, Tokai-to-Kamioka (T2K) [103]

experiment in Japan and Main Injector Neutrino Oscillation Search (MINOS)
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experiment in USA. From the global analysis of neutrino data including the
latest result from T2K and MINOS, Fogli et al.obtained more than 3¢ evidence
of non-zero 63 [105]. Their result is 0.025 +0.007 which agrees with the SNO

result (0.020 4 0.019) although with a much better uncertainty.
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Figure 14.1: Contour of allowed oscillation parameters from the MCMC result
in the full region (top plot) of oscillation parameters. The bottom plot shows
details of the LMA region (bottom plot). Plots are from [102].
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Analysis tan? ;5

Am32, x 107 (eV?) | sin?013(x1072)

2-flavour (QSigEx) | 0.422700%
3-flavour (QSigEx) | 0.4401003¢

7.3870°

7.38%055

2501200

< 5.00(95% C.L.)

LETA+NCD 0.46810033

7.591031

200729

< 8.10(95% C.L.)

Table 14.3: Table with best-fit values of the oscillation parameters from two
and three flavour analysis of global solar+KamLAND data. Last row shows
result from published LETA paper. Uncertainties are +o.

Analysis tan?0;,  Am3, x 107° (eV?)

sin?013(x1072)  x*/dof

QSigEx 0.43610015
MCMC 0.43470:0%2

5401738

5451108

< 5.00(95% C.L.) 108.25/126
< 5.83(95% C.L.) 109:32/196

LETA+NCD 0.468+3052

6.3175%

< 8.10(95% C.L.)  674/s0

Table 14.4: Extracted parameters from a three-flavour neutrino oscillation
analysis over QSigEx and MCMC results and other solar neutrino experiments.
Constraint from KamLAND data is not used for this analysis. For comparison
the last line outlines the corresponding result published in the LETA paper.

Uncertainties are +o.
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Figure 14.2: Global (all solar + KamLAND) two-flavour oscillation parameter
space. Figure from [102].
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14.2 Summary

This thesis describes the result of combined three-phase fit using Markov
Chain Monte Carlo technique. The ®B flux of ¢ = (5.28 £ 0.20) (stat &

! measured by the NC reaction where @ refers to the to-

syst) x10%cm™2 s~
tal uncertainty including both systematics and statistics. Even with a more
conservative application of the systematic uncertainties, the result is compa-
rable to the published LETA result. The CC and ES electron spectra show
no signs of spectral distortions. MCMC fitted the energy-dependent v, sur-
vival probability to the SNO data with the assumption of unitarity of the v
mixing matrix and that the underlying v spectrum follows a smoothly dis-
torted ®B shape. The survival probability is parametrized as a second-order
polynomial and a linear energy-dependent asymmetry between day and night
spectra. MCMC fit saw no evidence of either a significant spectral distortion
or a significant non-zero day/night asymmetry. The result was used to gen-
erate contours showing the allowed regions of the mixing parameters which
for "SNO only" result was LOW region. Adding result from other solar ex-
periments and using KamLAND data to constrain the oscillation parameters
confined the allowed region to the LMA region. From the 2-flavour fit using
MCMC result, the best-fit point in the LMA region is at tan? 65 = 0.436 7033

and Am?, = 5507293 x 107 eV2.
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Appendix A

Determination of
Thorium/Uranium content in

Neutral Current Detectors (NCD)
by Time Coincidence Study

A.1 Introduction

This document describes the time coincidence study employed to quantify the
impurity levels in NCDs which consist of ?*2Th, 238U and all the progeny in
their decay chains (See tables A.1 and A.2). The analysis was based on efficien-

cies determined from Stonewall’s simulation [106]. She analysed the combined

open! and commissioning datasets? for her time coincidence study. The later

dataset was taken between June 5, 2004 and November 15, 2004 while the for-
mer was taken between November 27, 2004 and January 3, 2005. I based my
study on the complete NCD data. This study compares the results obtained
from analysing the complete data to the results obtained by Stonehill’s time
coincidence study. This is a cross-check, as a part of box opening procedure,
to confirm that the values for the NCD bulk activity from the in situ analysis
[65] are good.

A.2 Coincidence analysis

A.2.1 Definition of coincidence events

Time coincidence looks for alpha events that are correlated in time. Listed
below are three possible coincidence signals, observed in the dataset, that can
be utilized to gauge the NCD bulk activity.

e The short-lived alpha emitters are employed for time coincidence study
because in the thorium decay chain (Table A.1), the decay of **°Rn
(T1/2=55.6 seconds) and *'®Po (T;/2=0.145 second) will be correlated

IFirst month of open data
2From now on it will be addressed as combined dataset.
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in time. Hence it is possible to define a triple coincidence between the
alphas from the 2?Ra — 22°Rn — 2!5Po portion of the *Th decay chain.
A triple coincidence is defined as two events with a time difference of less
than 111.2 seconds followed by a third event within 0.3 second. All events
with energy less than 0.1 MeV were rejected to reduce electronic noise.
The sizes of the coincident windows are selected to be twice the half-lives
- Ty /2=55.6 seconds (**Rn) and T /2=0.145 second (*'°Po) - in thorium

decay chain.

Short double coincident pair consist of ?2°Rn and ?'°Po alphas. Time
window selected for the analysis is 0.3 second, twice the half-life of 2'Po.
The o — o coincidence of 2!Po also make up the double. Events were
selected if the energy deposited is greater than 0.1 MeV.

Long double coincidence is when two events, from both the uranium
chain (Table A.2) and the thorium chain, happen in a coincidence win-
dow of 111.2 seconds. To reduce accidental coincidences between low-
energy events, the energy threshold was increased to 1 MeV.

Nuclide | decay mode T1/2 Energy (MeV) | Decay Product
22Th « 1.405 x 109 a 4.081 228Ra,
228Ra B~ 5.75 a 0.046 28 Ac
28Ac B~ 6.25 h 2.124 228Th
28Th e 1.9116 a 5.520 *2Ra
224Ra « 3.6319 d 5.789 20Rn
2Rn o 55.6 s 6.404 26po
216pg o' 0.145 s 6.906 22pp
212py, B~ 10.64 h 0.570 22B;
sop, | B 64.06% | 60.55 min 2.252 212p,

a  35.94% 6.208 2087
22pg « 299 ns 8.955 208py
2087 b~ 3.053 min 4.999 208pp
208pn stable

Table A.1: Thorium Series [109]

A.2.2 Chance Coincidence

Accidental /chance coincidence is defined as uncorrelated events that happen
close enough in time as to fall within the coincidence window. The method to
compute the expected number of accidentals was described in Stonehill’s dis-
sertation [114]. For triples, the number of accidentals was calculated according

to equation (A.1).
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Nuclide decay mode T/ Energy (MeV) | Decay Product
BIU o 4.468 x 10° a 4.270 4Th
2347} 3 24.10 d 0.273 231p,
234Ppy, B~ 6.70 h 2.197 BAY
BAU « 245500 a 4.859 20T
B0Th « 75380 a 4.770 226Ra
226Ra o 1602 a 4.871 222Rn
22Rn @ 3.8235 d 5.590 28po
218p,, a 99.98% 3.10 min 6.115 24P

B~ 0.02% 0.265 ZI8 At

718 5 a 99.90% 1.5's 6.874 214135

B~ 0.1% 2.883 218Rn

28Rn a 35 ms 7.263 24po

214py, 3 26.8 min 1.024 214,

21434 B~ 99.98% 19.9 min 3.272 24po

a 0.02% 5.617 210

2po a 0.1643 ms 7.883 210pp

210 8- 1.30 min 5.484 210pt,

210py, 5= 22.3 a 0.064 210B;

sop, | 67 99.99987 % | 5.013d 1.426 210p,,

a 0.00013% 5.982 2067

20po o 138.376 d 5.407 206pt

2067 B~ 4.199 min 1.533 206ph
206py stable

Table A.2: Uranium Series [109]
N,=7tits L (A1)

where 7, is the singles rate on that string, ¢; and t, are the sizes of the coinci-
dence windows — 0.3 and 111.2 seconds respectively — and L is the lifetime® of
the dataset. For the doubles, the equation for the number of accidentals was
N, = r2t L where t is the size of the coincident window. These equations are
valid provided that the single’s rate times the size of a coincidence window is
small compared to unity (rst < 1). To get the correct count of the coincident
events (N,) in a string, the accidentals (N,) were subtracted from the number

3The time that the detector was actively collecting data.
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of observed coincident events (N,.) and if accidentals were more than the co-
incident events, the number of coincident events in the string was set equal to
zero. This happened only with string #23.

N, =N, — N, (A.2)
N, > N,. then N,., =0 (A.3)

A.2.3 All strings or good strings only?

For comparison, two studies were performed, once with all the strings and then
with certain strings (0, 1, 3, 10, 18, 20, 26, 27, 30, and 31) removed ([110] and
[111]). The later will be known as restricted study from now on. Stonehill did
not analyse strings 3, 7, 8 and 20, hence her study was also restricted. Even
though not all strings were included, the numbers reported in column one of
Table A.11 from the restricted study were corrected to represent the full array
with the assumption that coincident events are fairly distributed over all the
strings that were analysed.

A.2.4 True coincidences

Selection of coincidence candidate was based on the time difference between
each event in the dataset and its immediate predecessor. if the time difference
is within the size of a time window then the events are considered as the co-
incidence events. Accidental coincidences are backgrounds in this study. The
number of true coincidences is calculated by subtracting the expected num-
bers of accidentals from the observed number of coincidences (equation (A.2)).
Table A.3 is the account of coincident and accidental events. The italics text
describes Stonehill’s study (lifetime of the dataset analysed, number of coinci-
dences and number of chance coincidences) and the rest describes this study.
The column four/six of the table suggests that long double (111.2 seconds) is
the least accurate coincident event to estimate the contamination in NCDs [See
Figure A.1|. Corrected number (N, shown in red in Figure A.1 and described
by equation (A.2).) is the observed number (N,. shown in blue in Figure A.1)
of coincident events minus the accidentals (N,). Considering the accidentals,
it seems that triple-coincident event is the most accurate one. The reason
for no accidentals for triples is due to a tight constrain: (1) two coincident
events within 111.2 seconds of each other followed closely by a third event
within 0.3 second (2) all three events occurring in the same string and (3) all
three events depositing energy in excess of 0.1 MeV. The tight constrain also
limits the statistics. Short doubles (0.3 second), on the other hand, has lim-
ited accidentals on account of a narrow time window and has good statistics
(349 + 1.43).

A.3 Data Cleaning Cuts

Table A.4 lists the cuts applied on the analysis to remove non-physics events
which include high-voltage discharges evident in some NCD sections. These
discharges were introduced inadvertently by the welding process. Even though
steps were undertaken to resolve the situation, some strings still have these
problems, hence these were removed from the analysis. The cuts applied by
Stonehill are not similar to the cuts that were applied for this study, because
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Figure A.1: Distribution of uncorrected and corrected number of long (111.2
seconds) doubles. Strings, not shown, (0, 1, 3, 10, 18, 20, 26, 27, 30 and 31)
were not included.(Restricted Study).

the cuts were still work-in-progress when Stonehill performed her analysis.
Tables A.13 and A.14 break down the Data Analysis Mask Numbers (DAMN
cuts) reported in Table A.4 into bits. For a detailed description of DAMN
cuts, consult [112].

A.4 Fits to obtain lifetimes T;/,=55.6 seconds
(**Rn) and T;/»=0.145 second (*'°Po)

The time difference between Poisson-distributed events was fitted with expo-
nential distribution to see if the lifetime from the fit was the half-life of 21°Po
(0.145 second) and **°Rn (55.6 seconds). Figure A.2 shows the fit result for
short doubles when the size of window is extended to 1.5 seconds from 0.3
second. It shows with x? 19.62 and Number of Degrees of Freedom (ndf) 21,
that the half-life is 0.1358 & 0.0089 which is 1.0 ¢ away from 0.145 second.
Figure A.3 shows a fit on the long doubles with x? of 38 for 45 degrees of
freedom. Lifetime from the fit is 47.25 £ 11.64 which is 0.7 o away from 55.6
seconds. To avoid o — & coincidences from 2'°Po (T /,=0.145-second) in the
thorium chain, the range for the fit was restricted between 7.0-222.45 seconds.
Figures A.2 and A.3 also display the equation that was fitted to the data.
The goodness of a fit is described by the x?/ndf but to ascertain it, the fit-
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ted background (41.214+3.44) was compared to the accidentals for the long
doubles of 222.2-seconds window size. From the fit (Figure A.3), the back-
ground comes up to be in the range of 1889 to 2233 [(41.21-3.44)=37.77 X
50 to (41.21+3.44)=44.65 x 50 where 50 is the number of bins| which com-
pares very well with the number of accidentals, 2126, calculated from Poisson
distribution.

| OT*exp(-1og (2. " X/[1])+[2] |

hnew

Entries 757

b e eieeeieeeedeesessaasssasaeeeieeeieeesaasaansannniaaaiaaes Mean 02279
: RMS 0.2545

L e ............................................... X2/ ndf 19.62 /21
- : Prob 0.5453
__ ............................................... N, 210.04 18.1
_ ............................................... T,,, [seconds] 0.1358 + 0.0089
- 5 Background 1.979 + 0.565

. . ﬂLﬁi* : —_—]
0 0.5 1 15

Time Difference [seconds]

Figure A.2: Time difference distribution of short doubles, extended to 1.5 sec-
onds, yields half-life of 2!Po. All strings were included in the analysis.

A.5 Energy Distribution

To verify furthermore the fact that triples and short doubles are short-lived al-
pha emitters from thorium decay chain, the energy distribution of the events is
plotted in Figures A.5 and A.7. The initial energies of *Ra (From Table A.2),

?0Rn and ?'Po (From Table A.1), involved in the triples and short doubles,
are 5.59 MeV, 6.40 MeV and 6.90 MeV respectively. The energy distributions,
as seen in Figures (A.4,A.5, A.6, A.7) range from zero to the initial (maximum

energy in the figure) energies of alphas. From Figures A.4 and A.6 it appears
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Figure A.3: Time difference distribution of long doubles, extended to 220
seconds, yields half-life of ?2°Rn.

that the impurity is a bulk impurity and not a surface contamination. Alphas
starting within the bulk will lose energy due to collisions within nickel walls
while the one originating from the surface enters into NCD active volume with
its energy intact. The spectra A.5 and A.8 show that there are significant
number of events that are not consistent with bulk-like activity.

A.6 Model dependency of impurity composition
|65]

This section touches the subject of model dependency of impurity level calcu-
lated from time coincidence study. The energy distribution in Figures A.5 and
A.7 is very informative and indicative of the combination of following factors:

1. Alphas originating deeper in the NCD walls and loosing energy escaping
from the nickel walls so that the active NCD region detects only partial
energy (Bulk model).
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Figure A.4: Energy distribution of the first and second event in the 89 0.3
second double coincidences from Stonehill’s analysis [117].

2. Alphas originating from or near the surface (Surface-fixed model) and
depositing the entire energy in the NCD active region (see the peaks in
the Figures A.5 and A.7) or

3. Alphas originating from or near the surface (Surface-fixed model) but
striking another part of the wall and depositing only partial energy,
thereby mimicking the bulk-like activity. See the tails of the peaks in
the Figures A.5 and A.7.

4. One possibility might be the escape of radon (a noble gas) into the active
region of the NCDs which alters the potential prospects for observing
coincidence. Ejection of the 2°Rn in the gas will result in its decay in
the gas since it has a 56 s half life. Thus ?°Rn escape model will result
in higher detection efficiency of 2°Rn and its daughter 0.145 s 2!Po
compared to the surface-fixed model. In this scenario, the leading alpha
will not be observed but the two alphas in the double will definitely be
observed.

5. Last possibility is that the origin of alpha is the surface contamination
which has a non negligible thickness, consequently the energy peak is
smeared out and gives the appearance of true bulk activity.

The ratio of number of short doubles to triples gives an indication as to whether
the activity originates from the surface or is uniformly distributed in the bulk
of the walls. If the alpha starts from the surface then there are two possibilities
for it to travel - towards (T) the active region or away (A) from it. Hence, in
the case of triples, there are 2 x 2 x 2 = 8 possibilities [(1) AAA,(2) AAT,(3)
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Figure A.5: Energy distribution of the first and second event in the 349 0.3
second double coincidences.

ATT,(4) TTT,(5) TTA,(6) TAA,(7) TAT,(8) ATA] therefore the probability
of detection is (1/8)x100= 12.5%. Out of eight possible outcome, only one
will be observed as a triple and another will be a double missing a leading
alpha. In the case of short doubles there are 2 x 2 = 4 possibilities therefore
there is a (1/4)x100 = 25% probability of detecting both the ?**Rn and 2'°Po
alphas that constitute the short doubles. Hence the ratio of triples to doubles
is 12.5/25.0 = 1/2 = 0.5 in case the impurity is fixed on the surface.

If the impurity is bulk in nature then there are four possibilities for a
alpha to travel*. Consequently there are 4 x 4 x 4 = 64 and 4 x 4 = 16
set of possibilities for a triple and a double coincident pair to be detected
respectively. Therefore, for bulk contamination, the ratio of triple to short

4If 100 alphas are uniformly distributed to a depth equal to an « range then 25 alphas
will escape the wall. Detection efficiency for a single a from the bulk activity is 256% as
opposed to 50% from the surface activity.
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Figure A.6: Energy distribution in the first, second and the third event in 26
triple coincidences from Stonehill’s analysis [116].

double would be i;—?g =1/4=0.25.

As mentioned earlier, in the radon escape model, there is 50% chance that
the leading alpha will be observed and the resulting daughter ?2°Rn will be
on/near the surface. The odds of observing a double, originating from the
surface, is 25% hence the probability of observing a triple is (50% x 25%) x
100 = 12.5%. There are two components in the calculation of the likelihood
of observing a double in the radon escape model. First when radon’s track
is towards and the other in which it is away from the active region. In the
former case radon escapes into the active region therefore the double (*°Rn —
26po — 210Pp) will always be observed and in the later (50% of the time)
there is 25% chance of observing a double hence the probability is summed
as (50% + 50% x 25%) x 100.0 = 62.5%. Therefore the ratio of triples to
doubles is 12.5%/62.5%=0.2 for the radon escape model. From the last line
of Table A.5, it seems that the ratio spans from 0.2 to 0.5. The efficiency
to detect a coincident pair spans from 6.25% to 62.5% — a ten fold change —
resulting in a wide deviation in the amount of 2*Th derived from the doubles
measurement.

Table A.5 summarizes the above discussion. The ratio of triples to doubles
is 0.25 (bulk activity), 0.5 (surface activity) and 0.2 (radon escape model).
Table A.9 shows that the ratio ranges from 167/575 = 0.29 (All Strings) to
106/349 = 0.30 (Restricted) instead of 0.25 or 0.5 which means that both bulk
and surface-fixed models play a role. The efficiencies discussed here are based
on geometric arguments and do not include efficiency e of coincident window
to detect the coincident pair.

Eff = 1.0 — ¢ e (@/T1)2 (A.4)
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Figure A.7: Energy distribution in the first, second and the third event in 106
triple coincidences.

where t=0.3 seconds is size of the coincident window and T 2,=0.15 seconds is

the half-life of 21°Po. Taking into account efficiency of the coincident window
e and the ratio of the number of triples to doubles, the number of triples
is calculated and compared to the observed number of triples to figure out
the model that best describes the data. Table A.6 lists the result of the
computation when all strings are analysed and when only good strings are

considered.
thl = Ratio x Ndbl x Eff (A5)

where Ratio (from last row of Table A.5) is a ratio of number of triples to num-
ber of short double coincident pairs obtained from geometrical consideration,
Ndbl is 349 from restricted study and 575 when all the strings are considered
in the fit, and N;,; calculated is shown in columns 3 to 5 in Table A.6.

From Table K 6 it appears that the impurity is combination of bulk and
surface models, hence ignoring radon escape model, the composition of impu-
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Figure A.8: Energy distribution of the first and second event in the 1173 111.2
second double coincidences.

rity into bulk y and surface x is determined as:

r+y=1 (A.6)
1302 + 65(1 — 2) = 106; z ~ 0.63 (A7)
215.62 + 107(1 — z) = 167; z ~ 0.55 (A.8)

The values are used from Table A.6. Equation (A.7) is for the restricted study
involving only good strings and equation (A.8) is for all strings. The average
(0.63 4 0.55) * 0.5 x 100 = 59% agrees very well with 58% of [113].

A.6.1 Features of Simulation

For the simulation, 10 million decays were simulated each for uranium and
thorium. The alpha emitted by 22Po in the thorium chain is the highest en-
ergy alpha with a range of 20 ym in nickel, hence to reduce the computational
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Figure A.9: String distribution of triples and short doubles from Stonehill’s
analysis. Strings, not shown, (3, 7, 18 and 20) were not analysed [118|.

time, alphas were uniformly distributed up to 22 pm in the bulk of the nickel
walls. Figures A.4 and A.6 testifies to the validity of this assumption but not
Figures A.5 and A.7. In the simulation, the uranium and thorium chains were
broken at radium because it is readily dissolved in water [115]|. Disequilibrium
model was used because of the complication of the CVD (Chemical-Vapour-
Deposited) process to deposit nickel on aluminium mandrel to make NCD
bodies. The equilibrium was also disturbed by electropolishing and acid etch-
ing of the nickel tubes to remove adhered 2!°Po from the surfaces of nickel
tubes.

A.7 Calculation of Thorium/Uranium Content

To calculate the impurity level, accidentals were calculated, using equation (A.1),
for each string based on the singles data above 0.1 MeV for triples and short
doubles and above 1 MeV for long doubles. Using the number of accidentals,
the rate of impurity level R from a coincident event, is expressed as:

(N _ Na)
(A L fscope 5)

where N and N, are the numbers of coincident events and accidentals respec-
tively, L, as mentioned earlier, is the lifetime of the dataset, fscope is scope life
fraction, and ¢ is the efficiency from Table A.7. The simulation efficiency ¢ is
the probability of seeing a double or a triple coincidence from a decay chain.
For example, in the case of triples, out of 100 simulated events in bulk tho-
rium, only 0.961 triple coincidence was observed. The lifetime was multiplied
by scope life fraction (From [119] 95.940.3(stat)£0.01(sys))% to account for

R= (A.9)
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the deadtime of the scope, which is relevant®, because the analysis considers

only correlated Shaper/ADC and scope events. Area® is calculated from the

number of stings N, in which the number of coincident events is greater than
63.52

zero — A = (555) Ns. Substituting in equation (A.9) results in

40 (N = N,)
(6352 N, L focope €)

R= (A.10)

This equation also extends the result obtained from the restricted analysis to
the full array of NCDs assuming that the coincident events are distributed
over all the strings that were analysed (See Figure A.10). The exception is
string #37 in which 43 short doubles and 14 triples occurred — well above the
average of 15 and 5 for short doubles and triples respectively. String #37 has
problems that were mentioned in [110|. String #37 also has more than its
share of long doubles (See Figure A.1) from the rest of the strings. The result
of the calculations is shown in column one of Table A.11. As seen in Table A.7,
thorium contamination was estimated by counting all three coincident events
but the rate of uranium decay was estimated by counting the 111.2 seconds
doubles which can have its origin either in thorium or uranium decay chain.

Sources of triples and short doubles are alphas from thorium chain, but long
coincident pairs (111.2 seconds) are complicated. There are three sources, that
is, alphas from uranium (*!®Po), alphas from thorium (**°Rn) and accidentals.
In order to distinguish the contributions from each source, Stonehill applied
simultaneous ROOT maximum-likelihood fit to the energy distributions of first
and second events and obtained the result shown in Table A.8. Alphas from
uranium and thorium is calculated as:

Nig [z

€x

N, =

(A.11)

where N, is the number of atoms of x which can be either 2!*Po or 2?°Rn, f,
(from Table A.8) is the fraction of long doubles belonging to uranium (*'*Po)

or thorium (**°Rn) or accidentals and €, (from Table A.7) is an efficiency
of seeing a double coincidence where two alphas deposit energy that exceeds
1 MeV and the time difference is within 111.2 seconds.

Number of observed long doubles Nyj; in the dataset — in terms of N,
calculated from equation (A.11) — is expressed as:

Nig = €218 Na1g + €220 Nago + N, (A.12)
Table A.11 compares the thorium contents determined from the complete

dataset to the ones from Stonehill’s study.

A.7.1 Calculation of Errors

Statistical errors were calculated based on the /N statistics. Various system-
atic uncertainties enter the analysis. List include sources:

e The uncertainty in the lifetime (385.17 £ 0.14 [29]) of the dataset.
e Uncertainty from the scope life fraction [95.9£0.3(stat)£0.01(sys)|%

5The MUX deadtime is ~ 1 millisecond after every event.
SThere are forty NCD strings with total surface area equal to 63.52 m?2.

331



e Fractional uncertainty in the determination of fractions of uranium, tho-
rium and accidentals in the long doubles (Table A.8).

e The uncertainties in simulation efficiencies from Table A.7.

e The dependence of time coincidence analysis on energy calibration, due
to energy threshold for the selection of events (0.1 MeV for the short dou-
bles and triples and 1.0 MeV for the long doubles), leads to a systematic
uncertainty.

e The use of three different coincidence methods to estimate the level of
thorium impurity introduces a significant uncertainty and since the three
dissimilar methods extracted the results from the similar dataset, the
uncertainties are also correlated.

Both systematic and statistic errors were added in quadrature to get the total
uncertainty reported in tables A.11, A.10 and A.12.

A.7.2 Inconsistency in column one of Table A.11

Stonehill’s calculation of thorium contaminations from all three events are
consistent with each other. The three row entries are not consistent in column
one of Table A.11, nonetheless, from the last row, it seems the average rates
from both columns are consistent within uncertainties of each other. The
discrepancy is due to the fact that bulk model does not represent the complete
data but adequately represents the dataset that Stonehill analysed.

A.7.3 Cross-check

As a cross-check comparison of the impurity levels, when all strings are con-
sidered and when hot strings are removed (Table A.10) was made and it shows
that the count rate is higher for the former because of the inclusion of string
#10 (Figure A.11) which has higher number of events and accidentals than any

other string. This is what we expected. Nevertheless, the average rate (row
three in Table A.10) of decay from triples and short doubles from all strings
(0.795 4 0.067) is consistent within uncertainties with the one calculated from
the restricted dataset (0.680 £ 0.067).

A.7.4 Thorium/Uranium Content

The number of short doubles observed in the NCD array is 575424 (Table A.9).
With the efficiency of 3.557%, appropriate for bulk-like activity, the number of
232Th decays is 161654675. This decay would be produced” by 0.083+0.005 pg
of 232Th in the NCD walls. If, instead, the efficiency for surface-like activity
(18.75%) is used in the above calculations, then the decay would be produced

by 0.023 £ 0.0009 g of 2*?Th on the inner surfaces of the NCD walls. The
spread reflects uncertainty in the efficiency (model dependency) to convert the
activity to actual Thorium content.

"Ny = Nyg/(1—274T1/2) where Ny is the number of decays of 232Th or 238U and ¢ is the
lifetime of the dataset. Mass is related to the number of nuclei by m = (ma/Na) Ny - ma
is 232 or 238 gm and N, is the Avagadro number 6.02 x 1023,
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The average of the decay rates of uranium from the complete NCD data
(All strings and restricted to good strings) in Table A.12 was 0.527 £ 0.765

which is consistent with the decay rate that Stonehill obtained (0.50333). To
calculate the actual uranium content, responsible for the observed activity, the
number of long doubles — 2314 (Table A.9) —is used. Following the calculation
mentioned above with the bulk model, gives the uranium content as 0.034 4
0.034 ug.

A.8 Conclusion

Using the bulk model of impurity in the time coincidence study, the impurity
level of thorium — in the NCD array — from the complete dataset (0.5740.09
decays/m?/day) is consistent within the uncertainties with the value obtained
by Stonehill (0.474 0.12 decays/m?/day). The study considered various mod-
els of contamination and 63% surface and 37% bulk best fitted the number of
triples observed. Based on the time coincidence study, the NCD array con-

tains between 0.083 4 0.005 to 0.023 &£ 0.0009 pug of *2Th. Concerning the
uncertainties in the uranium calculation, the impurity in the NCD array is
dominated by thorium.
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Cut Applied By Stonehill

Applied for this study

DAMN 0 0X(C8440001
DAMN 1 0X1BE

0XCC440001
0X00FFDDFE

Table A.4: Cuts applied. See tables A.13 and A.14 for further details.

Bulk % Surface % | Radon Escape %
Efficiency of detecting triples | 100/64=1.56 12.5 12.5
Efficiency of detecting doubles | 100/16=6.25 25.0 62.5
Ratio of triples to doubles 0.25 0.5 0.2

Table A.5: Ratio of triples to doubles for different models of contamination.

Observed | Surface

Bulk | Radon Escape

All Strings 167 215.6
Restricted 106 130

107 86.25
65 52.35

Table A.6: Comparison of observed and expected number of triples from three

different models.

Events

Efficiency ¢ %

Thorium triple
Thorium short doubles
Thorium long double €599

Uranium long double €55

0.961 = 0.003
3.557 £ 0.006
8.606 = 0.009
1.164 £ 0.003

Table A.7: Efficiencies from Monte Carlo simulation performed by Laura C.
Stonehill [106] and employed in equations (A.10) and (A.11).

Counts | Fraction of long doubles

Accidentals f, | 211 £ 25
Thorium f220 201 £ 27
Uranium fo15 | 32 433

0.47 £ 0.06
0.45 = 0.06
0.07 £ 0.07

Table A.8: Outcome of Stonehill’s maximum-likelihood fits to determine the

composition of long doubles.
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Figure A.10: String distribution of triples and short doubles. Strings, not
shown, (0, 1, 3, 10, 18, 20, 26, 27, 30 and 31) were not analysed.

Restricted All Strings
Events Counts | Accidentals | Counts | Accidentals
Triples 106 0.015 167 0.07
Short Doubles 349 1.43 575 3.49
Long Doubles 1173 436 2314 1064

Table A.9: Comparing counts when all strings were included to when only
good strings were analysed.
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All Strings | Restricted
Triples 0.89 + 0.06 0.78 + 0.06
Short Doubles 0.70 + 0.03 0.58 + 0.03

Average from Triples and Short Doubles | 0.795 4+ 0.067 | 0.680 4+ 0.067
Long Doubles 0.53 +0.07 0.36 £ 0.05

Table A.10: Comparing thorium decay rate (decays/m?/day) from two fits —
one using all the strings and another using only good strings.

Events Complete NCD dataset | Stonehill
Restricted

Triples 0.78 £ 0.06 0.52 +0.10

Short Doubles 0.58 = 0.03 0.45 + 0.05

Long Doubles 0.36 = 0.05 0.43 + 0.06

Average rate 0.57 £ 0.09 0.47£0.12

Table A.11: Comparing thorium decay rate (decays/m?/day) between two
analysis.

decays/m?*/day

Complete NCD data (All strings) | 0.627 £ 0.064

Complete NCD data (Restricted) | 0.427 £ 0.439
Stonehill (Restricted) 0.500 58

Table A.12: Uranium content from long double coincident events (111.2 sec-
onds).
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Figure A.11: String distribution of 111.2 seconds doubles; blue and red corre-
sponds to observed and corrected number of 111.2 seconds doubles respectively.
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DAMN 0 Bit# Description

0 Retrigger
18 Muon follower short
22 NHIT burst
26 Muon follower blindness
27 Missed muon follower short
30 Shaper burst
31 Mux burst
DAMN 1 Bit# Description
1 Reverse fork
2 Fork
3 NCD oscillatory
4 Flat trace
5) Narrow pulse
6 Run boundary
7 NCD pulses
8 Shaper overflow
10 NCD Mux-Shaper correlation
11 NCD correlation time
12 Multi NCD
13 Third reflection
14 Multiple large peak
15 NCD positive signal
16 NCD frequency domain flatness
17 NCD frequency domain fork cut
18 NCD frequency-domain fork cut
19 NCD spike-area cut
20 NCD frequency-domain symmetry cut
21 NCD frequency-domain oscillation cut
22 NCD NRE pulse tag cut
23 NCD general record cut

Table A.13: Breaking down DAMN cuts 0XCC440001 and 0X00FFDDFE into
bits. These cuts were applied to remove non-physics events from the current
analysis.
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DAMN 0 Bit# Description
0 Retrigger
18 Muon follower short
22 NHIT burst
27 Missed muon follower short
30 Shaper burst
31 Mux burst
DAMN 1 Bit# Description
13 Muon hit all crates
14 Third reflection
15 Multiple large peak
16 NCD positive signal
17 NCD frequency-domain flatness cut
19 NCD spike area cut
20 NCD frequency-domain symmetry cut

Table A.14: Breaking down DAMN cuts 0XC8440001 and 0X1BE into bits.
These cuts were applied by Stonehill to remove non-physics events from the
analysis.
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Appendix B

Plots for testing the bias in the
number of events belonging to
neutral current
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Figure B.1: NC fit result of the 1/3 simulated datasets for the step 1. The
expected value and its uncertainty, required to calculate the bias, is the mean
and RMS of the posterior distribution after taking out the burn-in period
40,000 out of 75,000.
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Figure B.2: NC fit result of the 1/3 simulated datasets for the step 2. The
expected value and its uncertainty, required to calculate the bias, is the mean
and RMS of the posterior distribution after taking out the burn-in period
40,000 out of 75,000.
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Figure B.3: NC fit result of the 1/3 simulated datasets for the step 3. The
expected value and its uncertainty, required to calculate the bias, is the mean
and RMS of the posterior distribution after taking out the burn-in period
40,000 out of 75,000.
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Figure B.4: NC fit result of the 1/3 simulated datasets for the step 4. The
expected value and its uncertainty, required to calculate the bias, is the mean

and RMS of the posterior distribution after taking out the burn-in period
40,000 out of 75,000.
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Figure B.5: NC fit result of the 1/3 simulated datasets for the step 5. The
expected value and its uncertainty, required to calculate the bias, is the mean

and RMS of the posterior distribution after taking out the burn-in period
40,000 out of 75,000.
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Figure B.6: NC fit result of the 1/3 simulated datasets for the step 6. The
expected value and its uncertainty, required to calculate the bias, is the mean
and RMS of the posterior distribution after taking out the burn-in period
40,000 out of 75,000.
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Figure B.7: NC fit result of the 1/3 simulated datasets for the step 7. The
expected value and its uncertainty, required to calculate the bias, is the mean
and RMS of the posterior distribution after taking out the burn-in period
40,000 out of 75,000.
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Figure B.8: NC fit result of the 1/3 simulated datasets for the step 8. The
expected value and its uncertainty, required to calculate the bias, is the mean
and RMS of the posterior distribution after taking out the burn-in period
40,000 out of 75,000. The brown line is a Gaussian fit on the bias distribution.
The bias, uncertainty on the bias and bias in terms of number of o from the

Gaussian fit is displayed on the title of the histogram.
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Figure B.9: NC fit result of the 1/3 simulated datasets for the step 9. The
expected value and its uncertainty, required to calculate the bias, is the mean
and RMS of the posterior distribution after taking out the burn-in period
40,000 out of 75,000. The brown line is a Gaussian fit on the bias distribution.
The bias, uncertainty on the bias and bias in terms of number of o from the
Gaussian fit is displayed on the title of the histogram.
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Figure B.10: NC fit result of the 1/3 simulated datasets removing NCDPD
background. Green line shows the Gaussian fit. The bias and uncertainty
on the bias corresponds to the mean and uncertainty on the mean of the
distribution as shown in the legend.
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Figure B.11: NC fit result of the 1/3 simulated datasets after removing kbpd
background. The 7o bias on NC demonstrates that k5pd is not the culprit
which caused the bias in the neutral current.
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Figure B.12: NC fit result of the 1/3 simulated datasets after removing k2pd
background. The 80 bias on NC demonstrates that k2pd is not the culprit
which caused the bias in the neutral current. Green line shows the Gaussian fit.
The bias and uncertainty on the bias corresponds to the mean and uncertainty

on the mean of the distribution as shown in the legend.
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Figure B.13: NC fit result of the 1/3 simulated datasets after removing dyopd
background. The bias on NC demonstrates that d2opd is not the culprit which
caused the bias in the neutral current.
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Figure B.14: NC fit result of the 1/3 simulated datasets after removing hep
background. The expected value and its uncertainty, required to calculate the
bias, is i and o from fitting a Gaussian function on the posterior distribution
after taking out the burn-in period 40,000 out of 350,000. The green line is
a Gaussian fit on the bias distribution. The bias and uncertainty on the bias
corresponds to the mean and uncertainty on the mean of the distribution as

shown in the legend.
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Figure B.15: NC fit result of the 1/3 simulated datasets after removing At-
mospheric neutrons. The green line is a Gaussian fit on the bias distribution.
The bias and uncertainty on the bias corresponds to the mean and uncertainty
on the mean of the distribution as shown in the legend.
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Figure B.16: NC fit result of the 1/3 simulated datasets after removing external
neutrons. The green line is a Gaussian fit on the bias distribution. The bias
and uncertainty on the bias corresponds to the mean and uncertainty on the
mean of the distribution as shown in the legend.
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Figure B.17: NC fit result of the 1/3 simulated datasets with signals only
(CC, ES, ES,;, NC and EX). The green line is a Gaussian fit on the bias
distribution. The bias and uncertainty on the bias corresponds to the mean
and uncertainty on the mean of the distribution as shown in the legend.
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Figure B.18: NC fit result of the 1/3 simulated datasets with NC and pe.
parameters floating. All other parameters are fixed. The best-fit and its
uncertainty is obtained, after fitting the posterior distribution from each run,
to a Gaussian function. The bias and uncertainty on the bias corresponds to
the mean and uncertainty on the mean of the distribution as shown in the

legend.
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Figure B.19: NC fit result of the 1/3 simulated datasets with only NC floating.
The brown line shows a Gaussian fit on the distribution. The test proves that
NC is not causing the bias in itself. X axis shows bias distribution.
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Figure B.20: NC fit result of the 1/3 simulated datasets with fixed p; and p
from the p.. parameters.
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RMS 0.01669 + 0.001186
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Constant 4.109 + 0.513

Mean -0.002764 + 0.001710

Sigma 0.01683 + 0.00127

Figure B.21: NC fit result of the 1/3 simulated datasets with only py floating
from the p.. parameters. The result indicates that py does cause the bias in
NC. The green line is a Gaussian fit on the bias distribution. The bias and
uncertainty on the bias corresponds to the mean and uncertainty on the mean
of the distribution as shown in the legend.
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Figure B.22: NC fit result of the 1/3 simulated datasets with only p; floating
from the p.. parameters. The green line is a Gaussian fit on the bias distri-
bution. The bias and uncertainty on the bias corresponds to the mean and
uncertainty on the mean of the distribution as shown in the legend.
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Figure B.23: NC fit result of the 1/3 simulated datasets with only ps floating
from the p.. parameters. The green line is a Gaussian fit on the bias distri-
bution. The bias and uncertainty on the bias corresponds to the mean and
uncertainty on the mean of the distribution as shown in the legend.
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Figure B.24: NC fit result of the 1/3 simulated datasets with only ay (Top),
a; (Bottom) floating from the p.. parameters. The green line is a Gaussian
fit on the bias distribution. The bias and uncertainty on the bias corresponds
to the mean and uncertainty on the mean of the distribution as shown in the
legend.
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Figure B.25: Comparing three projections (energy, cos g, p) of the distorted
3D PDFs from MCMC to the QSigkx using the nominal values of p... The
3D PDF is for the CC Day class.
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Figure B.26: Comparing three projections (energy, cos 0, p) of the distorted
3D PDFs from MCMC to the QSigkx using the nominal values of p... The
3D PDF is for the CC Night class.
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Figure B.27: Comparing three projections (energy, cos ), p) of the distorted
3D PDFs from MCMC to the QSigkx using the nominal values of p... The
3D PDF is for the ES Day class.

Figures B.32, B.34 and B.36 show that there is a difference in the last bin
especially for the night PDFs so the next step was to fit MCMC from 6-12
MeV instead of 6-20 MeV.
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Figure B.28: Comparing three projections (energy, cos 0, p) of the distorted
3D PDFs from MCMC to the QSigkx using the nominal values of p... The
3D PDF is for the ES Night class.
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Figure B.29: Comparing three projections (energy, cos g, p) of the distorted
3D PDFs from MCMC to the QSigkx using the nominal values of p... The
3D PDF is for the ES,; Day class.
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Figure B.30: Comparing three projections (energy, cos g, p) of the distorted
3D PDFs from MCMC to the QSigkx using the nominal values of p... The
3D PDF is for the ES,; Night class.
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Figure B.31: Comparing energy distribution distorted using nominal values
of pee to the distribution distorted using p.. values, obtained from the fit as
listed in Table 11.3, for the CC Day.
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Figure B.32: Comparing energy distribution distorted using nominal values
of pee to the distribution distorted using p.. values, obtained from the fit as
listed in Table 11.3, for the CC Night.
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Figure B.33: Comparing energy distribution distorted using nominal values
of pee to the distribution distorted using p.. values, obtained from the fit as
listed in Table 11.3, for the ES Day.
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Figure B.34: Comparing energy distribution distorted using nominal values
of pee to the distribution distorted using p.. values, obtained from the fit as
listed in Table 11.3, for the ES Night.
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Figure B.35: Comparing energy distribution distorted using nominal values
of pee to the distribution distorted using p.. values, obtained from the fit as
listed in Table 11.3, for the ES,; Day.
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Figure B.36: Comparing energy distribution distorted using nominal values
of pee to the distribution distorted using p.. values, obtained from the fit as
listed in Table 11.3, for the ES,; Night.
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Figure B.37: The MCMC fit with energy range reduced from 6 to 12 MeV
instead of 6 to 20 MeV. The green line is a Gaussian fit of the histogram.
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Figure B.38: Comparing P.. parameters (po and p;) from file to file. Forty
five regular simulated datasets were fitted. The X axis shows the file number.
Red shows results from QSigkx and black shows from MCMC. The peak and
the RMS of the posterior distribution of the MCMC fit were compared to the
result from QSigEx. Eight systematics were not floated.
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Figure B.39: Comparing P,, parameter py and ®B scale from file to file. Forty
five regular simulated datasets were fitted. The X axis shows the file number.
Red shows results from QSigkx and black shows from MCMC. The peak and
the RMS of the posterior distribution of the MCMC fit were compared to the

result from QSigEx. Eight systematics were not floated.
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Figure B.40: Comparing day-night asymmetries from file to file. Forty five
regular simulated datasets were fitted. The X axis shows the file number.
Red shows results from QSigkx and black shows from MCMC. The peak and
the RMS of the posterior distribution of the MCMC fit were compared to the
result from QSigEx. Eight systematics were not floated.
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Figure B.41: Comparing P.. (po and p;) parameters from file to file. Forty five
alternate simulated datasets were fitted. The X axis shows the file number.
The best-fit from QSigEx along with its uncertainty is shown in red and black
shows corresponding result from the MCMC fit. The peak and the RMS of
the posterior distribution of the MCMC fit were compared to the result from

QSigEx. Eight systematics were not floated.
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Figure B.42: Comparing P.. parameter (p;) and ®B scale from file to file.
Forty five alternate simulated datasets were fitted. The X axis shows the file
number. The best-fit from QSigEx along with its uncertainty is shown in red
and black shows corresponding result from MCMC fit. The peak and the RMS
of the posterior distribution of the MCMC fit were compared to the result from
QSigEx. Systematics were not floated.
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Figure B.43: Comparing day-night asymmetries from file to file. Forty five
alternate simulated datasets were fitted. The X axis shows the file number.
The best-fit from QSigEx along with its uncertainty is shown in red and black
shows corresponding result from MCMC fit. The peak and the RMS of the
posterior distribution of the MCMC fit were compared to the result from
QSigEx. Eight systematics were not floated.
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Figure B.44: Comparing P.. parameters (pg and p;) from file to file. Forty five
regular simulated datasets were fitted. The X axis shows the file number. The
best-fit from QSigEx along with its uncertainty is shown in red and black shows
corresponding result from MCMC fit. The peak and the RMS of the posterior
distribution of the MCMC fit were compared to the result from QSigkx. Eight
systematics were floated.
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Figure B.45: Comparing P.. parameter (p;) and ®B scale from file to file.
Forty five regular simulated datasets were fitted. The X axis shows the file
number. The best-fit from QSigEx along with its uncertainty is shown in red
and black shows corresponding result from MCMC fit. The peak and the RMS
of the posterior distribution of the MCMC fit were compared to the result from

QSigEx. Eight systematics were floated.
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Figure B.46: Comparing day-night asymmetries from file to file. Forty five
regular simulated datasets were fitted. The X axis shows the file number. The
best-fit from QSigEx along with its uncertainty is shown in red and black shows
corresponding result from MCMC fit. The peak and the RMS of the posterior
distribution of the MCMC fit were compared to the result from QSigkx. Eight
systematics were floated.
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Figure B.47: Comparing P.. parameters (pg and p;) from file to file. Forty five
alternate simulated datasets were fitted. The X axis shows the file number.
The best-fit from QSigEx along with its uncertainty is shown in red and black
shows corresponding result from MCMC fit. The peak and the RMS of the
posterior distribution of the MCMC fit were compared to the result from
QSigEx. Eight systematics were floated.
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Figure B.48: Comparing P.. parameter (ps) and ®B scale from file to file.
Forty five alternate simulated datasets were fitted. The X axis shows the file
number. The best-fit from QSigEx along with its uncertainty is shown in red
and black shows corresponding result from MCMC fit. The peak and the RMS
of the posterior distribution of the MCMC fit were compared to the result from
QSigkEx. Eight systematics were floated.
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Figure B.49: Comparing day-night asymmetries from file to file. Forty five
alternate simulated datasets were fitted. The X axis shows the file number.
The best-fit from QSigkEx along with its uncertainty is shown in red and black
shows corresponding result from MCMC fit. The peak and the RMS of the
posterior distribution of the MCMC fit were compared to the result from
QSigkEx. Eight systematics were floated.
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Figure B.50: Showing best-fit result in green color for day-night asymmetries
(ag and aq) for each of the 45 fitted regular simulated datasets shown in the
X axis. Systematics were not floated. The blue dotted lines show 4o confi-
dence intervals from the MCMC fit. The best-fit from QSigEx along with its

uncertainty is shown in red.
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Figure B.51: Showing best-fit MCMC result in green for P.. parameters (pg
and py) for each of the 45 fitted regular simulated datasets shown in the X axis.
Systematics were not floated. The blue dotted lines show +o confidence inter-
vals from the MCMC fit. The best-fit from QSigEx along with its uncertainty
is shown in red.
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Figure B.52: Showing best-fit MCMC result (green color) of the ®B Scale and
P.. parameter (py) for each of the 45 fitted regular simulated datasets shown
in the X axis. Systematics were not floated. The blue dotted lines show +o
confidence intervals from the MCMC fit. The best-fit from QSigEx along with
its uncertainty is shown in red.
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Figure B.53: Showing best-fit result in green color for day-night asymmetries
(ag and a;) for each of the 45 fitted alternate simulated datasets shown in
the X axis. Systematics were not floated. The blue dotted lines show +o
confidence intervals from the MCMC fit. The best-fit from QSigEx along with

its uncertainty is shown in red.
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Figure B.54: Showing best-fit MCMC result in green for P.. parameters (po
and p;) for each of the 45 fitted alternate simulated datasets shown in the
X axis. Systematics were not floated. The blue dotted lines show 4o confi-
dence intervals from the MCMC fit. The best-fit from QSigEx along with its
uncertainty is shown in red.
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Figure B.55: Showing best-fit MCMC result (green color) of the ®B Scale and
P.. parameter (ps) for each of the 45 fitted alternate simulated datasets shown
in the X axis. Systematics were not floated. The blue dotted lines show +o
confidence intervals from the MCMC fit. The best-fit from QSigEx along with
its uncertainty is shown in red.
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Figure B.56: Showing best-fit result in green color for day-night asymmetries
(ap and ap) for each of the 45 fitted simulated datasets shown in the X axis.
For this fit systematics were floated. The blue dotted lines show +o confi-
dence intervals from the MCMC fit. The best-fit from QSigkx along with its
uncertainty is shown in red. Tables B.1 (for top plot) and B.2 (for bottom
plot) show the data, in tabular form, used to make these plots.
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Figure B.57: Showing best-fit MCMC result in green for P.. parameters (pg
and p;) for each of the 45 fitted simulated datasets shown in the X axis. For this
fit systematics were floated. The blue dotted lines show +¢ confidence intervals
from the MCMC fit. The best-fit from QSigEx along with its uncertainty is
shown in red. Tables B.3 (for top plot) and B.4 (for bottom plot) show the
data, in tabular form, used to make these plots.
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Figure B.58: Showing best-fit MCMC result (green color) of the ®B Scale and
P.. parameter (ps2) for each of the 45 fitted simulated datasets shown in the
X axis. For this fit systematics were floated. The blue dotted lines show +o
confidence intervals from the MCMC fit. The best-fit from QSigkx along with
its uncertainty is shown in red. Tables B.5 (for top plot) and B.6 (for bottom
plot) show the data, in tabular form, used to make these plots.
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Figure B.59: Showing best-fit result in green color for day-night asymmetries
(ag and a;) for each of the 45 fitted alternate simulated datasets shown in the
X axis. For this fit systematics were floated. The blue dotted lines show +o
confidence intervals from the MCMC fit. The best-fit from QSigkx along with
its uncertainty is shown in red. Tables B.7 (for top plot) and B.8 (for bottom
plot) show the data, in tabular form, used to make these plots.
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Figure B.60: Showing best-fit MCMC result in green for P.. parameters (pg
and p;) for each of the 45 fitted alternate simulated datasets shown in the X
axis. For this fit systematics were floated. The blue dotted lines show +o
confidence intervals from the MCMC fit. The best-fit from QSigkx along with
its uncertainty is shown in red. Tables B.9 (for top plot) and B.10 (for bottom
plot) show the data, in tabular form, used to make these plots.
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Figure B.61: Showing best-fit MCMC result (green color) of the ®B Scale and
P.. parameter (p2) for each of the 45 fitted alternate simulated datasets shown
in the X axis. For this fit systematics were floated. The blue dotted lines show
+o0 confidence intervals from MCMC fit. The best-fit from QSigEx along with
its uncertainty is shown in red. Tables B.11 (for top plot) and B.12 (for bottom
plot) show the data, in tabular form, used to make these plots.
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Tables B.7 to B.12 are for the alternate simulated datasets.
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Dataset QSigEx Mean of +o Mean+RMS of ML

0 -0.04440.092 -0.07440.083 -0.07040.085
1 0.079£0.093 0.038+0.089 0.04940.090
2 -0.029+0.111 0.039+£0.118 -0.006+0.119
3 0.123+0.102 0.075+0.086 0.090+0.086
4 0.138+0.088 0.123+0.084 0.1164+0.086
5 0.007£0.098 0.033£0.116 -0.00740.104
6 -0.15740.094 -0.16140.089 -0.160£0.094
7 0.016£0.110 0.014£0.119 0.01940.117
8 -0.108+0.116 -0.137+0.143 -0.11740.145
9 0.170+£0.118 0.171£0.120 0.16240.119
10 0.045+0.105 -0.008+0.098 -0.00340.099
11 0.247£0.099 0.245+0.089 0.25940.086
12 0.055+0.096 0.030£0.098 0.04240.097
13 0.201£0.088 0.184+0.083 0.18140.085
14 -0.06440.085 -0.07340.077 -0.0754+0.080
15 0.088+0.093 0.101£0.090 0.10040.099
16 -0.016+0.100 -0.02740.094 -0.01440.093
17 0.019£0.099 -0.014£0.100 -0.02240.105
18 -0.053£0.095 -0.069+0.091 -0.06140.088
19 0.027+0.101 0.151+40.119 0.11740.115
20 0.092+0.089 0.069+0.088 0.08540.087
21 -0.02440.095 -0.04440.093 -0.03940.096
22 -0.018+0.099 -0.062+0.110 -0.021+£0.101
23 0.088+0.092 0.087£0.099 0.07440.094
24 -0.050£0.100 -0.052+0.103 -0.039+0.110
25 -0.010£0.115 -0.01740.157 -0.0514+0.151
26 0.192+0.090 0.195+0.081 0.19340.082
27 -0.05240.097 -0.038+0.088 -0.05440.090
28 -0.01940.092 -0.01940.093 -0.02840.094
29 -0.068+0.106 -0.049+0.102 -0.058+0.100
30 0.108+0.100 0.063+0.094 0.086+0.092
31 0.027+0.093 -0.01340.102 0.02340.098
32 0.082+0.096 0.073£0.093 0.07240.093
33 -0.020£0.128 -0.03240.124 -0.03440.128
34 -0.036+0.105 -0.025+0.102 -0.038+0.104
35 0.110+0.094 0.094+0.109 0.0914+0.108
36 -0.04240.088 -0.05440.081 -0.05440.083
37 0.004£0.096 -0.003+0.084 -0.003+0.086
38 0.197+0.095 0.170£0.090 0.17140.094
39 0.136£0.096 0.169+0.080 0.15540.086
40 -0.059+0.103 -0.060+0.085 -0.066+0.086
41 0.007£0.093 0.014+0.099 0.016+0.100
42 0.052+0.094 0.043+0.092 0.04040.091
43 0.082+0.094 0.053£0.085 0.05040.091
44 -0.01740.089 -0.02940.091 -0.0314+0.091

Table B.1: Comparison of the best-fit of day-night asymmetry ay in regular
datasets between QSigkx and MCMC. From MCMC the best-fit is mean of
68% confidence intervals.
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Dataset QSigEx Mean of +o Mean+RMS of ML
0 0.070+£0.083 0.053+0.089 0.066+0.089
1 -0.13440.081 -0.12040.072 -0.11940.073
2 0.153+0.113 0.115+0.120 0.1284+0.122
3 0.063+0.083 0.057+0.074 0.060+0.075
4 0.042+0.082 0.038+0.078 0.036+0.079
5 0.073£0.096 0.062+0.092 0.07340.089
6 0.111+£0.083 0.097+0.080 0.098+40.081
7 0.004+£0.088 -0.01140.095 -0.0134+0.097
8 0.031+£0.128 0.027+0.184 0.04040.171
9 -0.01440.122 -0.026+0.153 -0.02040.145
10 0.092+0.095 0.099+0.087 0.098+0.091
11 -0.02640.077 -0.037£0.076 -0.03740.080
12 -0.09840.096 -0.08440.090 -0.0854+0.091
13 0.035£0.072 0.020£0.069 0.018+0.070
14 -0.02540.067 -0.02240.064 -0.02240.064
15 -0.03940.083 -0.05940.075 -0.049+0.075
16 -0.053+0.104 -0.03940.111 -0.0754+0.117
17 -0.00940.091 -0.00540.091 0.02240.087
18 0.107£0.106 0.089+£0.092 0.089+0.092
19 -0.08340.102 -0.25140.133 -0.19440.137
20 -0.00240.078 -0.01240.071 -0.010+0.074
21 0.074£0.096 0.079£0.094 0.076+0.098
22 0.209+0.095 0.174+0.095 0.19640.098
23 -0.06440.078 -0.07040.075 -0.054+0.075
24 0.097+£0.101 0.077£0.099 0.054+0.105
25 0.049+0.115 0.013+0.153 0.056+0.158
26 0.106£0.094 0.079+0.086 0.08440.092
27 -0.03340.087 -0.035+0.093 -0.030+0.099
28 -0.01840.097 -0.0434+0.104 -0.0444+0.102
29 0.209+£0.131 0.162+0.115 0.1984+0.126
30 0.095+0.091 0.078+0.096 0.089+0.099
31 0.085+0.084 0.075+0.079 0.076+0.080
32 -0.085+0.082 -0.10140.088 -0.08340.085
33 0.016+0.117 0.077+0.157 0.046+0.145
34 0.022+0.088 -0.001£0.083 0.006+0.088
35 -0.10140.079 -0.088+0.073 -0.087+0.074
36 0.031£0.084 0.013+0.086 0.01340.086
37 -0.09440.081 -0.08040.078 -0.088+0.082
38 0.005+0.089 0.003+0.094 -0.002+£0.094
39 -0.00340.088 -0.02240.081 -0.02340.081
40 0.229+0.124 0.209£0.097 0.208+0.104
41 0.131+£0.068 0.098+0.071 0.11540.071
42 0.161£0.089 0.140+£0.083 0.14040.084
43 -0.08240.092 -0.053+0.079 -0.060+0.085
44 0.014+0.087 0.023+0.082 0.02240.085

Table B.2: Comparison

68% confidence intervals.

of the best-fit of day-night asymmetry a; in regular
datasets between QSigkx and MCMC. From MCMC the best-fit is mean of

404




Dataset QSigEx Mean of +o Mean+RMS of ML

0 0.31540.048 0.321+£0.048 0.32740.050
1 0.284+40.046 0.282+0.049 0.296+0.050
2 0.35340.051 0.365+0.055 0.37140.056
3 0.286+0.048 0.294+0.046 0.301£0.048
4 0.306£0.045 0.316£0.048 0.31940.050
5 0.32140.047 0.331+£0.053 0.34040.056
6 0.355+0.055 0.363+0.058 0.36940.059
7 0.29740.048 0.312+0.049 0.31940.053
8 0.377+0.053 0.429+0.073 0.4404£0.075
9 0.329+40.049 0.382+0.063 0.38240.064
10 0.320£0.050 0.324+£0.055 0.338+0.055
11 0.23740.042 0.252+0.041 0.25040.040
12 0.328+0.049 0.335+0.051 0.33540.052
13 0.27740.045 0.280+£0.045 0.28840.047
14 0.313£0.052 0.308+0.054 0.31940.056
15 0.301£0.049 0.299+£0.050 0.305+0.052
16 0.346+0.051 0.364+0.061 0.367+0.065
17 0.32940.051 0.342+0.054 0.34240.056
18 0.358+0.050 0.366+0.052 0.37140.055
19 0.358+0.053 0.410£0.066 0.410£0.072
20 0.298+0.047 0.290£0.045 0.29540.046
21 0.37240.052 0.390£0.058 0.396+0.062
22 0.314+40.045 0.309+0.050 0.32340.053
23 0.292+40.049 0.292+0.047 0.303£0.049
24 0.391£0.054 0.401£0.064 0.409+0.064
25 0.367+0.054 0.460+0.087 0.446+40.083
26 0.327£0.046 0.333£0.054 0.348+0.054
27 0.341+40.053 0.354+0.061 0.361+0.060
28 0.338+0.049 0.355+0.056 0.36940.059
29 0.385+0.051 0.400£0.058 0.39740.058
30 0.29140.044 0.303£0.046 0.31240.047
31 0.31440.048 0.319+£0.050 0.321£0.050
32 0.298+0.049 0.302+0.048 0.31040.048
33 0.348+0.051 0.398+0.065 0.40140.067
34 0.31740.051 0.310£0.058 0.32740.058
35 0.264+0.045 0.261+0.048 0.26740.049
36 0.339£0.051 0.348+0.051 0.346+0.055
37 0.319£0.052 0.332£0.051 0.342+40.057
38 0.285+0.045 0.298+0.049 0.30540.051
39 0.26240.042 0.268+0.041 0.26240.040
40 0.365+0.050 0.395+0.059 0.38540.058
41 0.25240.043 0.259+0.048 0.266+0.049
42 0.307£0.044 0.328+0.047 0.32240.047
43 0.349+40.052 0.365+0.055 0.368+0.059
44 0.32540.048 0.325+0.050 0.33540.051

Table B.3: Comparison of the best-fit of P.. py in regular datasets between
QSigEx and MCMC. From MCMC the best-fit is mean of 68% confidence
intervals.
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Table B.4: Comparison

intervals.

Dataset QSigEx Mean of +o Mean+RMS of ML
0 -0.0434+0.028 -0.0374+0.026 -0.037+0.028
1 -0.00540.027 -0.00540.026 -0.00740.027
2 -0.00140.029 0.014+0.036 0.013+0.039
3 -0.01140.028 0.003+0.027 -0.009+0.028
4 -0.04140.028 -0.04940.029 -0.04440.029
5 -0.02040.028 -0.0054+0.030 -0.013+0.032
6 -0.03240.029 -0.02940.031 -0.031+0.033
7 0.025+0.027 0.030£0.031 0.036+0.037
8 0.028+0.028 0.073£0.076 0.11940.113
9 0.033+0.026 0.066+0.054 0.081+0.064
10 0.00140.025 0.0084+0.030 0.01240.034
11 -0.01340.027 -0.01140.027 -0.010+0.026
12 0.005+0.026 0.003+0.028 0.003+0.028
13 -0.04340.029 -0.03740.030 -0.04240.030
14 -0.0454+0.030 -0.05240.033 -0.0534+0.034
15 -0.01340.026 -0.00440.027 -0.008+0.028
16 0.007+£0.027 0.009+0.038 0.02440.052
17 0.006+£0.027 -0.00140.027 -0.002+0.029
18 -0.02540.028 -0.01240.032 -0.02040.033
19 0.030£0.021 0.091+£0.071 0.12040.087
20 -0.03940.028 -0.03640.029 -0.04240.030
21 -0.00940.030 -0.0034+0.034 -0.0024+0.036
22 -0.04840.027 -0.04240.028 -0.045+0.029
23 -0.01240.026 -0.01540.028 -0.01940.028
24 0.005+0.029 0.018+0.033 0.02040.037
25 0.029+0.026 0.100£0.099 0.14140.113
26 -0.03740.027 -0.01940.028 -0.02240.029
27 0.002+£0.029 0.009+0.034 0.01040.034
28 -0.02240.028 -0.01140.030 -0.01140.032
29 -0.01440.027 -0.02140.027 -0.0184+0.029
30 -0.02140.027 -0.01540.030 -0.0154+0.030
31 -0.03940.029 -0.03540.028 -0.0384+0.029
32 -0.00240.029 -0.0064+0.028 -0.007+0.029
33 0.051+£0.026 0.063£0.036 0.07140.046
34 0.011+£0.027 0.026+0.028 0.0254+0.029
35 -0.00940.025 -0.00840.024 -0.009+0.025
36 -0.04940.029 -0.04940.031 -0.0514+0.032
37 0.009+0.028 0.007£0.027 0.00940.028
38 -0.01840.026 -0.01540.028 -0.0114+0.028
39 -0.025+0.025 -0.02540.027 -0.0234+0.027
40 -0.03540.028 -0.03640.031 -0.033+0.033
41 -0.07940.029 -0.07640.034 -0.0724+0.034
42 -0.05840.028 -0.05640.029 -0.0574+0.030
43 0.013£0.025 0.008+0.029 0.01140.030
44 -0.04040.028 -0.0384+0.029 -0.039+0.030

of the best-fit of P.. p; in regular datasets between
QSigEx and MCMC. From MCMC the best-fit is mean of 68% confidence
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Table B.5: Comparison

intervals.

Dataset QSigEx Mean of +o Mean+RMS of ML
0 0.011+£0.014 0.007£0.016 0.010£0.016
1 0.012+£0.014 0.015+0.014 0.01740.015
2 -0.01440.013 -0.02040.018 -0.02540.021
3 0.012+0.015 0.009+0.015 0.010£0.015
4 0.01040.013 0.01240.014 0.0134+0.015
5 -0.0034+0.012 -0.0034+0.015 -0.005+0.017
6 0.011+£0.016 0.01240.019 0.0134+0.019
7 0.008+£0.014 0.001£0.016 0.001£0.019
8 -0.02540.014 -0.05440.047 -0.087+0.071
9 -0.01940.012 -0.03940.030 -0.05440.041
10 -0.00240.014 -0.00440.018 -0.00340.020
11 0.020+£0.014 0.015£0.013 0.01540.014
12 -0.00540.013 -0.00140.015 -0.0024+0.016
13 0.023+0.014 0.025+0.015 0.025+0.015
14 0.033+0.017 0.039+0.018 0.040+0.019
15 0.00940.015 0.00740.016 0.0134+0.015
16 -0.0114+0.013 -0.0084+0.020 -0.018+0.031
17 -0.00140.015 0.001+£0.017 0.003+0.017
18 -0.01240.012 -0.01040.015 -0.010+0.017
19 -0.01840.013 -0.05140.037 -0.058+0.048
20 0.0154+0.015 0.02240.017 0.02240.017
21 -0.0094+0.013 -0.008+0.016 -0.0114+0.019
22 0.003£0.012 0.006+0.016 0.00340.017
23 0.014+£0.016 0.019+0.015 0.01940.016
24 -0.01540.014 -0.01340.018 -0.017£0.020
25 -0.01940.015 -0.06040.063 -0.094+0.073
26 -0.003£0.011 -0.0084+0.013 -0.008+0.015
27 0.004+£0.015 -0.00140.018 -0.005+0.019
28 -0.00540.013 -0.00940.017 -0.0114+0.018
29 -0.02140.012 -0.02240.017 -0.02740.020
30 0.003+0.012 -0.00040.013 -0.000+0.014
31 0.00940.013 0.01240.014 0.01040.015
32 0.013£0.015 0.009+0.016 0.00940.016
33 -0.02040.014 -0.0384+0.024 -0.048+0.034
34 0.006+0.015 0.005+0.018 0.003+0.019
35 0.017+0.014 0.020£0.015 0.02140.016
36 0.009+0.015 0.010+£0.018 0.00940.019
37 0.013£0.016 0.005+0.016 0.007£0.016
38 0.004+£0.013 0.001+£0.015 0.000+0.016
39 0.007£0.012 0.012+£0.013 0.01240.013
40 -0.01040.012 -0.01740.018 -0.014+£0.018
41 0.036+0.014 0.033+0.017 0.035+0.018
42 0.008+0.011 0.0084+0.013 0.00940.013
43 -0.0054+0.014 -0.0014+0.017 -0.006+0.019
44 0.004+£0.013 0.007£0.015 0.00740.016

of the best-fit of P.. po in regular datasets between
QSigEx and MCMC. From MCMC the best-fit is mean of 68% confidence
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Dataset QSigEx Mean of +o Mean+RMS of ML

0 1.01940.094 0.992+0.094 1.00440.093
1 1.01240.094 0.986+0.095 0.984+0.094
2 0.986+0.093 0.969+0.090 0.966+0.091
3 0.95140.093 0.939+0.090 0.93440.090
4 1.01940.094 0.973£0.090 0.98340.091
5 1.00040.093 0.955+0.099 0.983£0.095
6 0.979£0.093 0.938+0.095 0.94340.096
7 1.00740.094 0.970£0.089 0.980+0.089
8 1.0084+0.093 1.004+0.090 1.00340.089
9 1.00740.094 0.980+£0.090 0.985+0.093
10 1.01340.094 0.987+0.094 0.98940.094
11 0.97540.093 0.924+0.093 0.95140.088
12 1.00940.093 0.979£0.091 0.987+0.091
13 0.995+0.093 0.953+0.095 0.965+0.094
14 0.986+0.093 0.952+0.093 0.956+0.093
15 0.992+40.093 0.955+0.095 0.96640.093
16 1.00740.094 0.961+0.101 0.98740.098
17 1.00340.094 0.981+£0.097 0.980£0.097
18 0.99240.093 0.992+0.095 0.97740.094
19 1.00540.093 0.998+0.093 0.996+0.097
20 1.01540.094 0.983+0.088 0.99040.087
21 0.986+0.093 0.966+0.094 0.958+0.095
22 1.02040.093 1.001+0.096 1.00140.095
23 1.03140.094 0.992+0.089 0.988+0.091
24 0.978+40.093 0.936+0.097 0.9574+0.096
25 1.00740.094 0.997+0.091 1.00340.091
26 0.995+0.093 0.940£0.099 0.96640.096
27 0.997+0.094 1.006+0.099 0.985+0.096
28 0.996+0.093 0.969+0.088 0.966+0.089
29 1.03240.094 0.993+0.086 1.01240.085
30 1.00440.093 0.964+0.096 0.97740.096
31 0.989+0.093 0.941+0.090 0.96040.092
32 0.998+0.094 0.951£0.090 0.97140.089
33 1.02340.094 0.970£0.102 0.989+0.097
34 0.995+0.094 0.986+0.093 0.98440.095
35 1.01840.094 1.0144+0.096 1.00540.095
36 1.01040.093 0.992+0.089 0.99040.092
37 0.985+0.093 0.980+£0.093 0.963£0.095
38 1.00140.093 1.000+0.097 0.988+0.097
39 1.00840.093 0.986+0.085 0.983£0.087
40 1.0064+0.093 0.973+0.092 0.98040.091
41 0.985+0.093 0.983+0.094 0.96140.094
42 1.00340.093 0.965+0.087 0.96840.089
43 1.02040.094 0.978+0.097 0.99440.096
44 1.02240.093 0.982+0.094 1.00040.093

Table B.6: Comparison of the best-fit of ®B Scale in regular datasets between
QSigEx and MCMC. From MCMC the best-fit is mean of 68% confidence
intervals.
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Dataset QSigEx Mean of +o Mean+RMS of ML
0 -0.043£0.095 -0.087+0.094 -0.07240.094
1 0.126+£0.095 0.127+£0.097 0.12040.096
2 -0.134£0.093 -0.138+0.101 -0.1464+0.099
3 -0.04740.098 -0.08440.099 -0.0814+0.098
4 0.044+0.096 0.032+0.104 0.03940.105
5 0.030£0.085 0.014£0.082 0.01440.080
6 -0.08840.111 -0.11540.117 -0.130£0.119
7 0.143+0.096 0.11240.094 0.11640.094
8 -0.11140.092 -0.11240.094 -0.106+0.095
9 0.100+£0.113 0.097+0.111 0.096+0.113
10 0.028+0.094 0.031£0.097 0.028+0.098
11 0.024+£0.110 0.009+0.102 0.001£0.103
12 0.048+0.096 0.017£0.103 0.0254+0.102
13 -0.098+0.088 -0.11240.085 -0.10140.086
14 0.120£0.092 0.099+0.090 0.10740.090
15 0.017£0.099 0.009+0.098 0.01140.098
16 0.040+£0.093 0.018+0.089 0.02240.091
17 0.212+40.102 0.194+0.104 0.1954+0.105
18 0.007£0.112 0.012+0.101 0.008+0.103
19 -0.06740.093 -0.08640.089 -0.0874+0.090
20 -0.05240.100 -0.063+0.103 -0.0544+0.104
21 0.136£0.097 0.103£0.101 0.12340.101
22 0.159+0.093 0.136+0.093 0.14140.093
23 0.170£0.090 0.163+0.089 0.16240.089
24 0.037£0.103 0.033£0.099 0.028+0.099
25 0.150+0.095 0.137+0.094 0.13140.096
26 -0.089+0.101 -0.097+0.106 -0.11040.109
27 0.019+0.094 0.001£0.100 -0.00740.103
28 0.098+0.108 0.103+0.137 0.09140.146
29 -0.034£0.099 -0.028+0.110 -0.038+0.108
30 0.055+0.097 0.017+40.091 0.03240.093
31 -0.19440.097 -0.2284+0.115 -0.235+0.118
32 0.003+0.097 -0.028+0.097 -0.02040.098
33 0.015+0.092 0.007£0.096 0.00140.095
34 0.096+0.101 0.084+0.098 0.087+0.099
35 -0.06740.097 -0.0814+0.103 -0.07740.101
36 0.142+40.008 0.033+0.097 0.03240.101
37 -0.070+0.089 -0.06240.087 -0.07740.088
38 -0.04940.094 -0.06640.090 -0.056+0.092
39 -0.02740.091 -0.05140.093 -0.040+0.094
40 -0.008+0.093 -0.025+0.092 -0.02740.093
41 -0.00740.102 -0.01940.104 -0.0154+0.103
42 -0.106+0.095 -0.11440.099 -0.1154+0.100
43 -0.02040.105 -0.0284+0.108 -0.02140.111
44 0.023+0.111 0.025+0.104 0.0334+0.102

Table B.7: Comparison of the best-fit of day-night asymmetry ag in alternative
datasets between QSigkx and MCMC. From MCMC the best-fit is mean of

68% confidence intervals.
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Dataset QSigEx Mean of +o Mean+RMS of ML
0 0.021+£0.070 0.031£0.069 0.02940.071
1 -0.01440.083 -0.02540.080 -0.0254+0.083
2 0.072£0.094 0.062+0.086 0.069+0.089
3 0.026+0.124 0.062+0.137 0.09140.142
4 -0.055+0.112 -0.068+0.118 -0.0594+0.120
5 0.012+£0.080 0.025+0.081 0.02140.084
6 0.183+0.105 0.166+0.109 0.19940.123
7 -0.05940.077 -0.04940.071 -0.054+0.073
8 0.047£0.079 0.038+0.076 0.037£0.077
9 -0.03440.102 -0.038+0.099 -0.0474+0.102
10 -0.01240.096 -0.033+0.098 -0.0454+0.100
11 0.031+£0.105 0.023£0.110 0.040+0.115
12 0.066+0.110 0.087+0.122 0.086+0.131
13 -0.063£0.072 -0.066+0.067 -0.065+0.068
14 -0.00040.069 0.002+0.071 -0.000+0.070
15 0.034+£0.085 0.032£0.083 0.03140.083
16 -0.05240.078 -0.04440.078 -0.04740.080
17 -0.01440.098 -0.00640.095 -0.004+0.097
18 0.092+£0.109 0.073£0.101 0.071£0.104
19 0.153+0.090 0.129+40.082 0.13940.085
20 0.095+0.094 0.074+0.088 0.08340.093
21 -0.035+0.074 -0.02640.077 -0.03440.078
22 -0.13140.064 -0.12540.063 -0.124+0.063
23 -0.03940.080 -0.04940.078 -0.048+0.082
24 -0.058+0.094 -0.05440.092 -0.065+0.093
25 -0.10540.084 -0.10440.083 -0.10040.088
26 -0.005+0.111 0.013£0.130 0.00740.130
27 0.095+0.106 0.114+£0.111 0.116+0.116
28 0.063+0.130 0.007+0.203 0.0534+0.202
29 -0.12040.115 -0.1164+0.121 -0.1114+0.117
30 -0.14040.080 -0.12140.073 -0.1304+0.079
31 0.132+£0.102 0.141+£0.163 0.22040.194
32 0.124+0.089 0.106+0.083 0.11240.085
33 -0.00040.104 -0.0084+0.113 -0.001+0.117
34 -0.104£0.090 -0.103£0.094 -0.10040.095
35 -0.08240.094 -0.08840.101 -0.085+0.106
36 -0.32140.014 -0.16340.093 -0.1614+0.093
37 0.002+£0.091 0.007£0.092 0.00740.093
38 0.067+0.095 0.055+0.094 0.05740.096
39 0.015+0.087 0.010+£0.082 0.01040.085
40 0.009+£0.087 -0.002+0.084 0.002+0.086
41 0.057+0.103 0.061£0.095 0.058+0.095
42 0.112+0.109 0.109+0.127 0.12240.127
43 -0.04040.102 -0.05240.103 -0.053+0.107
44 -0.0484+0.126 -0.0564+0.103 -0.054+0.105

Table B.8: Comparison of the best-fit of day-night asymmetry a, in alternative
datasets between QSigkx and MCMC. From MCMC the best-fit is mean of

68% confidence intervals.
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Dataset QSigEx Mean of +o Mean+RMS of ML

0 0.239+40.043 0.240+0.044 0.24540.046
1 0.268+0.042 0.266+0.044 0.27740.045
2 0.371£0.052 0.364+0.058 0.38040.059
3 0.420£0.057 0.457£0.075 0.47340.081
4 0.406£0.057 0.427+£0.070 0.435+0.073
5 0.32440.048 0.349+0.056 0.35040.056
6 0.297+40.046 0.310+0.051 0.31340.052
7 0.266+0.045 0.271£0.048 0.27940.049
8 0.31940.049 0.319+£0.051 0.32440.051
9 0.32440.050 0.332£0.054 0.343£0.057
10 0.328+0.048 0.336£0.053 0.346+0.056
11 0.34140.051 0.353+0.053 0.36440.056
12 0.35240.049 0.369+0.060 0.38540.066
13 0.31340.051 0.313£0.053 0.32240.055
14 0.231£0.041 0.230£0.041 0.23540.042
15 0.307£0.049 0.316£0.051 0.32140.052
16 0.295+40.049 0.308+0.049 0.31340.051
17 0.302£0.050 0.313+0.055 0.32340.059
18 0.337£0.049 0.342+0.054 0.35340.057
19 0.337£0.049 0.334£0.050 0.34440.051
20 0.351£0.050 0.347+£0.055 0.357+0.056
21 0.249+40.044 0.253+0.047 0.259+0.048
22 0.220+0.044 0.228+0.046 0.23440.047
23 0.286+0.045 0.290+0.047 0.29440.049
24 0.331£0.051 0.343£0.053 0.348+0.055
25 0.281+0.046 0.288+0.046 0.29340.048
26 0.375+0.053 0.411+£0.070 0.430£0.078
27 0.360+0.050 0.375+0.062 0.390+0.063
28 0.35740.050 0.447+0.081 0.45940.082
29 0.379£0.053 0.38440.061 0.39540.062
30 0.286+0.050 0.293£0.053 0.29940.055
31 0.39240.052 0.415+0.080 0.445+0.097
32 0.26440.041 0.260+£0.042 0.26640.043
33 0.383+0.054 0.405+0.065 0.416+0.069
34 0.30140.047 0.306+0.050 0.31440.052
35 0.338+0.052 0.349+0.056 0.360+0.059
36 0.318+0.007 0.318+0.050 0.327£0.054
37 0.361£0.053 0.371£0.058 0.381£0.060
38 0.360+0.052 0.371+£0.056 0.380+0.058
39 0.333£0.049 0.330£0.052 0.338+0.053
40 0.330£0.050 0.340£0.051 0.34740.053
41 0.35540.052 0.347+0.054 0.360+0.058
42 0.368+0.050 0.394+0.059 0.406+0.062
43 0.368+0.054 0.376+0.064 0.391+0.064
44 0.378+0.053 0.378+0.063 0.389+0.067

Table B.9: Comparison of the best-fit of P.. pg in alternative datasets between
QSigEx and MCMC. From MCMC the best-fit is mean of 68% confidence
intervals.
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Dataset QSigEx Mean of +o Mean+RMS of ML

0 -0.04840.028 -0.04940.029 -0.0534+0.030
1 -0.02140.028 -0.0134+0.028 -0.01440.028
2 -0.01740.028 -0.010+0.029 -0.01340.031
3 0.005+0.031 0.004£0.039 0.01240.045
4 0.016£0.027 0.028+0.040 0.04240.050
5 -0.05340.028 -0.0514+0.028 -0.05240.029
6 -0.02240.025 -0.010+0.028 -0.009+0.030
7 -0.00140.027 -0.005+0.028 -0.00740.028
8 -0.04440.031 -0.046+0.030 -0.049+0.032
9 0.037£0.025 0.040£0.032 0.048+0.039
10 -0.015+0.027 -0.004£0.032 -0.003+0.035
11 0.018+0.027 0.020+0.029 0.02440.031
12 -0.01940.029 -0.0154+0.033 -0.020+0.035
13 -0.027£0.030 -0.023+0.030 -0.02740.030
14 -0.053+0.028 -0.054+0.029 -0.05540.030
15 -0.021£0.030 -0.025+0.032 -0.02940.032
16 -0.01940.028 -0.01840.031 -0.01940.031
17 0.005+0.025 0.009+0.029 0.01140.036
18 0.016+0.026 0.017£0.029 0.01740.033
19 -0.053£0.029 -0.048+0.030 -0.05240.031
20 -0.003£0.028 0.003£0.031 0.002+0.032
21 -0.01040.028 -0.01040.029 -0.01240.029
22 -0.00240.028 -0.003+0.028 -0.00440.028
23 -0.03040.028 -0.031+0.029 -0.03240.030
24 0.019+0.028 0.023£0.029 0.02240.031
25 -0.004£0.026 -0.003+0.027 -0.006+0.028
26 0.007£0.029 0.021£0.043 0.047+0.095
27 -0.02340.029 -0.01740.030 -0.0154+0.033
28 0.013+0.025 0.128+0.122 0.18940.151
29 0.013£0.029 0.022+0.035 0.02140.035
30 0.013£0.025 0.008+0.027 0.01140.032
31 -0.018+0.030 -0.017+0.036 -0.008+0.047
32 -0.05840.026 -0.05640.028 -0.056+0.028
33 -0.007£0.030 0.002+0.034 0.005+0.036
34 0.01740.026 0.017£0.027 0.018+0.028
35 -0.006+0.028 0.002+0.031 -0.000+0.033
36 0.085+0.004 0.030£0.028 0.030£0.029
37 -0.034£0.030 -0.029+0.031 -0.030+0.032
38 -0.02140.029 -0.01340.031 -0.01440.032
39 -0.02640.028 -0.0214+0.029 -0.02440.030
40 -0.027£0.029 -0.01940.029 -0.023£0.029
41 -0.001£0.029 -0.001£0.031 -0.00240.032
42 -0.030+0.028 -0.024£0.033 -0.018+0.036
43 0.031+0.026 0.046+0.036 0.05040.040
44 0.032+0.028 0.038+0.031 0.0454+0.040

Table B.10: Comparison of the best-fit of P.. p; in alternative datasets be-
tween QSigEx and MCMC. From MCMC the best-fit is mean of 68% confi-
dence intervals.
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Table B.11:

dence intervals.

Dataset QSigEx Mean of +o Mean+RMS of ML
0 0.032+0.015 0.035+0.016 0.037£0.016
1 0.011+£0.013 0.009+£0.013 0.010£0.014
2 -0.00640.014 0.001+£0.016 -0.000+0.017
3 -0.02740.014 -0.04140.027 -0.055+0.043
4 -0.024+0.014 -0.02840.025 -0.040+0.036
5 0.012+0.014 0.009+£0.015 0.00940.016
6 0.001+£0.014 -0.00340.017 -0.006+0.020
7 0.017£0.014 0.022+0.016 0.02340.016
8 0.019+0.015 0.017£0.016 0.01940.017
9 -0.00940.013 -0.0134+0.018 -0.0174+0.022
10 -0.00440.013 -0.00440.016 -0.006+0.020
11 -0.01140.014 -0.0184+0.017 -0.0214+0.019
12 -0.01440.012 -0.0164+0.019 -0.02240.025
13 0.025+0.016 0.026+0.018 0.02740.018
14 0.032+0.014 0.031+£0.015 0.035+0.016
15 0.01040.015 0.01240.015 0.01240.015
16 0.018+0.015 0.015+0.016 0.01540.016
17 -0.00440.014 -0.00440.018 -0.008+0.024
18 -0.01540.013 -0.01440.017 -0.0154+0.019
19 0.005+0.013 0.010£0.015 0.00940.015
20 -0.00540.013 -0.00340.016 -0.00440.017
21 0.025+0.015 0.023£0.015 0.02540.016
22 0.041+£0.017 0.036+£0.017 0.03940.017
23 0.014+£0.013 0.012+0.014 0.013+0.015
24 -0.00240.014 -0.00440.016 -0.0054+0.017
25 0.009+0.014 0.008+0.015 0.008+0.015
26 -0.01740.014 0.008+0.015 -0.0514+0.068
27 -0.0124+0.012 -0.0164+0.018 -0.020+0.020
28 -0.0254+0.012 -0.11640.090 -0.1574+0.103
29 -0.01940.014 -0.0174+0.018 -0.02040.020
30 0.017+£0.015 0.019+0.017 0.01940.020
31 -0.01340.013 -0.01940.028 -0.04340.058
32 0.01240.012 0.014+40.013 0.01540.014
33 -0.01440.014 -0.01940.019 -0.0234+0.024
34 0.002+£0.013 0.001+£0.015 -0.0014+0.016
35 -0.00240.015 -0.00640.017 -0.009+0.019
36 -0.02240.003 -0.00240.015 -0.00240.016
37 -0.0014+0.015 -0.0014+0.017 -0.003+0.019
38 -0.00440.014 -0.00540.017 -0.006+0.018
39 0.004+£0.014 0.005+0.015 0.006+0.016
40 0.006+0.014 0.003+0.015 0.003+0.016
41 -0.01040.014 -0.006+0.016 -0.008+0.017
42 -0.01240.012 -0.01940.019 -0.0254+0.024
43 -0.01240.014 -0.016+0.021 -0.0214+0.024
44 -0.02440.013 -0.0254+0.018 -0.029+0.025
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Dataset QSigEx Mean of +o Mean+RMS of ML

0 0.99240.093 0.975+0.093 0.97740.094
1 1.03140.094 1.003+0.094 1.01740.094
2 1.00340.093 0.977+0.093 0.97540.092
3 1.00440.093 0.995+0.093 0.988+0.095
4 0.989+0.093 0.973£0.094 0.97340.094
5 1.01040.093 0.986+0.095 0.99140.094
6 1.03040.094 1.0224+0.095 1.02440.096
7 1.00440.094 0.977£0.091 0.979£0.092
8 1.01940.094 0.993+0.096 0.990+0.095
9 1.01440.094 0.996+0.094 0.996+0.093
10 1.00640.093 0.980£0.096 0.98340.098
11 0.987+0.093 0.972£0.094 0.97540.094
12 0.986+0.093 0.959+£0.095 0.958+0.094
13 0.994+40.093 0.966+0.092 0.966+0.094
14 1.00240.093 0.985+0.094 0.98440.094
15 0.95740.093 0.911+£0.092 0.91840.092
16 0.966+0.093 0.959+0.094 0.94740.091
17 0.992+40.093 0.962+0.092 0.963+0.094
18 1.01440.094 0.988+0.095 0.98740.095
19 1.00340.093 0.985+0.093 0.98240.094
20 1.00540.093 0.977£0.094 0.98640.095
21 0.99740.093 0.969+0.093 0.976+0.092
22 0.991£0.094 0.969+0.093 0.97340.093
23 1.00040.093 0.977£0.096 0.980+0.098
24 0.993+0.093 0.966+0.091 0.965+0.094
25 1.01840.094 1.00940.094 1.00440.093
26 0.994+40.093 0.976+£0.093 0.98240.095
27 0.999+0.093 0.966+£0.099 0.97540.098
28 1.02340.093 1.030+0.088 1.03340.090
29 0.999+40.093 0.969+0.092 0.97540.092
30 1.00140.094 0.970£0.090 0.96940.090
31 1.02240.093 1.0014+0.093 1.006+0.093
32 1.0284-0.093 1.006+0.095 1.0154-0.094
33 0.992+40.093 0.977£0.098 0.967+0.097
34 1.03240.094 1.020+0.096 1.01340.096
35 0.987+0.093 0.966+0.095 0.96740.096
36 1.1044-0.002 0.954+0.092 0.96340.094
37 0.995+0.093 0.966+0.091 0.97140.093
38 0.99540.093 0.966+£0.092 0.970£0.093
39 1.01440.094 0.993+0.094 0.993+0.094
40 0.984+40.093 0.959+0.090 0.963+0.092
41 0.976+0.093 0.951+0.093 0.959+40.093
42 1.01640.093 0.988+0.091 0.99240.092
43 1.00940.094 0.980+£0.096 0.989+40.096
44 1.00240.093 0.976£0.096 0.98240.097

Table B.12: Comparison of the best-fit of B Scale in alternative datasets
between QSigEx and MCMC. From MCMC the best-fit is mean of 68% con-
fidence intervals.
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Appendix C

Tables for Energy Spectra

Energy spectra was binned in 18-binned histograms. Following tables C.1 to
C.3 list number of events and the uncertainties in the number of events for
each energy bin for charged current interactions, elastic scattering interactions
on electrons initiated by v, and elastic scattering interactions initiated by v,
and v,. Each interaction is split into day and night event. Tables C.4 to C.9
give bin-by-bin correlation matrix for each interactions.
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Table C.1: Day and night spectra for charged current interactions.
The number of day events were converted in to number of interac-
tions/deuterium /sec/0.5 MeV by dividing them with 6.023 x 103! x 176.59 x
3600.0 x 24.0 number and the night events by dividing them by 6.023 x 103! x

208.85 x 3600.0 x 24.0 number.

Electron Recoil | Number of day | Number of night

Energy (MeV) Events Events
6.25 128.1614+5.77613 164.446+6.38619
6.75 130.157+4.91089 163.539+5.61196
7.25 126.292+4.34212 157.663+5.06666
7.75 118.7184+3.72874 148.70244.52998
8.25 106.837+3.40636 134.0743.97687
8.75 94.6407+3.07815 117.276+3.50696
9.25 78.9907£2.61173 98.304643.03786
9.75 64.4415+2.30342 80.2439+2.69206
10.25 50.6013+2.02562 62.7512+2.36483
10.75 38.052141.71383 47.4103+1.95994
11.25 27.847+1.40866 34.1766+1.59022
11.75 19.41814+1.12626 23.9929+1.28792
12.25 12.89894-0.956992 15.8856+1.08833
12.75 8.30016£0.629247 | 10.321240.738847
13.25 5.1404+0.417694 | 6.27387+0.555073
13.75 3.12103£0.287746 | 3.88789+0.34504
14.25 1.6872740.182381 | 2.2298140.249763
14.75 0.97383940.112694 | 1.1812540.149017

416



Table C.2: Day and night spectra for elastic scattering (v.) interac-
tions. The number of day events were converted in to number of interac-
tions/electron/sec/0.5 MeV by dividing them with 3.0115 x 1032 x 176.59 x
3600 x 24.0 number and night events by 3.0115 x32? x 208.85 x 3600 x 24 number.

Electron Recoil | Number of day Number of night

Energy (MeV) Events Events
6.25 15.515640.863691 19.35541.01362
6.75 13.687240.657437 17.168940.738539
7.25 11.843840.495311 14.815840.551523
7.75 10.172940.379486 12.592340.422607
8.25 8.5329+0.293008 10.4636+0.327038
8.75 7.10183+0.249055 8.538140.299595
9.25 5.66037+0.210368 6.93217+0.236234
9.75 4.5392340.166478 5.46893+0.19781
10.25 3.54031+0.147186 4.1961140.176436
10.75 2.67704+0.118661 3.14829+0.138553
11.25 2.02177+0.103066 2.311940.11574
11.75 1.4582240.0850116 1.6817240.096359
12.25 1.0326340.0633336 | 1.13624+0.0782564
12.75 0.71127540.0520842 | 0.780388+0.0575016
13.25 0.47728440.0397303 | 0.514336+£0.0472819
13.75 0.31725140.0321526 | 0.336964+0.0291887
14.25 0.19721340.020552 | 0.20908140.0257504
14.75 0.11616740.0139827 | 0.124081+£0.0138656
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Table C.3:
tions.

Day and night spectra for Elastic scattering (v,,v,) interac-
The number of day events were converted in to number of interac-
tions/electron/sec/0.5 MeV by dividing them with 3.0115 x 1032 x 176.59 x
3600 x 24.0 number and night events by 3.0115 x32? x 208.85 x 3600 x 24 number.

Electron Recoil
Energy (MeV)

Number of day

Events

Number of night

Events

6.25
6.75
7.25
7.75
8.25
8.75
9.25
9.75
10.25
10.75
11.25
11.75
12.25
12.75
13.25
13.75
14.25
14.75

0.41638+0.41152
4.78631+0.342195
3.99489+0.284223
3.36413+£0.240244
2.79096£0.199861
2.26029£0.170749
1.83393£0.124608
1.47884£0.107
1.10656£0.0852571
0.846701£0.066899
0.63421240.0534467
0.469661+0.0430702
0.3192+0.0333371
0.217508+0.0237888
0.151988=+0.017512
0.0973477£0.0128699
0.0571667£0.00864015
0.038622+0.00615517

6.53605£0.483418
5.64621+0.409934
4.84724+0.346718
3.9754+0.275416
3.312640.226457
2.71455+0.187946
2.16615+0.152532
1.69401£0.1225
1.26621£0.0985134
0.974217£0.075257
0.73376240.0594344
0.53046340.047662
0.35905940.0355644
0.25448640.0266218
0.167864+0.0207501
0.109937+0.0131184
0.0647462+0.00903563
0.0424741+0.0066879
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