
University of Alberta

A Combined Three-Phase Signal Extraction of the
Sudbury Neutrino Observatory Data Using Markov

Chain Monte Carlo Technique

by

Shahnoor Habib

A thesis submitted to the Faculty of Graduate Studies and Research in partial fulfillment of the
requirements for the degree of

Doctor of Philosophy

Department of Physics

c©Shahnoor Habib
Fall 2011

Edmonton, Alberta

Permission is hereby granted to the University of Alberta Libraries to reproduce single copies of this thesis
and to lend or sell such copies for private, scholarly or scientific research purposes only. Where the thesis is
converted to, or otherwise made available in digital form, the University of Alberta will advise potential

users of the thesis of these terms.

The author reserves all other publication and other rights in association with the copyright in the thesis
and, except as herein before provided, neither the thesis nor any substantial portion thereof may be printed
or otherwise reproduced in any material form whatsoever without the author’s prior written permission.



Abstract

Neutrino physics has entered an era of precision, after

proving that the Standard Solar Model is a viable the-

ory and going beyond the current Standard Model of par-

ticle physics by proving that neutrinos possess nonzero

masses. The Sudbury Neutrino Observatory (SNO) ex-

periment, along with other experiments, has restricted

neutrino mixing angle (θ12) and the mass square differ-

ence (∆m2
21) to lie within the large mixing solution area.

SNO, located 2 km underground in Sudbury, Canada,

was an ultraclean heavy-water (D2O) imaging detector

for observing neutrinos produced by fusion reactions in

the Sun. Neutrino interactions with heavy water resulted

in flashes of light called C̆erenkov radiation which was

detected by an array of photomultiplier tubes. SNO took

data from November 1999 to November 2006, totalling

1082 days of data taking.

This work describes an improved measurement of the

mixing parameters from a combined fit of all the data.

For the signal extraction fit on the data consisting of 4



observable of an event – radial position, recoil electron

energy, direction relative to the Sun and event isotropy –

Markov Chain Monte Carlo (MCMC) method based on

Metropolis algorithm was employed. The nuisance pa-

rameters (systematics), weighted by external constraints,

were allowed to vary in the fit. The goal of the thesis was

to extract the survival probabilities of electron neutrinos

and determine the total flux of active-flavour neutrinos

from 8B decay in the Sun measured through the neutral

current interactions of neutrinos on deuterium. The 8B

flux from the fit is (5.24 ± 0.02) × 106 cm−2 s−1; uncer-

tainty from statistics and systematics is 3.56%. Along

with 8B flux, the fit extracted energy spectra of charged

current interactions of neutrinos on deuterium and elas-

tic scattering interactions of neutrinos on electrons. The

fit described the energy-dependent day survival probabil-

ity of solar neutrinos as a quadratic equation and asym-

metry on the day survival probability as a linear equa-

tion. Four polynomial coefficients of the survival prob-

ability were extracted from the fit: constant coefficient



as 0.3206± 0.0197, linear coefficient as 0.005± 0.008 and

quadratic coefficient as −0.0014± 0.0033. There are two

coefficients on the day-night asymmetry: constant co-

efficient as 0.0496 ± 0.0347 and the linear coefficient as

−0.018 ± 0.028. The day-night asymmetry (0.0496) ob-

served is 1.4σ away from zero. Using these findings, the

oscillation space in terms of ∆m2
21 and θ12 will be further

constrained. Compared to the previous published SNO

results, the uncertainty on 8B went down from 3.83% to

3.56% and average 8B νe survival probability (p0) went

down from 6.57% to 6.14%. If the data were analysed

with the same assumptions, the decrease in uncertainties

would have been approximately twice as big; however,

more conservative systematic uncertainties were assigned

in some cases.
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Chapter 1

Introduction

1.1 Goal of the thesis

The goal of the thesis was to produce the most complete 8B analysis of the solar

neutrino data from Sudbury Neutrino Observatory (SNO). Signal extraction

was carried out by Markov Chain Monte Carlo method based on Metropolis

algorithm. The fit parameters consisted of 8B flux from the measurement of

the neutral current interactions in SNO and a set of polynomial parameters

to describe the day time neutrino survival probability and a set of polynomial

parameters to assign the asymmetry in the day and night neutrino survival

probability.

1.2 Synopsis of Thesis

The first chapter is an introduction to solar neutrinos, Standard Solar Model,

and solar neutrino experiments. The next chapter describes relevant features

of the Sudbury Neutrino Observatory while the third chapter briefly describes

the theory of neutrino oscillations. The third chapter also illustrates the im-

portance of neutrino as a probe in the understanding of the mysteries of the

Universe. The fourth chapter goes over the methodology of the signal extrac-

tion, describes the number of signals and backgrounds, the observable of the

data, unique features of probability density functions that are used to distin-
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guish various signals and backgrounds, the cuts applied on the data and the

constraints applied on the fit. The fourth chapter also outlines the systematic

uncertainties and the methods used for evaluating the goodness of fit. The

Markov Chain Monte Carlo method exploited to extract the fit parameters of

the models (Standard Solar Model and Neutrino Oscillation Model), is intro-

duced in the fifth chapter. The sixth chapter focuses on a method to implement

a constraint on the number of events when the width of the constraint is com-

parable to the constraint itself such that the Gaussian function traverses the

negative region (non-physical). The seventh chapter goes over various cross-

checks performed to make sure that the code is consistent. The eighth chapter

presents the findings of running the MCMC code on a fit consisting of 4 sig-

nals and 1 background. This fit also floats various systematic uncertainties.

The ninth chapter describes the result of the fit when a constraint from Pulse

Shape Analysis (PSA) of the data from neutral current detectors is included

in the fit. Five additional backgrounds were included in the fit. For this fit,

nuisance parameters1 were fixed. The tenth chapter goes over the result of an

ensemble test when all the backgrounds are included. The next chapter has

the results of ensemble tests for a fit on the third of the simulated datasets.

After presenting the results, most of the chapter was devoted outlining the in-

vestigation carried out to discover the cause of bias in one of the main fitting

parameter. Chapters 12 and 13 present the result of the fit on the third of the

real data and the full real data respectively. The last chapter concludes the

thesis.
1In a fit, there are parameters of interest and there are other (nuisance) parameters. The

nuisance parameters, though not of interest, must be accounted for because of their effect
on the parameters of interest. Examples are given in section 4.11.
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1.3 Neutrinos in the Standard Model (SM)

1.3.1 The Standard Model in a Nut Shell

A scientific model is a description of nature, created by the human mind,

to explain what happens in nature. For example, the matter we see around

us is composed of elementary particles2. The Standard Model is a theory

that describes properties of elementary particles and their interactions among

themselves. Out of the four fundamental interactions – gravitation, electro-

magnetism, strong interaction and weak interaction – only gravity is not in-

cluded in the SM. According to SM, there are 12 fundamental particles of spin
1
2
~, known as fermions, which are classified according to their charges. The list

includes 3 types (flavours) of charged leptons (electron, muon and tau), each

with a corresponding neutrino, and six flavours of quarks. The six flavours

of quarks are named: up (u), down (d), charm (c), strange (s), top (t) and

bottom (b). Each particle has an associated antiparticle, with the same mass

but opposite charge. For example, the antiparticle of the electron (e−) is the

positron (e+). The SM particles are shown in figure 1.1. Each column of

fermions is called a generation or a family. Electron and electron neutrino

are part of one generation; tau and tau neutrino forms another generation

and so on. In the quark sector, up and down form one generation and so on.

The basic components of ordinary matter are electrons, protons and neutrons

of which the later two are combinations of two types of quarks - uud and

udd respectively. Protons and neutrons are called baryons and electrons and

neutrinos are called leptons.

In the SM, neutrinos are electrically neutral fermions which interact with

other particles via weak interactions only. Neutrinos come in three flavours

[2]; each flavour is associated with a charged lepton: electrons with electron
2An elementary particle is not composed of any other particles, that is, it does not have

an internal structure.
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Figure 1.1: Fundamental fermions and bosons in the Standard Model. Figure
from [1].

neutrinos (e, νe), muons with muon neutrinos (µ, νµ) and taus with tau neu-

trinos (τ , ντ ). Each neutrino ν has an antineutrino which is represented by

ν̄. For example, the antiparticle of νe is ν̄e. Neutrinos are created in beta (β)

decays which are described as:

n −→ p+ + e− + ν̄e (1.1)

p+ −→ n+ e+ + νe (1.2)

In the β decay, described by equation (1.1) and shown in figure 1.2, at a

fundamental level, a down quark is converted into an up quark via emission of

a W− boson which subsequently decays into an electron (e−) and an electron

antineutrino (ν̄e).
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Figure 1.2: Decay of a neutron into a proton p+, an electron e−1 and an
electron antineutrino νe mediated via a virtual W− boson. Figure from [5].

1.4 The Role of Neutrinos in the Standard Solar
Model (SSM)

There are various models to describe and predict the behaviour of the Sun.

The Solar Standard Model refers to the model devised by John Bahcall ([6]

and [7]) according to which stars have two mechanisms available to sustain

their luminosity: pp cycle (listed in table 1.1) and Carbon-Nitrogen-Oxygen

(CNO) cycle (listed in table 1.2). The primary source (98.5%) of solar energy

is the pp chain. The rest is provided by the CNO cycle. The net pp chain

reaction is:

4p→ 4He + 2e+ + 2νe + 26.73MeV (1.3)

The pp chain reaction converts four protons into an α, two electron neutrinos

νe, two positrons e+ and energy which is released as gamma rays and kinetic

energy of the particles. The average energy of the two neutrinos is 〈Eν〉 ≈ 0.6

MeV [8].

The pp chain burns hydrogen into helium in the core of the Sun. As hydro-

gen burns, the interior undergoes significant changes in size, luminosity and

core temperature. The SSM fixes the initial elemental abundances according

to the observed abundances in solar-system meteorites and the unmixed pho-

5



tosphere of the Sun. The model assumes that the Sun is in hydrostatic equi-

librium; the outward pressure of photons and particle radiation is balanced

by gravity. The model also assumes that initially Sun was of homogeneous

composition and the change in the abundance of elements happens with time

because of fusion within and not from diffusion from the outside. The model

is evolved in time within certain constraints, for example, current photon lu-

minosity, mass, radius and the age of the Sun as listed in table 1.4. When the

model converges on the measured solar parameters, the model predicts the

mass and temperature distribution in the Sun and the solar neutrino flux from

the core. The energy spectrum of solar neutrinos due to the nuclear processes,

listed in table 1.1, is shown in figure 1.3.

Reaction νe Energy (MeV)

p+ p→ 2H+e+ + νe (pp) ≤ 0.424

or

p+e−+p → 2H+νe (pep) 1.422
2H+p → 3He + γ

3He + 3He → α + 2p

or
3He + 4He → 7Be + γ

7Be+e− → 7Li+νe (90%) 0.861

(10%) 0.383
7Li+p→ 2 α

or
7Be+p → 8B + γ

8B → 8Be? + e+ + νe < 15
8Be? → 2 α

or
3He+p → 4He + e+ + νe (hep) ≤ 18.77

Table 1.1: Nuclear reactions in the proton-proton chain along with neutrino
energy. Table from [8].
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Reaction νe energy (MeV)
12C+p → 13N+γ
13N → 13C+e++νe ≤ 1.199
13C+p → 14N+γ
14N+p → 15O+γ
15O→ 15N+e++νe ≤ 1.732
15N +p → 12C+ α

Table 1.2: Nuclear reactions in the CNO chain along with neutrino energy.
Table from [8].

Electron neutrinos are produced in four reactions in this chain. The CNO

chain also produces neutrinos but is negligible in the Sun. Detection of CNO

neutrinos will enable us to differentiate between various metallicity models of

the Sun. The SSM makes a number of predictions which can be tested and one

of these is the electron neutrino flux produced by each of the four reactions in

the pp chain (table 1.3). The model also predicts where the different neutrino

fluxes originate in the Sun, as shown in figure 1.4.

1.5 Solar Neutrino Problem

In the late 1960s, Ray Davis Homestake Experiment in a Gold Mine in South

Dakota measured the flux of neutrinos from the Sun and detected a deficit

[9]. According to SSM, Sun only produces electron neutrinos. The deficit of

the solar electron neutrino flux (figure 1.5 and table 1.5) from the neutrino

flux predicted by the SSM (table 1.3) is known as the Solar Neutrino Problem

(SNP). The discrepancy, lasting from early seventies to about 2002, has since

been resolved by introducing neutrino oscillations to the standard model.

There were several proposals to explain the deficit but any model requiring

the change in the solar model has to overcome the success in the prediction of

the total 8B solar neutrino flux [10] listed in table 1.3 and the current observ-
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Figure 1.3: This figure, from [13], shows solar neutrino spectrum that is pre-
dicted by standard solar model from the CNO cycle (in blue dotted lines) and
pp chain. Continuum source fluxes are given in units of neutrinos cm−2 s−1

MeV−1 while line source fluxes (7Be and pep) are given in units of neutrinos
cm−2 s−1. The total theoretical errors for each source is also indicated in the
figure.

able, for example, luminosity, radius and age of the Sun as listed in table 1.4.

Additionally, the models must predict the core temperature because of its ef-

fects on the total numbers of neutrinos emitted. The core environment affects

the neutrino flux from each of the ν reactions but not its energy spectrum.

The model has to explain the energy-dependent distortion of the νe flux ob-

served in experimental results. The solution to this problem, as demonstrated

by SNO, is that solar neutrinos change flavour on the fly. The phenomena

of ν oscillation – whereby neutrinos oscillate back and forth between different

flavours – is physics beyond the Standard Model as SM assumes neutrinos to
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Figure 1.4: Neutrino production as a function of radial distance of the Sun.
Figure from [8].

be massless, thereby, can not change flavours. In consequence of the oscilla-

tions, we know that neutrinos do have mass, this mass although very tiny3,

contributes as much to the universe as the combined mass of all the stars in

the galaxies.

1.6 Experiments, Advantages and Constraints

Three experimental methods are employed to detect solar neutrinos: radio-

chemical, water C̆erenkov and scintillator. Radiochemical experiments, only

sensitive to electron neutrinos, do not measure the energy of the detected

neutrinos but measure the rate of neutrino induced events above a fixed en-

ergy threshold. The advantage of radiochemical experiments is a low energy

threshold. They can detect neutrinos with energy less than one MeV. Examples
3Cosmological constraints to the sum of ν mass Σ = Σmν typically range below 1 eV

[11]. The beta spectrum of tritium [15], limits the sum of active neutrinos to be between
0.05 and 8.4 eV.
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Reaction Flux (cm−2s−1) Maximum Energy (MeV)

pp 5.94(1.00+0.01
−0.01)× 1010 0.42

pep 1.39(1.00+0.01
−0.01)× 108 1.44

hep 2.10×103 18.77

7Be 4.80(1.00+0.09
−0.09 × 109 0.86 (90%)

0.38 (10%)

8B 5.15(1.00+0.19
−0.14 × 106) ≈ 15

13N 6.05(1.00+0.19
−0.13 × 108) 1.20

15O 5.325.32(1.00+0.22
−0.15 × 108) 1.73

17F 6.33(1.00+0.12
−0.11 × 106) 1.74

Table 1.3: Predicted fluxes of neutrinos from the solar nuclear fusion reactions
along with the maximum energy. The errors quoted, for the predictions from
SSM BP98, are 1σ theoretical uncertainties. Reactions in column one are
described in table 1.1. This table is from [12].

Parameter Value

Mass M� (1.9891± 0.0004)× 1023 g

Radius R� (6.9599 ±0.0002)× 1010 cm

Luminosity L� (3.846±0.004)× 103 Joules/s

Neutrino Luminosity 0.022 L�
Age (4.52± 0.04)× 109 yr

Table 1.4: Few observed solar parameters from [14].

of radiochemical detectors are Homestake, GALLEX (Gallium Experiment),

GNO (Gallium Neutrino Observatory) and SAGE (Soviet-American Gallium
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Figure 1.5: Comparison of solar neutrino flux observed in the experiments
compared to the theory. Figure from [16]. The unit of gallium (SAGE and
GALLEX+GNO) and chlorine (Homestake) experiments is Solar Neutrino
Unit (SNU) which is 10−36 ν reaction per second per target atom. The unit
of water C̆erenkov experiments (Kamiokande, SuperKamiokande and SNO) is
the flux obtained from the experiment divided by the flux predicted from the
Standard Solar Model BS05.

Experiment). The targets consisted of either chlorine or gallium. Neutrinos

were detected via the following reactions:

νe +37 Cl→ e− +37 Ar (1.4)

νe +71 Ga→ e− +71 Ge (1.5)

The neutrino flux was calculated by counting the occurrences of either argon

or germanium by detecting their radioactive decays. The low-energy threshold

(only 0.233 MeV) of the Gallium experiments (GALLEX, GNO and SAGE)

enables them to observe neutrino captures from all pp chain neutrinos.

Examples of water C̆erenkov experiments are Kamiokande, SuperKamiokande4

4Both located in Kamioka zinc mine in Japan.
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(Super-K) and Sudbury Neutrino Observatory (SNO). The Kamiokande ex-

periment, consisting of 680 tonnes of water, detected neutrinos via their elastic

scattering5 (ES) reaction: νx + e− → νx + e− where x is any flavour: e, µ or

τ . The C̆erenkov light, generated by recoil electrons, is detected by a set of

photomultiplier tubes (PMTs) directed at the target volume. The advantage

of water detectors is that they detect neutrinos in real-time, with directional,

spectral and time information determined on an event-by-event basis. The dis-

advantage is that the threshold in energy is much higher than the radiochemical

experiments, at the order of 5 MeV, which limits the detection sensitivity to

neutrinos from 8B and hep branches of the pp chain (figure 1.3). The cross

section for interaction increases with neutrino energy, hence neutrinos from 8B

branch are easier to observe because of their higher energy range (0-14 MeV).

Since the detected low energies are dominated by experimental backgrounds

due to radioactivity, availability of the energy range 0 to 14 MeV enable us to

put a detector threshold on the energy such that a large proportions of back-

grounds are removed (figure 4.2) without incurring a comparable reduction in

the statistics.

Experiment Detection Method Flux (observed/predicted)

Homestake Radiochemical 0.34± 0.06

GALLEX & GNO6 Radiochemical 0.58± 0.07

SAGE7 Radiochemical 0.59± 0.07

Kamiokande Water C̆erenkov 0.55± 0.13

Super-K Water C̆erenkov 0.45± 0.08

Table 1.5: Pre-SNO results of the solar neutrino experiments in comparison to
the prediction from the Bahcall-Pinsonneault BP2000 SSM. Table from [17].

.

Table 1.5 summarizes the results from the first generation of solar neutrino

experiments. The discrepancy between the individual experimental results is
5The ES reaction, though sensitive to all flavours, has reduced sensitivity to νµ and ντ .
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due to a difference in the energy threshold of the experiments which makes

them sensitive to neutrinos from some or all four neutrino-producing reactions

in the pp chain. Furthermore, the exact suppression is also dependent on the

energy threshold of the experiment.

1.6.1 Super-Kamiokande

Super-Kamiokande, abbreviated as Super-K, is a large, underground, water

C̆erenkov neutrino detector located 1000 m underground in an active zinc mine

in the Japanese Alps mountain ranges. It consists of a cylindrical stainless steel

tank (41.4 m tall and 30.3 m in diameter) holding 50,000 tons of ultra-pure

water. The tank volume is divided into two regions: a large inner region and a

2 metre wide outer region. The inner region is optically isolated from the outer

region by a stainless steel superstructure. Mounted on the superstructure are

11,146 photomultiplier tubes (50.8 cm in diameter) that face the inner region

and 1885 (20.3 cm in diameter) that face the outer region. Neutrinos are

detected via νe−e elastic scattering. The Super-K detector, employs the same

ES reaction as the Kamiokande detector, to monitor the neutrino flux but with

a fiducial mass 33.1 times greater than the original experiment. The C̆erenkov

light, emitted by recoil electrons, is detected by the photomultiplier tubes.

The interaction vertex, ring direction and flavour of the incoming neutrino is

determined from the charge collected on the PMTs, the sharpness of the ring on

the wall and the timing information recorded by each photomultiplier tube.

Using elastic scattering interactions, Super-K provided the direct evidence

that the Sun is a source of neutrinos, as shown in figure 1.6, and made critical

contributions towards the resolution of the solar neutrino problem. In February

1987, Super-K detected neutrinos created by a supernova (SN 1987A, located

in the Large Magellinic Cloud). Besides solar neutrinos, Super-K also detects

interactions of ∼1 GeV neutrinos produced by interactions of cosmic rays with
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air molecules in the upper atmosphere. From these atmospheric neutrinos,

Super-K glimpsed the first hint of neutrino oscillations. More νµ were detected

coming from above than from below (figure 3.3 in chapter 3.). The data were

in good agreement with two-flavour νµ ⇔ ντ oscillations with sin2 2θ23 > 0.82

and 5× 10−4 < ∆m2
32 < 6× 10−3 eV2 at 90% confidence level [18].

Figure 1.6: Plot of angular distribution of recoil electrons relative to the Sun. A
peak at Cosine θ ≈ 1 points to solar neutrinos. After subtracting background
due mostly from radon gas in the water, the area under the peak, is the
measured number of solar neutrinos. Figure from [19].

1.6.2 KamLAND Result

The Kamioka Liquid scintillator Anti-neutrino Detector (KamLAND) is a re-

actor antineutrino experiment in Japan and detects antineutrinos (ν̄e) from 53

nuclear reactors in the surrounding area [20]. The experiment probes θ12 and

∆m2
21 neutrino mixing parameters without complications from the enhance-

ment of neutrino oscillation in matter because the average distance between
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the reactors and the detector is roughly 180 km. It extracted neutrino os-

cillation parameters by observing two complete oscillation cycles in the ν̄e

spectrum (figure 3.4 in chapter 3). KamLAND is located at the site of the

former Kamiokande experiment. The heart of the experiment is a 18m di-

ameter stainless steel sphere, containing liquid scintillator and, surrounded by

1879 50 cm diameter photomultiplier tubes (PMTs) for antineutrino detection.

Electron antineutrinos are detected via inverse β−decay (ν̄e + p+ −→ e+ + n)

with a 1.8 MeV threshold. Assuming CPT8 invariance, the result of global

analysis (figure 1.7) of KamLAND, SNO and other solar ν experiments is

∆m2
21 = 7.59+0.21

−0.21 × 10−5 eV 2 and tan2 θ12 = 0.47+0.06
−0.05 [20].

Figure 1.7: Global analysis of parameter space – Solar+KamLAND. Figure
from [20].

1.7 The Sudbury Neutrino Observatory (SNO)
detector

The Sudbury Neutrino Observatory will be described in detail in chapter 2.

8CPT invariance means that if a particle is replaced with its corresponding antiparticle
(charge conjugation – C), and the space coordinates (parity – P) and time (T) are reversed,
the physical laws are unchanged.
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Chapter 2

Sudbury Neutrino Observatory

This chapter briefly describes the SNO detector. For a full technical report

of the detector and all of its subsystems, refer to [21]. SNO, shown in fig-

ures 2.1 and 2.2, is an enormous optical instrument to detect short bursts of

C̆erenkov light associated with neutrino interactions. It is situated in Vale

Inco’s Creighton Mine in Sudbury, Ontario, Canada. The detector was pro-

posed to: clarify the basic energy generation processes in the Sun, test the

hypothesis of ν oscillation and determine the fundamental properties of neu-

trinos by studying 8B neutrinos emitted from the core of the Sun. The ability

of neutrinos to penetrate vast distances through dense matter without interact-

ing makes them an excellent probe in investigating the processes that generate

them. These include fusion reactions in the core of stars, supernovae explo-

sions, radioactive decays in the Earth’s core, mantel and crust. The ability to

penetrate matter while weakly interacting with it makes neutrinos extremely

hard to detect hence it is important to maximize the mass and sensitivity of

the detector without increasing the backgrounds. To achieve this objective,

one 106 kg of heavy water (D2O) used as an active medium, was enclosed in

a transparent acrylic vessel (12 m in diameter) to intercept about 10 neutri-

nos per day. Surrounding the acrylic vessel (AV) is a geodesic stainless-steel

structure, 17.8 metres in diameter, for carrying 9438 inward-looking photomul-
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tiplier tubes (PMTs) (figure 2.2). The space between the AV and the PMT

SUPport structure (PSUP) is filled with light water (H2O). The barrel-shaped

cavity, housing SNO target detector, is 22 metres in diameter at maximum and

34 metres in height. The space between the PSUP and the cavity walls is also

filled with light water. The D2O is unique because it offers equal sensitivity to

all of the neutrino types (νe, νµ and ντ ). A separate reaction (Charged current

is described in equation (2.1)) has sensitivity to electron neutrinos (νe) only.

The light water, surrounding the heavy water, provides both buoyancy for the

vessel and radioactive shielding against external neutrons, radioactivity in the

PMTs and radiation emanating from the rocks in the cavity. The location of

SNO, 2 km underground, protects it from cosmic rays, especially cosmic ray

induced muons.

Figure 2.1: Artist’s rendering of SNO detector, showing the acrylic vessel (AV),
the PMT SUPport structure (PSUP), the control room, and the clean room
above the neck of the AV.
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Figure 2.2: View of the PMT support structure (PSUP) in SNO.

The aim of Sudbury Neutrino Observatory (SNO), proposed by Herb Chen

in 1984 [30], was to look into the solar neutrino problem [23] and test the neu-

trino oscillation model using solar neutrinos. To accomplish this goal, SNO

detector was constructed in a large cavity, 2,000 metres below ground, in an

active nickel mine near Sudbury, Ontario. Two factors are influential in de-

tecting neutrinos: reduced backgrounds and increased detection volume. The

rock overburden reduced the background rate of muons from cosmic radia-

tion to roughly 70 per day. The shielding provided by the rock overburden

is equivalent to 6010 metres of water. The increased detection volume con-

sisted of 106 kg of heavy water (D2O) which was borrowed from the Atomic

Energy of Canada Limited (AECL). As shown in figure 2.1, the walls of the
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Figure 2.3: A schematic view of SNO.

cavity are covered with an urylon plastic liner to prevent any material from

the surrounding rock leaking in the pure water.

The acrylic sphere, constructed by bonding 122 panels of ultraviolet trans-

mitting acrylic together, has a thickness of 5.5 cm in most places. An opening,

resembling a chimney or neck, at the top of the acrylic vessel is 1.5 metres in

diameter and 6.8 metres in height. The AV is suspended by 10 ropes to the

support deck which is shown in figure 2.3. The ropes are connected to 11.4 cm

thick rope groove panels at the belly of the sphere. Figure 2.4 shows the acrylic

sphere, the suspension ropes, rope groove panels and the neck.

Events within the detector were observed by watching C̆erenkov light us-

ing 9438 inward-facing photomultiplier tubes (PMTs) while the 91 outward

looking tubes (OWL) tag cosmic muon events and instrumental background.

As seen in figure 2.3, these PMTs were mounted on a spherical PMT Support

structure (PSUP) concentric with the AV. Twenty three PMTs are suspended

in a rectangular frame facing inwards in the outer H2O region. These PMTs,
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along with the 8 PMTs installed in the neck region of the AV, were used to

reject instrumental backgrounds. Since neutrino interaction is a relatively rare

low-energy process, SNO was designed to be ultraclean of radioactive back-

grounds. The limits were set such that the total neutron background from

photo-disintegrations is less than 10th of the solar-neutrino rate (5,000 per

year) for ν interactions in the fiducial volume of D2O (R≤550.0 cm). This

leads to limits of 3×10−15 g/g of Th and 4.5×10−14 g/g of U in the D2O [22].

Figure 2.4: The diagram shows acrylic tiles, acrylic belly plates and grooves,
ropes, and a chimney on the acrylic vessel (AV).
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2.0.1 The Three Interactions

Neutrinos interact with matter via the exchange of W± or Z0 bosons, as shown

in the Feynman diagrams of figure 3.2. SNO measured the flux of all neutrinos

- Fνx ( where x is e, µ, τ) and the flux of electron neutrinos - Fνe . The difference

between them (Fνx−Fνe) gives the flux of non-electron neutrinos. These fluxes

were measured via different ways in which neutrinos interact with the heavy

water. When a neutrino interacts with deuterium, electrons can be created

which emit a flash of light called C̆erenkov radiation which is picked by the

PMTs and converted into electronic signals for analysis. An example of a

reconstruction of a neutrino interaction is shown in figure 2.5.

Figure 2.5: A reconstruction of a neutrino interaction, as captured by photo-
multiplier tubes, is shown here. Figure from [24].

SNO observed 8B (8B→ 8Be∗+e+ +νe) and hep (3He+p→4 He+e+ +νe)

solar neutrinos via these reactions:

Charged Current (CC)

The (CC) reaction, as shown in figure 2.6, is specific to electron neutrinos

only. The Q value of CC interaction is -1.4 MeV. In this interaction, the elec-

tron carries off most of energy and hence the energy of the electron is strongly

correlated with the neutrino energy. A measurement of an energy spectrum
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of the CC reaction provides a very good sensitivity to spectral distortions

produced by neutrino oscillations in the dense matter of the Sun.

In CC interactions, as described in equation (2.1) and shown in figure 3.2a,

an electron neutrino interchanges a W boson with a deuterium nucleus thereby

converting the neutron in the deuterium into a proton and transmuting itself

into an electron1. According to the SSM, about 30 CC interactions per day

are predicted for SNO in the absence of ν oscillations.

Figure 2.6: Charged current interaction in action. Figure from [25].

νe + d→ p+ p+ e− (2.1)

Elastic Scattering (ES)

The ES interaction, as shown in figure 2.7 and described in equation (2.2),

is sensitive to all flavours of neutrinos but with enhanced sensitivity to νe

because of the availability of an additional channel to νe that of W boson, as

shown in figure 3.2. According to SSM about 3 ES events per day are predicted
1Solar νµ and ντ are not energetic enough to interact with a deuterium nucleus producing

two protons and a corresponding µ or τ because µ and τ are heavier than an electron and
require νµ or ντ to be more energetic than an νe to initiate a CC reaction. Hence CC is
only sensitive to νe.
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for SNO for no ν oscillation.

νx + e→ ν
′

x + e
′

(2.2)

where νx refers to any active flavour of ν, e refers to electron and primes on

the outgoing particles indicate that energy and momentum has changed by the

scattering interaction. In the ES interaction, the electron recoils in roughly

Figure 2.7: Elastic scattering interaction in action. Figure from [25].

the same direction that the ν was travelling therefore the electron "points

back" to the Sun. Both SNO and Kamiokande/Super-Kamiokande make use

of the electrons in water for the measurements of the solar flux of 8B neutrinos.

Therefore, the ES interactions allow a cross-check with the Super-Kamiokande

results. The energy and direction of recoil electrons are measured by observing

their C̆erenkov light with photomultiplier tubes.

Neutral Current (NC)

The NC interaction, mediated by Z0 boson, allows measurement of the

total flux of 8B neutrinos because it is equally sensitive to all three ν flavours

described by the standard electroweak model. As seen in figure 2.8 and de-

scribed in equation (2.3), an incident neutrino breaks up the deuterium (d)

into a proton (p) and a free neutron (n). The liberated neutron is then ther-

malized as it scatters around in the heavy water. Gamma rays are emitted
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when the neutron is absorbed by another nucleus. The gamma rays scatter

electrons with sufficient energy to produce C̆erenkov radiation to be detected

by the PMTs.

νx + d→ n+ p+ νx (2.3)

Figure 2.8: Neutral current interaction in action in the salt phase of SNO. The
chlorine nucleus (Cl) of NaCl absorbs the neutron and emits a cascade of γ
rays. Figure from [25].

The NC signal provides no information about either the energy or direc-

tion of the incident ν. The measurement of 8B flux depends on the capture

efficiency of neutrons in SNO and the resulting gamma ray cascade. The SSM

predicts about 13.2 NC events per day for SNO. Neutral current, an inelastic

scattering of neutrinos with deuterium, has a threshold of 2.2 MeV which is

the binding energy of the deuterium. It involves liberation and recapturing

of a neutron. Three different recapture mechanisms, employed to detect the

neutrons, made SNO a three-phase-experiment.

The NC reaction is measured by observing the γ-rays from the subsequent

capture of the free neutron in the first two phases, and by direct detection
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in the third phase. The NC provides the total neutrino flux to explore the

solar models, irrespective of neutrino oscillations, since the reaction is equally

sensitive to all non-sterile ν types.

SNO is also sensitive to charged current, elastic scattering and neutral

current interactions from hep neutrinos from 3He+p → 4He + e+ interaction

in the Sun. The interactions induced by hep neutrinos are described in this

thesis as hep CC, hep ES and hep NC respectively.

2.0.2 The Three Phases

In the first phase (D2O phase) of SNO, the detected neutrons captured pre-

dominately on a deuterium (cross-section 0.5 millibarn2) in the D2O with a

release of a 6.25 MeV photon which imparted enough energy to electrons via

Compton scattering or pair production (e−e+) to produce C̆erenkov light for

PMT arrays to detect. Using distributions of the reconstructed energy, posi-

tion and orientation of the events, the NC was statistically separated from the

CC and ES signals. The first phase ran from November 2, 1999 to May 31,

2001. Results, published in [26], proved that neutrinos undergo oscillations in

flavour as they journey from the core of the Sun to the Earth. The number of

NC events above 5.5 MeV was about a third of the measured number of CC

events because the neutron capture efficiency with D2O alone was only 14%.

In the second phase (Salt phase) of SNO, 2,000 kg of purified NaCl were

added to the D2O. While the salt concentration was only 0.2% by weight,

salt enhanced the probability of neutron capture because the 44 barn thermal

capture cross-section on 35Cl is 88,000 times larger than the capture cross-

section on deuterium resulting in an increase in the sensitivity by a factor of

three to detect NC interactions. Another benefit of adding salt is a better

separation of NC from CC and ES because absorption of a neutron on 35Cl
2A barn is a unit of area equal to 10−24 cm2, used to measure cross sections in physics.
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produces a cascade of photons with energy totalling 8.6 MeV as compared

to a single γ of energy 6.25 MeV produced when a neutrino interacts with a

deuterium. The outcome from the second phase, published in [27], was precise

measurements of the parameters that govern neutrino oscillations.

In the third phase of SNO (Neutral Current Detection (NCD) phase), an

array of proportional counters called NCDs, was deployed in the heavy water

to detect neutrons independent of the PMTs. The NCDs were filled with a

mixture consisting of 85% of 3He and 15% CF4 by pressure. A total of forty

strings, laser-welded assemblies of individual counters, were attached to anchor

points on a 1 m2 grid. Out of the forty strings, four contained 4He instead of

3He for assessing the backgrounds.

The NCDs only blocked 9% of the C̆erenkov photons. The advantage of

NCDs is that over 60% of the detected NC events were recorded separately on

an event-by-event basis from the CC and ES signals. The separate readout

reduced contribution of NC signal in the C̆erenkov data which made possible

reduction of the correlation between NC and CC from about -0.5 to better

than -0.02. Furthermore, the CC signal in the NCD phase has substantially

reduced contamination from neutron capture hence measurement of the neu-

trino energy spectrum via the CC reaction is made with increased precision

[21]. The result of the third phase is described in [29].

2.1 C̆erenkov Radiation

Neutrino interactions in SNO were observed by detecting the C̆erenkov light

emitted by relativistic electrons. For CC and ES, the electrons were the recoil

electrons (equations (2.1) and (2.2)) and for NC, the electrons were Compton-

scattered by the gamma rays released by the capture of neutron in a nucleus

(equation (2.3)).

If a source emits energy, via waves, in all directions then the wave fronts

26



will be spherical as shown in figure 2.9 from [31]. In a non-dispersive medium,

the velocity of waves is described as: v = λν where λ and ν are wavelength and

frequency of the wave respectively. If the source itself is moving such that it

nearly keeps pace with its wave fronts (vs ≈ v = λν) then the wave fronts look

different as shown in figure 2.10a. If the source moves (vs = βc) faster than

the waves (v = c
n
where n is the refractive index of a medium) it generates,

then all spherical wave fronts bunch along the surface of a cone (as shown in

figure 2.10b) which signifies a shock wave and the cone is then referred to as

the Mach cone. The surface of the cone is tangent to all the wave fronts with

a half angle (from figure 2.9) described as:

vs = βc (2.4)

cos θ =
vt

vst
=

c

nvs
(2.5)

Thus, by simply measuring the C̆erenkov cone opening angle, the velocity

of the particles may be determined. An electrically charged particle emits

electromagnetic waves due to its charge and motion. When a charged particle

is travelling through a medium, its electromagnetic field disrupts the local

electromagnetic field (EM) by displacing the electrons in the atoms of the

medium. Photons are emitted as electrons relax back to the ground state. In

normal circumstances, these photons destructively interfere with each other

resulting in no radiation. However, when a charged particle travels through a

medium at a pace (v) that exceeds the speed of light in the medium (vt) then

it outruns the electromagnetic waves that it emits, thereby creating a shock

front which makes it possible for the photons to interfere constructively and

intensify the observed radiation. The shock wave is analogous to sonic boom

produced by an aircraft travelling faster than the speed of sound in air.
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Figure 2.9: Spherical wave fronts surrounding a stationary source. Figure from
[31].

Condition for a shock front to occur is:

v > vt =
c

n
(2.6)

TT = (1/2)mvt
2 (2.7)

where n is a refractive index of the medium, c is velocity of light in vacuum,

m is mass of the charged particle, vt and TT are the threshold velocity and

threshold kinetic energy respectively. No C̆erenkov radiation will be emitted

if the kinetic energy of the charged particle drops down to below TT .

The C̆erenkov radiation is utilized in the C̆erenkov detectors for detecting

fast particles and determining their speeds or making a distinction between

particles of different speeds. In D2O, the angle of the opening cone is 41◦ for

relativistic electrons. The electron direction is not constant due to scattering3

hence the detected light does not correspond to a single ring pattern as the

angle depends on the velocity of the charged particle (equation (2.5)). The

electrons will emit C̆erenkov light until their kinetic energy drops below the

C̆erenkov threshold of 0.262 MeV. Table 2.1 lists the index of refraction for

various media along with the corresponding kinetic energy threshold for the

C̆erenkov radiation.
3Scattering causes reduction in velocity.
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Figure 2.10: This diagram shows wave fronts when the source is moving at a
speed comparable to the speed of the waves. (a) vs ≈ v (b) vs > v. Figure
from [31].

Medium Refractive index n TT (MeV)

D2O 1.333 0.262

H2O 1.338 0.258

acrylic 1.461 0.190

pyrex 1.474 0.185

Table 2.1: For the relevant materials in SNO, the table lists the refractive
index (n) and the corresponding kinetic energy threshold (TT ) for C̆erenkov
radiation. Table from [32].

The second order differential C̆erenkov spectrum is given by equation (2.8).

d2NC

dxdλ
=

2παz2

λ2

(
1− 1

n2(λ)β2

)
(2.8)

where d2NC is the number of photons emitted in a track length equal to dx over

a spectral range of dλ, z is a charge of a moving particle in units of electron

charge e, β ≡ v/c, n(λ) is the refractive index as a function of wavelength
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(λ), and α ≈ 1/137 is the fine structure constant. The number of photons NC

emitted by an electron is approximately proportional to the electron’s track

length and hence its energy. It is ≈358 photons per cm [33] in the spectral

range of 300 to 650 nm to which the PMTs are sensitive. The electron track

length in D2O is approximately 0.45 cm per MeV for electrons of kinetic energy

between 5 and 15 MeV. Thus about 1140 photons are produced by a 7 MeV

electron [34].

2.2 PMTs

Photomultiplier tubes, shown in figure 2.11, are extremely sensitive detectors

of light. These detectors enable individual photons to be detected by multi-

plying the current produced by the photons by as much as 100 million times

in multiple dynode stages. Three characteristics of PMTs are the transit time,

the rise time and the transit time spread. The transit time is a time interval

between arrival of a photon at the cathode and arrival of an amplified pulse

at the anode. The rise time is a time required for a PMT anode signal to

rise from 10% to 90% of the final charge collected. The transit time spread

is due to different paths that the electron can take from the photocathode to

the anode [37].

In SNO, the PMTs are eyes of the detector and upon sensing a single pho-

ton produce an electrical pulse that travels to the data acquisition electronics.

The radioactivity levels of PMTs have to adhere to strict specifications of

allowed maximum radioactivity levels. The measured concentration of ura-

nium was less than 120 nanograms per gram, the thorium concentration was

90.0 nanograms per gram and the potassium concentration was 0.2 milligram

per gram in the glass. Besides low-radioactivity levels, the constraints on the

PMTs are low failure rate (since they can not be replaced), a high photon

detection efficiency, a low noise rate and a narrow spread in the transit time.
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The energy and position resolution largely depends on the spread in the transit

time, the photon detection efficiency and the noise rate. The photocathode

coverage with the PMTs alone is 31% hence each PMT (20 cm in diameter) is

surrounded by a 27 cm diameter light concentrator (wavelength shifter) which

increases the overall detector light collection to 54% of 4π. This configuration

is shown in figure 2.13.

The sensitivity of a photocathode in a PMT is expressed as quantum effi-

ciency (QE) which is simply defined as:

QE =
number of photoelectrons emitted

number of incident photons
(2.9)

Quantum efficiency is a function of the wavelength or quantum energy of the

incident photon. In terms of quantum efficiency, as shown in figure 2.12, PMTs

in SNO exhibited a peak quantum efficiency of ≈ 21% at 450 nm.

Figure 2.11: A diagram of a Photomultiplier Tube (Not SNO’s). Figure from
[35].

The PMTs in SNO detect the C̆erenkov light emitted by relativistic elec-

trons produced directly or indirectly in neutrino interaction. Because the light

is emitted in a cone shape (figure 2.5), a characteristic ring-like pattern of ac-

tivity is seen on the array of PMTs. The ring pattern is useful to infer direction,

energy, and flavour information of the incident neutrino. A ring pattern with

fuzzy and blurry edges, due to multiple Coulomb scattering, is characteristics

of electron while a ring pattern with sharp edges indicates a muon.
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Figure 2.12: Figure shows the transmission of the SNO acrylic vessel and PMT
quantum efficiency as a function of wavelength superimposed on the C̆erenkov
spectrum (in arbitrary units). Figure from [36].

2.3 The NCD Phase

This section describes the Neutral Current Detectors (NCDs) of the NCD

phase. An NCD is a proportional counter to detect neutrons via a 3He(n,p)3H

interaction which has a Q value of 0.764 MeV. The absorption of a thermal

neutron in 3He makes it unstable which then decays into a proton and a 3H

(tritium). To conserve energy and momentum, the end products are always

emitted back to back; with proton carrying 0.573 MeV of kinetic energy and

the tritium having 0.191 MeV [37]. The charged proton and 3H ionize the gas

inside the NCD, creating around 20,000 electron-ion pairs. The electrons are

accelerated by a high voltage at the anode of the proportional counter. The

accelerated electrons produce secondary ionization with sufficient energy to

produce an avalanche. The movement of the electron-ion pairs in the NCD

induces an electrical signal on the anode which is directly proportional to the

energy of the original ionizing particles.
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Figure 2.13: A schematic of the Hamamatsu R1408 Photomultiplier Tube
along with a reflector assembly used in SNO.

The capture cross-section for thermal neutrons on 3He is 5330 barns, about

seven orders of magnitude larger than the capture cross section on deuterium

(2H). Compared to thermal neutrons, 3He has negligible sensitivity to gamma

rays which makes it an effective neutron detector material. The 36 NCD

strings provide a neutron capture efficiency of 26%, giving a neutral current

signal of about 3.3 events per day in the NCDs.

The neutron capture signature in the NCD array is read out through a

separate data acquisition system from the C̆erenkov light signal observed with

the PMTs. Since the majority of NC events in the NCD phase are measured

separately in the NCDs, the statistical correlation between the NC signal to

the light collected in the PMTs is reduced compared to previous phases. Ad-

ditionally, the NC flux measured in the NCDs is used to calibrate the NC

contribution to the PMT signal which is then subtracted from the CC and ES

signals, thus improving the CC/NC ratio which constrains the solar neutrino
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mixing angle.

2.4 Software

SNO Monte Carlo and ANalysis (SNOMAN) software, a package of FOR-

TRAN routines, was used for data analysis and Monte Carlo simulation of the

detector. The SNOMAN code models all significant detector geometries, such

as the acrylic vessel, the acrylic tiles, the acrylic belly plates and grooves, the

Kevlar ropes, the neck, the PSUP and the source container when a source was

deployed. The simulation of a large C̆erenkov detector is a very complex pro-

cess. Simulation starts with an electron or neutron of a given momentum at a

given location in the detector. The electron is tracked as it slows down. The

tracking of the electron and the C̆erenkov light produced is calculated using

the proven electromagnetic shower code ESG4 [38]. The C̆erenkov photons

are then transported through the D2O, acrylic vessel and H2O, to the PMT

sphere (figure 2.3 for a layout of SNO detector). The code takes into account

scattering and absorption of photons in each medium while moving towards

the PMTs. Including the calibration of PMTs, the simulation constructs an

event in which each fired PMT (a PMT hit) is identified, and the time and

charge of the PMT is recorded. The simulation also takes into account the

PMT noise.

The purpose of reconstruction is to determine the event observables from

the pattern of hits and the timings of the PMTs fired. The basic principle is

to search for a point source from the hit pattern which would give the correct

time of arrival of the photons at different PMT locations. This is complicated

by the existence of PMT noise and delay of photons due to scattering en route

to the PMTs. The large size of the PMTs and their timing response set a limit

to the accuracy of the reconstruction carried out. Once the vertex of an event

is known, the initial electron direction is estimated by computing the vector
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from the vertex to the centroid of the PMT hit locations. The accuracy of the

estimation is limited mainly by multiple scattering of electrons.

2.4.1 Response to γ rays

Through Compton scattering and pair production, γ rays generate a shower

of charged particles, which in turn, produce C̆erenkov light. Compared to a

single electron having the same energy, the total light produced by a γ ray

is less because each charged particle ceases to produce light as soon as it

drops below the C̆erenkov threshold energy. In SNOMAN, the γ ray induced

showers are calculated using the program EGS4 and the resulting C̆erenkov

light is computed as in the single electron case.

2.5 Generating an Event Trigger

The number of PMTs hit for a given event, defined as NHITs, is a function of

the energy of the event. Low NHIT events, corresponding to low-energy events,

are dominated by low-energy background events. To reduce the background

events in the data, a simple hardware trigger is employed according to which

only events having 13 or more hits are recorded.

For the analysis, the software trigger is set to 20 hits for an event which

corresponds to ≈ 3 MeV. The diameter of the PSUP is 18 metres hence the

time it takes photons, from a single event, to reach different PMTs can vary

by as much as 66 nanoseconds (or more due to multiple reflections). The time

window, for the primary trigger, was set to be 100 nanoseconds. A global

trigger (GT) is initiated if 17 or more PMTs are hit (NHITs≥ 17) within a

100 nanoseconds window. The hardware threshold can be adjusted, by the

software, to be higher than 13 hits. The time of trigger is recorded by a 10

MHz and 50 MHz clock. For each GT, a global trigger identification number

(GTID), the time the GT is generated, the identification number of each PMT
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fired and the digitized charge collected are stored. From all this information,

the event position, the event energy, the direction of the event relative to the

Sun etc.are extracted.

2.6 Calibration

Calibration of electronics was vital to maintain the accuracy of the data con-

sisting of charge and timing information from the individual PMTs. Electron-

ics calibration of SNO is covered in detail in [21]. In order to understand

the response of the detector to different event types as a function of both

energy and position (within the detector volume), detector calibrations were

performed. The detector calibrations include: global light collection efficiency,

the angular response of the PMTs, the optical attenuation lengths, the energy

response of the detector (as a function of both energy and position within

the detector) and acceptance of background events. A variety of optical and

calibration sources were deployed in the detector. All calibration sources for

the heavy water were deployed through the neck of the AV. Sources, intended

for the light water between the AV and the PSUP, were deployed using guide

tubes that are accessible from the deck above the detector. The calibration

source manipulator system, designed and constructed at Queen’s University,

is a rope-and-pulley system that moves calibration sources throughout the

12 metres diameter detector with approximately 5 cm accuracy. A series of

calibrations were performed to take the signals from the PMTs and transform

them in terms of event energy, position and direction for further analysis to ex-

tract neutrino properties. The calibration sources used in SNO are: laser ball,

16N, 252Cf, 8Li, AmBe, and last but not least sources constructed from 226Ra

and 232U to model low-energy backgrounds from 238U and 232Th. Primary

calibration sources, deployed in SNO, are outlined in figure 2.14. Calibration

of SNO is described in detail in [21].
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Figure 2.14: Primary calibration sources employed in SNO. Figure from [28].

2.7 Results from the Three Phases

The D2O phase ran from November 1999 until May 2001 using only D2O in

the target volume. From 306 days of data, the measured CC, ES, and NC

fluxes (in terms of 106 cm−2s−1) are given below:

φES = 2.39+0.24
−0.23(stat.)+0.12

−0.12(syst.) (2.10)

φCC = 1.76+0.06
−0.05(stat.)+0.09

−0.09(syst.) (2.11)

φNC = 5.09+0.44
−0.43(stat.)+0.46

−0.43(syst.) (2.12)

The result is from [10]. While reporting the result, the first error (stat.) is due

to statistics and the next one (syst.) is from the systematic uncertainties. The

energy threshold for the first phase was 5.0 MeV. The ES flux is consistent

with the precision measurement made by Super-K [40], and the NC flux was

consistent with the prediction for 8B flux in the Standard Solar Model. The

fact that the CC flux is less than the NC flux proved the phenomena of ν

oscillation, and the additional fact that the CC flux is also less than the ES

flux because the ES4 flux has contributions from µ or τ neutrinos provided

a test of consistency. The correspondence between the fluxes and flavours is
4The additional interaction due to charged current available only to electron neutrinos,

as shown in figure 3.2, makes ES predominately sensitive to νe. Equation(2.14) splits ES
into its constituents.
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listed below:

CC =νe (2.13)

ES =
5

6
νe +

1

6
(νµ + ντ ) (2.14)

NC =νe + νµ + ντ (2.15)

Hence, under the assumption of unitarity which relates the NC, CC and ES

rates directly and no oscillation between active and sterile neutrinos, a simple

change of variables gives:

φe = 1.76+0.05
−0.05(stat)+0.09

−0.09(syst) (2.16)

φµτ = 3.41+0.45
−0.45(stat)+0.48

−0.45(syst) (2.17)

Combining the statistical and systematic uncertainties in quadrature, φµτ is

3.41+0.66
−0.64 which means that the null hypothesis is excluded at 5.3σ. The con-

clusion of the result (CC < ES < NC =8B flux) published from the first

phase is that neutrinos undergo transformation en route from the Sun to the

Earth.

In the second phase, 2,000 kg of NaCl was added to the D2O volume to

increase the capture efficiency of neutrons, released in the NC interaction, by

a factor of three greater than for pure D2O. Furthermore, neutron capture

in Chlorine resulted in multiple gammas totalling 8.6 MeV of energy while

neutron capture in D2O produces a single gamma with an energy of 6.25 MeV.

The diffuse pattern of C̆erenkov light from multiple gammas allows a better

separation between CC and NC events. The salt phase ran from July 2001 to

August 2002, collecting 391 days of data. The energy threshold for this phase

was 5.5 MeV. Assuming undistorted CC and ES energy spectra, the measured
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fluxes (in terms of 106 cm−2 s−1) are listed below:

φES = 2.34+0.23
−0.23(stat.)+0.15

−0.14(syst.) (2.18)

φCC = 1.72+0.05
−0.05(stat.)+0.11

−0.11(syst.) (2.19)

φNC = 4.81+0.19
−0.19(stat.)+0.28

−0.27(syst.) (2.20)

The results from the salt phase [39] are consistent with the results obtained in

the D2O phase.

The final phase of SNO, the NCD phase, had 385.17 live days. The ad-

dition of the proportional counters, called Neutral Current Detectors, allows

for a measurement of neutron capture that is systematically different from

the mechanisms used in the previous two phases. The outcome (in terms of

106 cm−2s−1) is:

φES = 1.77+0.24
−0.21(stat.)+0.09

−0.10(syst.) (2.21)

φCC = 1.67+0.05
−0.04(stat.)+0.07

−0.08(syst.) (2.22)

φNC = 5.54+0.33
−0.31(stat.)+0.36

−0.34(syst.) (2.23)

The result is from [29]. The ratio of the number of CC events to the number

of NC events is:
φCC
φNC

= 0.301± 0.033 (2.24)
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Chapter 3

Neutrino Oscillation Theory

3.1 Introduction

Neutrinos started as a curiosity of physics but graduated to being a practical

tool to unveil some of the hidden mysteries of the universe. This chapter

illustrates the usefulness of neutrinos as a probe, for instance, the example

of physics beyond the Standard Model is led by neutrino oscillations because

the experimental evidence for massive neutrinos in neutrino oscillations is the

first clear signal of physics beyond the Standard Model of elementary particles.

This chapter relates the phenomenon of neutrino oscillation and goes over the

experimental evidence gathered so far to characterize it.

3.2 Neutrinos as a Window to the Universe

Neutrinos are excellent tools to map the universe because they rarely interact

with other particles and are not affected by magnetic fields, hence they travel

in straight lines. These features are useful to know the source from which the

detected neutrinos originated and the processes which produced the neutrinos

in the first place. For example, the direction of neutrinos detected at SNO is

highly correlated with Sun’s direction in the sky and the energy distribution

suggest that the neutrinos are from the decay of 8B in the Sun.

As shown in figure 3.1, for massless neutrinos the spin is always oppo-
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site the linear momentum (left-handed) whereas the antineutrinos are always

right-handed because the spin and linear momentum always point in the same

direction1. Hence in the Standard Model (SM) one of the intrinsic properties of

a neutrino is its negative helicity (left-handedness) therefore the right-handed

field is zero. The antineutrino, antimatter partner of the neutrino, has posi-

tive helicity (right-handedness), consequently has no left-handed field. Since

strong experimental evidences point to neutrinos having non-zero mass and in

order to gain mass, a neutrino has to couple with Higgs’ field which in turn

require both left and right-handed fields so the question arises – why are only

left-handed neutrinos detected in experiments?. In SM, a neutrino is distinct

from its antimatter partner but now that a neutrino has mass and both left

and right-handed field, is neutrino distinct from an antineutrino?. If there

is no distinction between neutrinos and antineutrinos, then the conservation

of lepton number2 is not a fundamental law. The observation of neutrinoless

double beta decay (n→ p+ e− + ν̄e and then p+ νe → n+ e+) would clearly

show that νi = ν̄i and that L, the lepton number to distinguish ν from an ν̄,

is not conserved. If a neutrino and an antineutrino are same then neutrinos

are Majorana particles; a name to honour Ettore Majorana who first proposed

the possibility.

The objective of neutrino experiments is to answer these interesting ques-
1Place your right hand in front of your face and curl the fingers in the direction of

orbital motion of ν̄, shown in the figure 3.1, then the thumb will point to the direction of
momentum, as well as, the direction of spin. According to the right-hand rule, if fingers
of the right hand describe the sense of rotation then the thumb points in the direction of
spin. For a ν, if fingers of the left hand describe a sense of rotation and thumb points
to the orientation of motion then using the right-hand rule, the spin direction comes up
to be opposite to the direction of motion (thumb). Hence neutrinos are left-handed and
antineutrinos are right-handed.

2ν and ν̄ are distinguished by the lepton number L which is +1 for ν and -1 for ν̄.
According to SM, the lepton number is conserved in weak interaction. Since ν has no
charge, the lepton number is the only indicator to differentiate a ν from an ν̄. The speed
of a massive ν would always be less than the speed of light in vacuum, therefore in theory
an observer can overtake a left-handed ν and sees a right-handed ν, thereby changing the
lepton number from +1 to -1.
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Figure 3.1: The handedness of Neutrinos in a pictorial form. Figure from [41].

tions by studying properties of neutrinos, for example, mass of each flavour,

mixing parameters, and magnetic moment. Since neutrinos interact very

weakly (σ ≈ 2.5 × 10−18 barns for Eνe=10 MeV in 2H [42]) with matter,

they are exploited to study the interactions that produced them. For exam-

ple, due to small interaction cross-sections, neutrinos emerge from the solar

core in 2 seconds while it takes heat ' 10,000 to 170,000 years to percolate up

to the surface from the center [43]. Thus solar neutrinos are windows to an

understanding of the inner workings of the Sun. Similarly geo-neutrinos are

windows to the core of the Earth. Various models of supernova explosion were

tested using neutrinos from Supernova 1987a [45]. If observed, relic neutrinos

created during the Big Bang, can open up a new tool to observe the early

universe. Neutrinos are also a tool to investigate the weak interaction and

the Charge-Parity violation in the weak interaction. There are three genera-

tions of neutrinos. If there is a fourth generation of leptons and quarks then

neutrinos being of the lightest mass might be the first ones to be discovered.

Besides neutrinos, supernovae are predicted to emit gravitational waves (GW)

[48] when the core of the star collapses due to gravity. Einstein predicted

gravitational waves in his theory of General Relativity (GR) hence the goal of

experiments like Laser Interferometer Gravitational Wave (LIGO) and Laser

Interferometer Space Antenna (LISA) is to verify that the waves follow the
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model described in the General Relativity. The SN1987A neutrino data (total

11 events in three experiments), although limited, was enough to confirm the

baseline model of gravitational collapse as well as put limits on neutrino mass.

A detailed analysis of SN1987A is available at [44].

The direction of an electron scattered by a neutrino (νχ + e− → νχ + e−

where χ is e−, µ or τ .) is measured from the C̆erenkov light cone, which is then

reconstructed to provide direction to the supernova. Combining the neutrino

data with the data from the gravitational waves detectors will help eliminate

the backgrounds in the gravitational waves experiments.

Neutrinos are studied extensively because they might lead to physics be-

yond the Standard Model. Observation of oscillation among neutrino species

is to-date the only concrete experimental evidence of a new physics.

3.3 Weak Interaction

Neutrino interactions are dominated by the weak force. Gravity is the only

other known force to interact with neutrinos but its effects are insignificant

in comparison to the weak interaction. Besides interacting with neutrinos,

weak force is also the only force capable of changing flavour of one quark into

another. It also has the distinction of being the only interaction3 known to be

mediated by massive gauge bosons (W± and Z0). Since weak interaction acts

on left-handed particles (right-handed anti-particles) it violates parity symme-

try maximally. The Charge-Parity (CP) violation by the weak interaction is a

not as strong effect. The examples of vertices of weak interaction are shown in

figure 3.2. Two of the vertices involved a charged boson W±, hence they are

called Charged-Current (CC) interaction. The third one is called a Neutral

Current (NC) because it involves a Z0 boson.
3Mass of gluons is assumed to be zero and [47] analyse upper limits on a possible gluon

mass.
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Figure 3.2: Charged current, neutral current and elastic scattering interac-
tions. For solar neutrinos, only νe interact with electrons via W±.
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3.4 Neutrino Oscillations

Neutrinos undergo flavour change along their journey from the core of the Sun

to the Earth, transforming from one flavour to another (νe to νµ or ντ ), thus

evading detection by instruments designed to detect only νe. The idea of ν

oscillation was introduced by physicist Bruno Pontecorvo [57] in 1957 and de-

veloped further to include oscillations in matter by Wolfenstein [58] and then

by Mikheyev and Smirnov [51]. Since Homestake, several experiments using

atmospheric, solar, accelerator and reactor neutrinos have confirmed observ-

ing a deficit/disappearance in the neutrino flux but in 2001 Solar Neutrino

Observatory conclusively proved that neutrino oscillation is the cause of the

deficit by providing a clear evidence of neutrino flavour change [26]. For an

early history on neutrino oscillations, refer to [49].

Neutrinos are created and observed through weak interaction as flavour

eigenstates (νe, νµ, ντ ) but propagate as a linear mixture of mass eigenstates

(ν1, ν2, ν3). While propagating, a neutrino is in a superposition of three flavour

eigenstates,

|ν〉 = Ae|νe〉+ Aµ|νν〉+ Aτ |ντ 〉 (3.1)

The flavour eigenstates and mass eigenstates are related by a mixing matrix

Uαi, known as PMNS (PontecorvoŰMakiŰNakagawaŰSakata matrix) matrix,

where the index α denotes the flavour state and i the mass state. The mixing

angles θij gives the relationship between the flavour state i and the mass state

j.

|να〉 =
∑

Uαi|νi〉 (3.2)

The mixing matrix is parametrized as:

U =

 1 0 0

0 c23 s23

0 −s23 c23


 c13 0 s13 e

−iδ

0 1 0

−s13 e
iδ 0 c13


 c12 s12 0

−s12 c12 0

0 0 1

 .
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where θij is the mixing angle, cij = cos θij, sij = sin θij and δ is the Charge

Parity (CP) violating phase. The three mixing angles ( θij - ij = 12, 13, 23),

and one complex phase angle δ are four parameters determining the amount

of mixing. Since θ13 is less than 13◦ [59], the central matrix is reduced to

the identity matrix and and ∆m2
23 � m2

12 makes it possible for mixing in the

remaining sectors, θ23 and θ12, to be approximated by a two flavour oscillation.

This approximation reduced the complication of neutrino mixing from three

sectors (ij = 12, 13, 23) to one sector (ij=12). For the two neutrino case, the

transformation matrix U is expressed as:

U =

(
cos θ sin θ

− sin θ cos θ

)
(3.3)

νe = cos θ ν1 + sin θ ν2 (3.4)

νχ = − sin θ ν1 + cos θ ν2 (3.5)

where νχ is an admixture of νµ and ντ flavour states – νχ = 1√
2
(νµ − ντ ), ν1

and ν2 are mass eigenstates with masses m1 and m2 and θ is the mixing angle.

The change with time (assuming two state system) for the electron neutrino

is:

|νe(t)〉 = |ν1〉e−iE1t cos θ + |ν2〉e−iE2t sin θ 6= νe (3.6)

Due to this change, there is a probability that at time t6=0 an electron

neutrino will not be detected as an electron neutrino because it is no longer

an electron neutrino. The two states ν1 and ν2 propagate independently at

different speeds owing to their different masses, m1 and m2. The difference

in relative phase over time causes a periodic modification of the interference

between the two states resulting in a finite possibility that a neutrino created

as an νe will be observed as νµ. Using natural units (h̄ = c = 1), the survival

probability of an νe, with energy E, to be detected as an νe or νχ after travelling
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a finite distance L is calculated from the above matrix to be:

Pνe→νe = 1− sin2(2θ) sin2

(
∆m2 L

4E

)
(3.7)

Pνe→νχ = sin2(2θ) sin2

(
∆m2 L

4E

)
(3.8)

∆m2 = m2
2 −m2

1 (3.9)

where ∆m2 is the mass splitting between the first and second neutrino mass

eigenstates. Expressing ∆m2 in eV2, L in km and E in GeV, equations (3.7)

and (3.8) are expressed as:

Pνe→νe = 1− sin2(2θ) sin2

(
1.27

∆m2(eV 2)L(km)

E(GeV )

)
Pνe→νχ = sin2(2θ) sin2

(
1.27

∆m2(eV 2)L(km)

E(GeV )

)
The conversion probability(survival probability) that an νe will appear as νe

or νµ/ντ is dependent on energy as well as oscillation parameters ∆m2 and

sin2 (2θ). The frequency of the oscillation is controlled by ∆m2 while the

amplitude, determined by measuring the difference between the total solar

neutrino flux (8B flux) and CC, is controlled by sin2 (2θ). No flavour trans-

formation takes place if all neutrino flavours have equal mass (m1 = m2) or

zero mass (m1 = 0,m2 = 0). In order for oscillation to occur, at least one

neutrino flavour has to possess non-zero mass. The vacuum oscillation (Lv) is

a distance over which an νe after oscillation is detected as an νe. Hence, Lv,

from the Equation (3.7) is

sin2(
∆m2Lv

4E
) = 0 (3.10)(

∆m2Lv
4E

)
= π (3.11)

Lv =
4πE

∆m2
(3.12)

47



Redefining Equation (3.7) in terms of Lv,

Pνe→νe = 1− sin2(2θ) sin2(
πL

Lv
) (3.13)

Pνe→νχ = sin2(2θ) sin2(
πL

Lv
) (3.14)

Putting back ~ and c in the (3.7) results in:

Pνe→νe = 1− sin2(2θ) sin2

(
∆m2c4L

4E~c

)

3.5 Mikheyev-Smirnov-Wolfenstein (MSW) Ef-
fect

The presence of matter complicates the simple formalism of neutrinos passing

through the vacuum. Neutrinos not only oscillate while propagating in space

but also oscillate while interacting with matter which changes its survival

probability, a phenomenon known as matter or "MSW" (Mikheyev-Smirnov-

Wolfenstein) effect. The neutrinos acquire effective masses from coherent scat-

tering processes in the matter. The coherent scattering of (νee− → νee
−) via

W± boson differentiates the electron neutrinos from the other neutrinos, as

shown in the elastic scattering diagram in figure 3.2. The MSW propagation

equation is:

i
d

dt

(
νe

νµ

)
=

1

2

(
−∆m2

2E
cos 2θ +

√
2GFNe

∆m2

2E
sin2 θ

∆m2

2E
sin2 θ ∆m2

2E
cos 2θ −

√
2GFNe

)(
νe

νµ

)
(3.15)

where GF is the Fermi constant and Ne is the density of electrons in the

media through which the ν travel. The factor of
√

2 was incorrectly omitted

in the original paper by Wolfenstein.

The additional term (
√

2GFNe) in the diagonal favours the electron neu-

trino since the only charged leptons in normal matter are electrons. The ad-

ditional interaction (term), shown in figure 3.2c, results in a different forward
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scattering amplitude for electron neutrino relative to the other neutrino types

which changes its relative propagation and thereby its flavour superposition.

The difference between the potential experienced by the electron νe and other

flavours χ of neutrino is:

∆V = Ve − Vχ =
√

2GFNe (3.16)

For neutrinos travelling through matter, Equations (3.4) and (3.5) are rewrit-

ten to show the relationship of mass eigenstates (ν1m, ν2m where m stands for

matter) in terms of flavour eigenstates (νe, νχ), and the angles for vacuum and

matter oscillations are denoted by θν and θm respectively.

ν1m = cos θm νe + sin θm νχ (3.17)

ν2m = − sin θm νe + cos θm νχ (3.18)

where θm is the matter mixing angle, defined by:

tan 2θm =
sin 2θν

cos 2θν −
√

2GFNe
E

∆m2

(3.19)

where θν is the mixing angle for the vacuum oscillation. The resonance occurs

when

cos 2θν −
√

2GFNe
E

∆m2
= 0 (3.20)

and θm = 45◦. At resonance the matrix (Equation (3.15)) becomes degenerate

since the diagonal terms are equal. Resonance can occur as neutrinos move

from high-density core to lower density further from the core.

Hence, when the resonance conditions are met maximal mixing can occur

even for small values of the vacuum mixing angle. The strength of the matter

oscillation depends on energy of neutrinos as well as density of the matter

through which the neutrinos are travelling. Therefore, neutrinos of different

energies can have different degrees of matter oscillation. Wolfenstein’s original

paper looked at a case of neutrinos passing through a slab of matter of constant
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density. Mikheyev and Smirnov realized that with varying density the diagonal

elements of the Equation (3.15) can become degenerate for certain values of

Ne and neutrino energy (various combinations of NeE) instead of one fixed ν

energy E. Since the diagonal terms have an energy dependence, the suppression

of νe is a function of energy.

3.5.1 Variable Electron Density

The Sun has a variable electron density, hence Ne is changing as neutrinos

propagate through variable density medium. The electron density at the core

of the Sun, where neutrinos are created, is at the highest. Hence θm ' π/2

from Equation (3.19); substituting in Equation (3.18) results in electron neu-

trinos to be in ν2m mass state. As the neutrinos propagate outwards, the

density is decreasing. At the surface, Ne ≈ 0 hence sin2 2θm ' sin2 2θν from

Equation (3.19), therefore, ν2m mass state consist of both νe and νχ flavours.

At the core ν2m consist of νe only and at the surface ν2m is the admixture of

νe and νχ. If the density is changing adiabatically, neutrinos will encounter

a layer where the resonance happens resulting in the flavour transformation.

Resonant conversion means that the oscillation probability reaches its maxi-

mum amplitude and does not depend on the vacuum mixing angle θν .

3.6 Predictions from MSW

The MSW effect leaves three distinct signatures on the observed neutrino

spectrum.

1. Matter Enhanced Oscillation

The ratio of the total number of detected neutrinos (NC in SNO) to

the electron neutrinos deduced from the CC interaction provides nearly

unequivocal evidence for neutrino oscillation. For the null hypothesis
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(no oscillation) the ratio should be one; from the vacuum oscillation, the

minimum ratio should be 0.5 (Refer to Section 3.4). From the final SNO

NCD analysis [29], the ratio is:

φCC
φNC

= 0.301± 0.033(total). (3.21)

So although the data from the solar experiments indicate oscillation en-

hanced by matter, MSW theory also makes two additional experimen-

tally testable predictions, neither of which have been observed.

2. Spectral Distortion

Since the survival probability is a function of neutrino energy and the

oscillation parameters (∆m2 and θ), the spectral distortion is a compli-

cated function. The resonance condition is never met for the low energy

neutrinos; high energy neutrinos encounter a resonance phenomenon that

suppressed electron neutrino flux for a certain values of the vacuum os-

cillation parameters, hence the 8B neutrino spectral distribution is dis-

torted.

3. Day-Night Effect

The day-night asymmetry (ADN) in neutrino flux is expressed as:

ADN ≡
2(φN − φD)

(φD + φN)
(3.22)

where φD and φN are the day and night 8B flux respectively. The dif-

ference in the number of neutrinos detected from above (φD - neutrinos

pass through very little of the Earth’s matter) to the number detected

from below (φN - neutrinos travel through large amounts of the Earth)

results in the day-night asymmetry. This is caused by ν − e interactions

in the Earth that regenerate the νe from νµ or ντ . The solar oscillation
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parameters predict fairly small ADN (about 1.5% [52]) hence the prereq-

uisite of measuring the day-night asymmetry is an excellent control of

systematic effects to reduce systematic uncertainty and a large sample

of data to reduce statistical uncertainty.

3.7 Experimental Evidence for Neutrino Oscil-
lation

The weakness of the weak interaction makes it necessary for a neutrino ex-

periment to have an intense source of neutrinos or a huge detector to detect

neutrinos [54]. The source employed dictates the sensitivity of an experiment

to the three sectors of neutrino oscillation.

3.7.1 Atmospheric Neutrinos

The collision of cosmic rays with nuclei in the upper atmosphere creates a

shower of hadrons, mostly pions which decay to atmospheric neutrinos as

shown in the following equations.

π− → µ− + νµ (3.23)

µ− → e− + νµ + νe (3.24)

π+ → µ+ + νµ (3.25)

µ+ → e+ + νe + νµ (3.26)

At low energies (Eν<1 GeV) there are approximately two νµ+νµ produced for

each νe + νe as a consequence of the above decay sequence. The flavour ratio,

R ≡ νµ + νµ
νe + νe

(3.27)

is a function of energy. As the energy of neutrinos increases above one GeV,

relativistic muons can reach the ground before they decay [53], therefore, the

ratio increases. Super-Kamiokande (SuperK) is a water C̆erenkov detector
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which detects electron neutrino and muon neutrino by their interaction with

the nuclei of hydrogen and oxygen in the 22.5 kiloton central fiducial mass of

water [46]. The neutrino flavour is tagged by detecting and identifying the

resulting charged lepton. The direction of C̆erenkov ring corresponds to the

direction of the outgoing lepton which is correlated to the incoming neutrino.

Similarly the amount of C̆erenkov light corresponds to the kinetic energy of

lepton (electrons or stopped muons4) which is correlated with the neutrino

energy. The distance travelled by the incoming neutrino is determined by the

arrival angle of the incoming neutrino with respect to the overhead point for

an observer (zenith). The range of flight distances from 15 km to 13 000 km

(15 km for vertically downward-going neutrinos and 13 000 km for vertically-

upward neutrinos) and the broad neutrino energy spectrum from sub-GeV

to multi-GeV makes the atmospheric neutrinos excellent probes of θ23 and

∆m2
32 sector of neutrino oscillation. Also experiments detecting atmospheric

neutrinos are sensitive to oscillations with ∆m2 down to 10−4 eV2 [18]. The

result of the search is:

χ ≡ νµ
νe

(3.28)
χD
χP

= 0.63± 0.03(stat)± 0.05(syst) (3.29)

where χD is the ratio of the number of muon neutrino to the number of electron

neutrino from the data and χP is the ratio from the prediction. Considering

the simple kinematics of pion decay, the ratio (R from equation (3.27)) is

well predicted which entails that the ratio χD
χP

is expected to be 1.0. Cos-

mic rays are randomized by interstellar magnetic field, therefore they arrive

at the Earth isotropically. Furthermore, cosmic rays, producing neutrinos

with energy above 10 GeV, are not deflected by the Earth’s magnetic field;
4Stopped muons are "fully contained" events and muons deposit all kinetic energy in the

detector whereas "partially contained" event is where a particle exits the fiducial volume
depositing only partial energy.
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consequently the cos θ distribution should be symmetric and the number of

atmospheric neutrino should be equal for equal bins with + cos θ and − cos θ.

However the result of the experiment was not consistent with this scenario.

Besides the ratio (R), the up/down asymmetry (A≡ up−down
up+down

) predicted to be

zero is greater than 6 standard deviations from the expected [78]. The mixing

Figure 3.3: Plot shows the cos θ distributions for electron neutrinos (νe) and
muon neutrinos (νµ). The cos θ distribution for νe is symmetric and fits the
prediction but the distribution for the νµ is not symmetric. The cos θ distribu-
tion for the muon neutrinos does not fit the expected but neutrino oscillation
model fits the data. Figure from [77].

angle for atmospheric neutrinos is at its maximum which points to a complete

mixing of flavours.

3.8 Solar Neutrinos

In 2001 Sudbury Neutrino Observatory in Canada provided the first direct

evidence of solar neutrino oscillation. The result from the extensive statistical

analysis was that 35% of the arriving neutrinos are electron neutrinos, the

remaining consist of muon neutrinos or tau neutrinos. The total number of
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neutrinos agreed well with the SSM predictions based on the fusion reactions

inside the Sun. The result from SNO also confirmed the interpretation of the

anomaly of atmospheric neutrinos in terms of neutrino oscillations. A positive

evidence for neutrino oscillations is a prof of non-zero rest mass of the neutrino.

3.8.1 Accelerator Neutrinos

The goal of experiments at accelerators is to perform precise measurement of

oscillation parameters (∆m2
23 and sin2

23), determine the pattern of neutrino

masses and investigate charge-parity (CP) violation in the neutrino sector.

The probability of conversion of νµ to ντ is:

Pνµ→ντ = sin2 2θ sin2
(∆m2L

4Eν

)
(3.30)

For determining the oscillation parameters:

∆m2c4L

4c~Eν
> 1 (3.31)

For smaller L/Eν :

θ ' 0

sin θ ' θ

Pνµ→ντ ∝ sin2 2θ (∆m2)2(
L

Eν
)2 (3.32)

Table 3.1 lists the neutrino path lengths of various experiments.

Experiment L (km)

K2K (Kek to Kamioka beam) 250

Fermilab to MINOS 730

CHGS (Cern to Gran Sasso) 730

JHF (Japan Hadron Facility) 290

Table 3.1: Path lengths L of various experiments. Table from [60].
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3.8.2 Reactor Neutrinos

The first neutrinos to be detected by Federick Reines and Clyde Cowan were

antineutrinos from a reactor adjacent to the Savannah River. For the detec-

tion, the detector uses the inverse beta decay (ν̄ + p → n + e+); the prompt

photons, emitted when e+ annihilates with an electron of matter, are followed

by a delayed photon when the neutron is absorbed by matter. The coinci-

dence window within which the prompt and the delayed photons are emitted

allowed the neutrino interactions to be separated from the backgrounds due

to radioactivity and cosmic rays. The most precise measurement of antineu-

trinos from reactors was achieved by KamLAND. From the KamLAND high

precision results, the oscillation pattern in the L/E is shown in figure 3.4.

258 ν̄e → ν̄e events observed.

365.2± 23.7 were the expected events without oscillations.

17.8± 7.3 expected background events.

disappearance confirmed at 99.998% C.L.

energy spectrum shows distortions with 99.6% C.L.

best-fit of KamLAND: ∆m2 = 7.9+0.6
−0.5 × 10−5 eV 2

best-fit of KamLAND + solar data: ∆m2 = 7.9+0.6
−0.5 × 10−5 eV 2, tan2 θ = 0.40+0.16

−0.07

Table 3.2: KamLAND result on 1 November 2004. Data from [20]

3.8.3 Oscillation Parameters - θ12 and ∆m2
21

All of the solar neutrino results were combined to obtain the best estimate

for the solar neutrino mixing parameters. The allowed regions in ∆m2 and

tan2 θ from χ2 fit to data from all three phases of SNO is shown in figure 3.5a.

From the global analysis of all solar neutrino data and the 2881 ton-year

KamLAND reactor antineutrino results, the allowed regions are shown in fig-

ures 3.5b and 3.5c. The best-fit point to the Solar global plus KamLAND data
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Figure 3.4: KamLAND obtained oscillation parameters from two cycles of
L/E. Figure from [20].

yields ∆m2 = 7.59+0.19
−0.24 × 10−5 eV 2 and θ = 34.4+1.3

−1.2 degrees, where the errors

reflect marginalized 1-σ range. The mixing parameter space strongly favours

the large mixing angle (LMA) region5 and the maximal mixing is ruled out

with very high significance – 5.3σ.

5The mass square difference ∆m2 ranges between the mass eigenstates from about 3 to
9 ×10−5 eV 2 while the mixing angle θ is in the range of tan2 θ ≈ 0.25− 0.65.
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Figure 3.5: Neutrino-oscillation contours. (a) all three phases of SNO. The
best-fit point is ∆m2 = 4.57 × 10−5 eV 2, tan2 θ = 0.447, fB = 0.900, with
χ2/d.o.f = 73.77/72. (b) Solar Global: SNO, SK, Cl, Ga, Borexino. The
best-fit point is ∆m2 = 4.90× 10−5 eV 2, tan2 θ = 0.437, fB = 0.916. (c) Solar
Global+KamLAND. The best-fit point is ∆m2 = 7.59 × 10−5 eV 2, tan2θ =
0.468, fB = 0.864. KamLAND constrains ∆m2 and Solar Global constraints
tan2 θ. Figure from [29].
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Chapter 4

Signal Extraction Techniques

4.1 Introduction

In SNO data, it is impossible to distinguish CC, ES and NC event-by-event

because the signal consist of the C̆erenkov light from a recoil or Compton

scattered electron. Hence the number of events, belonging to each event type,

is estimated using a Markov Chain Monte Carlo fit. MCMC relies on the

extended likelihood function to randomly draw samples of the posterior dis-

tributions for analysis. This section describes the likelihood function for the

combined three phase analysis of SNO data and all the components that go in

to it. The likelihood function begins with a list of all possible event types:

1. Charged current electrons – CC

2. Elastic scattering electrons – ES

3. Neutral current neutrons – NC

4. Background from (α, n) reactions on the surface of the acrylic vessel +

NCD cables – EX

5. Background from atmospheric neutrinos – Atmos

6. Background from the internal radioactivity in the D2O – d2opd
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7. Backgrounds from increased radioactivity "hot spots" on NCD string K2

– k2pd

8. Background from increased radioactivity "hot spots" on NCD string K5

– k5pd

9. Backgrounds from NCDs – ncdpd

10. hep CC – CC initiated by hep ν

11. hep ES – ES initiated by hep ν

12. hep NC – NC initiated by hep ν

The observables used to distinguish the signals in the NCD phase, analysed

in this thesis, are the event’s reconstructed energy (E), reconstructed direc-

tion with respect to the Sun (cos θ�), and the events’s reconstructed position

(x,y,z). A radial parameter, ρ, is calculated as ρ ≡ (
√
x2 + y2 + z2/RAV )3

where RAV = 600.5 cm is the radius of the acrylic vessel. The reconstruc-

tion technique that generate these observables for each event are described in

section 4.8.

4.2 Generation of Probability Distribution Func-
tion

The likelihood method requires a Probability Distribution Function (PDF) for

each event type in the dataset. The PDFs should be constructed to maximize

the use of the available information while minimizing any bias in the fit. The

correlations between observables were taken into account by building 3D PDFs

for all signals and backgrounds in the fit. For the NCD phase, the three

observables were volume-weighted variable ρ, the cosine of scattering angle

with respect to the Sun-Earth direction cos θSun and effective recoil electron
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energy (Teff). The 3D PDFs were built, according to the table 4.1, from Monte

Carlo generated events. The fiducial volume for the SNO analysis is 550 cm,

hence ρmax ' 0.77. Careful choice of a bin width has an impact on the bias

of the signal extraction. The bins should be narrow enough to fully define the

shape of the distribution so that no information is lost. However, statistical

fluctuation due to too narrow bin can distort the PDF shape and produce a

noticeable effect on the fit result.

Observable Number Range Bin Width

of Bins

ρ 10 0 to 0.77025 0.0770

cos θSun 25 -1.0 to +1.0 0.08

Energy Teff 13 6 to 20 MeV 0.5 MeV from 6-12 MeV

bin 13 has events from 12-20 MeV

Table 4.1: Ranges and binning used for each observable in the 3D PDFs.

4.3 Signals and Backgrounds

The backgrounds in SNO consist of cosmic rays, muons, instrumental back-

grounds and natural radioactivity from 238U and 232Th decay chains. The

design of SNO, with signals expected in a few tens of events per day, was dic-

tated largely by shielding and radioactivity considerations. All materials used

in the construction of SNO were carefully selected to ensure that the neutrino

signal was not overwhelmed by the radioactive backgrounds. Going from the

outer to the inner regions (Various regions of SNO are shown in figure 2.3),

the levels of uranium and thorium are on the order of parts per million for the

rock, parts per billion for the PSUP, parts per trillion for the AV and parts per

1015 for the D2O. The first three items (cosmic rays, muons and instrumental
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backgrounds) can be removed by the low level cuts1 applied to the data. The

radioactive backgrounds, still remaining in the data after the low-level cuts,

are classified as external and internal backgrounds: internal backgrounds are

those events occurring within the D2O volume itself and the external events

are events occurring outside the D2O volume, that is, on the AV, in the H2O

and/or the glass of the PMTs. The external backgrounds consist of β − γ

from the PMTs, 214Bi and 208Tl in AV and H2O. The internal backgrounds

are due to 214Bi and 208Tl in the D2O. Thorium and uranium in the NCD

nickel (bulk) and the presence of two areas of increased activity [strings K2

and K5], referred to as hot spots, increased the amount of radioactivity in the

detector [65].

The CC, ES, and NC event types, from the list in Section 4.1, are initiated

by neutrinos but the EX, Atmospheric and d2opd are due to neutron capture

on 2H. The intrinsic radioactivity backgrounds in the detector and from the

surrounding rocks in the cavity are due to 232U and 232Th decay chains, de-

scribed in tables A.2 and A.1. Besides the direct radiations, produced by these

radionuclides, alphas and neutrons (byproducts of the radiations) produce in-

direct radiations by interacting mostly through reactions (α,pγ) and (α,n)

with various light elements, in particular 29Si, 30Si, 27Al, 26Mg, and 23Na. The

neutrons released in these reactions or those from the spontaneous fission can

be captured to produce γ-rays with energies extending up to nearly 10 MeV.

These γ-rays can penetrate the detector and are the main source of background

emanating from the rock walls of the detector cavity. Backgrounds set a limit

on the low energy threshold for the analysis since the finite energy and spatial
1Low level cuts are: remove bursts of light which last for microseconds or longer, remove

events when a single PMT or small set of adjacent PMTs record a very high charge, remove
events when the charge integrate to zero (electronic noise), remove PMT hits without a
global trigger (orphans) or where a PMT is hit multiple times (burst event), remove events
which also include hits on outward looking PMTs, or on special PMTs installed in the neck,
and eliminate events which occur less than 20 seconds after a muon, or 250 milliseconds
after a likely atmospheric neutrino.
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resolution of the detector will allow a fraction of these events to be inseparable

from the solar neutrino events.

4.4 Neutral Current Backgrounds

The neutral current reaction (νx + d → νx + p + n) with the release of a

detectable neutron is unique to SNO and has its corresponding unique back-

grounds. Any event mimicking the neutrino disintegration of 2H is a back-

ground to NC. The most important source of these background neutrons are

photo-disintegration neutrons. A gamma ray (γ-ray) with energy greater or

equal to 2.2 MeV can split a deuterium into a proton and a free neutron

through a process called photo-disintegration. The background neutrons are

not distinguishable from the neutrons released when neutrinos with at least

2.2 MeV split deuterium nuclei into protons and neutrons. There are only

two β − γ decays in the 238U and 232Th chains that can produce sufficiently

energetic gammas to contribute to photo-disintegration – 214Bi and 208Tl. The

208Tl nuclei came largely from decays of intrinsic 232Th though the most likely

source of 214Bi is from decays of 222Rn entering the detector from mine air and

the remaining 214Bi nuclei originated from decays of intrinsic 238U. The decay

schemes of 214Bi to 214Po and 208Tl to 208Pb are outlined in figure 4.1.

One source of external neutrons is the (α,n) reaction. During the con-

struction, Radon 222Rn (from the 232U chain) in the mine air came in contact

with the acrylic surface. The decay product of radon that decayed within the

interior volume of the vessel are carried by electric fields to the surface, where

they are deposited and subsequently decay to 210Pb which covers the surface

of the detector. This is a problem since 210Pb, with a half-life (T1/2) of 22.3

years, is a long-lived source of 210Po. When 210Po decays to 206Pb, it emits a

5.4 MeV α which can interact primarily with light elements (2H,13C,17O and

18O in H2O, D2O and acrylic (C5H8O2)) emitting a free neutron. The largest
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Figure 4.1: Simplified decay schemes for 214Bi and 208Tl. Blue lines (going
straight down) represent γ transitions and red lines (slant in direction) repre-
sent β transitions. A γ with minimum 2.2 MeV can photo-disintegrate a 2H.
Figure from [65].

source of (α,n) reactions was the acrylic. The deployment of NCDs in the

D2O also contributed to (α,n) reactions. Even though the NCDs were elec-

tropolished, a small amount of 210Po remained on the surfaces of NCDs which

contributed to the total number of neutrons produced by (α,n) reactions. Us-

ing an external α counter on a representative sample of the NCDs, the rate

of neutron production was determined to be 1.38 ± 0.28 × 10−2 neutrons per

day [66]. Another source of external neutrons is the photo-disintegration of

deuterium from γ rays that originate outside the D2O volume.

Neutrons from internal photo-disintegration are not discernible from NC

neutrons so the intrinsic radioactivity was measured independently and its

neutron production was subtracted from the final NC result. External neu-

trons, on the other hand, have a distinct radial profile – as shown in blue in

figure 4.3 – which enables MCMC to statistically tell them apart from signals

and other backgrounds.
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4.5 Low-Energy β − γ decays

Although the energy threshold of 6.0 MeV is above the energies of β particles

and γ rays produced in natural radioactive decay, there are three ways in

which these events may be reconstructed to resemble a neutrino event in the

fiducial volume (i) the combined signals from coincident β particles and γ

rays or the random coincidences of two or more decays may exceed the trigger

threshold and hence contribute to the data (ii) a neutron, released by a low-

energy (at least 2.2 MeV) γ ray induced photo-disintegration of 2H, mimicking

an NC event (iii) even though the radioactivity decay rate in ≈ 10,000 PMTs

is 108 to 109 decay per day2, the events rarely reconstruct in the D2O volume

because the PMTs are located far away from the D2O and the presence of

H2O between PMTs and D2O shields the volume of interest from the β − γ

decays of the PMTs. However multiple events in the PMTs or from the PMTs

and other materials happening in coincidence, within the trigger time window,

will occasionally be reconstructed into the D2O volume. Single β activity in

a particular PMT glass is easier to reject because a large signal is confined to

that particular PMT.

4.6 Atmospheric Neutrinos, Muons and Muon
Followers

The only particles which can penetrate the 2,039 metres of rock overburden

and enter the sensitive volume of SNO are neutrinos and high energy muons.

Atmospheric neutrinos constitute as background to the solar neutrinos but 1

event per 1 Gigagram per year per 10 MeV bin width is not significant for

SNO [67]. Most of the atmospheric ν interactions deposit a large (≥ 20 MeV)
2Statistically, with 109 decays/day there are events with a high energy but they are

rejected because of their large reconstruction error.
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amount of energy and multiple charge particles at the interaction vertex3 but

a small number of interactions release single neutrons (the elastic scattering

of νµ + n → νµ + n and resonance production of pions via νµ + p → ∆+ →

νµ+π+n) or low energy photons without a detectable tag. Furthermore, there

is a possibility of a ν interaction creating an excited state of 16O∗ that de-

excites to give photons in 6 MeV range which is a background for the charged

current analysis.

Muons, at a rate of approximately 3 per hour in SNO, are also not a sig-

nificant background since the energy deposited in the detector is much greater

than the energy deposited by neutrino induced events. The problems with

muons are the spallation4 products they generate when they interact with hy-

drogen and oxygen nuclei in the detector. Muon-induced 16O spallation prod-

ucts, such as, 8B, 12B and 12N are high-energy β emitters (13 to 16 MeV en-

ergies) with half-lives between 10 to 800 milliseconds. These spallation events

are identified by their characteristic time signature, a high energy muon signal

followed by a β decay signal. The spallation products are mostly neutrons

which lead to a signal that is indistinguishable from the NC neutrino signal.

The leakage of the spallation neutron events into the dataset is less than 0.014

neutrons per day for the D2O phase compared to ≈ 1.3 neutrons/day [68]

from the radioactivity in the detector. We include it in the list of other back-

grounds, which are small, but which are tallied, along with an uncertainty,

and subtracted from the NC signal. When 150 PMTs are hit or/and five

outward looking PMTs are also hit, the events are tagged as muon events.

Events occurring within 20 seconds of an event, tagged as muon event, are

also removed to prevent spallation neutrons (muon followers) from entering

the dataset. An additional neutron background cut imposed a 250×10−3 dead
3These events are cut by a burst cut and the energy cut (6 ≥ E < 20 MeV)
4spallation is a high-energy nuclear reaction in which several nucleons are released from

the nucleus of a target atom.
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time (in software) following every event in which the total number of PMTs

which registered a hit exceeded 60 [10].

4.7 Backgrounds to Charged Current and Elas-
tic Scattering

Energetic electrons due to β decay and Compton-Scattered γ rays (γ + e− →

γ + e−) which reconstruct inside the fiducial volume constitute backgrounds

to CC (νe + d → p + p + e−) and ES (νx + e− → νx + e−). The sources of

β decays, shown in tables A.2 and A.1 and the main sources of γ rays with

energy exceeding 2.2 MeV are 2.445 MeV γ-ray from the decay of 214Bi and

2.615 MeV γ-ray from the decay of 208Tl shown in figure 4.1.

Additionally neutrons from NC, from photo-disintegration of 2H and from

outside the D2O vessel can be captured by 2H producing a 6.25 MeV γ-ray. In

the salt phase, a neutron capture in chlorine resulted in a cascade of γ rays with

a total energy of 8.65 MeV. The gamma rays, from neutron capture, imparts

energy via Compton scattering to electrons beyond C̆erenkov threshold, thus

making them similar to CC or ES electrons. In the NCD phase, a neutron

captured in the NCDs did not constitute as a background to the CC and ES

interactions resulting in reduced uncertainty on the number of CC events in

the NCD phase.

4.8 Observables

Observables are the reconstructed attributes of an event derived from the hit

patterns recorded by the PMTs of the detector. For SNO, the observables

for statistically separating the signals and backgrounds in the NCD phase are

energy (Teff) radial position (ρ) and direction of an event relative to the Sun

(cos θ�). Distributions shown in figures 4.2 to 4.5 were used to create prob-
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ability distribution functions (PDFs) for performing an extended maximum

likelihood fit to the data using MCMC Metropolis algorithm. These PDFs

were generated from Monte Carlo simulations assuming no flavour transforma-

tion and the shape of the standard 8B spectrum. The Monte Carlo simulation

included a detailed model of the physics of neutrino interactions and radioac-

tive decays within the detector and a meticulous description of the detector

geometry.

4.8.1 Energy

The reconstructed kinetic energy of an event, called Teff, is the most probable

energy of a single electron that produced the hit pattern of PMTs observed.

The CC, ES and ESµτ spectra depend on the shape of incident neutrino spec-

trum. The observable energy is very important for separating β decays or γ

rays from neutron capture from the higher energy neutrino-events which also

produce electrons. Figure 4.2 shows the energy distribution of NC, CC, EX,

K5PD and NCDPD along with a line at the 6.0 MeV energy threshold.

4.8.2 Vertex of Event

One of the observable is a vertex (x,y,z) where the event occurred. For con-

venience, when making the PDFs, instead of using the vertex, the normalized

cubic radius (ρ = ( R
RAV

)3, RAV = 600 cm) is used because of the spherical

shape of the detector (figure 2.1). The radial distance (R) is calculated as:

R =
√

(x2 + y2 + z2) (4.1)

In terms of ρ, an event on the surface of AV will have ρ =1 and an event

at the center will have ρ =0 , and events distributed uniformly throughout

the detector will have a flat distribution in ρ. Figure 4.3 illustrate radial

distributions of NC, CC, EX and NCDPD along with fiducial volume cut at

ρ < 0.77025.
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Figure 4.2: Distribution of energy for for NC, CC, EX, K5PD and NCDPD in
the energy window of 5-20 MeV. For this plot fiducial volume cut is applied
at ρ < 0.77025.

Radial position is important in separating external events from the internal

events; compare the radial distribution of external neutrons in blue to NCDPD

neutrons in green in figure 4.3. This shows that ρ is a very useful tool in

statistically separating external from the internal backgrounds, for instance

NCDPD. As a neutron thermalizes, it wanders off and since hydrogen in the

acrylic (C5H8O2) and light water (H2O) is an efficient neutron sink, the radial

distribution of NC (in red) is not as flat as the radial distribution of CC (in

cyan) in figure 4.3. Hence radial distribution also provides a weak handle

on NC events. Although the D2O volume extends to R=600 cm, background

events from the rest of the detector leak into this volume. By defining a fiducial

volume of 550 cm, a large number of these events were rejected.
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Figure 4.3: The normalized radial distribution for the NC, CC, and EX in the
energy window of 6-20 MeV. The power of ρ to separate the external events
from the internal events is very clear as external backgrounds have a steep
distribution in ρ. Energy range for this plot is 6 to 20 MeV.
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Figure 4.4: Distribution of Cos θ� for EX, CC, ES and NC. Both energy
(6.0≤ E < 20) and fiducial volume (ρ < 0.77025) cuts are applied to plot the
distributions. ES peak at cos θ ' 1 pointing away from the Sun proves that
Sun is the origin of neutrinos.

4.8.3 Cosine θ�

Cosine θ is a reconstructed direction of an event relative to the direction of

a ν arriving from the Sun. Cosine θ = 1 means forward scattered electron

and Cosine θ=-1 means electron scattered in the backward direction. Recoil

electrons from ES have a strong forward scattering peak (figure 4.4.). This

confirms that the Sun is the source of neutrinos. The angular correlation is

key to separate ES events from other events in SNO.

The recoil electrons from CC also have a weak angular dependence as shown

in figure 4.5. The distribution of angles between the incident neutrino and the

recoil electron is described as: 1− 0.340 cos θ� [69]. This feature was used to

help separate CC from other signals and backgrounds in SNO.

The NC distribution is flat because a γ from a neutron capture has no
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Figure 4.5: Distribution of Cos θ� for CC (dotted line in pink). Both energy
(6.0≤ E < 20) and fiducial volume (ρ < 0.77025) cuts are applied to plot the
distributions. For comparison the distributions of Cos θ� for NC and EX is
also included.

memory of the incident neutrino direction and since backgrounds had no cor-

relation with the Sun’s position in the sky, they also exhibited a completely

flat distribution.

4.9 Data Selection Cuts

One example of instrumental backgrounds is static discharges inside the PMTs,

which generate flashes of light. Such events are called "flashers" for any given

PMT. Although flashers are rare, they contribute significantly when integrated

over the entire array. The events belonging to instrumental backgrounds are

distinguishable from C̆erenkov light and so can be identified and removed based

on an analysis of charge and timing distribution of the triggered PMTs, the

spatial distribution of PMT hits and/or the firing of specific photomultiplier

veto tubes. A number of cuts were applied in the analysis to remove the

instrumental backgrounds; these are fully described in reference [70]. Each cut
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returns a simple binary decision which was stored in a Data Analysis Mask

Number (DAMN) bank. A DAMN mask is applied to the dataset in a bitwise

manner to select events passing specific cuts for a specific analysis. Another

level of cuts, applied both to the Monte Carlo and the real data, are called

high level cuts. These are applied to the reconstructed quantities, for example,

event energy, event position and direction and event time. Backgrounds which

originate outside of the fiducial volume but reconstructed far from the their

true location will generally have very unusual hit patterns. The purpose of

high-level cuts are to remove these events. Examples of high-level cuts include:

• In-Time Ratio (ITR): ITR is a ratio of the number of PMTs hit in the

prompt time window of ±10 nanoseconds compared to the number of

PMTs hit outside the window. The ITR cut is ITR> 0.55. A C̆erenkov

event was fairly instantaneous, therefore had a high ITR≈ 0.75; misre-

constructed and non-C̆erenkov events, such as electronic noise, produced

light which was spread over a longer period of time and consequently had

smaller values of ITR.

• The energy estimator, for the D2O and Salt phases, returns a most prob-

able energy, as well as an uncertainty on the energy. Since misrecon-

structed events tend to have very large uncertainties, they can be thus

removed.

The high-level cuts are: ρ <0.77025, -1≤ Cos θ� <1.0 and 6 MeV≤ energy<20 MeV.

4.10 The Likelihood Function

The likelihood of an event is a probability of observing that event given the

measured values (~xd) of the observables (Energy, cos θ�, ρ) and models of event

classes (PDFs) to which that event might belong. The likelihood function is
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the product of the probabilities for each event in the dataset:

L =

ND∏
d=1

F (~xd, ~P ) (4.2)

where ND is a number of events in the dataset, ~xd are the values measured

for observables for an event d and F(~xd, ~P ) is the probability density func-

tion returning the probability of observing the event with observables ~xd and

the current values of the fit parameters ~P . The SNO dataset consists of dif-

ferent signal classes. In this case, the probability of measuring a specific set

of observable values (~xd) becomes a linear combination of the probability of

measuring those values for an event of each signal type:

F (~xd, ~P ) =
Ns∑
i=1

ciFi(~xd, ~P ) (4.3)

=
Ns∑
i=1

ni
ND

Fi(~xd, ~P ) (4.4)

where Ns is the total number of signals in the fit, ci is a component of ~P

representing the probability of observing an event of signal type i which is the

fraction of the events of that type in the dataset ( ni
ND

), ni is the number of

events belonging to signal type i in the dataset, ND is the number of events in

the dataset and Fi(~xd, ~P ) is the probability of event type i having observables

values (~xd) and the current values of the fit parameters ~P . The number of

events observed in the dataset is actually Poisson distributed around the true

mean value of the model, µ. The number of events for a signal type i (ni)

represents Poisson fluctuation about the value µi. In order to fit for the true

value µi for each signal, the Poisson fluctuation of ni is taken into consideration

in the likelihood function. The extended likelihood function is:

L = µND
e−µ

ND!

ND∏
d=1

F (~xd, ~P )

=
e−µ

ND!

ND∏
d=1

µF (~xd, ~P ) (4.5)
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where µ =
Ns∑
i=1

µi such that µi = µ(ni/ND). Taking the log of the likelihood

function:

log L = −µ− logND! +

ND∑
d=1

log
(
µF (~xd, ~P )

)
(4.6)

Ignoring logND! because it is a constant number and has no influence on the

posterior distribution and substituting equation (4.4) in the above equation

results in the following equation:

log L = −
Ns∑
i=1

µi +

ND∑
d=1

log
(
µ

Ns∑
i=1

(ni/ND)Fi(~xd, ~P )
)

(4.7)

Substituting µi = µ(ni/ND) results in:

log L = −
Ns∑
i=1

µi +

ND∑
d=1

log
( Ns∑
i=1

µiFi(~xd, ~P )
)

(4.8)

where ~P (which include µi) are the parameters fitted in the MCMC fit.

Taking into account the day-night asymmetry due to MSW effect and the

detector response, the likelihood equation changes to:

log L = −
2Ns∑
i=1

µi +

ND∑
d=1

log
( 2Ns∑
i=1

µiFi(~xd, ~P )
)

(4.9)

where each event class was split into two cases: day and night.

This is a simple likelihood function without any constraints or floating sys-

tematic uncertainties. From this point on, I will explain different components

that go into the calculation of a number of events; application of different

systematic uncertainties (Subsection 4.10.3), constraints applied on the sys-

tematic uncertainties (Subsection 4.10.4) and the role the systematic uncer-

tainties play in the calculation of the number of events (Subsection 4.10.5),

floating PMT NC detection efficiency (Subsection 4.10.1), constraints applied

from external measurements on the number of events (Subsection 4.10.6), the

role of survival probability of ν in computing the number of events of CC,
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ES and ESµτ (Subsection 4.10.7), constraints applied from different analysis

(Subsections 4.10.8 and 4.10.9) to reduce the systematic uncertainties of the

final result from the MCMC fit. Subsection 4.11 is a synopsis on the com-

putation of the number of events of different event classes and at the end in

the summary 4.13 all the components of the log likelihood will be combined

in the final log likelihood function (4.80). Section 4.12 describes determining

the goodness of a fit by performing pull and bias study of the fit.

4.10.1 Flux to Event Conversion Factor (F2EF) and Fidu-
cial Volume Correction – Si

One of the parameters, neutron capture efficiency, is floated via flux-to-event

conversion factor which includes livetime, neutron detection efficiency and cor-

rection factors. F2EF is used to convert the number of events, that passed the

high-level cuts, into a flux; F2EF for NC is calculated as:

Nmodel
nc = Rnc LT εnc εcorr (4.10)

F2EF = fnc =
Nmodel
nc

φSNOMAN
(4.11)

where LT=392.89 days is the livetime of the NCD phase, φSNOMAN is NC

flux in Monte Carlo (5.14× νs 106cm−2sec−1), εnc = 0.0485 is the neutron

capture efficiency for the PMTs in the NCD phase and Rnc = 13.27 is the

rate of neutrons per day expected in SNO after high level cuts. Since the

simulation does not mirror the data perfectly, corrections εcorr are applied to

the number of the predicted events.

The fiducial volume correction is calculated each time the parameters are

changed which entails rebuilding the PDFs for the changed values of the pa-

rameters; Si is a ratio of the number of events (Nmc
k for step k in MCMC)

inside the ρ, Energy and Cos θ� cuts for the current values of the systematic

parameters to the number of events (Nmc

default) passing the same cuts for the
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default systematic parameters used to build PDFs from the SNOMAN Monte

Carlo. Mathematically expressed as:

Si =
Nmc
k

Nmc

default
(4.12)

4.10.2 Calculation of the Number of Events for the Neu-
tral Current and the Backgrounds

This section describes the methodology for calculating the expected number of

day (equation (4.20)) and night (equation (4.21)) events for the backgrounds:

EX, d2opd, atmospheric neutrinos, k2pd, k5pd and ncdpd. To take into ac-

count the possibility that a systematic uncertainty or number of events for a

background might have different values for a day and night data, a day-night

analysis was carried out [92]. One option is to split the uncertainty into two

uncertainties βd and βn where βd is used when calculating fluxes or build-

ing/normalizing the PDFs for the day while βn is used for the night data. A

better option is to float an average on β and an effective day-night asymmetry

on β. Mathematically expressed as:

β =
(βn + βn)

2
(4.13)

Aβ =
2(βn − βd)
(βn + βd)

(4.14)

Inverting these two equations gives βn and βd in terms of β and Aβ.

βn = (1 + Aβ/2)β (4.15)

βd = (1− Aβ/2)β (4.16)
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A = 2
(rn − rd
rn + rd

)
(4.17)

r ≡ rd + rn
2

(4.18)

α =
r

rnom
(4.19)

NDay = α
nnom
N(~η)

(1.0− 0.5A)Nd(~η) (4.20)

NNight = α
rnom
N(~η)

(1.0 + 0.5A)Nn(~η) (4.21)

N = NDay +NNight (4.22)

where

• α is average background rate r in the data in terms of a most likely value

from an external measurement rnom. This is the default rate used in

the MC.

• N – the number of background events.

• A – the day-night background asymmetry for this event type.

• rd and rn – rates in the data for a day and night respectively.

• rnom - the nominal background data rate corresponding to the most likely

value from an external measurement.

• N(~η) – the number of background events in the Monte Carlo which

satisfy the cuts after the application of current systematic parameters ~η.

• nnom – the number of background events corresponding to the external

measurement.

• Nd(~η) and Nn(~η) – the number of day and night Monte Carlo generated

events that satisfy the cuts after the application of current systematic

parameters ~η.
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Except d2opd and EX neutrons background, the day-night asymmetry A

is zero for all other backgrounds. In the MCMC fit, α is floated – along with

A (where applicable) – rather than the number of events.

The number of events for NC were calculated as:

NDay = f8B f
PMT
NC

( Nd(~η)

Nd(~η) +Nn(~η)

)
(4.23)

NNight = f8B f
PMT
NC

( Nn(~η)

Nd(~η) +Nn(~η)

)
(4.24)

N = NDay +NNight (4.25)

where f8B and fPMT
NC are current MCMC values of 8B flux and flux-to-event

ratio for NC from the PMTs.

4.10.3 Systematic Uncertainties

The position, time and direction of an event were reconstructed by simultane-

ously fitting them using the hit times and locations of the hit PMTs. After the

vertex and direction reconstruction from the maximum log likelihood method,

they were used in the estimation of event energy. Hence the dominant sources

of systematic uncertainty in the signal extraction fit are concerned with the re-

construction accuracy and are listed in tables 4.2 to 4.5. Data from calibration

sources deployed within the detector were compared to Monte Carlo predic-

tions (from the vertex and direction reconstruction algorithm) and the full size

of the difference was taken as the magnitude of the uncertainty. The differ-

ences between the calibration data and the reconstructed data from Monte

Carlo were parametrized as four types:

(i) vertex offset is a constant offset between an event’s true and recon-

structed position.

(ii) vertex scale is a position dependent bias in the reconstructed position

that is proportional to the difference between the reconstructed event and the

actual location of the source in the calibration data.
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(iii) vertex resolution is a width of a distribution of the reconstructed event

positions.

(iv) angular resolution is the width of the distribution of reconstructed

event directions relative to the initial electron direction of the source.

Since these uncertainties can alter the predictions for the number of events

reconstructed inside the fiducial volume and can additionally alter the shape of

the PDFs used in the signal extraction, we incorporate systematic uncertainties

into the analysis as parameters in the likelihood function which are allowed

to "float" meaning vary within ±10σ where σ is width of constraint from

external measurement or found from trial and error to get good acceptance

in the Markov Chain and autocorrelation coefficient to drop to zero within

the first 10,000 steps and remain stable (figure 5.2). The purpose of floating

the systematics is to properly calculate the correlation between systematic

effects and to allow the data to tell us how the scales and resolution differ

between data and Monte Carlo within the constraints from the calibration

data. By modelling the differences as a possible remapping of the observables

for Monte Carlo generated events, the PDFs are rebuilt using the scaled and

smeared values of the observables on each evaluation of the log likelihood

calculation. The parameters of the remapping are fitted to determine the

extent of remapping allowed to the MC observables while still matching the

ρ, Cosine θ� and Em of the data. Day-night events are selected by using a

day-night tag in the Monte Carlo; for the NCD phase day-night tag is 30 for

day events and 31 for night events. Tables 4.2 and 4.3 list the parameters

involved in the determination of the energy of an event, tables 4.4 and 4.5

list the systematic parameters involved in the determination of a direction

and a location of an event. One of the prediction of a "matter enhanced"

oscillation is an asymmetry in a day and night fluxes but the asymmetry can

also arise because of the variations in detector response over a 24-hour time
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scale, for instance, diurnal variations in a laboratory’s temperature. SNO’s

2 km underground location isolate it from diurnal effects but limits must be

placed on their size.

Directional systematics arise because SNO is not completely spherically

symmetric, and because the directions of CC and ES events are correlated

with the time of the day. ES events, in particular, preferentially illuminate

the upper half during the night and lower half during the day. Any differences

in the up-down response of the detector or variations in detector response

with the direction of the event will manifest these directional differences as a

day-night asymmetry. The γ-rays emitted by neutron capture have random

directions, hence asymmetry in detector response produce no day-night effects

on NC events.

Energy Systematics

Energy Scale – aE0

Parameter Description Central Constraint

Value

a1 Energy scale (correlated) 0 ±0.0041
a2 Energy scale 0 ±0.0081
a3 Energy scale Diurnal 0 ±0.0038

asymmetry

a4 Energy scale Directional 0 ±0.0099

asymmetry for es only

c0 Energy non-linearity 0 ±0.0069

Table 4.2: Various parameters for the uncertainty in the energy scale.

For the day events,

aE0 = (1.0 + a1 + a2) (1− 0.5 a3 − 0.5 a4) (4.26)
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For the night events,

aE0 = (1.0 + a1 + a2) (1 + 0.5 a3 + 0.5 a4) (4.27)

where a4 is zero for all classes except ES and ESµτ . The energy non-linearity

systematic uncertainty – applied to CC, ES, hep CC and hep ES – accounts for

possible changes in the energy scale away from the 16N source used to calibrate

the energy scale. This uncertainty is correlated between all three phases.

Energy Resolution – bE0

Parameter Central Value Constraint

Energy resolution b0 0.0119 ±0.0104
for a neutron

Energy resolution 0.0162 ±0.0141
for an electron

Directional asymmetry 0 ±0.012
in resolution for ES only – b1

Table 4.3: Various parameters for the uncertainty in the energy resolution.
Energy resolution for a neutron and an electron is 100% correlated.

For the day events,

bE0 = b0 (1− 0.5 b1) (4.28)

For the night events,

bE0 = b0 (1 + 0.5 b1) (4.29)

where b1 is zero for all classes except ES and ESµτ .

Equations for remapping energy

Equations (4.30) is applied for CC, ES, ESµτ , hep CC and hep ES. Equa-

tion (4.31) is for NC and neutron backgrounds.

Tremap = aEo T0 + 1.3613 bE0 (T0 − Tg) + c0 T0(T0 − 5.05MeV)/(19.0− 5.05)MeV(4.30)

Tremap = aEo T0 + bE0 (T0 − 5.65MeV) + c0 T0(T0 − 5.05MeV)/(19.0− 5.05)MeV(4.31)
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where T0 and Tg are the reconstructed energy and the Monte Carlo energy

respectively and Tremap is the remapped energy which can be directly compared

to the data. To calculate the energy resolution of neutral current (nc) and 9

backgrounds, the number 5.65 MeV is used as a mean Tg for every event

in the MC in equation (4.31). Equation (4.30) is employed to remap the

energy of electron classes, for example, cc, es and esνµ. Neutron classes are

neutral current and all the neutron backgrounds (ex, atmos, d2opd, k2pd,

k5pd, ncdpd, hep NC) and electron classes are CC, ES, ESµτ , hep CC and hep

ES.

Angular Resolution (Cosine θ�) for ES only

Parameter Description Central Value Constraint

bθ0 Resolution 0.0 ±0.12
bθ1 Directional asymmetry 0.0 ±0.069

Table 4.4: Uncertainty in the angular resolution.

For day events Cos θremap = 1.+ (1 + bθ0)(1− bθ1)(Cos θ − 1) (4.32)

For night events Cos θremap = 1.+ (1 + bθ0)(1 + bθ1)(Cos θ − 1) (4.33)

where θ is the angle of the Monte Carlo event relative to the direction of the

Sun and Cos θremap is the remapped observable to build the 3D PDF (ρ, Cos

θ�, T0). Events that are pushed passed cos θ� = ±1.0 are randomly assigned

a Cos θ value in the interval [-1.0,1.0].
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Vertex (x,y,z) Systematics

Monte Carlo events are generated at vertex (xg,yg,zg)5 and energy Tg while

vertex (x,y,z) with the energy T0 are the reconstructed vertex and energy of

the Monte Carlo events.

Parameter Description Central Width of

Value Constraint

axyz1 x,y,z coordinate scale 0.0 +0.0029-0.0077

(100% correlated)

axyz2 Diurnal asymmetry 0.0 ±0.0015
axyz3 Directional asymmetry 0.0 ±0.0018

for ES only

ax0 x offset 0.0 ±4.0
ay0 y offset 0.0 ±4.0
az0 z offset 5.0 ±4.0
bxy0 x,y resolution constant 0.06546 ±0.000818124
bxy1 x,y resolution linear -5.501× 10−5 ±3.66098×10−9

bxy2 x,y resolution quadrature - 3.9×10−7 ±3.92118×10−14

bzs z scale 0.0 +0.0015-0.0012

bz0 z resolution constant 0.07096 0.00078696

bz1 z resolution linear 1.155×10−4 ±6.80761×10−9

cxyz0 energy dependence in the 0.0 +0.0087-0.0067

fiducial volume uncertainty

Table 4.5: Uncertainties in the reconstruction of a vertex.

axyz0 = (1.0± 0.5 axyx2 ± 0.5 axyz3 ) (4.34)
5For analysis purposes Cartesian coordinates are defined such that the center of the

acrylic vessel is at (x,y,z)=(0,0,0) and the neck of the acrylic vessel is located symmetrically
about the positive z axis.
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where+ is for a night event and - is for a day event. We find the corresponding

remapped MC variables:

xremap = ax0 + (1.0 + axyz1 )axyz0 x+ (bxy0 + bxy1 z + bxy2 z2) (x− xg) (4.35)

yremap = ay0 + (1.0 + axyz1 )axyz0 y + (bxy0 + bxy1 z + bxy2 z2) (y − yg) (4.36)

zremap = az0 + (1.0 + axyz1 + bzs) z + (bz0 + bz1 z) (z − zg) (4.37)

R =
√

(x2
remap + y2

remap + z2
remap (4.38)

ρ = (R/600.0)3 (4.39)

4.10.4 Application of Constraints on the Systematic Un-
certainties

A penalty is applied on the fit if an external measurement is used to directly

constrain a fit parameter. Since all systematic uncertainties were measured

from comparing the calibration data to the Monte Carlo simulation of the

calibration data, a constraint term for each systematic uncertainty is added to

the log likelihood function. Values for the mean and sigma of these constraints

terms comes from calibration measurements or Monte Carlo simulation. For

the C̆erenkov data, constraints were largely obtained from 16N calibration

data. The energy uncertainties are described in [29] and the reconstruction

uncertainties are described in [90]. When the systematic uncertainties are not

correlated among themselves, the constraint term is calculated as:

− log L =
1

2

∑
i

(
pi − p̄i
σpi

)2 (4.40)

(4.41)

where pi, p̄i and σpi represent the current value of the systematic uncertainty

i in the MCMC fit, its mean and constraint width respectively. The three

parameters (bxy0 , bxy1 and bxy2 ) – common to x and y coordinates – are correlated,
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and the constrained term is calculated using a covariance matrix:

− log L =
1

2

2∑
i=0

2∑
j=0

(bxyi − ¯bxyi )(bxyj − ¯bxyj )(V −1
bxy )ij (4.42)

Similarly, the constraint term for two parameters, for a z-dependent vertex

resolution, is calculated as:

− log L =
1

2

1∑
i=0

1∑
j=0

(bzi − b̄zi )(bzj − b̄zj)(V −1
bz )ij (4.43)

where the covariance matrices Vbxy and Vbz [90] are: 0.000818124 −2.24984× 10−7 −4.19131× 10−9

−2.24984× 10−7 3.66098× 10−9 3.71423× 10−12

−4.19131× 10−9 3.71423× 10−12 3.92118× 10−14


(

0.00078696 3.47188× 10−7

3.47188× 10−7 6.80761× 10−9

)
If the uncertainty has asymmetric errors, the constraint is applied to the

likelihood as:

L =

√
2

π

1

σ− + σ+

e−0.5
[

(x−µ)/σ
]2

(4.44)

σ =

{
σ− if x < µ

σ+ if x ≥ µ
(4.45)

where σ− and σ+ allow for asymmetric uncertainties, x is the current value

of the uncertainty in the MCMC fit, µ and σ are the mean and width of

the uncertainty respectively. The log likelihood term, corresponding to these

constraints, is simplified, after dropping the constants, to:

log L = −0.5
(x− µ

σ

)2 (4.46)

4.10.5 Application of energy dependent fiducial volume
and uncertainty in the shape of 8B neutrino en-
ergy spectrum

Fiducial volume in SNO is fixed at 550.0 cm. The fiducial volume uncertainty is

applied by assigning an uncertainty to every event’s vertex (x,y,z) in the Monte
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Carlo. The energy dependent fiducial volume and uncertainty in the shape of

the 8B ν energy spectrum are coupled together because they are applied as

weight to some PDFs. The uncertainty to the shape of 8B ν energy spectrum

is applied in accordance with the limits from the paper published by Winter

et al.in [95]. Henceforth this uncertainty will be called Winter uncertainty in

this thesis.

Each MC event gets weighted by a factor Wij (ij: current step i for class j)

when building the PDF:

Wij = 1.0 + cxyz0 (aE0 T0ij − 5.05MeV) (4.47)

Wij in equation (4.47) is an energy-dependent fiducial volume factor applied

around the midpoint of the 16N energy (5.05 MeV), where aE0 Tij is the scaled

reconstructed effective electron kinetic energy. The Winter 8B spectral shape

uncertainty is propagated in MCMC by reweighing the CC, ES and NC events

using the function:

W ′
ij = Wij

(
1.0 + (

w

3
)(0.018− 0.001999× Eij − 0.000088769× E2

ij)
)

(4.48)

Wj =

Nj∑
i=1

Wij/Nj for backgrounds (4.49)

Wj =

Nj∑
i=1

W ′
ij/Nj for signals (4.50)

Wnc =

Nj∑
i=1

(
1.0+(

w

3
)(0.018−0.001999×Eij−0.000088769×E2

ij)
)
/Nj (4.51)

whereWij is used for the backgrounds andW ′
ij is used for the signals. These

are applied as a weight to the MC event i used to define the PDF belonging to

the class j,Wj (equation (4.49) for the backgrounds or (4.50) for the signals) is

the factor by which the number of expected events is modified, cxyz0 takes into

account dependence of the reconstruction of a vertex of an event on the energy
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of the event, w is a systematic parameter which has a normal distribution of

N (0,1), Eij is a neutrino energy and Nj is the number of events that pass

the cuts for class j. The expected number of neutral current events on the

NCD-side of the NCD phase is modified by Wnc. The calculated number of

day and night events on the C̆erenkov-side, nj, is modified by:

Nj = nj ∗Wj (4.52)

where nj is the number of events belonging to the class j, and Nj is the modified

number of events for the class j after the application of the above mentioned

uncertainties. The application of Nj in the calculation of the log likelihood is

described in equation (4.80).

4.10.6 Constraints from the Backgrounds added to the
Likelihood Function

Ex-situ/in-situ radioassays were performed to measure the concentrations of

214Bi and 208Tl in the detector. These concentrations are converted to the

expected number of events in the analysis window which were used to constrain

the number of events for each background. The constraints were assumed to

be Gaussian and applied in the likelihood function as:

log L =
m∑
i=1

log (Ci(µi)) (4.53)

where Ci is the Gaussian probability of obtaining µi background events of type

i and m is the number of backgrounds. Substituting the Gaussian function

e
−(Ni−µi)

2

(2σ2
i
) in equation (4.53) and taking the log will result in:

log L = −
m∑
i=1

(Ni − µi)2

(2σ2
i )

(4.54)

where Ni is the number of background events of type i in the current step. If

σi is comparable to µi then the Gaussian distribution will not be symmetric

because the number of events can not be negative. This issue is discussed in

detail in chapter 6.
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4.10.7 Pee Survival Probability with Day Night Asym-
metry

This section describes how the PDFs are distorted and number of events are

calculated for CC, ES and ESµτ using the survival probability equations and

8B flux. The basic assumption is that the flux of electron neutrinos is modified

by a factor:

PeeD(Eν) = p0 + p1 (Eν − 10MeV) + p2 (Eν − 10MeV)2 (4.55)

Aee ≡
2(φN − φD)

(φN + φD)
= a0 + a1 (Eν − 10MeV) (4.56)

PeeN (Eν) =
(
p0 + p1 (Eν − 10MeV) + p2 (Eν − 10MeV)2

) 2 + Aee
2− Aee

(4.57)

where Eν is neutrino energy and A is energy-dependent day-night asymmetry

on the survival probability. The survival probabilities were parametrized in

this way to reduce correlations between p0 and the higher order terms by

expanding all functions around the peak (10.0 MeV) of 8B energy spectrum.

An advantage of the asymmetry ratio is that most systematics cancel out

except those that scale day and night fluxes differently. Equations (4.55) and

(4.57), quadratic equations to represent the survival probability of an electron

neutrino, are used to distort the day D and night N PDFs of CC and ES.

For ESντ following equations are used:

PeeD(Eν) = 1−
(
p0 + p1 (Eν − 10MeV) + p2 (Eν − 10MeV)2

)
(4.58)

PeeN (Eν) =
(
1− (p0 + p1 (Eν − 10MeV) + p2 (Eν − 10MeV)2)

) 2 + Aee
2− Aee

(4.59)

The reason for the difference is that Elastic scattering interaction has contribu-

tions from electron, µ and τ neutrinos, hence if Pee is the survival probability

for an electron neutrino then the survival probability for µ and τ neutrino will

be 1 − Pee hence the non-electron components of the day and night ES flux,

respectively, are scaled by 1-PeeD(Eν) and 1-PeeN (Eν).
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The 3D PDF (fD(~x) where ~x = ρ, cos θ�, Em)) for the day instance D is

distorted using the 2D PDF hD(Eν , Em) in neutrino energy (Eν) and measured

energy (Em) via:

fD(~x, Pee) =

∫
fD(~x)

hD(Eν , Em)PeeD(Eν)

hD(Eν , Em)
dEν (4.60)

The 3D PDF, fN(~x), for the night instance N is distorted using the 2D

PDF hN(Eν , Em) via:

fN(~x, Pee) =

∫
fN(~x)

hN(Eν , Em)PeeN (Eν)

hN(Eν , Em)
dEν (4.61)

Figures 4.6 to 4.9 show hD(Eν , Em) and hN(Eν , Em) and their projections

on the X axis. Besides distorting the 3D PDFs, these histograms are also used

in the calculations of the number of events for the CC and ES event classes.

Using the histograms shown in figures 4.6 and 4.7, the number of CC events

is calculated:

CC = CCD + CCN (4.62)

CCD = fnc Scc φnc
( σcc εcc
σnc εnc

)
peed RD (4.63)

CCN = fnc Scc φnc
( σcc εcc
σnc εnc

)
peen (1−RD) (4.64)

where Scc is a fiducial volume correction for CC, RD is a ratio of the number

day events to the total number of events in the Monte Carlo, φnc is the 8B

flux, fnc is flux to event conversion factor and the variable peed (a ratio of the

number of events with given values of Pee from equations (4.55) and (4.57) to

the number of events with Pee equal to 1.0) is calculated as:

peed =

∫∫
hD(Eν , Em)Pee(Eν , day)dEν dEm∫∫

h(Eν , Em)dEν dEm
(4.65)

peen =

∫∫
hN(Eν , Em)Pee(Eν , night)dEν dEm∫∫

h(Eν , Em)dEν dEm
(4.66)
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Figure 4.6: Top left is a 2D distribution of neutrino energy versus measured
energy (hD(Eν , Em)) and the top right is a projection of the 2D distribu-
tion on the measured energy (

∫
hD(Eν , Em) dEν). Bottom left is a 2D dis-

tribution of neutrino energy versus measured energy weighted by PeeD(Eν)
(hD(Eν , Em)PeeD(Eν)) and the right plot shows

∫
hD(Eν , Em)PeeD(Eν)dEν .

The right 1D histograms are projections on Eν of the 2D histograms on the
left. The correlation of Em with Eν , as seen in this plot is taken into consid-
eration when distorting the 3D PDFs. The reduction in the number of events
– comparing the top plots to the bottom plots – is due to ν oscillations which
is applied as distortions. In the 2D histograms, the number of events is shown
in the color pallet.
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Figure 4.7: Top left is a 2D distribution of neutrino energy versus measured
energy (hN(Eν , Em)) and the top right is

∫
hN(Eν , Em) dEν . Bottom left is

hN(Eν , Em) weighted by PeeN (Eν) (hN(Eν , Em)PeeN (Eν)) and the right plot
shows

∫
hN(Eν , Em)PeeN (Eν)dEν . The right 1D histograms are projections on

Eν of the 2D histograms on the left. The correlation of Em with Eν , as seen
in this plot is taken into consideration when distorting the 3D PDFs. The
reduction in the number of events – comparing the top plots to the bottom
plots – is due to ν oscillations which is applied as distortions. In the 2D
histograms, the number of events is shown in the color pallet.
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Tabulated values used for σχ εχ
σnc εnc

(χ is CC, ES and ESµτ ) are listed in table 4.6.

Similar equations are used to calculate the number of events for ES and ESµτ .

Class Cross Section Ratio

cc 5603.875/240.569

es 481.596/240.569

esµτ 74.833/240.569

Table 4.6: Values of σχ εχ
σnc εnc

(χ is CC, ES and ESµτ ) used in the MCMC fit.
Values are from [90].
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Figure 4.8: Top left is a histogram hD(Eν , Em) of neutrino energy versus
measured energy and the top right is

∫
hD(Eν , Em) dEν . Bottom left is

hD(Eν , Em)PeeD(Eν) neutrino energy versus measured energy weighted by
PeeD(Eν) and the right shows the plot of

∫
hD(Eν , Em)PeeD(Eν)dEν . The

correlation of Em with Eν , as seen in this plot is taken into consideration when
distorting the 3D PDFs. The reduction in the number of events – comparing
the top plots to the bottom plots – is due to ν oscillations which is applied as
distortions. In the 2D histograms, the number of events is shown in the color
pallet.
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Figure 4.9: Top left is a histogram hN(Eν , Em) of neutrino energy versus
measured energy and the top right is

∫
hN(Eν , Em) dEν . Bottom left is

hN(Eν , Em)PeeN (Eν) neutrino energy versus measured energy weighted by
PeeN (Eν) and the right shows the plot of

∫
hN(Eν , Em)PeeN (Eν)dEν . The

correlation of Em with Eν , as seen in this plot is taken into consideration when
distorting the 3D PDFs. The reduction in the number of events – comparing
the top plots to the bottom plots – is due to ν oscillations which is applied as
distortions. In the 2D histograms, the number of events is shown in the color
pallet.
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4.10.8 Constraint from Low Energy Threshold Analysis
of the D2O and Salt Phases

The Low Energy Threshold Analysis (LETA) analysis is the simultaneous fit

of two independent datasets from the first two phases of the SNO experiment.

Since the flux of neutrinos from the Sun is assumed to be constant over the

SNO operation time, the rate of neutrino events in the two phases can not

vary independently. Full details of the LETA fit is found in the following

references [39], [61], [73] and [74]. The constraint from LETA is applied as:

− log LLETA = ((~φ− ~φbf )
T/~σT )V −1((~φ− ~φbf )/~σ) (4.67)

where ~φbf and ~σ are the 6×6 matrices containing the best-fit results and their

uncertainties from a LETA fit and ~σT is the transpose6 of the matrix ~σ. The

parameters constrained are 8B scale, Pee parameters (p0, p1, p2), and day-night

parameters (a0 and a1). The values of the above mentioned parameters from

the MCMC fit, for the current step, is enclosed in the ~φmatrix. The correlation

among the parameters is represented in the LETA constraint equation (4.67)

as an inverse of the correlation matrix ~V −1.

4.10.9 PSA Constraint

The pulse shape analysis (PSA References [71] and [72]) provides us with

an independent measure of the number of neutrons derived from the NCD

detector signals. This enables us the constrain the number of neutrons from

the NCDs. The PSA constraint is applied as:

− log L =

(
PSA−

m∑
i=1

Niκi
)2

(2σ2)
(4.68)

6The transpose of a m × n matrix A is another matrix , with n rows and m columns,
designated as AT such that [AT ]ij=[A]ji; the rows and columns of ~A matrix are switched
in the ~AT matrix.
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where PSA is the central value of the PSA constraint and σ is its width, m

is the number of neutron signals, Ni is the number of events for the neutron

event type i for the current step in the MCMC fit and κi is the ratio that

converts (Ni) the number of events belonging to the PMTs to the number of

events belonging to the NCDs. Table 4.7 lists the values of κi. Except for

neutral current where flux-to-event from the NCDs (fNCDNC ) is a fit parameter,

all other κ values are constant.

Neutron Signal Type κi

Neutral current 8B flux × fNCDNC

External neutrons 40.9/20.754

k2pd 32.8/9.402

k5pd 31.6/8.378

ncdpd 35.6/5.938

d2opd 31.0/8.305

Atmos 13.6/24.681

hepNC 4.363

Table 4.7: Values of κ listed for various backgrounds [29]. Information used
to apply PSA constraint on the number of neutron events from the NCDs.

4.11 Synopsis of the Calculation of the Number
of Events

This section brings it all together, that is, the equations to calculate the num-

ber of events for each class. Each time an event passes the high level cuts,

after applying the current systematic uncertainties, the number N(~χ) is incre-

mented by one. If it is a day event then Nd(~χ) is incremented by one or else

Nn(~χ) is incremented by one. N( ~def) is the number of events that pass the
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default systematic uncertainties.

Each MC event, belonging to the backgrounds, gets weighted by a factor

– Wi – which is calculated as:

Wi = 1.0 + cxyz0 (aE0 T0i − 5.05MeV)

For CC, ES, ESµτ and NC, the weight calculated in equation (4.69) is multi-

plied by another weight due to uncertainty in 8B ν energy spectrum.

W ′
i = Wi

(
1.0 +

w

3
(0.018− 0.001999× Ei − 0.000088769× E2

i )
)

Wnc =
Nnc∑
i=1

(
1.0 +

w

3
(0.018− 0.001999× Ei − 0.000088769× E2

i )
)
/Nnc

whereW ′
i is the weight applied to the PDFs belonging to CC, ES, ESµτ and

NC, aE0 Ti is the scaled reconstructed energy for the current event, cxyz0 (energy

dependent fiducial volume uncertainty) takes into account energy dependence

of the reconstruction of a vertex of an event, w is the Winter uncertainty

applied to CC, ES and NC, Ei is a neutrino energy for the current event i and

Nnc is the number of NC events that pass the high-level cuts after applying

the current systematics. The expected number of neutral current events on

the NCD-side of the NCD phase is modified by the Winter uncertainty using

Wnc.

1. Equation to calculate the number of events for the backgrounds other

than external neutrons and d2opd.

N = αNnom
N(~χ)

N( ~def)

(Nd(~χ)

N(~χ)

Nd∑
i=1

Wi

Nd(~χ)
+
Nn(~χ)

N(~χ)

Nn∑
i=1

Wi

Nn(~χ)

)
(4.69)

2. Equation to calculate the number of events for the external neutrons and
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d2opd.

N = αNnom
N(~χ)

N( ~def)

(
[1− 0.5A]

Nd(~χ)

N(~χ)

Nd∑
i=1

Wi

Nd(~χ)
+ [1 + 0.5A]

Nn(~χ)

N(~χ)

Nn∑
i=1

Wi

Nn(~χ)

)
(4.70)

3. Equation to calculate the number of events for the neutral current:

Nnc =8 B f2e
N(~χ)

N( ~def)

(Nd(~χ)

N(~χ)

Nd∑
i=1

W ′
i

Nd(~χ)
+
Nn(~χ)

N(~χ)

Nn∑
i=1

W ′
i

Nn(~χ)

)
(4.71)

where f2e is a flux-to-event ratio for the 8B flux detected by the PMTs.

The number of NC events, for the PSA constraint, is calculated as:

NPSA
nc = 8B f2encdWnc (4.72)

where f2encd is a flux-to-event ratio for the 8B flux detected by the NCDs

and Wnc is from equation (4.69). The effects of the application of sys-

tematics, to events from Monte Carlo detected by the PMTs, are not

applied in the calculation of the number of events detected by the NCDs

because the systematic uncertainties belonging to the PMTs and NCDs

are uncorrelated.

Looking at the equations (4.69) to (4.71), it is clear that these equations

can be simplified by cancelling out the terms that can be cancelled but

the code was developed to calculate the ratios separately.

4. Following equations are used to distort the day and night PDFs of CC

and ES.

PeeD(Eν) = p0 + p1 (Eν − 10MeV) + p2 (Eν − 10MeV)2

Aee ≡
2(φN − φD)

(φN + φD)
= a0 + a1 (Eν − 10MeV)

PeeN (Eν) =
(
p0 + p1 (Eν − 10MeV) + p2 (Eν − 10MeV)2

) 2 + Aee
2− Aee
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where D stands for a day event and N stands for a night event. For ESντ

following equations are used:

PeeD(Eν) = 1−
(
p0 + p1 (Eν − 10MeV) + p2 (Eν − 10MeV)2

)
PeeN (Eν) =

(
1− (p0 + p1 (Eν − 10MeV) + p2 (Eν − 10MeV)2)

) 2 + Aee
2− Aee

Equation to calculate the number of charged current (CC) events using

the 8B flux, f2e and the parameters of the survival probability equation

is:

Ncc = 8B f2e
σccεcc
σncεnc

N(~χ)

N( ~def)

(
peed

Nd(~χ)

N(~χ)

Nd∑
i=1

W ′
i

Nd(~χ)
+ peen

Nn(~χ)

N(~χ)

Nn∑
i=1

W ′
i

Nn(~χ)

)
(4.73)

where peed and peen are calculated as:

peed =

∫∫
hD(Eν , Em)Pee(Eν , day)dEν dEm∫∫

h(Eν , Em)dEν dEm

peen =

∫∫
hN(Eν , Em)Pee(Eν , night)dEν dEm∫∫

h(Eν , Em)dEν dEm

Similar equations are used for ES and ESµτ .

5. For the PSA constraint, the number of events is calculated as:

N = αNnom

[
(1− 0.5A)

Nd(~χ)

N(~χ)
+ (1 + 0.5A)

Nn(~χ)

N(~χ)

]
(4.74)

The day-night asymmetry A is zero for all the backgrounds except the

external neutrons and the d2opd.

4.12 Evaluating Fit Biases

The purpose of the ensemble (multiple fake datasets) test is to undertake a pull

and bias study. Each fake dataset corresponds to a data from an experiment.

When an experiment is repeated multiple times (multiple fake datasets), there

is statistical uncertainty in data. For example, if there is a constraint from
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an external measurement in each experiment then the constraint will have a

normal distribution too. If this fact is taken into consideration when fitting N

datasets then the pull distribution should tend toward a normal distribution,

as shown in figure 4.10, with a mean of 0 and width of 1.0. A correct pull

distribution demonstrates that the fit is unbiased and the error-estimation

procedure is accurate.

This section describes how the pull and bias of a fit is evaluated. Several

fits were performed on multiple fake datasets in the process of development of

the MCMC code and for each fit, pull and bias study was carried out.

Bias(x) =
N(x)− E(x)

E(x)
(4.75)

Pull(x) =
N(x)− E(x)

σ(x)
(4.76)

where N(x) is the fitted value, E(x) is the expected value and σ(x) is the un-

certainty of the fitted value. From the bias equation, the bias is the fractional

shift in the fit result from the expected value. From the computation of bias

we examine whether the fit result agrees with the Monte Carlo input and the

pull of the fit is computed to examine whether the error generated by the fit

agrees with the spread of the fit result. For the unbiased fit, both the pull and

bias should be distributed around zero and the pull should have RMS of one.

The bias and pull of a parameter x is computed from each fake data file from

the ensemble and the resulting distributions are fitted to a Gaussian function

described in equation (4.77). The mean (µ) and variance from the Gaussian

function is used to calculate the average pull and bias of the parameter x

according to equations (4.78) and (4.79). The drawn error bars in the bias

plots indicate the uncertainty on the average bias which corresponds to the

sample standard deviation of the test parameter x divided by the square root

of the number of samples σ/
√
N . The drawn error bars on the pull plots

show the sample standard deviation σ of the test parameter x and not the
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Figure 4.10: Figure shows the normal distribution (f(x) =
1√

2πσ2
exp

(−(x−µ)2

2σ2

)
) with a mean (µ) of zero and a width (σ) of one.

uncertainty on the average pull.

f(x) =
1√

2πσ2
exp

(−(x− µ)2

2σ2

)
(4.77)

Bias(x) = µ± σ√
N

(4.78)

Pull(x) = µ± σ (4.79)

4.13 Summary

The MCMC fit perform the fit on C̆erenkov data of the NCD phase of SNO

and add data from NCDs of the NCD phase as a constraint from pulse shape

analysis and incorporate data from the first two phases of SNO as constraints

from the low-energy threshold analysis. Signal extraction extracts a 8B flux

and a set of polynomial parameters to describe the day time survival probabil-

ity (PeeD) and a set of polynomial parameters to attribute the asymmetry Aee
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in the day and night survival probability. The negative log likelihood (NLL)

function, after adding all the constraints, is:

− log L =
2m∑
i=1

Ni −
N∑
d=1

log
( 2m∑
i=1

(Ni)Fi(~xd, ~P )
)

+
(PSA−B ε1 − n1κ1 − n2κ2 − n3κ3 + n4κ4 + n5κ5 + n6κ6 − 4.363)2

2 (σ)2

+
(α1 − α1)2

2σ2
1

+
(α2 − α2)2

2σ2
2

+
(α3 − α3)2

2σ2
3

+
(α4 − α4)2

2σ2
4

+
(α5 − α5)2

2σ2
5

+
(α6 − α6)2

2σ2
6

+
(ξ0 − ξ0)2

2σ2
ξ0

+
(ξ1 − ξ1)2

2σ2
ξ1

+
(ε1 − ε1)2

2σ2
ε1

+
(ε0 − ε0)2

2σ2
ε0

+
1

2

∑
i

(
pi − p̄i
σpi

)2 +
1

2

2∑
i=0

2∑
j=0

(bxyi − ¯bxyi )(bxyj − ¯bxyj )(V −1
bxy )ij

+
1

2

1∑
i=0

1∑
j=0

(bzi − b̄zi )(bzj − b̄zj)(V −1
bz )ij

+((~φ− ~φbf )
T/~σT )V −1((~φ− ~φbf )/~σ) (4.80)

where Fi(~xd, ~P ) is the probability density function, for the class i, giving

the probability of observing the event d with observables ~xd and the current

values of the fit parameters ~P , N1, N2, . . . , Nm are the number of events for

m=13 event classes and n1, n2, . . . , n6 are the number of events computed

using equation (4.74), for the calculation of PSA constraint. The 8B flux is

designated by B and PSA is the PSA constraint for the current fake dataset

and σ is the width of the constraint. The values of κ for various backgrounds is

listed in table 4.7. The average number 4.363 is the number of NC interactions

from the hep neutrinos (3He+p → 4He + e+ + νe) expected to be detected

in the NCDs. Number of interactions in SNO from hep neutrinos are fixed

in the MCMC fit. In the constraint terms, α1 to α6 are the values of α

(equation (4.19)) in the current MCMC step for EX, d2opd , atmospheric

neutrinos, k2pd, k5pd and ncdpd respectively. The α1, α2, α3, α4, α5 and
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α6 are the constraints for EX, d2opd , atmospheric neutrinos, k2pd, k5pd and

ncdpd respectively for a given fake dataset. The day-night asymmetries for the

external neutrons and D2OPD are represented by ξ0 and ξ1 respectively. The

flux-to-event for the NCDs and PMTs are represented by ε1 and ε0 respectively.

The PMT and NCD neutron capture efficiencies in the NCD phase appear as a

component to the flux-to-event conversion factors. In the likelihood equation,

pi, p̄i and σpi represent the current value of the PMT systematic parameter i

in the MCMC fit, its mean and constraint width respectively. The next two

terms are calculation of the constraint for the systematic uncertainties that are

correlated. For more details, refer to 4.10.4. The ~φbf and ~σ are the matrices

containing the best-fit results and their uncertainties from a LETA fit, ~σT is

the transpose of matrix ~σ and values of the parameters, constrained by LETA,

for the current step in the MCMC fit is enclosed in the ~φ matrix. The matrix

~V is the correlation of the parameters provided by the LETA fit.

The fit for datasets generated using the full Monte Carlo is described in

chapters 8, 9 and 10 and the fit for datasets generated using the third of the

Monte Carlo is described in chapter 11.

The code, used in the extraction of fit parameters from the data, was

developed in a series of steps and for each step, the code was tested on an

ensemble of fake datasets. The MCMC code was originally created by Juergen

Wendland and later expanded by Blair Jamieson from whom I inherited the

code. I expanded the code to include survival probability equations, day-

night asymmetries to account for matter effect on neutrino oscillations and

the day-night asymmetries in the backgrounds (EX and d2opd) to account

for the possible variations in the detector response with time of the day and

day-night asymmetries of various background sources during the day versus

during the night. Besides the diurnal asymmetries, directional asymmetries

were also added to account for possible up-down asymmetries in the detector.
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Various new penalties were added along the line to reduce the uncertainties

from the MCMC outcome, which included using the constraints from the Low

Energy Threshold Analysis (LETA) of the data from the D2O and Salt phases

of SNO and Pulse Shape Analysis (PSA) of the signals from the NCDs of the

NCD phase. During various stages of development, several tests were created

to cross-check the validity of the code and to flush out the bugs, if any, lurking

in the code. The progress was not like climbing a stairway to code heaven;

more likely a snake and ladders game. A bug, implanted while in pursuit of

another bug, can take weeks of investigation but nevertheless a fruitful effort

to understand a complicated code. The thesis is not a history of the work done

to reach the final goal but a description of various milestones.
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Chapter 5

Markov Chain Monte Carlo
Method

5.1 Introduction

This chapter covers the algorithm employed to extract the fit parameters from

the data. Before delving into the details of the algorithm, a brief definition of

the terms used in this chapter is in order. The definitions of terminology, in

this chapter, are based on information gained from Wikipedia especially

[http://en.wikipedia.org/wiki/Markov_chain_Monte_Carlo]

which should be referred to for more detail.

Monte Carlo Simulation: Calculations based on the application of ran-

dom numbers are generally known as Monte Carlo (MC) simulations. The MC

approach is not limited to the calculation of probabilities but can also be used

to calculate the integral of complicated functions. In experimental particle

physics, MC simulation is used for designing detectors, understanding their

behaviour and comparing data to theory. The following list, although by no

means complete, illustrate the diversity of the application of MC simulation:

nuclear reactor design, radiation cancer therapy, traffic flow, stellar evolution,

oil well exploration and Dow Jones forecasting.
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Random Walk: Random walk consist of taking random steps where the

probability of taking a step in any direction is equal and not influenced by the

previous steps. Movement of pollen grains in a glass of water is an example of

random motion known as Brownian motion. Other examples include diffusion

of dye in an unstirred glass and fluctuation in price of a stock.

Random Process: A system undergoing a discrete random process means

that the system will be at random states at different steps. The steps are often

thought of as time, but formally the steps are just integers, and the random

process is a mapping of steps to states. The change in the state from one

step to the next is called a transition, and a probability associated with each

transition in the state is called a transition probability.

Markov Chain: A Markov chain is named after Andrey Markov. The

chain is generated by using the current sample values to randomly propose the

next sample values [80]. Given its current state, the transition probability of

the future step depends only on the current state of the system. Mathemati-

cally it is described as:

P (Xn+1|X1, X2 . . . , Xn) = P (Xn+1|Xn) (5.1)

Burn-in: The practise of throwing away some number of iterations at

the start of an MCMC run when MCMC has not yet converged is known as

burn-in. This practise is a necessity because the choice of initial values of the

parameters is independent of likelihood. The chain can start in a region of

very low likelihood and then walk to the region of highest likelihood. For a

converged chain, the chain stays in the region around the highest likelihood.

Markov chain Monte Carlo simulation is a class of algorithms to simu-

late a random walk for the purpose of sampling through probability distri-

butions. The random walk is undertaken long enough to ensure as complete

tour through the likelihood distribution as possible considering limitations of
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computational resources. The purpose of taking a large number of random

steps is to achieve an equilibrium distribution after removing the burn-in pe-

riod. MCMC is one of the simulation technique to explore high-dimensional

probability distributions by generating statistically consistent samples from

the target distribution. One of the goal of MCMC is computation of the ex-

pected values of fit parameters. The expectation values are calculated with

samples drawn more proportionally from higher likelihood regions.

The validity of MCMC depends critically on the rate of convergence to

an equilibrium distribution. Constructing a Markov chain with the desired

properties is not difficult. The challenge is determining the number of steps

required to achieve an equilibrium distribution. For a complicated code, the

number of steps is limited by the computational resources. A chain with a rapid

mixing is a good chain because it will quickly attain an equilibrium distribution

starting from any arbitrary state. The Metropolis-Hastings algorithm is a

method to generate a Markov chain using a proposal density Q(xt+1, xt) which

depends on the current state xt, to generate a new proposal state xt+1. This

proposal is "accepted" as the next value (xt+1 = x′) if α (a random number

between 0 and 1) satisfies:

α < min
(P (x′)Q(xt;x′)

P (xt)Q(x′;xt)
, 1
)

[80] (5.2)

The current value of x is retained (xt+1 = xt) if the proposal is rejected. Any

probability distribution P(x) can be used by the Metropolis-Hastings algorithm

to draw samples. For the proposal density, a Gaussian function centred on the

current state xt: Q(x′;xt) ∼ N(xt, σ2I), may be used. This proposal density

generates samples centred around the current state xt with variance σ2. The

Metropolis algorithm requires Q(x; y) = Q(y;x) – a symmetric function. In

that case, equation (5.2) is reduced to:

α < min
(P (x′)

P (xt)
, 1
)

(5.3)
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because
Q(xt;x′)

Q(x′;xt)
= 1 (5.4)

In MCMC, we assume the proposed density to be symmetric. The challenges

in MCMC fitting are:

1. Determine whether a MCMC fit has converged.

A plot of the log likelihood versus steps is one of the methods to find

out if the fit has converged. An example is shown in figure 5.1. To make

sure that the MCMC fit has converged and is independent of the open-

ing values of the parameters, each MCMC chain was started at different

random initial values of the parameters. The range of the parameters

was within ±3σ of the mean (expected values from a theoretical model)

where σ is the constraint on the mean from an independent measurement

or uncertainty on the mean which was selected after several trial and er-

rors to ensure good acceptance in the MCMC fit. A check was carried

out to test the robustness of the code for which the initial values of the

parameters were selected within ±10σ instead of ±3σ. The check is de-

scribed in section 10.3. Since the check demonstrated that convergence

was achieved within 4000 steps, the initial values were selected within

±3σ instead of ±10σ because of computational limitations. The conver-

gence of a Markov chain is different from the Maximum Likelihood

Estimation (MLE) because the former does not convergence to an es-

timate like the latter but instead calculates the probability distribution

of the value of a parameter in the volume of high likelihood.

Following are the convergence issues: when has the chain moved from

its starting values and started sampling from its stationary distribution?

and how large a sample is required for obtaining estimates within accept-

able accuracy? Autocorrelation, described in section 5.2, is an important
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Figure 5.1: Log Likelihood (shown on the vertical axis) versus various time
steps (shown on the horizontal axis). This plot shows that the MCMC fit has
converged around 4000 steps.

measurement in the consideration of the chain length. A badly mixed

chain will have a high autocorrelation and will need a longer run time

to give an estimation of fit parameters to the required accuracy.

2. Determine a burn-in period.

See section 5.2 on how to select the burn-in period.

3. Step size of the MCMC fit

If the step size (σ2 – of a Gaussian function for the proposal density func-

tion) is too narrow then MCMC will not sample enough of the parameter

space to find the best fit values in a finite number of steps; if the step size

is too wide, steps are rarely accepted resulting in a low acceptance rate

because the proposals most likely populate regions of much lower proba-

bility density. The ideal acceptance rate for an N-dimensional Gaussian

proposal density function is ≈ 23% [81].
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4. Extracting values from the Posterior Distribution Functions

After a posterior distribution is determined, it typically goes through

a "post processor". Post-processing is performed to determine the fit

values and their uncertainties from the posterior distributions. Typical

pull and bias studies are carried out to test the behaviour of the fit.

Various techniques are available to pick the best fit:

(a) Use the mean and Root Mean Square (RMS) of a posterior dis-

tribution as the estimation of the parameter and its uncertainty

respectively.

(b) Fit a Gaussian function to the posterior distribution and use the

mean and sigma (µ ± σ) of the function as the estimation of the

parameter and its uncertainty respectively.

(c) The mode of a continuous posterior distribution is a value x at

which the distribution is at its peak. The peak (∼ mode) and RMS

of the posterior distribution were considered as the estimation of

the parameter and its uncertainty respectively. The mean, median

and mode belong to a normal distribution all coincide.

For a history of MCMC and a list of useful references pertaining to MCMC, re-

fer to [82]. MCMC methods were introduced in the 1950s to efficiently sample

an unknown probability distribution. The time needed in MCMC, to sample

a distribution, grows approximately linearly rather than scaling exponentially

with the number of parameters varied. For this reason, MCMC methods are

particularly useful to evaluate integrals in many dimensions. Examples of ap-

plications in physics include estimation of cosmological parameters [83] and

for analysing the orbits of extrasolar planets [84].
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5.2 Autocorrelation Function

Autocorrelation is one of the convergence diagnostics used to determine how

many initial steps should be discarded from the output of the MCMC fit such

that the remaining samples represent the target distribution of interest and

how many steps are necessary in the chain.

Given measurements Y1, Y2 . . . YN at time X1, X2 . . . XN the correlation be-

tween observables separated by k time steps is:

rk =

∑N−k
i=1 (Yi − Ȳ )(Yi+k − Ȳ )

N∑
i=1

(Yi − Ȳ )2

from [85] (5.5)

where Ȳ =
N∑
i=1

Yi
N

. Autocorrelation is a correlation coefficient between two

values of the same variable Yi and Yi+k at Xi and Xi+k where k is the lag

because one of the pair of observations (Yi) lags the other (Yi+k) by k periods

or samples. Autocorrelation is a tool to find the degree of relationship of

a signal with itself at different times. An example is shown in figure 5.2.

The value of rk lies between -1 and 1, with +1 indicating perfect correlation

and -1 indicating perfect anti-correlation. Positive autocorrelation is a sign

of "persistence" which is a tendency of a system to frequently return to the

same state. Autocorrelation implies that a time series is predictable, as future

values are correlated with current and past values. This behaviour reduces

the effective sample size. The quantity rk is known as the autocorrelation

coefficient at lag k.

If the posterior distribution is not random in time then the information

in each observation is not totally independent from the information in other

observations.
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Figure 5.2: Plot showing autocorrelation coefficient versus lag. This is an
example of autocorrelation function applied to a MCMC fit. The parameters
of the MCMC fit, shown in the legend, are the parameters that we use for
signal extraction in SNO, and are defined explicitly in chapter 4. Selecting the
burn-in from autocorrelation plot is a judgement call based on experience.
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5.3 SIGnal EXtractrion (SIGEX) with MCMC

MCMC fit is based on Bayesian analysis which require a joint probability

P(D, θ) consisting of a prior P(θ) and a likelihood P(D|θ):

P (D, θ) = P (D|θ)P (θ) (5.6)

where D denote the observed data and θ denote model parameters. Bayes’

theorem [80] is used to determine the probability distribution of θ conditional

on D.

P (θ|D) =
P (θ)P (D|θ)∫
P (θ)P (D|θ)dθ

(5.7)

P (θ|D) ∝ P (θ)P (D|θ (5.8)

P(θ|D), the object of all Bayesian inference, is a distribution of unknown θ

given the known D. It is known as posterior because it is obtained after the

data is observed. Frequentists employ the P(D|θ) distribution and Bayesian

utilize the P(θ|D) distribution for signal extraction.

A MCMC, based on Metropolis algorithm [79], is utilized for estimating

parameters and uncertainties on the parameters. Traditionally, SNO has min-

imized Negative Log Likelihood (NLL) function – via MINUIT [86] – with

respect to all the parameters for the purpose of obtaining the best fit values

of the parameters. The curvature of − log(L) at the minimum was used in

the calculation of the uncertainties on the parameters. Minimizing the NLL

is very challenging with so many parameters because the likelihood function

is based on binned Monte Carlo and is choppy everywhere which makes the

minimum ill-defined. The likelihood function, used in MCMC, is explained in

detail in chapter 4. MCMC generates random samples, of possible values of

all the fit parameters, drawn from the joint probability distribution described

in equation (5.7). The parameters of interest are determined by integrating

over all nuisance parameters.
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The algorithm is to take a random walk through a parameter space, that

is, propose the values of the fit parameters for the next (n+1) step ~xprop using

the last accepted values ~xn.

~xprop = ~xn + ~ε (5.9)

where ~ε = N(0, σ
3
), a Gaussian of mean zero and width that is roughly 1/3

of the expected statistical uncertainty or the constraint uncertainty. The value

1/3 is chosen to make the acceptance rate ≈ 25%.

The probability of each step is calculated as: LpropLcurr where Lprop and Lcurr

are the likelihoods of the proposed step and the current step respectively. The

acceptance probability is min
(
1, LpropLcurr

)
which is compared to a random number

(α) between 0 and 1. The step is accepted if α does not exceed the acceptance

probability (equation (5.10)); if the step is accepted, the parameter values are

updated (equation (5.11)) or else the current point in the chain is retained to

make the next proposal.

α ≤ min
(
1,
Lprop
Lcurr

)
(5.10)

~xn+1 = ~xprop If accepted (5.11)

Using this methodology, resulting distribution of parameters from the chain

will have a frequency distribution given by L.

5.4 Prior in the MCMC fit

The prior P(θ) in MCMC fit are the constraints from low-energy threshold

(LETA) analysis of combined first two phases of SNO, pulse shape analysis

(PSA) of the data from NCDs of the NCD phase, constraints applied on back-

grounds from external measurements and constraints applied on systematic

uncertainties from calibration sources and last but least the number of events

were constrained to be positive.
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5.5 Comparison of the first half to the second
half of the posterior distribution

Various measures exist to indicate the degree of convergence of the MCMC

code. In addition to the autocorrelation function and the likelihood versus

step, discussed in section 5.2, another method is to plot the first and second

half of the posterior distribution, after removing the burn-in, on the same

diagram. If the distributions are similar, then the MCMC fit has converged.

Some of the first and second halves are displayed for the parameters of the

MCMC fit. These parameters were explained in chapter 4. In figures 5.3 to 5.5,

the distributions shown in red and blue are very similar which is an indication

that the fit converged.

Figure 5.3: Comparing the distribution of the first half (shown in red) and
the second half of the MCMC fit (shown in blue), after removing the burn-in
period, for two parameters (labelled 8B flux and p0) in a MCMC fit.
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Figure 5.4: Comparing the distribution of the first half (shown in red) and
the second half of the MCMC fit (shown in blue), after removing the burn-in
period, for two parameters (labelled p1, and p2) in a MCMC fit.

Figure 5.5: Comparing the distribution of the first half (shown in red) and the
second half of the MCMC fit (shown in blue), after removing the burn-in, for
day-night asymmetry parameters a0 and a1.
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Chapter 6

Mean or Centroid: Does It Matter
in the Fit?

6.1 Introduction to the Fit

The fitting procedure for SNO starts with an extended maximum likelihood fit

to untangle m different signals; each with its normalized PDF (F (~xd)) defined

for some observable vector ~xd. The log likelihood function is defined as:

L =

ND∑
d=1

log
( m∑
i=0

µiFi(~xd)
)
−

m∑
i=0

µi (6.1)

wherem is the number of signals in the data and ND is number of observed

events in the data. The parameters varied in the fit, µi, are the expected num-

ber of events for each signal type i. The PDF Fi(~xd) for signal type i is used

to calculate the probability of measuring an event with observable values ~xd

to be of signal type i. Besides signal extraction fit to extract the number of

events belonging to the backgrounds, independent measurements were carried

out, such as low level radio assays of U and Th decay chain products in D2O

and H2O, to measure the backgrounds in these regions. Any constraints from

independent measurements are added as penalties to the likelihood function.

Assuming a Gaussian distribution for an uncertainty on the external measure-
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ment, the penalty is imposed as:

exp
(−(N − Ñ)2

2σ2

)
(6.2)

where Ñ is a central value and σ̃ is an uncertainty on the central value and N

is the number of events in a current step of the MCMC fit. Taking the log of

equation (6.2) and inserting in equation (6.1) results in:

L =

ND∑
d=1

log
( m∑
i=0

µiFi( ~xd)
)
−

m∑
i=0

µi −
(N − Ñ)2

2σ2
(6.3)

6.2 Mean or Centroid

The normal or Gaussian distribution is a continuous probability distribution

function that describes data that cluster around the mean of the distribution.

The function is described mathematically as:

f(x) =
1√

2πσ2
exp(−(x− µ)2

2σ2
) (6.4)

Integrating the above equation results in:∫
f(x)dx = 1 (6.5)

where µ is the centroid and σ2 is the variance of the function. The associated

graph is bell-shaped with a peak at the centroid. The mean of the function is

defined as:

〈x〉 =

∫
x f(x)dx∫
f(x) dx

(6.6)

where the integrals are taken over the domain of the function f(x). For the

Gaussian function, the centroid and the mean are equivalent as shown:

x̄ =

∫ +∞
−∞ x exp

(
− (x−µ)2

2σ2

)
dx∫ +∞

−∞ exp
(
− (x−µ)2

2σ2

)
dx

(6.7)

x̄ =
σ
√

(2π)µ

σ
√

(2π)

x̄ = µ (6.8)
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The domain is from +∞ to −∞. In a complex experiment like SNO, sev-

eral variables are measured independently of the main experiment. In SNO,

the number of external neutrons was measured independently and fitted to a

Gaussian function. The Gaussian function yielded 40.9± 20.6 as the number

of external neutrons from the NCDs. The number of external neutrons mea-

sured from the PMTs of the NCD phase was calculated to be 20.6±10.4. This

information is applied as a constraint in a fit. Before fitting the actual data,

the reliability of the fit is tested on a number of fake data sets. Each fake data

set corresponds to an experiment along with its own set of independent mea-

surements and each independent measurement is fitted to a Gaussian function

which yields a mean and an uncertainty on the mean (µ± δµ). According to

the Central Limit Theorem [89], the distribution of the means from each inde-

pendent measurement should follow a Gaussian distribution. Hence for each

fake data set, the constraint is selected as a random draw of the Gaussian

function Gauss(µ, δµ) (Reasons for the procedure is given in [74]). The distri-

bution, using Gauss(20.6,10.4), is plotted in a figure 6.1. As the distribution

covers the region less than zero and since the number of external neutrons can

not be negative, the Gaussian function has to be truncated to positive regions.

For the truncated Gaussian function, the mean and the centroid are not the

same (x̄ 6= µ). The constraint term in the likelihood function (equation (6.3))

requires Ñ to be the centroid but if instead of a centroid, one substitutes a

mean into the equation, one necessarily gets a bias. Figure 6.2 shows the same

Gaussian as in figure 6.1, but truncated to positive values. Although both

figures have the same centroid (20.6), the means are different. The bias, due

to the difference between the mean and the centroid, is defined as:

Bias =
N − Ñ
N

(6.9)
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Figure 6.1: Distribution of the number of external neutrons using the Gaussian
function (equation (6.4)) with a mean (µ) of 20.6 and σ of 10.4. A σ = 10.4
comparable to the mean µ = 20.6 will result in a Gaussian function traversing
the negative region.

where Ñ=20.6±0.003 is the centroid from figure 6.1 and N=21.19±0.003 is

the mean from figure 6.2. Using these values, the bias and the uncertainty on

the bias are calculated as 0.029± 5.89e− 6 (equations (6.10) and (6.11)). The

bias is clearly much greater than its uncertainty.

bias =
(21.19− 20.6)

20.6
= 0.029 (6.10)

δbias = bias
√

(0.003/20.6)2 + (0.003/21.19)2 = 5.89× 10−6 (6.11)
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Figure 6.2: Effect of truncating the Gaussian function to the positive region
only. The mean of 21.19 is different from the centroid of 20.6
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6.3 Solution of the Problem

For a truncated Gaussian function, equation (6.7) is modified by changing the

limits of integration. The centroid µ, corresponding to the mean (x̄), is found

by solving the following equation:

x̄ =

∫∞
0
x exp

(
− (x−µ)2

2σ2

)
dx∫∞

0
exp

(
− (x−µ)2

2σ2

)
dx

(6.12)

The integration is:

x̄ = µ+

√
2
π
σ exp (−µ

2

2σ2 )

Erfc( −µ√
2σ

)
(6.13)

Erfc(z) =
2√
π

∫ ∞
z

e−t
2

dt (6.14)

We want to invert equation (6.13) to solve for the Centroid (µ) in terms

of the mean x̄. Since solving equation (6.13) is difficult, a ROOT utility TF1

(defined as equation 6.13) was utilized to solve the problem. Then the TF1

routine GetX [87] was availed to obtain the Centroid (µ) corresponding to

the given mean (x̄). The Centroid was then applied in the calculation of the

penalty term of the likelihood (equation (6.3)). We test the procedure by

following this recipe.

1. Randomly draw a mean (x̄) from Gauss(20,10).

2. Find the centroid (µ) corresponding to the mean (x̄) using equation (6.13).

3. Plot a histogram using random draws from Gauss(µ,10).

4. If the solution is correct then the mean of the histogram should be x̄.

Two cases, plotted in figures 6.3 and 6.4, proved that the solution is indeed

correct.
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Figure 6.3: Centroid 6.54332, corresponding to the mean of 10.8747, resulted
in a histogram with a mean ± RMS corresponding to 11± 7.
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Figure 6.4: Centroid 24.0895, corresponding to the mean of 24.3105, resulted
in a histogram with a mean ± RMS corresponding to 24.37± 10.04.
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6.4 Introduction of the Toy Monte Carlo

A toy Monte Carlo (MC) was developed to test whether properly taking into

account the dissimilarity between the mean and the centroid of the truncated

Gaussian function results in a reduced bias compared to when the distinctness

is not considered. To determine if the fit is unbiased and uncertainties are

properly propagated, a pull and bias study is performed. The pull and bias

are defined as follows:

Pullij =
Nij − Ñj

σij
(6.15)

Biasij =
Nij − Ñj

Nij

(6.16)

where Nij and σij are the number of events and the uncertainty on the number

of events for the signal j obtained from fitting the fake data set number i, Ñj

is the mean Poisson number for the signal j in the fake data sets.

Our toy Monte Carlo has two signal types – A and B – and the purpose

of a fit is to determine the number of events NA and NB in our data set.

To test the query posed in the title of this note, the PDFs for the signals A

and B were formed using random draws from Gauss(6, 1) and Gauss(6.1, 1)

respectively. The nearly identical PDFs, shown in figure 6.5, were selected so

that a constraint (Gauss(20, 10)) on the signal B will provide a separation of

the signals. Likelihood function is described in equation (6.3) where m goes

from 1 to 2, Ñ is the central value of the constraint and σ̃ is 10. The central

value of the constraint is independently Gaussian-fluctuated according to the

uncertainty σ = 10, hence the central value is changing from one fake data

set to another fake data set. The reason for the above procedure is described

in [74]. In the MCMC fit, the number of steps was 20,000 and the burn-in

period was 5000. After removing the burn-in period, the Mean and RMS of the
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Figure 6.5: PDFs for the two signal types A and B, defined over a hypothetical
observable X.

posterior distribution were used as the number of events and the uncertainty

on the number of events respectively.

6.4.1 Introduction to Different Cases

Three cases were considered.

• Case 1: The number of each event type is drawn from a Poisson distri-

bution for each fake data set. Mean number of events in the Poisson dis-

tributions were 250 and 100 for the signals A and B respectively. Case 1

is a base case because the distribution of Gauss(100,10), as shown in

figure 6.6, does not venture into negative regions. Hence the pull and

bias of Case 2 and Case 3 will be compared to pull and bias of Case 1.

• Case 2: Mean number of events, in the Poisson distributions, were

changed from 100 to 20 for the signal B. For a given fake data set the
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Figure 6.6: Distribution of Gauss(100,10) does not yield negative number of
events for the signal B.

number of events for the signal A was always selected using the Poisson

function but for the signal B, one of the two functions was used: Poisson

or Gauss(20,10). For each fake data set, a random number was drawn

from Gauss(20,10) as the mean number of events to be set in motion as

Ñ in the penalty term of the likelihood equation (6.3). No correction

was applied to account for the discrepancy between the centroid and the

mean of the truncated Gaussian function Gauss(20,10).

• Case 3: Same as case 2 except that the difference between mean and

centroid is properly accounted for, by finding a centroid corresponding

to the mean and then using the centroid as Ñ in the penalty term of the

likelihood equation (6.3).
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Poisson Mean Constraint

Case 1 A 250 NO

B 100 100± 10

Case 2/3 A 250 NO

B 20 20± 10

Table 6.1: Quick overview of the Toy Model.

6.5 Result and Discussion

Two thousand fake datasets were used in a MCMC fit to extract the number

of events of signals, NA and NB, from the data. Table 6.2 was utilized to

plot figures 6.12 and 6.13. From the figure 6.12 and the table 6.2, the width

of the pull distribution seems consistent with 1.0. From plots shown in the

figure 6.13, it is conclusive that the disparity between the centroid (µ) and the

mean (〈x〉) of the Gaussian function matters in the fit. Case 1 is a base line

case; the number of events for signals A and B are 250 and 100 respectively

and the constraint on signal B is 100±10. Since the width of the constraint

is 10% of the central value (100), the mean and the centroid of the Gaussian

distribution are equivalent. For the Case 2 and 3, the number of events for the

signal A remains same as 250 but the number of events for the signal B drops

down from 100 to 20. Now the width of the constrain (10) is 50% of the central

value (20), hence the mean and the centroid of the Gaussian distribution are

no longer equivalent. The bias of fitting signal B for Case 2 and Case 3 will

always be greater than the bias of fitting signal B for the Case 1 (shown in

green in figure 6.13) but the goal of the current exercise is to show that the

bias of signal B will be worse in Case 2 (shown in dotted red in figure 6.13)

than in Case 3 (shown in blue in figure 6.13).

The application of equation (6.13) in the fit reduced the bias of the signal B

from (0.086±0.009) to (0.028±0.009) when the Gaussian function was used to
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randomly draw the number of events for the Signal B and from (0.083±0.009)

to (−0.005±0.009) when the Poisson distribution was employed instead of the

Gaussian distribution to randomly draw the number of events for the Signal B.

Figure 6.7: Pull and bias plots for the signals A and B for the Case 1 using
Gaussian distribution to generate events for the signal B.
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Figure 6.8: Pull and bias plots for the signals A and B for the Case 2 using
Gaussian distribution to generate events for the signal B.
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Figure 6.9: Pull and bias plots for the signals A and B for the Case 3 using
Gaussian distribution to generate events for the signal B.
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Figure 6.10: Pull and bias plots for the signals A and B for the Case 2 using
Poisson distribution to generate events for the signal B.
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Figure 6.11: Pull and bias plots for the signals A and B for the Case 3 using
Poisson distribution to generate events for the signal B.
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Figure 6.12: Comparing Pull for Case 1, Case 2 and Case 3. Top plot compares
the pull spread when the number of events for the Signal B is drawn using
the Gauss(20, 10) distribution while the bottom compares it using the Poisson
distribution instead.
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Figure 6.13: Comparing Bias for Case 1, Case 2 and Case 3. Top plot compares
the bias spread when the number of events for the Signal B is drawn using
the Gauss(20, 10) distribution while the bottom compares it using the Poisson
distribution instead.
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Case Signal Pull Bias Width of Pull δBias

Case 1 A -0.0451 -0.0024 0.9855 0.0019

B 0.0336 0.0029 1.0091 0.0023

Case 2 (Poisson) A -0.0248 -0.0017 1.0328 0.0017

B 0.1060 0.0833 0.9281 0.009

Case 3 (Poisson) A 0.0596 0.0037 0.9627 0.0016

B -0.1491 -0.0048 1.1136 0.0091

Case 2 (Gaussian) A -0.0560 -0.0044 1.0788 0.0018

B 0.1035 0.0862 0.8921 0.009

Case 3 (Gaussian) A 0.0217 0.0016 1.0397 0.0017

B -0.0764 0.0283 1.1329 0.0093

Table 6.2: Pull and bias in a tabulated form from µ ± σ of a Gaussian fit on
the distributions shown in figures 6.7 to 6.11.

6.6 Conclusion

As demonstrated conclusively the distinction of the mean and the centroid of

the Gaussian function is relevant to the bias of the fit. The conclusion is to

continue applying equation (6.13) in the MCMC fit in situations where the

Gaussian function is truncated due to the fact that the number of events can

not be negative.
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Chapter 7

Cross-Checks

Several cross-checks were carried out to make sure that the PDFs are nor-

malized correctly and that the likelihood function, used in the MCMC fit, is

correct.

1. Verification of the Normalization Method: It is important that the his-

tograms, used in the likelihood function, be probability density function

(PDF) with
∫
f(x)dx = 1, that is, the area under the curve is unity.

Since the PDFs are model of the event types found in the data and the

goal of the fit is to determine the number of events belonging to each

event type, any error in the calculation of the normalization will result

in the fit giving wrong number of events for the event classes in the

data. Hence the calculation of the normalization factor is very impor-

tant. Using the likelihood function as a method in Root TF3 function,

the integral shown in equations (7.1) and (7.2) were verified to be unity.∫∫∫
h(ρ, cos θ, E) dE dρ dcos θ (7.1)

Similarly the integrals of the 4D PDFs (equation (7.2)) were verified

to be unity by combining a 1-Dimensional and a 3-Dimensional ROOT

functions (TF1 [87] and TF3 [88] respectively).
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∫∫∫∫
h(ρ, cos θ, E| cos θzenith) dE dρ d cos θ d cos θzenith (7.2)

2. Verifications of elements of Survival Probability (p0, p1, p2, a0 and a1):

This test was performed to make sure that the equations for survival

probability ((4.55), (4.57), (4.58) and (4.59)) used to distort the 3 di-

mensional (g(ρ, cos θ, E) and 2 dimensional (h(Eν , E)) histograms re-

sult in the same distortion of the energy E, that is,
∫
h(Eν , E) dEν =∫∫

g(ρ, cos θ, E) dρ d cos θ. The χ2 (defined in equation (7.3)) test on

H =
∫
h(Eν , E) dEν and G =

∫∫
g(ρ, cos θ, E) dρ d cos θ resulted in

χ2 =0.0 with a probability of unity.

χ2 =

N∑
j=1

(
Yj − Λj

)2

σ2
Yj

(7.3)

where Yj and Λj are the bin content of the jth bin of H and G respec-

tively, σYj is the error of the jth bin belonging to H, and N is a number

of bins of the histograms H and G.

The reason for zero χ2 is that both histograms are exactly the same if the

distortion was performed correctly. This test was performed for several

MCMC steps with parameters of survival probability starting far away

from the actual values used in the generation of the fake data sets. The

reason was to make sure that selecting the parameters far away from the

actual values will not cause
∫
h(Eν , E) dEν 6=

∫∫
g(ρ, cos θ, E) dρ d cos θ.

This test #2 was performed on several MCMC fits for several steps of

the fit but none showed any problem.

3. Verification of the Likelihood Function: A routine was developed to test

the probability density functions used in the MCMC fit against the like-

lihood functions to make sure that PDFs used in the fit are calculated

correctly. The methodology to create a PDF h(x,y,z), to compare with
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the PDF H (x,y,z) used in the MCMC fit, is called acceptance-rejection

and it generates samples from the probability distribution function which

in this case was the likelihood function. Following steps were undertaken

to perform this check:

(a) In a loop of 50,000 steps, generate random observables xj, yj, zj

within the cuts:

xmin ≤ xj < xmax (7.4)

ymin ≤ yj < ymax (7.5)

zmin ≤ zj < zmax (7.6)

(b) Calculate Likelihood L using the observables xj, yj, zj.

(c) Determine the maximum of the Likelihood Lmax in the loop.

(d) Next, in a loop of 19 millions steps, generate events xj, yj, zj.

(e) Calculate a likelihood L using xj, yj, zj.

(f) Generate a random numberR between 0 and 1.0; an event (xj, yj, zj)

is accepted if

L < RLmax (7.7)

(g) Populate histogram h with accepted values xj, yj, zj

(h) After the loop has finished, compare h(xj, yj, zj) to H (xj, yj, zj)

in a χ2 test. The comparison was done in three steps: 3D was

compared against the 3D PDF, 2D projections (xz, yz and xy)

were compared against 2D projections and last of all, all three 1D

projections (x, y and z) were compared visually as well using a χ2

test. The probability was calculated using TMath:Prob(χ2, dof)

where dof stands for degrees of freedom.

140



Figure 7.1: Comparing day 3D PDF for CC (left) to the one generated using
the likelihood function (right). Top shows yz projection, middle shows xz
projection and the bottom plot displays xy projection.

The purpose of carrying out this check is to ascertain that the PDFs

generated using the Likelihood function (we will call them the tester

PDFs) were similar in shape to the original PDFs. The χ2 test comparing

both PDFs indicates the goodness of the fit. This exercise also confirmed

that the normalization for each PDF is correctly calculated and the cuts

were correctly applied in various sections of the code.

Some example plots are shown in the following figures.
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Figure 7.2: Comparing night 3D PDF for CC (left) to the one generated
using the likelihood function (right). Top shows yz projection, middle shows
xz projection and the bottom plot displays xy projection.
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Figure 7.3: Comparing ρ projection of CC day – blue shows the x projection
of the PDF used in the MCMC fit and red shows the x projection of the tester
PDF.

Figure 7.4: Comparing ρ projection of CC night – blue shows the x projection
of the PDF used in the MCMC fit and red shows the x projection of the tester
PDF.
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Figure 7.5: Comparing cos θSun projection of CC day – blue shows the y
projection of the PDF used in the MCMC fit and red shows the y projection
of the tester PDF.

Figure 7.6: Comparing cos θSun projection of CC night – blue shows the y
projection of the PDF used in the MCMC fit and red shows the y projection
of the tester PDF.
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Figure 7.7: Comparing energy projection of CC day – blue shows the z pro-
jection of the PDF used in the MCMC fit and red shows the z projection of
the tester PDF.

Figure 7.8: Comparing energy projection of CC night – blue shows the z
projection of the PDF used in the MCMC fit and red shows the z projection
of the tester PDF.
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Figure 7.9: Comparing day 3D PDF for ES (left) to the one generated using
the likelihood function (right). Top shows yz projection, middle shows xz
projection and the bottom plot displays xy projection.
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Figure 7.10: Comparing night 3D PDF for ES (left) to the one generated
using the likelihood function (right). Top shows yz projection, middle shows
xz projection and the bottom plot displays xy projection.
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Figure 7.11: Comparing ρ projection of ES day – blue shows the x projection
of the PDF used in the MCMC fit and red shows the x projection of the tester
PDF.

Figure 7.12: Comparing ρ projection of ES night – blue shows the x projection
of the PDF used in the MCMC fit and red shows the x projection of the tester
PDF.
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Figure 7.13: Comparing cos θSun projection of ES day – blue shows the y
projection of the PDF used in the MCMC fit and red shows the y projection
of the tester PDF. Y projections of ES are very similar hence on this plot, blue
is not visible because it is covered by red.
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Figure 7.14: Comparing cos θSun projection of ES night – blue represents
the y projection of the PDF used in the MCMC fit and red represents the y
projection of the tester PDF. Y projections of ES are very similar hence on
this plot, blue is not visible because it is covered by red.
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Figure 7.15: Comparing energy projection of ES day – blue shows the z pro-
jection of the PDF used in the MCMC fit and red shows the z projection of
the tester PDF. Z projections of ES are very similar hence on this plot, blue
is not visible because it is covered by red.
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Figure 7.16: Comparing energy projection of ES night – blue shows the z
projection of the PDF used in the MCMC fit and red shows the z projection
of the tester PDF. Z projections of ES are very similar hence on this plot, blue
is not visible because it is covered by red.
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4. Final Test: For a fake data set, we know the number of events for each

class so we generate the PDFs for each class using the TF3 function with

Likelihood function of the MCMC fit as a method. The TF3 function

generates ρ, cos θ, E events for the 3D PDF, within the limits specified for

each variable, and then uses the Likelihood method to draw the samples

of the PDFs. Once all the PDFs were generated, the projections of the

PDF for each class, corresponding to each axis, is normalized using the

number of events for the class. For a given axis, the projections from all

the classes were added up and fitted against the corresponding projection

of the data. See examples in figures 7.17, 7.18 and 7.19.
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Figure 7.17: Projection of C̆erenkov data for observable ρ = (R/RAV )3 (cap-
tioned as R3 on the x axis) overlaid with distributions from Monte Carlo
simulation of the signals. The distribution, from the Monte Carlo simulation
of the signal, is scaled by the number of events for the signal extracted from
the fit. This test #4 was undertaken to test the likelihood function of the
MCMC fit. Legend shows χ2 with the number of bins in the histogram.

154



Figure 7.18: Projection of C̆erenkov data for observable cos θSun overlaid with
known number of events for signals. This test #4 was undertaken to test the
likelihood function of the MCMC fit. Legend shows χ2 with the number of
bins in the histogram.
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Figure 7.19: Energy spectrum Teff in the C̆erenkov data overlaid with energy
spectra from NC, CC, ES, ESµτ and all the backgrounds. This test #4 was
undertaken to test the likelihood function of the MCMC fit. Legend shows χ2

with the number of bins in the histogram.
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7.1 Summary

This chapter outlined numerous tests undertaken to check the validity of the

code. Getting an expected answer (for example 20/4=5 and 100/20=5) from

the code is a necessary condition for the correctness of the code but it is not a

sufficient condition; to ascertain that it is 20/4 and not 100/20, it is important

to check each component that goes into the calculation of the expected answer

(5) from the code and this chapter demonstrated that each component of the

complicated program is doing exactly what it is supposed to be doing. Several

improvements to the code came about while testing various components of the

code so this was not an exercise in futility. The conclusion is that the MCMC

fit can deliver the result. Various other tests were also performed which are

described in section 11.5.1.
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Chapter 8

MCMC Ensemble Test for a fit
with 7 signal parameters, 19
systematic parameters and 3
constraints

This chapter describes the result of MCMC fit when the systematic param-

eters are allowed to float. The fit floats p0, p1, p2, a0, a1, number of nc

events, number of ex events, uncertainty in NC neutron detection efficiency

in the C̆erenkov data and 19 systematic parameters due to uncertainties in

the shape of the PDFs. Three constraints are applied in the fit: total number

of neutrons, number of external neutrons and flux-to-event ratio. There are

five classes: neutral current (nc), acrylic vessel neutron photo-disintegrations

(ex or av), charged-current (cc), elastic scattering for electron neutrinos (ese),

and elastic scattering for µ and τ neutrinos (esµτ ). The data and PDFs are

three dimensional in normalized radius-cubed (ρ), cosine of the event’s direc-

tion from the Sun (cos θ�), and the kinetic energy (Em). The cuts applied

in the signal extraction are: 0.0 ≤ ρ < 0.77025, 1.0 ≤ cos θ� < 1.0 and

6 MeV ≤ Em < 20 MeV. The SNOMAN Monte Carlo was used to build the

PDFs for the signal extraction. The 3 dimensional (3D) PDF is built with the

kinetic energy binning of 0.5 MeV between 6 MeV and 12 MeV and a single

bin between 12 MeV and 20 MeV. Two systematic parameters applied on the
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energy scale and vertex scale take into account the fact that the systematics

considered for the NCD analysis might have different values for the day and

night data caused by possible time variations in the detector response. Ad-

ditionally possible up-down asymmetries in the detector was considered for

the es signal in terms of energy scale, energy resolution, vertex scale and the

direction of the event – cos θ�. For a detailed description of the systematics,

see section 4.10.3.

8.0.1 Negative Log Likelihood (NLL) Equation

The NLL, used as a joint probability distribution in the MCMC fit, is described

as:

log L =
2m∑
i=1

Ni −
N∑
d=1

log
( 2m∑
i=1

(Ni)Fi(~xd, ~P )
)

+
(f 01 −N0 −N1)2

2σ2
01

+
(N1 −N1)2

2σ2
1

+
(ε− ε)2

2σ2
ε

+
1

2

∑
i

(
pi − p̄i
σpi

)2 +
1

2

2∑
i=0

2∑
j=0

(bxyi − ¯bxyi )(bxyj − ¯bxyj )(V −1
bxy )ij

+
1

2

1∑
i=0

1∑
j=0

(bzi − b̄zi )(bzj − b̄zj)(V −1
bz )ij (8.1)

where Fi(~xd, ~P ) is the probability density function, for the class i, giving the

probability of observing the event d with observables ~xd and with the current

values of the fit parameters ~P , N1, N2, . . . , Nm are the number of events for

m=5 event classes and i goes from 1 toN data entries. In the constraint terms,

N0 andN1 are the number of neutral current events and external neutrons (EX)

respectively for a current MCMC step and N1 is the constraint on the EX for

a given simulated dataset. Similarly f 01 is the constraint on the total number

of neutrons and σ01 is its uncertainty. The current value of the flux-to-event

ratio is ε, ε is the constraint on ε and σε is the uncertainty on the constraint.

In the likelihood equation, pi, p̄i and σpi represent the current value of the
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PMT systematic parameter i in the MCMC fit, its mean and constraint width

respectively. The next two terms are calculation of the constraint for the

systematic uncertainties that are correlated. The sources of neutrons in this

ensemble test are from neutral current and external neutrons. Table 8.3 gives

a quick overview of the salient features of this ensemble test and section 8.2

describes the constraints in detail.

8.1 Description of Simulated Datasets

Before testing the MCMC fit on the real data, it was tested on a set of simu-

lated data files. These sets were generated from events from the full SNOMAN

Monte Carlo simulation to resemble the real data as closely as possible. Pre-

vious SNO results were used to estimate the number of events for each signal

and ex situ measurements were used to estimate the number of background

events expected in the analysis window. For a more detailed account of fake

data set generation, consult reference [90].

Since the extended likelihood function implicitly assumes statistical fluctu-

ations in the number of events of each signal type, these were randomly drawn

from a Poisson distribution for each data set. Ensemble testing comprises

running the full signal extraction on each of the simulated fake datasets to (I)

fine tune the fitting algorithm, (II) to assure that the statistical and system-

atic uncertainties are properly propagated to the estimation of the number of

events for each signal type in the fit, (III) to adjust the PDF configuration

– if needed – and (IV) to make sure that the pull and bias distribution of

the fitting parameters follow an expected pattern from fitting N number of

simulated datasets. Table 8.1 lists the mean number of events used in a Pois-

son distribution for the generation of a number of events of each signal in the

simulated datasets.
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Event Class Mean Number of events

for the Poisson Distribution

cc 1845.276

es 161.607

esµτ 49.721

nc 240.569

ex 20.754

Table 8.1: Poisson parameter for each class used in the creation of the simu-
lated datasets.

8.2 Constraints in the Fit

Three constraints were applied to the fit. Table 8.2 list the central values

and the widths of the constraints. The central value of the total number of

Constraint On Central Value Width/Uncertainty

of Central Value

fnc 0.467578 0.00603

Number of External Neutrons 20.754 10.453115

Number of Neutrons 261.323 10.4533 (equation (8.3))

Table 8.2: List of constraints, their central values and the uncertainties on the
central values.

neutrons (N̄) in the fit is calculated as:

N̄ = NEX +NNC (8.2)

where NEX and NNC are the mean number of external neutrons and the NC

events used in the Poisson distribution for the generation of simulated datasets.
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The width (σ) is calculated as:

σEX = 10.453115

σNC =
1√
NNC

σ =
√

(σ2
EX + σ2

NC) (8.3)

8.3 Result

Two hundred and one independent fits were performed, each with a different

random seed so that the fits are statistically independent.

Number of simulated datasets 201

Number of steps 55,000

Number of steps removed as burn-in 20,000

Number of constraints 3

Number of parameters 27

Number of event classes 5

Table 8.3: Quick overview of the ensemble test.

The bias and pull were calculated for each dataset and the distributions

of these values, across the collection of 201 simulated datasets, were used to

determine whether the extraction was bias free. The peak and RMS of the

posterior distributions were used to get the best-fit value and its uncertainty.

These values were used in equations (4.76) and (4.75) to calculate the pull

and bias. The autocorrelation versus lag, shown in figures 8.1, 8.2 and 8.3,

was plotted to get an estimate of the burn-in period. Autocorrelation function

is covered in section 5.2. Pull distributions are shown in figures 8.4 and 8.8;

except neutron detection efficiency εnc, the pull of all other parameters are

approximately 1.0. The reason for pull width of εnc (Last row and 4th column

in table 8.4 – 0.7159) to be less than 1.0 is that εnc is also constrained by
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the total number of neutrons. Bias distribution is shown in figure 8.6 while

figure 8.7 illustrates bias in terms of its uncertainty to ascertain that the biases

of fit parameters are zero within their uncertainties, that is, all fit parameters

agree with the Monte Carlo inputs.

Figure 8.1: Autocorrelation coefficient versus lag for floating the systematics.
This plot shows the autocorrelation of signals and the parameters of survival
probability equation. From this plot, burn-in of 20,000 steps was selected.

The width of the pull of external neutrons is more than 1, as seen in

figure 8.4, because the likelihood function (posterior distribution) was not

symmetric for some of the simulated datasets resulting in the long tail in the

pull distribution of the external neutrons which is shown in figure 8.5.

The arrangement of the Chapters in the dissertation gives a false sense
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Figure 8.2: A plot showing autocorrelation coefficient versus lag of various
systematic parameters. In total 19 systematics were floated in the fit; auto-
correlation of ten is shown in this diagram.

of timing; the result, shown in this chapter, is from the earliest version of

the code which was run at Western Canada Research Grid (WestGrid [120]).

While the development was going on at the University of Alberta to include

the PSA constraint and the day-night asymmetries for the external neutrons

and D2O photo-disintegrations (d2opd), the code at West Grid was being de-

veloped to test the implementation of the systematic uncertainties listed in

table 8.5. Once the MCMC fit with the PSA constraint was fully formed, test-

ing of the code started at the University of Alberta; first running MCMC code

with a limited number of backgrounds (result described in chapter 9) and next
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Figure 8.3: Autocorrelation coefficient versus lag of additional systematic pa-
rameters.

including all the backgrounds (results described in chapter 10). These tests

did not include floating the systematic uncertainties except neutron detection

efficiencies for the PMTs and NCDs and, as mentioned above, the day-night

asymmetries for the external neutrons and D2O photo-disintegration. These

MCMC fits, with and without floating the systematic uncertainties, were run-

ning simultaneously on WestGrid and the University of Alberta. After the suc-

cessful implementation of PSA constraint, constraint from LETA was added;

the results are described in chapter 10.

As mentioned, the MCMC code went through several major developments

and cross checks were performed for each new addition to the code. During
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Pull Bias Pull Width Bias Error

nc -0.148414 -0.0111318 1.03769 0.00694771

ex -0.25303 0.0297015 1.73406 0.0352745

p0 0.00691543 0.0131642 0.919249 0.00807544

p1 0.0683312 -0.0654726 1.16261 0.166914

p2 -0.0420322 -0.337115 0.92251 0.49617

a0 -0.020796 -0.0304478 1.19134 0.162445

a1 -0.00905473 -0.191791 1.08107 0.835545

fnc -0.0382465 -0.00125871 0.715907 0.00130726

Table 8.4: Pull and bias data, in tabular form, used to plot figures 8.4, 8.6
and 8.7.

the cross checks it was discovered later (while fitting third of the real data)

that the equation to calculate the number of events for CC, ES and ESµτ

has an incorrect factor in it, that is, the number of events were multiplied

by the fiducial volume correction of neutral current (nc) rather than their

own. This bug escaped notice for two reasons (1) it is relevant only when

the systematics are floated and most of the tests performed did not float the

systematic uncertainties and (2) the effect is small for ES and ESµτ and matters

only for CC because the number of CC events dominates number of events

from all other event classes (table 8.1). Following equations were used instead

of the correct equations (which had Scc instead of Snc) described for CC in

equations (4.63) and (4.64).

χ = χD + χN (8.4)

χD = fnc Snc φnc
( σχ εχ
σnc εnc

)
peed RD (8.5)

χN = fnc Snc φnc
( σχ εχ
σnc εnc

)
peen (1−RD) (8.6)

where χ =CC, ES and ESµτ , Snc is the fiducial volume correction for NC, RD

is the ratio of the number day events to the total number of events in the

Monte Carlo, φnc is the 8B flux, fnc is a flux-to-event conversion factor and
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Figure 8.4: Pull distribution of the MCMC fit for the case where systematic
parameters were allowed to float. Table 8.4 was used to plot this figure. The
fit has five event classes, three constraints and 27 fit parameters. This plot
shows the pull distribution for the 8 parameters of the MCMC fit. The peak
and RMS of the posterior distributions were used to get the best-fit value and
its uncertainty.

the variable peed (peen) is a ratio of the number of events for day (night) classes

with given values of Pee (from equations (4.55) and 4.57 or equations (4.58)

and (4.59)) to the number of events with Pee equal to 1.0.

The uncertainty in using the wrong value of fiducial volume correction is

calculated as (Scc − Snc)/Scc where Snc and Scc are from the first step of the

Markov chain. From the 8 Markov chains from a fit on the full data, the

maximum uncertainty is 6%. The purpose of this fit was to check the imple-

mentation of the systematic uncertainties while various fits, without floating

the systematic uncertainties, were being tested at UofA. We wanted to make

sure that when we start testing MCMC code that includes the systematics the

code has already been tested in terms of step sizes and acceptance. So from

that perspective, the code at WestGrid was a success.
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Figure 8.5: Long tail on the left is the reason for the wider pull width of the
external neutrons shown in figure 8.4.

168



Figure 8.6: Bias distribution of the MCMC fit while floating the systematic
parameters. Table 8.4 was used to plot this figure. The fit has five event
classes, three constraints and 27 fit parameters. This plot shows the bias
distribution for the 8 parameters of the MCMC fit. The peak and RMS of the
posterior distributions were used to get the best-fit value and its uncertainty.

Figure 8.7: The plot shows bias divided by the uncertainty on the bias for the
case of floating the systematic parameters. This plot shows that the bias for
the fit parameters is consistent with zero for an ensemble test involving 201
simulated datasets.
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Name Description Pull Pull

Width

Sys1 Direction Asymmetry in cos θ for ES only 0.0233341 1.03253

Sys2 cos θ Resolution 0.114876 0.943028

Sys3 Energy Scale -0.092193 1.04703

Sys4 Directional Asymmetry in -0.102643 1.059

Energy Resolution for ES only

Sys5 Energy Resolution -0.0257215 0.950999

Sys6 X Shift -0.0593584 1.08257

Sys7 Vertex Scale -0.0748767 0.999712

Sys8 Y Shift 0.0396525 1.01556

Sys9 Z Shift 0.0262243 1.13231

Sys10 XY Resolution – constant term -0.0554756 1.05777

Sys11 XY Resolution – linear term -0.0847274 0.988964

Sys12 XY Resolution – quadratic term -0.0401506 1.03712

Sys13 Z Resolution – constant term 0.155381 1.05093

Sys14 Z Resolution – linear 0.110996 0.987656

Sys15 Vertex Diurnal 0.0385573 0.941561

Sys16 Vertex Direction -0.0228358 0.876688

Sys17 Energy Scale Diurnal 0.0338809 0.972683

Sys18 Energy Scale Direction -0.0114926 0.93307

Sys19 Energy Scale (correlated) 0.0181612 1.09638

Table 8.5: Data, in a tabular form, to plot figure 8.8.
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Figure 8.8: Pull spread of the systematics. This plot shows that the system-
atics are correctly treated in the MCMC fit because the pull is approximately
zero and the width of pull is approximately one for all the systematics. The
mean of the posterior distribution was used in the calculation of the pull.
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8.4 Summary

This chapter described the result from the first MCMC ensemble test. This is

a simple fit as it does not float the day-night asymmetries for the backgrounds

from external neutrons and d2opd. Also the constraint on the total number of

neutrons is the mean Poisson number of neutrons in the simulated datasets.

The pull (figures 8.4 and 8.8) and bias plots (figures 8.6 and 8.7) show that

the code is ready to tackle the next challenge, that is, add PSA constraint,

additional backgrounds besides the external neutrons and float the day-night

asymmetries for two of the backgrounds.
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Chapter 9

Adding the Constraint from Pulse
Shape Analysis (PSA) and
Backgrounds

This chapter describes Monte Carlo Markov Chain (MCMC) fit on 448 sim-

ulated datasets (version 4) using PSA method described in section 4.10.9.

Details on simulated data generation are described in reference [90]. For this

ensemble test, following are the parameters in the likelihood function of the

NCD phase: Neutral Current (nc), D2O neutron backgrounds (d2opd), acrylic

vessel neutron photo-disintegrations (ex), neutron backgrounds due to hot

spots on K2 and K5 NCD strings, atmospheric neutrino backgrounds (at-

mos), NCD background neutrons (ncdpd), hepCC, hepES and hepNC. The

last three are due to interactions of hep neutrinos in the heavy water. Since

ncdpd, k2pd and k5pd have limited statistics, to test the PSA method, these

were not added; chapter 10 describes the result when all the backgrounds were

included. The number of events for hepCC, hepES ad hepNC are fixed in

the MCMC fit and the number of events for Charged Current (cc), Elastic

Scattering (es) due to electron neutrinos, Elastic Scattering due to νµ and ντ

neutrinos (esµτ ) are calculated using the 8B flux and the survival probability

equations as described in chapter 4. Besides floating the number of events for

the signals and backgrounds, other floating parameters are three Pee variables
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(p0, p1 and p2), two day-night asymmetries (a0 and a1) to take into account

the matter effect caused by propagation of neutrinos through matter in the

Sun and the Earth and the day-night asymmetries for the two backgrounds

(external neutrons and d2opd). The PSA method added a constraint from

pulse shape analysis to the fit (equation (9.6)). For details on this analysis,

consult reference [90]. A quick overview of the ensemble test is listed in a

table 9.1.

The flux-to-event ratios, to convert flux to number of events, are calculated

as:

fPMT
nc = Nnc/φMC ≈ 0.46758 (9.1)

fNCDnc =
13.2744702 ∗ 392.89 ∗ 0.211 ∗ 0.8250158

514.5
= 1.76460 (9.2)

In equation (9.1), Nnc =240.569 is the actual number of NC events/SSM set

and φMC = 514.5×104 ν cm−2 s−1 is the input SSM 8B ν flux in the SNOMAN

Monte Carlo. In equation (9.2), 13.27 is the number of neutrons per day

expected to interact in the SNO detector, 392.89 days is the lifetime of the

NCD phase, 0.211 is the NCD neutron capture efficiency and 0.8250158 is

the correction applied to the efficiency to account for the differences between

the data and the Monte Carlo simulation used in the fit (See reference [90]

for details). From herein, flux-to-event ratios fPMT
nc and fNCDnc will be used

synonymously with εPMT
nc and εNCDnc

9.0.1 Generation of the Simulated datasets

The simulated dataset consisted of 448 files; for each file, the number of events

for the signals were randomly drawn from a Poisson distribution with means

listed in column two of table 9.2. These means will hereafter be called Poisson

means. Another set of simulated data was created using a different seed and

this set is called an alternate dataset while the first set is called a regular
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Number of MCMC steps 250000

Burn-in 30000

Number of parameters floating 13

Total number of classes 10

Number of fixed classes 3

Number of constraints 7

Table 9.1: Quick overview of the ensemble test using constraint from PSA.

dataset. The reason for creating the alternative dataset was to determine the

role of statistics in the pull and bias of the fit. Columns 3 and 4 list the

mean number of events for each class in the regular simulated dataset and the

alternate dataset. The number of events for CC, ES and ESνµ were calculated

from 8B flux, Pee parameters (p0, p1 and p2) and the day-night asymmetry

(a0 and a1). These parameters (p0, p1, a0, a1) are listed in a table 9.3. Once

the number of events were determined for CC, ES and ESµτ , these were used

as the mean number of events in the Poisson distribution ("Poisson means"),

which was utilized to randomly draw the number of events, for all the event

classes, to create each simulated data file.

9.0.2 Constraints on the Fit

Seven constraints were applied to the fit. Table 9.4 lists central values of the

constraints along with associated uncertainties on the constraints. To achieve

a correct pull distribution, the constraint is randomly drawn from a Gaussian

distribution for each simulated dataset. If this is done properly and the fit is

correct then the pull plot, displayed in figure 10.2, should show that the width

of the pull for all the floating variables is consistent with one. Since the width

of the constraint on the external neutrons is 50.37% of the constraint, the

mean and the centroid of the Gaussian function do not coincide because the

constraint is restricted to be positive. Therefore equation (9.3) was utilized to
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Event Mean Poisson Mean from Mean from

Class Parameter Regular Simulated Alternate Simulated

dataset dataset

CC 1845.276 1845± 44 1843±42.09
ES 161.607 161.85± 13.42 161.59±12.29
ESµτ 49.721 49.88±7.14 49.8±7.1
NC 240.569 240.3±15.3 240.9±21.4
EX 20.754 21.05± 4.46 20.623±4.613
d2opd 8.305 8.2±2.8 8.265±2.812
Atmos 24.681 24.57± 4.99 24.9±4.7
hepCC 12.844 12.692±3.55 12.835±3.459
hepES 1.068 0.70±0.67 0.7511±0.6850
hepNC 1.156 1.03±0.98 1.0616±1.018

Table 9.2: Properties of the regular and alternate simulated datasets; column 2
lists the mean number of events used in the Poisson distribution to generate the
simulated datasets and column 3 and 4 has the actual mean number of events
from the simulated datasets – regular and alternate respectively. These were
determined by plotting the number of events, belonging to each event class,
in a separate histogram; the mean and RMS of the histogram is reported as
mean number of events and its uncertainty in columns 2 and 3.

find the Centroid (µ), corresponding to the mean (x̄) randomly drawn from

the Gaussian distribution, to be applied in the calculation of the likelihood

function (9.6).

x̄ = µ+

√
2
π
σ exp (−µ

2

2σ2 )

Erfc( −µ√
2σ

)
(9.3)

Erfc(z) =
2√
π

∫ ∞
z

e−t
2

dt (9.4)

where x̄ and µ are the mean and the centroid of the Gaussian function respec-

tively. For detail on this, consult Chapter 6.
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Parameter Actual Value

p0 0.325

p1 -0.0088

p2 0.00122

a0 0.028

a1 0.00478

Table 9.3: Table lists values of Pee parameters and day-night asymmetry used
in the generation of the simulated datasets.

Constraint On Central Width/Uncertainty on

Value the Central Value

fNCDnc 1.76460447 0.041815285

fPMT
nc 0.46758 0.0129054351%

External neutrons (EX) 1.0 10.453115/24.754

Day night asymmetry of EX 0.0 0.0112

Atmospheric neutrinos 1 4.8999/24.681

D2O background (d2opd) 1.0 1.28594/8.305

Day night asymmetry for d2opd 0.0 0.112

PSA 997.752 4.5%

Table 9.4: List of Constraints, their central values and the uncertainties on
the central values.
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9.0.3 Negative Log Likelihood Equation

The NLL, used as a joint probability distribution in the MCMC fit, is described

as:

− log L =
2m∑
i=1

Ni −
N∑
d=1

log
( 2m∑
i=1

(Ni)Fi(~xd, ~P )
)

(9.5)

+
(PSA−B ε1 −N1κ1 −N2κ2 −N3κ3 − hepnc)2

2 (σP )2

+
(α1 − α1)2

2σ2
1

+
(α2 − α2)2

2σ2
2

+
(α3 − α3)2

2σ2
3

+
(ξ0 − ξ0)2

2σ2
ξ0

+
(ξ1 − ξ1)2

2σ2
ξ1

+
(ε1 − ε1)2

2σ2
ε1

+
(ε0 − ε0)2

2σ2
ε0

+
1

2

∑
i

(
pi − p̄i
σpi

)2 +
1

2

2∑
i=0

2∑
j=0

(bxyi − ¯bxyi )(bxyj − ¯bxyj )(V −1
bxy )ij

+
1

2

1∑
i=0

1∑
j=0

(bzi − b̄zi )(bzj − b̄zj)(V −1
bz )ij (9.6)

where Fi(~xd, ~P ) is the probability density function, for the class i, giving the

probability of observing the event d with observables ~xd and with the current

values of the fit parameters ~P , hepnc is the number of neutral current events

initiated by hep neutrinos, N1, N2, . . . , Nm are the number of events form=10

event classes and i goes from 1 to N data entries. In the constraint terms, α1,

α2 and α3 are the ratios of the average rate to the nominal rate for the current

MCMC step and the α1, α2 and α3 are the constraints for EX, d2opd (photo-

disintegration) and atmospheric neutrinos respectively for a given simulated

dataset. The day-night asymmetries for the external neutrons and d2opd are

represented by ξ0 and ξ1 respectively. The flux-to-event for the NCDs and

PMTs are represented by ε1 and ε0 respectively. The 8B flux is designated by

B and PSA is the PSA constraint for the current simulated dataset and σP

is the width of the PSA constraint. Pee parameters (p0, p1 and p2) and the

day-night asymmetry (a0 and a1) were used to calculate the number of events

for CC, ES and ESµτ . In the likelihood equation, pi, p̄i and σpi represent the
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current value of the PMT systematic parameter i in the MCMC fit, its mean

and constraint width respectively. The last two terms are calculation of the

constraint for the systematic uncertainties that are correlated.

9.0.4 Result of Pull and Bias Testing

Results of the pull and bias for the fit are shown in figures 9.2, 9.4 and 9.5. The

top plot shows the result of fitting the regular data and the bottom plot shows

the result of fitting the alternate data. For the pull and bias distributions, the

fit value and its uncertainty are the peak and RMS of the posterior distribution

respectively. Since 8B flux (measured by neutral current interactions) is highly

correlated with Pee parameter p0, as seen in figure 9.1, we decided to use 2

Dimensional marginal likelihood function [91] to determine the best-fit for

nc instead of the 1D we used for all the other parameters. For a likelihood

function consisting of 5 parameters, the 2D marginal likelihood is described

as:

h(x1, x2) =

∫ x3(max)

x3(min)

∫ x4(max)

x4(min)

∫ x5(max)

x5(min)

L(x3, x4, x5)dx3dx4dx5 (9.7)
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Figure 9.1: Correlation of 8B flux with Pee parameter p0; the peak of the 2D
histogram, in the 8B flux dimension, is used as the best-fit in the calculation
of the pull and bias shown in the second row of tables 9.5 and 9.6. Unit of 8B
flux is 104 cm−2 s−1.
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Parameter Pull Bias Width Uncertainty

of Pull on Bias

nc1d -0.230942 -0.0125036 1.00191 0.0027206

nc2d -0.115403 -0.00580357 0.997218 0.00271135

εNCDnc 0.0853571 0.00202282 0.968046 0.00107979

p0 0.0397772 0.011134 0.982776 0.00437695

p1 0.093125 -0.123214 1.02329 0.0916266

p2 -0.00883929 -0.0585268 0.971979 0.3333

a0 -0.0582154 -0.0979688 1.01031 0.0939415

a1 -0.0213843 -0.248482 1.00527 0.520914

εPMT
nc 0.0250453 0.00048552 1.02351 0.00062449

ex -0.130737 0.00133945 1.48868 0.0260593

exAsym -0.0392864 1.00946

d2opd -0.00272324 -0.00042858 0.979591 0.00717938

d2opdAsym -0.077323 1.01282

Atmos 0.0641083 0.0132866 1.00768 0.00942613

Table 9.5: Pull and Bias in tabulated form, for the regular dataset consisting of
448 files, to plot figures 9.2, 9.4 and 9.5. The pulls and biases were calculated
using the peak and RMS of the posterior distributions. The actual value of
day-night asymmetry in the simulated data is zero hence bias calculation for
exAsym and d2opdAsym is not possible (equation (4.75)).
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Figure 9.2: These are pull plots for the regular dataset blue, as well as, the
alternate dataset in red.
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Figure 9.3: The pull distributions of external neutrons. The top plot is for the
regular dataset and the bottom plot is for the alternative dataset. The tails
cause the pull width to be greater than 1.0 as seen in figure 9.2.
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Figure 9.4: These are bias plots for the regular data in blue as well as for the
alternate data in red. The role of statistics is evident in the bias of a1 which
flipped sign from the regular dataset to the alternate dataset.
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Figure 9.5: Spread of bias divided by the error in the bias for the regular
data in blue and for the alternate data in red. The bias of NC and p0 is not
consistent with zero as hoped. The reason is explained in section 11.5.1.
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Parameter Pull Bias Width Uncertainty

of Pull on Bias

nc1d -0.238264 -0.0129786 1.00555 0.00272892

nc2d -0.128707 -0.00660357 1.00183 0.00272106

εNCDnc 0.103482 0.00243735 0.980004 0.0010916

p0 0.0716084 0.0145938 1.00723 0.0045035

p1 0.0366964 -0.0308036 0.914152 0.0817548

p2 -0.0601786 -0.449732 0.895417 0.302359

a0 -0.0716522 -0.137188 0.962276 0.0901021

a1 0.0365627 0.400714 0.96157 0.492561

εPMT
nc 0.0147325 0.000384841 1.0204 0.000624776

ex -0.139419 -0.00625062 1.45068 0.025772

exAsym -0.0271433 1.00452

d2opd -0.00620543 -0.000870556 0.987645 0.00722651

d2opdAsym -0.0781708 0.998703

Atmos 0.0595101 0.0123081 1.01328 0.00946615

Table 9.6: Pull and bias in a tabulated form, for the alternate dataset con-
sisting of 448 files, to plot figures 9.2, 9.4 and 9.5. The pulls and biases were
calculated using the peak and RMS of the posterior distributions. The ac-
tual value of day-night asymmetry in the simulated data is zero hence bias
calculation for exAsym and d2opdAsym is not possible (equation (4.75)).
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9.1 Summary

This chapter described the MCMC fit result using the PSA constraint and

adding backgrounds from D2O photo-disintegration and atmospheric neutri-

nos. The biases are consistent with zero except for the bias in NC. Even though

the bias in the neutral current (NC) is not consistent with zero using 1D or

2D marginal likelihood function, (From 1D distribution -0.0125±0.0027

for the regular dataset and -0.013±0.0027 for the alternate dataset),

this test was considered a success and we move on to the next ensemble test

which included all the backgrounds in the fit. The reason for the bias in NC

was investigated in detail and is covered in section 11.5.1.
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Chapter 10

Ensemble Test with Signals, all
the Backgrounds, and Fixed
Systematic Parameters

10.0.1 Introduction

This chapter describes the MCMC fit using the PSA constraint (described in

section 4.10.9). The parameters floating in the likelihood function are: neu-

tral current (nc) , external neutrons (ex), day-night asymmetry for the external

neutrons, d2opd, day-night asymmetry for the d2opd, atmospheric neutrinos,

k2pd, k5pd, ncdpd, NCD NC detection efficiency, PMT NC detection effi-

ciency, Pee parameters (p0, p1 and p2) and the day-night asymmetry (a0 and

a1). Information from external measurements is used to apply constraints on

the likelihood function. There are 11 or 12 constraints applied. Table 10.2

lists the parameters on which constraints are applied, the constraints applied

and the widths/uncertainties of the constraints. Table 10.1 shows the Poisson

means (Number of expected events, used as mean in the Poisson distribu-

tion, and henceforth will be called Poisson means.) for the generation of the

simulated datasets and the means from the limited number of datasets. The

number of steps in a MCMC fit is 350,0000 and 30,000 steps were removed

as a burn-in. The number of simulated datasets in the ensemble test is 14 or

15. Three event classes (hepCC, hepES and hepNC) were not floated and the
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number of events for three event classes (CC, ES and ESµτ ) were calculated

from the 8B flux and Pee survival probability equation. Refer to chapter 4 for

more details.

Parameter Poisson Means Mean from Mean from

Regular dataset Alternate dataset

nc 240.569 242.5± 11.84 237.5±19.45
ex 20.754 20.73± 2.768 21±7
k2pd 9.402 10.13± 2.918 8.267±2.977
k5pd 8.378 9.2± 2.4 8.267±1.611
d2opd 8.305 7.067± 2.38 8.067±2.568
Atmos 24.681 23.13± 4.588 23.27±4.49
cc 1845.276 1843± 39.95 1836±29.81
es 161.607 162.7± 11.5 161.5±10.1
esµτ 49.721 50.13± 5.427 49.87±4.32
ncdpd 5.938 5.533± 1.996 6.667±3.218

Table 10.1: Expected number of events used as Poisson means in the gen-
eration of the simulated datasets and the mean number of events in the 15
simulated datasets.

189



Parameter Constraint Uncertainty on Constraint

εPMT
nc 0.46758 0.00603

εNCDnc 1.764605 0.041815285

ex 1.0 10.453115/20.754

exasym 0.0 0.0112

k2pd 1.0 1.49056/9.402

k5pd 1.0 0.980968/8.378

d2opd 1.0 1.28594/8.305

d2opdasym 0.0 0.112

Atmos 1.0 4.8999/24.681

ncdpd 1.0 2.0349/5.938

PSA 1097.752 49.39884

Table 10.2: Constraints and the uncertainties on the constraints applied on
the parameters listed in column 1.

Figure 10.1: Autocorrelation coefficient versus lag for the parameters in the
fit. Fifteen simulated datasets with 13 event classes were used in the ensemble
test. The number of steps in the MCMC fit is 350,000 but only 100,000 are
shown here for clarity. This fit does not float the systematic uncertainties.
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10.0.2 Result

In the calculation of pull (equation (4.76)) and bias (equation (4.75)), for the

best-fit of a fit parameter and its uncertainty, peak and RMS of the posterior

distribution – belonging to the fit parameter – were used respectively. The

peak is determined by the following algorithm:

1. Determine the RMS σ and the range (R) of the posterior distribution by

projecting all the MCMC events along the single axis of the parameter.

2. 10th of the σ is taken as a bin width of a histogram H and the number

of bins are calculated as nbins = (R/(0.1σ)).

3. The histogramH is populated with the parameter values from the MCMC

chain.

4. Smoothing the histogram H and then searching for the bin with the

highest value (maximum bin).

5. Peak is a bin center of the maximum bin.

For the regular data, the result is presented in a tabular form (table 10.3)

as well as blue plots in figures 10.2 to 10.4; for the alternate datasets, the

result in a tabular form is listed in a table 10.4 and pull and bias plots are

shown in red in Figures 10.2 to 10.4.

Simulated datasets are created from a Monte Carlo simulation. Since ran-

dom events are selected for inclusion in the simulated dataset, a different seed

will result in different datasets. Hence statistics will play a role in the pull and

bias spread. Increasing the number of datasets will reduce the role of statistics

but with only 15 datasets, it is evident that statistics play a vital role. For

example, looking at tables 10.3 and 10.4, the pull of k5pd is 0.602 for the al-

ternate data but 0.115 for the regular data. Similarly the pull of p2 is +0.655
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for the regular data but only -0.218 for the alternate data. The sign of pull

flipped from the regular data to the alternate data for p2. The pull of some of

the parameters exceeded 0.5, for example p2 and k5pd in the regular dataset

and alternate dataset respectively, as shown in Figure 10.2. Section 10.2 cov-

ers a discussion of the statistics of pull in an ensemble consisting of 14 or 15

datasets. The error bars on the pull plots indicate the average spread of the

parameter and not the uncertainty on the average pull. From statistics, the

pull width as a function of the number of datasets n, is given as:

√
[(n− 1)/n]

(
1− 1

4(n− 1)

)
. (10.1)

Since n=14 or 15 for this analysis, the pull width should be 0.945 or 0.949.
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Parameter Pull Bias Width Uncertainty

of Pull on Bias

nc -0.261713 -0.0155333 0.89048 0.0134721

εNCDnc 0.106011 0.0003 1.08945 0.000792184

p0 -0.222016 -0.0113 1.0788 0.0262884

p1 -0.354 0.758667 0.834691 0.404804

p2 0.655335 4.614 0.884342 1.65851

a0 -0.0860025 -0.139411 1.02759 0.520458

a1 -0.132667 -1.49877 0.842946 2.20641

εPMT
nc -0.184667 -0.00230667 0.965865 0.00322137

ex -0.157145 -0.0436701 1.42237 0.139222

exAsym 0.445728 0.636905

d2opd -0.246017 -0.0378333 1.06408 0.0420035

d2opdAsym -0.258038 1.10459

Atmos -0.319344 -0.0621667 0.937625 0.0475242

k2pd 0.0846684 0.0121667 1.01403 0.041383

k5pd 0.115336 0.0141667 1.03623 0.0312613

ncdpd -0.431336 -0.117801 0.963052 0.0746731

Table 10.3: Pull and bias in tabulated form, used to plot distributions, shown
in blue, in figures 10.2 to 10.4. The day-night asymmetry of the d2opd and ex-
ternal neutrons in the regular datasets is zero, hence the bias is not applicable
(equation (4.75)).
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Figure 10.2: Pull spread for the 15 datasets. The peak and RMS of the poste-
rior distribution were used as the best-fit and its uncertainty in the calculation
of the pull of the fit. The top plot is the pull spread for the regular datasets
and the bottom plot is for the alternate datasets. There are a number of sign
flips between the data and the alternate data, for instance, p2.
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Figure 10.3: Spread of bias divided by the error in the bias. This ensemble
test floats 16 parameters and does not include the systematics. The blue is for
the regular datasets and the red is for the alternate datasets. The bias of p2

is less than 1σ for the alternate datasets but more than 2σ for the data. The
bias on a0 is less than 1σ for the data but around 2σ for the alternate case.
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Figure 10.4: Spread of bias for the 15 regular datasets (blue) containing 13
event classes. The red is for the alternate datasets. There are a number of
sign flips, for instance, p2 and a1.
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Parameter Pull Bias Width Uncertainty

of Pull on Bias

nc -0.316215 -0.0184667 0.882103 0.0140898

εNCDnc 0.272715 0.00207378 1.122 0.00293686

p0 0.291334 0.0373 0.925968 0.0249086

p1 0.078 -0.129333 0.837835 0.413784

p2 -0.218004 -1.518 1.02159 1.89429

a0 -0.444667 -0.87936 0.851902 0.440405

a1 0.123333 1.64804 0.729518 2.09174

εPMT
nc 0.0860005 0.00134667 0.984209 0.00330405

ex -0.289287 -0.123689 1.34256 0.144165

exAsym -0.259242 1.68998

d2opd -0.312695 -0.0485 1.07422 0.0430973

d2opdAsym 0.318098 1.14534

Atmos 0.0620008 0.0121667 1.01325 0.0517788

k2pd 0.118001 0.0201667 0.991889 0.040105

k5pd 0.602032 0.0711667 1.03028 0.0312321

ncdpd 0.367007 0.16725 1.5316 0.121459

Table 10.4: Pull and bias in tabulated form, used to plot the distributions,
shown in red, in figures 10.2 to 10.4. The day-night asymmetry of the d2opd
and external neutrons in the alternative datasets is zero, hence the bias is not
applicable (equation (4.75)).
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10.1 Including penalty from both the Low En-
ergy Threshold Analysis (LETA) and the
Pulse Shape Analysis (PSA)

For this fit, the constraints from LETA were added along with the constraint

from the PSA in the likelihood function. PSA and LETA constraints are

described in detail in Sections 4.10.9 and 4.10.8.

Fourteen datasets were used for this ensemble test. This fit also includes all

6 backgrounds along with CC, ES, NC and ESµτ . The parameters constrained

by the LETA constraint are 8B Scale and the 5 parameters of the survival

probability equation (p0, p1, p2, a0 and a1).

198



Parameter Pull Bias Width Uncertainty

of Pull on Bias

nc -0.33149 -0.00948571 0.883355 0.00665161

εNCDnc -0.317298 -0.00312461 1.17893 0.00323582

p0 -0.18 -0.00771429 0.863663 0.0111242

p1 -0.16 0.132571 0.692048 0.147339

p2 0.509154 1.19314 1.20124 0.737018

a0 0.202465 0.224572 0.981601 0.280461

a1 -0.210286 -0.96 0.712436 0.948475

εPMT -0.137993 -0.00146743 1.14366 0.00367554

ex -0.0171429 0.012 0.865261 0.0965634

exAsym -0.212742 0.974553

d2o -0.406556 -0.0630932 1.02568 0.0420775

d2oAsym -0.325714 1.00941

Atmos -0.362743 -0.0708 0.683359 0.0358792

k2pd -0.0854673 -0.0127308 1.20072 0.0507381

k5pd -0.373504 -0.0440585 1.04368 0.0325189

ncdpd 0.0377143 0.0302857 1.0265 0.0858535

Table 10.5: Pull and bias in tabular form, used to plot the distributions,
shown in blue, in figures 10.5 to 10.7. The MCMC fit includes constraint
from both LETA and PSA. The day-night asymmetry of the d2opd and exter-
nal neutrons in the regular datasets is zero, hence the bias is not applicable
(equation (4.75)).
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Figure 10.5: Pull spread with both PSA and LETA constraints. Ensemble test
included fourteen datasets. Each MCMC run had 350,000 steps; 100,000 steps
were removed as burn-in to assure the convergence of the remaining steps.
Systematics were not floated in this ensemble test. The fit included 13 event
classes and floated 16 parameters with the application of 12 constraints. The
blue is for the data and red is for the alternate case. The parameters p0, p1,
p2 flipped signs between the regular data and the alternate data.
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Figure 10.6: Spread of bias with both PSA and LETA constraints. Ensemble
test included fourteen datasets. Each MCMC run had 350,000 steps; 100,000
steps were removed as burn-in to assure the convergence of the remaining
steps. Systematics were not floated in this ensemble test. The fit included 13
event classes and floated 16 parameters with the application of 12 constraints.
The blue is for the data and red is for the alternate case. The parameter p2

flipped the sign between the regular dataset and the alternate dataset.
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Figure 10.7: Spread of bias divided by the error in the Bias using both PSA and
LETA constraints. Ensemble test included fourteen datasets. Each MCMC
run had 350,000 steps; 100,000 steps were removed as burn-in to assure the
convergence of the remaining steps. Systematics were not floated in this en-
semble test. The fit included 13 event classes and floated 16 parameters with
the application of 12 constraints. The blue is for the data and red is for the
alternate case.
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Parameter Pull Bias Width Uncertainty

of Pull on Bias

nc -0.216109 -0.006 1.07102 0.0081885

εNCDnc -0.203118 -0.00191767 1.2591 0.00345443

p0 0.182857 0.0107143 0.885908 0.0115773

p1 -0.0100001 0.02 0.980966 0.202757

p2 -0.162878 -0.321429 1.09952 0.679468

a0 0.125714 0.135 0.653438 0.185701

a1 0.0528574 0.331429 0.965638 1.29104

εPMT
nc -0.277144 -0.00305714 0.955609 0.00297688

ex -0.178571 -0.0428571 1.04565 0.103571

exAsym -0.261812 1.06897

d2opd -0.391452 -0.0625 1.0424 0.0430739

d2opdAsym -0.305726 1.03947

Atmos -0.408571 -0.08 0.811228 0.042172

k2pd -0.0814626 -0.0132143 1.17777 0.0495151

k5pd -0.430012 -0.0503571 1.01149 0.031553

ncdpd -0.12287 -0.0188592 1.0902 0.0877943

Table 10.6: Pull and bias in tabular form, used to plot the distributions,
shown in red, in figures 10.5 to 10.7. The MCMC fit includes constraint from
both LETA and PSA. The day-night asymmetry of the d2opd and external
neutrons in the alternative datasets is zero, hence the bias is not applicable
(equation (4.75)).
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10.2 The Statistics of "Pulls"

Using a small toy Monte Carlo, it was shown that an ensemble test of 15

datasets will always result in broader pull distributions compared to say an

ensemble of 50 or 100 datasets. Pull plots for the 15, 50 and 100 datasets are

shown in figures 10.8 and table 10.7 lists pull, width of pull, χ2 and degrees of

freedom (dof) from fitting a Gaussian function to the pull spreads. The pull

is 39.21 when using 15 files but improves to 0.399 and 0.133 with 50 and 100

files respectively. Non-zero number of entry at pull=-5 plays a bigger role in

pull calculation when using 15 files compared to, for instance, 100 files. If the

range of the fit is restricted from -2 to 1 in the top plot in Figure 10.8, the

pull improves from 39 to 0.7 to with χ2/dof = 6/17.

Number of datasets Pull Width of Pull χ2 Degrees of Freedom

15 39 8 7 38

50 0.399 1.382 30 57

100 0.133 1.288 53 58

Table 10.7: Result of a toy Monte Carlo where different number of datasets
were used in the analysis to quantify the effect of statistics on the pull of the
fit.
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Figure 10.8: Pull spreads for 15, 50 and 100 sets. The green line shows a
Gaussian fit of the distributions.
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10.3 Convergence of the Markov Chain

One test of robustness of the MCMC code is the convergence fit where the

starting points were picked from a flat distribution expressed as: Uniform(µ−

10σ, µ + 10σ) where µ is the central value and σ is the uncertainty of the

central value. MCMC is a robust code if the fit converged despite the fact

that the initial values were far away (±10σ) from the nominal values. This

section describes the result of the convergence test. Plot 10.9 shows that

the convergence of log likelihood was achieved around 4000 steps. Different

parameters took different number of steps to converge, as seen in figures 10.11

to 10.15. To ensure the convergence, the burn-in period was selected to be

50,000 steps after consulting the autocorrelations plots, shown in figure 10.1.

The number of steps in the burn-in period were rejected when estimating the

parameter values. Table 10.8 gives a summary of the results of the Conver-

gence fit; column one lists the constraints selected randomly for the dataset,

column two lists the mean and RMS of the posterior distributions, after taking

out the burn-in period, and the last column points to the figures that has the

corresponding result.

Figure 10.9: The left plot displays a histogram of log likelihood versus MCMC
step. The plot on right is a histogram which shows the negative value of
likelihood calculated for each step of the chain. The large negative likelihoods
correspond to the steps where the chain has not yet converged.
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Figure 10.10: Convergence of neutral current (NC) flux. The yellow and red
colours show the converged regions. For clarity not all MCMC steps (350,000)
are shown in this plot.
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Figure 10.11: Convergence of the external neutrons. The yellow and red
colours show the converged regions. For clarity not all MCMC steps (350,000)
are shown in this plot.

Figure 10.12: Convergence of the ncdpd background. The yellow and red
colours show the converged regions. For clarity not all MCMC steps (350,000)
are shown in this plot.
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Figure 10.13: Convergence of the k2pd background. The yellow and red colours
show the converged regions. For clarity not all MCMC steps (350,000) are
shown in this plot.

Figure 10.14: Convergence of the k5pd background. The yellow and red colours
show the converged regions. For clarity not all MCMC steps (350,000) are
shown in this plot.
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Figure 10.15: Convergence of d2opd. The yellow and red colours show the
converged regions. For clarity not all MCMC steps (350,000) are shown in
this plot.
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Figure 10.16: Posterior distributions of the d2opd and external neutrons. The
values are ratios of average rates to the nominal rates for the d2opd and ex-
ternal neutrons. The fit value is taken as the mean of distribution and the
uncertainty as the RMS.
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Figure 10.17: Posterior distributions showing the mean number of events of
k2pd [top] and k5pd [bottom] neutrons.
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Figure 10.18: Posterior distributions showing the mean number of ncdpd
neutrons and atmospheric neutrons.
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Figure 10.19: Posterior distributions of day-night asymmetry of external neu-
trons [top] and d2opd [bottom] neutrons.
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Figure 10.20: Plots for flux-to-event ratios for 8B flux in PMTs [top] and
NCDs [bottom].

215



Parameter Central Value of Fit Result Figure

the Constraint Number

d2opd 0.876 0.8737± 0.1539 Top plot 10.16

ex 0.008 0.008± 0.011 Bottom plot 10.16

k2pd 9.79 9.79± 1.445 Top plot 10.17

k5pd 7.09 7.115± 0.9963 Bottom plot 10.17

ncdpd 5.685 5.847± 1.946 Top plot 10.18

Atmospheric 21.504 21.45± 4.89 Bottom plot 10.18

ex D/N 1.48915 1.542± 0.4913 Top plot 10.19

d2opd D/N 0.0505 0.0517± 0.111 Bottom plot 10.19

PMT f2e 0.477 0.4765± 0.006 Top plot 10.20

NCD f2e 1.75465 1.755± 0.005 Bottom plot 10.20

Table 10.8: Comparing constraint to the result from the MCMC fit. Fit result,
in column 3, consist of mean and RMS from the posterior distribution; D/N
stands for day-night asymmetry and f2e is flux-to-event ratio.

10.3.1 Conclusion of the Convergence Test

This section shows that purposely selecting initial values far from away from

the true values has no effect on the fit. Convergence was reached after 5,000

steps which is 1.4% of the total number of steps (350,000) that were used in

the fit. For the nominal fits, starting values were randomly selected according

to a Gaussian distribution (µ,±3σ) of width ±3σ where µ is the central value

of a constraint or a nominal value used in the generation of the datasets and

σ is the width of the constraint or the uncertainty of the nominal value.
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10.4 Comparing MCMC to QSigEx for the full
Monte Carlo using the LETA constraint

The motivation for this ensemble test was to compare MCMC to QSigEx hence

for this ensemble test, the constraints were not changed from one dataset

to another dataset. This tests whether there are coding errors or algorithm

problems in either of the two independent analyses. MCMC is the code that

the author of this dissertation ran at University of Alberta and QSigEx is the

code that Pierre-Luc Drouin from the University of Carleton ran. QSigEx is

based on maximum likelihood method in TMinuit from ROOT [93]. MCMC

is based on Markov Chain Monte Carlo method using Metropolis algorithm.

Tables 10.9 and 10.10 illustrate the comparison between MCMC and QSigEx

for the alternate case and regular datasets respectively. For both MCMC and

QSigEx, the distribution of best-fit value, from each simulated dataset, was

plotted for each parameter x. For MCMC, Root Mean Square (RMS) of the

distribution was taken as an uncertainty on the best-fit value of the parameter

x (See column 3 in tables 10.9 and 10.10). The mean shift, mean spread and

the uncertainty on the mean shift was computed by plotting the difference,

between the best-fit values from MCMC and QSigEx, divided by the average

uncertainty (equation (10.2)):

2(q[x]−m[x])

(σq[x] + σm[x])
(10.2)

where q[x] and m[x] are the best-fit values for the parameter x, σq[x] and

σm[x] are the uncertainties on the best-fits for the parameter x from QSigEx

and MCMC respectively. The mean of the distribution is the mean shift and

the RMS of the distribution is the mean spread, listed in column 6 and 7

of tables 10.9 and 10.10. The uncertainty on the mean shift is mean spread

divided by the square root of the number of datasets which in this ensemble

test was 14. The correlation between MCMC and QSigEx was obtained by
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plotting 2 Dimensional histogram (Hist q[x] : m[x]) and then using a function

from ROOT Hist.GetCorrelationFactor(). See the last column in tables 10.9

and 10.10).

Comparing best-fit results (peaks of posterior distributions after removing

the burn-in period) of a0, a1 and 8B scale from MCMC to QSigEx in the left di-

agrams of the following figures 10.21, 10.22 and 10.23. The right plots compare

computation of the equations (10.3) and (10.4) in red and blue respectively.

The comparison is for each of the 14 fitted simulated datasets, shown in the

X axis in the figures.

(q[x]−m[x])

σq[x]
(10.3)

(q[x]−m[x])

σm[x]
(10.4)

where q[x] and m[x] are the best-fit values for the parameter x, σq[x] and

σm[x] are the uncertainties on the best-fits for the parameter x from QSigEx

and MCMC respectively.

Comparing these plots with plots B.50, B.51 and B.52, it is evident that the

restriction from LETA reduced the exploring region of the MCMC fit, hence

the confidence levels have reduced too.
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Figure 10.21: Comparing the best-fit of a0 and a1 along with their relative
errors (from equations (10.3) and (10.4)), for each of the dataset, between
MCMC and QSigEx. The ensemble test consist of 14 regular datasets.
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Figure 10.22: Comparing the best-fit results of a0 and a1 along with their
relative errors (equations 10.3 and 10.4) between MCMC and QSigEx. The
ensemble test consist of 14 alternate datasets.
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Figure 10.23: Comparing 8B scale and the relative error in 8B scale from
MCMC to QSigEx for each of the 14 fitted datasets shown in the X axis. The
top is for the regular dataset and the bottom plot is for the alternate dataset.
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Figure 10.24: Comparing bias for the regular dataset in blue and for the
alternate dataset in red.
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Figure 10.25: Comparing bias/uncertainty for the regular dataset in blue and
for the alternate dataset in red.
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Figure 10.26: Comparing pull spread for the regular dataset in blue and for
the alternate dataset in red. Since the constraints were not changed from one
file to the next, the pull width is not 0.949.
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Figure 10.27: Showing best-fit result in green color for day-night asymmetries
(a0 and a1) for each of the 14 fitted simulated datasets shown in the X axis.
Systematics were not floated. The blue dotted lines show ±σ confidence levels
from the MCMC fit. The best-fit from QSigEx along with its uncertainty is
shown in red. The top is for the regular dataset and the bottom plot is for the
alternate dataset.
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Figure 10.28: Showing best-fit result in green color for Pee parameters (p0

and p1) for each of the 14 fitted simulated datasets shown in the X axis.
Systematics were not floated. The blue dotted lines show ±σ confidence levels
from the MCMC fit. The best-fit from QSigEx along with its uncertainty is
shown in red. The top is for the regular dataset and the bottom plot is for the
alternate dataset.
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Figure 10.29: Showing best-fit result in green color for Pee parameter (p2)
and 8B scale for each of the 14 fitted simulated datasets shown in the X axis.
Systematics were not floated. The blue dotted lines show ±σ confidence levels
from the MCMC fit. The best-fit from QSigEx along with its uncertainty is
shown in red. The top is for the regular dataset and the bottom plot is for the
alternate dataset.
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10.5 Summary

This chapter described two MCMC fit results (applying the PSA constraint

and applying constraints from both PSA and LETA) which included all the

backgrounds. The final section detailed the comparison between QSigEx and

MCMC for the full PSA ensemble test including the LETA constraint. Even

though the number of simulated datasets were limited (15 for PSA and 14 for

PSA+LETA), the result showed that QSigEx and MCMC agree and converge

to an unbiased result with correct uncertainties. Before running the code on

the 1/3 data, it was tested on 1/3 simulated datasets; the result is described in

chapter 11. This chapter also outlined the convergence test to check whether

the likelihood function works if the values of the parameters fitted starts far

from the actual values.
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Chapter 11

Ensemble Test on 1/3 of the
Simulated Dataset

11.1 Introduction

The difference between the full fit and the one third fit is that the expected

number of events for each class corresponds to the expected number of events

for the one-third of the real data. The ensemble test consisted of forty five

simulated datasets. The motivation for the one third test is to compare the

MCMC result to the result from the QSigex and for that reason the constraints

were not changed from file to file; hence the width of the pull is not 0.9831.

The fit included constraint from PSA on the total number of neutrons from

the NCDs. The constraint from LETA was not included in this test. There

are thirteen event classes including the 3 hep classes which are fixed in the

MCMC fit. Besides floating the number of events for 7 event classes, the fit

also floats:

1. NC capture efficiency uncertainty on the PMT side

2. NC capture efficiency on the NCD side
1The error bars on the pull plots indicate the average spread of the parameter and not

the uncertainty on the average pull. From statistics, the pull width as a function of the
number of datasets n, is given as

√
[(n− 1)/n]

(
1− 1

4(n−1)

)
; if n=45 files, the width of the

pull is 0.983.
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3. Day-night diurnal asymmetry for the external neutron background

4. Day-night directional asymmetry uncertainty for the D2O photo-disintegration

background

Four cases were considered for the fit. Two for the regular-simulated dataset

and two for the alternate-simulated dataset; (a) fit with fixed systematic un-

certainties and (b) fit with additional 8 systematic uncertainties in the fit.

11.2 Fit with Fixed Systematics

The number of steps in the MCMC fit is 750,000; 100,000 of which is rejected

as a burn-in period. Systematics were not floated for this ensemble test. The

negative log likelihood (NLL) function, for the 1/3 fit is:

− log L =
2m∑
i=1

Ni −
N∑
d=1

log
( 2m∑
i=1

(Ni)Fi(~xd, ~P )
)

+
(PSA−B ε1 −N1κ1 −N2κ2 −N3κ3 −N4κ4 −N5κ5 −N6κ6 − 4.363/3)2

2 (σP )2

+
(α1 − α1)2

2σ2
1

+
(α2 − α2)2

2σ2
2

+
(α3 − α3)2

2σ2
3

+
(α4 − α4)2

2σ2
4

+
(α5 − α5)2

2σ2
5

+
(α6 − α6)2

2σ2
6

+
(ξ0 − ξ0)2

2σ2
ξ0

+
(ξ1 − ξ1)2

2σ2
ξ1

+
(ε1 − ε1)2

2σ2
ε1

+
(ε0 − ε0)2

2σ2
ε0

+
8∑

k=1

(βk − βk)2

2σ2
k

(11.1)

where Fi(~xd, ~P ) is the probability density function, for the class i, giving the

probability of observing the event d with observables ~xd and the current values

of the fit parameters ~P , N1, N2, . . . , Nm are the number of events for m=13

event classes and i goes from 1 to N data entries. The 8B flux is designated

by B and PSA is the PSA constraint for the current dataset and σP is the

width of the constraint which is 7.2% for the one third dataset. The values of
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κ for various backgrounds is listed in the table 4.7. The number 4.363/3 is the

average number of NC interactions from the hep neutrinos (3He+p → 4He +

e+ + νe) expected to be detected in the NCDs for the 1/3 fit. In the constraint

terms, α1, α2, α3, α4, α5 and α6 are the values of α (equation (4.19)) in the

current MCMC step for EX, d2opd , atmospheric neutrons, k2pd, k5pd and

ncdpd respectively. The α1, α2, α3, α4, α5 and α6 are the constraints for EX,

d2opd , Atmospheric neutrons, k2pd, k5pd and ncdpd respectively for a given

dataset. The day-night asymmetries for the external neutrons and d2opd are

represented by ξ0 and ξ1 respectively. The flux-to-event for the NCDs and

PMTs are represented by ε1 and ε0 respectively. The βk is the central value

of the kth systematic uncertainty and βk is the current value of the systematic

uncertainty in the MCMC fit. Eight systematic uncertainties were floated so

k goes from 1 to 8. When the systematics are not floated then k = 0.

The pull and bias plots for the fit are shown in figures 11.1 to 11.3. Since

the constraints were not changed from data file to data file, the width of the

pull is not 0.983. From the bias plot, it appears that except NC all the biases

are within zero of the uncertainties. Each fit result is derived from the peak of

the posterior distributions. This is a modest attempt to make MCMC close to

the maximum likelihood technique. The MCMC fit, for the regular dataset,

resulted in −0.0177 ± 0.0036 bias in NC, 4.9σ away from zero, as shown in

figure 11.4. For the alternate case, the bias is −0.0195± 0.0033 which is 5.9σ

away from zero. Since the situation is different for the alternate dataset, it is

evident that statistics played a role because the difference between the regular

and alternate dataset is a seed used to generate them.

11.3 Floating 8 Systematics as parameters in
the Fit

Following systematic parameters were floated are:
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1. Phase-correlated energy scale

2. Energy scale (for the NCD phase)

3. Relative energy resolution shift

4. Radial vertex scale

5. cos θ uncertainty for ES only

6. Day-night diurnal energy scale uncertainty

7. Day-night directional energy scale uncertainty for ES only

8. Day-night directional cos θ uncertainty

The results are displayed in figures 11.5 and 11.6. For the regular dataset,

420,000 steps were taken in the fit for each dataset from which 50,000 steps

were removed as burn-in; for the alternate dataset, 344,000 steps were taken

in the fit for each dataset and burn-in was 80,000 steps.
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Figure 11.1: Result from the fit; the top plot is the bias spread for the regular
dataset and the the bottom plot is the bias spread for the alternate dataset.
The bias on a1 changed sign from + to - between regular dataset and alterna-
tive dataset.
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Figure 11.2: Bias divided by the uncertainty in the bias for the 1/3 fit; the top
plot shows the result for the regular dataset and the bottom plot shows the
result for the alternate dataset. No systematics were floated for this fit. The
bias on NC detection efficiency in NCDs (second bin) and ncdpd (last bin)
improved from regular dataset to alternate dataset.
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Figure 11.3: Pull spread for the regular dataset in blue and for the alternate
dataset in red. Sine the constraints were not changed from one dataset to the
next, the width of the pull is not 0.983. The pull of a0 and a1 flipped sign
from + to - between regular to alternative datasets.
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Figure 11.4: NC fit result of the third of datasets. The plot shows the Gaussian
fit of the bias distribution of the 8B flux for the regular dataset (top) and for
the alternate dataset (bottom). The bias is better for the regular dataset than
the alternate dataset.
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Figure 11.5: Result of 1/3 fit including 8 systematics. Top plot is the bias
spread for the regular dataset and the bottom plot is the bias spread for the
alternative dataset. The bias on a1 flipped sign from + to - between the
regular dataset and alternative dataset.
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Figure 11.6: Bias divided by the uncertainty in the bias for the 1/3 fit. Top
plot shows the result for the regular dataset and the bottom plot shows the
result for the alternative dataset. Fit includes 8 systematics. Bias on NC de-
tection efficiency in NCDs improved from regular dataset to alternative dataset
hence it is an effect of statistics. Bias of all the parameters are zero within
uncertainties except for NC which is more than 3σ away from zero.
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This chapter describes the number of steps taken to figure out the cause

of the bias. Table 11.1 lists the NC bias obtained for each step along with a

reference to the corresponding figure that displays the NC bias distribution

fitted to a Gaussian function. Plots are presented in the Appendix.

For the first nine "steps", as described below, all Pee parameters were fixed

to their nominal values.

1. Motivation: To find out if there is a configuration problem with the

nominal number of events or a problem in the likelihood function.

Information is passed to the MCMC program via a configuration file and

if there is any misinformation in the configuration file then it will result

in a biased fit. For this test, only three classes were included CC, ES

and NC and NC neutron efficiencies were fixed. PSA constraint was not

used. The result in NC bias is 0.005± 0.004, as shown in figure B.1.

2. Motivation: To test PMT side neutron efficiency in the likelihood func-

tion.

Only three classes were included: CC, ES and NC. Floating PMT-side

NC neutron efficiency. No PSA constraint was applied. The result, as

shown in figure B.2 is 0.007± 0.004.

3. Motivation: To test PSA constraint.

Fit contained only three classes: CC, ES and NC. NC neutron efficiencies

were fixed. Fit included the PSA (with only NC neutrons) constraint.

The result, as shown in figure B.3, is 0.003± 0.003.

4. Motivation: To test the PSA constraint with neutron efficiencies.

Fit included only three classes: CC, ES and NC. Floating NC neutron

efficiencies in the fit. Applied the PSA (with only NC neutrons) con-

straint. The result is shown in figure B.4.
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5. Motivation: To test EX in the likelihood function.

Fit had four event classes: CC, ES, NC and EX. NC neutron efficiencies

were fixed. EX was fixed to its nominal value of 1.0. No PSA constraint

was applied. The result, as shown in figure B.5, is 0.005± 0.003.

6. Motivation: To test the PSA constraint with NC and EX neutrons.

Four event classed were included: CC, ES, NC and EX. NC neutron

efficiencies were fixed. EX fixed to its nominal value of 1. Added PSA

(with NC + EX neutrons) constraint. The result, as shown in figure B.6,

is 0.003± 0.003.

7. Motivation: To test NC neutron detection efficiencies, for PMTs and

NCDs, along with the PSA constraint.

Four classes were included: CC, ES, NC and EX. Floating NC neutron

efficiencies. EX fixed to its nominal value of 1. PSA (with NC + EX

neutrons) constraint was also applied. The result is shown in figure B.7;

NC bias came out to be 0.003±0.003.

8. Motivation: To test EX and the PSA Constraint.

Four classes were included: CC, ES, NC and EX. Neutron efficiencies

were fixed. Floating EX with PSA constraint. The result, as shown in

figure B.8, is 0.004±0.003.

9. Motivation: To test the day-night asymmetry.

Four classes were included: CC, ES, NC and EX. Neutron efficiencies

were fixed. Floating the day-night asymmetry for EX. The result, as

shown in figure B.9, is 0.003±0.003.

None of the tests performed had a bias in NC. So the next step was perform-

ing a full MCMC fit floating the Pee parameters, 8B, etc.with one background
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removed at a time. Following steps were undertaken to flush out the cause of

the problem.

Step 1: For the first test "Step", ncdpd background was removed, the other

backgrounds were fixed to their nominal values. Result, as shown in

figure B.10, is −0.017± 0.002. The bias in NC is 7σ away from zero.

Step 2: In the second step, k5pd background was removed while keeping the

remaining backgrounds at the nominal level of 1.0. The bias in NC, as

shown in figure B.11, is −0.015± 0.002 which is 7σ away from zero.

Step 3: In the third step, k2pd background was removed while keeping the

remaining backgrounds at the nominal level of 1.0. The bias in NC, as

shown in figure B.12, −0.016± 0.002.

Step 4: In the fourth step, d2opd background was removed while keeping the

remaining backgrounds at the nominal level of 1.0. The bias in NC, as

shown in figure B.13, is −0.016± 0.002.

Step 5: In the fifth step, hep background was removed while keeping the

remaining backgrounds at the nominal level of 1.0. The bias in NC, as

shown in figure B.14 , is −0.017± 0.002.

Step 6: In the sixth step, background of atmospheric neutrons was removed

while keeping the remaining backgrounds at the nominal level of 1.0.

The bias in NC, as shown in figure B.15 , is −0.017± 0.002.

Step 7: In the seventh step, background of external neutron was removed

while keeping the remaining backgrounds at the nominal level of 1.0.

The bias in NC, as shown in figure B.16 , is −0.016± 0.002.

Step 8: Since none of the backgrounds, by itself, reduced the NC bias, all

of them were removed except the external neutrons. In the eight step,
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the fit had CC, ES, ESµτ , NC and EX. The NC bias, as shown in fig-

ure B.17, is −0.014± 0.002 which means that k2pd, k5pd, atmospheric

neutrons, d2opd and ncdpd were not causing the bias because they were

not included in the fit.

Step 9: For the ninth step, except NC and Pee parameters, all other parame-

ters were fixed. The bias, as shown in figure B.18, did not disappear. It

was −0.011± 0.003.

Step 10: For the tenth step, only NC was floated; everything else was fixed.

The bias in NC disappeared at 0.0029± 0.0045, as shown in figure B.19.

The success of the operation lead to the next step which was to float everything

except systematics and fixed p1 and p2. The promising result, shown in figure

B.20, indicate that the bias might arise from distorting the PDFs using the

Pee parameters. Hence the distorted 3D PDF from MCMC was compared to

the distorted 3D PDF from QSigex.

Figures B.19 and B.20 indicated that pee parameters might be causing the

NC bias. To crack the problem, following steps were undertaken.

1. Calculated the number of CC, ES and ESµτ using the nominal number

of NC events and the nominal values for the pee parameters. The result,

as displayed in a table 11.2, shows an excellent agreement between the

values calculated by the fit and the Poisson means.

2. Determined the number of CC events in the 45 regular datasets (616±24)

and the 45 alternative datasets (610.18±23.56). The biases calculated –
(616−615.09)

24
≈ +0.0379 for the regular dataset and (610.18−615.09)

23.56
≈ −0.208

for the alternative datasets – indicate that limited statistics (only 45

files) is also a problem.
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3. Determined which pee parameter is causing the problem by floating only

one pee parameter at a time. Figures B.21 to B.24 indicate that p0 and

a1 might be the cause of the bias in NC.

11.4 Checking the distortions of the Probability
Distribution Functions

After determining that the bias arises from the Pee parameters, we needed to

ensure that we were calculating the PDFs properly. Two independent codes

were developed to distort the 3D PDFs using the nominal values of pee pa-

rameters. The method of distortion was the one used in the MCMC fit. The

purpose of the test was to verify that the distortion in the PDF from the

MCMC fit was exactly the same as the distortion from QSigex because both

MCMC and QSigEx used the same Monte Carlo, that is, the original PDFs

are the same between MCMC and QSigEx. Figures B.25 to B.36 show an

excellent agreement between the distortions from QSigEx and MCMC fits.

11.5 Checking distortion using the nominal val-
ues of pee to the distortion using values of
pee from the fit

The next step was to determine the fit values of the pee parameters and com-

pare the 3D PDF distorted by nominal values to the 3D PDF distorted by the

fit result listed in table 11.3.

The result, shown in figure B.37, was that removing the last bin did not

reduced the NC bias. For the reduced energy range, the Poisson mean number

of NC events - for the bias calculation - was not taken as 240.569 but instead

calculated as: NC = 240.569∗ 122316
122375

where 122316 is the number of MC events

in the energy window of 6 to 12 MeV range and 122375 is the number of events

245



in the full MCMC fit range of 6 to 20 MeV.

This set of tests systematically verified all parts of the MCMC code and

showed that the likelihood function was accurately calculated and the MCMC

method was working. However, there is still a bias in NC. The bias arises

because MCMC implicitly integrates over the Pee distributions when it cal-

culates NC. Our conclusion is that this is fundamental to MCMC methods

[94], therefore we do not expect the Markov chain (with Metropolis) to be

unbiased– it does not find the point where the likelihood is maximized, but

rather scans parameter space and generates steps of equal likelihood. So, for

each parameter we get the probability distribution for that parameter, inte-

grated over all the other parameters with appropriate weighting. We did not

appreciate this at first, and spent a significant amount of time trying to track

down the bias in NC. Ultimately, we found that the bias arises because the

mean Pee parameters are not the most likely Pee parameters. That is one of

the reason, the bias disappears when the they are constrained using the LETA

result.

There exist schemes (See references [83] and [84]) where one can modify

MCMC to converge to the point of maximum likelihood, and we considered

implementing such a scheme but we decided not to pursue it because such

modifications mean that the posterior distributions can no longer be used

as projections of the likelihood function for setting the accurate confidence

intervals. The price of the decision is that we end up with a biased "best

value", but the confidence region should be right.

11.5.1 MCMC versus Maximum Likelihood Estimate (MLE)

The extensive set of tests, outlined in the previous section, demonstrated ac-

curacy of the code and there was no evidence of differences in the likelihood

function between the Monte Carlo, the MCMC fitting code, and the datasets.
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However, there is a fundamental difference between the way in which one ex-

tracts parameter values from the MCMC fit and from a conventional likelihood

fit. The usual point estimate in a Markov chain is the mean of the posterior

probability distribution, and this generally will not coincide with the maxi-

mum likelihood estimate. The mean of the posterior distribution is a better

estimator than the maximum likelihood estimator when the posterior is not

symmetrical which is the case for various fit parameters in the MCMC fit.

For a given likelihood function L, we find the total likelihood for an entire

dataset by taking the product of the likelihoods of the observables of individual

events: L(~p) =
N∏
i=1

L(~xi, ~p), where ~p refers to the parameters of the fit. The

product is over all the events in the data, and ~xi refers to the observables of

an event i. For the standard maximum likelihood fit, a set of M parameters ~p

are found that maximizes L – the full likelihood. With the Markov Chain, we

typically obtain the fit values from single dimensional distributions fj for the

jth parameter that are obtained by integrating/marginalizing the likelihood

distribution over the other parameters:

fj(pj) =

∫
dp1dp2 . . . dpj−1dpj+1 . . . dpM L(~p) (11.2)

The value of the parameter can be extracted in several different ways:

1. The mean: 〈pj〉 =
∫
dpjpjfj(pj)∫
dpjfj(pj)

2. The fit mean: fit a Gaussian function with mean pj,fit to fj

3. The peak: find the value pj,peak which corresponds to the max-
imum of fj.

None of these techniques correspond exactly to finding the point in M dimen-

sional space that maximizes likelihood; since the maximum likelihood tech-

nique should be non-biased; this means, in general that the Markov Chain will

be biased. However, it should be pointed out that, in general, the confidence
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intervals that are extracted from the Markov Chain should be exactly correct,

though it is not straight-forward to find the confidence limits from the max-

imum likelihood fit. To test whether this is the explanation for our bias, we

calculated the number of events for CC, ES and ESµτ without/with floating

any systematic uncertainties. For each case, the computation was performed

twice; first using the pee parameters and 8B scale from the mean of the poste-

rior distributions and then from the peak of the posterior distributions. The

set of values used in the computation of the derived parameters (first four

rows) and the derived parameters (next four rows) are shown in tables 11.4

and 11.5.

This is a strong evidence that it is difference between the peak and the

mean pee parameters that is causing the bias. When we find the number

of CC events, we integrate over the Pee parameters and therefore are using

the biased, mean CC values rather than the unbiased peak CC value. The

natural techniques involve integrating over them, which will essentially weigh

the pee peak parameters with their likelihood; corresponding very closely to

the way in which the mean, rather than the peak, is calculated. If instead of

finding the peak from a 1D marginal likelihood function, we use a 2D marginal

likelihood function which takes into account the correlation of 8B flux with

the Pee parameter, as shown in figure 9.1, the bias on 8B goes down from

-0.01208±0.0034 to -0.0077±0.0031 for the regular dataset. For the alternate

dataset, the bias reduced from -0.0169±0.0039 to -0.0056±0.0034. Reduction

in bias when the maximum is from 2 Dimensional marginal likelihood (8B

and p0) instead of 1 dimensional marginal likelihood (8B flux) confirms that

the hypothesis that the bias in 8B is due to the marginalization over other

parameters in the MCMC method.

Peak and mean of a posterior distribution (belonging to a parameter) from

each of the 45 dataset are plotted into histograms and the histograms are
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fitted to a Gaussian function. The results of the fit (µ, σ) are reported in the

first four rows of the tables 11.4 and 11.5 (Column 2/3 reports the fit result

from the distribution of the means/peaks). Using either the mean or peak, the

number of CC, ES and ESµτ (next three rows in the tables) are computed from

a procedure which is similar to the one used in the MCMC fit. The last row

in the table 11.4 shows the calculation of CC bias from using the mean or the

peak of the posterior distribution. The CC bias is around 50% smaller using

the peak than using the mean even though the peak of a posterior distribution

is not exactly equivalent to the peak from the maximum likelihood method.

The consensus of the effort was that CC is unbiased using the pee parameters

from peak but not when the pee parameters are from the mean.

11.6 Comparing Result from QSigEx andMCMC
fit

The result of MCMC is compared to QSigEx in this section. MCMC is the

signal extraction code run at the University of Alberta by the author of this

thesis while QSigEx is the extraction code run by Pierre-Luc Drouin at the

University of Carleton. There are four cases to compare; 1) data without

floating systematic, 2) alternate data without floating systematic, 3) data with

floating systematic and 4) alternate data with floating systematic. For each

case 6 fit parameters are compared dataset by dataset ; 8B flux, Pee parameters

(p0, p1 and p2) and day-night parameters (a0, a1).

11.7 Calculating confidence intervals of MCMC

The upper and lower confidence limits are determined such that confidence

limits at lower and upper limits are equal and the integral between them is

68%. The difference between the upper and lower limit is the range quoted
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for the ±σ errors on the fit.

This section shows the ±σ confidence intervals of MCMC result for all

four cases mentioned in section 11.6. Figures B.50 to B.52 shows confidence

intervals of various parameters for the regular datasets and figures B.53 to

B.55 for the alternate datasets.

Figures B.56 to B.61 display the result when eight systematics were floated

in the MCMC fit: first for the regular datasets and then for the alternate

datasets.

11.8 Quantitative Comparison between MCMC
and QSigEx

Tables 11.6 and 11.7 list a quantitative comparison between MCMC and

QSigEx. How the quantities in the tables are computed is described in sec-

tion 10.4.

Tables B.1 to B.6 show the comparison of the best-fit values of 6 parame-

ters – extracted from fitting the regular data – between QSigEX and MCMC

in tabular forms. Eight systematic uncertainties were floated for this fit. Col-

umn 3 (from equation (11.3)) has the mean of the 68% confidence intervals

in MCMC along with its uncertainty (from equation (11.4)) and column 4

has the mean±RMS from the marginalized likelihood (ML) after taking out

the burn-in period. The confidence intervals were calculated such that the

area between upper level U and lower level L is 68% and bin content of the

marginalized likelihood (after taking out the burn-in period) at L and U are

equal.

Best-fit = (U + L)/2 (11.3)

δBest-fit = (U − L)/2 (11.4)
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Test NC Bias Figure Number

Step 1 0.005± 0.004 B.1

Step 2 0.007± 0.004 B.2

Step 3 0.003± 0.003 B.3

Step 4 0.002± 0.003 B.4

Step 5 0.005± 0.003 B.5

Step 6 0.003± 0.003 B.6

Step 7 0.003± 0.003 B.7

Step 8 0.004± 0.003 B.8

Step 9 0.003± 0.003 B.9

Floating p0 (−0.0037± 0.0024) B.21

Floating p1 (−0.0028± 0.0029) B.22

Floating p2 (0.000119± 0.003) B.23

Floating a0 (0.00026± 0.004) Top B.24

Floating a1 (−0.005± 0.003) Bottom B.24

Removing NCDPD −0.016± 0.002 B.10

Removing k5pd −0.015± 0.002 B.11

Removing k2pd −0.014± 0.003 B.12

Removing d2opd −0.015± 0.003 B.13

Removing hep −0.016± 0.003 B.14

Removing Atmospheric neutrons −0.017± 0.002 B.15

Removing External neutrons −0.016± 0.002 B.16

Only CC, ES and NC floating −0.014± 0.002 B.17

Only NC and Pee parameters floating −0.011± 0.003 B.18

Fixed pee +0.0029± 0.0045 B.19

Fixed p1 and p2 −0.0035± 0.0034 B.20

Table 11.1: List of the tests undertaken to resolve the source of NC bias along
with the bias±δbias. For each test, the table also points to the figure where
the result is illustrated.
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Parameter Calculated Poisson Mean

CC 615.26 615.09

ES 53.87 53.87

ESµτ 16.57 16.57

Table 11.2: Comparison of the calculated values to the Poisson means. From
the nominal values of 8B flux and the parameters of survival probability, the
number of CC, ES and ESµτ were calculated. For example, the number of CC
day and night events were computed using equations (4.63) and (4.64). The
excellent fit between column 1 and column 2 indicates that the equations were
correctly applied in the MCMC fit.

Parameter Fit Result Nominal Value

p0 0.3343± 0.0412 0.325

p1 −0.006± 0.04 -0.00888

p2 −0.0008± 0.0192 0.00122

a0 0.0298± 0.088 0.028

a1 0.027± 0.080 0.00478

Table 11.3: Fit result of the pee parameters from the 45 datasets as compared
to the nominal values.
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Without Floating Systematic Uncertainties

Parameter Fit Result Fit Result Nominal

Using Mean Using Peak Value
8B Scale 0.9811± 0.0158 0.9815± 0.0221 1.0

p0 0.3435± 0.0436 0.329± 0.042 0.325

p1 −0.00259± 0.0478 −0.00839± 0.02888 -0.00888

p2 −0.0049± 0.0283 0.00066± 0.01581 0.00122

CC 625.44 620.36 615.09

ES 53.42 54.21 53.87

ESνµ 16.61 16.55 16.57

CC Bias (625.44−615.09)
615.09

' 0.0168 (620.36−615.09
615.09

) ' 8.57e− 3

Table 11.4: Comparing mean versus the peak for the 45 datasets. Number of
steps 750,000 with 400,000 steps removed as the burn-in period. The fit has
16 fit parameters and includes all the backgrounds (ex, d2opd, ncdpd, k2pd,
k5pd and atmospheric neutrons). In this fit the day-night asymmetries for the
external neutrons and d2opd backgrounds were also floated besides neutron
detection efficiencies – both for the PMTs and the NCDs.
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With Floating Systematic Uncertainties

Parameter Fit Result Fit Result Nominal

Using Mean Using Peak Value
8B Scale 0.9742± 0.0335 0.9743± 0.0494 1.0

p0 0.3482± 0.056 0.3367± 0.059 0.325

p1 −0.00737± 0.0347 −0.005± 0.049 -0.00888

p2 −0.0035± 0.0262 −0.0039± 0.0327 0.00122

CC 636.9 615.07 615.09

ES 55.09 52.95 53.87

ESνµ 16.65 16.55 16.57

CC Bias 0.035 -3.25e-5

Table 11.5: Comparing mean versus the peak for the 45 datasets. Number of
steps were 30,000 and 10,000 steps were removed as burn-in. This fit floats
eight systematics. The fit has 16+8 fit parameters and includes all the back-
grounds (ex, d2opd, ncdpd, k2pd, k5pd and atmospheric neutrons). In this fit
the day-night asymmetries for the external neutrons and d2opd backgrounds
were also floated besides neutron detection efficiencies – both for the PMTs
and the NCDs.
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11.9 Summary

After performing an exhaustive number of tests, during the fitting of simulated

data ensemble (No LETA constraints applied), the conclusion is that the code,

run under the following conditions (not floating systematics and floating 8

systematics) does have some small biases, which we have tracked down to those

expected in a MCMC Metropolis-Hastings fit for this likelihood function and

these data. However, the biases are small compared to a fit uncertainty, and the

results, agree well with QSigEx. The 8B flux shows a bias of -0.01208±0.0034

for the regular datasets and −0.0169± 0.0039 for the alternate datasets when

8 systematics are floated.
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Chapter 12

MCMC Fit on 1/3 of the Real
Dataset

Before performing a fit on the full data, the code was tested on the third of

the data. This allows detailed comparison using real data while maintaining

some blindness. The result from the fit, applied on the full data, will con-

tribute to the final analysis published from SNO, for completeness sake, four

new systematics were added. Since 4 new systematics were introduced, an

additional test was performed to check the code. This chapter presents the

result of the test along with the results of the fit. There are 45 parameters

in the fit; 3 parameters – the number of events for hep CC, hep ES and hep

NC – are fixed and the number of events for CC, ES and ESµτ are calculated

using 8B flux and the application of the survival probability equation. Two

parameters f2epmt and f2encd are flux-to-event conversion factors for 8B flux for

the C̆erenkov data and data from the NCDs respectively. There are 675,000

steps in the fit and the burn-in period is 75,000. PSA constraint is 375.1±28.7.

12.1 Checking Important Systematic Uncertain-
ties

The four new systematic uncertainties are: (1) energy-dependent fiducial vol-

ume, (2) Z scale, (3) energy non-linearity and (4) uncertainty in the shape of
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8B neutrino energy spectrum (Winter uncertainty). Because these systemat-

ics cause very small effects, it is difficult to test the code so it was decided to

perform the tests where all other parameters were fixed to ensure that the like-

lihood function follows the shape of the constraint applied on the systematic

being tested. That is the reason that the log likelihood versus the uncertainty

is a parabola with a centroid within one σ of the width of the constraint. For

example, the top plots in figures 12.1 and 12.2 show that the centroids (0.098

and -0.00118) of Winter uncertainty and energy-dependent fiducial volume un-

certainty are within the widths of their constraints: 0±1 and 0+0.0087
−0.0067. Several

other systematics were also tested, for instance, vertex scale, energy resolution

and energy scale. These are plotted in figures 12.3, 12.6 and 12.7. Overall 12

systematics were checked, but only the important ones are described in this

chapter. Table 12.1 lists name of the systematic uncertainty, the constraint

applied, µ±σ from the Gaussian fit on the posterior distribution and the cor-

responding figure number showing the posterior distribution and the parabola

of the constraint.

Comparing the bottom plot in figure 12.1 to the bottom plot in figure 12.4,

we see there are bands in the former but not in the latter. The reason for

a band structure is that the systematic uncertainty being tested (Winter un-

certainty) modifies the number of events (section 4.11 describes the role of

Winter uncertainty in calculation of number of events) which brings in ad-

ditional constraints in the fit since the number of background events are also

constrained (section 4.10.6). The application of additional constraints, besides

the one on the Winter uncertainty that we were testing, causes formation of

band structures. The log-likelihood plots of systematic uncertainties which do

not affect the number of events, for instance figure 12.6 shows a clean and

distinct parabola.
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The log likelihood function to test the systematic uncertainty is:

− log L =
2m∑
i=1

Ni −
N∑
d=1

log
( 2m∑
i=1

(Ni)Fi(~xd, ~P )
)

+
1

2

∑
i

(
pi − p̄i
σpi

)2 +
1

2

2∑
i=0

2∑
j=0

(bxyi − ¯bxyi )(bxyj − ¯bxyj )(V −1
bxy )ij

+
1

2

1∑
i=0

1∑
j=0

(bzi − b̄zi )(bzj − b̄zj)(V −1
bz )ij (12.1)

where Fi(~xd, ~P ) is the probability density function, for the class i, giving the

probability of observing an event d with observables ~xd and the current values

of the fit parameters ~P , N1, N2, . . . , Nm are the number of events for m=13

event classes and i goes from 1 to N data entries. In the likelihood equa-

tion (12.1), pi, p̄i and σpi represent the current value of the PMT systematic

parameter i in the MCMC fit, its mean and constraint width respectively. The

next two terms are calculation of the constraint for the systematic uncertain-

ties that are correlated and the correlation matrices between the correlated

parameters is represented by V .

For asymmetric uncertainties (µ+ |σ+|+ |σ−|), σpi applied in the log like-

lihood function 12.1 and for fitting the Gaussian function on posterior distri-

butions (shown in figures 12.2 and 12.4) is determined as:

σpi(x) ≡

σ− if x < µ,

σ+ if x ≥ µ.

The legends in the plots (figures 12.2 and 12.4) only shows one σ, for instance,

the uncertainty on energy-dependent fiducial volume (figure 12.2) is 0+0.0087
−0.0067

but the legend shows σ as +0.0087.

12.2 Overview of the Result

Table 12.2 gives an overview of the result; the first column lists the name

of parameter, the second column lists the best fit and its uncertainty, the
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Uncertainty Constraint µ± σ Figure #

Winter 0± 1 0.098± 0.892 12.1

Energy-dependent

fiducial volume 0+0.0088
−0.0067 −0.001± 0.009 12.2

Vertex scale 0+0.0029
−0.0077 0.001± 0.003 12.3

Z scale 0+0.0015
−0.0012 −0.00003± 0.0015 12.4

Energy non-linearity 0± 0.0069 00.0018± 0.0063 12.5

Energy resolution 0.0119± 0.0104 0.013± 0.010 12.6

Energy scale 0± 0.0081 0.0002± 0.006 12.7

Table 12.1: Systematic uncertainty, the constraint applied, and µ ± σ from
fitting the posterior distribution to a Gaussian function. Last column points
to the figure number corresponding to the systematic uncertainty.

third column shows the mean of the posterior distribution and the last column

displays the difference between the mean and the peak in terms of the RMS of

the posterior distribution. The good news is that for all the parameters, the

difference between the mean and the peak in terms of the uncertainty is below

0.5σ (decided by the SNO collaboration)1 which means that the posterior

distribution from the MCMC is not very asymmetric.

12.2.1 Autocorrelation Plots

Figures 12.8 to 12.10 shows the application of autocorrelation function (equa-

tion (12.2)) to the MCMC fit of the 1/3 data. These plots indicate that step

sizes selected for all the fit parameters were good otherwise for parameters

whose step sizes are too narrow there is a lot of fluctuations going on till the

end of the fit. Selecting step sizes is very challenging in a MCMC fit because
1The statistical uncertainty associated with the calculation of the peak, assuming that the

posterior distribution has Gaussian distribution, is 1/
√
Npeak where Npeak is the number of

entries in the bin where the peak is located. The uncertainty associated with the calculation
of the mean is 1/

√
N where N is the number of entries in the posterior distribution. Since the

uncertainty of the peak is higher than the uncertainty on the mean but both are extracted
from fitting the same data, hence they should be within 0.5σ where σ is the RMS of the
posterior distribution.
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the consequence of very narrow step sizes is that the target distribution is

not explored sufficiently although very broad step sizes result in a poor accep-

tance. Hence it takes a lot of trials and errors to finally select step sizes that

balance the exploration of the target distribution as well give a good accep-

tance. There are 675,000 steps in the MCMC fit but to clearly show the drop

of autocorrelation coefficient to zero within 10,000 steps, autocorrelation plots

are displayed for only 375,000 steps.

rk =

∑N−k
i=1 (Yi − Ȳ )(Yi+k − Ȳ )

N∑
i=1

(Yi − Ȳ )2

from [85] (12.2)

where N is the number of steps in the MCMC chain, Ȳ =
N∑
i=1

Yi
N

, Yi and Yi+k

are measurements at step i and i+ k. Since Yi lags behind Yi+k by k steps, k

is known as lag. In figures 12.8 to 12.10, lag is shown on the x axis and rk –

autocorrelation coefficient – is shown on the y axis.

12.3 Convergence Tests

To make sure that the fit has converged, MCMC result was randomly divided

into two halves after taking out the burn-in period. Using a random number,

5,000 steps were added to one half or the other half. The difference in the mean

of the posterior distribution from both halves (m1 and m2) were compared

using the equations:

(m2 −m2)× 2

(σ2 + σ1)
(12.3)

σ0 =
√

(m2 + σ2) (12.4)

where σ1 and σ2 are the standard deviations of the posterior distributions

from both halves, m and σ are the mean and RMS around the mean (m)

of the distributions shown in figure 12.11 and 12.12. The difference between
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the means (m1 and m2) in terms of the average uncertainty (equation (12.3)),

calculated around zero (equation (12.4) instead of the average mean, should

be less than
√

2
6
. Table 12.3 shows that the convergence test, performed on the

6 parameters, show that the fit passed the convergence test.
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Figure 12.1: The top plot is the posterior distribution of the Winter uncer-
tainty and the bottom plot is log likelihood versus the Winter uncertainty. The
constraint applied was 0± 1. The constant term, from the Gaussian fit, only
produces a constant offset in the negative log likelihood function and therefore
has no impact on the best fit estimates from the posterior distributions.
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Figure 12.2: The top plot is the posterior distribution of energy-dependent
fiducial volume and the bottom plot is log likelihood versus the energy-
dependent fiducial volume. The constraint applied is 0+0.0087

−0.0067 and the centroid,
-0.001179, is 0.1355σ+ and 0.1760σ− away from zero.
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Figure 12.3: The top plot is the posterior distribution of vertex scale and the
bottom plot is log likelihood versus the vertex scale. The constraint applied
is 0+0.0029

−0.0077 hence the centroid, 0.001391, is 0.4797σ+ and 0.1806σ− away from
zero.
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Figure 12.4: The top plot is the posterior distribution of Z scale and the bottom
plot is log likelihood versus the Z scale. The constraint applied is 0+0.0015

−0.0012 hence
the centroid, -2.749e-5, is −0.018σ+ and 0.023σ− away from zero.
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Figure 12.5: The top plot is the posterior distribution of energy non-linearity
and the bottom plot is log likelihood versus the energy non-linearity. The
constraint applied is 0 ± 0.0069 and the centroid from the Gaussian fit, µ =
0.001769, is 0.256σ away from zero where σ = 0.0069 is width of the constraint.
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Figure 12.6: The top plot is the posterior distribution of energy resolution and
the bottom plot is log likelihood versus the energy resolution. The constraint
on energy resolution is 0.0119±0.0104 hence the centroid µ = 0.0131 is 0.1154σ
away from 0.0119.
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Figure 12.7: The top plot is the posterior distribution of energy scale and the
bottom plot is log likelihood versus the energy scale. The constraint applied
is 0± 0.0081.
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Parameter Peak±RMS Mean (Peak-Mean)
RMS

8B scale 0.912727±0.0903166 0.914362 -0.0180996

p0 0.335556±0.0709244 0.370174 -0.488102

p1 -0.0136726±0.0448998 -0.00700323 -0.148538

p2 -0.0198333±0.0432173 -0.0387461 0.437619

a0 0.0788554±0.108772 0.0644824 0.132139

a1 0.147683±0.147322 0.127117 0.139599

εpmt 0.466±0.0129844 0.467231 -0.0948358

CC 558.617±29.4819 569.665 -0.374767

Atmospheric neutrons 1.05±0.198532 0.99761 0.263886

K2PD 0.9925±0.164456 0.993089 -0.0035837

K5PD 1.00011±0.118572 1.00417 -0.0342191

NCDPD 1.04571±0.34213 1.00257 0.126108

ES 45.8297±4.71439 47.0332 -0.255299

EX 0.969595±0.472556 1.0862 -0.246749

EX day-night asymmetry -0.0335729±0.0114606 -0.0342751 0.061268

D2OPD 1.02484±0.148729 1.00733 0.117704

D2O day-night asymmetry -0.058427±0.116307 -0.0190298 -0.338735

ESµτ 18.7727±5.13597 20.0146 -0.24179

εncd 1.77548±0.040568 1.76653 0.220554

Cos θ resolution direction -0.00665±0.0692353 -0.00919638 0.0367786

Cos θ resolution 0.025±0.109935 0.0153701 0.0875961

Energy scale 0.00518±0.00852786 0.00418677 0.116469

Energy resolution direction -0.00045±0.0120072 0.000777723 -0.102249

Energy resolution 0.01253±0.0105886 0.0133717 -0.0794951

X shift -0.365±4.10277 -0.250553 -0.0278951

Vertex scale -0.00146512±0.00557221 -0.00369108 0.399477

Y shift -0.184524±3.68196 -0.40452 0.0597497

Z shift -1.085±4.07116 -0.18085 -0.222086

XY resolution -constant term 0.076225±0.0285262 0.0695889 0.23263

XY resolution -linear term -6.675e-05±6.1534e-05 -5.94605e-05 -0.118463

XY resolution -quadratic term 3.745e-07±1.98487e-07 3.6701e-07 0.0377378

Z resolution -constant term 0.06855±0.0286124 0.0707189 -0.0758041

Z resolution -quadratic 0.0001217±8.27124e-05 0.000112913 0.106233

Vertex scale diurnal -8.1e-05±0.00150131 -4.93177e-05 -0.021103

Vertex scale direct 0.000505±0.00177122 -8.25761e-05 0.331735

Energy scale diurnal -5.58511e-05±0.00387483 3.60054e-05 -0.0237059

Energy scale direct -0.00203529±0.0101849 0.000329195 -0.232156

Energy scale correlated 0.00153963±0.00417378 0.00139816 0.0338959

Fiducial volume 0.00119474±0.00764633 0.00159754 -0.0526795

Energy non-linearity 0.00232±0.00715378 0.000914944 0.196407

Z scale 0.000447727±0.0014067 0.000247992 0.141988

Winter uncertainty -0.25±1.0003 -0.0226684 -0.227264

Table 12.2: A listing of the peak (best fit) and its uncertainty (RMS of the
posterior distribution) for the 42 parameters involved in the 1/3 data fit. Be-
sides that, the table also lists the mean and the difference between the mean
and the peak in units of the uncertainty.
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Figure 12.8: Autocorrelation plots showing the autocorrelation coefficient ver-
sus lag of 8B scale and the Pee parameters of the fit. There are 675,000 steps
in the MCMC fit but to see the drop of autocorrelation coefficient to zero not
all steps are shown in the figure.

Parameter σ0 RMS around zero
8B scale 0.10129

p0 0.14654

p1 0.17582

p2 0.18521

a0 0.10859

a1 0.12395

Table 12.3: Table lists RMS around zero (σ0) for the 6 parameters.
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Figure 12.9: Autocorrelation plot showing autocorrelation coefficient versus
lag: (top) for signals and backgrounds (bottom) miscellaneous parameters in
the fit.
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Figure 12.10: Autocorrelation coefficient versus lag for systematic uncertain-
ties involved in the reconstruction of vertex and energy.
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Figure 12.11: Convergence test for 8B scale and day-night parameters a0 and
a1.
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Figure 12.12: Convergence test for Pee parameters p0, p1 and p2.
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12.4 1/3 Fit Using LETA Constraint

This section shows the result from the one-third fit using the constraint from

LETA [90]. There are 275,000 steps out of which 50,000 steps were removed as

burn-in. After removing the burn-in period, every 50th step in the output was

used in the analysis to break down the auto correlation in the MCMC output

due to Markov property of the chain – the next step is proposed from the

current step. Nine parameters were constrained from LETA fit; 8B scale, p0,

p1, p3, a0, a1, energy scale correlated between PMTs and NCDs, energy non-

linearity and the uncertainty in the shape of 8B flux ([95]). The uncertainty of

the first 6 parameters in column 2 in table 12.4 is narrower than in table 12.2

because of the LETA constraint.
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Parameter Peak±RMS Mean (Peak-Mean)
RMS

8B scale 0.8975±0.0486087 0.902451 -0.101851

p0 0.320667±0.0266209 0.312949 0.289908

p1 -0.00350633±0.0114909 -0.00700466 0.304443

p2 -0.003±0.00524458 -0.00234337 -0.125201

a0 0.0779938±0.054771 0.0717547 0.113913

a1 0.0289789±0.0425045 0.0152803 0.322287

f2epmt 0.465458±0.0121631 0.46675 -0.106266

CC 595.876±20.573 592.933 0.14308

Atmospheric neutrons 1.03065±0.195174 1.03672 -0.0310702

K2 1.01±0.160073 1.01455 -0.0284108

K5 1.01734±0.122808 1.01164 0.0463607

NCDPD 0.993056±0.303228 1.04974 -0.186952

ES 51.1872±2.23665 51.4787 -0.130314

EX 0.845339±0.477628 1.05253 -0.433792

EX day-night asymmetry -0.0334444±0.0110389 -0.0330844 -0.0326189

D2OPD 1.0375±0.148945 1.01028 0.18277

D2O day-night asymmetry 0.0168293±0.11173 -0.00771537 0.219678

ESµτ 16.9307±1.79316 17.2637 -0.185707

f2encd 1.77302±0.0419728 1.76544 0.180544

Cos θ resolution direction -0.00225±0.0665388 -0.00811528 0.0881483

Cos θ resolution -3.46945e-18±0.102177 0.00110065 -0.0107719

Energy scale -0.002145±0.00753271 0.000330235 -0.328598

Energy resolution direction -0.00208±0.0125062 0.000231762 -0.18485

Energy resolution 0.014085±0.0100358 0.0135538 0.0529283

X shift -0.7075±3.92051 -0.218865 -0.124635

Vertex scale -0.00173052±0.00548084 -0.00358492 0.338343

Y shift -0.717262±3.87867 -0.111345 -0.156218

Z shift -0.704545±4.0551 0.655036 -0.335277

XY resolution -constant term 0.0571382±0.0295222 0.0656156 -0.287154

XY resolution -linear term -4.5225e-05±6.24351e-05 -4.46289e-05 -0.009548

XY resolution -quadratic term 4.2e-07±2.00981e-07 3.98836e-07 0.105303

Z resolution -constant term 0.075875±0.0288896 0.0698765 0.207634

Z resolution -linear term 0.0001249±8.40038e-05 0.000114327 0.125861

Vertex scale diurnal -0.000175±0.00146668 -7.13101e-05 -0.0706969

Vertex scale direct -2.9e-05±0.00175554 -1.39829e-05 -0.00855411

Energy scale diurnal 0.00185625±0.00386744 0.000932874 0.238757

Energy scale direct 0.00306081±0.0102824 0.000839598 0.21602

Energy scale correlated 0.00486458±0.00394943 0.00452603 0.0857234

Energy-dependent fiducial volume -0.00239583±0.00706907 -0.00114739 -0.176606

Energy non-linearity -0.0010275±0.00599211 0.000705498 -0.289213

Z scale 0.000102597±0.00131451 0.000393672 -0.221432

Winter uncertainty -0.393571±0.945854 -0.232626 -0.170159

Table 12.4: A listing of the peak (best fit) and its uncertainty (RMS of the pos-
terior distribution) for the 42 parameters involved in the 1/3 fit using LETA
constraint. Besides that, the table also lists the mean and the difference be-
tween the mean and the peak in units of the uncertainty.
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12.4.1 Asymmetric Systematic Uncertainties along with
8B Winter Uncertainty With LETA Constraint

This is the first time that the code was run with Z scale, 8BWinter uncertainty,

and the energy-dependent fiducial volume with the LETA constraint. Follow-

ing figures 12.13 to 12.16 show posterior distributions fitted with Gaussian

functions for vertex scale, Z scale, 8B Winter uncertainty and the energy-

dependent fiducial volume. The burn-in is 10,000 and after burn-in every 50th

step was used to plot the posterior distributions.

Figure 12.13: Posterior distribution of Vertex scale is shown in black and the
Gaussian fit is shown in red. The constraint applied, in the MCMC fit, is
0+0.0029
−0.0077. Additional LETA constraint is used for this fit.
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Figure 12.14: Posterior distribution of the Z scale is shown in black and the
Gaussian fit is shown in red. The constraint applied, in the MCMC fit, is
0+0.0015
−0.0012. Additional LETA constraint is used for this fit.

Figure 12.15: Posterior distribution of Winter uncertainty in shown in black
and the Gaussian fit is shown in red. The constraint applied, in the MCMC
fit, is 0± 1.0.
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Figure 12.16: Posterior distribution of the energy-dependent fiducial volume
uncertainty is shown in black and Gaussian fit of the posterior distribution is
shown in red. The constraint applied, in the MCMC fit, is 0+0.0088

−0.0067. χ2 of 538
with 67 degrees of freedom indicates that posterior probability distribution of
energy-dependent fiducial volume uncertainty is not a Gaussian distribution
as assumed in the calculation of the likelihood function. Additional LETA
constraint is used for this fit.
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12.5 Summary

This chapter described several cross-checks performed on the code: (1) to

verify that application of the systematic uncertainties in the fit is correct, (2)

to ensure convergence of the fit, (3) to ensure that autocorrelation coefficient

drops down to zero within 10,000 steps and remain stable throughout the

chain. The chapter also outlines the results from two fits: first the NCD-only

fit and second the NCD fit with constraint from LETA. The results from both

fits were compared between MCMC and QSigEx and agreement between the

results propel us to the next step, that is, fitting the full data.
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Chapter 13

Fit on the Full Data

13.1 Finally Fitting Full Data

The final fit is on the full dataset. The number of steps in the fit is 750,000

from which 25,000 steps are removed as a burn-in period. Figure 13.1 shows

posterior density functions from the MCMC fit for the 6 parameters. The

PSA constraint applied is 1115±79. The constraints from LETA are shown in

table 13.1. The result of the fit is shown in table 13.2. The next table 13.3

shows the result when the systematic uncertainties are fixed at their nominal

values. Comparing the two tables, it seems that the uncertainty from statistics

dominate, for instance the total uncertainty on 8B scale is 3.5% but from

statistics alone the uncertainty is 3.4%. The correlation among the parameters

of interest is shown in table 13.4. The projections of the fit on the three

observables (cos θSun, volume-weighted variable ρ and electron effective kinetic

energy Teff) are shown in figures 13.2 to 13.4. The number of background

events in the C̆erenkov data of the NCD phase is listed in table 13.6.

The χ2, listed in table 13.5 for the one-dimensional projections of the fit in

three observables, is evaluated using statistic and systematic uncertainties.
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Figure 13.1: Posterior density functions (PDFs) from MCMC fit of 6 parame-
ters; (a) 8B scale, (b) constant term (p0), (c) linear term (p1) and (d) quadratic
term (p2) of the electron survival probability described in equation (13.1),
(e) constant term (a0) and (f) linear term (a1) of the day-night asymmetry
described in equation (13.2). These PDFs were used to determine the best-fits
described in the first 6 rows in a table 13.2.
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Parameter Constraint Width of the Constraint
8B 0.9316508 0.0380755

p0 0.3192673 0.0217642

p1 0.0073795 0.0093338

p2 -0.000617 0.0036361

a0 0.0266399 0.0425075

a1 -0.022025 0.0318915

Energy Scale Correlated -0.001628 0.0030291

Energy Non Linearity 0 0.0069

Winter Uncertainty 0 1

Table 13.1: Constraints from the LETA fit [90].

Figure 13.2: One-dimensional projection of the fit in direction (cos θSun) on the
C̆erenkov data of the NCD phase from the binned-histogram signal extraction
with the individual signals separated into three neutrino interactions (ES is
split into ESe and ESµτ ), backgrounds, and hep neutrino events. Figure also
shows χ2/data points of the fit.
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Parameter Best-fit

8B 9.212e-01±3.560e-02

Pee p0 3.206e-01±1.971e-02

Pee p1 5.009e-03±8.169e-03

Pee p2 -1.389e-03±3.331e-03

Day-night asymmetry a0 4.963e-02±3.469e-02

Day-night asymmetry a1 -1.754e-02±2.756e-02

ncdpd 1.030e+00±3.164e-01

k2pd 9.963e-01±1.573e-01

k5pd 1.003e+00±1.564e-01

d2opd 9.934e-01±1.573e-01

ex 9.400e-01±4.327e-01

Atmospheric neutrons 1.008e+00±1.961e-01

cc 1.836e+03±3.842e+01

es 1.569e+02±4.410e+00

esµτ 5.090e+01±3.478e+00

NC flux-to-event ratio (NCDs) 1.765e+00±3.938e-02

EX day-night asymmetry -1.977e-02±1.118e-02

D2OPD day-night asymmetry -3.460e-02±1.118e-01

NC flux-to-event ratio (PMTs) εpmt 4.620e-01±1.085e-02

Cos θ Resolution Direct -9.026e-03±6.829e-02

Cos θ Resolution 5.643e-02±1.033e-01

Energy Scale 3.560e-03±6.444e-03

Energy Resolution Direction 5.337e-04±1.221e-02

Energy Resolution 1.243e-02±1.080e-02

X Shift 1.361e+00±3.898e+00

Y Shift -1.026e+00±3.478e+00

Z Shift 3.332e-01±3.807e+00

Vertex scale -1.346e-03±4.555e-03

Z scale 5.182e-05±1.348e-03

XY Resolution - constant term 6.487e-02±2.905e-02

XY Resolution - linear term -5.712e-05±6.146e-05

XY Resolution - quadratic term 3.946e-07±1.972e-07

Z resolution - constant term 7.634e-02±2.808e-02

Z resolution - linear term 1.148e-04±8.171e-05

Vertex diurnal scale -1.965e-04±1.407e-03

Vertex direction scale -1.472e-04±1.755e-03

Energy scale diurnal 8.978e-04±3.692e-03

Energy scale direction 2.093e-03±9.283e-03

Energy scale source -8.458e-04±2.965e-03

Energy-dependent fiducial volume -3.182e-03±6.486e-03

Energy non-linearity 1.190e-03±6.927e-03

Winter uncertainty -1.061e-01±9.722e-01

Table 13.2: Fit result of the final analysis. The best-fit is the average of the
68% confidence intervals.
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Parameter Best-fit
8B 9.207e-01±3.423e-02
Pee p0 3.199e-01±1.822e-02
Pee p1 4.095e-03±7.025e-03
Pee p2 -1.507e-03±3.109e-03
Day-night a0 4.932e-02±3.402e-02
Day-night a1 -1.450e-02±2.718e-02
ncdpd 9.933e-01±3.383e-01
k2pd 9.857e-01±1.576e-01
k5pd 9.908e-01±1.728e-01
d2opd 9.885e-01±1.508e-01
ex 9.355e-01±4.674e-01
Atmospheric neutrons 9.987e-01±1.928e-01
cc 1.833e+03±3.628e+01

es 1.567e+02±4.094e+00

esµτ 5.079e+01±3.370e+00

NC flux-to-event ratio (NCDs) 1.762e+00±4.019e-02
EX day-night asymmetry -1.900e-02±1.125e-02
D2OPD Day-night asymmetry -3.714e-02±1.116e-01
NC flux-to-event (PMTs) 4.629e-01±9.015e-03

Table 13.3: Fit result of the final analysis with fixed systematic uncertainties.
The best-fit is the average of the 68% confidence intervals.

8B p0 p1 p2 a0 al
8B 1.000 -0.729 0.278 -0.117 0.067 -0.042

p0 -0.729 1.000 -0.318 -0.386 -0.378 0.148

p1 0.278 -0.318 1.000 -0.139 0.280 -0.666

p2 -0.117 -0.386 -0.139 1.000 -0.017 0.011

a0 0.067 -0.378 0.280 -0.017 1.000 -0.383

al -0.042 0.148 -0.666 0.011 -0.383 1.000

Table 13.4: Correlation matrix for the polynomial survival probability fit from
the MCMC fit.
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Figure 13.3: One-dimensional projection of the fit in ρ on the C̆erenkov data
of the NCD phase from the binned-histogram signal extraction with the indi-
vidual signals separated into three neutrino interactions (ES is split into ESe
and ESµτ ), backgrounds, and hep neutrino events. Figure also shows χ2/data
points of the fit.

Observable χ2 (data points) Figure Number

cos θSun 12.82/16 13.2

R3 6.96/11 13.3

Teff 10.16/14 13.4

Table 13.5: χ2 from a one-dimensional projections of the fit in three observ-
ables. Table also lists number of data points used in the computation of
χ2 along with figure number pointing to the figure which displays the one-
dimensional projection.
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Figure 13.4: One-dimensional projection of the fit in recoil energy (Teff) on the
C̆erenkov data of the NCD phase from the binned-histogram signal extraction
with the individual signals separated into three neutrino interactions (ES is
split into ESe and ESµτ ), backgrounds, and hep neutrino events. Figure also
shows χ2/data points of the fit.

Backgrounds Number of Events

External neutrons 19.5

D2O photo-disintegration neutrons 8.25

Atmospheric neutrinos 24.88

K2 photo-disintegration neutrons 9.37

K5 photo-disintegration neutrons 12.10

NCD photo-disintegration neutrons 6.12

hep ν events 34.21

Total data events 2381

Table 13.6: Number of background events in the C̆erenkov data of the NCD
phase.
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13.2 Plotting energy-dependent day-night sur-
vival probabilities and day-night asymme-
try

The bands in figures 13.5 were computed from±σ of the posterior distributions

representing equations 13.1 to 13.3 where Eν ranges from 6 MeV to 14 MeV and

it is incremented by 0.025 MeV. The bands include statistical and systematic

uncertainties as well as correlation between the parameters. MCMC fit makes

no assumption about the shape of neutrino energy distribution except that it is

a smooth function and varies slowly over the range to which SNO is sensitive.

P day
ee = p0 + p1(Eν − 10.0 MeV) + p2(Eν − 10.0 MeV)2 (13.1)

The regeneration of νe in the Earth at night is modelled as a linear perturbation

to the daytime νe survival probability described in equation (13.1).

A = a0 + a1(Eν − 10.0 MeV) (13.2)

P night
ee = P day

ee

(2 + A)

(2− A)
(13.3)

where Eν is neutrino energy shown on the X axis in figure 13.5.

13.3 Extraction of CC and ES energy spectra

The energy spectra of 8B flux is computed via charged current interactions on

deuterium and elastic scattering interactions on electrons. The bands, shown

in figure 13.6, represent both statistical and systematic uncertainties and were

computed taking into account the uncertainties in the fit parameters and the

correlation among the fit parameters. For each sampling of the MCMC output,

the 3D PDFs – separated into the day and night PDFs – were reconstructed

after smearing the observables in the Monte Carlo with the systematic uncer-

tainties, and then calculating the number of events – split into the day and
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night events – belonging to CC and ES. The day and night 3D PDFs were

scaled according to the number of events for day and night respectively. The

1D projection on the recoil electron energy was used to plot the number of

events belonging to each energy bin. From the distribution of the number

of events in each energy bin, 68% confidence intervals were computed. The

best-fit is the average of 68% CL (equation (11.3)) and the bands represent

the average of difference of the 68% confidence levels (equation (11.4)). The

spectra is presented in tabular form in Appendix C.

The day and night live times — 176.59 days and 208.85 nights — used

in the extraction of the day and night energy spectra were determined by

splitting the data on solar zenith angle; day events are when the Sun is above

the horizon and night events are when the Sun is below the horizon. From

SNOMAN, the number of electrons and deuterium in the fiducial volume are

6.023×1031 and 3.0115×1032 respectively.

13.4 Comparison between QSigEx and MCMC

Table 13.7 compares 3-phase Pee day/night fit result from QSigEx (column

2) to MCMC (column 3). The relative difference, shown in the last column

is the difference between the fitted parameter values in terms of the average

total fit uncertainties. Since the maximum relative difference between the

two analysis is only 0.3σ, QSigEx result was used for the extraction of global

(solar+KamLAND) 3-flavour oscillation parameters.
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Parameter QSigEx MCMC Relative Difference
8B scale 0.921± 0.035 0.921± 0.036 -0.018

p0 0.319± 0.018 0.321± 0.020 -0.103

p1 0.002± 0.008 0.005± 0.008 +0.119

p2 −0.001± 0.003 −0.002± 0.003 -0.081

a0 0.044± 0.034 0.048± 0.035 +0.165

a1 −0.017± 0.027 −0.015± 0.028 -0.151

Table 13.7: Comparing 3-phase Pee day/night fit result from MCMC to
QSigEx. Table from [90].
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Figure 13.5: Using best-fit and its uncertainty of 68% confidence intervals; (a)
showing equation (13.1), (b) showing equation (13.2) and (c) showing equa-
tion (13.3). 293



Figure 13.6: Figures (a), (b) and (c) show extracted CC spectra , ES (νe)
and ES (νµ and ντ ) spectra respectively. Bands include both systematic and
statistical uncertainties in the MCMC fit.
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Chapter 14

Conclusion

In the 1930s, Hans Bethe [96] and Carl Friedrich von Weizsäcker ([97] and [98])

postulated the Sun’s source of energy to be from fusion reactions in its core.

For decades, there was no way to directly test the hypothesis. The detection

of solar neutrinos by Ray Davis’s experiment (a tank of dry cleaning fluid deep

in the Homestake mine at Lead, South Dakota) was a strong indication that

the nuclear theory of the Sun was correct though the two-third deficit from

the prediction caused a suspicion. Since then SuperKamiokande experiment

in Japan and SNO experiment in Canada have proved beyond doubt that

neutrinos oscillate (one flavour of ν transforms into another flavour and back

again.). Using the global solar and the KamLAND result, the parameter space

of oscillation is reduced to LMA region (figure 1.7).

Result from each phase of SNO was published separately. To improve the

result, the data from the first two phases (D2O and Salt) were combined into

a low-energy-threshold-analysis (LETA). Due to various improvements carried

out for LETA, the uncertainty on the total flux of active flavour neutrinos from

8B decay in the Sun, measured via the neutral current interactions, was more

than a factor of 2 smaller than previously published results [61]. The role of

this thesis is to further narrow it down. Table 14.1 compares the result from

MCMC to the published LETA result. A MCMC fit was performed on the
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C̆erenkov data of the NCD phase using the extended likelihood function. Three

observables were used to separate different event types: the effective electron

kinetic energy (Teff), the event direction with respect to the vector of the Sun

(cos θ�), and the normalized cube of the radial position in the detector (R3).

To take into account correlations between observables, 3-dimensional PDFs

P(R3, cos θ�, Teff) were used for all the event types. Uncertainties in the

distribution of the observables were treated as parameters of the fit for the

distortions of the Monte Carlo PDF shapes. All the systematic uncertainties

were allowed to vary in the fit. The type of events included in the fit were

three ν interactions (CC, NC and ES which was split into ESe and ESµτ ) and

6 backgrounds.

The MCMC fit directly extracted the energy-dependent νe survival prob-

ability which was parametrized as a polynomial function (section 4.10.7) and

applied as distortion to the 8B neutrino energy spectrum. The parameters

of the polynomial (p0, p1, p2, a0 and a1) were varied in the fit for each step,

the 8B ν energy spectrum was distorted and the shapes of CC and ES energy

spectra were recomputed from the distorted 8B spectrum for each step in the

fit. The extracted survival probability also incorporated the uncertainty in the

shape of the undistorted 8B energy spectrum by treating the uncertainty as a

systematic uncertainty and floating it in the MCMC fit.

The shapes of energy spectra of NC and radioactive backgrounds were

only floated within their systematic uncertainties as these have no dependence

on the ν oscillation model. Signals and backgrounds are covered in detail in

chapter 4.

The flux of solar neutrinos was assumed to be constant during the operation

of the three phases of SNO (1999-2006). Although SNO was primarily sensitive

to the 8B chain of solar neutrinos, a fixed contribution of solar hep neutrinos

(9.3×103 cm−2s−1 from [99]) was included in the fit.
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The author of this thesis performed MCMC fit on the C̆erenkov data of

the NCD phase. The data, from the NCDs of the NCD phase, are included as

a PSA constraint and data, from the D2O and Salt phases, were combined in

the fit by using constraints from the LETA output. The result presented in

the LETA paper [61] is:

8B Flux φbinned = 5.14+0.160
−0.158(stat)+0.132

−0.117(syst)× 106 cm−2s−1

8B Flux φkernel = 5.17+0.159
−0.158(stat)+0.132

−0.114(syst)× 106 cm−2s−1

For the LETA fit which combined data from the D2O and Salt phases, two

independent techniques were used to extract the fit parameters. One method

used binned PDFs and the other method used unbinned, "kernel estimation"

approach. For more details, refer to the LETA paper.

For the fit that combined data from all three phases, two independent tech-

niques were also used for the signal extraction. One method is the Maximum

Likelihood Estimation (MLE) method and another is the Markov Chain Monte

Carlo (MCMC) method. The strength of MLE is point estimations and the

strength of MCMC is posterior distributions for the extraction of confidence

intervals.

In the MCMC fit, the systematics are floated along with the number of

events belonging to the event classes. The uncertainty in the fit includes both

statistical and systematic uncertainties. The result from fitting the MCMC fit

on the 1/3 NCD-only data is:

8B Flux φ = 5.12± 0.50× 106 cm−2s−1

There are a number of options1 available to pick as best-fit from the MCMC

fit. We are using the average of 68% confidence intervals. The result from the
1Mean, mode and median of the posterior distribution, average of confidence intervals,

and fitting the posterior distribution to a Gaussian function to extract the mean µ and σ
as best-fit and its uncertainty respectively.
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1/3 fit using the constraints from LETA is:

8B Flux φ = 5.11± 0.29× 106 cm−2s−1

The use of constraint from LETA reduced the total uncertainty on 8B flux from

0.5 ×106 cm−2s−1 to 0.29 ×106 cm−2s−1. From the BS05(OP) model, 8B flux

is predicted to be 5.69×106 cm−2 s−1 with ±16% theoretical uncertainty. The

prediction of 8B flux from BS05(AGS,OP) model is 4.51×106 cm−2 s−1± 16%.

The model assumed a lower heavy element abundance in the Sun’s surface

compared to BS05(OP) model. From the MCMC fit on the full data,

8B Flux φ = (5.28± 0.20)× 106 cm−2 s−1,

with total uncertainty of 3.78% which agrees well with both models.

The combined three-phase fit of the νe energy-dependent survival proba-

bility yielded the constant term of the survival probability as 0.3206± 0.0197,

linear term as 0.005 ± 0.008, the quadratic term as −0.0014 ± 0.0033. On

the day-night asymmetry, the constant term is 0.0496± 0.0347 and the linear

term is −0.0175± 0.0276. Another goal of the thesis was to observe a nonzero

day-night asymmetry. So far no experiment (References [27], [100]) has mea-

sured a significant nonzero day-night asymmetry. The best-fit on day-night

asymmetry from floating all the systematic uncertainties is 0.0496 ± 0.0347.

To find the effect of statistics, the systematic uncertainties were kept fixed and

not "floated" in a fit consisting of 750,000 steps. The result is 0.0493±0.0340.

This clearly shows that uncertainty from statistics (0.0340) dominate in the

total uncertainty (0.0347) from a fit which included both statistics and sys-

tematics. The day-night asymmetry is 1.5σ away from zero which means that

if SNO experiment was repeated 100 times, the asymmetry would be greater

than zero 87 times2

2Area under the normal curve between ±nσ is erf(n/
√

(2)) where n is the number of σ
and erf is the error function.
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Table 14.1, compares the result from MCMC to the published result from

LETA. The addition of two new systematic uncertainties and more conser-

vative application of other systematic uncertainties resulted in changing the

central values of some of the fit parameters which negate the advantage of

adding the data from the NCD phase to the combined data from the D2O and

salt phases. Treatment of uncertainties for D2O+salt has been improved for

the 3-phase analysis, resulting in larger uncertainties. These include separate

floating of PMT β−γ events in to day and night events instead of floating the

total number of events, evaluation of the uncertainties due to finite statistics

in Monte Carlo simulation, addition of the 8B Winter uncertainty for neu-

tral current3, removal of the positive bound for salt acrylic vessel neutrons

and merging of the day/night background constraints instead of doubling the

penalty terms etc.. Additionally for the NCD phase, the external neutrons are

not "subtracted". The external neutrons are handled as a separate class of

event in the fit, which is floated like any other class of event. When statistical

separation or a pull, from other phases, exists for either the 8B scale parame-

ter or the external neutrons or anything else that has neutron-like PDFs, the

fitted rate for the external neutrons in the NCD phase is free to vary and will

not necessarily fit at the central value of the constraint [101]. In MCMC fit,

each neutron-type background is floated separately. In LETA, not only exter-

nal neutrons but all neutrons other than from the neutral current interactions

were subtracted after the fit, based on results from Monte Carlo studies. This

should not add uncertainties compared to the published LETA fit, although it

can slightly affect the central values of the fit parameters and this is what we

observed. The constraint, applied on the 3-phase fit on the total number of

neutrons, from pulse shape analysis of data from the NCDs is 7.0% which was
3Winter uncertainty was applied on CC and ES in LETA but its effect was not considered

on NC.
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not applied to the 2-phase (LETA) fit. The shift ((0.9212-0.8868)=0.0344) in

the central value of the 8B scale from LETA to MCMC, in terms of average

uncertainty σ = (0.0356 + 0.0341)/2, is ≈ 1.0σ.

The recipe to calculate the total uncertainty, shown in the last column in

table 14.1, is

• the asymmetric uncertainties, from statistics and systematics, were con-

verted into symmetric uncertainties using the following equation:

σ =
√

(σ2
m + σ2

p − σmσp) (14.1)

where σm is minus uncertainty and σp is the plus uncertainty.

• statistical and systematic uncertainties are added in quadrature to obtain

the total uncertainty as:

σ =
√
σ2
stat + σ2

syst (14.2)

From the table 14.1, the total uncertainty in MCMC (column 3), compared

to LETA (column 8), has clearly improved for the 5 parameters but not for

8B because of the conservative application of the systematics uncertainties.

The fractional uncertainty (column 4 for MCMC and column 9 for LETA)

increased for those parameters which were nearly zero – p1, p2 and a1. The

huge difference in the relative uncertainty is clearly due to the shift of the

central values and not the actual variation in the size of the uncertainties. For

instance, for p2, MCMC has −0.00139±3.33e−03 but LETA has −0.00206±

3.43e− 03. The difference in the central values (0.00067) is ≈ 7 times bigger

than the difference in the uncertainties (0.0001). The interpretation of relative

uncertainties makes sense when the uncertainties are small compared to the

central values, but it is certainly not the case for many of the parameters that

we are measuring, hence interpretation is tricky using relative uncertainties to

compare LETA and the 3-phase results.
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There is an improvement in the survival probability of electron neutrinos

(p0) and day-night asymmetry (a0). For p0, the fractional uncertainty in LETA

was 0.067 while in MCMC the uncertainty is 0.061. The improvement in

fractional uncertainty of a0 is bigger; LETA has 1.23 while MCMC had 0.699.

14.1 Physics Interpretations

This section presents an interpretation of MCMC results in terms of neutrino

oscillations. Nuno Fiuza de Barros performed a scan of the MSW oscillation

plane using results from the three-phase analysis. The plots, shown in this

section, are from his doctoral dissertation. For more detail on the extraction

of oscillation parameters, refer to [102].

Allowed regions of the ν mixing parameters were determined in three con-

figurations, namely:

• "SNO only" (MCMC) result for a two-flavour analysis is shown in fig-

ure 14.1 and outlined in table 14.2.

• SNO result (QSigEx) combined with other solar experiments (global so-

lar) for a two-flavour analysis is shown in figure 14.2. Result is outlined

in the first row in table 14.3.

• Global solar result, combined with the result from the KamLAND re-

actor antineutrino experiment, for a three-flavour analysis is shown in

figure 14.3. Result is outlined in the second row in table 14.3.

• Results from three-phase analysis are combined with global solar ex-

periments for a three-flavour analysis. The best-fit of the oscillation

parameters are outlined in table 14.4.

The "SNO only" result shows degenerate minima in both LMA and LOW

oscillation regions in the top plot in figure 14.1, therefore table 14.2 shows

301



the best-fit points and respective uncertainties for each of the local minimum.

SNO result when combined with all solar experiments confines the allowed

oscillation parameters to the LMA region. The bottom plot in figure 14.1

concentrates on the LMA region. The star, shown in the following figures,

represents the best-fit point – a point with the maximum value of the likelihood

in the signal extraction fit [102]. The points on the contour – represented by

(L(µi)−Lmax(µi) = −n2/2) – are points for which the log likelihood decreased

by n2/2 from the global maximum Lmax. The contours represent the nth signal

bound on the oscillation parameters where n=1,2,3.

Comparing uncertainties of the best-fit values of oscillation parameters

from "SNO only" result (table 14.2) between LETA+NCD and MCMC, the

χ2/dof is better for LETA than MCMC. Uncertainty on tan2 θ12 is same in

the LMA region but improves in MCMC in the LOW region. On the ∆2m21,

MCMC has reduced uncertainty compared to LETA+NCD result.

The uncertainties from the global analysis (table 14.3) on tan2 θ12 have

improved from the LETA fit 0.0383 to the MCMC fit 0.0314. The total uncer-

tainty on ∆m2
21 increased from LETA (0.21) to MCMC (0.38). Comparing the

global solar three-flavour analysis in table 14.4, it is clear that an improvement

in the accuracy of oscillating parameters is gained by combining the data from

all three phases as both MCMC and QSigEx showed improvements. Though it

is not surprising that the best result is from the maximum likelihood method

where the best fit is obtained by maximizing the likelihood function against

all the parameters in the fit where as in MCMC the best-fit of parameter x is

obtained by maximising the likelihood function against the parameter x and

the rest of the parameters are marginalised.

Although SNO is not as sensitive to sin2 θ13, as other experiments which

were designed to measure sin2 θ13, for instance, Tokai-to-Kamioka (T2K) [103]

experiment in Japan and Main Injector Neutrino Oscillation Search (MINOS)
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experiment in USA. From the global analysis of neutrino data including the

latest result from T2K and MINOS, Fogli et al.obtained more than 3σ evidence

of non-zero θ13 [105]. Their result is 0.025± 0.007 which agrees with the SNO

result (0.020± 0.019) although with a much better uncertainty.
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Figure 14.1: Contour of allowed oscillation parameters from the MCMC result
in the full region (top plot) of oscillation parameters. The bottom plot shows
details of the LMA region (bottom plot). Plots are from [102].
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Analysis tan2 θ12 ∆m2
21 × 10−5 (eV 2) sin2 θ13(×10−2)

2-flavour (QSigEx) 0.422+0.026
−0.026 7.38+0.44

−0.22

3-flavour (QSigEx) 0.440+0.034
−0.028 7.38+0.44

−0.22 2.50+2.00
−1.50

< 5.00(95% C.L.)

LETA+NCD 0.468+0.042
−0.033 7.59+0.21

−0.21 2.00+2.09
−1.63

< 8.10(95% C.L.)

Table 14.3: Table with best-fit values of the oscillation parameters from two
and three flavour analysis of global solar+KamLAND data. Last row shows
result from published LETA paper. Uncertainties are ±σ.

Analysis tan2 θ12 ∆m2
21 × 10−5 (eV 2) sin2 θ13(×10−2) χ2/dof

QSigEx 0.436+0.044
−0.042 5.40+1.76

−1.32 < 5.00(95% C.L.) 108.25/126

MCMC 0.434+0.054
−0.045 5.45+1.98

−1.98 < 5.83(95% C.L.) 109.32/126

LETA+NCD 0.468+0.052
−0.050 6.31+2.49

−2.58 < 8.10(95% C.L.) 67.4/89

Table 14.4: Extracted parameters from a three-flavour neutrino oscillation
analysis over QSigEx and MCMC results and other solar neutrino experiments.
Constraint from KamLAND data is not used for this analysis. For comparison
the last line outlines the corresponding result published in the LETA paper.
Uncertainties are ±σ.
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Figure 14.2: Global (all solar + KamLAND) two-flavour oscillation parameter
space. Figure from [102].
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Figure 14.3: Global (all solar + KamLAND) three-flavour oscillation param-
eter space. Figure from [102].

309



14.2 Summary

This thesis describes the result of combined three-phase fit using Markov

Chain Monte Carlo technique. The 8B flux of φ = (5.28 ± 0.20) (stat ⊕

syst) ×106 cm−2 s−1 measured by the NC reaction where ⊕ refers to the to-

tal uncertainty including both systematics and statistics. Even with a more

conservative application of the systematic uncertainties, the result is compa-

rable to the published LETA result. The CC and ES electron spectra show

no signs of spectral distortions. MCMC fitted the energy-dependent νe sur-

vival probability to the SNO data with the assumption of unitarity of the ν

mixing matrix and that the underlying ν spectrum follows a smoothly dis-

torted 8B shape. The survival probability is parametrized as a second-order

polynomial and a linear energy-dependent asymmetry between day and night

spectra. MCMC fit saw no evidence of either a significant spectral distortion

or a significant non-zero day/night asymmetry. The result was used to gen-

erate contours showing the allowed regions of the mixing parameters which

for "SNO only" result was LOW region. Adding result from other solar ex-

periments and using KamLAND data to constrain the oscillation parameters

confined the allowed region to the LMA region. From the 2-flavour fit using

MCMC result, the best-fit point in the LMA region is at tan2 θ12 = 0.436+0.042
−0.038

and ∆m2
21 = 5.50+2.09

−1.33 × 10−5 eV 2.
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Appendix A

Determination of
Thorium/Uranium content in
Neutral Current Detectors (NCD)
by Time Coincidence Study

A.1 Introduction
This document describes the time coincidence study employed to quantify the
impurity levels in NCDs which consist of 232Th, 238U and all the progeny in
their decay chains (See tables A.1 and A.2). The analysis was based on efficien-
cies determined from Stonewall’s simulation [106]. She analysed the combined
open1 and commissioning datasets2 for her time coincidence study. The later
dataset was taken between June 5, 2004 and November 15, 2004 while the for-
mer was taken between November 27, 2004 and January 3, 2005. I based my
study on the complete NCD data. This study compares the results obtained
from analysing the complete data to the results obtained by Stonehill’s time
coincidence study. This is a cross-check, as a part of box opening procedure,
to confirm that the values for the NCD bulk activity from the in situ analysis
[65] are good.

A.2 Coincidence analysis

A.2.1 Definition of coincidence events
Time coincidence looks for alpha events that are correlated in time. Listed
below are three possible coincidence signals, observed in the dataset, that can
be utilized to gauge the NCD bulk activity.

• The short-lived alpha emitters are employed for time coincidence study
because in the thorium decay chain (Table A.1), the decay of 220Rn
(T1/2=55.6 seconds) and 216Po (T1/2=0.145 second) will be correlated

1First month of open data
2From now on it will be addressed as combined dataset.

318



in time. Hence it is possible to define a triple coincidence between the
alphas from the 224Ra→ 220Rn→ 216Po portion of the 232Th decay chain.
A triple coincidence is defined as two events with a time difference of less
than 111.2 seconds followed by a third event within 0.3 second. All events
with energy less than 0.1 MeV were rejected to reduce electronic noise.
The sizes of the coincident windows are selected to be twice the half-lives
- T1/2=55.6 seconds (220Rn) and T1/2=0.145 second (216Po) - in thorium
decay chain.

• Short double coincident pair consist of 220Rn and 216Po alphas. Time
window selected for the analysis is 0.3 second, twice the half-life of 216Po.
The α − α coincidence of 216Po also make up the double. Events were
selected if the energy deposited is greater than 0.1 MeV.

• Long double coincidence is when two events, from both the uranium
chain (Table A.2) and the thorium chain, happen in a coincidence win-
dow of 111.2 seconds. To reduce accidental coincidences between low-
energy events, the energy threshold was increased to 1 MeV.

Nuclide decay mode T1/2 Energy (MeV) Decay Product
232Th α 1.405 × 1010 a 4.081 228Ra
228Ra β− 5.75 a 0.046 228Ac
228Ac β− 6.25 h 2.124 228Th
228Th α 1.9116 a 5.520 224Ra
224Ra α 3.6319 d 5.789 220Rn
220Rn α 55.6 s 6.404 216Po
216Po α 0.145 s 6.906 212Pb
212Pb β− 10.64 h 0.570 212Bi

212Bi β− 64.06% 60.55 min 2.252 212Po

α 35.94% 6.208 208Tl
212Po α 299 ns 8.955 208Pb
208Tl β− 3.053 min 4.999 208Pb
208Pb stable

Table A.1: Thorium Series [109]

A.2.2 Chance Coincidence
Accidental/chance coincidence is defined as uncorrelated events that happen
close enough in time as to fall within the coincidence window. The method to
compute the expected number of accidentals was described in Stonehill’s dis-
sertation [114]. For triples, the number of accidentals was calculated according
to equation (A.1).
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Nuclide decay mode T1/2 Energy (MeV) Decay Product
238U α 4.468 × 109 a 4.270 234Th

234Th β− 24.10 d 0.273 234Pa
234Pa β− 6.70 h 2.197 234U
234U α 245500 a 4.859 230Th

230Th α 75380 a 4.770 226Ra
226Ra α 1602 a 4.871 222Rn
222Rn α 3.8235 d 5.590 218Po

218Po α 99.98% 3.10 min 6.115 214Pb

β− 0.02% 0.265 218At

218At α 99.90% 1.5 s 6.874 214Bi

β− 0.1% 2.883 218Rn
218Rn α 35 ms 7.263 214Po
214Pb β− 26.8 min 1.024 214Bi

214Bi β− 99.98% 19.9 min 3.272 214Po

α 0.02% 5.617 210Tl
214Po α 0.1643 ms 7.883 210Pb
210Tl β− 1.30 min 5.484 210Pb
210Pb β− 22.3 a 0.064 210Bi

210Bi β− 99.99987 % 5.013 d 1.426 210Po

α 0.00013% 5.982 206Tl
210Po α 138.376 d 5.407 206Pb
206Tl β− 4.199 min 1.533 206Pb
206Pb stable

Table A.2: Uranium Series [109]

Na = r3
s t1 t2 L (A.1)

where rs is the singles rate on that string, t1 and t2 are the sizes of the coinci-
dence windows – 0.3 and 111.2 seconds respectively – and L is the lifetime3 of
the dataset. For the doubles, the equation for the number of accidentals was
Na = r2

s t L where t is the size of the coincident window. These equations are
valid provided that the single’s rate times the size of a coincidence window is
small compared to unity (rst� 1). To get the correct count of the coincident
events (Nc) in a string, the accidentals (Na) were subtracted from the number

3The time that the detector was actively collecting data.
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of observed coincident events (Noc) and if accidentals were more than the co-
incident events, the number of coincident events in the string was set equal to
zero. This happened only with string #23.

Nc = Noc −Na (A.2)
Na > Noc then Noc = 0 (A.3)

A.2.3 All strings or good strings only?
For comparison, two studies were performed, once with all the strings and then
with certain strings (0, 1, 3, 10, 18, 20, 26, 27, 30, and 31) removed ([110] and
[111]). The later will be known as restricted study from now on. Stonehill did
not analyse strings 3, 7, 8 and 20, hence her study was also restricted. Even
though not all strings were included, the numbers reported in column one of
Table A.11 from the restricted study were corrected to represent the full array
with the assumption that coincident events are fairly distributed over all the
strings that were analysed.

A.2.4 True coincidences
Selection of coincidence candidate was based on the time difference between
each event in the dataset and its immediate predecessor. if the time difference
is within the size of a time window then the events are considered as the co-
incidence events. Accidental coincidences are backgrounds in this study. The
number of true coincidences is calculated by subtracting the expected num-
bers of accidentals from the observed number of coincidences (equation (A.2)).
Table A.3 is the account of coincident and accidental events. The italics text
describes Stonehill’s study (lifetime of the dataset analysed, number of coinci-
dences and number of chance coincidences) and the rest describes this study.
The column four/six of the table suggests that long double (111.2 seconds) is
the least accurate coincident event to estimate the contamination in NCDs [See
Figure A.1]. Corrected number (Nc shown in red in Figure A.1 and described
by equation (A.2).) is the observed number (Noc shown in blue in Figure A.1)
of coincident events minus the accidentals (Na). Considering the accidentals,
it seems that triple-coincident event is the most accurate one. The reason
for no accidentals for triples is due to a tight constrain: (1) two coincident
events within 111.2 seconds of each other followed closely by a third event
within 0.3 second (2) all three events occurring in the same string and (3) all
three events depositing energy in excess of 0.1 MeV. The tight constrain also
limits the statistics. Short doubles (0.3 second), on the other hand, has lim-
ited accidentals on account of a narrow time window and has good statistics
(349± 1.43).

A.3 Data Cleaning Cuts
Table A.4 lists the cuts applied on the analysis to remove non-physics events
which include high-voltage discharges evident in some NCD sections. These
discharges were introduced inadvertently by the welding process. Even though
steps were undertaken to resolve the situation, some strings still have these
problems, hence these were removed from the analysis. The cuts applied by
Stonehill are not similar to the cuts that were applied for this study, because
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Figure A.1: Distribution of uncorrected and corrected number of long (111.2
seconds) doubles. Strings, not shown, (0, 1, 3, 10, 18, 20, 26, 27, 30 and 31)
were not included.(Restricted Study).

the cuts were still work-in-progress when Stonehill performed her analysis.
Tables A.13 and A.14 break down the Data Analysis Mask Numbers (DAMN
cuts) reported in Table A.4 into bits. For a detailed description of DAMN
cuts, consult [112].

A.4 Fits to obtain lifetimes T1/2=55.6 seconds
(220Rn) and T1/2=0.145 second (216Po)

The time difference between Poisson-distributed events was fitted with expo-
nential distribution to see if the lifetime from the fit was the half-life of 216Po
(0.145 second) and 220Rn (55.6 seconds). Figure A.2 shows the fit result for
short doubles when the size of window is extended to 1.5 seconds from 0.3
second. It shows with χ2 19.62 and Number of Degrees of Freedom (ndf) 21,
that the half-life is 0.1358 ± 0.0089 which is 1.0 σ away from 0.145 second.
Figure A.3 shows a fit on the long doubles with χ2 of 38 for 45 degrees of
freedom. Lifetime from the fit is 47.25± 11.64 which is 0.7 σ away from 55.6
seconds. To avoid α − α coincidences from 216Po (T1/2=0.145-second) in the
thorium chain, the range for the fit was restricted between 7.0-222.45 seconds.
Figures A.2 and A.3 also display the equation that was fitted to the data.
The goodness of a fit is described by the χ2/ndf but to ascertain it, the fit-
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ted background (41.21±3.44) was compared to the accidentals for the long
doubles of 222.2-seconds window size. From the fit (Figure A.3), the back-
ground comes up to be in the range of 1889 to 2233 [(41.21-3.44)=37.77 ×
50 to (41.21+3.44)=44.65 × 50 where 50 is the number of bins] which com-
pares very well with the number of accidentals, 2126, calculated from Poisson
distribution.
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Figure A.2: Time difference distribution of short doubles, extended to 1.5 sec-
onds, yields half-life of 216Po. All strings were included in the analysis.

A.5 Energy Distribution
To verify furthermore the fact that triples and short doubles are short-lived al-
pha emitters from thorium decay chain, the energy distribution of the events is
plotted in Figures A.5 and A.7. The initial energies of 222Ra (From Table A.2),
220Rn and 216Po (From Table A.1), involved in the triples and short doubles,
are 5.59 MeV, 6.40 MeV and 6.90 MeV respectively. The energy distributions,
as seen in Figures (A.4,A.5,A.6,A.7) range from zero to the initial (maximum
energy in the figure) energies of alphas. From Figures A.4 and A.6 it appears
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Figure A.3: Time difference distribution of long doubles, extended to 220
seconds, yields half-life of 220Rn.

that the impurity is a bulk impurity and not a surface contamination. Alphas
starting within the bulk will lose energy due to collisions within nickel walls
while the one originating from the surface enters into NCD active volume with
its energy intact. The spectra A.5 and A.8 show that there are significant
number of events that are not consistent with bulk-like activity.

A.6 Model dependency of impurity composition
[65]

This section touches the subject of model dependency of impurity level calcu-
lated from time coincidence study. The energy distribution in Figures A.5 and
A.7 is very informative and indicative of the combination of following factors:

1. Alphas originating deeper in the NCD walls and loosing energy escaping
from the nickel walls so that the active NCD region detects only partial
energy (Bulk model).
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Figure A.4: Energy distribution of the first and second event in the 89 0.3
second double coincidences from Stonehill’s analysis [117].

2. Alphas originating from or near the surface (Surface-fixed model) and
depositing the entire energy in the NCD active region (see the peaks in
the Figures A.5 and A.7) or

3. Alphas originating from or near the surface (Surface-fixed model) but
striking another part of the wall and depositing only partial energy,
thereby mimicking the bulk-like activity. See the tails of the peaks in
the Figures A.5 and A.7.

4. One possibility might be the escape of radon (a noble gas) into the active
region of the NCDs which alters the potential prospects for observing
coincidence. Ejection of the 220Rn in the gas will result in its decay in
the gas since it has a 56 s half life. Thus 220Rn escape model will result
in higher detection efficiency of 220Rn and its daughter 0.145 s 216Po
compared to the surface-fixed model. In this scenario, the leading alpha
will not be observed but the two alphas in the double will definitely be
observed.

5. Last possibility is that the origin of alpha is the surface contamination
which has a non negligible thickness, consequently the energy peak is
smeared out and gives the appearance of true bulk activity.

The ratio of number of short doubles to triples gives an indication as to whether
the activity originates from the surface or is uniformly distributed in the bulk
of the walls. If the alpha starts from the surface then there are two possibilities
for it to travel - towards (T) the active region or away (A) from it. Hence, in
the case of triples, there are 2× 2× 2 = 8 possibilities [(1) AAA,(2) AAT,(3)

325



Energy (MeV)
0 1 2 3 4 5 6 7 8 9 10

C
o

u
n

ts
 

0

2

4

6

8

10

12

14

16

First Event in Double DoublesFirst
Entries  349
Mean    3.388
RMS     1.956

First Event in Double

Energy (MeV)
0 1 2 3 4 5 6 7 8 9 10

C
o

u
n

ts
 

0

2

4

6

8

10

12

14

16

Second Event in Double DoublesSecond
Entries  349
Mean    3.469
RMS     2.021

Second Event in Double

Figure A.5: Energy distribution of the first and second event in the 349 0.3
second double coincidences.

ATT,(4) TTT,(5) TTA,(6) TAA,(7) TAT,(8) ATA] therefore the probability
of detection is (1/8)×100= 12.5%. Out of eight possible outcome, only one
will be observed as a triple and another will be a double missing a leading
alpha. In the case of short doubles there are 2 × 2 = 4 possibilities therefore
there is a (1/4)×100 = 25% probability of detecting both the 220Rn and 216Po
alphas that constitute the short doubles. Hence the ratio of triples to doubles
is 12.5/25.0 = 1/2 = 0.5 in case the impurity is fixed on the surface.

If the impurity is bulk in nature then there are four possibilities for a
alpha to travel4. Consequently there are 4 × 4 × 4 = 64 and 4 × 4 = 16
set of possibilities for a triple and a double coincident pair to be detected
respectively. Therefore, for bulk contamination, the ratio of triple to short

4If 100 alphas are uniformly distributed to a depth equal to an α range then 25 alphas
will escape the wall. Detection efficiency for a single α from the bulk activity is 25% as
opposed to 50% from the surface activity.
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Figure A.6: Energy distribution in the first, second and the third event in 26
triple coincidences from Stonehill’s analysis [116].

double would be 1/64
1/16

= 1/4 = 0.25.
As mentioned earlier, in the radon escape model, there is 50% chance that

the leading alpha will be observed and the resulting daughter 220Rn will be
on/near the surface. The odds of observing a double, originating from the
surface, is 25% hence the probability of observing a triple is (50% × 25%) ×
100 = 12.5%. There are two components in the calculation of the likelihood
of observing a double in the radon escape model. First when radon’s track
is towards and the other in which it is away from the active region. In the
former case radon escapes into the active region therefore the double (220Rn→
216Po → 210Pb) will always be observed and in the later (50% of the time)
there is 25% chance of observing a double hence the probability is summed
as (50% + 50% × 25%) × 100.0 = 62.5%. Therefore the ratio of triples to
doubles is 12.5%/62.5%=0.2 for the radon escape model. From the last line
of Table A.5, it seems that the ratio spans from 0.2 to 0.5. The efficiency
to detect a coincident pair spans from 6.25% to 62.5% – a ten fold change –
resulting in a wide deviation in the amount of 232Th derived from the doubles
measurement.

Table A.5 summarizes the above discussion. The ratio of triples to doubles
is 0.25 (bulk activity), 0.5 (surface activity) and 0.2 (radon escape model).
Table A.9 shows that the ratio ranges from 167/575 ≈ 0.29 (All Strings) to
106/349 = 0.30 (Restricted) instead of 0.25 or 0.5 which means that both bulk
and surface-fixed models play a role. The efficiencies discussed here are based
on geometric arguments and do not include efficiency ε of coincident window
to detect the coincident pair.

Eff = 1.0− e−t log (2)/T1/2 (A.4)
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Figure A.7: Energy distribution in the first, second and the third event in 106
triple coincidences.

where t=0.3 seconds is size of the coincident window and T1/2=0.15 seconds is
the half-life of 216Po. Taking into account efficiency of the coincident window
ε and the ratio of the number of triples to doubles, the number of triples
is calculated and compared to the observed number of triples to figure out
the model that best describes the data. Table A.6 lists the result of the
computation when all strings are analysed and when only good strings are
considered.

Ntpl = Ratio×Ndbl × Eff (A.5)

where Ratio (from last row of Table A.5) is a ratio of number of triples to num-
ber of short double coincident pairs obtained from geometrical consideration,
Ndbl is 349 from restricted study and 575 when all the strings are considered
in the fit, and Ntpl calculated is shown in columns 3 to 5 in Table A.6.

From Table A.6 it appears that the impurity is combination of bulk and
surface models, hence ignoring radon escape model, the composition of impu-
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Figure A.8: Energy distribution of the first and second event in the 1173 111.2
second double coincidences.

rity into bulk y and surface x is determined as:

x+ y = 1 (A.6)
130x+ 65(1− x) = 106; x ' 0.63 (A.7)

215.6x+ 107(1− x) = 167; x ' 0.55 (A.8)

The values are used from Table A.6. Equation (A.7) is for the restricted study
involving only good strings and equation (A.8) is for all strings. The average
(0.63 + 0.55) ∗ 0.5× 100 = 59% agrees very well with 58% of [113].

A.6.1 Features of Simulation
For the simulation, 10 million decays were simulated each for uranium and
thorium. The alpha emitted by 212Po in the thorium chain is the highest en-
ergy alpha with a range of 20 µm in nickel, hence to reduce the computational
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Figure A.9: String distribution of triples and short doubles from Stonehill’s
analysis. Strings, not shown, (3, 7, 18 and 20) were not analysed [118].

time, alphas were uniformly distributed up to 22 µm in the bulk of the nickel
walls. Figures A.4 and A.6 testifies to the validity of this assumption but not
Figures A.5 and A.7. In the simulation, the uranium and thorium chains were
broken at radium because it is readily dissolved in water [115]. Disequilibrium
model was used because of the complication of the CVD (Chemical-Vapour-
Deposited) process to deposit nickel on aluminium mandrel to make NCD
bodies. The equilibrium was also disturbed by electropolishing and acid etch-
ing of the nickel tubes to remove adhered 210Po from the surfaces of nickel
tubes.

A.7 Calculation of Thorium/Uranium Content
To calculate the impurity level, accidentals were calculated, using equation (A.1),
for each string based on the singles data above 0.1 MeV for triples and short
doubles and above 1 MeV for long doubles. Using the number of accidentals,
the rate of impurity level R from a coincident event, is expressed as:

R =
(N −Na)

(ALfscope ε)
(A.9)

where N and Na are the numbers of coincident events and accidentals respec-
tively, L, as mentioned earlier, is the lifetime of the dataset, fscope is scope life
fraction, and ε is the efficiency from Table A.7. The simulation efficiency ε is
the probability of seeing a double or a triple coincidence from a decay chain.
For example, in the case of triples, out of 100 simulated events in bulk tho-
rium, only 0.961 triple coincidence was observed. The lifetime was multiplied
by scope life fraction (From [119] 95.9±0.3(stat)±0.01(sys))% to account for
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the deadtime of the scope, which is relevant5, because the analysis considers
only correlated Shaper/ADC and scope events. Area6 is calculated from the
number of stings Ns in which the number of coincident events is greater than
zero – A = (63.52

40.0
)Ns. Substituting in equation (A.9) results in

R =
40 (N −Na)

(63.52Ns Lfscope ε)
(A.10)

This equation also extends the result obtained from the restricted analysis to
the full array of NCDs assuming that the coincident events are distributed
over all the strings that were analysed (See Figure A.10). The exception is
string #37 in which 43 short doubles and 14 triples occurred – well above the
average of 15 and 5 for short doubles and triples respectively. String #37 has
problems that were mentioned in [110]. String #37 also has more than its
share of long doubles (See Figure A.1) from the rest of the strings. The result
of the calculations is shown in column one of Table A.11. As seen in Table A.7,
thorium contamination was estimated by counting all three coincident events
but the rate of uranium decay was estimated by counting the 111.2 seconds
doubles which can have its origin either in thorium or uranium decay chain.

Sources of triples and short doubles are alphas from thorium chain, but long
coincident pairs (111.2 seconds) are complicated. There are three sources, that
is, alphas from uranium (218Po), alphas from thorium (220Rn) and accidentals.
In order to distinguish the contributions from each source, Stonehill applied
simultaneous ROOT maximum-likelihood fit to the energy distributions of first
and second events and obtained the result shown in Table A.8. Alphas from
uranium and thorium is calculated as:

Nx =
Nld fx
εx

(A.11)

where Nx is the number of atoms of x which can be either 218Po or 220Rn, fx
(from Table A.8) is the fraction of long doubles belonging to uranium (218Po)
or thorium (220Rn) or accidentals and εx (from Table A.7) is an efficiency
of seeing a double coincidence where two alphas deposit energy that exceeds
1 MeV and the time difference is within 111.2 seconds.

Number of observed long doubles Nld in the dataset – in terms of Nx
calculated from equation (A.11) – is expressed as:

Nld = ε218N218 + ε220N220 +Na (A.12)

Table A.11 compares the thorium contents determined from the complete
dataset to the ones from Stonehill’s study.

A.7.1 Calculation of Errors
Statistical errors were calculated based on the

√
N statistics. Various system-

atic uncertainties enter the analysis. List include sources:

• The uncertainty in the lifetime (385.17± 0.14 [29]) of the dataset.

• Uncertainty from the scope life fraction [95.9±0.3(stat)±0.01(sys)]%
5The MUX deadtime is ∼ 1 millisecond after every event.
6There are forty NCD strings with total surface area equal to 63.52 m2.
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• Fractional uncertainty in the determination of fractions of uranium, tho-
rium and accidentals in the long doubles (Table A.8).

• The uncertainties in simulation efficiencies from Table A.7.

• The dependence of time coincidence analysis on energy calibration, due
to energy threshold for the selection of events (0.1 MeV for the short dou-
bles and triples and 1.0 MeV for the long doubles), leads to a systematic
uncertainty.

• The use of three different coincidence methods to estimate the level of
thorium impurity introduces a significant uncertainty and since the three
dissimilar methods extracted the results from the similar dataset, the
uncertainties are also correlated.

Both systematic and statistic errors were added in quadrature to get the total
uncertainty reported in tables A.11, A.10 and A.12.

A.7.2 Inconsistency in column one of Table A.11
Stonehill’s calculation of thorium contaminations from all three events are
consistent with each other. The three row entries are not consistent in column
one of Table A.11, nonetheless, from the last row, it seems the average rates
from both columns are consistent within uncertainties of each other. The
discrepancy is due to the fact that bulk model does not represent the complete
data but adequately represents the dataset that Stonehill analysed.

A.7.3 Cross-check
As a cross-check comparison of the impurity levels, when all strings are con-
sidered and when hot strings are removed (Table A.10) was made and it shows
that the count rate is higher for the former because of the inclusion of string
#10 (Figure A.11) which has higher number of events and accidentals than any
other string. This is what we expected. Nevertheless, the average rate (row
three in Table A.10) of decay from triples and short doubles from all strings
(0.795± 0.067) is consistent within uncertainties with the one calculated from
the restricted dataset (0.680± 0.067).

A.7.4 Thorium/Uranium Content
The number of short doubles observed in the NCD array is 575±24 (Table A.9).
With the efficiency of 3.557%, appropriate for bulk-like activity, the number of
232Th decays is 16165±675. This decay would be produced7 by 0.083±0.005µg
of 232Th in the NCD walls. If, instead, the efficiency for surface-like activity
(18.75%) is used in the above calculations, then the decay would be produced
by 0.023 ± 0.0009µg of 232Th on the inner surfaces of the NCD walls. The
spread reflects uncertainty in the efficiency (model dependency) to convert the
activity to actual Thorium content.

7N0 = Nd/(1− 2−t/T1/2) where Nd is the number of decays of 232Th or 238U and t is the
lifetime of the dataset. Mass is related to the number of nuclei by m = (mA/NA)N0 - mA

is 232 or 238 gm and NA is the Avagadro number 6.02× 1023.
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The average of the decay rates of uranium from the complete NCD data
(All strings and restricted to good strings) in Table A.12 was 0.527 ± 0.765
which is consistent with the decay rate that Stonehill obtained (0.50 0.53

0.39). To
calculate the actual uranium content, responsible for the observed activity, the
number of long doubles – 2314 (Table A.9) – is used. Following the calculation
mentioned above with the bulk model, gives the uranium content as 0.034 ±
0.034µg.

A.8 Conclusion
Using the bulk model of impurity in the time coincidence study, the impurity
level of thorium – in the NCD array – from the complete dataset (0.57±0.09
decays/m2/day) is consistent within the uncertainties with the value obtained
by Stonehill (0.47± 0.12 decays/m2/day). The study considered various mod-
els of contamination and 63% surface and 37% bulk best fitted the number of
triples observed. Based on the time coincidence study, the NCD array con-
tains between 0.083 ± 0.005 to 0.023 ± 0.0009µg of 232Th. Concerning the
uncertainties in the uranium calculation, the impurity in the NCD array is
dominated by thorium.
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Cut Applied By Stonehill Applied for this study

DAMN 0 0XC8440001 0XCC440001

DAMN 1 0X1BE 0X00FFDDFE

Table A.4: Cuts applied. See tables A.13 and A.14 for further details.

Bulk % Surface % Radon Escape %

Efficiency of detecting triples 100/64=1.56 12.5 12.5

Efficiency of detecting doubles 100/16=6.25 25.0 62.5

Ratio of triples to doubles 0.25 0.5 0.2

Table A.5: Ratio of triples to doubles for different models of contamination.

Observed Surface Bulk Radon Escape

All Strings 167 215.6 107 86.25

Restricted 106 130 65 52.35

Table A.6: Comparison of observed and expected number of triples from three
different models.

Events Efficiency ε %

Thorium triple 0.961± 0.003

Thorium short doubles 3.557± 0.006

Thorium long double ε220 8.606± 0.009

Uranium long double ε218 1.164± 0.003

Table A.7: Efficiencies from Monte Carlo simulation performed by Laura C.
Stonehill [106] and employed in equations (A.10) and (A.11).

Counts Fraction of long doubles

Accidentals fa 211± 25 0.47± 0.06

Thorium f220 201± 27 0.45± 0.06

Uranium f218 32± 33 0.07± 0.07

Table A.8: Outcome of Stonehill’s maximum-likelihood fits to determine the
composition of long doubles.
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Figure A.10: String distribution of triples and short doubles. Strings, not
shown, (0, 1, 3, 10, 18, 20, 26, 27, 30 and 31) were not analysed.

Restricted All Strings

Events Counts Accidentals Counts Accidentals

Triples 106 0.015 167 0.07

Short Doubles 349 1.43 575 3.49

Long Doubles 1173 436 2314 1064

Table A.9: Comparing counts when all strings were included to when only
good strings were analysed.
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All Strings Restricted

Triples 0.89± 0.06 0.78± 0.06

Short Doubles 0.70± 0.03 0.58± 0.03

Average from Triples and Short Doubles 0.795± 0.067 0.680± 0.067

Long Doubles 0.53± 0.07 0.36± 0.05

Table A.10: Comparing thorium decay rate (decays/m2/day) from two fits –
one using all the strings and another using only good strings.

Events Complete NCD dataset Stonehill

Restricted

Triples 0.78± 0.06 0.52± 0.10

Short Doubles 0.58± 0.03 0.45± 0.05

Long Doubles 0.36± 0.05 0.43± 0.06

Average rate 0.57± 0.09 0.47± 0.12

Table A.11: Comparing thorium decay rate (decays/m2/day) between two
analysis.

decays/m2/day

Complete NCD data (All strings) 0.627± 0.064

Complete NCD data (Restricted) 0.427± 0.439

Stonehill (Restricted) 0.50+0.53
−0.39

Table A.12: Uranium content from long double coincident events (111.2 sec-
onds).
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Figure A.11: String distribution of 111.2 seconds doubles; blue and red corre-
sponds to observed and corrected number of 111.2 seconds doubles respectively.
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DAMN 0 Bit# Description

0 Retrigger

18 Muon follower short

22 NHIT burst

26 Muon follower blindness

27 Missed muon follower short

30 Shaper burst

31 Mux burst

DAMN 1 Bit# Description

1 Reverse fork

2 Fork

3 NCD oscillatory

4 Flat trace

5 Narrow pulse

6 Run boundary

7 NCD pulses

8 Shaper overflow

10 NCD Mux-Shaper correlation

11 NCD correlation time

12 Multi NCD

13 Third reflection

14 Multiple large peak

15 NCD positive signal

16 NCD frequency domain flatness

17 NCD frequency domain fork cut

18 NCD frequency-domain fork cut

19 NCD spike-area cut

20 NCD frequency-domain symmetry cut

21 NCD frequency-domain oscillation cut

22 NCD NRE pulse tag cut

23 NCD general record cut

Table A.13: Breaking down DAMN cuts 0XCC440001 and 0X00FFDDFE into
bits. These cuts were applied to remove non-physics events from the current
analysis.
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DAMN 0 Bit# Description

0 Retrigger

18 Muon follower short

22 NHIT burst

27 Missed muon follower short

30 Shaper burst

31 Mux burst

DAMN 1 Bit# Description

13 Muon hit all crates

14 Third reflection

15 Multiple large peak

16 NCD positive signal

17 NCD frequency-domain flatness cut

19 NCD spike area cut

20 NCD frequency-domain symmetry cut

Table A.14: Breaking down DAMN cuts 0XC8440001 and 0X1BE into bits.
These cuts were applied by Stonehill to remove non-physics events from the
analysis.
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Appendix B

Plots for testing the bias in the
number of events belonging to
neutral current
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Figure B.1: NC fit result of the 1/3 simulated datasets for the step 1. The
expected value and its uncertainty, required to calculate the bias, is the mean
and RMS of the posterior distribution after taking out the burn-in period
40,000 out of 75,000.
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Figure B.2: NC fit result of the 1/3 simulated datasets for the step 2. The
expected value and its uncertainty, required to calculate the bias, is the mean
and RMS of the posterior distribution after taking out the burn-in period
40,000 out of 75,000.
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Figure B.3: NC fit result of the 1/3 simulated datasets for the step 3. The
expected value and its uncertainty, required to calculate the bias, is the mean
and RMS of the posterior distribution after taking out the burn-in period
40,000 out of 75,000.
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Figure B.4: NC fit result of the 1/3 simulated datasets for the step 4. The
expected value and its uncertainty, required to calculate the bias, is the mean
and RMS of the posterior distribution after taking out the burn-in period
40,000 out of 75,000.
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Figure B.5: NC fit result of the 1/3 simulated datasets for the step 5. The
expected value and its uncertainty, required to calculate the bias, is the mean
and RMS of the posterior distribution after taking out the burn-in period
40,000 out of 75,000.
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Figure B.6: NC fit result of the 1/3 simulated datasets for the step 6. The
expected value and its uncertainty, required to calculate the bias, is the mean
and RMS of the posterior distribution after taking out the burn-in period
40,000 out of 75,000.
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Figure B.7: NC fit result of the 1/3 simulated datasets for the step 7. The
expected value and its uncertainty, required to calculate the bias, is the mean
and RMS of the posterior distribution after taking out the burn-in period
40,000 out of 75,000.
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Figure B.8: NC fit result of the 1/3 simulated datasets for the step 8. The
expected value and its uncertainty, required to calculate the bias, is the mean
and RMS of the posterior distribution after taking out the burn-in period
40,000 out of 75,000. The brown line is a Gaussian fit on the bias distribution.
The bias, uncertainty on the bias and bias in terms of number of σ from the
Gaussian fit is displayed on the title of the histogram.
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Figure B.9: NC fit result of the 1/3 simulated datasets for the step 9. The
expected value and its uncertainty, required to calculate the bias, is the mean
and RMS of the posterior distribution after taking out the burn-in period
40,000 out of 75,000. The brown line is a Gaussian fit on the bias distribution.
The bias, uncertainty on the bias and bias in terms of number of σ from the
Gaussian fit is displayed on the title of the histogram.
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Figure B.10: NC fit result of the 1/3 simulated datasets removing NCDPD
background. Green line shows the Gaussian fit. The bias and uncertainty
on the bias corresponds to the mean and uncertainty on the mean of the
distribution as shown in the legend.
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Figure B.11: NC fit result of the 1/3 simulated datasets after removing k5pd
background. The 7σ bias on NC demonstrates that k5pd is not the culprit
which caused the bias in the neutral current.
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Figure B.12: NC fit result of the 1/3 simulated datasets after removing k2pd
background. The 8σ bias on NC demonstrates that k2pd is not the culprit
which caused the bias in the neutral current. Green line shows the Gaussian fit.
The bias and uncertainty on the bias corresponds to the mean and uncertainty
on the mean of the distribution as shown in the legend.
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Figure B.13: NC fit result of the 1/3 simulated datasets after removing d2opd
background. The bias on NC demonstrates that d2opd is not the culprit which
caused the bias in the neutral current.
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Figure B.14: NC fit result of the 1/3 simulated datasets after removing hep
background. The expected value and its uncertainty, required to calculate the
bias, is µ and σ from fitting a Gaussian function on the posterior distribution
after taking out the burn-in period 40,000 out of 350,000. The green line is
a Gaussian fit on the bias distribution. The bias and uncertainty on the bias
corresponds to the mean and uncertainty on the mean of the distribution as
shown in the legend.
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Figure B.15: NC fit result of the 1/3 simulated datasets after removing At-
mospheric neutrons. The green line is a Gaussian fit on the bias distribution.
The bias and uncertainty on the bias corresponds to the mean and uncertainty
on the mean of the distribution as shown in the legend.
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Figure B.16: NC fit result of the 1/3 simulated datasets after removing external
neutrons. The green line is a Gaussian fit on the bias distribution. The bias
and uncertainty on the bias corresponds to the mean and uncertainty on the
mean of the distribution as shown in the legend.
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Figure B.17: NC fit result of the 1/3 simulated datasets with signals only
(CC, ES, ESµτ , NC and EX). The green line is a Gaussian fit on the bias
distribution. The bias and uncertainty on the bias corresponds to the mean
and uncertainty on the mean of the distribution as shown in the legend.
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Figure B.18: NC fit result of the 1/3 simulated datasets with NC and pee
parameters floating. All other parameters are fixed. The best-fit and its
uncertainty is obtained, after fitting the posterior distribution from each run,
to a Gaussian function. The bias and uncertainty on the bias corresponds to
the mean and uncertainty on the mean of the distribution as shown in the
legend.
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Figure B.19: NC fit result of the 1/3 simulated datasets with only NC floating.
The brown line shows a Gaussian fit on the distribution. The test proves that
NC is not causing the bias in itself. X axis shows bias distribution.

Figure B.20: NC fit result of the 1/3 simulated datasets with fixed p1 and p2

from the pee parameters.
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Figure B.21: NC fit result of the 1/3 simulated datasets with only p0 floating
from the pee parameters. The result indicates that p0 does cause the bias in
NC. The green line is a Gaussian fit on the bias distribution. The bias and
uncertainty on the bias corresponds to the mean and uncertainty on the mean
of the distribution as shown in the legend.
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Figure B.22: NC fit result of the 1/3 simulated datasets with only p1 floating
from the pee parameters. The green line is a Gaussian fit on the bias distri-
bution. The bias and uncertainty on the bias corresponds to the mean and
uncertainty on the mean of the distribution as shown in the legend.
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Figure B.23: NC fit result of the 1/3 simulated datasets with only p2 floating
from the pee parameters. The green line is a Gaussian fit on the bias distri-
bution. The bias and uncertainty on the bias corresponds to the mean and
uncertainty on the mean of the distribution as shown in the legend.
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Figure B.24: NC fit result of the 1/3 simulated datasets with only a0 (Top),
a1 (Bottom) floating from the pee parameters. The green line is a Gaussian
fit on the bias distribution. The bias and uncertainty on the bias corresponds
to the mean and uncertainty on the mean of the distribution as shown in the
legend.
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Figure B.25: Comparing three projections (energy, cos θ�, ρ) of the distorted
3D PDFs from MCMC to the QSigEx using the nominal values of pee. The
3D PDF is for the CC Day class.
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Figure B.26: Comparing three projections (energy, cos θ�, ρ) of the distorted
3D PDFs from MCMC to the QSigEx using the nominal values of pee. The
3D PDF is for the CC Night class.
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Figure B.27: Comparing three projections (energy, cos θ�, ρ) of the distorted
3D PDFs from MCMC to the QSigEx using the nominal values of pee. The
3D PDF is for the ES Day class.

Figures B.32, B.34 and B.36 show that there is a difference in the last bin
especially for the night PDFs so the next step was to fit MCMC from 6-12
MeV instead of 6-20 MeV.
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Figure B.28: Comparing three projections (energy, cos θ�, ρ) of the distorted
3D PDFs from MCMC to the QSigEx using the nominal values of pee. The
3D PDF is for the ES Night class.
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Figure B.29: Comparing three projections (energy, cos θ�, ρ) of the distorted
3D PDFs from MCMC to the QSigEx using the nominal values of pee. The
3D PDF is for the ESµτ Day class.
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Figure B.30: Comparing three projections (energy, cos θ�, ρ) of the distorted
3D PDFs from MCMC to the QSigEx using the nominal values of pee. The
3D PDF is for the ESµτ Night class.
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Figure B.31: Comparing energy distribution distorted using nominal values
of pee to the distribution distorted using pee values, obtained from the fit as
listed in Table 11.3, for the CC Day.

371



Figure B.32: Comparing energy distribution distorted using nominal values
of pee to the distribution distorted using pee values, obtained from the fit as
listed in Table 11.3, for the CC Night.
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Figure B.33: Comparing energy distribution distorted using nominal values
of pee to the distribution distorted using pee values, obtained from the fit as
listed in Table 11.3, for the ES Day.
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Figure B.34: Comparing energy distribution distorted using nominal values
of pee to the distribution distorted using pee values, obtained from the fit as
listed in Table 11.3, for the ES Night.
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Figure B.35: Comparing energy distribution distorted using nominal values
of pee to the distribution distorted using pee values, obtained from the fit as
listed in Table 11.3, for the ESµτ Day.
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Figure B.36: Comparing energy distribution distorted using nominal values
of pee to the distribution distorted using pee values, obtained from the fit as
listed in Table 11.3, for the ESµτ Night.
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Figure B.37: The MCMC fit with energy range reduced from 6 to 12 MeV
instead of 6 to 20 MeV. The green line is a Gaussian fit of the histogram.
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Figure B.38: Comparing Pee parameters (p0 and p1) from file to file. Forty
five regular simulated datasets were fitted. The X axis shows the file number.
Red shows results from QSigEx and black shows from MCMC. The peak and
the RMS of the posterior distribution of the MCMC fit were compared to the
result from QSigEx. Eight systematics were not floated.
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Figure B.39: Comparing Pee parameter p2 and 8B scale from file to file. Forty
five regular simulated datasets were fitted. The X axis shows the file number.
Red shows results from QSigEx and black shows from MCMC. The peak and
the RMS of the posterior distribution of the MCMC fit were compared to the
result from QSigEx. Eight systematics were not floated.
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Figure B.40: Comparing day-night asymmetries from file to file. Forty five
regular simulated datasets were fitted. The X axis shows the file number.
Red shows results from QSigEx and black shows from MCMC. The peak and
the RMS of the posterior distribution of the MCMC fit were compared to the
result from QSigEx. Eight systematics were not floated.
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Figure B.41: Comparing Pee (p0 and p1) parameters from file to file. Forty five
alternate simulated datasets were fitted. The X axis shows the file number.
The best-fit from QSigEx along with its uncertainty is shown in red and black
shows corresponding result from the MCMC fit. The peak and the RMS of
the posterior distribution of the MCMC fit were compared to the result from
QSigEx. Eight systematics were not floated.
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Figure B.42: Comparing Pee parameter (p2) and 8B scale from file to file.
Forty five alternate simulated datasets were fitted. The X axis shows the file
number. The best-fit from QSigEx along with its uncertainty is shown in red
and black shows corresponding result from MCMC fit. The peak and the RMS
of the posterior distribution of the MCMC fit were compared to the result from
QSigEx. Systematics were not floated.
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Figure B.43: Comparing day-night asymmetries from file to file. Forty five
alternate simulated datasets were fitted. The X axis shows the file number.
The best-fit from QSigEx along with its uncertainty is shown in red and black
shows corresponding result from MCMC fit. The peak and the RMS of the
posterior distribution of the MCMC fit were compared to the result from
QSigEx. Eight systematics were not floated.
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Figure B.44: Comparing Pee parameters (p0 and p1) from file to file. Forty five
regular simulated datasets were fitted. The X axis shows the file number. The
best-fit from QSigEx along with its uncertainty is shown in red and black shows
corresponding result from MCMC fit. The peak and the RMS of the posterior
distribution of the MCMC fit were compared to the result from QSigEx. Eight
systematics were floated.
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Figure B.45: Comparing Pee parameter (p2) and 8B scale from file to file.
Forty five regular simulated datasets were fitted. The X axis shows the file
number. The best-fit from QSigEx along with its uncertainty is shown in red
and black shows corresponding result from MCMC fit. The peak and the RMS
of the posterior distribution of the MCMC fit were compared to the result from
QSigEx. Eight systematics were floated.
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Figure B.46: Comparing day-night asymmetries from file to file. Forty five
regular simulated datasets were fitted. The X axis shows the file number. The
best-fit from QSigEx along with its uncertainty is shown in red and black shows
corresponding result from MCMC fit. The peak and the RMS of the posterior
distribution of the MCMC fit were compared to the result from QSigEx. Eight
systematics were floated.
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Figure B.47: Comparing Pee parameters (p0 and p1) from file to file. Forty five
alternate simulated datasets were fitted. The X axis shows the file number.
The best-fit from QSigEx along with its uncertainty is shown in red and black
shows corresponding result from MCMC fit. The peak and the RMS of the
posterior distribution of the MCMC fit were compared to the result from
QSigEx. Eight systematics were floated.
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Figure B.48: Comparing Pee parameter (p2) and 8B scale from file to file.
Forty five alternate simulated datasets were fitted. The X axis shows the file
number. The best-fit from QSigEx along with its uncertainty is shown in red
and black shows corresponding result from MCMC fit. The peak and the RMS
of the posterior distribution of the MCMC fit were compared to the result from
QSigEx. Eight systematics were floated.
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Figure B.49: Comparing day-night asymmetries from file to file. Forty five
alternate simulated datasets were fitted. The X axis shows the file number.
The best-fit from QSigEx along with its uncertainty is shown in red and black
shows corresponding result from MCMC fit. The peak and the RMS of the
posterior distribution of the MCMC fit were compared to the result from
QSigEx. Eight systematics were floated.

389



Figure B.50: Showing best-fit result in green color for day-night asymmetries
(a0 and a1) for each of the 45 fitted regular simulated datasets shown in the
X axis. Systematics were not floated. The blue dotted lines show ±σ confi-
dence intervals from the MCMC fit. The best-fit from QSigEx along with its
uncertainty is shown in red.

390



Figure B.51: Showing best-fit MCMC result in green for Pee parameters (p0

and p1) for each of the 45 fitted regular simulated datasets shown in the X axis.
Systematics were not floated. The blue dotted lines show ±σ confidence inter-
vals from the MCMC fit. The best-fit from QSigEx along with its uncertainty
is shown in red.
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Figure B.52: Showing best-fit MCMC result (green color) of the 8B Scale and
Pee parameter (p2) for each of the 45 fitted regular simulated datasets shown
in the X axis. Systematics were not floated. The blue dotted lines show ±σ
confidence intervals from the MCMC fit. The best-fit from QSigEx along with
its uncertainty is shown in red.
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Figure B.53: Showing best-fit result in green color for day-night asymmetries
(a0 and a1) for each of the 45 fitted alternate simulated datasets shown in
the X axis. Systematics were not floated. The blue dotted lines show ±σ
confidence intervals from the MCMC fit. The best-fit from QSigEx along with
its uncertainty is shown in red.
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Figure B.54: Showing best-fit MCMC result in green for Pee parameters (p0

and p1) for each of the 45 fitted alternate simulated datasets shown in the
X axis. Systematics were not floated. The blue dotted lines show ±σ confi-
dence intervals from the MCMC fit. The best-fit from QSigEx along with its
uncertainty is shown in red.
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Figure B.55: Showing best-fit MCMC result (green color) of the 8B Scale and
Pee parameter (p2) for each of the 45 fitted alternate simulated datasets shown
in the X axis. Systematics were not floated. The blue dotted lines show ±σ
confidence intervals from the MCMC fit. The best-fit from QSigEx along with
its uncertainty is shown in red.
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Figure B.56: Showing best-fit result in green color for day-night asymmetries
(a0 and a1) for each of the 45 fitted simulated datasets shown in the X axis.
For this fit systematics were floated. The blue dotted lines show ±σ confi-
dence intervals from the MCMC fit. The best-fit from QSigEx along with its
uncertainty is shown in red. Tables B.1 (for top plot) and B.2 (for bottom
plot) show the data, in tabular form, used to make these plots.
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Figure B.57: Showing best-fit MCMC result in green for Pee parameters (p0

and p1) for each of the 45 fitted simulated datasets shown in the X axis. For this
fit systematics were floated. The blue dotted lines show±σ confidence intervals
from the MCMC fit. The best-fit from QSigEx along with its uncertainty is
shown in red. Tables B.3 (for top plot) and B.4 (for bottom plot) show the
data, in tabular form, used to make these plots.
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Figure B.58: Showing best-fit MCMC result (green color) of the 8B Scale and
Pee parameter (p2) for each of the 45 fitted simulated datasets shown in the
X axis. For this fit systematics were floated. The blue dotted lines show ±σ
confidence intervals from the MCMC fit. The best-fit from QSigEx along with
its uncertainty is shown in red. Tables B.5 (for top plot) and B.6 (for bottom
plot) show the data, in tabular form, used to make these plots.
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Figure B.59: Showing best-fit result in green color for day-night asymmetries
(a0 and a1) for each of the 45 fitted alternate simulated datasets shown in the
X axis. For this fit systematics were floated. The blue dotted lines show ±σ
confidence intervals from the MCMC fit. The best-fit from QSigEx along with
its uncertainty is shown in red. Tables B.7 (for top plot) and B.8 (for bottom
plot) show the data, in tabular form, used to make these plots.
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Figure B.60: Showing best-fit MCMC result in green for Pee parameters (p0

and p1) for each of the 45 fitted alternate simulated datasets shown in the X
axis. For this fit systematics were floated. The blue dotted lines show ±σ
confidence intervals from the MCMC fit. The best-fit from QSigEx along with
its uncertainty is shown in red. Tables B.9 (for top plot) and B.10 (for bottom
plot) show the data, in tabular form, used to make these plots.
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Figure B.61: Showing best-fit MCMC result (green color) of the 8B Scale and
Pee parameter (p2) for each of the 45 fitted alternate simulated datasets shown
in the X axis. For this fit systematics were floated. The blue dotted lines show
±σ confidence intervals from MCMC fit. The best-fit from QSigEx along with
its uncertainty is shown in red. Tables B.11 (for top plot) and B.12 (for bottom
plot) show the data, in tabular form, used to make these plots.
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Tables B.7 to B.12 are for the alternate simulated datasets.
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Dataset QSigEx Mean of ±σ Mean±RMS of ML

0 -0.044±0.092 -0.074±0.083 -0.070±0.085

1 0.079±0.093 0.038±0.089 0.049±0.090

2 -0.029±0.111 0.039±0.118 -0.006±0.119

3 0.123±0.102 0.075±0.086 0.090±0.086

4 0.138±0.088 0.123±0.084 0.116±0.086

5 0.007±0.098 0.033±0.116 -0.007±0.104

6 -0.157±0.094 -0.161±0.089 -0.160±0.094

7 0.016±0.110 0.014±0.119 0.019±0.117

8 -0.108±0.116 -0.137±0.143 -0.117±0.145

9 0.170±0.118 0.171±0.120 0.162±0.119

10 0.045±0.105 -0.008±0.098 -0.003±0.099

11 0.247±0.099 0.245±0.089 0.259±0.086

12 0.055±0.096 0.030±0.098 0.042±0.097

13 0.201±0.088 0.184±0.083 0.181±0.085

14 -0.064±0.085 -0.073±0.077 -0.075±0.080

15 0.088±0.093 0.101±0.090 0.100±0.099

16 -0.016±0.100 -0.027±0.094 -0.014±0.093

17 0.019±0.099 -0.014±0.100 -0.022±0.105

18 -0.053±0.095 -0.069±0.091 -0.061±0.088

19 0.027±0.101 0.151±0.119 0.117±0.115

20 0.092±0.089 0.069±0.088 0.085±0.087

21 -0.024±0.095 -0.044±0.093 -0.039±0.096

22 -0.018±0.099 -0.062±0.110 -0.021±0.101

23 0.088±0.092 0.087±0.099 0.074±0.094

24 -0.050±0.100 -0.052±0.103 -0.039±0.110

25 -0.010±0.115 -0.017±0.157 -0.051±0.151

26 0.192±0.090 0.195±0.081 0.193±0.082

27 -0.052±0.097 -0.038±0.088 -0.054±0.090

28 -0.019±0.092 -0.019±0.093 -0.028±0.094

29 -0.068±0.106 -0.049±0.102 -0.058±0.100

30 0.108±0.100 0.063±0.094 0.086±0.092

31 0.027±0.093 -0.013±0.102 0.023±0.098

32 0.082±0.096 0.073±0.093 0.072±0.093

33 -0.020±0.128 -0.032±0.124 -0.034±0.128

34 -0.036±0.105 -0.025±0.102 -0.038±0.104

35 0.110±0.094 0.094±0.109 0.091±0.108

36 -0.042±0.088 -0.054±0.081 -0.054±0.083

37 0.004±0.096 -0.003±0.084 -0.003±0.086

38 0.197±0.095 0.170±0.090 0.171±0.094

39 0.136±0.096 0.169±0.080 0.155±0.086

40 -0.059±0.103 -0.060±0.085 -0.066±0.086

41 0.007±0.093 0.014±0.099 0.016±0.100

42 0.052±0.094 0.043±0.092 0.040±0.091

43 0.082±0.094 0.053±0.085 0.050±0.091

44 -0.017±0.089 -0.029±0.091 -0.031±0.091

Table B.1: Comparison of the best-fit of day-night asymmetry a0 in regular
datasets between QSigEx and MCMC. From MCMC the best-fit is mean of
68% confidence intervals.
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Dataset QSigEx Mean of ±σ Mean±RMS of ML

0 0.070±0.083 0.053±0.089 0.066±0.089

1 -0.134±0.081 -0.120±0.072 -0.119±0.073

2 0.153±0.113 0.115±0.120 0.128±0.122

3 0.063±0.083 0.057±0.074 0.060±0.075

4 0.042±0.082 0.038±0.078 0.036±0.079

5 0.073±0.096 0.062±0.092 0.073±0.089

6 0.111±0.083 0.097±0.080 0.098±0.081

7 0.004±0.088 -0.011±0.095 -0.013±0.097

8 0.031±0.128 0.027±0.184 0.040±0.171

9 -0.014±0.122 -0.026±0.153 -0.020±0.145

10 0.092±0.095 0.099±0.087 0.098±0.091

11 -0.026±0.077 -0.037±0.076 -0.037±0.080

12 -0.098±0.096 -0.084±0.090 -0.085±0.091

13 0.035±0.072 0.020±0.069 0.018±0.070

14 -0.025±0.067 -0.022±0.064 -0.022±0.064

15 -0.039±0.083 -0.059±0.075 -0.049±0.075

16 -0.053±0.104 -0.039±0.111 -0.075±0.117

17 -0.009±0.091 -0.005±0.091 0.022±0.087

18 0.107±0.106 0.089±0.092 0.089±0.092

19 -0.083±0.102 -0.251±0.133 -0.194±0.137

20 -0.002±0.078 -0.012±0.071 -0.010±0.074

21 0.074±0.096 0.079±0.094 0.076±0.098

22 0.209±0.095 0.174±0.095 0.196±0.098

23 -0.064±0.078 -0.070±0.075 -0.054±0.075

24 0.097±0.101 0.077±0.099 0.054±0.105

25 0.049±0.115 0.013±0.153 0.056±0.158

26 0.106±0.094 0.079±0.086 0.084±0.092

27 -0.033±0.087 -0.035±0.093 -0.030±0.099

28 -0.018±0.097 -0.043±0.104 -0.044±0.102

29 0.209±0.131 0.162±0.115 0.198±0.126

30 0.095±0.091 0.078±0.096 0.089±0.099

31 0.085±0.084 0.075±0.079 0.076±0.080

32 -0.085±0.082 -0.101±0.088 -0.083±0.085

33 0.016±0.117 0.077±0.157 0.046±0.145

34 0.022±0.088 -0.001±0.083 0.006±0.088

35 -0.101±0.079 -0.088±0.073 -0.087±0.074

36 0.031±0.084 0.013±0.086 0.013±0.086

37 -0.094±0.081 -0.080±0.078 -0.088±0.082

38 0.005±0.089 0.003±0.094 -0.002±0.094

39 -0.003±0.088 -0.022±0.081 -0.023±0.081

40 0.229±0.124 0.209±0.097 0.208±0.104

41 0.131±0.068 0.098±0.071 0.115±0.071

42 0.161±0.089 0.140±0.083 0.140±0.084

43 -0.082±0.092 -0.053±0.079 -0.060±0.085

44 0.014±0.087 0.023±0.082 0.022±0.085

Table B.2: Comparison of the best-fit of day-night asymmetry a1 in regular
datasets between QSigEx and MCMC. From MCMC the best-fit is mean of
68% confidence intervals.
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Dataset QSigEx Mean of ±σ Mean±RMS of ML

0 0.315±0.048 0.321±0.048 0.327±0.050

1 0.284±0.046 0.282±0.049 0.296±0.050

2 0.353±0.051 0.365±0.055 0.371±0.056

3 0.286±0.048 0.294±0.046 0.301±0.048

4 0.306±0.045 0.316±0.048 0.319±0.050

5 0.321±0.047 0.331±0.053 0.340±0.056

6 0.355±0.055 0.363±0.058 0.369±0.059

7 0.297±0.048 0.312±0.049 0.319±0.053

8 0.377±0.053 0.429±0.073 0.440±0.075

9 0.329±0.049 0.382±0.063 0.382±0.064

10 0.320±0.050 0.324±0.055 0.338±0.055

11 0.237±0.042 0.252±0.041 0.250±0.040

12 0.328±0.049 0.335±0.051 0.335±0.052

13 0.277±0.045 0.280±0.045 0.288±0.047

14 0.313±0.052 0.308±0.054 0.319±0.056

15 0.301±0.049 0.299±0.050 0.305±0.052

16 0.346±0.051 0.364±0.061 0.367±0.065

17 0.329±0.051 0.342±0.054 0.342±0.056

18 0.358±0.050 0.366±0.052 0.371±0.055

19 0.358±0.053 0.410±0.066 0.410±0.072

20 0.298±0.047 0.290±0.045 0.295±0.046

21 0.372±0.052 0.390±0.058 0.396±0.062

22 0.314±0.045 0.309±0.050 0.323±0.053

23 0.292±0.049 0.292±0.047 0.303±0.049

24 0.391±0.054 0.401±0.064 0.409±0.064

25 0.367±0.054 0.460±0.087 0.446±0.083

26 0.327±0.046 0.333±0.054 0.348±0.054

27 0.341±0.053 0.354±0.061 0.361±0.060

28 0.338±0.049 0.355±0.056 0.369±0.059

29 0.385±0.051 0.400±0.058 0.397±0.058

30 0.291±0.044 0.303±0.046 0.312±0.047

31 0.314±0.048 0.319±0.050 0.321±0.050

32 0.298±0.049 0.302±0.048 0.310±0.048

33 0.348±0.051 0.398±0.065 0.401±0.067

34 0.317±0.051 0.310±0.058 0.327±0.058

35 0.264±0.045 0.261±0.048 0.267±0.049

36 0.339±0.051 0.348±0.051 0.346±0.055

37 0.319±0.052 0.332±0.051 0.342±0.057

38 0.285±0.045 0.298±0.049 0.305±0.051

39 0.262±0.042 0.268±0.041 0.262±0.040

40 0.365±0.050 0.395±0.059 0.385±0.058

41 0.252±0.043 0.259±0.048 0.266±0.049

42 0.307±0.044 0.328±0.047 0.322±0.047

43 0.349±0.052 0.365±0.055 0.368±0.059

44 0.325±0.048 0.325±0.050 0.335±0.051

Table B.3: Comparison of the best-fit of Pee p0 in regular datasets between
QSigEx and MCMC. From MCMC the best-fit is mean of 68% confidence
intervals.
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Dataset QSigEx Mean of ±σ Mean±RMS of ML

0 -0.043±0.028 -0.037±0.026 -0.037±0.028

1 -0.005±0.027 -0.005±0.026 -0.007±0.027

2 -0.001±0.029 0.014±0.036 0.013±0.039

3 -0.011±0.028 0.003±0.027 -0.009±0.028

4 -0.041±0.028 -0.049±0.029 -0.044±0.029

5 -0.020±0.028 -0.005±0.030 -0.013±0.032

6 -0.032±0.029 -0.029±0.031 -0.031±0.033

7 0.025±0.027 0.030±0.031 0.036±0.037

8 0.028±0.028 0.073±0.076 0.119±0.113

9 0.033±0.026 0.066±0.054 0.081±0.064

10 0.001±0.025 0.008±0.030 0.012±0.034

11 -0.013±0.027 -0.011±0.027 -0.010±0.026

12 0.005±0.026 0.003±0.028 0.003±0.028

13 -0.043±0.029 -0.037±0.030 -0.042±0.030

14 -0.045±0.030 -0.052±0.033 -0.053±0.034

15 -0.013±0.026 -0.004±0.027 -0.008±0.028

16 0.007±0.027 0.009±0.038 0.024±0.052

17 0.006±0.027 -0.001±0.027 -0.002±0.029

18 -0.025±0.028 -0.012±0.032 -0.020±0.033

19 0.030±0.021 0.091±0.071 0.120±0.087

20 -0.039±0.028 -0.036±0.029 -0.042±0.030

21 -0.009±0.030 -0.003±0.034 -0.002±0.036

22 -0.048±0.027 -0.042±0.028 -0.045±0.029

23 -0.012±0.026 -0.015±0.028 -0.019±0.028

24 0.005±0.029 0.018±0.033 0.020±0.037

25 0.029±0.026 0.100±0.099 0.141±0.113

26 -0.037±0.027 -0.019±0.028 -0.022±0.029

27 0.002±0.029 0.009±0.034 0.010±0.034

28 -0.022±0.028 -0.011±0.030 -0.011±0.032

29 -0.014±0.027 -0.021±0.027 -0.018±0.029

30 -0.021±0.027 -0.015±0.030 -0.015±0.030

31 -0.039±0.029 -0.035±0.028 -0.038±0.029

32 -0.002±0.029 -0.006±0.028 -0.007±0.029

33 0.051±0.026 0.063±0.036 0.071±0.046

34 0.011±0.027 0.026±0.028 0.025±0.029

35 -0.009±0.025 -0.008±0.024 -0.009±0.025

36 -0.049±0.029 -0.049±0.031 -0.051±0.032

37 0.009±0.028 0.007±0.027 0.009±0.028

38 -0.018±0.026 -0.015±0.028 -0.011±0.028

39 -0.025±0.025 -0.025±0.027 -0.023±0.027

40 -0.035±0.028 -0.036±0.031 -0.033±0.033

41 -0.079±0.029 -0.076±0.034 -0.072±0.034

42 -0.058±0.028 -0.056±0.029 -0.057±0.030

43 0.013±0.025 0.008±0.029 0.011±0.030

44 -0.040±0.028 -0.038±0.029 -0.039±0.030

Table B.4: Comparison of the best-fit of Pee p1 in regular datasets between
QSigEx and MCMC. From MCMC the best-fit is mean of 68% confidence
intervals.
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Dataset QSigEx Mean of ±σ Mean±RMS of ML

0 0.011±0.014 0.007±0.016 0.010±0.016

1 0.012±0.014 0.015±0.014 0.017±0.015

2 -0.014±0.013 -0.020±0.018 -0.025±0.021

3 0.012±0.015 0.009±0.015 0.010±0.015

4 0.010±0.013 0.012±0.014 0.013±0.015

5 -0.003±0.012 -0.003±0.015 -0.005±0.017

6 0.011±0.016 0.012±0.019 0.013±0.019

7 0.008±0.014 0.001±0.016 0.001±0.019

8 -0.025±0.014 -0.054±0.047 -0.087±0.071

9 -0.019±0.012 -0.039±0.030 -0.054±0.041

10 -0.002±0.014 -0.004±0.018 -0.003±0.020

11 0.020±0.014 0.015±0.013 0.015±0.014

12 -0.005±0.013 -0.001±0.015 -0.002±0.016

13 0.023±0.014 0.025±0.015 0.025±0.015

14 0.033±0.017 0.039±0.018 0.040±0.019

15 0.009±0.015 0.007±0.016 0.013±0.015

16 -0.011±0.013 -0.008±0.020 -0.018±0.031

17 -0.001±0.015 0.001±0.017 0.003±0.017

18 -0.012±0.012 -0.010±0.015 -0.010±0.017

19 -0.018±0.013 -0.051±0.037 -0.058±0.048

20 0.015±0.015 0.022±0.017 0.022±0.017

21 -0.009±0.013 -0.008±0.016 -0.011±0.019

22 0.003±0.012 0.006±0.016 0.003±0.017

23 0.014±0.016 0.019±0.015 0.019±0.016

24 -0.015±0.014 -0.013±0.018 -0.017±0.020

25 -0.019±0.015 -0.060±0.063 -0.094±0.073

26 -0.003±0.011 -0.008±0.013 -0.008±0.015

27 0.004±0.015 -0.001±0.018 -0.005±0.019

28 -0.005±0.013 -0.009±0.017 -0.011±0.018

29 -0.021±0.012 -0.022±0.017 -0.027±0.020

30 0.003±0.012 -0.000±0.013 -0.000±0.014

31 0.009±0.013 0.012±0.014 0.010±0.015

32 0.013±0.015 0.009±0.016 0.009±0.016

33 -0.020±0.014 -0.038±0.024 -0.048±0.034

34 0.006±0.015 0.005±0.018 0.003±0.019

35 0.017±0.014 0.020±0.015 0.021±0.016

36 0.009±0.015 0.010±0.018 0.009±0.019

37 0.013±0.016 0.005±0.016 0.007±0.016

38 0.004±0.013 0.001±0.015 0.000±0.016

39 0.007±0.012 0.012±0.013 0.012±0.013

40 -0.010±0.012 -0.017±0.018 -0.014±0.018

41 0.036±0.014 0.033±0.017 0.035±0.018

42 0.008±0.011 0.008±0.013 0.009±0.013

43 -0.005±0.014 -0.001±0.017 -0.006±0.019

44 0.004±0.013 0.007±0.015 0.007±0.016

Table B.5: Comparison of the best-fit of Pee p2 in regular datasets between
QSigEx and MCMC. From MCMC the best-fit is mean of 68% confidence
intervals.
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Dataset QSigEx Mean of ±σ Mean±RMS of ML

0 1.019±0.094 0.992±0.094 1.004±0.093

1 1.012±0.094 0.986±0.095 0.984±0.094

2 0.986±0.093 0.969±0.090 0.966±0.091

3 0.951±0.093 0.939±0.090 0.934±0.090

4 1.019±0.094 0.973±0.090 0.983±0.091

5 1.000±0.093 0.955±0.099 0.983±0.095

6 0.979±0.093 0.938±0.095 0.943±0.096

7 1.007±0.094 0.970±0.089 0.980±0.089

8 1.008±0.093 1.004±0.090 1.003±0.089

9 1.007±0.094 0.980±0.090 0.985±0.093

10 1.013±0.094 0.987±0.094 0.989±0.094

11 0.975±0.093 0.924±0.093 0.951±0.088

12 1.009±0.093 0.979±0.091 0.987±0.091

13 0.995±0.093 0.953±0.095 0.965±0.094

14 0.986±0.093 0.952±0.093 0.956±0.093

15 0.992±0.093 0.955±0.095 0.966±0.093

16 1.007±0.094 0.961±0.101 0.987±0.098

17 1.003±0.094 0.981±0.097 0.980±0.097

18 0.992±0.093 0.992±0.095 0.977±0.094

19 1.005±0.093 0.998±0.093 0.996±0.097

20 1.015±0.094 0.983±0.088 0.990±0.087

21 0.986±0.093 0.966±0.094 0.958±0.095

22 1.020±0.093 1.001±0.096 1.001±0.095

23 1.031±0.094 0.992±0.089 0.988±0.091

24 0.978±0.093 0.936±0.097 0.957±0.096

25 1.007±0.094 0.997±0.091 1.003±0.091

26 0.995±0.093 0.940±0.099 0.966±0.096

27 0.997±0.094 1.006±0.099 0.985±0.096

28 0.996±0.093 0.969±0.088 0.966±0.089

29 1.032±0.094 0.993±0.086 1.012±0.085

30 1.004±0.093 0.964±0.096 0.977±0.096

31 0.989±0.093 0.941±0.090 0.960±0.092

32 0.998±0.094 0.951±0.090 0.971±0.089

33 1.023±0.094 0.970±0.102 0.989±0.097

34 0.995±0.094 0.986±0.093 0.984±0.095

35 1.018±0.094 1.014±0.096 1.005±0.095

36 1.010±0.093 0.992±0.089 0.990±0.092

37 0.985±0.093 0.980±0.093 0.963±0.095

38 1.001±0.093 1.000±0.097 0.988±0.097

39 1.008±0.093 0.986±0.085 0.983±0.087

40 1.006±0.093 0.973±0.092 0.980±0.091

41 0.985±0.093 0.983±0.094 0.961±0.094

42 1.003±0.093 0.965±0.087 0.968±0.089

43 1.020±0.094 0.978±0.097 0.994±0.096

44 1.022±0.093 0.982±0.094 1.000±0.093

Table B.6: Comparison of the best-fit of 8B Scale in regular datasets between
QSigEx and MCMC. From MCMC the best-fit is mean of 68% confidence
intervals.
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Dataset QSigEx Mean of ±σ Mean±RMS of ML

0 -0.043±0.095 -0.087±0.094 -0.072±0.094

1 0.126±0.095 0.127±0.097 0.120±0.096

2 -0.134±0.093 -0.138±0.101 -0.146±0.099

3 -0.047±0.098 -0.084±0.099 -0.081±0.098

4 0.044±0.096 0.032±0.104 0.039±0.105

5 0.030±0.085 0.014±0.082 0.014±0.080

6 -0.088±0.111 -0.115±0.117 -0.130±0.119

7 0.143±0.096 0.112±0.094 0.116±0.094

8 -0.111±0.092 -0.112±0.094 -0.106±0.095

9 0.100±0.113 0.097±0.111 0.096±0.113

10 0.028±0.094 0.031±0.097 0.028±0.098

11 0.024±0.110 0.009±0.102 0.001±0.103

12 0.048±0.096 0.017±0.103 0.025±0.102

13 -0.098±0.088 -0.112±0.085 -0.101±0.086

14 0.120±0.092 0.099±0.090 0.107±0.090

15 0.017±0.099 0.009±0.098 0.011±0.098

16 0.040±0.093 0.018±0.089 0.022±0.091

17 0.212±0.102 0.194±0.104 0.195±0.105

18 0.007±0.112 0.012±0.101 0.008±0.103

19 -0.067±0.093 -0.086±0.089 -0.087±0.090

20 -0.052±0.100 -0.063±0.103 -0.054±0.104

21 0.136±0.097 0.103±0.101 0.123±0.101

22 0.159±0.093 0.136±0.093 0.141±0.093

23 0.170±0.090 0.163±0.089 0.162±0.089

24 0.037±0.103 0.033±0.099 0.028±0.099

25 0.150±0.095 0.137±0.094 0.131±0.096

26 -0.089±0.101 -0.097±0.106 -0.110±0.109

27 0.019±0.094 0.001±0.100 -0.007±0.103

28 0.098±0.108 0.103±0.137 0.091±0.146

29 -0.034±0.099 -0.028±0.110 -0.038±0.108

30 0.055±0.097 0.017±0.091 0.032±0.093

31 -0.194±0.097 -0.228±0.115 -0.235±0.118

32 0.003±0.097 -0.028±0.097 -0.020±0.098

33 0.015±0.092 0.007±0.096 0.001±0.095

34 0.096±0.101 0.084±0.098 0.087±0.099

35 -0.067±0.097 -0.081±0.103 -0.077±0.101

36 0.142±0.008 0.033±0.097 0.032±0.101

37 -0.070±0.089 -0.062±0.087 -0.077±0.088

38 -0.049±0.094 -0.066±0.090 -0.056±0.092

39 -0.027±0.091 -0.051±0.093 -0.040±0.094

40 -0.008±0.093 -0.025±0.092 -0.027±0.093

41 -0.007±0.102 -0.019±0.104 -0.015±0.103

42 -0.106±0.095 -0.114±0.099 -0.115±0.100

43 -0.020±0.105 -0.028±0.108 -0.021±0.111

44 0.023±0.111 0.025±0.104 0.033±0.102

Table B.7: Comparison of the best-fit of day-night asymmetry a0 in alternative
datasets between QSigEx and MCMC. From MCMC the best-fit is mean of
68% confidence intervals.
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Dataset QSigEx Mean of ±σ Mean±RMS of ML

0 0.021±0.070 0.031±0.069 0.029±0.071

1 -0.014±0.083 -0.025±0.080 -0.025±0.083

2 0.072±0.094 0.062±0.086 0.069±0.089

3 0.026±0.124 0.062±0.137 0.091±0.142

4 -0.055±0.112 -0.068±0.118 -0.059±0.120

5 0.012±0.080 0.025±0.081 0.021±0.084

6 0.183±0.105 0.166±0.109 0.199±0.123

7 -0.059±0.077 -0.049±0.071 -0.054±0.073

8 0.047±0.079 0.038±0.076 0.037±0.077

9 -0.034±0.102 -0.038±0.099 -0.047±0.102

10 -0.012±0.096 -0.033±0.098 -0.045±0.100

11 0.031±0.105 0.023±0.110 0.040±0.115

12 0.066±0.110 0.087±0.122 0.086±0.131

13 -0.063±0.072 -0.066±0.067 -0.065±0.068

14 -0.000±0.069 0.002±0.071 -0.000±0.070

15 0.034±0.085 0.032±0.083 0.031±0.083

16 -0.052±0.078 -0.044±0.078 -0.047±0.080

17 -0.014±0.098 -0.006±0.095 -0.004±0.097

18 0.092±0.109 0.073±0.101 0.071±0.104

19 0.153±0.090 0.129±0.082 0.139±0.085

20 0.095±0.094 0.074±0.088 0.083±0.093

21 -0.035±0.074 -0.026±0.077 -0.034±0.078

22 -0.131±0.064 -0.125±0.063 -0.124±0.063

23 -0.039±0.080 -0.049±0.078 -0.048±0.082

24 -0.058±0.094 -0.054±0.092 -0.065±0.093

25 -0.105±0.084 -0.104±0.083 -0.100±0.088

26 -0.005±0.111 0.013±0.130 0.007±0.130

27 0.095±0.106 0.114±0.111 0.116±0.116

28 0.063±0.130 0.007±0.203 0.053±0.202

29 -0.120±0.115 -0.116±0.121 -0.111±0.117

30 -0.140±0.080 -0.121±0.073 -0.130±0.079

31 0.132±0.102 0.141±0.163 0.220±0.194

32 0.124±0.089 0.106±0.083 0.112±0.085

33 -0.000±0.104 -0.008±0.113 -0.001±0.117

34 -0.104±0.090 -0.103±0.094 -0.100±0.095

35 -0.082±0.094 -0.088±0.101 -0.085±0.106

36 -0.321±0.014 -0.163±0.093 -0.161±0.093

37 0.002±0.091 0.007±0.092 0.007±0.093

38 0.067±0.095 0.055±0.094 0.057±0.096

39 0.015±0.087 0.010±0.082 0.010±0.085

40 0.009±0.087 -0.002±0.084 0.002±0.086

41 0.057±0.103 0.061±0.095 0.058±0.095

42 0.112±0.109 0.109±0.127 0.122±0.127

43 -0.040±0.102 -0.052±0.103 -0.053±0.107

44 -0.048±0.126 -0.056±0.103 -0.054±0.105

Table B.8: Comparison of the best-fit of day-night asymmetry a1 in alternative
datasets between QSigEx and MCMC. From MCMC the best-fit is mean of
68% confidence intervals.

410



Dataset QSigEx Mean of ±σ Mean±RMS of ML

0 0.239±0.043 0.240±0.044 0.245±0.046

1 0.268±0.042 0.266±0.044 0.277±0.045

2 0.371±0.052 0.364±0.058 0.380±0.059

3 0.420±0.057 0.457±0.075 0.473±0.081

4 0.406±0.057 0.427±0.070 0.435±0.073

5 0.324±0.048 0.349±0.056 0.350±0.056

6 0.297±0.046 0.310±0.051 0.313±0.052

7 0.266±0.045 0.271±0.048 0.279±0.049

8 0.319±0.049 0.319±0.051 0.324±0.051

9 0.324±0.050 0.332±0.054 0.343±0.057

10 0.328±0.048 0.336±0.053 0.346±0.056

11 0.341±0.051 0.353±0.053 0.364±0.056

12 0.352±0.049 0.369±0.060 0.385±0.066

13 0.313±0.051 0.313±0.053 0.322±0.055

14 0.231±0.041 0.230±0.041 0.235±0.042

15 0.307±0.049 0.316±0.051 0.321±0.052

16 0.295±0.049 0.308±0.049 0.313±0.051

17 0.302±0.050 0.313±0.055 0.323±0.059

18 0.337±0.049 0.342±0.054 0.353±0.057

19 0.337±0.049 0.334±0.050 0.344±0.051

20 0.351±0.050 0.347±0.055 0.357±0.056

21 0.249±0.044 0.253±0.047 0.259±0.048

22 0.220±0.044 0.228±0.046 0.234±0.047

23 0.286±0.045 0.290±0.047 0.294±0.049

24 0.331±0.051 0.343±0.053 0.348±0.055

25 0.281±0.046 0.288±0.046 0.293±0.048

26 0.375±0.053 0.411±0.070 0.430±0.078

27 0.360±0.050 0.375±0.062 0.390±0.063

28 0.357±0.050 0.447±0.081 0.459±0.082

29 0.379±0.053 0.384±0.061 0.395±0.062

30 0.286±0.050 0.293±0.053 0.299±0.055

31 0.392±0.052 0.415±0.080 0.445±0.097

32 0.264±0.041 0.260±0.042 0.266±0.043

33 0.383±0.054 0.405±0.065 0.416±0.069

34 0.301±0.047 0.306±0.050 0.314±0.052

35 0.338±0.052 0.349±0.056 0.360±0.059

36 0.318±0.007 0.318±0.050 0.327±0.054

37 0.361±0.053 0.371±0.058 0.381±0.060

38 0.360±0.052 0.371±0.056 0.380±0.058

39 0.333±0.049 0.330±0.052 0.338±0.053

40 0.330±0.050 0.340±0.051 0.347±0.053

41 0.355±0.052 0.347±0.054 0.360±0.058

42 0.368±0.050 0.394±0.059 0.406±0.062

43 0.368±0.054 0.376±0.064 0.391±0.064

44 0.378±0.053 0.378±0.063 0.389±0.067

Table B.9: Comparison of the best-fit of Pee p0 in alternative datasets between
QSigEx and MCMC. From MCMC the best-fit is mean of 68% confidence
intervals.
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Dataset QSigEx Mean of ±σ Mean±RMS of ML

0 -0.048±0.028 -0.049±0.029 -0.053±0.030

1 -0.021±0.028 -0.013±0.028 -0.014±0.028

2 -0.017±0.028 -0.010±0.029 -0.013±0.031

3 0.005±0.031 0.004±0.039 0.012±0.045

4 0.016±0.027 0.028±0.040 0.042±0.050

5 -0.053±0.028 -0.051±0.028 -0.052±0.029

6 -0.022±0.025 -0.010±0.028 -0.009±0.030

7 -0.001±0.027 -0.005±0.028 -0.007±0.028

8 -0.044±0.031 -0.046±0.030 -0.049±0.032

9 0.037±0.025 0.040±0.032 0.048±0.039

10 -0.015±0.027 -0.004±0.032 -0.003±0.035

11 0.018±0.027 0.020±0.029 0.024±0.031

12 -0.019±0.029 -0.015±0.033 -0.020±0.035

13 -0.027±0.030 -0.023±0.030 -0.027±0.030

14 -0.053±0.028 -0.054±0.029 -0.055±0.030

15 -0.021±0.030 -0.025±0.032 -0.029±0.032

16 -0.019±0.028 -0.018±0.031 -0.019±0.031

17 0.005±0.025 0.009±0.029 0.011±0.036

18 0.016±0.026 0.017±0.029 0.017±0.033

19 -0.053±0.029 -0.048±0.030 -0.052±0.031

20 -0.003±0.028 0.003±0.031 0.002±0.032

21 -0.010±0.028 -0.010±0.029 -0.012±0.029

22 -0.002±0.028 -0.003±0.028 -0.004±0.028

23 -0.030±0.028 -0.031±0.029 -0.032±0.030

24 0.019±0.028 0.023±0.029 0.022±0.031

25 -0.004±0.026 -0.003±0.027 -0.006±0.028

26 0.007±0.029 0.021±0.043 0.047±0.095

27 -0.023±0.029 -0.017±0.030 -0.015±0.033

28 0.013±0.025 0.128±0.122 0.189±0.151

29 0.013±0.029 0.022±0.035 0.021±0.035

30 0.013±0.025 0.008±0.027 0.011±0.032

31 -0.018±0.030 -0.017±0.036 -0.008±0.047

32 -0.058±0.026 -0.056±0.028 -0.056±0.028

33 -0.007±0.030 0.002±0.034 0.005±0.036

34 0.017±0.026 0.017±0.027 0.018±0.028

35 -0.006±0.028 0.002±0.031 -0.000±0.033

36 0.085±0.004 0.030±0.028 0.030±0.029

37 -0.034±0.030 -0.029±0.031 -0.030±0.032

38 -0.021±0.029 -0.013±0.031 -0.014±0.032

39 -0.026±0.028 -0.021±0.029 -0.024±0.030

40 -0.027±0.029 -0.019±0.029 -0.023±0.029

41 -0.001±0.029 -0.001±0.031 -0.002±0.032

42 -0.030±0.028 -0.024±0.033 -0.018±0.036

43 0.031±0.026 0.046±0.036 0.050±0.040

44 0.032±0.028 0.038±0.031 0.045±0.040

Table B.10: Comparison of the best-fit of Pee p1 in alternative datasets be-
tween QSigEx and MCMC. From MCMC the best-fit is mean of 68% confi-
dence intervals.
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Dataset QSigEx Mean of ±σ Mean±RMS of ML

0 0.032±0.015 0.035±0.016 0.037±0.016

1 0.011±0.013 0.009±0.013 0.010±0.014

2 -0.006±0.014 0.001±0.016 -0.000±0.017

3 -0.027±0.014 -0.041±0.027 -0.055±0.043

4 -0.024±0.014 -0.028±0.025 -0.040±0.036

5 0.012±0.014 0.009±0.015 0.009±0.016

6 0.001±0.014 -0.003±0.017 -0.006±0.020

7 0.017±0.014 0.022±0.016 0.023±0.016

8 0.019±0.015 0.017±0.016 0.019±0.017

9 -0.009±0.013 -0.013±0.018 -0.017±0.022

10 -0.004±0.013 -0.004±0.016 -0.006±0.020

11 -0.011±0.014 -0.018±0.017 -0.021±0.019

12 -0.014±0.012 -0.016±0.019 -0.022±0.025

13 0.025±0.016 0.026±0.018 0.027±0.018

14 0.032±0.014 0.031±0.015 0.035±0.016

15 0.010±0.015 0.012±0.015 0.012±0.015

16 0.018±0.015 0.015±0.016 0.015±0.016

17 -0.004±0.014 -0.004±0.018 -0.008±0.024

18 -0.015±0.013 -0.014±0.017 -0.015±0.019

19 0.005±0.013 0.010±0.015 0.009±0.015

20 -0.005±0.013 -0.003±0.016 -0.004±0.017

21 0.025±0.015 0.023±0.015 0.025±0.016

22 0.041±0.017 0.036±0.017 0.039±0.017

23 0.014±0.013 0.012±0.014 0.013±0.015

24 -0.002±0.014 -0.004±0.016 -0.005±0.017

25 0.009±0.014 0.008±0.015 0.008±0.015

26 -0.017±0.014 0.008±0.015 -0.051±0.068

27 -0.012±0.012 -0.016±0.018 -0.020±0.020

28 -0.025±0.012 -0.116±0.090 -0.157±0.103

29 -0.019±0.014 -0.017±0.018 -0.020±0.020

30 0.017±0.015 0.019±0.017 0.019±0.020

31 -0.013±0.013 -0.019±0.028 -0.043±0.058

32 0.012±0.012 0.014±0.013 0.015±0.014

33 -0.014±0.014 -0.019±0.019 -0.023±0.024

34 0.002±0.013 0.001±0.015 -0.001±0.016

35 -0.002±0.015 -0.006±0.017 -0.009±0.019

36 -0.022±0.003 -0.002±0.015 -0.002±0.016

37 -0.001±0.015 -0.001±0.017 -0.003±0.019

38 -0.004±0.014 -0.005±0.017 -0.006±0.018

39 0.004±0.014 0.005±0.015 0.006±0.016

40 0.006±0.014 0.003±0.015 0.003±0.016

41 -0.010±0.014 -0.006±0.016 -0.008±0.017

42 -0.012±0.012 -0.019±0.019 -0.025±0.024

43 -0.012±0.014 -0.016±0.021 -0.021±0.024

44 -0.024±0.013 -0.025±0.018 -0.029±0.025

Table B.11: Comparison of the best-fit of Pee p2 in alternative datasets be-
tween QSigEx and MCMC. From MCMC the best-fit is mean of 68% confi-
dence intervals.
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Dataset QSigEx Mean of ±σ Mean±RMS of ML

0 0.992±0.093 0.975±0.093 0.977±0.094

1 1.031±0.094 1.003±0.094 1.017±0.094

2 1.003±0.093 0.977±0.093 0.975±0.092

3 1.004±0.093 0.995±0.093 0.988±0.095

4 0.989±0.093 0.973±0.094 0.973±0.094

5 1.010±0.093 0.986±0.095 0.991±0.094

6 1.030±0.094 1.022±0.095 1.024±0.096

7 1.004±0.094 0.977±0.091 0.979±0.092

8 1.019±0.094 0.993±0.096 0.990±0.095

9 1.014±0.094 0.996±0.094 0.996±0.093

10 1.006±0.093 0.980±0.096 0.983±0.098

11 0.987±0.093 0.972±0.094 0.975±0.094

12 0.986±0.093 0.959±0.095 0.958±0.094

13 0.994±0.093 0.966±0.092 0.966±0.094

14 1.002±0.093 0.985±0.094 0.984±0.094

15 0.957±0.093 0.911±0.092 0.918±0.092

16 0.966±0.093 0.959±0.094 0.947±0.091

17 0.992±0.093 0.962±0.092 0.963±0.094

18 1.014±0.094 0.988±0.095 0.987±0.095

19 1.003±0.093 0.985±0.093 0.982±0.094

20 1.005±0.093 0.977±0.094 0.986±0.095

21 0.997±0.093 0.969±0.093 0.976±0.092

22 0.991±0.094 0.969±0.093 0.973±0.093

23 1.000±0.093 0.977±0.096 0.980±0.098

24 0.993±0.093 0.966±0.091 0.965±0.094

25 1.018±0.094 1.009±0.094 1.004±0.093

26 0.994±0.093 0.976±0.093 0.982±0.095

27 0.999±0.093 0.966±0.099 0.975±0.098

28 1.023±0.093 1.030±0.088 1.033±0.090

29 0.999±0.093 0.969±0.092 0.975±0.092

30 1.001±0.094 0.970±0.090 0.969±0.090

31 1.022±0.093 1.001±0.093 1.006±0.093

32 1.028±0.093 1.006±0.095 1.015±0.094

33 0.992±0.093 0.977±0.098 0.967±0.097

34 1.032±0.094 1.020±0.096 1.013±0.096

35 0.987±0.093 0.966±0.095 0.967±0.096

36 1.104±0.002 0.954±0.092 0.963±0.094

37 0.995±0.093 0.966±0.091 0.971±0.093

38 0.995±0.093 0.966±0.092 0.970±0.093

39 1.014±0.094 0.993±0.094 0.993±0.094

40 0.984±0.093 0.959±0.090 0.963±0.092

41 0.976±0.093 0.951±0.093 0.959±0.093

42 1.016±0.093 0.988±0.091 0.992±0.092

43 1.009±0.094 0.980±0.096 0.989±0.096

44 1.002±0.093 0.976±0.096 0.982±0.097

Table B.12: Comparison of the best-fit of 8B Scale in alternative datasets
between QSigEx and MCMC. From MCMC the best-fit is mean of 68% con-
fidence intervals.
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Appendix C

Tables for Energy Spectra

Energy spectra was binned in 18-binned histograms. Following tables C.1 to
C.3 list number of events and the uncertainties in the number of events for
each energy bin for charged current interactions, elastic scattering interactions
on electrons initiated by νe and elastic scattering interactions initiated by νµ
and ντ . Each interaction is split into day and night event. Tables C.4 to C.9
give bin-by-bin correlation matrix for each interactions.

415



Table C.1: Day and night spectra for charged current interactions.
The number of day events were converted in to number of interac-
tions/deuterium/sec/0.5 MeV by dividing them with 6.023× 1031 × 176.59×
3600.0× 24.0 number and the night events by dividing them by 6.023× 1031×
208.85× 3600.0× 24.0 number.

Electron Recoil Number of day Number of night

Energy (MeV) Events Events

6.25 128.161±5.77613 164.446±6.38619
6.75 130.157±4.91089 163.539±5.61196
7.25 126.292±4.34212 157.663±5.06666
7.75 118.718±3.72874 148.702±4.52998
8.25 106.837±3.40636 134.07±3.97687
8.75 94.6407±3.07815 117.276±3.50696
9.25 78.9907±2.61173 98.3046±3.03786
9.75 64.4415±2.30342 80.2439±2.69206
10.25 50.6013±2.02562 62.7512±2.36483
10.75 38.0521±1.71383 47.4103±1.95994
11.25 27.847±1.40866 34.1766±1.59022
11.75 19.4181±1.12626 23.9929±1.28792
12.25 12.8989±0.956992 15.8856±1.08833
12.75 8.30016±0.629247 10.3212±0.738847
13.25 5.1404±0.417694 6.27387±0.555073
13.75 3.12103±0.287746 3.88789±0.34504
14.25 1.68727±0.182381 2.22981±0.249763
14.75 0.973839±0.112694 1.18125±0.149017
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Table C.2: Day and night spectra for elastic scattering (νe) interac-
tions. The number of day events were converted in to number of interac-
tions/electron/sec/0.5 MeV by dividing them with 3.0115 × 1032 × 176.59 ×
3600×24.0 number and night events by 3.0115×32×208.85×3600×24 number.

Electron Recoil Number of day Number of night

Energy (MeV) Events Events

6.25 15.5156±0.863691 19.355±1.01362
6.75 13.6872±0.657437 17.1689±0.738539
7.25 11.8438±0.495311 14.8158±0.551523
7.75 10.1729±0.379486 12.5923±0.422607
8.25 8.5329±0.293008 10.4636±0.327038
8.75 7.10183±0.249055 8.5381±0.299595
9.25 5.66037±0.210368 6.93217±0.236234
9.75 4.53923±0.166478 5.46893±0.19781
10.25 3.54031±0.147186 4.19611±0.176436
10.75 2.67704±0.118661 3.14829±0.138553
11.25 2.02177±0.103066 2.3119±0.11574
11.75 1.45822±0.0850116 1.68172±0.096359
12.25 1.03263±0.0633336 1.13624±0.0782564
12.75 0.711275±0.0520842 0.780388±0.0575016
13.25 0.477284±0.0397303 0.514336±0.0472819
13.75 0.317251±0.0321526 0.336964±0.0291887
14.25 0.197213±0.020552 0.209081±0.0257504
14.75 0.116167±0.0139827 0.124081±0.0138656
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Table C.3: Day and night spectra for Elastic scattering (νµ,ντ ) interac-
tions. The number of day events were converted in to number of interac-
tions/electron/sec/0.5 MeV by dividing them with 3.0115 × 1032 × 176.59 ×
3600×24.0 number and night events by 3.0115×32×208.85×3600×24 number.

Electron Recoil Number of day Number of night

Energy (MeV) Events Events

6.25 5.41638±0.41152 6.53605±0.483418
6.75 4.78631±0.342195 5.64621±0.409934
7.25 3.99489±0.284223 4.84724±0.346718
7.75 3.36413±0.240244 3.9754±0.275416
8.25 2.79096±0.199861 3.3126±0.226457
8.75 2.26029±0.170749 2.71455±0.187946
9.25 1.83393±0.124608 2.16615±0.152532
9.75 1.47884±0.107 1.69401±0.1225
10.25 1.10656±0.0852571 1.26621±0.0985134
10.75 0.846701±0.066899 0.974217±0.075257
11.25 0.634212±0.0534467 0.733762±0.0594344
11.75 0.469661±0.0430702 0.530463±0.047662
12.25 0.3192±0.0333371 0.359059±0.0355644
12.75 0.217508±0.0237888 0.254486±0.0266218
13.25 0.151988±0.017512 0.167864±0.0207501
13.75 0.0973477±0.0128699 0.109937±0.0131184
14.25 0.0571667±0.00864015 0.0647462±0.00903563
14.75 0.038622±0.00615517 0.0424741±0.0066879
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