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Abstract
The group SL(2,C)(2,C) of all complex 2 × 2 matrices with determinant one is
closely related to the groupL↑

+ of real 4 × 4 matrices representing the restricted
Lorentz transformations. This relation, sometimes called the spinor map, is of
fundamental importance in relativistic quantum mechanics and has applications
also in general relativity. In this paper we show how the spinor map may be
expressed in terms of pure matrix algebra by including the Kronecker prod-
uct between matrices in the formalism. The so-obtained formula for the spinor
map may be manipulated by matrix algebra and used in the study of Lorentz
transformations.

Keywords: Lorentz transformation, Kronecker matrix product, spinor map

1. Introduction

In this contribution we use the spinor map for studying Lorentz transformations and the Lorentz
group. This map shows that the restricted Lorentz group is closely related to the (apparently
much simpler) group of complex 2 × 2 matrices with determinant one. The spinor map is
typically introduced in courses on advanced special relativity, general relativity, relativistic
quantum mechanics and quantum field theory [1–4]. It may also be developed from the per-
spective of Clifford algebra [5, 6]. The spinor map is a structure that underlies the existence
of spinors which in turn is fundamental for relativistic quantum mechanics. However, while
spinors are quite difficult to understand this is not the case with the spinor map and this object
can easily be introduced also in undergraduate courses.
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An obvious application of the spinor map is to use 2 × 2 complex matrices in the study of
the real 4 × 4 matrices that represents the restricted Lorentz transformations. This is attractive
because it is much easier to handle 2 × 2 than 4 × 4 matrices. By extending standard matrix
algebra with the Kronecker product we are able to express the spinor map as a single matrix
algebra formula. This turns out to be useful since matrix algebra makes calculations transparent
in contrast to alternative formalisms like index algebra, and its simplicity in application makes
for efficient and straightforward derivations of basic properties of the Lorentz transformations.

The group of restricted Lorentz transformations [2, 7] is represented by a set of real 4 × 4
matrices that we denote by L↑

+. The closely related group SL(2,C) consists of all complex

2 × 2 matrices with determinant one. A surjective group homomorphism SL(2,C) →L↑
+,

sometimes called ‘the spinor map’ [1], may be expressed in terms of the Kronecker matrix
product [8, 9], denoted ⊗, as

L −→ ΛL = A† (L∗ ⊗ L
)
A. (1)

Here A is a simple 4 × 4 matrix (defined in section 3), the dagger stands for Hermitian con-
jugation and the star for complex conjugation. This explicit expression for the spinor map is
useful together with matrix algebra. The 16 elements of the matrix ΛL may be expressed in

terms of the four elements in L =

[
a c
b d

]
. Two examples are

(ΛL)00 =
1
2

(
aa∗ + bb∗ + cc∗ + dd∗)

(ΛL)02 =
i
2

(
ca∗ − ac∗ + db∗ − bd∗) (2)

and there are 14 more expressions like these. We note that the two components given in
equation (2) are real numbers as they must be. However, for expeditious derivations involving
the spinor map the formula (1) is more useful than expressions like (2). The reason for this is
that (1) allows for the use of matrix algebra in a straightforward way. This paper largely consists
of derivations of some standard results for Lorentz transformations by use of matrix alge-
bra extended with the Kronecker product of matrices. This makes possible simple derivations
accessible also at an undergraduate level.

Related work. In searching the literature we find only few references where Lorentz trans-
formations in some way are connected with the Kronecker matrix product. There is however
one reference with a title and abstract that suggests a close relation to the present paper [10].
However, that paper is less elementary than the present one because it deals with linear algebra
in a more abstract way. The convenient form (1) of the spinor map, that is central to the present
paper, is not included in that paper. We expect the present paper to be easily accessible at an
undergraduate level while this is not the case with [10]. Furthermore, the papers consider differ-
ent applications where the more mathematical [10] considers null cones and projective complex
coordinates as well as results for groups like SU(2), Sp(1) and SO(4). The present paper is
restricted to matrix formalism and applications of formula (1). In particular, we consider expo-
nential representations of the spinor map, classifications of restricted Lorentz transformations
and the generalization of equation (1) to non-restricted Lorentz transformations.

Paper outline. In section 2 we consider some basic properties of the Kronecker matrix prod-
uct. These demonstrate how nicely this product connects with standard matrix algebra making
it an easily accessible tool for special relativity. In section 3 we use this formalism to find a
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simple derivation of result (1). We prove some basic results for the restricted Lorentz trans-
formations and also consider the exponential form of the spinor map where L ∈ SL(2,C) is
expressed

L = e� with � =

[
�3 �1 − i�2

�1 + i�2 −�3

]
. (3)

Here � j =
(
−ξ j + iω j

)
/2 where ξ j,ω j are six real numbers. Note that det(L) = det

(
e�
)
=

etr � = e0 = 1. The spinor map of L results in the restricted Lorentz transformation (using block
matrix notation)

ΛL = eλ where λ = −
[

0 �ξT

�ξ �ω×

]
(4)

and

�ξ =

⎡
⎣ξ1

ξ2

ξ3

⎤
⎦ , �ω× =

⎡
⎣ 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

⎤
⎦ . (5)

A previous derivation of this simple result is surprisingly complicated and certainly not
straightforward, see [11, section IIIA]. In contrast, the derivation we obtain by application
of formula (1) is short and makes use of only simple matrix algebra.

The notation L↑
+ is used for a set of 4 × 4 real matrices representing the restricted Lorentz

transformations. The set of all Lorentz transformations may be written as a union of four
disjoint sets [12]

L = L↑
+ ∪L↑

− ∪L↓
+ ∪L↓

−. (6)

Here the up or down arrows indicate preservation or reversion of time orientation and the plus or
minus signs represent the corresponding for space-time orientation. We in section 4 generalize
(1) also to the non-restricted Lorentz transformations.

In section 5 we use the Jordan normal form [13, 14] for matrices in SL(2,C) together with
result (1) in order to consider the standard classification of restricted Lorentz transformations.
There are four classes of non-identity, restricted Lorentz transformations: parabolic, elliptic,
hyperbolic and loxodromic [7]. More familiar to many readers may be the concepts of a boost
(i.e. �ω = 0 in equation (4)) and a rotation (i.e. �ξ = 0 in equation (4)). A restricted Lorentz
transformation may be written as the product of a boost with a rotation. A Lorentz transfor-
mation conjugate [14, 15] with a boost is not necessarily a boost and the corresponding is
true for rotations. However, a non-identity boost always belongs to the hyperbolic class and a
non-identity rotation to the elliptic class.

In section 6 we consider an explicit example where a real 4 × 4 matrix Λ is given by speci-
fying its 16 elements numerically. Formula (1) is used to show with very little calculation that
the given Λ is in fact a restricted Lorentz transformation. We also find six real parameters ξ j

and ω j so that the exponential form (4) of Λ is obtained.

2. The Kronecker product of matrices

In this section we define the Kronecker product of matrices and state some basic algebraic
rules. The set of real or complex m × n matrices is denoted by R

m×n or Cm×n. In this paper we

3



Eur. J. Phys. 43 (2022) 025603 J Larsson and Karl Larsson

only consider the Kronecker product of matrices in C2×2, but the definitions and algebraic rules
presented below many times generalize to matrices of other orders. We denote the components
of 2 × 2 matrices as

A =

[
A1 A3

A2 A4

]
(7)

and let A, B, C, D ∈ C2×2 in the remainder of this section. The Kronecker product of A and B
is then a 4 × 4 matrix defined

A ⊗ B =

[
A1B A3B
A2B A4B

]
. (8)

The zero and identity 2 × 2 matrices are denoted by 02×2 and 12×2. We get

12×2 ⊗ A =

[
A 02×2

02×2 A

]
, A ⊗ 12×2 =

[
A112×2 A312×2

A212×2 A412×2

]
,

12×2 ⊗ 12×2 = 14×4

(9)

Some algebraic rules of the Kronecker product are:

(A ⊗ B)T = AT ⊗ BT (transpose) (10)

(A ⊗ B)−1 = A−1 ⊗ B−1 (inverse) (11)

(A ⊗ B) (C ⊗ D) = (AC) ⊗ (BD) (matrix product) (12)

det (A ⊗ B) = (det A)2(det B)2 (determinant). (13)

Denoting vectorization of a 2 × 2 matrix as

vec(A) =
[
A1 A2 A3 A4

]T
(14)

we have the relationship

vec(ABC) =
(
CT ⊗ A

)
vec(B) (15)

and to the transpose operation we associate a matrix T such that

vec
(
AT

)
= T vec(A), T (A ⊗ B)T = B ⊗ A , where then T =

⎡
⎢⎢⎣

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

⎤
⎥⎥⎦ .

(16)

In a result below about exponentials we need the Kronecker sum ⊕, defined as

A ⊕ B = A ⊗ 12×2 + 12×2 ⊗ B, (17)
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where the matrices A ⊗ 12×2 and 12×2 ⊗ B commutes (use (12)). It easily follows that

eA ⊗ eB = eA⊕B. (18)

It is straightforward to check most of the relations above by simply writing all expressions
in explicit form without using block matrix shorthand notations and just using familiar stan-
dard matrix algebra. This procedure may however sometimes be somewhat tedious in spite the
fact that we limit our considerations to Kronecker products of 2 × 2 matrices. For example,
the derivation of result (15) becomes shorter and more transparent if we use block matrix
calculations

vec(ABC) =

⎡
⎢⎢⎢⎣

ABC

[
1
0

]

ABC

[
0
1

]
⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

C1AB

[
1
0

]
+ C2AB

[
0
1

]

C3AB

[
1
0

]
+ C4AB

[
0
1

]
⎤
⎥⎥⎥⎦

=

[
C1A C2A
C3A C4A

]
⎡
⎢⎢⎢⎣

B

[
1
0

]

B

[
0
1

]
⎤
⎥⎥⎥⎦ =

(
CT ⊗ A

)
vec(B). (19)

3. The spinor map

3.1. Derivation of the formula for the spinor map

In this section we derive formula (1) for the spinor map in terms of the Kronecker matrix
product. To represent events in space-time we use real four-vectors (4 × 1 matrices) and denote
their components

x =

⎡
⎢⎢⎣

x0

x1

x2

x3

⎤
⎥⎥⎦ =

[
x0

�x

]
∈ R

4×1. (20)

The standard reference frame is employed so that for an event x we associate time with x0 = ct
and space with �x in Cartesian coordinates, assuming a future direction of e0 =

[
1 0 0 0

]T

and a right handed orientation of space. For x, y ∈ R4×1 the Lorentz product is defined

x · y = xTηy = −x0y0 + x1y1 + x2y2 + x3y3, (21)

where the matrix η = diag(−1, 1, 1, 1). In terms of the Lorentz product we classify x as
time-like if x·x < 0, space-like if x·x > 0 and null if x·x = 0. A Lorentz transformation is
represented by a 4 × 4 matrix Λ that satisfies

(Λx) · (Λy) = x · y , i.e. that ΛTηΛ = η. (22)
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Association between vectors and Hermitian matrices. We associate each four-vector x with
a Hermitian 2 × 2 matrix X as

x ↔ X =

[
x0 + x3 x1 − ix2

x1 + ix2 x0 − x3

]

= x0

[
1 0
0 1

]
+ x1

[
0 1
1 0

]
+ x2

[
0 −i
i 0

]
+ x3

[
1 0
0 −1

]
(23)

= x012×2 + x1σ1 + x2σ2 + x3σ3 = x012×2 + �x · σ,

where σi are the Pauli matrices. Note that

det(X) = −x · x = x2
0 −

→
x · →x. (24)

The relation (23) can be expressed

vec(X) =
√

2Ax where A =
1√
2

⎡
⎢⎢⎣

1 0 0 1
0 1 i 0
0 1 −i 0
1 0 0 −1

⎤
⎥⎥⎦ . (25)

We include the
√

2 to get the properties

A†A = ATA∗ = 14×4. (26)

The spinor map. For L ∈ SL(2,C) we define a map between Hermitian 2 × 2 matrices X →
Y by

Y = LXL†. (27)

The corresponding map on the associated four-vectors is

y = ΛLx, (28)

where the real 4 × 4 matrix ΛL turns out to be a Lorentz transformation, and as we will show
in the next section, more specifically a restricted Lorentz transformation. To verify that ΛL is
a Lorentz transformation, take the determinant of (27) and find y2

0 −�y ·�y = x2
0 − �x · �x. The

spinor map L → ΛL may be written in a more explicit form. By vectorizing both sides of (27)
and applying equation (15) we obtain

vec(Y) =
(
L∗ ⊗ L

)
vec(X). (29)

Expressing vec(X), vec(Y) in terms of their associated four-vector x, y via (25) and using (26)
we arrive at

y = A† (L∗ ⊗ L
)
Ax (30)

and have thus derived expression (1).

6
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3.2. The group of restricted Lorentz transformations

In this section we show that the group of restricted Lorentz transformations is constituted by all
matrices generated via the spinor map (1), illustrating their intimate relationship. As apparent
by (22) the group of all Lorentz transformations may be represented by a set of real 4 × 4
matrices

L =
{
Λ ∈ R

4×4 | ΛTηΛ = η
}

, (31)

where η = diag(−1, 1, 1, 1). The group of restricted Lorentz transformations is defined

L↑
+ = {Λ ∈ L | Λ00 > 0 , det Λ > 0} (32)

meaning that a restricted Lorentz transformation in addition to preserving the Lorentz product,
also preserves the orientation of time and space-time thanks to the conditions Λ00 > 0 and
detΛ > 0. In terms of Lie-group theory this means that Λ is continuously connected to the
identity 14×4.

We would like to prove that the group of restricted Lorentz transformations also may be
written

L↑
+ =

{
ΛL = A† (L∗ ⊗ L

)
A | L ∈ SL(2,C)

}
. (33)

We first check that (33) is a matrix group of real matrices. That ΛL is a real matrix follows by
use of (1) and (16) as

Λ∗
L = AT

(
L ⊗ L∗)A∗

= ATT
(
L∗ ⊗ L

)
T A∗ (34)

= A† (L∗ ⊗ L
)
A = ΛL.

The group structure also follows because for L, M ∈ SL(2,C) we have by use of (1), (12) and
(26)

ΛLΛM = ΛLM. (35)

Next, we verify that ΛL is a Lorentz transformation, i.e. we show that

ΛT
LηΛL = η. (36)

From (1) we have

ΛT
LηΛL =

[
A† (L∗ ⊗ L

)
A
]T
η
[
A† (L∗ ⊗ L

)
A
]

(37)

and by standard matrix algebra, the algebraic rules (10) and (12), the identities

AηAT = A∗ηA† = −ε⊗ ε (38)

and

LTεL = L†εL∗ = ε where ε =

[
0 1
−1 0

]
(39)

7
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we find that (37) can be expressed

ΛT
LηΛL = −AT [ε⊗ ε]A. (40)

Applying (38) and (26) yield the desired result (36).
The two inequalities in definition (32) are the conditions for the matrix Λ to represent a

restricted Lorentz transformation. We now check that ΛL satisfy these and use the notations

e0 =
[
1 0 0 0

]T
and L =

[
a c
b d

]
. (41)

We have

(ΛL)00 = eT
0ΛLe0 = eT

0A† (L∗ ⊗ L
)
Ae0. (42)

Since eT
0A† =

(
1/

√
2
) [

1 0 0 1
]

and Ae0 =
(

1/
√

2
) [

1 0 0 1
]T

we get

(ΛL)00 =
1
2

(
aa∗ + bb∗ + cc∗ + dd∗) > 0. (43)

From (1), (13) and (26) we also have

det [ΛL] = 1 > 0 (44)

so ΛL is a restricted Lorentz transformation.
To finish the proof that equations (32) and (33) define the same set of Lorentz transforma-

tions we also need the result that for any Λ defined by (32) there exists an L ∈ SL(2,C) such
that ΛL = Λ. This follows directly from a general result in Lie group theory. The exact details
from Lie group theory is outside the scope of the present paper but in [2, p 18] we find the
following explanation. The subgroup {ΛL | L ∈ SL(2,C)} of the restricted Lorentz transfor-
mations have full dimensionality six. This is because the matrices L form a six-dimensional
(i.e., three-complex-dimensional) system and because only a discrete number (namely two)
of the matrices L defines a single restricted Lorentz transformation. It follows that this full-
dimensional subgroup must contain the entire connected component of the identity in the
Lorentz group.

The result that (32) and (33) define the same set of Lorentz transformations may alternatively
be obtained by a direct construction where a restricted Lorentz transformation is written as the
product of a boost and a rotation [2, pp 18–21].

3.3. The exponential form of the spinor map

In this section we demonstrate how the spinor map (1) can be easily rephrased in exponen-
tial form. The equations (3)–(5) give the standard exponential form of the spinor map. Both
L ∈ SL(2,C) and ΛL ∈ L↑

+ are expressed in terms of the six real parameters in �ξ and �ω, asso-
ciated with boosts and rotations, respectively. By equations (1), (3), (18) and (26) we easily
get ΛL in its exponential form

ΛL = A† (L∗ ⊗ L
)
A = A†

(
e�

∗ ⊗ e�
)
A = A†e�

∗⊕�A = eA
†(�∗⊕�)A. (45)
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It remains to be shown that the exponent is the correct one, i.e.

A† (�∗ ⊕ �
)
A = λ. (46)

We have

�∗ ⊕ � = �∗ ⊗ 12×2 + 12×2 ⊗ �

=

[
�∗3 �∗1 + i�∗2

�∗1 − i�∗2 −�∗3

]
⊗ 12×2 + 12×2 ⊗

[
�3 �1 − i�2

�1 + i�2 −�3

]

=

⎡
⎢⎢⎣
�3 + �∗3 �1 − i�2 �∗1 + i�∗2 0
�1 + i�2 �∗3 − �3 0 �∗1 + i�∗2
�∗1 − i�∗2 0 �3 − �∗3 �1 − i�2

0 �∗1 − i�∗2 �1 + i�2 −�3 − �∗3

⎤
⎥⎥⎦ (47)

which gives us that

A† (�∗ ⊕ �
)
A =

⎡
⎢⎢⎣

0
(
�1 + �∗1

) (
�2 + �∗2

) (
�3 + �∗3

)(
�1 + �∗1

)
0 −i

(
�3 − �∗3

)
i
(
�2 − �∗2

)(
�2 + �∗2

)
i
(
�3 − �∗3

)
0 −i

(
�1 − �∗1

)(
�3 + �∗3

)
−i

(
�2 − �∗2

)
i
(
�1 − �∗1

)
0

⎤
⎥⎥⎦ . (48)

Substituting � j =
(
−ξ j + iω j

)
/2 we find

A† (�∗ ⊕ �
)
A =

⎡
⎢⎢⎣

0 −ξ1 −ξ2 −ξ3

−ξ1 0 ω3 −ω2

−ξ2 −ω3 0 ω1

−ξ3 ω2 −ω1 0

⎤
⎥⎥⎦ = −

[
0 �ξT

�ξ �ω×

]
. (49)

This is the exponent λ in equation (4).

4. Formulas for general Lorentz transformations

In this section we generalize formula (1) for the spinor map to general Lorentz transformations.
A Lorentz transformation belongs to one of four components as expressed by equation (6). For
a restricted Lorentz transformation we already have the formula (1) but we now include an
arrow and a plus-sign in the notation

Λ↑+
L = A† (L∗ ⊗ L

)
A, (50)

where the arrow pointing upwards represents preservation of the direction of time and the plus
sign represents the preservation of space-time orientation. A procedure to derive the matrix
(50) is given by equations (27)–(30). A direct proof that the matrix so defined is an element in
L↑

+ is also given in section 3. If we start from

Y = LXTL† (51)

9
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rather than from (27) we get in place of (50)

Λ↑−
L = A† (L∗ ⊗ L

)
A∗, (52)

where we used T A = A∗. We may easily check that Λ↑−
L ∈ L↑

− by procedures similar to those
we used in section 3 to prove that Λ↑+

L ∈ L↑
+. The elements in L↓

+ and L↓
− may be written

Λ↓+
L = −Λ↑+

L , Λ↓−
L = −Λ↑−

L . (53)

The product of any two elements in L may be obtained from

Λ↑+
L Λ↑+

M = Λ↑+
LM , Λ↑+

L Λ↑−
M = Λ↑−

LM ,

Λ↑−
L Λ↑+

M = Λ↑−
LM∗ , Λ↑−

L Λ↑−
M = Λ↑+

LM∗

(54)

together with (53).
Simple examples. As a first example using the formulas above, we let L = 12×2, which gives

the Lorentz transformations

Λ↑+
L = 14×4, Λ↑−

L = diag(1, 1,−1, 1),

Λ↓+
L = −14×4, Λ↓−

L = diag(−1,−1, 1,−1).
(55)

As a second example, we let L = ε, which gives the Lorentz transformations

Λ↑+
L = diag(1,−1, 1,−1), Λ↑−

L = −η,

Λ↓+
L = diag(−1, 1,−1, 1), Λ↓−

L = η.
(56)

5. Classification of restricted Lorentz transformations

5.1. Parabolic, elliptic, hyperbolic and loxodromic transformations

A non-identity restricted Lorentz transformation ΛL may be classified into the four types
parabolic, elliptic, hyperbolic and loxodromic [7]. The type is determined by the value of (tr L)2

where (tr L)2 = 4 in the parabolic case, 0 � (tr L)2 < 4 in the elliptic case, (tr L)2 > 4 in the
hyperbolic case, and (tr L)2 ∈ C\[0, 4] in the loxodromic case. The hyperbolic class is thus a
subclass of the loxodromic and the loxodromic class consists of all transformations ΛL that
are not parabolic or elliptic. This classification is obtained from the theory of Möbius trans-
formations because the restricted Lorentz group is isomorphic to the Möbius group PSL(2,C).
We refer the reader to the references [16–18] for the relations between Lorentz and Möbius
transformations (a discussion of these relations is outside the scope of the present paper).

Let us now use the spinor map in the form (1) as well as the Jordan normal form for matrices
in SL(2,C). The characteristic polynomial of L may be written

pL(s) = det (L − s12×2)

= s2 − (tr L) s + 1 = (s − s1)(s − s2), (57)

where tr L = s1 + s2 and det L = s1s2 = 1. There are two cases:

10
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Case I (s1 �= s2). This is the non-parabolic case, i.e. (tr L)2 �= 4. By application of the Jordan
normal form we have

L ∼ LI =

[
s1 0
0 s2

]
, (58)

where the equivalence relation is matrix similarity [14, 19] (in this case the same as SL(2,C)
group conjugacy [14, 15]). We also have the L↑

+ group conjugacy relation

ΛL ∼ ΛLI . (59)

Hence, there exists M ∈ SL(2,C) such that

ΛL = ΛMΛLIΛM−1 . (60)

We can express

s1 = e(β+iθ)/2 and s2 = e−(β+iθ)/2 (61)

with real β and θ such that

e(β+iθ)/2 �= 1 (62)

and thus

L∗
I ⊗ LI =

⎡
⎢⎢⎣

eβ 0 0 0
0 e−iθ 0 0
0 0 eiθ 0
0 0 0 e−β

⎤
⎥⎥⎦ . (63)

From (1) together with (26), (63) and (59) it follows that the matrices ΛL,ΛLI and L∗
I ⊗ LI are

similar. Thus, they have the same characteristic polynomial

pΛL (s) = pΛLI
(s) =

(
s − eβ

) (
s − e−β

) (
s − eiθ

) (
s − e−iθ

)
. (64)

We also get from (1) and (63) that

ΛLI =

⎡
⎢⎢⎣

cosh β 0 0 sinh β
0 cos θ sin θ 0
0 − sin θ cos θ 0

sinh β 0 0 cosh β

⎤
⎥⎥⎦ . (65)

The traces of L and LI are the same so

(tr L)2 = (s1 + s2)2 = 2 + 2 cosh β cos θ + 2i sinh β sin θ. (66)

In the elliptic case β = 0 and exp(iθ) �= 1 so that (tr L)2 = 2 + 2 cos θ < 4. In the hyperbolic
case exp(iθ) = 1 and β �= 0 so that (tr L)2 = 2 + 2 cosh β > 4.
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Case II (s1 = s2). This is the parabolic case (tr L)2 = 4 so that tr L = ±2. Since ΛL = Λ−L it
is sufficient to consider the tr L = 2 case. Then by application of the Jordan normal form

ΛL ∼ ΛLII for LII =

[
1 1
0 1

]
. (67)

We get in the same way as in case I

pΛLII
(s) = (s − 1)4 (68)

and

ΛLII =

⎡
⎢⎢⎣

3/2 1 0 −1/2
1 1 0 −1
0 0 1 0

1/2 1 0 1/2

⎤
⎥⎥⎦ . (69)

This classification of a restricted Lorentz transformation may be defined directly in terms
of its characteristic polynomial (64). Then Λ is elliptic if β = 0 and exp(iθ) �= 1, hyperbolic if
β �= 0 and exp(iθ) = 1, loxodromic if β �= 0 and parabolic if β = 0, exp(iθ) = 1 andΛ �= 14×4.

Some understanding of the meanings of the classification of Λ is obtained by considering
the following space of four-vectors

IΛ =
{

x ∈ R
4×1 | Λx = x

}
(70)

along with its orthogonal complement

I
⊥
Λ =

{
x ∈ R

4×1 | x · y = 0 for all y ∈ IΛ

}
. (71)

From (59) and (65) we find that if Λ is elliptic or hyperbolic then IΛ is a space with dimension
2 and

IΛ ∩ I
⊥
Λ =

{[
0 0 0 0

]T
}

(72)

so that

R
4×1 = IΛ ⊕ I

⊥
Λ, (73)

where the usual direct sum ⊕ appears (not the Kronecker sum). An elliptic or hyperbolic Λ
is ‘non-trivial’ only on the 2D space I⊥Λ. In the elliptic case I⊥Λ contains only space-like four-
vectors while in the hyperbolic case it contains also time-like four-vectors. In the loxodromic
but non-hyperbolic case the dimension of IΛ is zero so Λ is non-trivial on the full 4D space. In
the parabolic case we use (67) and (69) and find that the dimension of IΛ is two and

IΛ ∩ I
⊥
Λ = span {n} , (74)

where n is a non-zero null vector.

12
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5.2. Boost and rotations

We classify a non-identity Lorentz transformation ΛL as a boost if �ω = �0, i.e.

L = exp

[
−1

2
�ξ · σ

]
�= 12×2 (75)

which can be expressed

L = cosh
(
ξ/2

)
12×2 − sinh

(
ξ/2

)
ξ̂ · σ, (76)

where ξ =

√
�ξ · �ξ > 0 and ξ̂ = �ξ/ξ. We get

(trL)2 = 4
[
cosh

(
ξ/2

)]2
> 4 (77)

so a boost is hyperbolic. Note that L† = L, so L is Hermitian for a boost.
We classify a non-identity Lorentz transformation ΛL as a rotation if �ξ = �0, i.e.

L = exp

[
i
2
�ω · σ

]
�= 12×2 (78)

which can be expressed

L = cos
(
ω/2

)
12×2 + i sin

(
ω/2

)
ω̂ · σ, (79)

where ω =
√
�ω · �ω > 0 and ω̂ = �ω/ω. We get

(tr L)2 = 4
[
cos

(
ω/2

)]2
< 4 (80)

so a rotation is elliptic. Note that L† = L−1, so L is unitary for a rotation.

6. A numerical example

Consider the matrix

Λ =

⎡
⎢⎢⎣

9/4 0 1/4 2
0 1 0 0
1 0 1 1

7/4 0 −1/4 2

⎤
⎥⎥⎦ . (81)

We will now; (a) prove that Λ is a restricted Lorentz transformation, (b) determine what class
Λ belongs to, and (c) write Λ in exponential form.

The matrix is a restricted Lorentz transform. We prove that Λ is a restricted Lorentz
transformation by writing it in the form of ΛL in equation (1). Rewriting (1) as

L∗ ⊗ L = AΛA† (82)

13
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we by straightforward algebra get

L∗ ⊗ L =

⎡
⎢⎢⎣

4 0 0 0
i 1 0 0
−i 0 1 0
1/4 −i/4 i/4 1/4

⎤
⎥⎥⎦ . (83)

By inspection of (83), definition (8) and using det L = 1 we easily find

L = ±
[

2 0
i/2 1/2

]
. (84)

We have now in a very economical way proved that Λ is a restricted Lorentz transformation.
We also note that (tr L)2 = 25/4 > 4, so Λ is hyperbolic.

The matrix in exponential form. To write Λ in exponential form, we first note that we may
write (3) as

L = e� = e
→
� ·σ , (85)

where we use notations from (23), �� =
(
−�ξ + i�ω

)
/2 and

�2 = (
→
� ·

→
�)12×2. (86)

From the power series defining the exponential of a matrix and equation (86) we find

L = cosh(μ)12×2 +
sinh(μ)

μ
�� · σ. (87)

Here we use the notation μ =
√
�� · �� =

{
α ∈ C | α2 = �� · ��

}
. This is a set with two elements

such that α ∈ μ ⇒ −α ∈ μ. We define cosh(μ) = cosh(α) = cosh(−α) and μ−1 sinh(μ) =
α−1 sinh(α) = (−α)−1 sinh(−α). The two branches of the square root are included and there
is no need to choose branch. We write L in the form

L =
tr L
2

12×2 +
→
L · σ, (88)

where (choosing the plus sign in (84))

tr L =
5
2

,
→
L =

1
4

[
i 1 3

]T
. (89)

From (87)–(89) we get

cosh(μ) =
5
4

,
sinh(μ)

μ
�� =

1
4

[
i 1 3

]T
. (90)

A solution to the first equation is μ = {±ln 2} and we get

�� =
ln 2

3

[
i 1 3

]T
(91)

and thus

�ξ = −2 ln 2
3

[
0 1 3

]T
, �ω =

2 ln 2
3

[
1 0 0

]T
. (92)

An exponential expression for Λ is now given by (4).

14



Eur. J. Phys. 43 (2022) 025603 J Larsson and Karl Larsson

7. Discussion

The spinor map is a powerful tool for the construction and investigation of Lorentz transforma-
tions. It takes 2 × 2 complex matrices representing the group SL(2,C) to 4 × 4 real matrices
representing the Lorentz transformations L↑

+. Since the spinor map is a 2-to-1 group homo-
morphism it tell us a lot about Lorentz transformations in terms of the group SL(2,C). For
simplicity one would like to use matrix algebra and, as far as possible, avoid explicit use of
the matrix components in the applications of the spinor map. This is in particular the case at
the undergraduate level where the students are familiar with matrix algebra but not much with
index formalism. However, relations involving both 2 × 2 and 4 × 4 matrices are not straight-
forward to describe using standard matrix algebra. A solution to this problem is to extend the
matrix formalism by including the Kronecker product between 2 × 2 matrices. This is not at all
difficult and, as seen in section 2, the Kronecker product very nicely fits into standard matrix
algebra. We obtain the convenient formula (1) for the spinor map involving 2 × 2 and 4 × 4
matrices as well as the Kronecker product.

This paper consists of applications of formula (1) using the matrix algebra extended with
the Kronecker product. One example when a derivation is much simplified by our procedure
concerns the exponential form of the spinor map. This is obvious by comparing section 3.3 with
the corresponding derivation in [11, section IIIA]. We also show how to modify formula (1) in
order to obtain also the non-restricted Lorentz transformations (section 4). Formula (1) is con-
venient for considering the conjugacy classes (elliptic, hyperbolic, loxodromic and parabolic)
of the restricted Lorentz transformations (section 5).

The matrix algebra approach in the present paper makes the theory of the spinor map more
accessible also at an undergraduate level. The extension of standard matrix algebra by the
inclusion of the Kronecker product of matrices is worthwhile both because of its simplicity
and of applications not only in relativity but also in quantum mechanics [20].

ORCID iDs

Karl Larsson https://orcid.org/0000-0001-7838-1307

References

[1] Naber G L 2012 The Geometry of Minkowski Spacetime (Applied Mathematical Sciences vol 92)
(New York: Springer)

[2] Penrose R and Rindler W 1984 Spinors and Space-time (Cambridge Monographs on Mathematical
Physics vol 1) (Cambridge: Cambridge University Press)

[3] Srednicki M 2007 Quantum Field Theory (Cambridge: Cambridge University Press)
[4] Maggiore M 2005 A Modern Introduction to Quantum Field Theory (Oxford: Oxford University

Press)
[5] Lounesto P 2001 Clifford Algebras and spinors (London Mathematical Society Lecture Note Series

vol 286) 2nd edn (Cambridge: Cambridge University Press)
[6] Porteous I R 1995 Clifford Algebras and the Classical groups (Cambridge Studies in Advanced

Mathematics vol 50) (Cambridge: Cambridge University Press)
[7] Wikipedia 2021 Lorentz group (https://en.wikipedia.org/wiki/Lorentz_group)
[8] Wikipedia 2021 Kronecker product (https://en.wikipedia.org/wiki/Kronecker_product)
[9] Steeb W-H 2006 Problems and Solutions in Introductory and Advanced Matrix Calculus (Singapore:

World Scientific)
[10] Sharma C S 1991 The Kronecker product of two 2 × 2 matrices, Lorentz transformations, and the

structure of space-time in special relativity Ann. Phys., NY 210 241–54

15

https://orcid.org/0000-0001-7838-1307
https://orcid.org/0000-0001-7838-1307
https://en.wikipedia.org/wiki/Lorentz_group
https://en.wikipedia.org/wiki/Kronecker_product
https://doi.org/10.1016/0003-4916(91)90044-9
https://doi.org/10.1016/0003-4916(91)90044-9
https://doi.org/10.1016/0003-4916(91)90044-9
https://doi.org/10.1016/0003-4916(91)90044-9


Eur. J. Phys. 43 (2022) 025603 J Larsson and Karl Larsson

[11] Berk H L, Chaicherdsakul K and Udagawa T 2001 The proper homogeneous Lorentz transformation
operator eL = e− ω·S − ξ·K : where’s it going, what’s the twist? Am. J. Phys. 69 996–1009

[12] Wikipedia 2021 Lorentz transformation (https://en.wikipedia.org/wiki/Lorentz_transformation)
[13] Wikipedia 2021 Jordan normal form (https://en.wikipedia.org/wiki/Jordan_normal_form)
[14] Knapp A W 2006 Basic Algebra (Boston, MA: Birkhäuser)
[15] Wikipedia 2021 Conjugacy class (https://en.wikipedia.org/wiki/Conjugacy_class)
[16] Wikipedia 2021 Möbius transformation (https://en.wikipedia.org/wiki/M%C3%B6bius_

transformation)
[17] Olsen J 2010 The Geometry of Möbius Transformations (New York: University of Rochester)

(https://johno.dk/mathematics/moebius.pdf)
[18] Jones G A and Singerman D 1987 Complex Functions: An Algebraic and Geometric Viewpoint

(Cambridge: Cambridge University Press)
[19] Wikipedia 2021 Matrix similarity (https://en.wikipedia.org/wiki/Matrix_similarity)
[20] Fernández F M 2016 The Kronecker product and some of its physical applications Eur. J. Phys. 37

065403

16

https://doi.org/10.1119/1.1371919
https://doi.org/10.1119/1.1371919
https://doi.org/10.1119/1.1371919
https://doi.org/10.1119/1.1371919
https://en.wikipedia.org/wiki/Lorentz_transformation
https://en.wikipedia.org/wiki/Jordan_normal_form
https://en.wikipedia.org/wiki/Conjugacy_class
https://en.wikipedia.org/wiki/M&tnqx25;25C3&tnqx25;25B6bius_transformation
https://johno.dk/mathematics/moebius.pdf
https://en.wikipedia.org/wiki/Matrix_similarity
https://doi.org/10.1088/0143-0807/37/6/065403
https://doi.org/10.1088/0143-0807/37/6/065403

	The Lorentz group and the Kronecker product of matrices
	1.  Introduction
	2.  The Kronecker product of matrices
	3.  The spinor map
	3.1.  Derivation of the formula for the spinor map
	3.2.  The group of restricted Lorentz transformations
	3.3.  The exponential form of the spinor map

	4.  Formulas for general Lorentz transformations
	5.  Classification of restricted Lorentz transformations
	5.1.  Parabolic, elliptic, hyperbolic and loxodromic transformations
	5.2.  Boost and rotations

	6.  A numerical example
	7.  Discussion
	ORCID iDs
	References


