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Abstract

The aim of this thesis is to develop an initial state characterization for heavy-ion
collisions as well as a characterization of fluctuations arising from the initial-state
energy density and their propagation into the final state.

In the first main part of the thesis we will set the stage and introduce the physics
addressed in heavy-ion collisions and introduce different initial state models, namely
the Glauber and Saturation model. Then we will derive the Boltzmann equation
and introduce a numerical framework to solve it in two dimensions for an ideal gas
of massless particles. The motivation for this new framework is the following: In
small systems or peripheral collisions the number of interactions is small and the
applicability of hydrodynamics is still under debate.

The second main part will study how fluctuations in anisotropic transverse flow
occur due to a finite number of rescatterings during the system evolution within the
numerical approach. Initial geometries from a Monte Carlo Glauber model are used
to study how flow coefficients fluctuate about their mean value for a given initial-
state eccentricity. Additionally we study for the first time how the distributions of
the second and third event planes of anisotropic flow about their participant planes
in the initial state evolve with the mean number of rescatterings in the system.

In the third part of the thesis we will study the generation of an anisotropic
flow signal and spatial eccentricities in more detail, especially at early times using
different particle-based transport approaches and a fixed initial condition. We study
the onset of anisotropic flow as a function of the number of rescatterings from the
few-rescatterings case to the hydrodynamic regime using a power-law ansatz and
an exponent varying with the number of rescatterings. The numerical results are
compared to semi-analytical calculations based on an expansion in powers of time
and cross section in the few-rescatterings regime. Additionally, we will test the
effectiveness of the “escape mechanism” to create anisotropic flow in two numerical
scenarios with a 2 — 2 and 2 — 0 collision kernel respectively, and we compare the
results to analytical calculations using only the loss term in the Boltzmann equation.
This reveals that the even flow harmonics behave similarly, while the odd ones show
a significant difference.

The fourth part of this thesis develops a general decomposition of an initial state
density profile ensemble using an average state and independent orthonormal fluc-
tuation modes. Event-by-event fluctuations are encoded in the modes forming a
basis. Using Glauber and Saturation type initial conditions, we quantify different
types and probabilities of event-by-event fluctuations and their impact on initial-
state characteristics. Using dynamical simulations within KgMPgST and MUSIC,
we investigate the impact of single modes on final-state observables and their corre-
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lations. A comparison to event-by-event simulations is used to quantify the accuracy
of the mode-by-mode approach.
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Chapter

Heavy-ion collisions

It’s a warm summer evening,
circa 600 BC. You’ve finished
your shopping at the local
market, or agora ... and you look
up at the night sky. There you
notice some of the stars seem to
move, so you name them planets
or wanderer. — Sheldon Lee
Cooper

(The Big Bang Theory)

(1.1 ~What is a heavy-ion collision?| . . . . . . . .. ... .. ... .. ... 2
(1.2 Why do we perform heavy-ion collisions?| . . . . . . . . ... ... .. 3
(1.2.1  QCD in the early Universe| . . . . . . . . . ... .. ... ... 5)
(1.2.2  The phase diagram of QCD| . . . . . . ... ... ... ... .. 6

(1.3 History of a heavy-ion collision| . . . . . . . ... ... ... ..... 7
(1.4 What can we observe from heavy-ion collisions? . . . . . . . ... .. 10
(1.4.1 Photons . . . . . .. . . ... 10
(1.4.2 Jets and heavy flavor| . . . . . . . . .. ... ... ... ..., 11
(1.4.3  Anisotropic flow]. . . . . . . . .. ... 11
(1.4.3.1  Centrality| . . . . . ... .. ... ... ... ..... 12

(1.4.4  Femtoscopy|l . . . . . . . . . . ... 13

[L.b Why is this work important/necessary?| . . . . . . . .. .. ... ... 13

In the quote above Sheldon tries to explain physics to Penny. He begins his ex-
planation with knowledge that was already acquired in ancient Greece. Since this
would go beyond the scope of this thesis, we will start in the 60s of the last century.
There the theory of strong interaction was developed, which is the reason why later
in 1974 during a workshop at Bear Mountain physicists came up with the idea to
use heavy-ion collisions to probe matter under extreme conditions, at high baryon
and energy densities, where the strong force is the dominant interaction .



1.1. What is a heavy-ion collision?

On the next pages we want to describe the physics of heavy-ion collisions briefly.
As this field of research is a broad subject with many interesting aspects, the inter-
ested reader is referred to the books [2,13] and the reviews [4,5], as we cannot cover
all aspects here. The following chapter is strongly inspired by these references.

1.1 What is a heavy-ion collision?

An ultra relativistic heavy-ion collision is the head-on collision of two beams of heavy
elements, e.g., Pb, Au and Xe, which are completely ionized and accelerated to very
high energies, such that the ions move with a velocity close to the speed of light.ﬂ
The beams which are accelerated in a circular collider experiment are steered by
strong magnets in such a way that they collide in the detectors which detect the
particles emitted from the center of the collision. In the center of momentum frame
the ions are Lorentz contracted such that they look like colliding pancakes. During
the collision of the nuclei there is a medium with high energy density created be-
tween the pancakes. For the characterization of different collisions the total collision
energy /SN~ per nucleon-nucleon pair, one from each beam, in the center of mass
frame is used. Currently there are two large facilities where heavy-ion collisions are
performed:

e The Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Labora-
tory (BNL) in New York which performs measurements since 2000. At RHIC,
a variety of ions are used, e.g., Au, U, but also lighter ones like Ru, Cu and Zr.
The circular accelerator has a circumference of around 3.8 km and can accel-
erate gold ions to \/syn = 200 GeV. The emitted particles from the collisions
are currently measured in STAR (Solenoidal Tracker At RHIC) and PHENIX
(Pioneering High Energy Nuclear Interactions eXperiment). Since 2010 there
was a multi-step program called Beam Energy Scan (BES) I and BES II whose
aim was to probe the collisions with lower beam energy and therefore higher
baryon chemical potential pp.

e The Large Hadron Collider (LHC), located near Geneva on the border be-
tween Switzerland and France, is performing heavy-ion collisions since 2010.
The research program at CERN is mainly dedicated to high energy particle
physics experiments, which try to probe the physics of the standard model or
find physics beyond this model. However, there is some beamtime during the
year where heavy-ions are injected into the accelerator with about 27 km cir-
cumference. The LHC heavy-ion program uses, for example, Pb or Xe ions for
their measurements. Other systems, e.g., O, are planned for future runs. The
experiments which collect the data are ATLAS (A Toroidal LHC ApparatuS),
ALICE (A Large Ion Collider Experiment), CMS (Compact-Muon-Solenoid-
Experiment) and LHCb (Large Hadron Collider beauty). The ALICE detector
is especially built and designed for heavy-ion experiments. Within the LHC it
is possible to collide nucleus on nucleus (A+A), as well as proton on nucleus

'Head-on does not mean that two nuclei overlap perfectly, which is in further detail described
in Sec. [[.4.3.1) by the concept of centrality.
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1.2. Why do we perform heavy-ion collisions?

(p+A) and proton on proton (p+p) at the same energies. Currently the LHC
is the collider with the highest beam energies in the world, which is of the
order of a few TeV.

In the future there will be further experiments with heavy-ions built:

e The Facility for Antiproton and Ion Research (FAIR) will be constructed at
the GSI Helmholtzzentrum fiir Schwerionenforschung in Darmstadt (Germany)
and will perform measurements at even higher baryon chemical potential than
the ones performed at RHIC. FAIR is expected to start operating in 2025.

e A second planned facility is the Electron Ion Collider (EIC), which will be
built at BNL and which will probe ions with point-like electrons to explore
the structure of protons and nuclei. The planned start of operation is around

2030.

e Then there is also the Nuclotron-based Ion Collider fAcility (NICA) currently
built at the Joint Institute for Nuclear Research (JINR) in Dubna. The ex-
periments planned are also going into the direction of high baryon chemical
potentials. Commissioning is planned for 2023.

1.2 Why do we perform heavy-ion collisions?

As mentioned in the beginning of this chapter, the theory of the strong interac-
tion, i.e., Quantum Chromo-Dynamics (QCD), was developed in the 60s, and in the
80s physicists came up with the idea to probe QCD matter with heavy-ion collisions.
To get a better idea why we perform heavy-ion collisions, we will first have a short
look at QCD. We will just focus on the aspects of QCD which are important for
heavy-ion collisions, as the details of this quantum gauge theory are beyond the
scope of this work.

By today it is known that a nucleus, which has a typical size of several femtome-
ters (1071 m), consists of nucleons, namely positively charged protons and charge
neutral neutrons. This implies that there are many positively charged objects in
a very small volume, which brings up the question which attractive force is over-
coming the electromagnetic repulsion and binds the nucleons in the nuclei. In 1961
Gell-Mann introduced a geometrical model called “eightfold way” based on group
theoretical considerations which arranged the particles according to their charge
and strangeness. Until 1964 there was no explanation why the particles fit in this
scheme. Then Gell-Mann and Zweig proposed that hadrons are composed of smaller
constituents, the quarks. Within this quark model they were able to reproduce the
results of the eightfold way and built all the hadrons from a small number of quarks.
At that time three quark flavors, called up, down and strange, were known. Today
we know that there exist three more flavors, namely charm, bottom and top. So
the force between the nucleons is actually a force between their constituents, i.e.,
quarks and gluons described by a SU(3); flavor group. This model of the hadron
substructure was confirmed by Deep Inelastic Scattering (DIS) experiments.ﬂ

2DIS is extending the Rutherford scattering experiment to higher energies. This gives the
opportunity to resolve smaller length scales to study the structure of the proton.




1.2. Why do we perform heavy-ion collisions?

Since the quark model can be used to reproduce the hadrons, which are physically
measurable, in the eightfold way, the quarks have to be fermions with spin 1/2. In
the eightfold way there are particles like the A™", which consists of three up-quarks.
According to the Pauli principle, which is an important result from quantum field
theory, this particle is not allowed to exist as the quarks are all in the same quantum
state. This puzzle was solved in 1964 by Greenberg who introduced an additional
quantum number, the color, which is the charge of QCD. The existence of the AT™
gives us a minimal number of three color charges. An upper bound, which leads to
an exact number of three colors, can be obtained through the comparison of total
cross-section measurements between e~ 4+ et — hadrons and e™ +e™ — u= + pu”.
As quarks and gluons carry a color charge with three possible states, e.g., green,
blue and red, and the fact that in nature only colorless states can be observed,
baryons composed of three quarks and mesons consisting of a quark-antiquark pair
are the only possibility to build the observed particles. All anti-particles are made
of anti-quarks which carry an anti-color. The quark interactions are mediated by
eight different massless and color charged gauge bosons, the gluons, leading to more
freedom for interactions than in Quantum Electro-Dynamics (QED). In QCD the
gluons can self-interact between three or four gluons. As no color-charged object
has ever been measured, the concept of confinement was introduced: It states that
there is no way to isolate a single quark (or gluon).

A second interesting feature, one of the reasons why heavy-ion collisions are
an interesting probe of QCD, is that of asymptotic freedom related to the strong
coupling constant ag. This coupling describes the strength of the strong interac-
tions. Within QCD the coupling can be computed as a function of the energy scale
Q. In Fig. [I.I] measurements and calculations of ag are shown. The coupling for
small energy scales (large distances) is very large, hence the quarks are confined
in the hadrons. With increasing energy scale ) (decreasing distance) the coupling
decreases and eventually for () — oo will be zero. This leads to asymptotically free
quarks.
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Figure 1.1: Measurements of the strong coupling constant ag for different energy
scales  (points) and a QCD calculation (lines). The plot is taken from [6].




1.2. Why do we perform heavy-ion collisions?

For physicists this was one reason to perform heavy-ion experiments. In a nuclear
collision the nuclear matter is highly compressed, leading to high temperatures and
baryon densities. This phenomenon is depicted in Fig. [I.2] where one can see that
heating up nuclear matter leads to an overlap of the individual nucleons and than
above some critical temperature 7T, to a medium of quasi-free quarks and gluons.
This medium is called a Quark-Gluon-Plasma (QGP). With heavy-ion collisions
this matter, which has a temperature of more then 10° times the temperature of the
Sun’s core, becomes accessible in the laboratory.
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Figure 1.2: The picture shows what happens to nuclear matter if it is heated
up/compressed. At low temperatures/densities (left) the quarks are confined inside
the nucleons. If the temperature/density increases the nucleons start to overlap
and above some critical temperature/density the quarks of individual nucleons are
so close to each other that they are quasi free in the medium (right). This illustration
is inspired by [7].

In the following two subsections we will have a closer look at two very important
applications of results from heavy-ion collisions.

1.2.1 QCD in the early Universe

As we know today, the Universe was filled with a QGP for a short time after the
Big Bang. The temperature was too high for the formation of hadrons. Therefore,
the small droplet of QGP created in heavy-ion collisions is a direct probe of matter
in the early Universe. In analogy to the Big Bang a heavy-ion collision is often
called Little Bang. Heavy-ion collisions are one tool to directly obtain information
about the matter in the early Universef] One of the most important results from
the studies of heavy-ion collisions is that the QGP is a liquid. In the QGP there
are no hadrons, but only quarks and gluons. These are strongly coupled to their
neighbors.

3A long time it was believed that heavy-ion collisions are the only way to obtain information
about primordial QCD matter, as there was no first order phase transition that could have lead to
fluctuations on length scales larger than the fm-scale and leave an imprint in the visible Universe
today. However, it was pointed out by Schwarz in Ref. [§] that a drastic change in the degrees
of freedom caused by the QCD transition leaves an imprint in the gravitational-wave background,
which could be detected by pulsar timing arrays.




1.2. Why do we perform heavy-ion collisions?

An important finding was that the liquidness of the QGP characterized by the
shear viscosity to entropy density ratio 7/s is close to the theoretical lower bound of
1/4m. This bound can be computed in infinitely strong coupled gauge theories that
are akin to QCD and have a dual gravitational description in a 4+41-dimensional
Anti-de-Sitter space.

1.2.2 The phase diagram of QCD

The equilibrium phase diagram of QCD matter (Fig.[1.3) as a function of temper-
ature 1" and baryon chemical potential up is a second important reason to study
heavy-ion collisions. For the early Universe as well as for the mid-rapidity regions

A
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Figure 1.3: The equilibrium phase diagram of QCD matter as a function of tem-
perature T and baryon chemical potential up. The graph was inspired by the phase
diagram in Ref. [9].

of high energy heavy-ion collisions the approximation pug = 0 is applicable, where
a smooth crossover from QGP to hadrons takes placeﬁ This crossover is indicated
by the gray line in Fig. [1.3] To study QCD matter with higher ug, i.e., an excess of

4For heavy-ion collisions the concept of rapidity y, which is additive under boosts in the beam
direction, is used instead of the particle speed in units of the speed of light. The rapidity is defined

by
1 Ep+p|>
y=-In ( , 1.1
2 Ep —p (L)

where Ej is the energy and pj the three-momentum in the longitudinal (beam) direction of the
emitted particles. For the highest energies the masses of the particles can be neglected. Then one
can define the pseudorapidity n as

n= I <|M+p') . (1.2)

2 Pl — P




1.3. History of a heavy-ion collision

quarks over antiquarks, would be possible if the detectors could measure the debris
of the collision at very high rapidity. Due to the construction of the present detec-
tors this is not possible. Another possibility to increase ug is to perform collisions
at lower energies and scan the phase diagram in the BES I and BES II programs at
RHIC. With the collisions at lower energies one wants to answer the question if the
crossover turns into a first order phase transition line for larger values of pg which
has a critical point at its end. Within QCD there exist models that predict such a
critical point but accessing the region with higher ug/7T using lattice calculations
suffers from the sign problem and problems with the continuum limit. Up to today
there is no proof of existence for a critical point but there are strong motivations to
answer this question in the next years when the statistics of the observables proposed
for the critical point is sufficient.

The region of small temperatures and high baryon chemical potential is some
state of matter where it is not made of separate nucleons. They are brought together
so close that they can form a color superconductor, where the quarks form pairs
analogous to Cooper pairs in solid state physics. Lab experiments at such high ug
are not possible. The only place where such high densities could exist in the Universe
is in the center of neutron stars. Measurements of gravitational waves from neutron
star collisions will give information about transport properties of cold dense quark
matter in the future.

Indeed, this equilibrium phase diagram is not the whole truth. There exist
also theories which tell us that we do not measure the matter in thermodynamic
equilibrium. It is possible to obtain effects measured in experiment also in models
where no equilibration happened. One prominent example for heavy-ion collisions
is elliptic flow [10] ]

So in general the phase diagram shown in Fig. has to be taken with a grain
of salt. At the moment the only confirmed parts of it are the cross over line and the
nuclear liquid-gas transition line. All other lines might turn out to not exist or their
positions in the diagram might change in the future. There is still a lot to explore.

1.3 History of a heavy-ion collision

In heavy-ion physics the only certainly known things about the initial state is the
type of the colliding nuclei and the collision energy. Much later in QCD time scales,
the particles are measured in the detector. The problem here is that the detectors
cannot cover the full solid angle and neutral particles are not measured. Neverthe-
less, the community of heavy-ion physics researchers developed theoretical models
to extract a whole range of information from the measured particle spectra.

In the following we will shortly go through the stages of the established spacetime
diagram shown in Fig. [[.4

At the bottom of Fig. [[.4] the two nuclei are approaching each other at almost
the speed of light, which causes a Lorentz contraction in the longitudinal direction.
The collision is happening at ¢ = 0 fm/c, when the nuclei start to interpenetrate.
Then individual collisions of the nuclei constituents happen. Nucleons which do not

5The concept of elliptic flow will be introduced in Sec.
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Figure 1.4: Spacetime evolution of a heavy-ion collision. First the pre-equilibrium
stage (1), then the quark-gluon plasma (2), the chemical freeze-out (3) and the
thermal/ kinetic freeze-out (4). The z-direction is the longitudinal (beam) axis.

collide, e.g., if the nuclei perform a peripheral collision, are called spectators. All
nucleons colliding at least once are called participants.

By passing through each other the nuclei leave behind a debris of excited matter
which further expands into the longitudinal direction. In this phase the system is
far away from local thermal equilibrium, but from phenomenology we know that
at a time of the order 1 fm/c [5] the plasma is so close to equilibrium that a fur-
ther evolution of the system can be described by viscous hydrodynamics.ﬁ This is
indicated by the first stage in Fig. [1.4] where different models exist for the descrip-
tion. In the string decay picture the nucleons form color strings while passing each
other. These energy carrying strings can decay into quarks and gluons or directly
into hadrons. At very high energy this model breaks down, as the strings start to
overlap and cannot be seen as different entities. Then there is the parton cascade
model, where nuclei are modeled as collections of quarks and gluons which perform
hard scatterings, described by a relativistic Boltzmann equation including dominant
perturbative QCD interactions. As perturbation theory breaks down for collisions
at low momentum transfers, the model is only applicable for high-energy heavy-ion
collisions. In the Color Glass Condensate description (CGC), a small coupling ag
is assumed due to the rapidly rising gluon density for small length scales. It is as-
sumed that the hadrons at very high energy consist of densely packed gluons with
color charges evolving slowly compared to other time scales in the collision process.
In the Lorentz contracted nuclei color electric and magnetic fields are produced,
which form sheets in the transverse plane. By flying through each other these sheets
produce longitudinal fields and a medium which is called glasma. Compared to the
string model, here only color electric fields are present, which can decay back into

SFurther details about the process of thermalization can be found in the review [11] by Schlicht-
ing and Teaney.
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1.3. History of a heavy-ion collision

gluons in a pair creation process. The pre-equilibrium stage can then be further
evolved in time by the assumption that the coupling is weak and effective kinetic
theory is applicable until the system is (nearly) thermalized.

If the momentum distribution of the system has almost isotropized, viscous rel-
ativistic hydrodynamics can be used as an effective theory to describe the further
time evolution of the QGP until the freeze-out temperature is reached and hadrons
are formed. Relativistic hydrodynamics as an effective theory simplifies the descrip-
tion of the system with the cost that one needs an equation of state to close the
set of equations. Lattice QCD can provide this equation of state and connect first
principle QCD calculations with the effective description. Over the last years rela-
tivistic hydrodynamics has been very successful in describing the collected data in
experiments, especially the anisotropic flow signals. Hydrodynamics is one possible
description to convert anisotropies in position space into anisotropies in momentum
space, which is needed to explain the anisotropic flow signals. Due to the low 7/s
the momentum anisotropies in the medium survive the further evolution. Instead
of using the usual versions of relativistic hydrodynamics, which assume a perfect
isotropic local thermal equilibrium, there is also the possibility to apply anisotropic
relativistic hydrodynamics starting at even earlier times, when the transversal pres-
sure Pr is much larger then the longitudinal pressure Pp, in the local rest frame of
the QGP. The framework of anisotropic hydrodynamics (aHydro) was first derived
in 2010 in two independent papers from an anisotropic distribution in momentum
space by Florkowski and Ryblewski [12] and Martinez and Strickland [13]. It was
additionally shown in [13] that this framework can reproduce the ideal hydrodynam-
ics limit, where /s = 0 and the free-streaming limit, where /s = oo. For P, = Pr
viscous hydrodynamics is recovered. Another possibility in which the knowledge of
the thermalization or hydrodynamization time is not required is the usage of rela-
tivistic kinetic theories like the Boltzmann equation for the whole evolution. Using
the Boltzmann equation is in general more complicated than the effective theory of
relativistic hydrodynamics and computationally more expensive.

After the chemical freeze-out, which is defined as the moment when the particles
in the system stop interacting inelastically, they can still interact elastically and
exchange momentum. Dominant elastic processes are, e.g., T+ 7 — p — 7 + 7,
T+ n — A — 1+ n and strong decays of more massive resonances.

The thermal or kinetic freeze out is the point in the evolution of the QGP, where
the hadrons will not interact any more.|Z| At this point the strongly coupled system
transforms to a weakly coupled system with actually free-streaming particles. If the
time scale of the particle interaction overcomes the time scale of the expansion the
kinetic freeze out happens. In reality the kinetic freeze-out does not happen at a
hypersurface but in a spacetime volume, as particles with different cross sections
have different freeze-out points.

At the end of the evolution the particles are detected and identified in a variety of
different detectors. The momenta and charges are determined and then traced back
by computer algorithms to determine the trajectories. Calorimeters measure the
particle energies and the spatial tracks are measured by time projection chambers,

"The denomination “thermal” is due to the fact that the freeze-out is a fast process and the
momentum distributions of the non-interacting particles does not change any more.




1.4. What can we observe from heavy-ion collisions?

where the charges are determined with the help of strong magnetic fields. The
properties of the detectors are very important for the comparison between theoretical
calculations and experimental results, as the detectors cover only a finite rapidity

region and low energy particles are not able to penetrate the vacuum vessel, leading
to a low energy threshold for the detection.

1.4 What can we observe from heavy-ion colli-
sions?
In this section we want to go through the different types of observables in heavy-ion

collisions, which can give us insight into the QGP. The origin of these observables
depending on temperature is depicted in Fig. [1.5
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Figure 1.5: The origin of the observables in a heavy-ion collision as a function of
temperature. The figure is strongly inspired by [14].

1.4.1 Photons

Photons belong to the group of electromagnetic probes. They are important ob-
servables as they only interact electromagnetically. In the evolution process of a
heavy-ion collision photons are emitted during the whole time. For the characteri-
zation of the QGP one is only interested in the photons produced through collision
processes, i.e., direct photons. In experiments it is hard to distinguish between the
direct photons and the background produced by hadronic decays. Photons are in-
teresting in that they can be generated in the pre-equilibrium phase. The difficulty

is to distinguish them from the thermal photons produced in the phase where the
QGP is locally equilibrated.
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1.4. What can we observe from heavy-ion collisions?

1.4.2 Jets and heavy flavor

During the initial hard scattering processes massive particles like quarkonia, e.g.,
charmonia (c¢) or bottomonia (bb) can be produced. Another possibility is the
creation of a jet, which consists of two or more quarks or gauge bosons with very
high transverse momentum pTﬁ In heavy-ion collisions the jets shoot through the
expanding medium which gives information about the whole evolution of the QGP.
For quarkonia this is also the case.

1.4.3 Anisotropic flow

The azimuthal particle distribution of the emitted particles is one of the most impor-
tant observables in heavy-ion physics. If two nuclei collide with a non-zero impact
parameter, then an anisotropic medium in the participant region in position space
is produced. During the evolution of this anisotropic medium the collisions between
constituent particles of the QGP translate the spatial anisotropy into a momentum
anisotropy. This momentum anisotropy is called anisotropic ﬂowﬂ The final state
momentum anisotropy of the invariant particle distribution is usually decomposed
into a Fourier series as [15]

d3N d3N 1 d2N © .
Ep—— = =5 > vnlpr,y)e e,
d°p ppoTdSDpdy 27 ppdprdy n=—oo

(1.3)
where W, is the n-th “event-plane” angle. In this work we assume that the events
considered do all have the same impact parameter. In experiments this is not pos-
sible to realize, such that the concept of centrality is introduced, which is presented
in Sec. A direct measurement of W,, is not possible, but there exist some
methods to extract it from the data. The first proposed method by Ollitrault had
the disadvantage of introducing some unwanted correlations [16},/17]. This problem
was solved by the methods of Borghini et al., which use multiparticle-cumulants [18]
or Lee-Yang zeros [19].
The (differential) anisotropic flow coefficients are given by

= (o) 1.4
on(pr,y) = (e >p (1.4)
AN .
/ em(ﬁop—‘I’n) dSOp
_ J prdprdppdy (15)

/ d3N q
prdprde,dy op

Notice that the particle distributions are real valued such that v_,, = v;'. Integrating

8The transverse momentum is the momentum in the plane perpendicular to the beam direction.
In principle one could use the absolute value of the three-momentum, but particles with large
longitudinal momenta can not be detected, as they are to collimated with the beam.

9The denomination “flow” is due to the fact that hydrodynamics naturally translates spatial
anisotropies into momentum anisotropies for small transverse momenta.
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over the rapidity as well as the transverse momentum gives the integrated flow v,,:

inWv, — inyp
Upe <e >p (1.6)
d3N .
/ ——————"%® prdppdppdy
prdprdppdy (1.7)
prdprdgydy TTHTR

The coefficient vy is called directed flow, vs elliptic flow, v3 triangular flow, etc., as
there exists a geometrical interpretation which becomes more obvious if the spatial
eccentricities are introduced for the initial state in Sec. 2.4.1]

1.4.3.1 Centrality

The impact parameter of a nucleus-nucleus collision is not a direct observable in
experiments. However, it is an important quantity as it controls the geometric size,
shape and the orientation of the transverse overlap zone. For an estimation of the
impact parameter a simple estimate can be obtained by measuring the multiplic-
ity, i.e., the amount of particles emitted from the collisionm

In Fig. [I.6) we see a schematic multiplicity distribution, i.e., the likelihood that
an event produces Ny, charged hadrons. The distribution has a similar shape as
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Figure 1.6: Schematic example (no measurements) of the charged hadron mul-
tiplicity correlation with the impact parameter b and the number of participants
Npart.. The plot is taken from [20].

the experimentally measured ones. We assume that the impact parameter is mono-
tonically related to the multiplicity at mid- and forward rapidity. If the impact

10This measurement is typically performed in a (pseudo-)rapidity window, as the detectors do
not cover the whole solid angle.
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parameter is now large, then the event is “peripheral” such that the number of par-
ticles at mid-rapidity is small and there is a large number of spectators at beam
rapidity. On the other side, if the impact parameter is small, then the event is
“central” and we expect many particles at mid-rapidity, so few spectator nucleons
at beam rapidity.

In practice the charged particle multiplicity is measured for an ensemble of events
and then the total integral of the distribution is computed. Afterwards the distri-
bution is binned into fractions of the total integral (dashed lines in Fig. show
examples).

From the theoretical side one can use a Glauber model to compute the same
distribution with the same binningH This gives the possibility to relate the mean
number of participants (Npat.) or the impact parameter to the experimentally de-
rived centrality classes[?

1.4.4 Femtoscopy

Adapting a method to measure the spatial extent of stars called Hanbury Brown-
Twiss (HBT) interferometry, one can extract the HBT radii from two-particle corre-
lations. With these HBT radii one can characterize the size of regions of homogeneity
in the kinetic freeze-out volume.

1.5 Why is this work important /necessary?

In this thesis we want to address the question how fluctuations in the anisotropic
flow coefficients are related to fluctuations in the initial state energy density. This
question is of great importance, because in heavy ion collisions only the final state
is directly measurable. Everything that happens before and what is known about
the created QGP medium so far was deduced from the observation of the final state.
The second known thing is, up to a certain degree, the very initial state of the
collision. Here, the knowledge is limited to the beam energy and the ion type of the
experiment. A complete (quantum mechanical) characterization of the incoming
nuclei is not yet possible, as this is a quantum many-body system. Therefore,
physicists came up with different models for the initial state of the collision and how
the QGP medium is propagated in time. These models are able to reproduce many
of the features seen in the data. Using these models and bringing the fluctuations
of anisotropic flow in relation to the fluctuations in the initial state energy density
can give us a new method to extract information about the initial state of heavy-ion
collisions indirectly.

1 The Glauber model will be introduced in Sec.

12In reality the situation is more complicated by event selection methods, uncertainties in the
total measured cross section, fluctuations in the distributions and finite kinematic acceptance of
the detectors. The interested reader is referred to Ref. [21] for more details.
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Chapter

Modelling the initial state of the
heavy-ion collision

A theory has only the alternative
of being right or wrong. A model
has a third possibility: it may be

right, but irrelevant. — Manfred
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In Sec. we want to introduce the Monte Carlo (MC) Glauber model which
has been very successful in heavy-ion physics to describe geometric quantities like
the impact parameter b, the number of participating nucleons Npa. or the number
of binary nucleon-nucleon collisions N, and can serve as an initial condition for
simulations. Therefore, we mainly follow the review and the books . Then
we will shortly discuss how to generate energy-density profiles from the MC Glauber
quantities (Sec. and introduce a second initial state model — the Saturation
model — more related to QCD (Sec. [2.3).

Afterwards, we will discuss two possibilities to characterize the initial state via
spatial eccentricities and Bessel-Fourier coefficients in Sec.
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2.1. The Glauber model

2.1 The Glauber model

The original version of the Glauber model was developed in the 1950s and used
quantum many body techniques to solve scattering problems of high energetic com-
posite systems analytically. Therefore, the assumption is made that the scatterers
have such a high energy that their wavelengths are much longer than the inter-
action range. Thus, the incoming particle only deviates little from its path such
that the problem can be solved using small angle approximations. This assumption
that the nuclei and their constituent nucleons move along straight lines, even during
the interaction between the two nuclei, defines an interaction zone for each impact
parameter of the two incoming nuclei.

2.1.1 Optical Glauber model

Within the original Glauber model one can write down analytical expressions for
cross sections, the number of collisions or the number of participating nucleons
in the colliding nuclei. The Glauber model needs two important inputs from the
experiments. First, the nuclear charge density distributions, which are measured
via electron scatterings in low-energy scattering experiments. Second, the energy
dependence of the inelastic nucleon-nucleon cross section is needed.

For large nuclei the nucleon density can be parametrized by a Fermi-/Woods-
Saxon-distribution [22] with three parameters:

_n(ee@)

p(r) = 1+ exp <%)

(2.1)

The parameter pg is the nucleon density at the center of the nucleus, R the radius
and a is the “skin depth”. The parameter w takes radial distortions from spherical
shape into account [20]. For Pb collisions this parameter is not relevant, as the
nucleus is sphericalﬂ Additional deformations for prolate or oblate nuclei could be
taken into account by additional spherical harmonics in the exponential.

For the second input, i.e., the inelastic nucleon-nucleon cross section oilg!, we
cannot rely on theoretical calculations from perturbative QCD. The reason is that
the cross section includes processes with low momentum transfer, where perturbation
theory breaks down.

In the following we consider two nuclei, A (target) and B (projectile), moving
along the z-direction and colliding with an impact parameter b. If we now select a
tube along the z-axis displaced by s from the center of nucleus A, then s — b is the
distance from the center of nucleus B. Assuming now that the nucleons move along
straight lines, the tubes along the z-axis will overlap in a collision of the nuclei. We
can calculate the probability per transverse area to find a nucleon inside the tube
of nucleus A/B by [20]

Tup(s) = /ﬁA/B (S7ZA/B) dza/B, (2.2)

LOne example, where w deviates from zero is for O nuclei.
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2.1. The Glauber model

which is called “thickness function”. The hat indicates that the nucleon density from
Eq. is normalized to unity, giving the probability per unit volume for finding a
nucleon at the position (s, ZA/B). Thus, T (s) Ts (s — b) d2s is the joint probability
to find a nucleon in the tubes with area d?s. An integral over all displacements s
leads then to [20]

Tag (b) = / T4 (s) T (s — b) d2s, (2.3)

which is called “nuclear overlap” function and has units of an inverse length squared.
Considering only inelastic collisions, which have a larger energy loss than elastic
inel

ones, leads to an interaction probability given by 7 (b) i, The probability for n
interactions is expressed through a binomial distribution [20]

p(00) = (A7) [T (0) o8] [1 = Tan 0 o8]

, (2.4)
where A and B denote the nuclei as well as their nucleon numbers

From this we can now compute the total number of collisions at a given impact
parameter using [20]

Neor. Z np(n,b) = AB Tugs (b) oinel. (2.5)

All interacting nucleons are either called “participants” or “wounded nucleons”. At
a given impact parameter this number is given by [20]

N (b) =A / T (s (1 —[1 = Tu (s — b) o] > d2s (2.6)
+B/TB (s — D) (1— (1= T (s) o8] ) &s. (2.7)

2.1.2 Monte Carlo Glauber model

In contrast to the optical Glauber model, which is based on a continuous density dis-
tribution, the MC Glauber model uses the nucleon density distribution in Eq.
to sample the nucleon positions. The appealing thing about this numerical approach
is its simplicity.

Using Eq. the nucleon positions for nucleus A and B are sampled. In the
next step the impact parameter is sampled according to the distribution do/db =
2mb. Note, that for many results presented in this work the impact parameter is
fixed. The centers of the nuclei are then shifted to (—b/2,0,0) and (b/2,0,0) along
the z-axis. Assuming now that the collisions of the nucleons are independent of each
other and that they move in straight lines (optical approximation) along the z-axis,
a collision takes place if

inel

d< UI;N (2.8)

2The first part gives the number of combinations for n collisions out of AB possibilities for
interactions between nucleons. The second and the last part give the probability for exactly n
collisions resp. AB — n misses.
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2.1. The Glauber model

d is the distance between the two nucleons, which are checked for a collision, and
ol is again the total inelastic nucleon-nucleon cross section. Thus, we need the
same initial information as for the optical Glauber model.

To improve the model, one can include a minimum separation distance of the
nucleons to mimic the Fermi repulsion of the nucleons. Another possibility is to use

two different distributions for protons and neutrons in neutron-rich nuclei emulating
the neutron skin effect [23].

2.1.3 Comparison of the optical and the MC Glauber model

We can now compare the results of the optical and MC Glauber model as a function
of the absolute value of the impact parameter in Fig. As an example system we
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Figure 2.1: N and Npar. for the optical Glauber model (full lines) compared
to 105 MC Glauber events (histograms). The black points indicate the impact
parameter bin averaged values of the MC Glauber results.

have chosen Pb-Pb collisions at /syxy = 5.02 TeV with olfg! = 67.6 mb [24]. In the
MC Glauber model 10° of these events were sampled and their Npart. and Ngopp. are
displayed as histograms. To simplify a comparison with the optical Glauber model
the MC Glauber results were binned and the values were averaged in bins of 0.5 fm
width. The error bars, which are smaller than the points, were calculated with a
delete-d Jackknife algorithm (see Appendix . The optical results are given by
the full lines using Neon. (|b]) (Eq. ) and Npart.(|b]) (Eq. ) implemented in
a Mathematica notebook by Klaus Reygers [21].

We find that there is an overall good agreement between the optical Glauber and
the MC Glauber model. For N .. the averaged bins and the full curve nicely agree.
Looking at Npar. We can see that there is also a good agreement between the two
models.
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One may notice small deviations for N for central collisions of for Ny at
intermediate values of the impact parameter. It was checked that the minimum
nucleon separation d,;, introduced in the MC Glauber model has not a noticeable
influence on the results. An explanation for the differences might be that in the
optical Glauber model the opacity of the nuclei is encoded in the cross section. This
is also the reason why for perfectly central collisions the number of participants is
less then 2A which one would naively expect. In the MC Glauber there are also
nucleons which do not collide in a central collision. Additionally the skin depth
of the nuclear distribution is an important parameter for the differences between
the models. Nucleons sampled far away from the center do not have the same
probability to undergo a collision as the ones in the center. This causes some sort
of radial dependence of the nuclear opacity and thus could explain our findings.

2.2 Generating energy-density profiles from the
MC Glauber model

We will now discuss how to produce an initial energy-density profile from a MC
Glauber model which is either used as initialization for a pure two-dimensional
evolution or a longitudinally boost invariant one.

Assuming that the nuclei have been sampled and shifted according to the criteria
in Sec. 2.1.2) we go now a step further then in the previous part, where the number of
participating and colliding nucleons were simply counted globally. For the generation
of a density profile it is however important at which position (x,y) the interaction
— and therefore the energy deposition — happens. This is why we introduce a
two-dimensional grid with spacing of 0.1 fm. On this grid we store the local number
of participating nucleons Ny (z,y) using the grid points closest to the nucleon
centers. For the local number of collisions Neop (x,y) we use the grid point which is
closest to the halfway point between the two colliding nucleons.

Using these two fields we can now use the ansatz that the initial energy den-
sity profile is proportional to a linear combination of soft processes, represented by
Npart.(z,y) and hard processes, represented by Neon (z,y) [23]E|

Npart.(-r7 ?J)
2

using an amount of o = 0.2 hard scatterings. Representing such an energy den-
sity profile graphically reveals that it consists of multiple delta distributions located
at the grid points and it has large differences between neighboring points. Such a
delta-like profile is not useful for a further dynamical evolution, as the large gradients
would lead for example to shock fronts in the hydrodynamical evolution. To obtain a
smooth profile, we employ a Gaussian smearing o exp [{(z — 2;)? + (v — y;)*} /(20?)]
of eq at each point (z;,y;), where we use a typical width of o = 0.4 fm [25]. Now we
have a smoothed density profile e(z, y) suitable for the dynamical evolution, which is
needed to fix the proportionality constant in Eq. such that the charged hadron

eq(z,y) x (1 —«) + aNeon. (7, ) (2.9)

3In principle one can initialize an energy density or an entropy density with a linear combination
of Npart.(z,y) and Neon. (x,y), as they can be related by the QCD equation of state.
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multiplicity in central events is matched after the identification of e(x,y) with the
energy density at midrapidity

dE

_ . 2.1
Tod2xdn =0 (2.10)

e(r,y) =
The parameter 7 is the initialization time of the system leading to densities in units
of GeV /fm®.

2.3 Saturation model

The initial-state model which we will describe in this section goes one step further
than the Glauber model introduced above. Instead of looking at nucleonic degrees
of freedom, it goes deeper into the structure of the individual nucleons and acts on
the partonic level, such that it can be used for proton-proton collisions as well.

As we only consider high-energy heavy-ion collisions we can use the CGC ef-
fective field theory for QCD at high energies [26,27]. This theory describes cross
sections (and other inclusive observables) in all kinds of colliding systems by using
correlators of light-like Wilson lines VXE| The most basic one of these correlators is
the fundamental color dipole

1
Diyn (2,1, b) = A <tr

C

Vb+gVJ_g]> (2.11)

describing the scattering of a color dipole off a hadronic target, as depicted in
Fig. |E| There a virtual photon fluctuates into a quark antiquark pair which

p p
Figure 2.2: Interacting color quark antiquark dipole with a proton. Adapted
from [28].

then probes the proton. The quantity z is the longitudinal momentum fraction of
the photon carried by the quark.

For this initial-state model we use the Golec-Biernat and Wisthoff (GBW)
parametrization of the fundamental color dipole [29]

2 (x,b)r2>

Dgyn(z,r,b) = exp (— s.fun : (2.12)

4A Wilson line can be seen as a connection between two spacetime points to make derivatives,
which act on two positions, gauge invariant.

®The notation (-), denotes an average over a fixed value of the Bjorken z < 1. N, denotes the
number of colors.
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2.3. Saturation model

where QZ ;,,, (z, b) is the fundamental saturation scale. This saturation scale depends

on the Bjorken 2 and the transverse position b within the nucleon or nucleusff] It
can be parametrized by

2 alz,b) = Q3 () 00Ta(b), (2.13)

where Qg’p(m) is the average proton saturation scale which obeys the condition

2.(x) = 05" [d?b Q% (x,b) and T4(b) is the nuclear thickness function we have
introduced in Sec.

Using then a MC Glauber model to sample the nucleon positions inside a nucleus,

we can compute the thickness function of a nucleus by

T4(b) = ZTp(b —by), (2.14)

where the sum runs over all nucleons in the nucleus and 7T,(s) is the thickness
function of a proton approximated by a Gaussian [30]:

1
e 77, (2.15)

TP(S) = 27TBG

Bg = 4 GeV™? is the width of the gluon distribution from HERA fits [28,31]. The
0o = 27 B¢ is chosen such that the factor ooT4(b) in Eq. counts the effective
number of nucleons at the transverse coordinate b. The average saturation scale of
the proton can be parametrized by

Q@) = Qe M1 - ), (2.16)

where Qg’m A and 0 can be extracted from fits to DIS data.

Due to geometrical fluctuations the impact parameter, and therefore the overlap
of the gluon distributions vary in p + p collisions. As the impact parameter fluc-
tuation distribution can not be computed using first principles, it is convenient to
use an eikonal approximation. There the overlap of two protons at a given impact
parameter b = |b| is given by

1 b2

¢ G | (2.17)

Tpp(b) - 4’/TBG
An explicit calculation of the overlap function 7),,(b) is given in Appendix

For the inclusive deep-inelastic scattering cross section at leading order it is
sufficient to use the fundamental dipole (Eq. (2.11)). This is not enough when it
comes to energy deposition in hadronic collisions. Then the un-integrated gluon
distribution defined by

m(Ne —1)

CI)(U) (:L', b, k) = g2

D{)(z,b,k) (2.18)

6Within the description of inclusive deep inelastic scattering data the b dependence is often
neglected. For our purpose it is of course extremely important if we want to compute the energy
deposition in a heavy-ion collision.
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2.3. Saturation model

with D (x k,b) the Fourier transformed ad301nt dipole distribution

DY) (2, b, k) / d2r N2 -t [VRt vl e (2.19)
is used. In the GBW model the un-integrated gluon distribution is given by [29]
N2 1 K2 _#
Py (2, b, k) = 47 e Teagi®P (2.20)
2N Qs adJ( )

while assuming a Casimir scaling of the fundamental color dipole distribution with
2adj(@,b) = (Ca/CF) Q2 1,n(,b) denoting the adjoint saturation scale.m
In hlgh energy QCD an appropriate tool to compute the initial energy deposition
in a heavy-ion collision is the CGC effective theory which computes the solutions
of the classical Yang-Mills equations. If additionally saturation effects in one of the
colliding nuclei are negligible, then there is a kp-factorization of the gluon spectrum
of the initially produced gluons per unit transverse area [32,33|

ng . Ckch
d?bd?Pdy  mP2(N2 - 1)

d*k
/ (27r)2(I)A(£L‘A, b+ by/2,k)®Pg(xp, b —by/2,P — k).
(2.21)

In leading order kinematics we use x4/p = Petv/ v/snn and the un-integrated gluon
distributions ® 4,5 (Eq. ) of the nuclei A and B. The vector bg is the impact
parameter of the collision and ag = ¢*/ (47r)E|

Integrating out the transverse momentum dependence P one can obtain the
initial state energy per unit rapidity with

TdE dN,
=(——| = [P |Pl——L ) 2.22
(e~ ( dedn)o [P Pl (222

The x dependence of the un-integrated gluon distributions within the GBW model
can be approximated as
Qs,a/8(x, Ta/p(b))e™?

r = . 2.23
e (2.23)

This parametrization is similar to the one in the IP-Glasma model and it leads to

(NZ - 1) Q4Q% 4 2 12 4

PN Pt O [QQAHQAQBHQB} (2.24)
for the initial energy per unit rapidity, while using Eqgs. and - to obtain
a self consistent solution of Q, 4/5(x,b). As the result in Eq - is computed
in leading order, we allow for an additional rescaling factor K of order 1. A more

extensive derivation of Eq. (2.24) is given in Appendices A.1.3, where we also
comment on the self consistent solution of Eqs. (2.13) and (2.23|) (Appendix [A.1.4)).

In Appendices [A.1.5HA.1.6] we discuss how the number of participants is com-
puted, which is used in the code to characterize if an interaction has happened and to
accept the sampled event. This is especially important for proton-proton collisions,
small systems or peripheral events.

(eT)o =

"The Casimir operators are given by C4 = N. and Cr = (N? — 1)/(2N,).
8From numerical simulations it is known that higher order saturation corrections to Eq. (2.21)
are small, especially at high momenta [33}34].
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2.4. Characterization of the initial state

2.4 Characterization of the initial state

The initial state energy density in the transverse plane can be characterized in
different waysﬂ First, the characterization via eccentricities, where the definition
is quite similar to that of anisotropic flow. Second, with Bessel-Fourier coefficients.
With the latter method it is also possible to characterize the initial density profile
in much more detail depending on the number of coefficients used in the expansion.

2.4.1 Spatial eccentricities

The eccentricity of any spatial distribution in the transverse plane is defined by |36}
38|

/r?’ei@ (r,0) rdrdd <7,3616>

&‘xeiq)l = _ — _ x’
' /rgf(r, ) rdrdd ()
| (2.25)
' /r”e‘"ef(r, 0) rdrdd <7~”€i”9>
gXelndn = — =— X (n>1),

/r”f(r, 6) rdrde ()

where ¥ is the absolute value of the spatial anisotropy and ®,, is the participant
plane (PP) angle with respect to the reaction plane (RP) as depicted in Fig. [2.3 for
the case n = 2. It is important to note that this formula considers the spatial distri-

TRP

Figure 2.3: Two overlapping spherical nuclei (blue) in the reaction plane (RP).
Since the nuclei are made of nucleons with fluctuating positions they can form for
example an elliptic shape (red) characterized by €% in the participant plane (PP),
which can be rotated with respect to the RP by an angle ®,.

bution f centered around its mean already.ﬂ In practice the distribution function

9In this work we initialize our simulations with an energy-density profile. Initialization with
an entropy profile is also performed by some groups, as the entropy is related to the amount of
produced particles in the final state [35].

OFrom this we can follow a vanishing ¥ immediately if one would use the lower definition in
Eq. . Thus, its definition differs from the one for the higher harmonics.
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2.4. Characterization of the initial state

f can be for example an energy density, entropy density, particle-number density or
even an enthalpy density profile. The momentum part of the distribution is already
integrated out. That means that the single particle distribution function f(¢,x, p)
which is considered in later chapters will be integrated over the whole position and
momentum space.

Another way to modify the given definition is to introduce eccentricities which
have a larger radial weight if one wants to investigate core-corona effects. Higher
powers in r would then lead to a higher sensitivity to the deformations in the outer
regions of the given distribution.

The eccentricities of 10* MC Glauber events for different impact parameters are
shown in the left panel of Fig. 2.4] In contrast to an optical Glauber model the

—— n =2, optical x % ¥ n=2 xx"x
%

——— — 3 *x

0.51 n = 4, optical N 9 0.6 n=23 N xxx %
¥ n=2 n=4 Ve
*
0.41 n=3 * 0.5 ¥ n=5 y
n=4 *
. ¥ =5 * %
72031 n= 720.41 "
L L x
*
021 X e el 0.3 " *
>
* *
041‘ § %X R 2 // 0.2 % x »*
/ ¥ X

0.0{ —<Z=-""" s 011 % % %

0 5 10 15 0 5 10 15

b [fm] b [fm]

Figure 2.4: The mean of the absolute values of the spatial eccentricities (¢X) with
n € {2,3,4,5} for different impact parameters of 10* MC Glauber events (left panel)
and the same amount of events generated with the Saturation model (right panel).
The error bars are generated with a delete-d Jackknife algorithm. In the left panel
the full and the dashed line show the absolute values of the ¥ resp. e signal in
the optical Glauber model.

eccentricities do not vanish for b = 0 fm, as the positions of the nucleons are fluc-
tuating. Additionally the odd eccentricities, which vanish by symmetry arguments
in the optical Glauber model, are non-zero in the MC Glauber model as well. (£¥)
is the smallest eccentricity at b = 0 fm, as the overlap of the nuclei is more or less
a circle with fluctuations. This is also why the higher harmonics have larger values
in this case. For small impact parameters it is less likely that the nucleon positions
fluctuate along only one direction. With increasing impact parameter the ellipti-
cal geometry of the overlap region becomes more and more prominent, resulting in
a large (¢¥) value and smaller spatial anisotropies of higher order. If we look at
the optical Glauber model we notice that the maxima of €¥ and € in the optical
Glauber model are at smaller impact parameter compared to the MC Glauber. This
effect can be explained by the nucleon fluctuations in the MC Glauber case. These
fluctuations can even at large impact parameters cause a large spatial anisotropy,
while in the optical case the elongation in the y-direction becomes smaller when the
impact parameter becomes larger, leading to a decrease in the ellipticity. The kink
in the €} curve around b ~ 14 fm is caused by a sign change. Our findings for the
comparison of the optical and MC Glauber model match the results in Ref. [39)].
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2.4. Characterization of the initial state

Comparing the Saturation model results (right panel) to the ones from the MC
Glauber model we find similar results at small impact parameters. For mid-central
or peripheral collisions the results differ in shape and magnitude. In the Saturation
model we obtain in general larger eccentricities for all harmonics, which coincides
with the findings in Ref. [40]. The maximum of ¥ is approximately at the same
b in both models, while the higher harmonics have their maxima at slightly larger
impact parameters.

2.4.2 Bessel-Fourier series

For a more accurate characterization of the initial state energy density the expan-
sion into a Bessel-Fourier series is appropriate. In contrast to the eccentricities,
which mainly capture the geometry in the azimuthal direction, the Bessel-Fourier
coefficients additionally contain information about the radial direction in the sense
of length scales on which different azimuthal harmonics occur.

To characterize the energy density in the transverse plane by a Fourier-Bessel
series, we follow Ref. [41] and introduce the orthonormal set of basis functions

1 r .
wi(r,0) = —0n——J, < i )e”‘@ 2.26
X,k (7, 0) T G o (2.26)

on a disk with radius rg, n € Z and k a positive integer. The function J, is the n-th
Bessel function of first kind and j, s is the k-th zero of the Bessel function. The
radius rg is the expansion radius in which the density is supposed to fall off to zero
for every point with r = rq. Eq. defines a complete orthonormal set of basis
functions on a space with the (complex) scalar product

21 ro
1
(a,b) = —2//(1(7“, 0)b*(r,0) rdrde. (2.27)
gy
Any given function f(r,#) in the transverse plane can then be expanded using

P =3 S Augxas(r0), (2.28)

k=1n=—o0

where the complex valued coefficients A,, ; are given by

Anje = (f(r,0), xnx(r,0)) (2.29)
_ erg J[ £,00x;.405.0) rara. (2.30)

For our applications the function f(r, 0) is the real valued energy density distribution
in the transverse plane, such that the coefficients obey A, = A*, ..

The interpretation of the Bessel-Fourier coefficients is straight forward. By the
value of n one can directly see which eccentricities are present in the decomposed
density distribution, as the exponential in Eq. gives a basis on L?*([0,27])
already. With the Bessel part in Eq. the radial direction is completely char-
acterized. Thus, displaying |A,, x| in the (n, k)-plane can give a very intuitive picture
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2.4. Characterization of the initial state

which eccentricities are present at which length scales of the decomposed density
distribution.

In the upper left panel of Fig. we can see an example event from the MC
Glauber model at impact parameter b = 0 fm. It has some distinct areas with

x 102
Y [fm] ]

x10° 75

D

2.5 s
£

0.0 4%
<3

—2.5 ©

-8 -6 -4 -2 0 2 4 6 8 ' -8 -6 —-4-20 2 4 6 8
Figure 2.5: The upper left panel shows the energy density of an example event
from the Glauber model at b = 0 fm (Pb-Pb, 5.02 TeV). All other energy densities
are reconstructed from the Bessel-Fourier coefficients A, with [n| < 5, k¥ < 5
(upper right), |n| < 10, k < 10 (lower left) and |n| < 20, k£ < 20 (lower right).

high energy density, so called “hot spots”, and some regions with very low en-
ergy densities, even close to the center. This density profile is very different from
the one generated by the overlap of two Woods-Saxon density profiles due to the
fluctuations in the nucleon positions. Decomposing this density profile with the
Bessel-Fourier series and reconstruct the profile with different upper bounds k..
and |npa| in Eq. results in the densities shown in the upper right, lower
left and lower right panel with kpax = |Pmax| = 5 resp. Kmax = |Pmax| = 10 resp.
kmax = |nmax| = 20 coefficients. We can see that with the lowest number of co-
efficients the main structures of the hot spots are resolved but they are not really
distinct structures. Including more coefficients leads to a better resolution of the hot
spots but one can see still some differences in the low density regions at the edges.
These are resolved for kpa.x = nmax = 20, where a difference between the original
and reconstructed profile is not visible by eye. As the Bessel-Fourier coefficients

26



2.4. Characterization of the initial state

fulfill the identity A, = A, ,, the amount of coefficients needed to reconstruct
the event is of the order of 420. This estimate is very conservative, as we can see
the absolute value of the coefficients in the lower left panel of Fig. [2.6] drops over
several orders of magnitude in the (n, k)-plane and thus many of the coefficients do
not really contribute to the reconstruction of the density. We find that there are
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Figure 2.6: The upper left panel shows the energy density of an example event
from the Glauber model at b = 9 fm (Pb-Pb, 5.02 TeV). In the upper right panel
the reconstruction with |n| < 20, k& < 20 is shown. The lower panel shows the
Bessel-Fourier coefficients A,, , for the example event at b = 0 fm (see Fig. on
the left and for the event at b = 9 fm on the right.

two large radially symmetric components Ag 1, Ap2 and then a variety of different
harmonics at smaller length scales, i.e., larger k-values. However, these are already
one or more orders of magnitude smaller, such that of the order of a few tens of
coefficients would be sufficient to store a reasonable approximation of the sampled
energy densityH

Going now to an event at impact parameter b = 9 fm shown in the upper left
panel of Fig. [2.0] we can see that the system is now much more elongated along
the y-axis. This matches the larger ellipticity ¥ from Fig. at larger impact
parameters compared to central collisions. In contrast to the optical Glauber model

HThe expansion of the energy density in a Bessel-Fourier series can be used as a data reduction
technique for initial state profiles. We will return to this in Sec.
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2.4. Characterization of the initial state

we can see a triangular structure as well, which is on a large length scale. The upper
right panel is again the reconstruction with kpax = [7max| = 20 which yields again a
result which is indistinguishable from the original density by eye. In the (n, k)-plane
(lower right panel) we can see again some large radial contributions but also for the
largest radial structures (kK = 1) we find a considerably large contribution for the
harmonics n = 2,3, which is exactly what we can see by eye in the density plot.
Another thing to notice is that the absolute numbers of the coefficients are smaller
than in the b = 0 fm case, which is due to the fact that the values for the density
themselves are smaller for the non-central collision.
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Chapter

Solving the Boltzmann equation

Nothing is more practical than a
good theory. — Ludwig

Boltzmann
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This derivation of the Boltzmann transport equation in Newtonian systems (Sec.
and in relativistic systems (Sec. is strongly inspired by the derivation in Ref. .
Sec. [3.3, which extends the classical Boltzmann equation to the relativistic one,
additionally uses Ref. . Before we derive the Boltzmann equation, let us have a
look in which limit the Newtonian version of kinetic theory is applicable in Sec. [3.1]
In the whole chapter we consider systems which consist of one particle species and
where particles are indistinguishableﬂ The reason why we introduce the Newtonian
kinetic theory first is that most of the concepts can be transferred to the relativistic

IThe generalization to a multi-component system is straight forward and can be performed by
using one distribution function for each particle species and for the exchange terms of the different
species.
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3.1. When is a quantum mechanical description necessary?

regime. In Sec. we will discuss how one can find numerical solutions to the
Boltzmann equation, in which we go into more detail on the Lattice Boltzmann
Method (LBM) in Sec. and the test particle method in Sec. [3.4.2]

3.1 When is a quantum mechanical description
necessary?

Kinetic theory describes the evolution of a system of N particles which can interact
with each other in the sense that they are freely moving and not bound in a lattice
for example. If we want the system to be described by a classical version of kinetic
theory, then the ratio Apg/l between the de Broglie wavelength of each particle and
the typical separation [ between the particles should be <« 1.E| Then the wave func-
tions evolve separately according to the Schrodinger equation like classical particles.
This is known as Ehrenfest’s theorem, which says that the N particles are described
by their positions and momenta which evolve due to the laws of classical mechanics.

3.2 Kinetic theory of Newtonian systems

Although the system could in principle be described by classical mechanics, this
approach is in the limit of large N not very practicable and it is therefore more con-
venient to switch to a statistical approach based on a distribution function f(t, Z, @)
depending on time ¢, position Z and coordinate velocity «. The distribution function
is the particle number density at time ¢ in the six-dimensional phase space (7, ).
All the dynamics is then encrypted in the time evolution of the distribution func-
tion, which is an advection in phase space if there are no collisions. For a system
with interactions between the particles the evolution of the distribution function is
non-trivial. The equation which describes the evolution of the distribution function
is the Boltzmann equation.

The distribution function gives us the probability to find a particle at time ¢ at
position Z and with velocity @ = p/m in the velocity-space element d3# at @ and in
the volume element d®% at #. This leaves us with the total particle number N if we
integrate over the whole six-dimensional phase space:

[e.e] [e.e]

N = /d%z/ &$37 f(t, T, 7). (3.1)

In Sec. [3.2.1] we will first derive the collisionless Boltzmann equation and in
Sec. [3.2.2] we will derive its form in the presence of collisions. The denomination
“collision” in this context means any type of particle interaction.

2In the case in which the ratio is 2> 1 the wave functions of the particles overlap and the system
would be described by the Schrédinger equation and the N-particle wave function.
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3.2. Kinetic theory of Newtonian systems

3.2.1 Collisionless Boltzmann equation

In a system where the particles do not interact, they just follow a linear trajectory
in position space, while there is no change in momentum space. This behavior
is depicted in Fig. [3.1] where the trajectories in position and velocity space are
sketched. The evolution of the spatial distribution f(t,Z) is shown in green and
the evolution of the velocity distribution f(¢,«) is shown in blue. If the system is

[t %) f(t, )

M

u

Figure 3.1: Depiction of the phase space trajectories for a particle system without
collisions. On the left the trajectories in position space are sketched and the evolu-
tion of the spatial distribution f(t,Z) is given by the green color. On the right the
trajectories in velocity space are sketched and the evolution of the velocity distribu-
tion f(t, ) is given by the blue color. Due to the fact that there are no collisions the
distributions remain unchanged in time and it is assumed that there are no external
forces. The picture is taken from [42].

exposed to an external force F acting on every particle with mass m all particles in
the phase space cell at (Z, @) would have traveled into the cell (Z4@ dt, @+ F/m dt)
with volume element d37'd?@’ after the time d¢. This tells us that the number of
particles contained in one phase space cell is invariant if there are no interactions
between the particles, represented by

F
f (t +dt, T+ dt, T+ — dt) d*z'd*u’ = f(t, 7, u) d*7d*u. (3.2)
m
So the position and velocity change is given by the coordinate transformation
#'=7+adt, (3.3)
F
' =+ — dt. (3.4)
m

The Jacobian of this transformation is J = 1+O(dt?) which implies that d*7'd*@" =
J 323 = d3Fd3u + O(dt?) [44]. Then a Taylor expansion of the left hand side of
Eq. (3.2)) up to first order in dt¢ leaves us with

of(t,z,u)
ot

81

+ii - V(T )+ — - Vaf(t,74) = 0. (3.5)
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3.2. Kinetic theory of Newtonian systems

This equation is the collisionless Boltzmann equation which describes the conserva-
tion of f(t,Z,d) when there are no particle interactions. Rewritten in the form

- D 8f(taf7ﬁ/m) > af(t7f7ﬁ/m) 5 af(taf7ﬁ/m)
= BBy LD SRR EPIT g (3.6
3/ ( m> o U e VT o (36)
with F/m = 0p/dt = p and @ = /0t = & this conservation of the distribution
function is more obvious.

3.2.2 Collisional Boltzmann equation

In this part we will focus on a system with binary elastic collisions due to short range
forces between the particles. Since there is now not only the possibility of advection
between one cell to a neighboring one, but also the possibility that collisions will
populate or depopulate this neighboring cell, we have to change Eq. to

F

f (t +dt, 7+ udt, i+ — dt) dz'dPa’ = f(t,7, ) PEd3a + C[f(t, &, )] d*Fd4,
m

(3.7)

where the term C[f(t,Z, @)] d*Zd3d is the net change, per unit time, of the parti-
cle number in the cell around (Z, ) caused by collisions between particles. Then
Eq. (3.5) has to be changed to

3ﬂgﬁ®+ﬁﬁ#@ﬁm+§;ﬁﬁwim—cmﬁﬂw_(mﬁfjvmf
(3.8)

which is the collisional Boltzmann equation derived by Ludwig Boltzmann in 1872.

Fig. [3.2 depicts the trajectories in position and velocity space when we allow for
collisions in the system. The difference to Fig. is that the collisions change the
trajectories of the particles in phase space with each collision. One can show that if
the system is out of equilibrium, the distribution functions f(¢,Z) and f(¢, @) evolve
in time till they approach the equilibrium value fo,. In Sec. the properties
of this equilibrium distribution will be specified further. The right hand side of
Eq. is called collision integral or collision kernel and contains the effects of the
collisions between the particles.

If there are only binary collisions considered in the system and the particles have
velocities @ and u; and furthermore, there is no external force F , then the collision
integral counts the net number of particles which enter or leave a phase space volume
and has the form

Of (t, %, u . d?o( .
< )coll /d3 /d2 dQQ |u - U1| (39)
< (f@ @) f(8, 3 i) - f(t @) (7))

The distribution functions with the unprimed variables are the ones before the colli-
sion at time ¢ and position & and the primed ones are the distribution functions after

8y
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3.2. Kinetic theory of Newtonian systems

=

Figure 3.2: Depiction of the phase space trajectories for a particle system with col-
lisions. On the left the trajectories in position space are sketched and the evolution
of the spatial distribution f(t, ) is given by the green color. On the right the tra-
jectories in velocity space are sketched and the evolution of the velocity distribution
f(t,4) is given by the blue color. Here the distributions change until they reach an
equilibrium distribution feq.. It is assumed that there are no external forces. The
picture is taken from [42].

Uu

the collision. The collision is encoded in the differential cross section d®c (6, @) over
the solid angle d2Q), which accounts for the short-range interaction responsible for
collisions. The structure of the collision integral is further investigated and derived
in Appendix [B.1]

We can see from the Equations and that the Boltzmann equation is a
non-linear integro-differential equation. Therefore, the complexity of this equation
often requires a numerical solution.

3.2.3 H-theorem

In this subsection we discuss the role of the equilibrium distribution function fe,
which is the asymptotic state approached by a system evolving with the collisional
Boltzmann equation and independent of .

The H-theorem will give us the form of the stationary and uniform fo,. If we
evaluate the collision integral (Eq. (3.9)) for the equilibrium distribution function
we obtain

afe — d20(97 gb) — — — / — / — —
aitq = /dgul/dQQ Wlu — 1y {fcq(ul )Jeq (") — feq(ul)fcq(u)} =0.
(3.10)
To solve this equation means that we have to solve
feq(d2/)feq(ﬁll) - feq(ﬁ2)feq(ﬁl) =0, (3-11)

which is a sufficient condition. For the proof that this expression is also a necessary
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3.3. Kinetic theory of relativistic systems

condition for Eq. (3.10)) one has to define the functional H(t) as

H(t) = / &7 f(t, @) In(f(t, @)). (3.12)

With some algebra one can show that if a distribution function f(¢, ¥, ) solves the
Boltzmann equation then

dH(t)
at

and that Eq. (3.11)) is equivalent to dH(t)/dt = 0. For the non-relativistic and the
relativistic case this proof is described in more detail in [42,43].

The H-theorem provides us with important consequences. First, it is also shown
in [42] that Eq. (3.11]) leads to an equilibrium distribution of the form

<0 (3.13)

Jfea(@) =C' e~ A=), (3.14)

where C' and A are two system specific constants. Second, the definition of the
Boltzmann entropy H(t) can be related to the usual entropy definition by

S(t) = —kpVH() = —kpV / 437 f(t, 7, @) In(f(t, 7, @)). (3.15)

Third, Eqgs. and are a microscopic formulation of the second law of
thermodynamics and explain that entropy has to increaseﬁ If we consider a system
out of equilibrium then collisions will bring the system back to equilibrium, i.e.
dH(t)/dt = 0, until the distribution f., is reached.

3.3 Kinetic theory of relativistic systems

As the particles which are created in heavy-ion collisions have velocities in the
relativistic regime, it is necessary to extend the Boltzmann equation to the
case of relativistic particles.

In this work we use the pseudo-metric tensor with diag(—1,+1,+1,+1) and
we set the speed of light ¢ to 1. We denote the components of the position four-
vector by z# and the ones of the four-momentum of a particle with rest mass m
by p* = mu* = (p°, p'). The four vectors itself are denoted by x, p. The momenta
are normalized by the condition p"p, = —m?. Again we can write the number of
particles contained in a phase space volume as

ft, % p) dBzdp = f(t, 7, p) de'de*da’dp'dpdp®. (3.16)

If an observer (' is in the local rest frame of the particles and a second observer
O moves with respect to O’ with a certain velocity in x'-direction, then the length
contraction leads to

B3z =~ 37 3.17
Y

3This does not mean that the entropy cannot decrease locally in time.
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and

B Bp
La—— (3.18)
Por Po

where the latter is Lorentz invariant. In the local rest frame we have p;; = 0 and
therefore py = 7~ 1py. This results with Eqgs. (3.17)-(3.18)) in the Lorentz invariance
of the product

dz'dPp’ = dPrd’p. (3.19)

As this product is Lorentz invariant, the number of particles in a phase space element
is the same in all reference inertial frames. Thus, the distribution function has to
be a Lorentz invariant quantity, i.e.,

fr X p) = f(xp). (3.20)

With this knowledge the derivation of the relativistic Boltzmann equation is the
same as in the Newtonian case (see Sec. 3.2)).
The equation reads

9f(x,p) a(F*f(x,p))
P ozt tm Opt

=C[f(xp)l, (3.21)

where F* is an external four-force acting on the system and C [f(x,u)] is the rela-
tivistic version of the collision integral, which is of the form

clrnl = (252)  —p [ f e T,

(fl(xv pl)f( Xy ) - fl(x7 pl)f(X7 p))
(3.22)

if only binary collisions are consideredﬁ This form is also quite similar to the
Newtonian case of the collision integral with the difference that the relative velocity
is substituted by the Mgller velocity. The motivation for this and a derivation is

presented in Appendix [B.2]

3.4 Solving the Boltzmann equation numerically

There exist different approaches to find numerical solutions to the Boltzmann equa-
tion. Two common approaches are the Lattice Boltzmann Method which is briefly
explained in Sec. [3.4.1] and the test particle method, which we use for our simula-

tions, explained in Sec.

4One has to include a factor 1/2 if the particles are indistinguishable.
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3.4.1 The lattice Boltzmann method

The LBM discretizes, in contrast to other methods like the test particle method,
the distribution function and does not track individual particles. Therefore, it is
based on a strong physical fundament, namely the Boltzmann equation itself, which
is solved in a discretized version. As there exists a connection between its dy-
namics and the macroscopic conservation laws of fluid dynamics, this method is
also a second-order precise solver for the Navier-Stokes equation [45]. The LBM
can also be used in the relativistic case to solve the Navier-Stokes equation. This
has been performed first in 2010 for mildly relativistic systems [46,47] and then
extended to ultra-relativistic systems in general spacetime geometries [48]. This
LBM formalism can then be used to reproduce the results from second-order rel-
ativistic hydrodynamics. However, there is one caveat. In the formulation of the
LBM one approximates the collision kernel using the relaxation time approximation
(RTA). This assumes that the distribution relaxes to the equilibrium distribution
on a timescale 7. When using RTA one has to be careful, as the first introduction
from 1974 by Anderson and Witting [49] for relativistic systems is incompatible
with microscopic and macroscopic conservation laws. These problems are solved in
modern formulations of RTA [50].

3.4.2 Test particle method

For the simulation of relativistic heavy-ion collisions the test particle method was
extensively used already before the LBM was upgraded to ultra-relativistic sys-
tems. Omne of the first codes was the Zhang Parton Cascade (ZPC) [51] in 1997
which included gluon-gluon elastic scatterings. In 2000 the Molnar Parton Cascade
(MPC) [52] was published which introduced a parton subdivision technique for a
better preservation of covariance than in ZPC. Also in 2000 the Poincaré-Covariant
Parton Cascade (PCPC) [53] was introduced, which treats the whole dynamics in
a Poincaré-covariant way. As the test particle method uses a particle formulation
it is inherently a non quantum mechanical description of the system. To obtain a
completely covariant system the only possibility is that the particles do not inter-
act, as prescribed by the No-Interaction-Theorem formulated by Currie et al. [54].
PCPC introduces a new Poincaré-invariant parameter controlling the time ordering
of interactions. Thus, the system is covariant in contrast to other codes involv-
ing actions at a distance. By introducing the many-times-formalism the covariance
problem is still not solved, as the consistent Poincaré-covariant formulation of sta-
tistical mechanics is still missing in this model. In 2005 the Boltzmann Approach of
Multi-Parton Scatterings (BAMPS) [55] was introduced which introduced, besides
of 2 — 2 processes, also inelastic 2 <> 3 processes. Therefore, the stochastic colli-
sion algorithm was introduced by Xu and Greiner, since the geometrical picture in
a 3 <> 2 process is more difficult.

The approach which we will use for the simulations in this thesis was intro-
duced in 2008 by C. Gombeaud and J.-Y. Ollitrault [56]. It takes into account the
Lorentz contraction of the hard sphere particles to oblate spheroids. As the Boltz-
mann equation requires a system which is dilute, the violations of covariance due
to instantaneous collisions at a finite distance are small. In contrast to the ZPC
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algorithm, the time of the collision is determined in the laboratory frame and not
in the center-of-mass frame.

As we want to investigate the transport of fluctuations from the initial state
of a heavy-ion collision to the final state anisotropic flow, we will consider a two
dimensional system of massless test particles in the following. The restriction to
two dimensions will not affect the qualitative behavior of the results, as this setup is
sufficient to produce an anisotropic flow signal in the final state [56]. Furthermore,
the advantage over a hydrodynamic simulation is that our study is not limited to
systems with small mean free path and that no modeling of the freeze-out is required.

The following part about the relevant parameters and the dynamics in the trans-
port code was described in the PhD thesis of C. Gombeaud [57] and in Ref. [56]. We
will briefly go through the main aspects of the code and will describe the individual
derivations in Appendix in more detail.

3.4.3 Important parameters

As we restrict our system to two dimensions with massless test particles, the particles
travel at the speed of light.ﬂ Therefore, the Lorentz contraction in the direction of
motion contracts them to rods. Assuming the test particles have size r. Then we
can assume the collision to happen between one particle of size 2r and a pointlike
particle to obtain the same result. Hence, the total cross section, which has the
dimension of a length, is given by ¢ = 2r. There are three inherent length scales in
the problem, which one can see in Fig. [3.3] First, the size R of the whole system.
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Figure 3.3: Sketch of the two-dimensional system of massless test particles. Figure
adapted from [57].

Second, the average distance between two particles d, which is in an ideal gas in two
dimensions given by d = 1/4/n with the particle number density n of the gas. The
third length scale is the mean free path A\, = 1/(on) of the particles.

5Thus, in an equilibrated system the particles would obey two-dimensional thermodynamics
implying a speed of sound which has a value of ¢, = 1//2.
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With these three lengths it is possible to form two dimensionless control param-
eters for the system. The first one is the dilution coefficient D, which is given by
the ratio

D= = ovn. (3.23)
)\mfp

It has to fulfill D < 1 to assure the applicability of Boltzmann kinetic theory.
Further, locality and covariance are only recovered in this limit. The second dimen-
sionless number is the Knudsen number Kn, which is defined by

)\mfp_ 1
R onR’

Kn = (3.24)
Using the Knudsen number we can control the number of collisions in the system.
A Knudsen number in the limit Kn — 0 corresponds to the hydrodynamic limit,
where the particles interact very often. The other limit Kn — oo corresponds to the
limit of free-streaming particles. In the transport algorithm the two dimensionless
numbers are no direct input parameters, but they can be steered by the number of
test particles IV, and their cross section o.

3.4.4 Dynamical system evolution

In this part we will briefly introduce the main parts of the transport algorithm
which includes the propagation of the particles, the collision criteria, calculation of
the final state momenta of a scattering process and the implementation into the
numerical code.

3.4.4.1 Propagation of particles

Particles which do not interact in a time step d¢ during the system evolution of the
transport algorithm are propagated freely due to

=T+ 0dt (3.25)

from the initial position # to the final position #" with the velocity .

3.4.4.2 Collision criteria

To decide whether a particle collides the algorithm uses a geometrical approach. A
first criterion which has to be fulfilled is that the particle trajectories cross. Ad-
ditionally it has to be checked if the collision happens in the given time step. In
Fig. a sketch of the collision is given. A collision in the frame where the velocities
are anti-parallel occurs if the impact parameter b, which is a Lorentz scalar, fulfills
the condition |b| < r. The impact parameter is given by

p= E 1@ —T) x (@ %)) (3.26)

Ul'Q_J)Q—l
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|
2r T (4]

Figure 3.4: Schematic representation of a collision between a particle of size 2r
and a pointlike particle in the reference frame of the collision. The figure is taken
from Ref. [506].

A derivation for this expression is given in Appendix [B.3.1]including a proof of the
Lorentz invariance of the expression.

For the numerical solution it is important to note that the time in the algorithm
is a discrete quantity in time steps of length d¢. Thus, a collision is only possible if
the positions 75 and #; of two particles are such that the time

S k! (3.27)

1 -7,

fulfills the criterion 7 < d¢. This equation is derived in Appendix as well.

3.4.4.3 Changes in momenta

For the calculation of the final state momenta it is convenient to change the reference
frame to simplify the algebra. A more detailed derivation is given in Appendix [B.3.2]
The starting point for this is the Lorentz invariant expression

(p1+p2 — PI1)2 =0=(p1 + P2)2 — 2p} (p1+ p2) - (3.28)

The prime indicates quantities after the scattering process. In the reference frame we
want to use to express the kinematics, the scattering angle is given by 6 = Z(€,, p1'),
where €, is the unit vector along the z-axis in that frame. This angle, as well as ’ﬁll‘
can be determined from the Lorentz invariant expression above. In combination with
the Mandelstam variables s and t — which are itself Lorentz invariant quantities —
one obtains

[(s+t)p1 +tpa] - 4 = (s +t) [P1] + t[p2] (3.29)
& U-U=(s+t)|p1]| +t|pal. (3.30)

The vector @ is defined as p;,’ = ‘ﬁll‘ﬁ and the vector ¢ defines the x-axis of the
frame we want to describe the collision in.
Going into the center-of-momentum frame we fix the scattering angle to be

0= (1 + i) ; (3.31)
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with the absolute value of the impact parameter b (Eq. (3.26)) and the size of
the particles . This scattering angle corresponds to an isotropic cross section and
makes sure that there are no double collisions. These double collisions are explained
in more detail in Appendix [B.3.3]

Now, after fixing 6*, it is possible to fix the final momenta of the particles. In
the collision frame the scattering angle is given by

(s +t) [p1] + tlpa|

cosf = — (3.32)
|1
and again the Mandelstam variables can be used to find ’ﬁll‘:
5 ¢ (3.33)
p1| = S e .
2] - py -

By the energy momentum conservation laws the other final state momentum com-
ponents can be determined.

3.4.5 Code structure

The first ingredient for the code is the initial condition for the particle positions
and their according momenta. As we use different initial conditions throughout this
thesis, we will introduce them in the corresponding chapters later on.

Then the main idea of the code is to follow all test particle trajectories, as already
mentioned in Sec. [3.4.2] We consider the system as a box with side lengths L and
the time is discretized in steps dt. Checking for collisions within a given time step
requires checking a possible collision of each particle with all other particles in the
system. This introduces a numerical complexity of Ng. Reducing the numerical
complexity is possible by introducing N2, cells with side lengths L/Ny. There
exists an optimal value for N.os which minimizes the errors and the runtime of the
code.

Dividing the system into smaller cells has also an influence on the time step, as
this one is chosen such that the particles can only scatter with particles in their own
cell or a cell directly adjacent to their own. With this restriction the time step is
given by

B L
B 2Ncells‘

dt (3.34)
At each step in time the code identifies which particles are in which cell. Then the
particles in each box are tested for collisions within the same box and then in a next
step for collisions with particles in the neighboring boxesﬁ Particles not undergoing
a collision during a given time step are propagated according to Eq. .

The introduction of the cells has decreased the numerical complexity drastically.
However, we have to optimize the parameter N such that the code has optimal
performance. We can identify two contributions to the runtime of the code.

6To avoid a double counting of collisions with particles in neighboring cells, only four of the
eight surrounding boxes are checked for collisions.
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The first one is the check of the N2, cells during each time step. Then there
is a macroscopic time scale for the system evolution which is proportional to the
macroscopic system size L. Therefore, one has to consider N, times the time step,
which results in a N3, contribution from scanning the cells for collisions during the
time evolution.

A second contribution is arising due to the scattering processes themselves. The
probability to have an interaction in a cell is proportional to (N,/NZ2,,)?. Thus, the
runtime of the code is proportional to (N,/NZ2,.)*N3 ...

Finally we obtain

N2

trun X aNc?)ells + BN ljl (335)

as a runtime estimate t,,,. Optimizing the given expression with

dt N2
M — 3aN2, — P~ 3.36
d Ncells QLN cells B N2 ( )

cells

leads to Negps o \/ﬁp. By numerical adjustment one finds a proportionality factor
of ~ 1.4.

3.4.6 Simulating a 2 — 0 collision kernel

For the studies which will be described in Chs. Bl and [6l we will need a code version
which can simulate a 2 — 0 collision kernel, i.e., the loss term in the collision kernel
of the Boltzmann equation only. This version of the Code was developed by Benedikt
Bachmann in his Bachelor thesis project [58].

The implementation of the 2 — 0 collision kernel is straight forward by intro-
ducing the labels “active” and “passive” to each particle. A collision between two
particles is then only possible between two particles which are “active”. After a col-
lision the two participants are labeled as “passive” for the rest of the time evolution
of the system. From the time of the collision on the particles are also no longer
considered for the computation of observables.

Obviously all conservation laws — energy, momentum and particle number —
are violated in this version of the code.
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The following part will explain the importance of anisotropic flow fluctuations
and their characterization, which is a crucial part in heavy-ion collision phenomenol-
ogy. When two nuclei collide the energy deposition in the overlap region yields a
highly fluctuating profile due to the random nucleon positions at the moment of
the collision and the underlying quarks and gluons with their associated color fields.
Taking into account the inhomogeneity of the initial density profile is crutial for the
proper estimate of the eccentricity in a given harmonic . In our work we used
a MC Glauber model (see Sec. to implement the randomness in the nucleon
positions. A better understanding of the density fluctuations and their mapping to
the initial state can give further insight into the structure of the latter. This is of
great importance, as the initial state is not directly accessible in experiments. In
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experiments the anisotropic flow coefficients are measured as an average over many
events with varying initial geometries. These geometry fluctuations will also lead
to a fluctuation in the final state anisotropic flow signal, which can be studied for a
given initial state model [60]. This sort of flow fluctuations was extensively studied
in experiments [61-64] as well as in theoretical studies [39}/65H74].

Most of these phenomenological studies use relativistic hydrodynamics, which
is very successful in describing the bulk observables, especially anisotropic flow,
for the main stage in the time evolution of the system [75]. Performing a study of
fluctuation propagation one might argue that using relativistic hydrodynamics might
be too deterministic for such an investigation. If there is an underlying microscopic
particle based description the hydrodynamic regime corresponds to the limit where
the particles undergo many scatterings. In this sense deterministic hydrodynamics
does not capture the effects caused by a finite number of rescatterings per particle,
which might be small in systems with small nuclei, where anisotropic flow and its
fluctuations are well established [76].

Here we will study these anisotropic flow fluctuations about their mean value
at the corresponding eccentricity for several scattering cross sections, i.e., different
number of rescatterings N,es. in the system. Additionally, we will investigate the
evolution of distributions of the second and third participant plane in the initial
geometry as a function of the number of rescatterings in the system.

Section [4.1|will give a short overview over the setup used for this study. In Sec.
we will describe flow fluctuations using the Elliptic-Power law. Furthermore, we will
discuss the disadvantages of this approach which leads to an alternative description
using conditional probabilities introduced in Sec. [£.3] This conditional probability
approach and the event-plane angle distributions discussed in Sec. [£.4] are based on

Ref. [77]:

e Fluctuations of anisotropic flow from the finite number of rescatterings in a
two-dimensional massless transport model
H. Roch, N. Borghini
Eur. J. Phys. C 81 (2021) 380

In this chapter we study the v, distribution for a given ¢,, i.e., py-(vy|e,) and its
dependence on Ny, which extends a previous study in Ref. [78].

4.1 Setup of the simulations

The initial state lead nuclei for our simulations are generated via the MC Glauber
code TGlauberMC [79]. We used a cross section of oii% = (67.6 & 0.6) mb for
inelastic nucleon-nucleon collisions at /sy = 5.02 TeV. The steps in the Glauber
code to create the nuclei were previously described in Sec. 2.1.2] For our study we
used sets of 10 events, where each set is at fixed impact parameter b = 0, 6 or 9 fm
fixed along the z-axis.

The nucleon positions in the transverse plane are then used to compute the
local number of participants Npa. (z,y) and the local number of binary collisions
Neon.(x,y). Both quantitites are then used to create a density profile according to
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Eq. (2.9) with a = 0.15. The overall scale factor was chosen such that the hot spots
have a temperature of about 800 MeV. As this density would be of a histogram
shape with sharp towers, we smear it with a Gaussian distribution with a width of

1 O.inel
Ry = -/ =X 4.1
N 92 T ) ( )

where Ry ~ 0.7 fm for our systemﬂ

The next step after the creation of the initial energy density profile is the “par-
ticlization”, which is needed for the transport algorithm. Therefore the particle
density n(x,y) is computed according to the formula for a two-dimensional ideal gas
of massless particles in thermal equilibrium without a fugacity. From the particle
density the positions of the particles are sampled using an acceptance-rejection al-
gorithm. For the simulations we used N, = 5 x 10° test particles for each event.
Trying to implement local energy conservation most accurately and at the same time
reducing the computational costs, we coarse grained the grid of the particle density
from 0.01 fm used for the computation of the energy density profile to a grid with
0.1 fm spacing. By this procedure it is less likely to have cells with sizable energy
but no particle sampled in them, while having not too large values of V,,.

For the transport algorithm an initial condition in momentum space is needed
as well. The particle momenta are created in such a way that the energy content
in each cell is evenly distributed to the test particles inside that cell. Afterwards
the particle momenta are rotated randomly in the transverse plane to obtain an
isotropic initial condition in momentum space. As the code can only deal with a
finite test particle number, the initial momentum distribution cannot be isotropic
within one single event. However, we ensure the absence of a global momentum
event by event, i.e., a vanishing v;. Anisotropies of higher harmonics of the order
N '/? are unavoidable. This is discussed in more detail in Sec. {4.3.2]

As pointed out above, we want to study the distribution p,|-(v,|e,) as a function
of Niese.. Therefore it would be the preferred solution to use a fixed geometry
instead of fluctuating geometries event-by-event. There are two reasons why we
did not perform such simulations: First, we tried to use “more simplistic” initial
conditions in the sense of distorted Gaussians used in Ref. [80,[81]. These profiles
led to a v, response with a Ky 290 < 0 in Eq. , while this response is positive
with more realistic initial conditions [66] (see also Tab. [C.4). A problem with using
a few “realistic” initial profiles generated from the Monte Carlo Glauber code in the
transport simulations might be the risk that the chosen initial density distributions
are special ones, which do not lead to the general behavior. As the overall results
which we find are consistent over the whole eccentricity range we probe with the
fixed-impact parameter events, we can claim that the approach is valid.

All simulation results presented in this chapter are performed with the transport
algorithm described in Secs. 3.4.2}3.4.5] For the simulations used for the results
in this chapter we used a dilution parameter, defined in Eq. which fulfills
D < 0.1. According to Ref. [56] this corresponds to the dilute regime which preserves
covariance and locality in the transport algorithm.

!This length Ry is the same as used in the Glauber model to decide if a collision between
nucleons happens (see Eq. (2.8])).
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To decrease the noise of the anisotropic flow signals we perform Nj,. = 10
samplings from one initial energy-density profile, which is then evolved. The flow
coefficients are then averaged over the Ny, iterations after their independent evo-
lution.ﬂ This gives us according to

1

Svy = — (4.2)
Niter. : Np

an uncertainty on v, of the order dv, ~ 4.5 x 10~*. The uncertainty is actually a
factor v/2 smaller according to Ref. [15].

The following results are based on 10* Monte Carlo energy-density distributions
at impact parameter b = 0,6 and 9 fm. Each of these initial conditions is evolved
in time using the transport algorithm three times with different cross sections oy .

We use the Knudsen number (Eq. (3.24)) to characterize the simulations with
different cross sections. Therefore we need the characteristic length scale R of the
system. Here, we use the root mean square radius of the initial energy-density
distribution. This gives us a characteristic system size varying from event to event,
as well as the mean free path varies. Finally we obtain a Knudsen number which is
fluctuating about a mean value (Kn) for each cross section. The relative fluctuation
of the Knudsen number about its mean value is less than 5%, thus it is ignored in
the following and we only use the mean valuef

As already mentioned in Sec. [3.4.3] the inverse Knudsen number is related to the
average number of rescatterings per particle (Nyes..) by the linear relation

(Niese.) =~ 0.866(Kn) !, (4.3)

where we averaged over events with a fixed impact-parameter value. The relation is
illustrated in Fig. [4.1]

The value of (Nyes..) depends on the lifetime of the system. Our time evolution
was performed until 15 fm/c for all cross sections and impact parameters. We
checked that the results for the flow coefficients are not affected when using longer
lifetimes. This would only lead to a slightly larger coefficient in Eq. , as the
particles have more time to interact. However, the system becomes very dilute at
late times which supresses the probability for interactions heavily.

The three different cross sections we use correspond to different anisotropic flow
regimes, which is illustrated in Fig. for vy and v divided by ey resp. €3 as a
function of (Kn)~! for the three different impact parameters.

We also show two fit curves defined as follows: A fit function for vy /ey is given
by [82

,Ulgydro

= —\ 4.4
1 —+ AQKH ( )

V2

In Ref. [56] it was checked that this function describes vy as a function reasonably
while keeping the dilution parameter fixed. In our case the dilution parameter

2This is computationally cheaper than simulating one event with Niter. - N, test particles, as

the simulation time grows with NS/ %,

3The value of (Kn) depends on the impact parameter of the collision.
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Figure 4.1: The average number of rescatterings per particle (Nyesc.) vs. the

inverse mean Knudsen number (Kn)~! for simulations at b = 0,6,9 fm and with
three different cross sections. The black line is the linear fit (4.3)).

depends on the Knudsen number but it varies in a range, where the v, value is not
affected. We find Ué‘ydm/@ = (0.2621 and Ay = 1.1967 in the fit. The behavior of vg
depending on the Knudsen number is given by a higher-order Padé approximant [83]

v3Y (1 + BsKn)
V3 = .
3 ]_ —I— (A3 —f- Bg)KH —f- C3KH2

We obtain the parameters v?ydro/sg = 0.2096, Az = 0.6973, B3 = 1.7922, and
C5 = 13.945 from the fit used in Fig. 4.2

Fig.4.2| visualizes the three different flow regimes. Looking at the largest number
of rescatterings, the hydrodynamic values are almost reached. The second simula-
tion with the middle average Knudsen number are in the intermediate flow regime
and the third simulation at large (Kn) is the few-collisions regime. We find that
triangular flow v3 needs more rescatterings per particle than elliptic flow vy to de-
velop [83,84] and it has a steeper rise with increasing (Vyesc.). Notice, that for the
intermediate cross section the values for the triangular flow are further away from
the hydrodynamic limit than those of the elliptic flow and that for the largest (Kn)
its values are at the subpercent level, corresponding to the far-from-equilibrium
regime.
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Figure 4.2: Anisotropic flow v, with n = 2,3 divided by the corresponding initial
state eccentricity as a function of the average Knudsen number for three different
cross sections. The curves are fits with Eq. (4.4)) (full curve) resp. (4.5 (dashed

curve).

4.2 Elliptic-Power law

Historically the Elliptic-Power law is an improvement of the previously used Bessel-
Gaussian distribution [85]

26, . [EnE g2 +¢&2
pea) = 1y ( 0) exp <—0> , (4.6)

o2 o2

where ¢¢ is the mean eccentricity in the reaction-plane, ¢ is the magnitude of
anisotropies around gy and I is the modified Bessel function of first kind. Note,
that for ¢y = 0 this distribution reduces to a Gaussian distribution. This is the case
if the ansiotropy is only caused by fluctuations.

The Elliptic-Power distribution was first introduced in Ref. [86] as

atl T — g2yt
plen) = 22 (1-3)" O/d¢( - ot

m 1 — epep, cos @
a—1 _1-2a ot3 4.
= 2, (1 — 52) N (1 — 5(2)) 2 (4.7)
1 2e,
X 2F1 (, 1+ 2@, 1, 650)
2 EnEo — 1

to describe the initial state eccentricity distribution at fixed centrality or impact
parameter. It is a two parameter distribution on the compact interval [0, 1], where
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4.2. Elliptic-Power law

the parameter « characterizes the fluctuations and ¢y has the same interpretation as
for the Bessel-Gaussian distribution. The function 5 F} is the hypergeometric func-
tion. This distribution fits the eccentricity distributions also for larger centralities
or impact parameters, whereas the Bessel-Gaussian distribution does not work in
this regime.

For anisotropies only due to fluctuations, i.e., for ultra-central collisions, the two-
parameter distribution from Eq. reduces to the one-parameter Kumaraswamy
distribution

plen) = 2ag, (1 - 5i)a_1 : (4.8)

which is closely related to the Beta distribution.

We show the probability distributions of the eccentricities calculated from 10* en-
ergy density distributions created from the MC Glauber model described in Sec. [2.2]
within Fig. [£.3] The fits are then performed using the Bessel-Gaussian distribu-
tion from Eq. , the Elliptic-Power law from Eq. or the Power law from
Eq. . Here the Elliptic-Power law was only used when necessary, i.e., when
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Figure 4.3: Probability distributions of initial state eccentricities €2 (top), e3
(middle), 4 (bottom) for three different impact parameters b = 0 fm (left), b = 6
fm (center) and b = 9 fm (right). The fits are performed using a Bessel-Gaussian
distribution Eq. (orange), an Elliptic-Power law Eq. (green) or a Power

law Eq. (4.8)) (red).

g0 ~ 0 is not a good assumption. This is especially the case for the distributions
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4.2. Elliptic-Power law

of €9 and &4 at large impact parameters. For e3 the assumption €9 = 0 is valid
for all impact parameters, as the triangularity is purely due to fluctuations of the
nucleon positions in the initial state, which are small compared to the effect of the
overall geometry. From Fig. 1.3 we can reproduce the finding in Ref. [86] that the
Bessel-Gaussian fails to describe the distributions at larger impact parameters.

Tab. shows the corresponding fit parameters for the curves shown in Fig. [£.3]
In the cases where ¢y = 0 is written the fit value of the parameter was a very small
number with a large uncertainty given by the fit routine. Nevertheless, it is visible
by eye, that the (Elliptic-)Power law describes the distributions better. By the
increase in the parameter o with increasing impact parameter we can see that for
all ¢,, the distributions become wider.

Table 4.1: Fit parameters for the eccentricity distributions in Fig. Ifeg=0is
written, the value is basically vanishing but numerically the fit error becomes large.

Bessel-Gaussian b=01fm b=61Mm b=91fm
(5 ) o =0.0561 +=0.0004 o =0.151+0.004 o =0.248 £ 0.010
,,,,, P ,,2,,,,,,5,0:9,,,,,,,,,,5,0:9,,,,,,,,,,‘?0:9,,,,,,,,,,
(5 ) o =0.0576 £0.0004 o = 0.0968 £0.0007 o = 0.1435 £ 0.0009
,,,,, P ,,3,,,,,,E,O:Q,,,,,,,,,,5,0:9,,,,,,,,,,?0:9,,,,,,,,,,
(5 ) o =10.0588 £ 0.0004 o =0.1054 4+ 0.0006 o = 0.166 £ 0.002
P(&4 €0 = 0 Eg = 0 Ep = 0
Elliptic-Power b—0fm b—6 fm b—09fm
/ Power
a=62+2 a=28.1+0.7
| Me)  e=iR2 co= 01590002 ey =0.274+0.002
,,,,, ples)  a=150+2  «=529+07 = «=239+03
en) a=144+2 a=44.6+05 a=2742

go = 0.131 £ 0.006

We consider the relation between initial state eccentricity €, and anisotropic
flow v,, as linear, i.e., v, = K, &, for the moment. Then the relation between the
probability distributions of these quantities is given by [60]

1 Up,

with the Jacobian de,/dv, = 1/K,,,. This rescaling gives the possibility to relate
the fluctuations in the final state to the ones in the initial state eccentricities by a

simple rescaling.
Indeed, the harmonics with n = 2,3 obey a linear relation [36,37.39}65,87-89]:

vy = Ky 9€9, (4.10)
Vg = K:373€3, (411)

while in periperal collisions, which have large €5, there is also a cubic contribution
in vy [66]:

Vg X~ ’C272€2 + ’C27222€§. (412)
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4.2. Elliptic-Power law

These scalings have been confirmed in various model studies in the references above,
which use either hydrodynamics (ideal or dissipative) or transport approaches.

Using again our set of events from above and evolving them in time with the
transport algorithm, we obtain the distributions shown Fig. [£.4] For the transport
simulations the afore mentioned three different cross sections were used to see the
effect on the final state anisotropic flow probability distributions. We see that the
distributions become broader if there are more rescatterings during the evolution of
the system.
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Figure 4.4: Probability distributions of final state flow coefficients vy (top), vs
(bottom) for three different impact parameters b = 0 fm (left), b = 6 fm (cen-
ter) and b = 9 fm (right) for three different inverse Knudsen numbers in the free-
streaming limit, the intermediate regime and in the hydrodynamical limit. The fits
are performed using an Elliptic-Power law Eq. (green) or a Power law Eq.
(orange).

Turning now to the more quantitative description of the distributions in Fig. [4.4]
using a fit with Egs. and for the v,(e,) data, the response coefficients
Ky, are given in Tab. There, we see that the a value from the (Elliptic-)Power
law fit is essentially constant for a fixed impact parameter and that the information
about the collisions is entirely encoded in the response coefficients, which increase
with (Nyesc.). Additionally, the values for a and e (if present) are similar to the
ones from the initial state eccentricity distributions (see Tab. [4.1)).

The relations for flow harmonics with n > 4 start to mix different eccentricities.
In the case of quadrangular flow there is a linear scaling with ¢4 and a quadratic
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4.3. Conditional probabilities

Table 4.2: Fit parameters for the anisotropic flow coefficient distributions in

Fig. If g¢ is not written Eq. (4.8]) is used, otherwise Eq. (4.7)). For the response
coefficients K92 and K33 defined in Eqgs. (4.10) and (4.11)) were used respectively.

Elliptic-Power

T Powor b=0fm b=6 fm b=9 fm
a=60L2 a=261%006
p(va), a=155+2
- £ = 0.157 £ 0.002 co = 0.262 % 0.002
(e small Ko = 004006000008, ) — 005873 % 0.00005 Ky = 0.06792 £ 0.00005
a=060L2 a=261+07
p(va), a=156+2
. . - 2o = 0.157 £ 0.002 co = 0.265 % 0.002
() fmermediate Koo = 04722200008 ., — 01933 20,0002 Ko = 0203400002
a=59+2 a=259+0.6
p(v2), a=154+2
- 2o = 0.158 % 0.002 co = 0.266 % 0.002
(Nrese.) large K22 =02165£0.0004 e 09405 £0.0008 Ky — 0.2477 + 0.0002
p(v3), a=156+£2 a=489+07 a=227+04
__ ADViese) small - Ky5 = 01722 £0.0003 Ky = 0.00835 + 0.00003 Ky,3 = 0.01005 £ 0.00003
p(v3):, a=148%2 a=522%07 a=9234404
_ (Niese.) intermediate K3 = 0.0933 £0.0002  Kgy = 0.1075£0.0002 Ky =0.1110 £ 0.0002
p(v3), a=141+2 a=51.5+0.6 a=2334+03

(Nyese.) large K33 = 0.1556 £ 0.0005 K33 = 0.1800 £ 0.0004 K33 =0.1713 £ 0.0004

contribution of &5 [38,/65,(90-92]:
vy~ Kyaeq + ’C4,2253, (4.13)

while for pentagonal flow v5 there is a linear €5 contribution and a nonlinear contri-
bution from the second and third harmonic |38,91192]:

Vs =~ IC575€5 -+ IC572382€3. (414)

For vy and vs the linear part is only visible for the most central collisions [39).
Otherwise the nonlinear contribution dominates. In the latter two cases the simple
rescaling law from Eq. is not applicable, at least not if the nonlinear contribu-
tions dominate.

4.3 Conditional probabilities

To circumvent problems with non-linearities and mixtures of different eccentrici-
ties in the ansatz presented above, we will have a look at conditional probability
distributions in the following.

4.3.1 Quantification of flow fluctuations

Within the theoretical description of a heavy-ion collision we have access to the sym-
metry plane orientation ®,, in the initial state with respect to the impact parameter
direction. For the final state we can also compute the anisotropic flow coefficients
v, as well as their corresponding symmetry plane angles W, for each event. To
make use of the inforamtion about the symmetry plane orientation, we look at the

52



4.3. Conditional probabilities

cosine and sine parts of the flow coefficients separately:

Ve = (cos(ny))p, (4.15)
Uns = (sin(ne))p, (4.16)

where (... ), denotes a particle average. From the knowledge about v, . and v, s we
can finally calculate ¥,,.

For a self-consistent description we will also characterize the initial state by the
cosine and sine part of the eccentricity:

577,,(: = _W, (417)
ey, = Arsin(d)) (4.18)

{r)x

where now (... )5 denotes an average over the initial state energy density. In contrast
to the eccentricities ¥ defined in Eq. , the values of ¢, and ¢, s can become
negative.

The reason why we investigate the cosine and sine parts of the flow coefficients
separately is that their geometric origins are mainly uncorrelated. This is illustrated
in Fig. for ve s and eq for 10* events at b = 6 fm and the largest cross section
used for our simulations. Our fluctuation analysis considers harmonics with n = 2

0.051

s 0.007 ‘.if 5

—0.051

0.0 0.2 0.4
52,(:
Figure 4.5: The scatter plot shows the final state v vs. initial state o at impact
parameter b = 6 fm with (Kn)~! = 13.74 for 10* events.

and 3. This leads to four independent initial state quantities and the same amount
of final state quantities which we can study as a function of (Kn)~!. Notice, that the
cosine and sine parts of the flow coefficients are not measured in experiments and
experiments cannot select a fixed impact parameter. However, as our model lives in
purely two dimensions, it is not possible to perform quantitative phenomenological
studies.
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4.3. Conditional probabilities

For our studies we fix an impact parameter and initialize 10? initial energy den-
sity profiles, for which we compute the eccentricities €, ./s. From each energy density
distribution we sample Ny, = 10 particle distributions which we evolve according
to the transport algorithm described in Sec. 3.4.2 At the end of the time evolu-
tion we obtain the flow coefficients v, /s averaged over the Nj,. realizations of the
particlization and evolution in the transport algorithm. This gives us 10* events
with four initial state and four final state quantities which we can correlate and
investigate as a function of (Kn)™!.

In our analysis we remove the 50 events with the smallest and 50 events with
the largest eccentricities which we denote as outliers. The purpose of this is to
obtain eccentricity bins which are not too wide, as we are interested in conditional
probabilities at the end[] All other events are divided into five eccentricity bins with
2000 events each. Except for the first and last bins, wich contain 1950 events. In
Fig. we illustrate this procedure for v, as a function of g5, at b = 6 fm for two
different values of (Kn)~! and indicate the bins by different colors. The outliers are
indicated by the gray points. In the next step we use a linear or a linear + cubic

0.03 1 :
— fit function i 0.10 1 — fit function
0.024
0.05
& 0.014 &
S >
0.00
0.001
—0.019 - —0.059 -
0.0 0.2 0.4 0.0 0.2 0.4
€2, €2

Figure 4.6: The scatter plot shows the final state vy vs. initial state o, at
impact parameter b = 6 fm with (Kn)~! = 0.34 (left) and (Kn)~! = 13.74 (right).
The gray points indicate the removed events and the other colors indicate the five
eccentricity bins. The black curves are fits with Eq. .

dependence to fit the events globally (Eqgs. {} ). We denote the fit function
by Up,c/s(€n,ess)- For the fit the use of Eq. is only relevant for the simulations
with impact parameter b = 6 and 9 fm. Looking at the width of the distributions
in Fig. [4.6] we can already see that the distribution on the right, which is the one
with more rescatterings, is broader. This observation is also true for the other flow
harmonics. As we want to quantify this observation, we compute the moments of
the distribution about the global fit. Denoting by vy, ¢/s(€n,c/s) the v, ¢/s for a given
Enc/s, We can compute powers of vy, o/s(En,c/s) — Un,c/s(Enc/s)- In the case of an infinite
number of events this is equivalent to a computation of moments of the conditional
probability distribution py-(vn,c/s|€n,c/s) about the fit function. Due to the limited
statistics, we can only approach the statistical behavior by introducing the bins with
a finite width in €, /5. If we would gather all points in a single bin this could in

4In our analysis we also checked that the removal of the outliers does not change our results.
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4.3. Conditional probabilities

principle lead to a situation where opposite behaviors are averaged out. This will
become important later.

It is also not possible to estimate the conditional probability distribution directly
via the right hand side of

2 (Un,c/s)

: (4.19)
ps<5n,c/s)

pv|s(Un,c/s|5n,c/s) =

as the individual probability distributions for v, /s and €, /s have very small num-
bers at the tails. This can be seen also in Figs. and [4.4] where the probability
distributions of the absolute values of v,, and ¢,, are shown.

We will now introduce the moments which we use for the characterization of the
conditional probability distribution. For the sake of brevity we omit the indices c/s.
The first moment about the fit function is given by

1 N
N Z Unz 577,1 - Un,i(gn,i)] ) (420)
=1

with ¢ running over the N events in an eccentricity bin. In the following we will not
mention the values of p, which has always some small value of the order 107°, as
the average over bins will vanish by construction of the fit function.

The second moment about the fit function is

1 N
o2 = —Z Uni(Eni) Tjn,i(&?m)]? (4.21)
N =1

It almost coincides with the variance about the true average in a given bin and it
has a dependence on the inverse mean Knudsen number. This dependence is due to
the growth of the absolute value of v, with (Kn)~'. To compensate this growth we
give the values o2 and divide them by the square of the linear coefficient in the fit
function 3 ,.
The third moment about the fit function is the skewness
1 N

"=~ Z [Un,i(gnﬂ') - 6n,i(5n7i)]3. (4.22)

3
N = oy

71 can be positive or negative. This is why we do not analyze the events in a single
eccentricity bin.
The last moment about the fit function we consider is the (excess) kurtosis

Yo = ]1[2 OnilEna) = Onalensll. 5 (4.23)

4
=1 Oy

By studying up to the fourth moment we go beyond the study performed in Ref. [78]
which assumed Gaussian fluctuations and only considered the variance of py-(vale2).

To obtain uncertainty estimates for our moments we calculate the variance 0%, of
a given moment M. For the computation of the variance we use a delete-d Jackknife
algorithm with random sampling which is described in Appendix [G.3, We deleted
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4.3. Conditional probabilities

ten percent of the bin data and calculated the variance of the moments for 3000 of
these random samples.

Finally, we computed the average of the moments over the eccentricity bins. In
the case of the skewness v; we used its absolute value. For this average we used
a weighted average to give less weight to the bins with larger uncertainties. We
compute the weighted bin average (M) and its corresponding variance o3, by

Zj MJ'/U?\A J
(M) S 1jo%, (4.24)
2 Noins (4.25)

where j runs over the Nyins, M; is the moment in bin j and U%A’j the variance of the
moment in the given bin.

4.3.2 Anisotropic flow in the initial state

In this subsection we want to investigate the anisotropic flow fluctuations in the
initial state of the transport simulations. These are caused by the finite number of
testparticles IV, in each event which causes some anisotropic flow. The fluctuations

of vy, /s about 0 can be estimated by 1/,/2N, = 107? [15] for n > 1 and N, = 5-10°
testparticles in our simulations. The case n = 1 can not be estimated with the given
relation, as we subtract the total momentum from each particle’s momentum in the
initial state. These fluctuations should be Gaussian and the event-plane angle ¥,
should not be correlated to the participant-plane angle ®,,.

We selected 5000 events of the 10* sampled initial conditions and computed
Un,c/s in each event for n = 2,3 to approximate the probability distributions of the
initial state flow coefficients. Fig. [4.7] shows exemplary the probability distributions
for impact parameters b = 0 fm. The results for the other impact parameters are
presented in Appendix Similar to Sec. we computed the moments of the
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T vy,
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V2,c/s Us.c/s
Figure 4.7: Initial state probability distributions of vy /s (left) and vs ./ (right)
including 5000 events at b = 0 fm.

distributions to characterize them and quantify their similarity mentioned above. In
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contrast to the method described above, we used only one bin for all events here and
we assume the averages to be zero, as they are of the order 1075, when we compute
the moments. For the uncertainty estimation we use the Jackknife algorithm again
and delete 500 events from each set repeating the computation 6000 times. We
present the resulting values for the variance o2, absolute value of the skewness |7
and the excess kurtosis 79 in Table[4.3] Results for the moments of the distributions
at the other impact parameters are again presented in Appendix [C.1]

Table 4.3: Calculated moments from the probability distributions in Fig. for
Upcss With n = 2,3 at b = 0,6,9 fm including 5000 events. The variance o2 was

divided by its rough estimate 1/(2Ny).
u/(2Ny) " 7 0

b=0 fm
Vgc 1.014 £ 0.020 0.041 &£ 0.055 —0.030 £+ 0.069
Ugg 0.990 + 0.020 0.079 £0.057 0.063 £ 0.078
V3¢ 0.996 £ 0.020 0.034 £0.057 0.013+0.075
Vs 0.996 +0.020 0.089 +0.055 —0.014 £0.073

4.3.3 Moments of the final state distribution

We will now discuss the flow harmonics in the final state and how the conditional
probabilities depend on (Kn)~'. As the global trends are similar for all impact

parameters, we will only discuss the case b = 6 fm here and move the discussion

of b = 0,9 fm to Appendices and [C.5] Tables display the moments
defined by Eqns. (4.20))-(4.23) for the harmonics v,/ resp. vsqs computed for

three different cross sections, i.e. (Kn)~!.

Table 4.4: Calculated moments of the probability distributions py|.(vac/sl€2,c/s)
of the flow harmonics in the final state computed for 10* events at b = 6 fm. We
divided the variance o2 by the linear coefficient from Eq. (4.12)).
<KI1>71 V2,c V25
107 Ug/’C%,z 7| V2 10 Ug/’@,z |71 Y2
0.34 1.7564 £0.062 0.513+0.091 0.317 £ 0.141 | 1.593 £ 0.055 0.249 +0.102 0.302 £ 0.165
343  1.313+£0.046 0.281 £0.105 0.481£0.188 | 1.327£0.046 0.257 £0.100 0.287 £ 0.158
13.73  3.185+£0.104 0.138 £0.093 0.080 £0.135 | 3.150 £0.104 0.155+0.094 0.088 £+ 0.132

Table 4.5: Calculated moments of the probability distributions p,-(v3c/sl€3.c/s)
of the flow harmonics in the final state computed for 10* events at b = 6 fm. We
divided the variance o2 by the linear coefficient from Eq. (4.11]).
(Kn)~! U3 Uss
10°07/K3 5 | 72 10°03/K3 5 7l 72
034  1.984=£0.063 0.282+£0.086 —0.026£0.109 | 2.480£0.079 1.077£0.060 0.026 £0.113

343 0.2944+0.010 0.183+0.103 0.305£0.170 | 0.355+£0.012 0.576 £0.098 0.428 £0.173
13.73  0.697£0.022 0.105+£0.088 —0.020£0.106 | 0.775+£0.025 0.258 £0.085 —0.017 £ 0.097

Looking at the variance in Tables [4.4H4.5, which is divided by the square of the
linear coefficient K2 | we observe that it is largest for the cases where (Kn)~! is

n,n’
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large. For small (Kn) ™! the values are close to the values in the initial state reported
in Sec. [4.3.2] All in all, the spread of the flow coefficients about the fit function
Un,/s Tepresenting the average value increases with increasing average number of
rescatterings (Kn)~!. Additionally, this growth is stronger than that of 0, s itself,
as the values are divided by K2 . This result confirms the visual impression that
the spread of the point cloud in the right panel of Fig. is larger than that in the
left panel.

The skewness which can have either positive or negative sign is reported as
absolute values |y;| in the tables, but there was a clear general trend observed
before averaging over eccentricity bins. Bins with a positive €, ./ mostly have
positive values of v, /s and a negative 7; corresponding to a distribution with a
longer tail towards the left hand side of its positive average. This means that the
distribution is skewed towards 0. Within hydrodynamics this negative skewness was
abserved for fluctuations of v, in Ref. [73], but as we will discuss later for a different
reason. Bins with a negative ¢, ./ mostly have positive values of 7, which causes
again a skewness towards 0. The trend for the absolute value of the skewness || in
most cases is a decrease with increasing (Kn)~!. It seems that the absolute values
of the skewness approach 0 for the largest cross section studied, which would lead
to a Gaussian distribution in that case. In contrast to this, the simulation with the
smallest number of rescatterings leads to |y;| which is far from 0 and also larger than
in the initial state. Unfortunately we did not simulate with even smaller number of
rescatterings, as this hints at the fact that with a smaller number of rescatterings one
could obtain a v, /s distribution with a non-zero mean and large skewness towards
zero, which will then decrease with more and more rescatterings.

Rather large error bars for the excess kurtosis make it more difficult to find
general trends in the data. Nevertheless, we find two trends for ;. The first is
that the v, values are mostly positive and not compatible with zero. To be more
concrete, the v, values are always positive for v, and sometimes negative for vz, while
the negative values also agree with 0 within error bars. This finding coincides with
the results in Ref. [74] which uses hydrodynamics to simulate the time evolution.
The second trend we observe is a non-monotonic behavior with (Kn)~!'. We find
that the maximum value is obtained at the intermediate value for the cross section
we use. For this value the distribution is more peaked than a Gaussian, while for
the smaller and larger value of the cross section the distribution is more Gaussian.

To summarize, we can say that for many rescatterings during the evolution the
absolute value of the skewness and the kurtosis come close to the values of a Gaussian
distribution. In that case the distribution comes back to the properties we found
for the initial state distribution. For the final state the variance is larger than that
of the initial-state flow harmonics. Compared to the hydrodynamic case a finite
number of rescatterings results in a larger absolute skewness and kurtosis.

Let us also mention that we tried to compute the moments for the distribution
Dole(Va,e/s|Eacss) €2,c5), as the quadrangular flow depends on the second and fourth
eccentricity (Eq. (4.13)). In this case we need a binning in both eccentricities to
compute the moments of the probability distribution for fixed eccentricity. However,
when trying to draw conclusions from these moments we obtain rather indecisive
results, as the statistics including our 10* events per impact parameter is not suffi-
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4.4. Event-plane angle distributions

cient in this case. This is the reason why we do not present results for n > 4 for the
moments of the probability distributions pyc(vnc/s|€n.c/s)-

4.4 Event-plane angle distributions

We calculated the flow angles ¥,, from v, o/s, as well as the orientation ®,, of the n-th
symmetry plane from e, .. With these two angles at hand we can now study the
probability distributions p(n(¥,, —®,,)) for n = 2 and 3, which are shown in Fig. [4.8
for the different (Kn)~! at impact parameter b = 6 fm. Similar results for b = 0 fm
and 9 fm are shown in Appendix [C.5] We also show the probability distribution
for the initial state labeled by (Kn)™' = 0. For the initial state the distributions

1 (Kn)'=0
61 (Kn)~' = 0.34
5 1 (Kn)™t =343
=~ L1 (Kn)"'=1374
&y
!
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Figure 4.8: Probability distributions p(2(¥y—®2)) (left) and p(3(¥3—P3)) (right)
for events at b = 6 fm for different (Kn)~!. The initial state distribution is indicated
by the label (Kn)~! = 0.

are flat with small fluctuations. Thus, the initial low which is caused by numerical
noise is uncorrelated to the geometry of the initial state.

For the distributions with the flow angle ¥,, computed at the end of the time
evolution we find peaked distributions. Looking at n = 3, we find for the smallest
value of (Kn)™' ~ 0.3 — 0.4 that the distribution is broad with a maximum at
V3 — &3 = 0 indicating that the initial anisotropy in position space is transferred
into momentum space. Increasing the value of (Kn)~! by a factor of 10 leads to
a sharply peaked distribution around W3 — &3 = 0. This implies that the flow
angle and the symmetry plane of the initial state are almost aligned. Increasing the
number of rescatterings further leads to a less peaked distribution which has again
thicker tails for larger |¥3 — @3]

In the case of n = 2 we observe the same behavior as for n = 2 with the difference
that for the smallest value of (Kn)~! the distribution is already very peaked around
0. This is true for all three considered impact parameters, although for b = 0 fm
it can be observed to a lesser extent only. Again, with increasing (Kn)~! the peak
bekomes sharper and then broadens for the largest number of rescatterings similar
to the n = 3 case.

From Sec. we know that the flow coefficient v has a slower onset as v
with increasing (Kn)~* [83,84]. This known behavior of the flow coefficients is also
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4.4. Event-plane angle distributions

transferred to the flow angles, as the p(2(¥y — ®,)) distribution is always more
peaked than the p(3(¥3 — ®3)) distribution for the same (Kn)™'.

Comparing our results to other calculations from hydrodynamics or hy-
brid simulations, we find that for those distributions which have a clear peak,
the width of the peak has the same magnitude.

We also tried to find a fit function for the p(n(¥, — ®,)) distributions but they
cannot be fitted reasonably by a (truncated) Gaussian nor by a beta distribution.

4.4.1 Event-plane angle distributions with n =4

It was mentioned before, that for the computation of the moments of the conditional
probability distribution pv‘s(m’c Js|€4,c/s:€2,0/s) the statistics is not sufficient. For the
event-plane angles this is not the case, here we have enough events for each impact
parameter to see a clear trend. In general the interpretation is more complicated,
as more angles play a role, i.e., ®5, 4, Uy and Wy.

First, we will have a look at the correlation between the symmetry planes of
g9 and e4. The distributions for b = 0 and b = 6 fm are shown in Fig. 4.9 while
the discussion for b = 9 fm is more complicated due to correlations of the initial-
state symmetry planes and thus moved to Appendix [C.6] For the afore mentioned
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Figure 4.9: Probability distributions p(4®, — 2®2) for events at b = 0 fm (left)

and b = 6 fm (right) for different (Kn)~!. The initial state distribution is indicated

by the label (Kn)~1 = 0.
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impact parameters we find that the initial-state symmetry plane angles ®5 and ®4
are completely uncorrelated, as expected for central to medium-central collisions.ﬂ
There the effect of the impact parameter is not strong enough to enforce a correlation
between the orientation of the elliptic and the quadratic structures.

We will now go on and discuss the correlations between the final-state flow angle
P, and the initial-state symmetry planes ®, resp. ®, shown in Fig. 4.10| in the
left resp. right panel. The final state distributions p(4(V, — ®4)) (left panel) show

5All curves collapse, as there is no time evolution needed for the computation of ®5 and ®, and
the initial state densities are always the same ones. Only the curve for (K n)fl = 0 is different,
since the curve results from the analysis in Sec. where only half the amount of events was
used.
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Figure 4.10: Probability distributions p(4(V4—®4)) (left) and p(4¥4—2P5) (right)
for events at b = 0 fm for different (Kn)~!. The initial state distribution is indicated
by the label (Kn)~! = 0.

no correlation in the initial state and for the smallest number of rescatterings. For
the smallest number of rescatterings this behavior was to be expected, as also for
the angle distributions shown in the last section we observed the broadening of the
distribution with n = 3 with respect to the distribution with n = 2, as the onset of
vs happens at smaller (Kn) compared to v3. The same is true for vy, which has its
onset for even smaller (Kn). Increasing the number of rescatterings increases also
the correlation of the flow angle ¥, to the symmetry plane angle of 4. Thus, there
is again a transfer of the initial state anisotropy from position space into momentum
space, becoming more pronounced with more and more rescatterings. Looking at
the right panel, we find no correlation between ¥, and ®, for all tested (Kn>_1.
For impact parameter b = 6 fm (Fig. 4.11)) we find the same trends as for
= 0 fm for the distribution p(4(¥, — ®4)). One difference is that there is a small

ATy — By ' 4T, — 20,
Figure 4.11: Probability distributions p(4(¥4—®4)) (left) and p(4¥,—2P5) (right)
for events at b = 6 fm for different (Kn)~!. The initial state distribution is indicated
by the label (Kn)~! = 0.

correlation visible for the smallest number of rescatterings. Looking at the right
panel we find the opposite behavior for p(4¥, — 2®,). In the initial state there is no
correlation, then there is the strongest correlation visible for the smallest number
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4.5. Results for anisotropic flow fluctuations from the finite number of
rescatterings

of rescatterings, which decreases when going further into the hydrodynamical limit.
So there is an opposite trend between the correlation of the fourth flow angle W,
to the angle ®4 resp. ®5 with increasing number of rescatterings during the time
evolution.

4.5 Results for anisotropic flow fluctuations from
the finite number of rescatterings

Gathering the results from the previous sections, we find that the v, /s distributions
about their mean value v, /s at a given eccentricity have the following quite robust
behavior across different impact parameters:

e There is a decrease with (Kn)~' and then an increase in the values of the
variance o2 of the fluctuations of v, /s about the mean v, ¢/s(€n.c/s)-

o All v,/ distributions are skewed towards 0. When there is an onset of
anisotropic flow, the skewness takes a sizable value, e.g., the absolute value of
the skewness has a value of order 0.5, which decreases then for an increasing
number of rescatterings.

e The v, ./ distributions are predominantly more peaked than a Gaussian with
the same variance, i.e. they have a positive excess kurtosis, which tends to-
wards 0 when the number of rescatterings is increased.

e The event-plane angle distributions for n = 2 and 3 about their corresponding
initial state participant-plane angle are peaked, with a broadening of the peak
for the largest value of (Kn)™".

e The event-plane angle distributions for quadrangular flow have a more complex
behavior due to possible correlations between the second and fourth symmetry
planes.

It is important to emphasize that the fluctuations which are usually investigated
are the ones from fluctuating eccentricities within a centrality bin. Here we investi-
gated fluctuations at fixed eccentricity using the conditional probability distribution
Pole(Vnc/s|€n,c/s) and then averaged the moments of this distribution over the eccen-
tricity bins at a fixed impact parameter. This means that the fluctuations in the
response function of anisotropic flow to the initial state eccentricity are investi-
gated [60]. Their origin is the finite number of rescatterings in the system which
transfer the initial geometrical anisotropy into a build up of anisotropic flow. Thus,
the average value about which the flow coefficient fluctuates is the one obtained
by solving the (fully deterministic) kinetic Boltzmann equation at the same Kn
(or opacity) [81, 84]@ The fluctuations which we have studied in the previous sec-
tions are not present in hydrodynamic simulations, at least if implementations of
non-fluctuating hydrodynamics are considered.

6This assumes that the Boltzmann equation describes the single-particle phase-space distribu-
tion for the given system, which should hold true if the system is dilute.
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rescatterings

One important finding from the conditional probability distributions and study-
ing their moments is that the fluctuations are non-Gaussian. In this case the central-
limit theorem does not apply due to the fact that there are not enough rescatterings
in the system. It seems also quite intuitive that the skewness tends towards zero, as
the initial flow is zero and has an upper bound in absolute value. Why the excess
kurtosis is positive, i.e., the distribution is more peaked than a Gaussian with the
same variance, is not clear. However, the decrease of the excess kurtosis for the
highest number of rescatterings seems to be encoded in the ¥,, — ®,, distributions
as well. This feature is not yet understood. One possibility could be that for large
values of <Kn>_1 there might be contaminations due to nonlinear mixing of eccentric-
ities, e.g., a £964 contribution to the fluctuations of vy. These contaminations could
occur in value as well as in the orientation. A study of these possible contaminations
is beyond the scope of this work.
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In this chapter we will investigate the early time behavior of anisotropies in posi-
tion and momentum space. We will have a closer look at the non-universal behavior
across different Knudsen numbers from the hydrodynamic to the quasi-collisionless
regime at early times. Going to the quasi-collisionless limit it is possible to perform
analytical calculations which can be compared to the numerical simulations. This
section is based on Ref. [93]:

e Farly time behavior of spatial and momentum anisotropies in kinetic theory
across different Knudsen numbers
N. Borghini, M. Borrell, H. Roch
arXiv: 2201.13294 [nucl-th]

All analytical computations performed in this reference were performed by Nicolas
Borghini and Marc Borrell. The numerical part of the work was done by the author.

The purpose of this paper is to investigate the early time dynamics of the fireball
produced in relativistic heavy-ion collisions more closely. Especially the application
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5.1. Methods and setup

of hydrodynamics in small collision systems or peripheral collisions is still under
debate [94,95] and there are different approaches available to describe the early
time dynamics.

In our approach we use kinetic transport theory which can model the fireball
evolution along the whole range in the Knudsen number.ﬂ

5.1 Methods and setup

In this section the two approaches — numerical and analytical — are briefly pre-
sented and we will introduce the initial distribution which is needed for both com-
putations.

5.1.1 Transport simulations

As the main characteristic quantities which we consider in this paper, namely
anisotropic flow and spatial eccentricities — are mostly driven by the dynamics in
the transverse plane, we will consider the system as purely two dimensional. The
advantage of this simplified setup, which is even further simplified by using massless
particles, is that the simulations become computationally cheaper and it is easier to
overcome the statistical noise, especially in the few-collisions limit.

For the numerical simulations we use the test particle transport approach pre-
sented in Secs. 3.4.23.4.5] In contrast to the analytical calculation the transport
code has the ability to perform simulations at basically all Knudsen numbers by
varying the cross section o. In all our simulations we assured that the dilution
parameter D, defined in Eq. is smaller than 0.1 to ensure covariance and
locality.

In our simulations the number of test particles was typically N, = 2 x 10° in the
initial state of the simulation and we used of the order of N, = O(103) iterations
to reduce statistical errors due to the finite particle number.

We also used the 2 — 0 transport code version introduced in Sec. to have
a better comparison to the analytical calculations, which only account for the loss
term of the Boltzmann equation.

5.1.2 Analytical calculations

Using a single-particle phase space distribution function f (¢, #, p) and the relativistic
kinetic Boltzmann equation with a 2 — 2 collision kernel enables us to describe
a dilute system which undergoes binary collisions. The fist assumption we make
is that in the limit of large Knudsen numbers, i.e., the few-collisions limit, the
distribution function will be close to the free-streaming distribution function. This
approximation has been used in various (semi-)analytical studies for anisotropic flow
in the few-collisions limit with different approximations for the collision kernel [80),
84,89,196H101].

!This is only true for the numerical simulation, as we will see later on.
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In Ref. |102] it was pointed out that one can start irrespective of any approxi-
mation with a Taylor expansion of the distribution function

, , ; & B,
f.7.5) = fOEP) + t0f (4.5,9)| + SO TR+ (5.1)

with f(© the initial distribution and all time derivatives evaluated at the initial time
t = 0. Making now use of the Boltzmann equation

0uf(t,3.5) = —% - Vo f(t.7.5) + CLf], (5:2)

the time derivatives in Eq. (5.1) can be replaced by spatial derivatives. If a form
of the collision kernel is given then the evolution of the distribution function is
described by its initial form and spatial derivatives thereof [102]:

it =fealed +eclf], + (- 5 Sicls] + o)
0

3 —’.ﬁx 2 .
T ;<(pE2)C[f] - % - Va0l f] + 97C| f])o + 0,  (5.3)

with fig grouping all terms without a collision kernel which is therefore the free-
streaming distribution at ¢ = 0. The re-expression of the time derivatives by the
Boltzmann equation can be used again to obtain an expression which depends on
f© and its spatial derivatives only. The cross section enters the calculation through
the time derivatives of C[f] in increasing powers which characterize the rescatter-
ings [102]@ At this point it is also clear that any quantity at early times can be
computed from this distribution function to an arbitrary precision if enough orders
in t are considered.

Up to this point the analytical approach is not restricted to a particular system.
However, to be able to compare with the numerical simulations we will now look at
a two dimensional system with massless particles.

One minor drawback is that the analytical approach is not able to handle the
full 2 — 2 collision kernel of the Boltzmann equation. The gain term, which does
not contain the particle momentum on the left hand side of the Boltzmann equation
makes the form of the differential cross section important. This problem can be
cured by only looking at the loss term, i.e., a 2 — 0 kernel [89,96]:

Cooalfl = =5 [0) (1) @i, (5.4

where time and position arguments are neglected for brevity. It is obvious that this
collision kernel violates particle number and energy conservation, but we are able to
go to higher orders in the total cross section o.

Comparing the analytical results to the 2 — 0 simulations it is important to keep
in mind that the numerical simulations contain all orders in ¢ while the analytical
result is truncated at some finite order in o.

2We will illustrate this fact in the following parts.
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5.1. Methods and setup

5.1.3 Initial distribution function

The initial distribution function used in our work has been used in different stud-
ies before [84}89,96-101]. It provides us with a semi-realistic geometry for our
computations. We assume that the initial distribution f(© factorizes as

fOx,pr) = F(x) G(pr, T(x)), (5.5)

where the geometry is contained in the function F' and the function G contains the
momentum space dependence. Here we use a thermal distribution which depends
on the position via the temperature:

]' — X
G(pr) = W@ Iprl/T(x) (5.6)

The momentum distribution G is normalized to unity and thus F'(x) is the particle-
number density. Via the equation of state for a massless gas of particles in two
dimensions

T(x) x \/F(x), (5.7)

we can relate the temperature to the spatial distribution. This implies that the
temperature in the central region is higher than in the outer regions.

Expressed in polar coordinates in the transverse plane we choose the position
dependent part of the distribution function to be

7"2
T 5p2
Nye 2r

P(r,6) =~ [1 _ ééke;ﬁ? (;)k cos(k@)] , (5.8)

with NV, the initial particle number and R the typical system size. This size sets a
typical time scale for the system evolution. However, we will report our results in
dimensionless time scales and thus it is not really relevant for our results. It is only
relevant for a dimensionless quantity like the Knudsen number when combining it
with the cross section and the number of particles in the system. The phase space
distribution function is normalized to NV, as G is normalized to unity and F' to the
particle number.

The real valued parameters €5 and €3 steer the spatial ellipticity or triangularity
of the system. Matching the two coefficients to the eccentricities defined in Eq.
yields e¥ = &,/4 and ¥ = &3/+/27. For simplicity we have chosen ®; = &3 = 0
which has no influence on the results.lﬂ In the following we have chosen only one
eccentricity to be non zero in a given simulation up to numerical fluctuations and
we used the standard value of €% ~ 0.15.

It is important to notice that the momentum distribution is isotropic in the initial
distribution ([5.5)) which is necessary for the analytical treatment and mostly fulfilled
by the numerical simulations. Again we performed Nj,,. iterations with the same
positions of the test particles but different realizations in momentum space to get a

3Using complex valued &, would result in the symmetry-plane angle ®,, being the argument of
the &,.
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5.2. Onset of anisotropic flow from small to large Knudsen number

handle on the fluctuations of the observables due to finite test particle number Npﬁ
The different iterations are then averaged. In the following we shift all anisotropic
flow curves to zero at ¢ = 0 and indicate the statistical error 1/,/N, N by an error
bar. The amount of rescatterings is characterized by the Knudsen number (|3.24]).

5.2 Onset of anisotropic flow from small to large
Knudsen number

In this section we investigate the early time buildup of anisotropic flow across dif-
ferent Knudsen numbers while we keep the initial geometry of the system fixed.

It is a well known fact that the value of anisotropic flow v,, increases with the
number of rescatterings when going from the few-collisions regime Kn — oo to
the fluid-dynamical limit Kn — OE| We will show this also for our specific initial
condition below. In this work we are more interested in the onset of v,(¢) which is
only studied in the extreme limits of the Knudsen number mentioned above. Fluid
dynamical simulations [37,/103-105] or general scaling arguments [106] have shown
that vy(t) o< t? or more general v,,(t) oc t™ at early times. Transport simulations [56]
83] and analytical calculations [89,96] in the large Kn regime yield a slower growth
with v, (t) oc t"+1.

In our study we want to bridge the gap between these two limiting regimes and
map out the early time behavior of v, and vs. To do this we use the full 2 — 2
collision kernel in the simulations.

We show the values of vy(t) for /R < 0.7 and v3(t) for t/R < 0.9 for a variety of
different Knudsen numbers in the range Kn = 0.02 to Kn ~ 10 in Fig. [5.1] Within

%102 25 x1072
25 Kn — 0.020 T T=0E50 —— Kn = 0.020 Kn = 0.151
Kn = 0.035 Kot = 0.409 — Kn=0035 Kn = 0.167
— Kn=0041 —— Kn=0501 2.0 Kn=0041 Kn :S0:189
209 — k0050 — Kn—o0709 — Kn=0.050 Kn =0.224
Kn = 0.071 Kn = 1.003 Kn=0071 —— Kn=1003
Kn=0129 —— Kn=1204 15 Kn =0.129
1.5 Kn=0.151 —— Kn=1585 :
Kn = 0.167 Kn = 2.242 -
~ 8
B Kn=0189 —— Kn=5013 =
1.01 Kn = 0.224 Kn = 10.027 1.0+
0.5 0.54
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Figure 5.1: Examples for vy (left) and vs (right) as function of ¢/R for different
Knudsen numbers. The green shaded region marks the interval for the end points
of the fits.

this range the number of rescatterings per particle varies from about 25 to less than
0.1 on average. In the few collisions limit the spatial deformation in the initial state

4The initial v; signal is completely removed by subtracting the mean momentum from every
particle in the initial state.
5In the limit Kn — oo no anisotropic flow develops.
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5.2. Onset of anisotropic flow from small to large Knudsen number

is less efficiently converted into a flow signal and additionally we observe that at a
given time and Kn the value of v3 is significantly smaller than the v, value. This is
the reason why we have a narrower interval of Knudsen numbers for vs.

Similar to the scalings reported from literature above, we fit the flow onset using

a power-law ansatz
t t\"
=1 =8,1=] . 5.9
“(2) (2} 59

As due to the finite particle number there are initial state flow fluctuations present
for all the curves, we shift them to zero at the initial time to spare an additional
offset parameter in the fit. This is a valid procedure as we are only interested in the
flow scaling behavior. For the values of 3, we find that they increase when going
into the hydrodynamical limit.

One issue with the performed fits is that the interval in ¢/ R is not a well defined
quantity, i.e., what is early time? To circumvent this problem, we use ¢t = 0 as a
starting point for the fits and the end point is determined randomly within the green
shaded bands in Fig. 5.1} The problem with the end point of the fit is that if its too
small, the fit is contaminated by numerical noise and if its too large, then higher
powers in time might start to play a significant role for the scaling. We perform
500 fits with a randomly chosen end point using expression for all Knudsen
number values. The results for the scaling exponents ~, with n = 2,3 of each fit
with a random end point are displayed in Fig.[5.2| by the gray lines for each Knudsen
number. We also performed a weighted average for the scaling exponents over all

3.44 , 5.0

----hydrodynamic limit ---- hydrodynamic limit

3.2 few collision limit 3 /2 I S few collision limit
3.0
2.8

)

2.6

RE]

2.44

2.21

2.0

10!

Kn

Figure 5.2: Scaling exponent 2 (left) or 3 (right) as a function of the Knudsen
number. The gray lines indicate the 500 realizations of the fit over different time
intervals, while the green points correspond to the weighted average (5.10)).

500 fit lines at each Kn such that the fits with larger uncertainties have less weight
using
2
Y = L/QW, ( 5'10)
>i1/0%,

with 0-3’7“]' the squared fit uncertainty on =, ; for the j-th fit. The index j runs over
all 500 fits and thus the gray lines in Fig. provide us with a very conservative
(non-symmetric) error band to the average scaling exponents 7, shown in green.
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5.3. Number of rescatterings

The scalings show a clear trend, even if the uncertainty bands are quite large,
for the scaling exponents 7, and 3. We can see a crossover from the hydrodynamic
limit, where v, = n, to the few-collisions regime, where v, = n + 1, over the range
of Knudsen numbers. A direct comparison between 9 and 3 shows that for vs this
crossover happens on a much smaller range in Knudsen numbers, which is actually
in the regime, where v, is already close to its hydrodynamical scaling.

We will now put our findings into the context of the already known behavior
of vy and w3 at late times, where the anisotropic flow has reached its final value
in the time evolution of the system. If we go from the free-streaming limit into
the direction of smaller Kn, the vy signal rises before the vs signal [77,[83], which
is also displayed in Fig. for our initial condition. For the fits to the individual

Nresc.
102 101 100 107! 102

Un/€n

103 102 107! 109 10! 102

Figure 5.3: v, /e, as a function of the Knudsen number and the mean number of
rescatterings Nyesc. per particle, where v, and Nye. are estimated at time ¢t = 100R.
The fits were performed with Eqs. (4.4)—(4.5). The colored bands show the 1o fit

error.

simulations Eqs. (4.4) and (4.5)) were used.

It is important to note that with the extraction of 73 ~ 4 in the few-collisions
limit of v3 we reached a limit of what we can do to obtain reasonable uncertainties.
This is the reason why we did not try to extract the scaling behavior of v4, which is
expected to change its scaling from t* to > with increasing Knudsen number.

5.3 Number of rescatterings

Now we want to compare the results of the analytical calculations described in
Sec. to the numerical simulations using the expansion [5.3, Therefore, we use
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different orders in the cross section included in the analytical results, as we have
already seen that the scaling of the flow coefficients v, (t) does not have an integer
value at “intermediate” Knudsen numbers. Within our framework we are able to
sum different contributions from the Taylor series to compare the resulting effective
behavior to the full transport simulations.

We start with the most basic observable one can think of, the number of rescat-
terings in the system, which is rescaled by twice the number of particles N,. The
factor 2 accounts for the two particles interacting in one collision. From the ana-
lytical side Ny is one half times the integral of the collision rate. This gives us
the simple possibility to compute it from the collision integral of the 2 — 0 collision
kernel over the whole phase spaceﬂ

1 t
Nuese (1) = 517 / () dt’ (5.11)
p 0
1 , d*xd?’p |,
v | [ ~Coolstt x,p)) = Pat (5.12)

In the analytical treatment we are only able to compute f(¢,x,p) at early times
in the 2 — 0 scenario. For this reason we will also consider the numerical 2 — 0
simulations. Remember, that this is the model where the particle number is not a
conserved quantity. The analytical results for Ny are computed up to order t'! in
time and up to order ¢° in the cross section/]

In Fig. we show the transport simulation results in green for two different
Knudsen numbers, Kn ~ 25 (full line) and Kn ~ 5 (dashed line), where we rescaled
the latter Knudsen number results by a factor 1/5 such that a proportionality to o
would be directly visible. We find that this proportionality is not present, as the
two curves do not coincide. This tells us that going to higher orders in the cross
section is important to describe Nyesc. (t).

Comparing the analytical result at order o (blue) we find that the curves coincide,
as they should by construction. Additionally they are close to the numerical results
at Kn ~ 25 up to t/R ~ 0.3. Going beyond order o, namely to ¢° (orange), shows
that the agreement with the simulations can be improved for both Knudsen numbers
considered here.

We were able to show that Ny () is well described in the analytical calculation,
which is a necessary prerequisite for other observables like anisotropic flow coeffi-
cients which depend on this quantity. It is also worth noting that in the case Kn ~ 5
about 16% of the particles disappear during the time evolution of the system, where
most of the particles are lost in the dense state during the initial state. This is also
the reason why the simulation results of the 2 — 2 and 2 — 0 collision kernel show
significant differences during this early stage and makes it important to compare
the 2 — 0 kernel with the analytical results.

6This integral over the loss term of the collision kernel gives the number of rescatterings for any
type of binary collisions for two identical particles. It is not restricted to our modified collision
kernel, as the notation might suggest.

It is important to note that at O(t'!) there are terms up to o'°, that is why our results for
Niese.(t) at order ¢! are not complete. We are slightly inconsistent here, as the number of terms
to compute grows significantly with increasing order in the cross section.
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Figure 5.4: Number of rescatterings per particle for Kn ~ 25 (full) and Kn ~ 5
(dashed) for the 2 — 0 collision kernel simulation (green). The analytical results
— computed up to O(t!') — are shown at O(o) (blue) and O(c°) (orange) for the
corresponding Knudsen numbers.

5.4 Anisotropic flow coefficients

Now that we have discussed the time dependence of N,.. we can go back to the
anisotropic flow coefficients v,, at early times. In this case we assume that there is
no “preflow” in the system, that means that v,(t = 0) = 0. As we want to compare
to the analytical calculations similar to the ones in [89,(96], we will use the 2 — 0
scenario for the simulations. However, we found that in the limit of large Knudsen
numbers both collision kernels yield similar simulation results for vy(¢) with ¢t < Rﬁ
As in the case of Kn ~ 1 about 60 — 80% of the particles are vanishing in the 2 — 0
setup, it is only possible to study the dependence of v,, for “large” Knudsen numbers.

Results for vy(t) at two different Knudsen numbers are given in Fig. [5.5l The
simulation results are again shown in green and the statistical error in the initial
state caused by the finite number of particles (see Eq. (1.2)) is indicated by an error
bar at t = 0. Results for vy(t) from the analytical approach are shown in blue resp.
orange by keeping terms up to order ¢! but only terms up to order o resp. o3>.
Ref. [93] has shown that possible contributions at O(c¢) start from ¢* and show up
at odd orders in time, while those at O(0?) start from ¢* and show up at even orders
in time. Similarly to O(c) the terms of order O(¢?) are again showing up at odd
orders in time, but only from ¢° on.

Focusing now on Fig. we observe a nice agreement for Kn ~ 25 (left panel)
between numerical and analytical results at first order in the cross section up to

8We find that the 2 — 0 kernel yields slightly smaller vy(t) values and that the deviation
between the kernels increases with decreasing Kn. This is caused due to the faster dilution in the
2 — 0 system. More detailed results are provided in Ch. |§| (Ref. [107]).

73



5.4. Anisotropic flow coefficients
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Figure 5.5: Elliptic flow vy as a function of ¢/R for Kn ~ 25 (left) and Kn ~ 5
(right). Results from the numerical 2 — 0 simulations are shown in green and the
analytical results are shown to O(o) (blue) and O(¢?) (orange). Both analytical
curves include terms up to O(t?).

t/R = 0.4, while going to order o2 again improves the agreement in such a way that
the growth of vy(t) is slown down. This is not a trivial result keeping in mind that
the analytical approach is a Taylor series in /R and that the result at t/R = 1
differs by less than 10% from the simulation.

As expected, the inclusion of higher orders in ¢ is even more important at the
five times smaller Knudsen number shown in the left panel. For the results at O(c?)
we obtain a good agreement between the two approaches up to t/R ~ 0.6.

We can conclude that the higher order terms in the cross section are important for
the comparison to the numerical results. If we would consider enough powers in ¢ and
o it should be possible to reproduce the scaling behavior of the flow reported as 7, in
Sec.[5.2] However, including more powers in time will improve the late time behavior
of the curves but it will not signifficantly affect the early time behavior. Increasing
the order of the cross section would improve the results for smaller Knudsen numbers
by the cost that the computations become much more expensive.

Investigating now the triangular flow v3(t), one of the first things to notice is that
the 2 — 0 kernel yields much more different results than the 2 — 2 kernel, especially
at times ¢ > R. This will be described in further detail in Ch. [f} Comparing the
vs signals at Kn &~ 5 or 25 in Fig. [5.3 shows that they are already very small at
the end of the time evolution in the 2 — 2 scenario, which will be intensified in the
2 — 0 case and by simulating only up to t/R ~ 1. This implies a new problem, in
particular that there is a non vanishing initial v3 in the initial state, which can lead
to a (small) linear rise of v3(t) at early times |102]. We can observe this rise at both
Knudsen numbers shown in Fig. [5.6]

A second problem arising in the analytical calculations with the 2 — 0 kernel
is that the vs(t) signal at O(c) vanishes at all timesf| Therefore, we have to go
to higher orders in the cross section to find a v3(t) signal within the Taylor series
approach.

Figure shows the triangular flow for the same Kn values that we have used

9 Actually, all odd flow harmonics vanish at order o.
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Figure 5.6: Triangular flow vs as a function of ¢/R for Kn ~ 25 (left) and Kn ~ 5
(right). Results from the 2 — 0 collision kernel are shown in green and the analytical
results are shown to O(c?) (orange).

for Nyese. and vy. We include terms up to t'* and O(c?), resulting in a leading term
v3(t) o< o(t/R)® which grows slowly in time compared to vy(t).

As the shapes of the curves are different for the two approaches — which can be
explained by the fact that the analytical calculation does not include any preflow
and thus has no linear rise — we can just say that the results are of the same
magnitude. This is to some extent a surprise, as the 2 — 0 scenario has a v3 which
is proportional to o2 and not to o and on the other hand one can fit the v5 points
in Fig. using Eq. with v3 oc Kn™! for large Kn. However, these are the
results for v3(t) which come together with the successful description of the numerical
results. In Sec. we will see that there are also alternative measures of triangular
flow, where an energy weight is used and which lead to different results.

5.5 Spatial characteristics

Here we will discuss the anisotropies in position space, i.e., spatial eccentricities €
and related quantities. In contrast to anisotropic flow many of these quantities do
already have a non trivial time dependence in the free-streaming case. In Ref. [102]
it was even pointed out that the change in these geometrical quantities due to
rescatterings of particles is subleading in time with respect to the free-streaming
evolution. This is why we will first look at collisionless systems taking into account
only fis in Eq. (5.3) and we will consider the 2 — 2 kernel in this section. For the
free-streaming system this does not make a difference, but if we include rescatterings
later on this is crucial.

In this section we will consider particle-number weighted as well as energy-
weighted eccentricities £X(¢) (Eq. (2.25))) resp. 5#(¢). The definition of the energy-
weighted eccentricities is the same with an additional factor E = |p|, being the
energy of a particle with momentum p, in the integrals in Eq. (2.25). The time
behavior in the free-streaming case is given by [102]:

en(t) ~ —nl0)

~ TR (5.13)
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5.5. Spatial characteristics

where in the case n = 2 the equality is exact, while for n > 2 it holds up to terms of
order (t/R)* or even higher if n > 3. The initial condition introduced in Sec. [5.1.3
yields as = 1/2 for a particle number weight for €¥, while we obtain ay = 3/4 for
an energy weight for e3”. For the third harmonic we obtain as = 3/4 and 9/8 for
particle resp. energy weight for €3 resp. sg’E

The standard scenario we will consider in this section is an initial eccentricity of
eX = 0.15. Again, we can only use a finite number of particles, N, = 2 x 10° in this
case, such that the value is not exactly reached. However, the fluctuations in the
simulations can be decreased by fixing the initial positions of the particles for Nje,. =
3.2 x 10* iterations and resample the momentum distribution only. Additionally,
the momentum distribution depends on the positions of the test particles via the
temperature, such that the energy-weighted eccentricities 6’2"E and 5§’E can differ
from each other. In Fig. the free-streaming eccentricities are shown for the
different weights. The full curves can be nicely fitted using Eq. giving us

0 1 2 3 1 0 1 2 3 1
t/R t/R

Figure 5.7: Time evolution of the spatial eccentricities in a collisionless system.
The left panel shows particle-number weighted eccentricities €%, €%, the right panel
eccentricities 5’2(’E, 5’3(’E with energy weighting. The dotted curves are fits with

Eq. (5.13) and the parameters given in Table

the fit parameters presented in Tab. 5.1} where we fitted the numerical results with
Eq. (5.13)) up to t/R = 0.5. In all cases the fitted £,(0) coincides with the values

Table 5.1: Parameters of the fit function Eq. (5.13)) for &, with particle-number
and energy weight.

weight £9(0) as
particle number 0.1496 0.5005
energy 0.250  0.745
weight e3(0) as
particle number 0.1499 0.7626
energy 0.246  1.141

computed in the initial state of the simulations. Then all extracted a,, values from

0These specific values are only valid for the initial condition given in Sec. while Eq. (5.13))
is true for any free-streaming distribution.
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5.5. Spatial characteristics

the fit are in good agreement with the analytically predicted values, where we see
a better agreement for n = 2, where Eq. is exact, than for n = 3, where the
equation is only correct up to terms of order (¢/R)*. Note, that the energy-weighted
eccentricities decrease faster than the particle-number weighted ones. This behavior
is also encoded in the larger values of a,,.

If there are no collisions present in the system evolution there is no possibil-
ity to transfer a spatial anisotropy into a momentum anisotropy, i.e., to generate
anisotropic flow. For this reason the eccentricities fall off most slowly in the free-
streaming case, while any number of rescatterings can only lead to a faster decrease.
When the number of collisions is sufficiently large, there is also the possibility that
the eccentricities can change sign, which was also observed in hydrodynamical sim-
ulations [105]. The change due to collisions at relatively large Knudsen numbers
(Kn & 25 or 5) is not really visible, as displayed in Fig. . Just to show the sign

0.150 A %, fs. X, Ls. 0.25 E;E, fs. 5?{‘]?, f.s.
o1z N T 8’2;‘ Kna25 - ez., Kn ~ 25 0.20 5;‘-"77 Kn /25 «oeeee 5;"7, Kn =~ 25
—— ~b ——— ~5 ) )
0.100 1 —-—2’ Eﬁ:gl —-—;i.’ Eﬁ:gl o Kams o-- g Kams
’ 2 : & : 0.157 .—'-EE‘H7 Kn=0.1 —-—e?;‘H, Kn=0.1
0.0751 :
%= 3. 010
W
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~. =
~.
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Figure 5.8: Time evolution of the spatial eccentricities in a collisionless (full lines)
and in an interacting system with few rescatterings (dotted and dashed lines). The
left panel shows particle-number weighted eccentricities €%, €%, the right panel ec-
centricities E;’E, ag’E with energy weighting. For comparison, we also show the

behavior in a system in the fluid-dynamical regime (dotted-dashed lines).

change in the eccentricities there is also a curve at Kn ~ 0.1 in the almost fluid-
dynamical regime. These curves deviate strongly from the (almost) free-streaming
behavior for t/R 2 1, as the anisotropic flow which is generated needs time to
develop and have some effect on the systems’ geometry.

If we want to investigate the influence of rescatterings on the geometric quantities
in more detail, we might have a look at the numerator and the denominator of the
eccentricities separately. For simplicity we will only look at the numerators and
denominators of €% and 3" here and present the results for the third harmonic
in Appendix [D.2] as the results are similar. To see the influence of the collisions
directly, we subtract the free-streaming result from all curves.

We begin with the numerator of the eccentricity and subtract the free-streaming
result. For the 72 cos(20) we can again look at a particle-weighted or energy-weighted
average. In the free-streaming case with no initial anisotropic flow this quantity is
supposed to be a constant in time. A departure from this free-streaming case is
shown in Fig. for Kn ~ 25 (left panel) and 5 (right panel). To make the
quantities dimensionless, we have scaled the values by the initial value of the average
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5.5. Spatial characteristics
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Figure 5.9: Time evolution of the departure of —(r?cos(260))x p with particle-

number (green) and energy (blue) weighting from its free streaming value, for sim-
ulations with Kn ~ 25 (left panel) or Kn ~ 5 (right panel).

of 72 cos(260), such that the curves show the relative change of the averaged value
caused by rescatterings in the system. First, we notice that the relative change is of
the order 10~ in the simulations with Kn ~ 25 and 1072 at Kn ~ 5. The signal in
the Kn =~ 5 case is approximately five times larger than at Kn ~ 25, i.e., it seems
to have a scaling proportional to Kn™! or 0 or Ny .

For a further quantification of this behavior we tried to fit the curves in Fig. [5.9
with a power-law ansatz

— <7"2 cos(29)> (t) + <r2 cos(2«9)>f.s' o <t>x. (5.14)

X,p R

x7p

Similar to the procedure in Sec. we perform several fits starting at ¢ = 0 and
ending at ¢/R in a range from 0.35-0.7. These fits with different end points result in
exponents which are in the range y = 3.5-5.5 indicating a rather slow growth in time.
Again we can use knowledge from Sec. |5.2]and the fits for the v3(¢) behavior we know
that this might hint to an exponent which is y > 4, but it is hard to make a strong
statement here. The signal in Fig. is one or two orders of magnitude smaller
than the v3(t) signals which were already in the regime where the interpretation of
the results become difficult due to the fluctuations.

From the analytical point of view one can say that using particle-number or
energy conservation, depending on the weight used for the average, leads to vanishing
contributions at order t* or below, such that the scaling has to obey y > 3 [102].
Additionally one can show that contributions from the loss term in the 2 — 2 kernel
vanish at all orders due to parity arguments in momentum space. As we are not
able to compute the gain term contributions, we can only say that y > 3 has to be
fulfilled, which is in agreement with the numerical findings.

Now we investigate the denominator of €%, which is the definition of the mean
square radius of the system. This quantity is obviously changing in time even
without collisions, as the system expands. In free-streaming the quantity obeys

<r2>f's' (1) =(*), 0+ () (07 (5.15)

X7p
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5.6. Alternative measures of anisotropic flow

with v? the squared transverse velocity of the particles. In our case, since the
particles are massless, it is the squared velocity of light.
Figure 5.10|shows the departure (%), _ (t) — (r2)"* (1) of the mean square radius

x?p
from a system without collisions, again scaled by the initial value of (r?) o~ The
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Figure 5.10: Time evolution of the departure of (7"2),47p with particle-number
(green) or energy (blue) weighting from its free streaming behavior, for simulations
with Kn ~ 25 (left panel) or Kn ~ 5 (right panel).

negative signal tells us that the expansion of the system is slowed down by the
collisions, which seems quite intuitive: an acceleration of the outgoing particles is
not possible, as the particles are already moving at the speed of light. Again, we
can find a factor five going from Kn = 25 to 5 and therefore the scaling seems
to be linear in the Knudsen number. As for the numerator of the eccentricity we
performed a power-law fit with

2 2\Fs t\X
(), = (P (%) (5.16)
finding exponents in the range x’ = 4.1-4.5 for the different end points of the fit.
Analytically we find x’ > 3 [102], which is again consistent with the findings from
the fit.

For the mean square radius there is an important difference between the particle-
weighted and energy-weighted average. In the case of the energy-weighted average
we find in Fig. that the quantity is a constant in time. An analytical proof
for this is shown in Appendix [D.I] It is important to note that this holds only in
the case of two dimensions and massless particles. Additionally for (r®),  there is
a time dependence, as is shown in Appendix The study of (r?), o and (%),
for the different weights in the average shows that the transport of energy density
and particle density is not connected via a one-to-one relationship.

5.6 Alternative measures of anisotropic flow

As mentioned before, there are several alternative possibilities how to quantify
anisotropic collective flow. Now we want to compute the anisotropic flow differ-
ently and compare the early time behavior to the results from Secs. and
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5.6. Alternative measures of anisotropic flow

The first possibility we want to look at is the Fourier harmonics of the transverse
energy distribution, which was also investigated in a number of recent kinetic theory
studies [84,98-101]. These “energy weighted flow coefficients” are defined by

/Ef (t,x,p) cos{ (qbp — \IIE)} d’xd*p
/Ef (t,x, p) d°xd*p

(5.17)

Sy

with the n-th harmonic event plane WZ. The factor F in the integrals is the only
difference to the “particle weighted flow harmonics” used in the sections before.
Here, we have U = (, as we consider the initial-state symmetry plane to be oriented
with ®,, = 0.

In our considered case (massless particles) and with p, = 0, the energy-weighted
elliptic flow v£ coincides with the definition in fluid-dynamical simulations |88, 108]@
and reads

. [ () - T (x)] d2x
€5 = / 77 (x) + T (x)] dx

(5.18)

for our two-dimensional setup. The two diagonal components of the energy momen-
tum tensor 77" and TY can be computed from

d2p

T (x / (t
P f(t,x,p) — ik

(5.19)
In contrast to the other definitions of anisotropic flow the form in Eq. can
be used on the level of an energy momentum tensor and makes a “particlization”
procedure with a Cooper-Frye approach redundant.

Similar to Sec. we want to find out how &5 scales at early times for different
Knudsen numbers. So we have again a look at the 2 — 2 collision kernel and at
Knudsen numbers ranging from 0.02 up to 25 for the onset of €5(¢) = v (¢) shown
in Fig. [5.11] We use again a power-law ansatz

f(7) =5 (x)" 20
(=)= = :
2 R 2 R
to perform 500 fits with different time intervals to map out the whole range of
possible values for 74 displayed in the right panel of Fig. [5.11l We find that the
behavior of 74 for varying Kn is similar to the one for v, (Fig. 5.2)). There is a
change from +4 ~ 2 in the hydrodynamical regime to 75 ~ 3 in the few collisions
limit. The statement here is that €5 (¢) behaves as vy(t) for early times.

With arguments from Sec. IV.1 in Ref. [102] one finds in the absence of initial
flow that the leading contribution is

eP(t) oc ot + O(t4), (5.21)

"Note the misprint in the definition of €} in Eq.(3.2) of Ref. [108], as mentioned in Ref. [109).
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Figure 5.11: Left panel: Early time dependence of e} = v¥ for various Knudsen
numbers. Right panel: Dependence of the scaling exponent 5 [Eq. (5.20)] on the
Knudsen number, using the same color code as in Fig. @

with the O(t*) term contributing already at order 0. Again, this coincides with the
v(t) behavior and it is shown in Fig. |5.11] (right panel) by a dotted line.

In the next step we computed the Taylor series approach up to O(t?) at order
o with the 2 — 0 collision kernel and compare it to the simulations including the
same kernel in Fig. [5.12] There is a nice agreement between both approaches until

x 10~
Kn ~ 25
8 i
6 4
&S
4 i
2 i
simulation

01 ed at O(o)

0.0 0.2 0.4 0.6 0.8 1.0

t/R
Figure 5.12: Early time evolution of e} = v{ at Kn ~ 25. The results of the
2 — 0 simulation are shown in green, the analytical calculation at O(c) in blue.

t/R ~ 0.4 which could be improved, in a similar way as for v5(t), by including more
powers in o and t. As the analytical computations are already quite extensive, we
do not perform these calculations any more.

Going now to n = 3 we can discuss the energy-weighted triangular flow v (¢)
shown in Fig. for the 2 — 0 kernel simulations (green) at Kn ~ 25 (left panel)
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5.6. Alternative measures of anisotropic flow

and Kn ~ 5 (right panel). The energy-weighted triangular flow is significantly larger

-5
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Figure 5.13: Early time development of energy-weighted triangular flow v{ for
Kn =~ 25 (left panel) and Kn ~ 5 (right panel) from numerical simulations with the
2 — 0 collision kernel (green) and analytical calculations at O(c) (blue).

than the particle-number weighted triangular flow (Fig. and also less sensitive
to initial-state fluctuations of the flow signal. The blue curves in Fig. [5.13| show the
analytical results at linear order in the cross section and including terms up to order
t'% In contrast to the vs(t), which scales as O(c?), the v¥(t) is already present
at order 0. We find a good agreement between analytical and numerical results for
both Knudsen numbers while taking into account the initial-state fluctuations of the
simulation results, which lead to a linear growth at small ¢/ R. Using more powers in
t and o in the analytical calculations could also improve the fact that the curvature
around t/R =~ 1 is different, but this is not our goal.

Above it was discussed that the particle based description of anisotropic flow has
the need for a particlization process if hydrodynamical models are used and thus a
description using Eq. is more natural on the level of an energy momentum
tensor. However, the generalization of €5 to higher harmonics is not straightforward.
This was the reason why in Ref. [37] a definition was introduced on the “macroscop-
ical” level for fluid-dynamical descriptions, which is generalizable to higher harmon-
ics. Indeed, this generalized flow measure can be used in any microscopical model
as well. Adapted to our two-dimensional setup the measure for elliptic flow from
Ref. [37] is given by

o [ 6060 = T (), ()] dx
2 = /TOO(X>U0(X) d2X )

(5.22)

with the flow velocity u*(x). Considering only a single particle species the natural
choice for it is

ut(x) = : (5.23)
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with

d’p

Ne(x) = [t x,p) - (5.24)
From the analytical point of view the implementation of o} is straightforward,

as f(t,x,p) is known. Implementing the observable in the transport simulations is
more challenging, as the energy momentum tensor is not computed at each point
in space and time. This is why we have to divide the system into Neus = 402 cells
on a rectangular grid. Here, we have checked that the results do not depend on
the number of cells by varying the number from Nes = 20? to Nees = 1202 using
N, = 5 X 105 particles. When using more than N = 60? cells the signal starts
to fluctuate, as there are too few particles inside the cells. This could be solved by
using even more particles. For each cell the sum of the momentum components p,
and p, are computed, which are denoted by P, resp. P,. We also need the total
energy Fi,. in each cell, the number of particles and the mean velocity per particle
vy = P,/FEio and v, = P,/E.. Using these definitions we can approximate the

numerator of Eq. (5.22)) by

N, . — —
1 cells P N — P N
TO:Eu _ TOyu ~ Z T, 7T, Y1 7Y, (525)
* /%7 Neenss 1—v2, — V2
coms =l zi Vi

and the denominator by

Neens )
<TODU0> ~ 1 Z Etot.,z (526)

x Ncells i=1 1/1 — \_/33,1 — \_/Z’Z

The denominator in the latter expressions is due to the normalization of the velocity.
For the analytical setup it is important to compute the free-streaming case, which
is for o not a constant but has a quadratic time dependence:

ab(t) o< 2 + O(t). (5.27)

The proportionality factor of the #? term actually includes the spatial eccentricity
%, which means that elliptic flow can develop even if there are no collisions in the
system.

Introducing collisions in the system modifies the #3 order, which is consistent
with the onset of va(t) or 5(¢) but subleading to the free-streaming behavior.

Figure shows the early time o (¢) for the case of a 2 — 2 collision kernel with
intermediate number of rescatterings (orange line), in free-streaming (green line)
and for the analytical case with free-streaming (dotted blue). As stated above, the
collisions lead to a departure from the free-streaming case starting from t/R =~ 0.8
only and have a subleading effect at early times.
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Figure 5.14: Time dependence of o} for simulations (full lines) in a collisionless
(green) system or in the few collisions regime (orange), together with the analytical
result in the free streaming case (dotted blue line).
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This chapter is based on Ref. [107]:

e Fven anisotropic-flow harmonics are from Venus, odd ones are from Mars
B. Bachmann, N. Borghini, N. Feld, H. Roch
arXiv: 2203.13306 [nucl-th]

In this work we tested how efficient the “escape mechanism” translates initial spatial
anisotropies into anisotropic flow. By comparison of three different setups we find
that the even anisotropic flow harmonics behave similar in all approaches, while the
odd flow harmonics behave different.

The analytical computations in this work were performed by Nicolas Borgh-
ini and Nina Feld. One of the simulation setups, i.e., the 2 — 0 collision kernel
(Sec. , was implemented in the code by Benedikt Bachmann. All numerical
calculations in this work were performed by the author.

As mentioned above we have three different setups to investigate the production
of the anisotropic flow by the “escape mechanism”. Two of these scenarios are
numerical simulations with the transport code, one with the 2 — 2 collision kernel
(Sec. and another one with the 2 — 0 collision kernel (Sec. [3.4.6). The
2 — 0 simulations give the flow of the particles which did not undergo a collision
during the time evolution of the system, i.e., which “escaped”. The analytical setup
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6.1. Analytical approach

uses kinetic theory including the loss term of the Boltzmann equation only and
including the first order in the cross section, which gives an approximation of the
2 — 0 scenario.

6.1 Analytical approach

We start by introducing the analytical approach which uses the classical on-shell
phase space distribution f obeying the relativistic Boltzmann equation

p"0.f(t,x,p) = Clf(t,x,p)]. (6.1)

As mentioned above, we use the loss term of the collision kernel for binary scatterings

Closs[f(tv X, P)] - _F;P / f(ta X, p)f(ta X, pl)UM(allerg d2p1 (62)

with F, the energy of a particle with momentum p, the Mgller velocity vygiier and
the total cross section o. Let us emphasize again, that this collision kernel does
not conserve particle number during the time evolution. The Mgller velocity for
massless particles in two dimensions can be expressed by vpgner = 1 — cos(pp — ¢1)
where ¢, and ¢; are the azimuths of the particle momenta p resp. p;.

Our main characteristic quantity is anisotropic flow, which is given by the Fourier
coefficients of the particle distribution [15]. The flow coefficients were defined in
Eq. (1.6). Note, that we use the distribution function f(¢,x,p) here such that in
Eq. one has to integrate over the position space as well. Additionally the
distribution function is oriented such that only the cos-part is different from zerol[]
We can write the flow coefficients in our setup as

/f(t, X, p) cos(ngp) d*xd’p
[ fexp) dxdp

() (6.3)

where the denominator is the particle number N(¢) at a given time ¢. Computing
the time derivative gives two contributions:

Duon(t) = Nl(t) [ 01t x,p) cos(ngy) d*xd?p - a;xg)%(t). (6.4)

Then the time derivative of the distribution function 0;f can be replaced by the
Boltzmann equation. The part including the spatial gradient of f vanishes when
integrating over the position space variable x, such that the only remaining con-
tribution is due to the collision term of the Boltzmann equation. This term is at
leading order linear in the cross section o. Restricting ourselves to this order of the
cross section we may neglect the change in the particle number due to only consider-
ing the loss term which does not conserve the particle number. We can approximate
the denominator in the first term in Eq. by N(t) ~ N(0), which we will denote

'For the simulations this is only true up to numerical fluctuations due to the finite number of
particles.
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6.1. Analytical approach

by N in the following. A second approximation is that we neglect the evolution of
the phase-space density due to rescatterings in the numerator as well, which means
that we replace f(t,x,p) by the free-streaming distribution f;s (¢,%,p) coinciding
with f initially [10L96.97]:

frs.(t,x,p) = O (x — vt,p). (6.5)

Here v = p/|p| and the distribution function at ¢ = 0 is denoted by f©(x — vt, p).
Going to the second term of Eq. (6.4), the derivative 0, N (t) is (at least) of order
O(o). If there is no “preflow” in the system then the v,(t) is also of order O(o),
such that in total the term is at least of order O(0?) and will be neglected from now
on. It is important to note that the term contributes at linear order in the cross
section and if the flow is initially not vanishing it may not be dropped.
Considering the previous discussion the evolution equation (6.4)) is replaced by

Oyvn(t) = jlv / Wcos(ngop) d2xd?p, (6.6)

which is valid at order O(o) for all collision terms which are of the same order in
the cross section. When inserting the loss term (6.2]) for the collision kernel and
performing the time integral, we are left with

¢
—i/ /ff,s,(t’,x,p)ff,s,(t’,x, p1)[l — cos(pp — ¢1)] cos(npp) d*xd?pd?pdt’ + O(c?)

—// Wt ) drdt’ + O(0?).
(6.7)

The second line is the definition of the angle-averaged local v,, production rate [100]
discussed in Sec. These expressions assume that v, (t = 0) = 0.

Within the analytical approach the anisotropic flow coefficients are directly re-
lated to the initial state phase distribution f(© via Eq. , which will be discussed
now. A first assumption we make is that f(© factorizes into the particle number
density, giving the geometry of the system, and a momentum distribution:

fOx,p) = F(x)G(p), (6.8)

where the function G is normalized to unity, when integrating over momentum
space. The reason for this factorization assumption is that otherwise the analyti-
cal calculations are not tractable, which give us analytical expressions for the flow
coefficients when assuming the spatial distribution . However, this assumption
is not harmless, especially when considering the odd flow harmonics later on. G is
chosen isotropic in momentum space to have no anisotropic flow in the initial state.
If initial flow should be considered it is possible to include it via a Fourier expansion

of G(p) [110]F

2The inclusion of preflow leads to rather lengthy expressions and the evolution at leading order
in o is no longer guaranteed due to the second term in Eq. (6.4)) discussed above.
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6.2. Numerical simulations

Our position space distribution is a distorted Gaussian
6 2 2R2 r J
1= g/ <R> cos(j0)| , (6.9)

]\/'6—1"2/21%2

F(r,0) = 5 R

i=2

with particle number N and the typical system size R which is used to make lengths
and time dimensionless in the following. Recent studies [80,81,84,/99-101] have
used the same distribution functions quite extensively, as it gives the possibility to
implement eccentricities for the initial state which are independent of each
otherﬁ To cross check our results we computed the flow harmonics also using a
different distribution function in position space in Appendix[E.3] The &, coefficients
in Eq. are related to the eccentricities defined in Eq. by

(n—1)I _
msm (6.10)

which is ey = &5/4, e3 = £3//27, 4 = 34/4, and so on. To ensure the positivity
of the distribution function the values of &, should not be too large. In typical
cases with only a single eccentricity the maximum &, should be chosen such that
€n < Enmax =~ 0.35, which is the case in all our calculations. The typical value we
used is &,, such that £, = 0.15 or even zero in Sec. when computing the number
of rescatterings.

En —

6.2 Numerical simulations

The numerical setup for this work was extensively described in Sec. for
the 2 — 2 collision kernel and in Sec. [3.4.6] for the 2 — 0 collision kernel. So here
we will just recall the most basic ingredients of the simulation setup. We use N
massless particles modeled by N, test particles with radius (N/N,)o/2. o is the
total cross section of the “physical” particles.

Let us also discuss the most important difference between the 2 — 0 simulation
and the analytical results. In the simulation the phase-space distribution is changed
by rescatterings, which is not the case in the analytical calculation, thus the simula-
tion contains all orders in the cross section and we may depart from the few-collision
regime to see how the flow signal behaves when most of the particles disappear from
the system.

Ref. [111] introduced a similar approach with 2 — 2 and 2 — 0 collision kernels,
with the difference that their 2 — 0 kernel still treats particles as “active” after a
collision, but randomizes their momentum azimuths. In that case the particles still
contribute to the generation of anisotropic flow in this AMPT version.

The initial state of the simulations is sampled from the distribution function ,
while momenta are chosen to be Boltzmann distributed with a position-independent

3The distribution function directly implies ®,, = 0 in Eq. , which we assume here
without loss of generality by considering only a single €,, # 0 at a time.

4Note, that we will drop the exponent x for the spatial eccentricities from now on, as from now
on there can not be any confusion with the energy-weighted elliptic flow defined in Eq. and
which is not considered in the following.
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6.2. Numerical simulations

temperature. This is different to the setup used in Ch. 5| In this work we used IV,
ranging from 2 x 10° to 2 x 10° test particles, which still leads to anisotropies in
momentum space and non uniform parts of the momentum distribution across the
whole geometry. Fixing the initial particle positions and resampling the momenta
for multiple iterations Ny, improves the situation. Presented results are averaged
over the Nj,. iterations. We assured that the product N, Nj,. is always larger than
10° for the simulations.

When considering Eq. , the average particle number density in two dimen-
sions is N/4rR?. Together with the definition of the Knudsen number (Eq. (3.24))

we obtain

B AR

Kn=—.
. No

(6.11)
This dimensionless number is used to quantify the number of rescatterings in the
system. The average number of rescatterings per particle N, computed for the
whole time evolution scales linearly with Kn™' as shown in Fig. for the 2 — 2
simulations. In practice we compute this number at t/R = 30. For the 2 — 0

0.35 1

0.30 1

0.25 1

$0.20 1

NerL

0.15 1

0.10 -
m 22

e 2—-0

loss term

0.05 1

0.00 1

0.0 05 1.0 15 20 25 30
Kn!
Figure 6.1: Mean number of rescatterings per particle over the system evolution as
a function of the inverse Knudsen number estimated in the initial state, Eq. ,
for the 2 — 2 (green squares, fit with Nyse. ~ 0.529Kn~1) and 2 — 0 (blue
circles, fitted with a quadratic ansatz: dashed line) scenarios. The red line Nyese. =
Kn~!/\/r is the prediction of the analytical approach.

scenario a given value of N, needs a larger Kn™!, i.e., cross section due to the
faster dilution of the system caused by the fact that particles can only scatter once.
The following results are mostly in the few-rescatterings regime N,e.. &~ 0.02 and in
a regime with more rescatterings (Nyes.. & 0.14), where the approximations are not
that well justified. In Appendix we show some results for Nyese. = 0.35 which
clearly violates the assumption that the distribution function is to a good extent
approximated by the free-streaming distribution at all times.
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6.3. Elliptic flow

6.3 Elliptic flow

We start our discussion of the flow harmonics with elliptic flow [16] using the initial
spatial profile with only &5 such that ¢5 = 0.15.E| Figure shows the time
dependence of vy for Nyese. &= 0.02 (left panel) and Nyese. = 0.14 (right panel) using
the 2 — 2 (green) and 2 — 0 (blue) transport codesf| The error bar at ¢ = 0

x1073 %1073
Lo Noese, 2 0.02 6 Nogse, 2 0.14
0.8
44
., 0.61 -
0.4

— 20
— 22

— 20

0.21 9 49

loss term loss term
0.01 0+
1.0 —\\ﬁ._ .................................................. 1.2 o v2(250) __ . w(2-0)
' ~— 02(252) v (loss term)

% \\\\\\\ % 1.0 / ......... \\ \.\ .............................................................
= S0 wo) el far .\\\ __

0.81 2 (2—52) wlosterm) T TTm— 0.81 ' ———

0 1 2 3 4 0 1 2 3 4
t/R t/R

Figure 6.2: Left: Time dependence of elliptic flow vy in systems with initially
g9 = 0.15 and on average Nyesc. ~ 0.02 (left) or 0.14 (right) rescatterings per particle.
The green curves are for systems with elastic binary scatterings, the blue lines for
the 2 — 0 scenario and the red ones show the analytical result . The bottom
panels show ratios of the curves from the upper panels.

indicates the statistical error 1/,/2Nje N, of the flow signal in the initial state.
Analytical results for v,

8 2 mme | (3R 2t 2t? t 22
— P Kple,e2?/BRA(22Y  Shy (2t ) P2t 12
vo(t) S Kn" eze Kt + R) 1<3R2> I 0<3R2>] (6.12)

using modified Bessel functions of first kind Iy and I; are shown in red. The inverse
Knudsen number for the analytical curve is chosen such that it matches the Nyec.
of the simulations. Expanding Eq. in time yields vy(t) o< * for t < R, which
matches the results of previous studies [10}56,,83,(102].

For a more sophisticated quantification of the deviation between the three dif-
ferent scenarios we fitted the simulation results by Padé approximants

ks an(t/R)"
L+ 325 bu(t/R)*

vy(t) ~ (6.13)

after shifting the curves to vy(t = 0) = 0. This procedure washes out the numerical
fluctuations which are present, especially at early times. One disadvantage is the

5In the numerical simulations this value is only reached up to fluctuations due to the finite
number of particles.
5We show results with N,ee.. = 0.35 in Fig. [E.1
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6.4. Triangular flow

domination of the fit by the values at ¢t/R 2 1 such that the early time behavior is
not captured very accurately. With the fits we computed the ratios of the curves in
the upper panels of Fig. [6.2] which are shown in the narrower lower panels of the
same figure.

We find that the curves are very similar in all three approaches. They have
a slow onset, which is followed by an almost linear rise saturating eventually. A
maximum ve is reached around t/R ~ 2 with a small decrease afterwards, which
is barely visible in the 2 — 2 result. One remarkable finding is that the shape of
the curves is quite similar to curves in the fluid-dynamical limit, as presented in
Ref. [83] (Fig.3 with a slightly different initial distribution).

What is important for our purposes is that the elliptic flow signal in the 2 — 0
scenario differs at most by 20% from the “full” 2 — 2 case and the analytical result is
extremely well reproduced by the 2 — 0 scenario for Nyes. & 0.02. For Nyee.. =~ 0.14
the agreement is still reasonable but less impressive due to the higher orders in
o or Kn™! which become important and which are not included in the analytical
setup. In Ch. 5| we have shown that one can improve the agreement between the
2 — 0 collision kernel and the analytical result by going to higher orders in the cross
section, but at the cost that these results are only for early times.

The results in Fig. [6.2| show that in the few-rescatterings regime the vy signal is
dominated by the processes modeled by the loss term of the Boltzmann equation.
This means that the vy arises to a large extent from the anisotropic survival prob-
ability of particles when propagating through the system [10,96]. This process is
usually called “escape mechanism” picture |111].

6.4 Triangular flow

Turning now to triangular flow vz [36] using Eq. with only &3 such that e3 =
0.15, we present simulation results in Fig. m with Neese. & 0.02 (top left), Niese. =
0.08 (top right) and Nyese. = 0.14 (bottom). One of the most obvious results is that
the vs signal vanishes identically within the analytical approach, if there is no initial
flow. A proof of this result involving the cancellation of different spatial regions in
our special setup is given in Appendix [E.I An additional discussion is presented
in Sec. later on. More generally the proof shows that the odd flow harmonics
vanish at leading order in ¢ but it can be non-zero at higher orders [93].

Looking at the numerical results, we see that there are some differences compar-
ing with the elliptic flow. The first difference is the absolute size of the signal, which
is an order of magnitude smaller than vs, such that the numerical noise has a larger
impact on the curves and especially on the initial state.ﬂ A second thing to notice
is that the 2 — 0 scenario gives a non-zero result, which hints at the fact that this
scenario includes all orders in o and that v3 arises only at higher order in the cross
section.

The third observation is that the 2 — 0 results do not match with the 2 — 2
scenario. At Nyee. &~ 0.02 the 2 — 0 result is about a factor 1.5 below, while it is

"Considering an analytical calculation with an initial v3 leads to a slightly evolving signal, which
is compared with the transport simulation signals negligible and therefore not shown in Fig. @
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Figure 6.3: Time dependence of triangular flow vs in systems with initially e3 =
0.15 and on average Nyese. =~ 0.02 (top left), 0.08 (top right) or 0.14 (bottom)
rescatterings per particle. The green curves are for systems with elastic binary
scatterings, the blue lines for the 2 — 0 collision kernel. The constant red line
vg = 0 is the output of the analytical approach.

larger at the two larger values of Nye.. In the 2 — 2 simulations we find that v
scales approximately with N,ee., while in the 2 — 0 case it scales rather with eresc,.

Instead of particle-number weighted anisotropic flow coefficients in some recent
studies “energy weighted triangular flow” v¥  i.e., the third Fourier coefficient of
the transverse energy distribution, was considered [84,/100,{101]. To compare with
the literature, we show v¥ in Fig. for the same systems as in Fig. . We
find again significant differences between the 2 — 2 and 2 — 0 collision kernels,
especially for ¢ 2 R. For earlier times the results are closer to each other, which
might be a coincidence due to the fluctuations driving the early time behavior. These
fluctuations are caused by the finite amount of particles which make it impossible
to have an exactly isotropic momentum distribution which is identical everywhere
in the transverse plane, such that the numerical setup differs from the idealized
scenario.

The v behavior shows a clear difference between the 2 — 0 and 2 — 2 scenario,
which contrasts the findings for vy in Sec. [6.3] Additionally we find the difference
between the analytical leading order cross section calculation with the numerical
results. This is hinting at the gain term describing the final state of the particle
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Figure 6.4: Time dependence of energy-weighted triangular flow Uf in systems
with initially e3 = 0.15 and on average Niese. = 0.02 (top left), 0.08 (top right)
or 0.14 (bottom) rescatterings per particle. The green curves are for systems with
elastic binary scatterings, the blue lines for the 2 — 0 collision kernel. The constant
red line vf = 0 is the output of the analytical approach.

rescatterings which seems to have an important role: The v3 signal is not dominated
by particles which underwent no rescatterings and escaped anisotropically from the
system.

6.5 Quadrangular flow

For v, we find similar results as for the elliptic flow v9: the numerical 2 — 2 and
2 — 0 scenario and the analytical result have a good agreement if the number of
rescatterings is small. This is again a hint at the escape mechanism playing the
dominant role for the vy generation in this regime.

For v, with n > 4 there exists an additional possibility to generate a signal
by nonlinear mixing with other eccentricities. To the present knowledge the flow
harmonics with n < 3 are less affected by nonlinear effects with eccentricities ¢
with k& # n. The v, signal might not be caused by the 4 only, but also by the 5 in

the initial state ,,.

Assuming only a non-vanishing £, in the initial state the analytical calculation
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yields

16 25p2 | (162R3  63R 24t 5t 2t
U4(t) I(Il_1 546_2t /3R [( I >]1<

B T TR TR

54R N 21t N 5t3 I 2t
t R " R3)°\3m2)|
while we obtain

1 48R 28R 16t 5t3 12
valt) = — = TKn e/ [( L8R 16 )11 ()

T 1215 R 3R?>
(6.14)

10 t3 t R R? R?
24R 14t 563 I t?
(7)ol

assuming that only an &, is present. If there both, a non-vanishing £ and a non-
vanishing &, in the initial state, the two terms on the right hand side add up. In
Fig. m we show these analytical results together with the 2 — 2 (green) and 2 — 0
(blue) results. The upper panels show results with £, # 0 leading to €4 = 0.15
and the lower panels show results with &, # 0 leading to 5 = 0.15. All other &
are chosen to be zero in the two cases. The left panels show the v evolution with
Niese. = 0.02 and the right ones with Ny &~ 0.14. Again, we present results for
Nrese. & 0.35 in Appendix in Fig.

Fig. [6.5 shows that for both initial eccentricities the 2 — 2 collision kernel is well
approximated by the 2 — 0 collision kernel if V,q. is small. This is supported by the
nice agreement with the analytical curves which also shows that v, oc o in the small
Niese. Tegime. There is a less good agreement for Nye.. &~ 0.14 between analytical
result and 2 — 0 scenario, which can be attributed to the analytical calculation
being only at order o.

From the results in Fig. [6.5 one could deduce that vy is — similar to the elliptic
flow vo — mainly driven by the particles which escaped the system without under-
going a collision in the small N regime. Nevertheless, there are some important
differences between v, and vy. Namely, the v4 signal changes sign during the time
evolution, which does not happen for v,. Additionally, the shape of the vy(t) curves
is basically the same for all simulations along the Kn™! axis, which is not true for
v4(t). We find that for Nyese. 2 5 in the 2 — 2 scenario the vy signal from €4 > 0 is
positive at late times, similar to the results in Ref. [83,184], but different from the
results in Fig. [6.5F] From this we can deduce that the linear scaling of the large
time vy in N,eqe. breaks at larger cross sections. In Ref. [101] a negative v¥ was found
for a positive initial 4 in the few-rescatterings regime, although they used a collision
kernel based on the relaxation time approximation. The difference in the collision
kernel may be the reason why our results are different at early times (negative vy)
in a scenario with g9 # 0 and ¢4 = 0 in the initial state.

(6.15)

8In this regime the 2 — 0 scenario makes no sense, since all the particles would be “inactive”
in that case.

9The results in Ref. [83] used a different initial profile (Eq. (E.7)). On the other hand the results
in Ref. [84] are for energy-weighted flow coefficients vf’. We have checked that the energy-weighted
flow behaves similar to our setup and it seems that the small N,es.. value in our setup is even
smaller than the low-opacity region studied in Ref. [84].
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Figure 6.5: Time dependence of quadrangular flow v4 in systems with on average
Nrese. = 0.02 (left) or 0.14 (right) rescatterings per particle. The top panels are for
a system with an initial quadrangularity ¢4 ~ 0.15 and g2 = 0; the bottom panels
for an initial state with eo = 0.15 and €4 = 0. The green curves are for systems
with elastic binary scatterings, the blue lines for the 2 — 0 scenario and the red

ones show the analytical results Eq. (6.14]) (top) or Eq. (6.15)) (bottom).

In total we find that there is a quite similar behavior of v, resulting either linearly
from €4 or nonlinearly from 5 compared to vy, when considering that the production
mechanism is dominantly the anisotropic escape of particles. It is interesting to see
that the €4 and €5 contributions are of the same order but with opposite signs in the
small Nyese. regime. This could lead to a cancellation and thus to a v signal which
can lie in a wide range of values at late times and can even be negative.

The next flow harmonic would be v5. We will not discuss it since the analytical
result is the same as for v3: as an odd harmonic it will vanish identically in our
scenario at leading order in ¢. This implies that the vs signal in the 2 — 0 simulation
would arise at order N2__ and at order Ny, in the 2 — 2 collision kernel. It would
again lead to differences in the results of the two transport simulations, which we
did not try to perform, as the simulations would be computationally expensive.

6.6 Hexagonal flow

In Fig.[6.6) we show our results for the hexagonal flow vg. Due to the small signals it is
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Figure 6.6: Time dependence of hexagonal flow vg in systems with on average
Nrese. &= 0.02 per particle and with different initial geometrical profiles, as described
in the text.

the limit of what we can achieve numerically with a reasonable control of the signal at
Niese. = 0.02. Here we can reuse simulations which were already performed for vy and
v3, as the vg signal can result from a variety of different initial geometries [112114].
Possible geometrical sources are vg o &g (linear response, dot-dashed line), vg o gg
(quadratic response, dashed lines), vg o €3 (cubic response, dotted lines) or vg o €2¢4
(mixed quadratic response, full line). We have always chosen ¢, = 0.15 for the non-
vanishing eccentricities and the numerical results including €5 and 3 stem from the
same simulations as in Sec. and For the sake of computational costs we did
not perform simulations with an initial g or non-zero 5 and 54H

The vg results with an initial €3 are in good agreement between the different
approaches of this paper for N, =~ 0.02. This agreement contrasted with the
very different result for vz in Sec. reinforces the main conclusion that there are
different mechanisms producing even and odd flow harmonics.

We find for vg produced by an initial €5 that the signals are very small but still
consistent between the 2 — 2 and 2 — 0 scenarios. For the analytical case the result
is zero, which is consistent with Ref. , where it was pointed out that in a model
without quantum effects and only binary collisions a 3 contribution to vg (and also
v9) cannot occur at leading order in the cross section.

Considering the analytical results for either e = 0.15 or €5 = ¢4 = 0.15 we find
that they are of the same order of magnitude as the results for €3 = 0.15 and similar
to the vy behavior a sign change occurs (twice in this case) during the evolution.

10T et us note that in the analytical calculation the symmetry planes ¥y and ¥, are aligned.
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6.7 Local production rate of anisotropic flow

To get a better feeling of the temporal and spatial origin of the anisotropic flow
signals we will now have a look at their production rate as a function of time and
position ,. We have defined the production rate D,,(t,r), which is averaged
over the polar angle of the production point, in Eq. . Figure shows the
results for D, (¢, r) from the analytical approach for n € {2, 3,4} for the setups from
Secs. and with Ny ~ 0.02. In the figure we show all production rates
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Figure 6.7: Angle-averaged local production rates Do (upper left), Ds (upper
right), and Dy for an initial state with eo = 0 and 4 = 0.15 (bottom left) or with
g9 = 0.15 and €4 = 0 (bottom right).

multiplied by r such that the production rate d;v,(t) of the anisotropic flow v, (t) is
given by the integral over the r coordinate.

The upper row shows Dy, D3 and the lower left is displaying D, resulting from
a linear response of the flow signal to the corresponding ¢,. All three plots show
similar qualitative features in their structure. For the innermost region, extending
up to r ~ R for Dy and up to r ~ 0.7R for D3 and Dy, we find that the contribution
has the same sign for the whole evolution. In the case n = 2 and 4 it is positive and
for n = 3 negative. Then there is a region further outside which has opposite sign,
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6.7. Local production rate of anisotropic flow

which is more pronounced in the case n = 3 and 4 than for n = 2. Going to later
times these regions extend to larger r values but become fainter and are actually
less pronounced than in a similar study with energy-weighted flow [101].

As the space and time dependent production rate D,, reflects the time dependence
of the corresponding anisotropic flow coefficients v,, as well, the sign change in v4(t)
from positive to negative in the upper left panel of Fig. [6.5is also reflected there.
The vy signal has a derivative which turns negative around ¢/R ~ 1.5. This is
represented in the production rate D, in the lower left panel of Fig. [6.7] by the
progressive dominance of the region at intermediate values of r. Analogously the
small decrease of the wvy(t) signal for t/R 2 2 is reflected by the negative outer
region in Dy(t, 7). The contributions for n = 3 from the regions with opposite sign
in the upper right panel in Fig. cancel each other at all ¢ such that dyuv3(t) = 0.
In Ref. [100] they found an “almost nearly perfect cancellation” with a very small
negative v¥ value.

One other feature we can observe in the D, (t,r) plots is that the buildup of the
linear D, is slower for increasing n, which reflects the scaling behavior v, oc " in
the few collisions regime [102)].

In the lower right panel of Fig. [6.7] we show the non-linear response of vy to
an initial ellipticity €5, which shows a completely different behavior with a clear
negative contribution at early times and r» < 1.3R. This negative contribution
is followed by a positive contribution at later times and for all r values. From the
analytical point of view it is possible to show that if there is only an initial ellipticity
g5 # 0 then the loss term creates a negative vy oc —3 irrespective of the sign of the
eccentricity.E During the time evolution the ellipticity decreases due to a generation
of a vy signal. On the other hand due to the buildup of a negative v, there is also a
positive quadrangularity €4 produced giving then rise to the positive contributions
to vy at later times, as it is visible in the bottom panels of Fig. [6.5]

HRemember, that the sign of the eccentricity controls its orientation. If the sign is positive then
the short axis is along the z-direction, otherwise along the y-direction.
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Over the last years experiments with heavy-ion collisions have shown that they
are a tool to study QCD matter dynamically evolving in an out-of-equilibrium state.
The bulk dynamics of the fireball can be described using relativistic dissipative fluid
dynamics [5,[109,115]. It was also shown in the last years that the pre-equilibrium
stage — bringing the system closer to a local thermal equilibrium to make hydro-
dynamics applicable — is a crucial step in the time evolution of the system and has
an impact on final state observables [11][116].
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To describe a system with relativistic hydrodynamics one needs two ingredients.
As the equations of motion are a set of partial differential equations which is not
closed, an equation of state is needed to close the system. Additionally one needs an
initial condition for the fluid dynamical fields. The problem is now that this initial
condition is not directly accessible via the experimental results and the non-linear
time evolution of the medium showed that the fluctuations in the initial state can
be either intensified or washed out [75|117]. The situation is even more complex, as
the observables are highly influenced by the geometry of the colliding system, which
means that there is no direct measurement of the impact parameter possible, but
only a certain region in centrality is accessible.

When generating a set of initial state configurations there are two possibilities
how to proceed. The first most intuitive, but computationally expensive, way is,
to evolve each configuration on its own in time. This approach is called “event-by-
event” method. A second possibility is to split the configurations into a background
and fluctuating components about it. Fluctuations are then evolved with response
functions and they can be expanded in a basis of modes. With this at hand it is
sufficient to evolve — just once for a given initial state model — the background and
the response functions for the fluctuations, which is computationally much cheaper
than the event-by-event approach [118-124].

In this chapter we will extend the framework of the mode-by-mode evolution
via the introduction of a density matrix formalism, where the background is sub-
tracted from the density matrix such that it incorporates the fluctuations only. By
diagonalizing this matrix we obtain an orthonormal basis of uncorrelated fluctua-
tion modes capturing the event-by-event initial state fluctuations. To study this
approach we will use two different initial state models — a Glauber model and a
Saturation model — which gives us the possibility to study the differences between
these two models within this new framework. Additionally we will evolve the initial
states within a dynamical model — KgMPgST and MUSIC — to investigate the
impact of the mode-by-mode linear response on the final state observables. We also
perform event-by-event simulations to compare to the commonly used approach.

This chapter is based on{]]

e Statistical analysis of the initial state and final state response in heavy-ion col-
lisions
N. Borghini, M. Borrell, N. Feld, H. Roch, S. Schlichting, C. Werthmann

This chapter will first introduce the theoretical framework for the density matrix
formalism in Sec. [7.1] followed by a statistical characterization of the background
and the fluctuation modes using different characterization schemes. Section
will then introduce the (non-)linear response theory for the fluctuation modes, the
setup of the dynamical system evolution and the linear and quadratic response of
the individual modes. The dynamical response of the flow coefficients to the initial
state eccentricities is computed on a mode-by-mode basis and we will also discuss
the statistics and correlations of the different observables. Additionally we will

!The paper is currently in preparation.
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7.1. Statistical characterization of the initial state

present the results of a Gaussian statistics ansatz using the linear response theory
and compare to the event-by-event ansatz.

7.1 Statistical characterization of the initial state

We will start in this section with the derivation of the statistical initial state charac-
terization for the different initial state models, where we define the average state and
the orthonormal basis of uncorrelated fluctuation modes in Sec. [ T.Il The models
are briefly introduced in Sec. and we present the results for the average states
and the modes — mainly for the impact parameters b = 0 and 9 fm — in Sec.
and their characterization in Sec. [[.1.4]

7.1.1 Mode decomposition of the initial state

Our aim is to show that one can write a set of N,, initial state model configurations
{®™} with event-by-event fluctuations as an average configuration ¥ and fluctuation
modes {V¥;} such that one can express every configuration ®® by the sum of the
average state U and a combination of modes

d(x) = U(x) + Zcf U (x (7.1)

These configurations ¥ which are functions of the position can be energy or entropy
density profiles at fixed impact parameter or also in a centrality class. The expansion
coefficients {cl(l)} are centered and uncorrelated random variables with unit variance:

(ar) =0, (7.2)
<ClCl/> = (5”/. (73)

We denote the average over events by (...) and for brevity we neglect the position
dependence of the states in the following equations. As the thermodynamic quanti-
ties which we want to decompose are real-valued, the states ®@ are real-valued as
well.

The average state or event computed from N, events is defined by

1 Nev

M

o) (7.4)

ev

@
—_

In the next step we propose an orthonormal set of functions {x;} giving a basis on
the Hilbert space spanned by the configurations {®®}. As usual the inner product
on this space is the one for square-integrable functions, which is an overlap integral
over the whole space. All deviations from the average state can be decomposed over
this basis

o0 =0+ 3 &y, (7.5)
!
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7.1. Statistical characterization of the initial state

From this expression it is obvious that the expansion coefficients obey the relation

1 Nev

N ; &l =o. (7.6)

Assuming now that each event in the sample has the same probability to occur,
then for each basis vector yx; the corresponding coefficients {El(l)} is the realization of
a random variable ¢ with (¢;) = 0 according to Eq. . As in quantum mechanics,
we can now assign a density matrix to these equiprobable states given by

1 N
. Z (I)(z)(I)(z)T7 (7.7)
which equals
1 N - - - -
7 3 dOPOT = guT + > (@ér) uXe (7.8)
v LU

as follows from Egs. (7.5))-(7.6). The next step is to write a density matrix as

1 o o
2 DT —puT = N"(Ge) uXy, (7.9)
ev 4 L

p

which contains the fluctuations about the average state.
This density matrix is then diagonalized

pﬁ/l = /\lﬁll (710)

and the orthonormal eigenvectors {ﬁ/l} are sorted according to their corresponding
eigenvalue ). The eigenvalue quantifies the relative importance of the ¥, contribu-
tion to the set of the N, random sampled events. We can also write the density
matrix in its spectral form as

p=> NV, (7.11)
[

while comparing it to Eqs. (7.9) and ([7.11)) reveals that we might choose the eigen-
vector basis {¥,;} of p as the arbitrary basis {x;} in Eq. (7.5)). For all combinations
of [, I the expansion coefficients obey

(Ger) = Now (7.12)

together with (¢) = 0.
In the last step all the eigenvectors of p are rescaled as

U, =\ (7.13)

This leads to the set {¥;} being an orthogonal basis, with basis vectors not nor-
malized to unity. With this rescaling the modes represent the fluctuations about
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7.1. Statistical characterization of the initial state

the average state and the /A, encodes the contribution of ¥, to a configuration.
Additionally, we redefine the expansion coefficients as

¢

= ——. (7.14)

~

Then the decomposition of a given event over the basis Eq. has the form of
Eq. (7.1), while (¢) = 0 immediately becomes Eq. and Eq. transforms
into Eq. . We have now reached our goal defined at the beginning of this
subsection.

For a real calculation of the basis it is inconvenient to store a large set of initial
density profiles from a given initial state model, which are in the following energy
density profiles, as this would require a large amount of disc space. It is easier to
directly compute the average state ([7.4) and the density matrix involving Eq. ,
where the latter is then diagonalized to compute the modes {U;} and their eigen-
values \;. One important remark about the basis is that the average state is not
part of the basis, as its projector is subtracted from the density matrix in Eq. ,
meaning that the average state could be decomposed over the basis.

7.1.2 Models

In this chapter we will use two different initial state models to illustrate the mode
decomposition for Pb-Pb collisions at \/sxx = 5.02 TeV. Both of these models are
described in Ch.[2, namely the MC Glauber model (Secs. 2.2) and a Saturation
model (Sec. [2.3).

Let us only briefly repeat that both models are based on a MC Glauber sampling
of the Pb nuclei, where for the Woods-Saxon distribution R =6.62 and a =
0.546 fm was used here. In the Glauber model the minimum nucleon separation
representing the Fermi repulsion was set to 0.4 fm and the inelastic nucleon-nucleon
cross section is ol¢l = 67.6 mb for the investigated collision energy. For our study
we fix the impact parameters, mostly b = 0 or b = 9 fm, along the z-axis and then
produce initial energy density profiles according to the methods given in the above
referenced sections.

7.1.3 Mode decomposition for the Glauber and Saturation
model

Now we want to apply the framework introduced in Sec. to the initial state
energy density profiles of the models mentioned in Sec. [7.1.2] where we generated
for each model and impact parameter N, = 22! profiles. By this large number of
profiles we ensure the reduction of statistical uncertainties and it lifts degeneracies
for modes with eigenvalues which lie close to each other.

Using Egs. and for the average state U and the density matrix p
respectively, we compute the two quantities for each set of random events. As a
finite basis for the decomposition of the latter two quantities we use an orthogonal
grid with Ny = 128 sites in one direction and a spacing of 0.19 resp. 0.21 fm
for the Glauber resp. Saturation model. Then the p matrix is computed within the
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7.1. Statistical characterization of the initial state

orthonormal basis where each of the N2 elements of the grid has a unit weight at the
specific grid site and vanishes everywhere else. The diagonalization process of this
N2 x N2-dimensional representation of the density matrix is the most time consuming
step to generate the set of modes {¥;} and their corresponding eigenvalues {\;}.
Flgureushows the energy density profiles of the average state ¥ at four different
impact parameters — always oriented along the x-axis — computed for both initial
state models. The average events for both models are azimuthally symmetric at

Glauber Glauber Glauber Glauber
b=0fm b=3fm b=6 fm b=9 fm

Saturation Saturation Saturation Saturation
b=0fm b=31fm b=06 fm b=9 fm

e(z,y) [GeV/fm?]

Figure 7.1: Energy density profiles of the average event ¥ for different impact
parameters (from left to right: b = 0, 3, 6, 9 fm) in the Glauber (top) and Saturation
(bottom) models.

b = 0 and become more and more elliptic with increasing impact parameter. It
seems that one can already by eye see that the average events for the larger impact
parameters are more elliptic in the Saturation model than in the Glauber model.
This will be quantified later on. In contrast the energy density values in the center
computed from the Glauber model are larger, although both models are calibrated
in such a way that they reproduce the same charged hadron multiplicity for the
most central LHC events.

For the average state of the Glauber model a natural question which arises is
whether the density profile coincides with a profile generated in an optical Glauber
model. In fact, we checked that ¥ is similar to an optical Glauber profile generated
with the same scaling with V,.¢ and Neon and the same input parameters. We made
a qualitative comparison of the two profiles by plotting them on top of each other,
which revealed that there are only small differences in the outer regions. A more
quantitative comparison was performed by a decomposition of the two profiles in a
Bessel-Fourier series expansion of the two density profiles (Sec. [2.4.2).

Before describing the modes in further detail let us have a look at the expansion
coefficients {¢;}. Using Eq. we decomposed 8192 events of the N, events in
the full sample used to compute the average state and the fluctuation modes. We
introduce the number [ to label the individual modes, where [ = 0 is the most
probable mode and the subsequent modes are labeled in the order of decreasing
occurrence probability. For each [ we thus obtain 8192 values for the coefficients ¢;.
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7.1. Statistical characterization of the initial state

These are shown in Fig. for the 15 most probable modes (0 <[ < 14) and some
higher modes (I € {200,201, 202}) in the Glauber model at impact parameters b = 0
and b = 9 fm ]| For comparison a Gaussian distribution with unit variance is shown.

0.44

0.3

p(a)

0.24

0.14

0.0~
0.05 1

0.004
—0.051

residual
residual

1 7 0 : I
C a

Figure 7.2: Relative frequency of the expansion coefficients ¢; (histograms) com-

puted from 8192 events in the Glauber model at b = 0 (left) and b = 9 fm (right),

compared with a standard Gaussian distribution (full black line).

Looking at the left panel of Fig.[7.2] we see that at vanishing impact parameter
the distributions are very close to the Gaussian curve for all values of [. The residual
difference between the individual curves and the Gaussian curve is at most of the
order 0.05 in absolute value. Going to the right panel we find that the distributions
are still close to the Gaussian curve, but there are larger differences compared to
the values for b = 0 up to 0.1 in absolute value for the displayed values of [. We can
also observe that there are some distributions, e.g., p(co), which are skewed even if
[ is small. Additionally, the tails for the modes with large values of [ are thinner
compared to the Gaussian curve, which hints at a positive excess kurtosis.

To quantify this visual impression further, we computed the first four moments of
the p(¢) distributions computed from the 8192 events for both initial state models.
The moments or related quantities thereof are presented in Appendix [F.1]

Now we want to quantify the relative importance of the fluctuation modes {¥;}
to the full set of N., random events. As the average state U is not part of the
basis, i.e., not an eigenvector of p, we define the quantities

_ [[94]] _ VA

w; = = = = (715)
S+ 1] 32 v+ (]
and
] ]

Sl S VA )

2The results for the Saturation model are not shown, as they are similar to the ones in the
Glauber model.
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7.1. Statistical characterization of the initial state

where the denominator is the sum of the norms of all modes and of the average
state. In practice we sum over all 16384 eigenvalues, such that the weights {w;} and
w sum up to 1.

Figure [7.3] shows the first 64 relative weights w; and the one of the average state
w; for both models at impact parameter b = 0 (left) and b = 9 fm (right)F] For

O b=0fm O =9 fm
10714 " E
O ey O
. 3 1072
) ‘h\ °°°°°°° .. @
1072 " ® 000004, 1
Ty T T T T T T
3 0 10 20

Glauber model
Saturation model

10—3 4

U contribution (Glauber): 0.13
VU contribution (Saturation): 0.08

U contribution (Glauber): 0.13
U contribution (Saturation): 0.08

0 50 100 150 200 250 0 50 100 150 200 250
! !

Figure 7.3: Relative weights of the first 64 fluctuation modes w; (Eq. (7.15))) and

the average state w; (Eq. (7.16)), large symbols at [ = —1) at impact parameter
b =0 (left) and b = 9 fm (right) in the Glauber (squares) and the Saturation model
(circles).

both impact parameters the contribution of ¥ is w = 13% in the Glauber model,
w = 8% in the Saturation model, while the fluctuation modes have a relative weight
of less than 1% resp. 2 — 3% at b = 0 fm resp. b = 9 fm decreasing with increasing
mode number [. The contribution of the first modes at b = 9 fm is slightly larger
with a steeper falloff for increasing [. We can see here that events at larger impact
parameter have larger density fluctuations compared to the average event.

If we now compare both models, we find that the relative weights w; have a
steeper falloff within the Glauber model and its average event has also a larger
contribution than in the Saturation model. This can be explained by the fact that
the energy density in the Saturation model has finer structures, which leads to a
higher probability for high-order perturbations in the energy density profile. The
effects of the smearing radius in the Glauber model or even the introduction of a
Glauber model on the level of valence-quarks is not further investigated here.

Looking at the inset plots in Fig. [7.3 one can see that at b = 0 fm there are
degenerate modes with the same eigenvalues, for instance (1,2), (3,4), (5,6), and
so on. Going to b = 9 fm this degeneracy is partly lifted, which will be discussed in
further detail in Sec. [L.1.4l

As we have rescaled the modes by the square-root of their corresponding eigen-
value, the modes represent the event-by-event fluctuations of the initial state energy
density about the average state W. They represent which fluctuations are more or
less likely to occur in the density profile. Figure [7.4] shows the three mode examples

3There is a decrease of the wights with increasing I, which is introduced by the sorting of the
eigenvalues after the diagonalization of p.
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(I =0,1,3) obtained from the Glauber model (top row) and the Saturation model
(bottom row) at b = 0 fm. These modes are chosen, as they show typical symme-

1.0 ] ] 150

v/
L4
L |
i
e(z,y) [GeV/fm?)
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—1.01 J ] —150
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0.51 50 &
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L] S
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Figure 7.4: Exemplary modes [ = 0,1,3 at impact parameter b = 0 fm in the
Glauber (top) and Saturation (bottom) models. The overall sign of the modes are
arbitrary.

tries, [ = 0 has a radial symmetry, [ = 1 has a dipole structure and [ = 3 has a
quadrupole structure.

As the modes have positive and negative parts one could think that the negative
parts are problematic. However, the modes do always come on top of an average
state, which exhibits significantly larger values, such that the sum of ¥ and ¢; times
U, is positive definite everywhere as long as ¢; is not much larger than 1. With this
it becomes clear that the modes in the Saturation model take smaller values than in
the Glauber model, as the same holds true for the average state in the two models

respectively.

Additionally it is important to note that the overall sign of a mode has no
physical meaning, since —V; is also an eigenvector of the density matrix p with
the same eigenvalue (and norm) as W;. This is why there is no important physical
implication for the difference between [ = 0 mode of the two models in Fig. [7.4
which have opposite sign.

In the following Section the modes and their shapes are further discussed and

characterized.
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7.1.4 Characterization of the average state and the modes
for the Glauber and Saturation model

We present the first 60 eigenvectors of the density matrix p in Appendix[F.2]for both
initial state models and both considered impact parameters (Glauber: Figs. [F.5HF .6}
Saturation: Figs. [F.7HF.8)). For a better comparison between the eigenvectors the
set {\Tfl} is shown, i.e., they all have the same norm.

For the b = 0 fm modes one can easily identify those with a radial symmetry, e.g.,
[ = 0,7,18,33 in the Glauber model, where the number of zero crossings with
increasing distance from the center is increasing with [. There are also eigenvectors
which are similar in the sense that one can transform one into the other by a rotation
with an integer fraction of 180°. The modes [ = 1 and 2 have to be rotated by 7/2,
[l =3,4by 7/4,1 = 5,6 by 7/6 and so on. These pairs are the same modes that
have the degeneracy in their eigenvalues (see Fig. spanning a two-dimensional
space of eigenvectors with arbitrary orientation in the transverse plane. There are
also eigenvectors which show a more complicated profile, e.g., [ = 40 in the Glauber
or | = 33 in the Saturation model, where more then two eigenvectors are (almost)
degenerate. As an example let us look at [ = 33 in the Saturation model. This
mode has a radial structure with a small admixture of eigenvectors which show an
invariance under 7 /4 rotations, e.g., | = 34, 35.

For a finite impact parameter there is a broken radial symmetry and thus there
are no radially symmetric eigenvectors. In this case one can even see that most
of the eigenvectors now have an orientation along the x- and y-axes as reflection-
symmetry or anti-symmetry axes. We also see that the degeneracy in the eigenvalues
is partially lifted and that the eigenvectors have more complicated structures than
at b = 0 fm. This is the reason why we will now introduce several quantities to
quantify the characteristics of the eigenvectors, as well as the average state.

7.1.4.1 Azimuthal and radial dependence

To obtain a more sophisticated and quantitative characterization of the obtained
eigenmodes of the density matrix p, we will now introduce several new quantities.

The first new quantity is the total energy of a mode W;(r, §) which is given by
& = / Uy(r,0) rdrdd. (7.17)

As we have constructed the modes in such a way that they represent the fluctuations
about the average event, the energies of the modes themselves should be relatively
small compared to the average event. This is also required to maintain the positivity
of the energy density.

In addition to the energy of the modes we can also characterize their azimuthal
shape by eccentricities. Here we have to use a different definition of the eccentricities
then the one introduced in Eq. , as the integral in the denominator would be
(almost) vanishing if we consider an individual mode. Therefore, we redefine the
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complex eccentricities as

/7“3610‘115(7“, 0) rdrdf
&) = — — forn =1, (7.18)
/T3\I/(T, 0) rdrdf

(@)
H
Il

/r”eme\lfl(r, ) rdrdf
En = — - forn > 2, (7.19)
/r”‘lf(r, 6) rdrdd

where we use the average event ¥ in the denominator and denote the modulus of
the eccentricity for a given mode W, by |&,|,. With this definition of the eccentricity
(Eq. ) we can also quantify the energy of the modes divided by the energy of
the average event when using n = 0, leading to ||, = &/€.

In Tab.[7.I]we give the eccentricity values for the average states of the two models
at b = 0 and 9 fm using Egs. — with U instead ¥, in the numerator. As

Table 7.1: Eccentricities of the average states in both models at b = 0 fm and
b=9 fm.

&1 el les| |4 les|
Glauber b=01m
3.0x107° 39x10° 1.1x10™* 33x10° 45x107°
Saturation b =10 fm
6.0x 107 93x107° 55x107° 4.7x10° 3.9x107°
Glauber b=91fm
5.7x107° 29 x 107! 2.6x107* 94x107% 9.0x 107°
Saturation b =9 fm
1.7x107* 40x107" 74x107° 20x107! 1.7x1074

expected, the rotational symmetry at vanishing impact parameter gives us vanishing
eccentricities. An exact zero can not be obtained due to the finite mode resolution
and therefore a limited precision in the integrations, as well as the finite number of
events leading to values of the order 10~* or smaller.

The average state at b = 9 fm has spatial anisotropies with even n, i.e., 5 and
g4 in both models which are of the order of 0.1. For the other eccentricities we
find again values of the order of the fluctuations in the b = 0 fm case, again due
to numerical fluctuations. In this case the Saturation model has a ~ 40% larger
g9 and &4 is more than twice as large compared to the Glauber model. This fact
has been observed before, as the Saturation model has sharper edges of the density
distribution [40].

Displaying the eccentricities in Fig. [7.5] we use the first five eccentricities |&,|,
(Eqgs. —) and the energy content of the modes compared to that of the
average state |&o|;.

If we consider collisions at b = 0 fm then the modes with a clearly non-vanishing
energy exhibit around 1% of the average state energy. These few exceptional modes
with roughly hundred times more energy compared to the other modes with |&|, <
10~* are the ones we have already identified as “radial” (see Fig. left panels).
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Figure 7.5: Eccentricities of the individual modes and their relative energies (nor-

malized by the average state energy) defined in Eqgs. (7.18)-(7.19)) for impact pa-
rameter b = 0 fm (left) and b = 9 fm (right) in the Glauber model (squares) and

the Saturation model (circles).

The radial modes have up to numerical fluctuations of the order |£,[, < 1072 for
n > 1 no eccentricities. A small amount of remaining energy within the non-radial
modes is most probably due to grid artifacts, which make it impossible to resolve
the modes exactly.

For the eccentricities we find at b = 0 fm that the modes with a given ¢, occur
in pairs, with the exception that the radial modes come as a singlet. For example,
the modes [ = 1,2 have a sizable &; followed by the modes [ = 3,4 which have
a sizable £ and so on. This is enforced by the rotational symmetry at vanishing
impact parameter which does not imply a preferred direction such that the modes
with closely lying eigenvalues, which are almost degenerate, are similar up to a
rotation. Small differences in the eccentricities of a mode pair can be assigned to
the numerical fluctuations. Another thing to notice in the left panel of Fig. [7.5] is
that in both models the modes [ = 20 and 28 do not show any eccentricity nor
energy. We can explain this by looking at the eigenvectors of the two models in
Figs. and [F.7] where we can see that these modes have a &; symmetry which
we do not show. Comparing both models it becomes evident that the eccentricities
of the modes from the Glauber model are in general larger compared to those from
the Saturation model but the structure of the modes is the same in both models.

Now we turn to the right panel of Fig. [7.5] which shows the b = 9 fm eccentricities.
For the broken rotational symmetry we find now that the modes do no longer occur
in pairs with regards to the eccentricities |&,|, for n > 1. Recall, that the same is
also true for w;, where the degeneracy of the modes was lifted. The lack of rotational
symmetry leads to the absence of purely radial modes, which is also visible in the
eigenvector plots in Figs. and [F.8] There one can see that the eigenvectors at
b =9 fm are elongated along the x- or y-axis leading to more modes with sizable &,.
In general the modes do not seem to have a single eccentricity as it is the case for
vanishing impact parameter but rather a contribution to either all odd or all even
eccentricities. However, there are exceptions to this behavior, e.g., mode [ = 15 in
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the Glauber model, where we can see a mixture of even and odd eccentricities. This
can be caused by the degeneracy of the eigenvalues between two modes which is
visible in Fig. and leads to a mode mixing. For impact parameter b = 9 fm there
are more modes with up to a few percent of the average state energy. When we
compare the order of the modes between the two initial state models we find that
it is no longer the same as it was in the rotationally symmetric case at b = 0 fm.

For a further characterization of the modes and the average states we perform
a rotation of each mode such that the largest |&,| obtained from Eqgs. (7.18)-(7.19)
is oriented along the z-axis. This is maximizing the real part of £, and up to
numerical fluctuations the imaginary part vanishes. We define the two quantities
Ci(r) and &;(r) for the rotated modes by

C(r) = / 6 W, (r, 0) cos(nf), (7.20)
Si(r) = /d9 Uy (r, 8) sin(nd). (7.21)
If one considers these quantities for the average state, then the angle 6 is measured

from the z-axis. As we want to make the two quantities comparable between the two
initial state models, we normalize them by the corresponding average state energy:

Ay(r) = —Clg), (7.22)
By(r) = —Slg), (7.23)

where we denote by [ = U the functions for the average state. The latter two quanti-
ties are similar to the definition of the mode eccentricities &,,, with the difference that
there is no r™ weight in the numerator and no integration over r in the numerator
and denominator.

In Fig. [7.6| we present the quantity Ag(r) for the average states of the Glauber
(full lines) and the Saturation model (dotted lines) at the two different impact
parameters. The horizontal axis is rescaled by the typical system radius R, which
is the radius of the lead nucleus used for the sampling of the nucleons in the MC
Glauber model, i.e., Rp;, = 6.62 fm. As expected, the density profiles are positive.
Comparing the two models we find that their average events both have a similar
extent in the radial direction for both impact parameters. For b = 0 fm the Glauber
model has more energy in the center, what we have also seen in Fig. [7.I] but it
drops faster in the outer regions compared to the Saturation model result. At non-
vanishing impact parameter the opposite behavior is found.

For the modes there have to be sign changes in the transverse profiles A4;(r), as
the modes with the same rotational symmetry are orthogonal to each other. We
denote the “k-th excitation” (of a given rotational symmetry) the modes with k — 1
sign changes in A,;(r).

In Fig. [7.7] we show the transverse profiles for the first five radial modes in the
two initial state models at b = 0 fm. To have a better overview, we multiplied the
modes by —1 which have a negative value at r = 0 in Figs. and [F.7 All the
radial modes have in common that they start at a finite value at » = 0 and have
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Figure 7.6: Ag(r) (Eq. (7.22))) for the average states in the Glauber (full lines)
and Saturation (dotted lines) model at b = 0,9 fm.
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Figure 7.7: Ag(r) for the radial modes in the Glauber (full lines) and Saturation
(dotted lines) models at b = 0 fm.

at least one sign change. The decrease of the amplitude at r = 0 for a given model
with increasing [ is due to the decreasing norm ||¥;|| = v/A; of the modes.

We present the first excitation, i.e., a constant sign, modes with a &, in Fig. [7.8
forn e {1,...,5}.

At b =0 fm the two models show the same combination of modes [ and spatial
anisotropies n € {2,...,5} (see also Fig. [7.5). We did not find a mode with n = 1
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Figure 7.8: A;(r) (Eq. (7.22))) for the “first excitation” modes for each harmonic
n, corresponding to the maximal &,, at b = 0 fm (left) and b = 9 fm (right). Full
resp. dotted lines show the results for the Glauber resp. Saturation models.

without a sign change along r in both models. Such a mode is only found for the
Saturation model at b = 9 fm (right panel Fig. . Additionally there is no mode
with a n = 5 and no sign change in 4;(r). Another observation is that for increasing
[ and n the maxima of the quantity A,(r) are at larger radii and they decrease in
amplitude.

The second excitations are given in Fig. [7.9] where we find the same trend for
the maxima as for the first excitations for the modes with n € {2,...,5}. We find
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Figure 7.9: A;(r) (Eq. (7.22))) for the “second excitation” modes for each harmonic
n, corresponding to the maximal &,, at b = 0 fm (left) and b = 9 fm (right). Full
resp. dotted lines show the results for the Glauber resp. Saturation models.

again that the £, modes are special, as they have a first extremum which is quite
large in amplitude compared to the amplitude of the following extremum at larger
r. All other harmonics show minima and maxima which are of similar magnitude.
For the quantity B;(r) we find values which are one or more orders of magnitude
smaller than the values of A;(r) at both impact parameters. Thus, they are more
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affected by a finite grid spacing and numerical integration errors. We will not discuss
them further, as they are expected to vanish anyhow.

7.1.4.2 Comparison to Bessel-Fourier decomposition

An alternative way of characterizing the average state ¥ and the fluctuation modes
{U;} we have discussed previously is to us a different choice of basis which is not
“optimized” in the sense that one uses the modes directly.

One basis one can use for the two-dimensional density profiles from our two
initial state models is the one used for a Bessel-Fourier decomposition, which has
been used before to characterize initial state densities [41,117,[119[122]. The biggest
advantage of this basis decomposition is the data reduction, where we will see that
one can store a single mode to a very good approximation with O(10) expansion
coefficients, while our orthogonal grid basis uses O(10%) values to store a single mode.
This basis gives also the opportunity to perform (semi-)analytical calculations in a
mode-by-mode approach, which is not possible with the “trivial” grid basis.

The Bessel-Fourier decomposition has been defined in Sec. 2.4.2) such that we
can directly present the results for the coefficients | A, x| for the average event and
the modes from the Glauber model. As the Saturation model leads to similar results
in the Bessel-Fourier expansion we will only stick to the Glauber model results to
keep the discussion short.

In Fig. we show the absolute values of the Bessel-Fourier coefficients for
the average states at b = 0 and 9 fm presented in the upper panel of Fig. [7.1]
For vanishing impact parameter the only non-vanishing components are A ;, which
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Figure 7.10: Absolute values of the expansion coefficients |A,, j| for the average
states at b = 0 fm (left) and b =9 fm (right) in the Glauber model.

was to be expected, since the average state is radially symmetric. These radially
symmetric coefficients decrease rapidly for increasing values of k. When we look
at the case b = 9 fm we can see directly that more coefficients are needed for the
description of the average state. Similar to b = 0 fm we find a large contribution
at n = 0, with the difference that the coefficient Ag, is now larger than Ay;. In
addition we obtain smaller coefficients with n = 2 and 4, which correspond to the
reported €5 and g4 shape reported in Tab. for b =9 fm.
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Figures display the absolute values |A,, x| for some selected modes at
b=0and b =9 fm respectively.  In the case where the impact parameter is
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Figure 7.11: Absolute values of the expansion coefficients |A,, ;| for radial modes
(left), 1 modes (center) and €2 modes (right) at b = 0 fm in the Glauber model.
The upper panel shows the first modes of the corresponding harmonic and the lower
panel the next higher excitation of the harmonics.
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Figure 7.12: Absolute values of the expansion coefficients |A,, ;| for radial modes
(left), 1 modes (center) and €2 modes (right) at b = 9 fm in the Glauber model.
The upper panel shows the first modes of the corresponding harmonic and the lower
panel the next higher excitation of the harmonics.

vanishing we have already found that there are modes which are radial or have a
single eccentricity &,. The left panel of Fig. shows the radial modes with [ = 0
resp. | = 7 at the top resp. bottom. As for the average state we see that only
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coefficients with n = 0 contribute and we find that the largest coefficient has a
larger k compared to the average state. Comparing the two modes, which we have
characterized as first and second radial excitation before, we see that the second
excitation (I = 7) changes sign twice in the radial direction, while the first excitation
(I = 0) has only one sign change. This implies that the higher the excitation the
more sign changes are there in radial direction, such that the structure is on smaller
length scales. Thus, there is more weight of the |A, x| at higher k-values. We find
this also when looking at the &, (middle panels in Fig. or for & modes (right
panels). As expected, these modes have only sizable contributions at Ay or Aoy
respectively. Similar to the radial case we find again that the higher excitations
(lower panels) show two maxima with increasing k in the |4, x| values.

For impact parameter b = 9 fm we know from Fig. that the modes show in
general multiple non-vanishing £,. In the Bessel-Fourier expansion we can see this
fact in Fig. [7.12, where there are multiple sizable A, values for different n. To
have an easier denomination of the modes we will call a mode “mostly-¢,” for n
which shows the largest eccentricity. We show a mostly-¢; (middle upper panel),
two mostly-eo modes (right panels) and a mostly-e3 mode (middle lower panel).
In the left panels we show the Bessel-Fourier coefficients for “quasi-radial” modes.
These have their maximum coefficients at n = 0. Compared to the vanishing impact
parameter case we need significantly more coefficients, even for low-lying modes with
[ <10, in both azimuthal (n) and radial (k) direction. This shows again that there
is more structure at the smaller length scales.

7.2 Mode-by-mode response

In Sec. we will introduce the theoretical framework for a (non-)linear mode-
by-mode response for different characteristics of the system introduced in Sec. [7.2.2]
Section [7.2.3] will then shortly introduce the dynamical framework including KgM-
PgST and MUSIC, which we will use to evolve the initial energy densities in time.
Afterwards we present the results on the response of observables in the Glauber
model (Sec. and we investigate the linear and non-linear hydrodynamic re-
sponse coefficients to the initial-state geometry for single modes in Sec. [7.2.5]

7.2.1 Theory

Given a set of observables {O,}, where the index « is labeling the type of charac-
teristics, and a random event ® characterized by an average state ¥ and modes ¥,
corresponding to the rescaled eigenvectors of the density matrix p, we can write the
decompositior[’]

d=U+> . (7.24)
l

4In this context we will use the word “observable” also for the initial state quantities which are
not measurable in experiments.
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Then the observables O, can be expanded in a Taylor series as

00

3 2
Oa(®) = 0, (®) + ; ac,a 820,

!
a5 a5

¥ L

ccep + O (c?)

\

- 1 (7.25)
=0, + Z Lmlcl + 5 Z Qaﬂ/clcl/ +0 (C?) .
l

L

By 0., we denote the value of the observable of the average state U and L, resp.
Qo is the linear resp. quadratic response of the observable o to the mode with
index [ resp. [ and ['.

Performing then an average over a given observable O, yields

~ 1
(Oq) ~ <Oa + > Laia + 3 > Qa,ll’clcl’>
: L (7.26)

1
=0, + §ZQa,ll7
l

where we used <Oa> = O, as well as the properties from Eqgs. (7.2)-(7.3) for the
statistics of the expansion coefficients ¢;. We find that for this average there is no
contribution from the linear response coefficients as well as the quadratic response
with [ £ .

Additionally we can compute the covariance of an observable following naturally
from Eq. in combination with Eq. leaving us with

(00— 0a) (05— 05)) = El: LaiLay, (7.27)

where the case o = 3 yields the variance of O,,.
To actually calculate the response coefficients, we define two new states ¥;" and
v, as

U =V 467, (7.28)
U, =V -6V, (7.29)

where we introduce the small parameter 6 to compute the derivatives in Eq.
numerically. By using these new perturbed states we can compute observables with
them, as their densities are positive everywhere such that they can be evolved in
time. The observables of these states are denoted as Oiz (\I/li) such that we can
write first-order and second-order centered derivatives as

Oq1— O
Loy = —ol — Zad 7.30
1 55 (7.30)
Or, +0,,—20,
Qay = — 52’1 : (7.31)

The expansion of the observables and their first moments (Eqs. ((7.25))-(7.27)))
can be extended to higher orders in {¢;} and as they are by construction of order
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1 the effects of higher orders should be tested in the future. In the following we
will see that cutting the expansion at order ¢} can give a sufficient approximation
for numerous observables. If we would extend the expansion to the next higher
order in ¢; then n-point averages with n > 3 for {¢;} would appear. These higher
n-point functions are not fixed within the construction of the basis as the one- and
two-point functions (Egs. —) such that they have to be determined from
the event sample.

7.2.2 Characteristics

As we want to include several observables in our linear response framework, let us
now introduce them.

We start with the computation of characteristic quantities of the initial state
from the centered initial state energy density. The latter is either computed for the
states U, U or ¥; defined in Eqs. (7-4), (7-28)-(7-29) for the first 256 modes and
different values of ¢ specified in Sec. or for randomly sampled events in one
of the two initial state models considered. From the states ¥ and Wi® we can then
compute the linear and quadratic response coefficients given in Egs. —.

The total energy per unit rapidity dE£/dy is given by the integral over the energy
density in the whole transverse plane

E
(iiy = /e(r, 6) rdrde, (7.32)

anticipating the fact that our system is longitudinally boost-invariant. A second
observable is the average square radius {r?}, where {...} denotes an average over
the centered density:

/ re(r,0) rdrdf

(2} = . (7.33)
/e(r, ) rdrdd

In addition we compute the cosine and sine parts of the spatial eccentricities €,, . and
En,s, defined by taking the real resp. imaginary part of the definitions in Eq. (2.25),
for the first five harmonics to characterize the spatial anisotropies of the energy
density. Notice, that in contrast to the afore defined “mode eccentricities” &, in
Sec. this definition has the same density in the numerator and denominator.

Now we will turn to the final state observables after evolving the system in time,
which is described in Sec. [7.2.3], consisting of hadrons. We compute the final-state
observables at midrapidity from the charged hadron distribution dNe,/prdprde,dn
obtained from each event.ﬂ The number of charged hadrons per unit rapidity
dNa,/dn is given by

dNa, _ dNg,
dn N dUppoTd%

SMidrapidity means the pseudorapidity in the range |n| < 0.5.

ppoTd(bp, (734)
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where ¢, is the azimuth of the particle in momentum space. The integral over
the transverse momentum pr is performed in the range 0.01-3 GeV/c for all our
observables.

Next we define the event-by-event transverse momentum [pr]

/ dNg,
[pT] rr dinded¢p
chh
dnprdprde,
The last type of final-state observables considered are the integrated anisotropic flow
coefficients v,, already defined in Eq. . To be consistent with the initial state
observables, we will also look at the cosine and sine parts of the flow coefficients, i.e.
U and v, 5. Considering the real and imaginary parts of the eccentricities and the
flow coefficients separately has the advantage that the observables are more smooth
around 6 = 0 being able to take positive and negative values. In contrast the

prdprde,

. (7.35)
prdprde,

absolute values ¢,, = \/ (€nc)? + (ens)? or v, are never negative, such that the first
derivative of these observables with respect to some of the expansion coefficients ¢
at 0 = 0 may be undefined.

7.2.3 Time evolution

For the time evolution we employ two well established numerical frameworks. The
pre-equilibrium evolution is described by the effective kinetic theory description
KgMPgST [125] and the relativistic dissipative hydrodynamics stage is using MU-
SIC [126-128].

Using the energy density profiles from the Glauber and Saturation models we
initialize an energy-momentum tensor

T (10,2, y) = diag(e(x, y), e(x, y)/2, e(x, y)/2,0) (7.36)
similar to Ref. |[125] assuming longitudinal boost invariance. The initial state energy
densities provided by the two initial state models are stored on a grid with spacings
0.19 resp. 0.21 fm for the Glauber resp. Saturation model. As these grids are too
coarse for the subsequent evolution, we used a bilinear interpolation (Appendix
of the energy density to obtain a grid spacing of 0.1 fm for both models. The pre-
equilibrium stage is initialized at 7o = 0.2 fm/c and we let the system evolve with an
effective shear viscosity to entropy density ratio n/s = 0.16 until myao = 1.1 fm/c.

After the pre-equilibrium stage the energy momentum tensor is further evolved
within MUSIC in the boost-invariant mode, i.e. 2+1 dimensional. The equation
of state we use is a lattice QCD result by the hotQCD collaboration |129]. First
order transport coefficients are chosen to be a constant /s = 0.16 and a vanishing
bulk viscosity. At T, = 155 MeV a Cooper-Frye freeze-out is performed using the
Cornelius algorithm [130] to find the hyper-surface including 6 f corrections. In the
freeze-out process we include 320 particle species whose momentum distributions are
computed. Afterwards decays are performed without including any further hadronic
rescatterings. Finally the observables are computed from the resulting charged-
hadron single-particle distributions using the equations presented in Sec. [7.2.2]

ea
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7.2.4 Response of observables in the Glauber model

7.2.4.1 Linearity check

In order to check the applicability of the Taylor expansion in Eq. for the
different observables O, introduced in the previous section, we will now compute
them for different values of § ranging between —2 and 2 for a number of modes
¥;. We compute Oa7 On = O, (‘I! + 6%) — 0, (\I!) and show this quantity as a
function of § in Fig. [7.13|for the initial state (left) resp. final state (right) observables

at b= 0 fm (top) resp. b =9 fm (bottom) for the Glauber modelf| Anticipating the
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Figure 7.13: O+ for exemplary modes (O, subtracted) as a function of J in the
initial state (left) and final state (right). Closed symbols and full lines correspond
to first excitation modes, while open symbols and dashed lines correspond to second
excitation modes. The Glauber model was used for impact parameters b = 0 fm
(top) and b =9 fm (bottom).

results in Sec. we have chosen the modes with the first (full symbols) and
second (open symbols) non-vanishing contribution to the observables dE/dy, {r*},
E1c, €2, for the initial state resulting in a non-zero response for dNu,/dn, [pr], vic
and vy in the final state. The straight lines displayed for all observables are linear
fits in the range 0 € {0,+0.001,+0.01}.

SResults for the Saturation model are similar and thus presented in Appendix
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7.2. Mode-by-mode response

For vanishing impact parameter we find that the initial-state observables are
mostly linear in §. An exception is the average square radius {r?}, which shows
a small deviation from the fit line at large values of |§|. This deviation is caused
by the denominator in Eq. , which is itself a function of d, such that the
ratio is non linear. The final state flow coefficients are also linear in d. For the
charged hadron multiplicity and the average transverse momentum there is a more
pronounced departure from the linear fits, which will be further investigated in the
next Section.

At b =9 fm we find similar behaviors for the observables. The initial state non-
linearity for {r?} becomes larger than at vanishing impact parameter and we find
also a small non-linearity for the eccentricity 2. In the final state the initial-state
nonlinear behavior of €5, is translated into a nonlinear v,.. This non-linearity is
however not as demonstrative as the one for dNy,/dn or [pr].

7.2.4.2 Linear and quadratic response coefficients

To give a more quantitative characterization of the (non-)linear contributions of
the individual modes to the observables, we will discuss the linear and (diagonal)
quadratic response coefficients { Lo }, {Qau} (Eq. ) computed from Eqs. —
(7.31) in the following. Here we will only show the results for the Glauber model,
as the qualitatively similar results are presented in Appendix [F.3

Figures [7.14] resp. [7.15] show the linear resp. quadratic response coefficients,
where the top panels are the values at impact parameter b = 0 and the bottom
panels at b = 9 fm. All initial state quantities are shown on the left and the final
state observables are on the right. Response coefficients for dimensionful quantities
(dE/dy, {r?}, [pr]) and the multiplicity dNg,/dn have been divided by the O, value
of the average state observable (and a numerical coefficient) to obtain values which
are comparable in one plot with the eccentricity or the flow coefficient response.
To simplify the comparison between the two impact parameters, we use the same
scale in the upper and lower panel plots, which explains why the upper left plot
in Fig. [7.15 (and in Fig. seem to be empty. This shows that the quadratic
response coefficients at b = 9 fm (lower left panels) are significantly larger then
the ones at vanishing impact parameter. Going back to Eq. we see that the
response coefficients contribute to an observable either via multiplying an expansion
coefficient ¢; or its square. We have already seen that the ¢; coefficients are of the
order 1 and as the linear response (Fig. is around one order of magnitude larger
than the quadratic response (Fig. , the linear contribution to the observables
is generally larger than the quadratic one.

We start with the initial state quantities at vanishing impact parameter (upper
left). In this case we know already that each mode has typically either one eccen-
tricity €, /s with a purely linear response, or it changes the energy and the mean
square radiusﬂ The latter response has also a small quadratic contribution. As
an example, let us look at [ = 0. This mode affects dE/dy and {r?}, while the

"As we have pointed out at the beginning of Sec. there is an exception (I = 40). This
mode has a €1 and a €5 contribution, as it is degenerate with the modes | = 42 and 43, which have
a g2 structure.
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Figure 7.14: Linear response coefficients L, ; for the initial state quantities (upper
left) and final state observables (upper right) at b = 0 fm in the Glauber model.
The same plots for b = 9 fm are shown below. All dimensionful observables have
been divided by O,.

next mode [ = 1 affects €1 and £;4. For some modes we do not find a response
coefficient, e.g. [ = 19 or 20, as they have a g4, which is not investigated in our
study.

The linear response coefficients for b = 0 fm directly give the eccentricity of
the state U + ¢, (up to a multiplication with ¢; of order 1), as the average state
is radially symmetric. For the observables dE/dy and {r?} we obtain the relative
change being of the order of a few percent of the average state value.

One very obvious feature is the structure of the response in the eccentricities,
which shows that two successive modes having €, . and ¢, for a given n. Three
values of these 2 x 2-structures have the same sign, while the fourth on has the oppo-
site sign. This is due to the rotational symmetry, which allows the symmetry-plane
angle ®,, to be oriented arbitrarily. The only condition is that two degenerate modes
have to be rotated by 7/2n, as they would generate the same profile otherwiseﬁ

We can see that the contribution of modes with non-vanishing eccentricities to
the denominators of Eq. is small, as there is no sizable quadratic response
coefficient. This fact is also visible on the level of the eigenvectors (Fig. |[F.5|), where
the oscillations about zero indicate that the integral of r"W,(r,#) over 6 vanishes if
r is fixed.

We will now focus on the linear response of the final state observables at b =

80ne could rotate both modes in such a way that one mode has only a €n,c and the other
one a €. Then the response coeflicients are equal in absolute value. However, if the rotational
symmetry is broken, this possibility does no longer exist, such that we will not perform a rotation.
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Figure 7.15: Quadratic response coefficients @, for the initial state quantities
(upper left) and final state observables (upper right) at b = 0 fm in the Glauber
model. The same plots for b = 9 fm are shown below. All dimensionful observables

have been divided by O,.

0 fm (top right panel), which includes also a dynamical response to the initial-
state characteristics presented in the upper left panel. There we observe a similar
pattern in the final-state responses, as a mode either contributes to the charged
hadron multiplicity and the average transverse momentum, or the anisotropic flow
harmonics v, ¢/s for a given mode ;. There is only a linear response to d/Ng,/dn
and [pr] resp. vy /s visible for the modes which have a linear contribution to d£/dy
and {r?} resp. &, /s in the initial state.

Fixing a mode ¥; we observe that the linear response of dNy,/dn and dE/dy
has the same sign, while the response for [pr] and {r?} has opposite sign. This
second observation is also true for the Saturation model, but not the first one (see
Fig. [F.10). For the flow harmonics v, /s we observe the same 2 X 2-structures as
for the initial-state eccentricities. However, we can see that the linear response is
significantly weaker for the higher harmonics, especially for n > 3, reflecting the
effect of viscosity, which dampens the finer structures more strongly. This effect of
viscosity explains also why the response for lager [ is damped, as the modes have
finer structures in radial direction for increasing [.

A general observation for the sign of the linear response for the flow harmonics
Un,c/s 18, that it is the same as for the eccentricities €, /5. In the case n = 1 this is
not true, as the response of ¢ and v; have opposite signs (Fig. [7.14)). The sign of
e1, which has the 7* weight, determines the sign of v; at high pp. This is opposite
to the sign of v; at low pr to fulfill momentum conservation and thus reflected in
the momentum-integrated vy |37].
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7.2. Mode-by-mode response

For the quadratic response in the top right panel of Fig. [7.15] we find response
coefficients, which are typically smaller than the linear ones. Therefore, there are
more sizable quadratic responses visible for the final-state observables, especially
for the charged hadron multiplicity d N, /dn (negatively) and the average transverse
momentum [pr] (positively). Thus, we can see again the departure from the linear
behavior, which we have already observed for a few modes in Sec. for the
two observables (top right panel of Fig. [7.13]). In contrast to the linear response
coefficients, where only radially symmetric modes contributed to dNy,/dn and [pr],
at quadratic order all modes have a contribution. This shows that for most of the
modes the first non-vanishing contribution to these two observables is of quadratic
order. However, the {Q,} is in this case always of the order 10~% or smaller, such
that the mode contribution changes the corresponding observable from the average
state by a similar relative amount. Additionally, we have to keep in mind that the
contribution of the modes decrease in absolute value with increasing I.

We do also observe additional non-linear responses {Q,u} for the quadratic
responses of anisotropic flow coefficients in the harmonic 2n to an initial eccentricity
in the n-th harmonic, i.e., vg, x €,. The vy, values from this quadratic response
are of the order 107 or smaller. In real events, which are a superposition of many
modes, this response is sub-leading compared to the linear response of vs,, to modes
with eg,, # 0.

Turning now to the case, where the impact parameter is b = 9 fm and there is
no rotational symmetry, the response coefficients show a more complicated struc-
ture. Nevertheless, there are similar trends as for b = 0 fm. The most prominent
observation is still the viscous damping for the higher-lying fluctuation modes and
for the higher anisotropic flow coefficients.

In this case one mode affects multiple observables at linear order in the ini-
tial state (bottom left in Fig. [7.14)), which is also reflected in the final state linear
response coefficients (bottom right in Fig. by a one-to-one mapping. Two dif-
ferences to the response coefficients at vanishing impact parameter are observed.
The signs of {L,;} for dE/dy and {r*} — and also the corresponding final state
correlation resp. anti-correlation between dNg,/dn and [pr] in the Glauber resp.
Saturation model (Fig. bottom right) — does no longer follow a systematics.
The second quite obvious observation is that the 2 x 2-structure of the eccentric-
ities and flow coefficients is no longer present. This is due to the fact that the
participant-plane angles ®,, are preferentially oriented along the direction of the im-
pact parameter, i.e., the z-axis, which results in a finite ¢, and a vanishing ¢, 5, or
®,, is along the direction 7/2n from the z-axis, which results in a vanishing ¢, . and
a finite €, 4.

In the final-state linear response coefficients (right panel) on the first look it seems
to reflect the responses of the initial state, while we observe a couple of interesting
things by taking a closer look. An example are modes [ = 58 resp 59, which have
a sizable vy ¢ resp. v; ., although the corresponding eccentricity in the initial state
is very small. At first this seems counterintuitive, but the coefficients L,, ; measure
the vy contribution of the modes at order ¢; to events of the form U 4+ ¥y, i.e., these
events consist of the average state and one of the modes. For a ¢; of order 1 these
events have a e, of the order 1073, but a sizable e, from the average state, and a e3
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7.2. Mode-by-mode response

from the mode ¥;. When this type of initial state is evolved in time, there occurs
an interference between the elliptical and triangular geometry, such that there is a
non-linear dynamical response

v (U4 aW) ey () g5 () (7.37)
at linear order in ¢ E| This type of non-linear response
Vjnt2| (‘i’ + Cl‘I’z) X €3 (‘T’) en (V) (7.38)

is actually present for all modes at b = 9 fm, but cannot be identified for most of
the modes, as they have either even or odd eccentricities.

The quadratic response coefficients for the initial state in the bottom left panel
of Fig. show again sizable non-linear responses for {r?} in cases, where the
corresponding mode has also a linear response to dE/dy and {r?}. In the case
b = 0 fm there were no further non-linear responses in the initial state. Here we
observe sizable non-linear responses (), ; mostly for the eccentricities €9 and 4.
This holds true in the Glauber model, if the modes have at the same time a finite
linear response to the same eccentricity, while for the Saturation model it holds
true for almost all modes (Fig. bottom left), even if they have a small L,
(Fig. bottom left). These non-linear responses are caused by the denominators
in the definition ([2.25)) and the finite €5 or €4, of the average state.

The final-state responses of the observables show that there is a negative resp.
positive sizable contribution for d/Ny,/dn and [pr| in all modes, which we have also
seen in the case b = 0 fm.ﬂ A negative quadratic response coefficient Q) is
reminiscent of the empirical scaling behavior [131]

AN, (4B}

(7.39)

This tells us that the initial energy density changes the final-state multiplicity less
than linear. We have seen that most of the modes do not change the total energy of
the system, but they still change the profile of the energy density distribution, such
that there are regions with more (or less) energy than the average state. If we assume
that this local change of the energy also results in a local change in the number
of emitted particles with a scaling similar to expression , then the exponent
smaller than 1 leads after integration over the whole system to a fluctuation-induced
change in the multiplicity, which is less than linear, i.e., Qo u < 0.

On the other hand, there is an anti-correlation between dNy,/dn and [pr]. Since
most of the modes do not change the total energy of the system, the decrease in the
number of produced particles induces a larger average transverse momentum. The
non-trivial part is that it is still true for modes, which change the total energy of the

9The notation e3 (¢;¥;) should be substituted by e3 (¥ + ¢;¥;), since the energy density used
in Eq. (2.25) is U + ¢;¥;. Nevertheless, the used notation emphasizes that only ¢;¥; contributes
to e3.

190pposed to the linear response coefficients, Q4 does not change under the transformation
U; — —W;, which shows, that its sign is meaningful.
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7.2. Mode-by-mode response

system. These modes also change the mean-square radius of the system in the initial
state and have a linear order contribution to dNu,/dn and [pr]. A disentangling of
all these effects is beyond the scope of this work[H]

We observe that also the quadratic response to vg. and vy is sizable for many
modes w.r.t the response to the other flow coefficients, which is significantly smaller.
The quadratic response to vy and vy, have different origins, which are entangled.
There is a linear response v,, . & €, . to €2 and €4, which is quadratic in ¢; (Fig.|7.15
bottom left). Additionally, the modes which have a e; (U;) (€1 or €1) can lead to a
quadratic vy o £2. There is also the possibility of an interference with the 5 of the

average state to a vy (\if + cl\Ifl) X E9¢ (@) €1 (cl\Ifl)z. This term also contributes to
V2, and more generally there are contributions of the form es (\I/) e1 (U)) es (V) or

€2 (ﬁ/) e5 (1))? (for U; with odd eccentricities) or e, (\i/) e5 (U))* (for ¥, with even
eccentricities). Finally, we want to give a further example of a dynamical non-linear
response: mode [ = 14, which has a ¢, ¢ (and higher sine harmonics with odd n) and
an €2.. When this is dynamically evolved in time, it can produce a v X €2c€1.c,
as well as a v at quadratic order in ¢ H

7.2.5 Anisotropic flow response coefficients

We know from a number of studies within either ideal or dissipative hydrodynam-
ics or kinetic theory, that there exist simple relationships between the initial-state
eccentricities and final-state anisotropic flow coefficients. In our analysis we use the
absolute values of ¢, and v, [Egs. and (L.6))], and we restrict ourselves to
small eccentricities. In this case one finds that the n-th flow harmonic has a linear
contribution from &,, [36-39,(65,88,/89)

Up = Kn,ngny (740)

and also contributions from eccentricities in other harmonics[”| As we have already
seen in Sec. , the latter contributions are of the form [38,65,90.91]

Up, = Ko mpEmép (7.41)

with |m £ p| = n. Here, we want to discuss how such responses appear on the level
of the mode-by-mode analysis.

In the discussion of the response coefficients in the last section we have already
related the flow coefficient response to the initial-state eccentricities. We have also
seen, that at b = 9 fm the sizable e, and &, of the initial state W (Tab. [7.1)), together
with the fact that multiple eccentricities are present for one mode ¥;, leads to a
complicated interplay between the eccentricities for a given flow harmonic, at the
linear and also the quadratic order in the expansion coefficients ¢;.

Tn a planned future extension of this investigation we want to study events at fixed multiplic-
ity, i.e., in centrality classes, instead of fixing the impact parameter. This will make the discussion
easier and brings the analysis closer to experiments.

2Tn the case [ = 15 there is a quadratic vy, from e3¢ and e36.

I131f there is a large o, then a contribution oc €3 arises for vy [66].
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For vanishing impact parameter the situation is much easier, since the aver-
age state has radial symmetry and such, the flow signal is only a response to the
anisotropy of the modes for events of the form ¥ + ¢¥;. This asymmetry of the
modes contributes to the numerator of the eccentricities &, (lil + cﬂIﬁ). There are
mostly two cases present. The first one is a linear response as described in ,
leading to a non-zero L, ;, i.e., a linear response of order ¢; to ¥; with a given ¢,

In this case we compute
Un, (‘if + Cl‘Ifl) (7 42)
En (\if + Cl\Ifl) ’ ‘

which we present in the left panel of Fig. [7.16 k labels the k-th mode ¥, with
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Figure 7.16: Linecar flow-response coefficient I, ,, (left) and quadratic response
coefficient ICy, 1 (right) with n = 2m for modes with [ < 256 for collisions at
b =0 fm within the Glauber (squares) and Saturation (circles) models.

[ < 256, which has a ¢, > 10_2E The second case is that we find a number of
modes with an ¢, in the initial state, where m = 1 or 2 leads to a v, with n = 2m
in the final state. This corresponds to Eq. with p = m. Those modes (with
[ < 256) show a large Q,,, i (Fig. top right panel) and we show the dynamical
response

Un (\if + CZ\IJZ)
Em (\I/ + Cl\I/l>2

Kn,mm =

with n =2m (7.43)

in the right panel of Fig.[7.16] In Sec.[7.2.4 we have seen that there exist modes with
several sizable eccentricities, which results in “mixed” non linear response in
the case m # p. One example would be mode [ = 40 in the Glauber model, for
which we could compute a K391, which we did not do. We have constructed the

coeflicients IC,, ,, and IC,, i (Eqs. (7.42)-(7.43)) in such a way that they are positive.
In the previous section we have seen that the integrated v; has the opposite sign to

e1, which shows that Ky ; should be negative [91].
For the K, ,, coefficients in the left panel of Fig. we find a decrease with n,
which is due to the viscous damping in the hydrodynamic evolution of the system.

4The numbers [ for the two models may differ, especially for the higher modes.
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7.3. Comparison to event-by-event simulations

For the quadratic response K, ny, this is less visible (right panel), as there might be
not enough modes with a sizable ;. Once again, we observe that the modes come
in doublets, similar to the eccentricities (Fig. and the 2 x 2-structures in the
linear response coefficients L,; (top panels of Figs. [7.14 and |I'.10)).

Both initial-state models show similar values for C, ,, although we have seen
that the radial profiles differ. This is also true for the coefficient K499, but not for
Ko,11. For the latter the fluctuation modes with €; in the Saturation model result in
a stronger vy response compared to the Glauber model. In the case n = 2, 3,4 the
coefficient KC,, ,, is almost constant with increasing mode number /. Only for the Koo
there might be a decreasing trend, which is rather mild. For the higher modes one
would expect that the finer structures along the radial direction lead to a stronger
viscous damping. However, this is not seen here.

As the responses are almost constant with increasing [, this gives us the possi-
bility to compare our mode-by-mode results obtained from initial states of the form
U+ ¥, to full event-by-event results. In general we find values for X, ,,, which are
in the same ballpark than the values in the literature:

e Koo ~ 0.2-0.3 is in good agreement with the findings in hydrodynamical
simulations with different setups [65,66,113,132,/133] and in kinetic transport
simulations [39,77}/134].

e [C33 =~ 0.1-0.2 fits most values in the literature |65,/66,77,(133] apart from
Ref. [39], which finds values larger by about a factor 2.

e Cyq =~ 0.05-0.1 is comparable to the results in Refs. [65,[113,/133], although
somewhat higher values were found in fluid-dynamical [91] simulations or ki-
netic theory simulations [39,[84] with n/s = 1/4x.

e In turn, K55 ~ 0.008-0.03 is twice larger than in Ref. [91], but matches the
value in Ref. [133].

e For the last linear coefficient Ky ; the four twofold degenerate values shown
in Fig. [7.16] are too few to draw conclusions, yet we find a decent agreement
with the results presented in Ref. [37], while the value in Ref. [91] is roughly
a factor 2 smaller.

For the quadratic responses we are not aware of any values of Ky ;; in the liter-
ature, and Ky 90 >~ 0.3 — 0.6 (right panel in Fig.|7.16) is significantly larger than the
value of 0.1 reported in Ref. [133].

7.3 Comparison to event-by-event simulations

In the following part we want to compare our mode-by-mode predictions to event-
by-event simulations of 8192 random events. In Sec. we will compare O, from
the evolution of the average state W to the event averaged observables (O,). Then
we will discuss the predictions of the mode-by-mode results for the variances and
covariances of the observables and compare them to the event-by-event results in

Sec. Finally, in Sec. we will present results for probability distributions
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using linearized Gaussian statistics of the {¢;} coefficients and compare them to the
full simulations.

7.3.1 Prediction of observables

Now we want to compare the observables of the average states ¥ at the two impact
parameters to the event-averaged observables using the 1892 randomly sampled
events. Our results for the observables, which are not fluctuations, are given in

Tab. .2

Table 7.2: Initial and final state quantities for both models at b =0 fm and b =9
fm. For the event-by-event (ebe) simulations we used 8192 events. We compare the
ebe simulations with the results by the average state evolution (background). The
errors given for the event-by-event results are the standard errors on the mean.

<%> {rz} €2, €4, <%J'L> [pr] 1072 “vge 1073wy
Glauber b = 0 fm
background () 7248 16.29 - - 2257 0.78
ebe ((®;)) 7247+ 3 16.30 £0.01 - - 2203+ 1 0.79 £ 0.0002
Glauber b =9 fm
background (¥) 1667 8.72 0.296 —0.094 636 0.75 6.1 4.3
ebe ((9;)) 1668 £2 8.69+£0.02 0.299+0.002 —-0.1114+0.002 | 597+1 0.77£0.0003 59+0.03 3.7+0.1
Saturation b = 0 fm
background () 6468 17.00 - - 2119 0.77
ebe ((®;)) 6468 +2 17.01 £0.01 - - 2071+ 1 0.78 £0.0002
Saturation b =9 fm
background () 1386 7.95 0.406 —0.201 537 0.75 8.5 7.1
ebe ((®;)) 1384 +£2 7.94+£0.02 041040.002 —0.2204+0.003 | 493 +1 0.79£0.0003 82+0.04 6.7+0.2

For a vanishing impact parameter, i.e., an isotropic initial condition we find
that the eccentricities and flow coefficients are fluctuations about zero. The initial
state quantities dE/dy and {r?} show a good agreement between O, and the event
average. In the final state there are sizable differences between the two approaches
at both impact parameters, especially for dNy,/dn and [pr]. We attribute these
differences to the non-linearities of these two observables discussed in Sec. [[.2.4.1]

7.3.2 Variances and covariances

In the linear response framework the covariance of two observables is given by
Eq. , which gives us the variance for « = (. The variance — in the fol-
lowing denoted by V(O,) — is a positive definite quantity, while the covariance
is not. We will normalize the covariance in the following by the square root of the
product of the variances, such that we obtain a quantity quite similar to the Pearson
correlation coefficient:

((Oa = (0a))(0 — (Op)))
Cla,B) = 7.44
@) V(Oa)V(0p) e
_ Zilaibsl 7.45
\/ Sk L2 e LY g (74

The sum over [ is cut at a value .y, while for the coefficients k and &’ the cut-off
is fixed at kpae = Kk’ .. = 256 being the highest mode considered in our analysis.

max
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7.3. Comparison to event-by-event simulations

This means that the variances in the latter equation are the end points of the lines
in the upper panels of Figs. discussed in the following. The results of
the event-by-event simulations are indicated by points in the following, while the
covariances are also normalized by the variances of the event-by-event simulations
(points in the upper panels of Figs. .

We start with the initial- resp. final-state observable variances at b = 0 fm,
which are displayed in the upper left resp. right panel of Fig. [7.17] either with
the linear response coefficients {L,,;} (lines) or the random events (points).lﬂ On
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Figure 7.17: Convergence of the variances (top) for the initial state observables
(left) and final state observables (right) in the Glauber model at b = 0 fm. The
modes for which the number of particles changes are I = (0,7, 18, 33,52, 77, etc.). At
the bottom we see the same for the covariances. All lines show the (co-)variances
including the number of modes given at the z-axis. The points on the right are the
values computed from 8192 randomly sampled events. For the normalization of the
quantity C defined in Eq. we used the end points of V for the normalization.

the horizontal axis we indicate the number of modes included in the sum over [ in
Egs. (7.27) and (7.45). For the initial-state characteristics (upper left panel) we

15The error bars for the points are computed with a delete-d Jackknife algorithm (see Ap-
pendix |G.3)) deleting ten percent of the data points, while generating 10° samples.
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7.3. Comparison to event-by-event simulations

observe a decent agreement with the variances for the random events. However,
for the higher eccentricities (g4, €5) we find that the lines have not yet converged,
which indicates that for these observables more modes should be included. In this
work we do not include more then 256 modes, as the computation, especially for the
final-state observables would increase the computation time even further. We can
also see a general feature of the (co-)variance lines for a given observable, where we
observe a step each time a mode has a linear response to this specific observable.
Note, that this is also the reason why the steps of the dashed lines, indicating the
sine components of the observables, are shifted by one mode. This is due to the fact
that the modes appear as rotated pairs (see Sec. .

Going now to the upper right panel for the final-state variances of the observables,
we find again the same step structure as for the linear responses and we find that
the variances are in general by an order of magnitude smaller than for the initial-
state characteristics. Additionally, the variances for the eccentricities increased with
n, while the behavior is opposite for the flow harmonics.ﬁ We can attribute the
decrease to the fact that the dynamical response coefficients K, ,, decrease with n
for ideal fluids and additionally viscosity causes a larger damping for the higher
harmonics. The final-state observables show an overall good agreement with the
sampled events. Discrepancies between the lines and points are caused by non-
linear responses of some observables, especially for dN,/dn, where the size of the
steps is not decreasing significantly for the higher modes.

In the bottom panels of Fig. [7.17]we show the modified Pearson correlation coeffi-
cients C for the initial (left) resp. final state (right) observables with a sizable value.
At vanishing impact parameter these are C(dE/dy, {r*}) and C(dNg,/dn, [pr]). For
the initial state quantities we find a negative correlation between the energy and
the average square radius, which has been observed before in Refs. [135-137]. In
this case the curve gets close to the value for the random events. The final state
quantities have a positive correlation, but the two approaches do not yield the same
values. Large step sizes for the highest modes considered here imply, that more
modes have to be considered to decide if the two approaches yield the same result.

Going now to impact parameter b = 9 fm (Fig. , the first observation is that
there are more steps for the variances in the horizontal direction and their magnitude
is smaller. There are also multiple steps in different observables for a given mode.
This is caused by the structure of the linear responses (Fig. bottom), which is
richer and there are multiple eccentricities present for one mode. In the initial state
(left panel) we observe that most of the variances in the mode-by-mode approach
are too large to converge to the event-by-event results. This can be explained by
the fact that at b = 9 fm most of the modes contain a sizable amount of energy,
reflected in the denominator of €, by a change in the average over ", making the
observable non-linear.

To proof this reasoning we have computed the variances of the numerator and
the denominator of the eccentricities separately (Fig. . The plots shows ratios
of the numerator and denominator of an eccentricity €, and the event-by-event value
for the impact parameter b = 0 fm (left panel) resp. b = 9 fm (right panel). We find
that the numerators and denominators converge nicely to their event-by-event value

16 An exception is vy, as the events are re-centered in the initial state.
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Figure 7.18: Convergence of the variances (top) for the initial state observables
(left) and final state observables (right) in the Glauber model at b = 9 fm. At
the bottom we see the same for the covariances. All lines show the (co-)variances
including the number of modes given at the x-axis. The points on the right are the
values computed from 8192 randomly sampled events. For the normalization of the
quantity C defined in Eq. we used the end points of V for the normalization.

or, if they have not converged yet for the 256 considered modes, they are below
unity, such that convergence with more modes is not excluded.

In the right panel of Fig. [7.I§ we can see again that there are discrepancies
between the two approaches, especially for [pr|, which can be again attributed to
the non-linear responses (Fig.[7.15)). These non-linearities are stronger in magnitude
compared to the b = 0 fm case.

As mentioned before, the contributions to V(dNg,/dn) do not seem to decrease
in magnitude for higher modes, e.g., in the top right panel of Fig.[7.17} This can also
be attributed to the viscosity of the system — in particular the shear viscosity —
since the bulk viscosity is not present in our simulations. In order to verify this, we
performed simulations with different values for the shear viscosity to entropy ratio
(n/s € {0,0.16,0.32}), which revealed that there is a large viscosity effect for the
radial modes with small [, e.g., [ = 0, damping the effect of the mode on the final
state multiplicity considerably. On the other side, modes with large [, e.g., [ = 203,
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Figure 7.19: Convergence of the variances for the numerators and denominators
of the initial state observables in the Glauber model at b = 0 fm (left) and b = 9 fm
(right). The variances are divided by the corresponding values from the randomly
sampled events.

are barely affected by the shear viscosity. We also tested the influence of the modes
with [ > 256 to check the contributions not included in our analysis. There we have
found that the contributions decrease in magnitude, which is expected, since the
eigenvalues keep decreasing for the higher modes. This implies that the variance
for the particle multiplicity would converge, but it would still not agree with the
event-by-event results due to the non-linear behavior of the observable itself.

The lower panels of Fig. show the modified Pearson coefficients (Eq. (7.45))
at b =9 fm for the initial state (left) and final state (right) observables. We observe
that most of the lines from the mode-by-mode framework seem to converge to a
certain value, which however does not coincide with the value from the event-by-
event simulations. This might be caused as well by the non-linear behavior present
for some of the observables in the initial, as well as the final state (see Fig. [7.15]).

Figure shows the Pearson coefficient for the Glauber model at b = 0 fm.
In the upper left resp. right panel we show the initial resp. final state mode-by-
mode results and in the bottom panels the same quantities from the event-by-event
simulations. The diagonals of the plots are colored in gray, as the values are one
by definition. The only sizable anti-correlation is the one for {r?} and dF/dy in
the initial state (left panels) caused by the fact that radial modes modify both
observables, and a correlation of dNg,/dn with [pr]. An extended discussion of this
finding is presented in Appendix [F.5] Comparing the results of the two approaches
in the upper and lower panels we find a decent agreement between both. In the
lower panels we can see as well some numerical fluctuations for other observables,
especially in the final state, which are negligible compared to the afore mentioned
(anti-)correlations.

For a finite impact parameter we observe more structures in the Pearson coef-
ficients (Fig. . We find a good agreement between the mode-by-mode (upper
panels) and event-by-event approach for almost all observables. There is a clear
anti-correlation for the initial-state eccentricities (left panels) between e,/ and
En+2,c/s, Which becomes stronger for the higher harmonics. Note, that there is also

133



7.3. Comparison to event-by-event simulations

E4s- .. Z4,s -
E4c- 4,c-
E34- . -0.25 U3s- .

€3, V3c- . ]
€25~ .. -0.00 Vo - . 0.0

_ 0.75  vs,- B
853(3- .. IOFO Us5.c- ..
-0.2
[]

E2.c- . . 0.95 V2.~
Els Vis- 0.9
€1c- Ul c- Y
2 —0.50
{r’} [p1]
((ii—E dNen
ymh*;;;;;;;;;; =075 dy —0.4
B~ 2 2 8 S 453 F 3.3 R N S R S R S T S
T B s ssEfSsEIITEE
€55 . Us.s- . 0.3
E5.c . Us.c- .

%: .. 0.50 - m 0.2
€4 V4~ .
53,8' . '025 1}375' . '01

€3,c- V3.c-
£ .. 0.0, -0.0
K s
E9.¢- V2.c-
I, N =025 " -—0.1
i 1s-
Ele- Vlc-
{7,2} —0.50 [P ] . —0.2
T
W —dN““. 0.3
ymh,,ﬁ;;,:,;;;;'m;; By —0.
P S S N S 4= 9 % 9 @ 9 @ 9 @ g 9
TLOO ST dEd Z S8558558%8

Figure 7.20: Covariances defined in Eq. for the Glauber model at b = 0 fm
from the linear response framework (top) and computed with randomly sampled
events (bottom). The left plots show the initial state observables and the right
ones the final state observables. The gray squares indicate the values which are not
shown, as they are 1 by definition.

a barely visible anti-correlation of €, /s and €,44./s. The structure for the Pearson
correlation between the even resp. odd eccentricities reflects again the structures in
the linear response coefficients in Fig. In contrast to the case b = 0 fm, where
only one eccentricity per mode is present, the occurrence of multiple eccentricities
per mode can induce correlations. In this case we observe anti-correlations, as the
linear responses for a given mode have opposite sign for the n-th harmonic and the
one with n + 2. Additionally, there is a strong anti-correlation between ;. and
dE/dy and a weaker one between e, and {r?}. For {r?} resp. dE/dy there is a
correlation with €4 ., which is of similar magnitude in both cases. One observation is
also the (almost) vanishing anti-correlation of dE/dy and {r?} at impact parameter
9 fm, which in contrast was observed in the vanishing impact parameter case. At
the moment there is no intuitive explanation for this, such that we leave this as a
comment.

In the final state (right panels) we find a similar pattern as for the initial state
(left panel). This time the anti-correlation between the eccentricities with n > 2
turns into a correlation for v, ., and vpyocss, While vy o5 and vses TESP. V5 )6
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Figure 7.21: Covariances defined in Eq. (7.45]) for the Glauber model at b = 9 fm
from the linear response framework (top) and computed with randomly sampled
events (bottom). The left plots show the initial state observables and the right
ones the final state observables. The gray squares indicate the values which are not
shown, as they are 1 by definition.
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are still anti-correlated. From the event-by-event results we obtain a very small and
positive signal for the latter Pearson coefficients, which indicates that the non-linear
contributions to the observables in the mode response play a significant role here.
From the linear response coefficients in the lower right panel of Fig. we can see
that the responses for the flow harmonics at a given mode number [ mainly have
the same sign for n and n + 2 if n > 2, while this is not true for v; . /s and the other
flow coefficients present at that mode. This explains why the signs of the Pearson
coefficients change in some cases. dNg,/dn is found to be anti-correlated with vs
and v4., while [pr| is correlated with vy .. For these observable combinations the
non-linear contributions of the responses seem to play a sub-leading role for the sign,
but they are important to match the event-by-event results if we compare the lines
and points in the lower panels of Fig. [7.1§]

Now we will discuss the results for the Saturation model. In Figs. [7.22]7.23] we
show the same variances and Perason coefficients as for the Glauber model above
(Figs[T.17[7.18). As the results for most of the variances and Pearson coefficients
are similar to the Glauber model let us highlight only the differences between the two
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Figure 7.22: Convergence of the variances (top) for the initial state ob-
servables (left) and final state observables (right) in the Saturation model at
b = 0 fm. The modes for which the number of particles changes are | =
(0,7,18,33,54,79,106, 137,139, 168,170, 205, 246, etc.). At the bottom we see the
same for the covariances. All lines show the (co-)variances including the number of
modes given at the z-axis. The points on the right are the values computed from
8192 randomly sampled events. For the normalization of the quantity C defined in
Eq. we used the end points of V for the normalization.

models to keep the discussion short. The variances in both models behave the same
way for impact parameter b = 0 fm, with the exception that in the Saturation model
V(dNe,/dn) computed from the modes is still below the event-by-event value and
could in principle still converge when using more modes (upper right panel Fig. .
In the Pearson coefficient (lower panel) we find an anti-correlation between dE/dy
and {r?} in both models, while between dNg,/dn and [pr| there is a correlation
in the Glauber model resp. anti-correlation in the Saturation model. This anti-
correlation in the Saturation model (right panels) is small and negative in the mode-
by-mode case, as one should include more modes for this Pearson coefficient due to
the large step sizes for the higher modes. However, the event-by-event result is
clearly negative, which gives us a way to differentiate the two initial state models
with an experimentally measurable quantity in principle.
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Figure 7.23: Convergence of the variances (top) for the initial state observables
(left) and final state observables (right) in the Saturation model at b = 9 fm. At
the bottom we see the same for the covariances. All lines show the (co-)variances
including the number of modes given at the z-axis. The points on the right are the
values computed from 8192 randomly sampled events. For the normalization of the
quantity C defined in Eq. we used the end points of V for the normalization.

For impact parameter b = 9 (Fig. we obtain a very significant difference
in the variance of {r?} between the two approaches (upper left panel), for which
we do not have an explanation yet, as this is not present in the Glauber model
and the quadratic response coefficients for the observable are of similar magnitude
in both models. In the final state there are again more differences between the
two approaches due to the influence of non-linear responses, which are not included
in the mode-by-mode results. Results for the Pearson coefficients are similar to
the Glauber model results, in the sense that the convergence to the event-by-event
results could be improved by using more modes and including the quadratic response
coefficients as well.

The Pearson coefficients shown in Figs. [7.24] including 256 modes replicate
the findings of the latter convergence plots for both impact parameters. Addition-
ally, we can see that there is indeed no other sizable (anti-)correlation between two
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Figure 7.24: Covariances defined in Eq. for the Saturation model at b = 0 fm
from the linear response framework (top) and computed with randomly sampled
events (bottom). The left plots show the initial state observables and the right
ones the final state observables. The gray squares indicate the values which are not
shown, as they are 1 by definition.

observables present, which was not shown in Figs. 7.23|[]

7.3.3 Probability distributions

Using the assumption that the {¢; }-distributions are Gaussian and that the response
of the eccentricities and the anisotropic flow coefficients is linear, we can derive a
two-dimensional joint probability distribution pgﬁ(Oﬁ, O.,) for the observables Oz =

VO2, + 0% and O, = /O% + 02, of the form:

2w 2w

pS.,(05,0,) = 0(05)040(0,)0, / dé / AU pC. . o ws (05 €08 6, Oy sin §, O, cos v, O sin 1),
0 0

(7.46)

1TThe upper right panel of Fig. shows that the reported anti-correlation between dNg/dn
and [pr] is of the order of the numerical fluctuations. However, one should include more modes
for this observable, as mentioned above.
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The latter expression is derived in Appendix We can now compare the joint
probability distribution pgv(Oﬁ, O,) from the linear Gaussian ansatz to the distri-
bution pg . (Os, O,) obtained from the event-by-event simulations. Distributions for
the observables (£,,,v,) withn € {1,...,5} and (£, &4) are shown in Figs. [7.26][7.29]
Indicated by the red cross resp. circle we show the average value of the observables
for the event-by-event computation resp. Gaussian statistics. For the event-by-event
results the results were smoothed with a Gaussian kernel density estimator (KDE),
which is a method to estimate the probability density function of a random variable
non—parametricallyﬂ For an easier comparison between the distributions we also
show the external plots which are the one-dimensional distributions obtained from
projecting the two-dimensional distributions onto the corresponding axes. In the
case of the one-dimensional distributions we also show the histogram of the observ-
ables in the event-by-event simulations, which show a good agreement with the KDE
smoothing (blue dotted lines). All Gaussian statistics results include the first 256
modes (orange dashed lines or gray contour lines).

8For the KDE we used the implementation in the SciPy library in Python.
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For the interpretation of the results let us recall the connections of the flow
harmonics to the eccentricities. In the case n = 1,2,3 there is a linear relation
between v, and ¢, (Eq. ) and for large impact parameters there is a cubic
term of the form IC272225§’ in the vy signal (Eq. ) The quadrangular flow vy
has a linear dependence on 4 and a quadratic contribution in &5 (Eq. ), while
the pentagonal flow has a linear 5 contribution and an additional one from ese3
(Eq. (4.14)).

Starting with the results for vanishing impact parameter, we find that both

initial state models (Figs. 7.27)) show a good agreement between the Gaussian
statistics and the event-by-event distributions.  All averages in the €,- and v,-
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Figure 7.26: Joint probability distributions pgﬁ(Og, O~) (contour lines) from the
Gaussian statistics ansatz in the linear response framework at b = 0 fm in the
Glauber model for different observables. The density plots show the joint probability
distributions from the event-by-event evolution pg ,(Og, O~). For both calculations
we project the joint probability distribution onto the individual axes. The event-
by-event result is shown as a histogram and smoothed by a Gaussian kernel density
estimator (KDE). The red cross indicates the average of the distribution in each
direction for the event-by-event calculation and the circle the average from the

linear response framework.
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Figure 7.27: Joint probability distributions pgﬁ(Og, O~) (contour lines) from the
Gaussian statistics ansatz in the linear response framework at b = 0 fm in the Satu-
ration model for different observables. The density plots show the joint probability
distributions from the event-by-event evolution pg (Og, O). For both calculations
we project the joint probability distribution onto the individual axes. The event-
by-event result is shown as a histogram and smoothed by a Gaussian kernel density
estimator (KDE). The red cross indicates the average of the distribution in each di-
rection for the event-by-event calculation and the circle the average from the linear
response framework.

directions are in good agreement in most of the cases. An exception is found for
the combination (5,v5) in the Saturation model (lower left panel in Fig. [7.28),
where the €5, and therefore the v5 signal as well, is larger than the result from the
Gaussian statistics. This effect might be caused by the flatter eigenvalue spectrum
for the Saturation model enhancing the importance of higher modes compared to
the Glauber model such that the cut at [, = 256 in the Gaussian statistics might
be too low for this observable in the Saturation model. We observe that the width
of the distributions for the combinations (g,,v,) for n € {2,...,5} increases, which
was also observed in Ref. [65]. The (e1,v;) distribution falls out of this scheme,
which might be caused by the fact that the densities are re-centered and thus the
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g1 is computed with an 73 weight. Looking at the distributions (9, v,4) we see that
at b = 0 fm the two observables are not correlated, as we have already seen in
Sec. [7.3.2] The eccentricities and flow harmonics show the expected linear relation
between the two quantities.

When we look at the distributions at impact parameter b = 9 fm (Figs.
there is in general still a good agreement between the two distributions. However,
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Figure 7.28: Joint probability distributions pgﬁ(Og, O~) (contour lines) from the
Gaussian statistics ansatz in the linear response framework at b = 9 fm in the
Glauber model for different observables. The density plots show the joint probability
distributions from the event-by-event evolution pg ,(Og, O~). For both calculations
we project the joint probability distribution onto the individual axes. The event-
by-event result is shown as a histogram and smoothed by a Gaussian kernel density
estimator (KDE). The red cross indicates the average of the distribution in each
direction for the event-by-event calculation and the circle the average from the
linear response framework.

the deviations are already larger on the level of the average values compared to the
vanishing impact parameter case. For the combinations (&,,v,) with n € {1,2,3}
there is still the linear relation between eccentricities and anisotropic flow coefficients
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Figure 7.29: Joint probability distributions pg’,},(olg, O~) (contour lines) from the
Gaussian statistics ansatz in the linear response framework at b = 9 fm in the Satu-
ration model for different observables. The density plots show the joint probability
distributions from the event-by-event evolution pg(Og, O,). For both calculations
we project the joint probability distribution onto the individual axes. The event-
by-event result is shown as a histogram and smoothed by a Gaussian kernel density
estimator (KDE). The red cross indicates the average of the distribution in each di-
rection for the event-by-event calculation and the circle the average from the linear
response framework.
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and additionally we find a cubic part for the vy signal as expected in non-central
collisions. This cubic part is however only visible in the event-by-event result, as the
Gaussian statistics takes only the linear responses into account. In the case (g4, vy)
the linear relationship is no longer clearly visible, but we can see in the (e, v,)
distribution there is a contribution from the large 5 values at b = 9 fm. A linear
contribution to vs is still not visible in the distributions (5, vs) shown in the lower
left panels of Figs. [7.2847.29
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7.3. Comparison to event-by-event simulations
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Chapter

Conclusion

In Ch. [ we have investigated the anisotropic flow fluctuations and the event-plane
angle distributions as a function of the mean number of binary scatterings in the
system with massless particles in two dimensions. We have seen that the Elliptic-
Power law, which is already an improvement of the Bessel-Gauss distribution, is able
to describe the fluctuations of v3 and also of vs, as long as the collisions are central
enough to have to a good extent a linear relation between initial state eccentricity
and final state anisotropic flow. However, when going to more peripheral collisions or
even to higher flow harmonics, there are non-linear responses of the flow harmonics
to the eccentricities. Using the Elliptic-Power law these fluctuations cannot be
described. Therefore, we have introduced a method to look at the fluctuations of the
flow coefficients v, /s about the fitted value v, /s at the corresponding eccentricity
using the relations given in Egs. —. From these approximations of the
conditional probability distributions pyje(vn.c/s|€ncss) the first moments were used
for the characterization of the flow fluctuations. Additionally, the distributions of
the event planes W, and W3 about their participant plane ®, resp. ®3 in the initial
state were computed. This study of the event-plane angles was extended by looking
at the distributions of different combinations of Wy, ¥,, ®5 and ®,, which show an
interesting dependence on the impact parameter.

There are five features (see Sec. of the above mentioned distributions which
are present across all studied impact parameters and therefore appear to be quite
robust. First, there is a decrease with (Kn) " and then an increase in the values of
the variance o2 of the fluctuations of Un,c/s about the mean v, ¢/s(en,c/s). Second, all
Up,c/s distributions are skewed towards zero. When there is an onset of anisotropic
flow the skewness takes a sizable value, e.g., the absolute value of the skewness has
a value of order 0.5, which decreases then for an increasing number of rescatterings.
Third, the v, /s distributions are predominantly more peaked than a Gaussian with
the same variance, i.e., they have a positive excess kurtosis, which tends towards zero
when the number of rescatterings is increased. The fourth observation is that the
event-plane angle distributions about their corresponding initial state participant-
plane angle are peaked for n = 2 and 3, with a broadening of the peak for the
largest value of (Kn)fl. The fifth finding is that this is partly true for the fourth
harmonic symmetry planes, which have a more complex structure due to correlations
between the second and fourth harmonic symmetry planes depending on the impact
parameter of the collision.

The above mentioned study of the flow fluctuations from the finite number of
rescatterings could be extended in different directions. A first obvious possibility
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would be to study more or less rescatterings per particle. In the case of even less
rescatterings it would be possible to study the onset of the skewness, or similar the
alignment of ®5 along Wy, which has the issue of producing smaller flow signals
needing more statistics to extract reliable results. Going into the direction of more
rescatterings probes the “hydrodynamic limit” in more detail, while checking if the
Un,c/s fluctuations about their mean value become smaller, as expected. It would
be interesting to see the evolution of ¥, — ®,, in this regime as well. Performing
simulations in this limit one has to ensure that the system is still dilute enough,
such that the Boltzmann equation is applicable.

A second natural extension would be to look at v, or vs fluctuations or at cor-
relations in fluctuations of different harmonics [62]. Again there is the problem of
smaller signals and thus high statistics is needed. Additionally, the higher flow har-
monics are affected by the lower-order eccentricities [38,65,80,90,91], where one
needs high statistics for the disentanglement of their effects. It could be interest-
ing as well to look at the fluctuations of the transverse momentum dependent flow
v, (pr) and the effects of different cross sections.

One way to go into the direction of a phenomenological application of this fluc-
tuation study and a comparison with experiments is to introduce centrality classes
instead of fixing the impact parameter. Then the fluctuations caused by the finite
number of rescatterings in the system combine with the eccentricity fluctuations
inside a centrality class. Most likely the combination of these two sources of fluc-
tuations will lead to a distortion of the non-Gaussianities in the flow fluctuations
compared to the eccentricity fluctuations in the centrality bin. As we have seen that
the flow harmonic distributions are all skewed towards zero for a fixed eccentricity,
we can expect that the vy and w3 distributions in a centrality bin are even more
skewed into the same direction than the 5 or 3 distributions. For more peripheral
collisions one can expect a smaller average number of rescatterings leading to an
“extra negative skewness” in the v,, distribution, which should be more apparent in
the peripheral bins. To confirm (or falsify) these expectations it would be necessary
to perform more realistic computations compared to the ones presented in this work.

In Ch. [5] we have studied the early time dynamics of several quantities related to
the asymmetry in the transverse plane in position or momentum space for massless
particles. For the analysis we have used simulations performed with the transport al-
gorithm described in Secs. as well as semi-analytical calculations based on
a Taylor expansion of the phase space distribution at early times [102]. The results
of both calculations were compared within the few-rescatterings regime, as the ana-
lytical model is only applicable there. Additionally, simulations over a large interval
in Knudsen numbers were performed to map out the early time scaling behavior
of the anisotropic flow coefficients from the fluid-dynamical to the few-rescatterings
regime, mapping out the transition from v, (t) o< " in the hydrodynamical regime
to v, (t) oc t"*1 in the few-collisions limit.

Given a system with few rescatterings, we found that the analytical approach
and the simulations both exhibit a scaling of v,(t) o ¢"*! which is also found
for the energy-weighted anisotropic flow coefficients vZ(t). For quantities like the
number of rescatterings over time and the spatial eccentricities €X(¢), showing a slow
departure from their free-streaming behavior, we found a good agreement as well.
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Additionally, we have shown that the description of the simulation results by the
analytical calculations can be improved when including higher orders in ¢ and/or the
cross section o up to typical times of the order t/R ~ 0.5. As every new order in the
Taylor expansion introduces many additional terms, it would be a great achievement
if one could find a resummation scheme to go to larger times within this description.
The results presented in Ch. [5| are not directly related to the description of heavy-
ion experiments, but they might be relevant for small systems and for the study of
the initial stages of a heavy ion collision [11]. For every prehydrodynamic model
— which is not free-streaming — there is a development of a anisotropic flow at
early times and it is of interest to know if the model behaves “hydro-like”, “few-
collisions-like” or even something in between. One possibility would be even to use
an initial stage model which uses the scaling law v, (t) oc t7* for the anisotropic flow
and similar ones for the other quantities of the system. Then it would be interesting
how this affects global Bayesian analyses of medium properties for the QGP created
in heavy-ion collisions.

Another area for which this work might be interesting is the search for the exis-
tence of dynamical attractor solutions for systems with transverse dynamics [138],
as even “late time attractors” have to take into account the different “early time”
behaviors. From this point of view it would be of interest to extend the studies into
the direction of spatially asymmetric setups, where analytical hydrodynamic results
are known [139).

In Ch. [6] we have compared three different setups in kinetic theory. The first
one, a simulation with a collision kernel describing elastic binary scatterings, gives
the reference to a system, where all rescatterings are considered. In the second
realization of the transport algorithm, we introduced a 2 — 0 code version to find out
which fraction of the anisotropic flow signal is produced by particles which escape the
system without undergoing rescatterings. In the third scenario we used analytical
calculations within Boltzmann kinetic theory including the loss term for binary
collisions only, restricting this approach to the first order in the cross sectionH These
analytical calculations directly provide us with the scaling behavior of the anisotropic
flow coefficients at earlier times, confirming the findings from Ch. [5|and they give us
the dependence on the initial-state eccentricities. As the analytical approach yields
completely different results for even and odd flow coefficients, namely the odd ones
have v, (t) = 0, this gives a direct hint that there is a fundamental difference in the
production mechanism of even and odd flow harmonics.

The even flow harmonics (vq, vy, vg) are similar within all three approaches if
the number of rescatterings is small. For the flow harmonics v4 and vg this holds
for the linear response v, x &, and even in the case of non-linear response to
the initial-state eccentricities, e.g., v4 o €5 or vg o< 3. From this agreement it
can be concluded that the even flow coefficients in the few-rescatterings regime
are by a large extent produced by particles which escaped the system without any
rescattering. The anisotropic escape probability is representing the asymmetric
geometry, as advocated for the elliptic flow vy in AMPT [111].

This is contrasted by the odd flow harmonics, where the results for the 2 — 2 and

IThis calculation is actually the resummation of the Taylor series approach from Ch. |5|in ¢ at

O(o).
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2 — 0 scenarios show significant differences, even in the few-rescatterings regime.
While the 2 — 2 scenario exhibits a scaling with Ny, the 2 — 0 scenario scales
rather with N2__ . We have seen that the analytical calculations give vz = 0 at order
o, while the 2 — 0 simulations give a non-vanishing v3. This is still consistent,
as the v signal arises at order o2, which can be shown within the Taylor series
approach described in Ch. [5} From this discrepancy between the different scenarios
we can conclude that for the odd flow harmonics the signal is not driven by the
anisotropic-escape probability, i.e., the particles that undergo at least one collision

are important for the anisotropic flow signal.

The general conclusion from the work in Ch. [0] is that the “escape mechanism”
is not enough to describe the whole anisotropic flow signal, but only the even flow
harmonics. Such a difference in the microscopic “origin” of the even and odd flow
harmonics has never been discussed before within transport studies. However, it
might be relevant for systems with small multiplicity and indeed within a Color
Glass Condensate approach a difference between even and odd flow harmonics of
two-particle azimuthal correlations was found in proton-nucleus collisions [140]. To
put our study within a toy transport model (two-dimensional system, hard spheres)
onto a more solid ground, it would be desirable to replicate the results within more
realistic transport frameworks, which have then to be “truncated” to also include
the 2 — 0 collision kernel.

In Ch. [7] we derived a decomposition of a set of initial energy density profiles
into an average state and independent fluctuation modes representing the event-by-
event fluctuations. This approach seems more appealing from the theoretical point
of view than earlier mode decompositions with correlated modes. We have seen that
the two initial state models — Glauber and Saturation — have different eigenvalue
spectra due to general differences in the structure of the energy density profiles in the
models. In the Saturation model the spectrum is flatter, i.e., the higher modes are
more important, as there are smaller structures in the density profiles. We observed
clear structures for the modes with rotational symmetry at b = 0 fm, which are
not present at b = 9 fm for the broken rotational symmetry and we are able to
classify the modes according to their eccentricity and their k-th excitation (radial
dependence). Moreover, we performed a Bessel-Fourier decomposition which enables
us to reduce the amount of data, which has to be stored for the modes significantly,
and it gives us also a natural way to classify the modes according to their azimuthal
shape and radial length scales.

We also used a Taylor expansion of the observables (Eq. (7.27])) to characterize
the linear and (diagonal) quadratic responses of observables to the modes. While for
the rotational symmetric case there is either a linear response to dE/dy and {r*} or
to one of the eccentricities for a given mode W; in the initial state, and a response to
dNen/dn and [pr| or one of the flow coefficients in the final state, there are multiple
responses for b = 9 fm and one specific ¥;. In the case of non-linear responses we
have seen that they occur due to the non-linearity of the observables themselves or
due to a non-linear dynamical response.

Computing the dynamical response coefficients C,,,, and K, ., on a mode-by-
mode level and comparing our results to full event-by-event results revealed that in
general the values are in the same ballpark, even though the values in the literature
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are computed within different setups (ideal/dissipative hydrodynamics and kinetic
theory).

Comparing the observables from the mode-by-mode approach to event-by-event
simulations revealed that there are some observables, e.g., the multiplicity or the
mean transverse momentum, whose averages, variances or correlation coefficients
would require either more modes or considering more than the linear order in ¢.
However, most of the observables can be described with the amount of modes used
in our analysis and considering linear response only, especially for central collisions.
One of the questions we wanted to answer was if there are any differences between
the two initial state models. Within the discussion of the Pearson coefficients we
have seen that at b = 0 fm we obtain C(dNy,/dn, [pr]) > 0 in the Glauber model
and C(dNg,/dn, [pr]) < 0 in the Saturation model. This correlation is in principle
measurable in experiments, one thing which has to be checked is if the correlation
survives when going to a centrality class dependent description.

Under the assumptions that the expansion coefficients {¢;} are Gaussian dis-
tributed and there is only a linear response of observables to the mode perturba-
tions, we can predict most of the joint probability distributions pg,(Oa,O,) from
the event-by-event simulations quite well. In some cases, e.g., at b = 9 fm for v,
and €5 non-linear relations become visible in the event-by-event distributions, which
are not captured in the mode-by-mode approach. This is due to the fact that the
assumptions underlying the analytical calculation are only partially fulfilled, such
that higher order terms in the expansion of the observables w.r.t. the expansion
coefficients should be taken into account.

For the future this mode-by-mode approach could be extended in many different
directions. A natural next step is to use centrality classes instead of fixing the impact
parameter to come closer to the description of experiments. It would also be very
interesting to use the framework for other systems, e.g., deformed nuclei like Ru or
Zr, to see how a deviation from sphericity influences the modes. As we perform
a Taylor expansion in the coefficients ¢; it would be also interesting to investigate
higher orders, especially at larger impact parameters or centrality, as we have seen
for the moments of the coefficients, that there are modes with sizable skewness
and kurtosis. These third and fourth moments are not fixed by construction of the
basis of modes like the mean and variance, and thus they leave space for further
investigations. In the future one could think of comparing to other initial conditions
than the ones used in this work, or extend the framework for three-dimensional
initial conditions.
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Appendix

Modeling the initial state of the
heavy-ion collision

[A.1 Saturation modell . . . . . ... oo 151
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[A.1.6 Computation of o™ . . . . . ... ... 155

A.1 Saturation model

In this Section we will present additional calculations for the Saturation model
introduced in Sec. We will compute in detailed steps the overlap function of
two protons (Sec. followed by the gluon spectrum (Sec. and the initial
energy deposition (Sec. |A.1.3). Afterwards we present a self consistent solution for
the computation of the average saturation scale of the nucleus (Sec. , which
is needed for the computation of the initial energy-density distribution.

Sections [A.1.6| show how the number of participants and the effective in-
elastic parton cross section are computed. They are used in the code to decide
whether a collision between two nucleons takes place or not.
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A.1. Saturation model

A.1.1 p-p overlap

In this Section we compute the overlap function of two protons approximated by
Gaussians and separated by b:

T, (b) = / d%s TA(s)T2(s — b)

_(s=b)?

1 __s?
— 2 3B 2B
—4 B %/dse Ge G

o e (A1)
1 _ b2
— 4BG_
47TBG

We find that the function 7}, only depends on the distance between the two protons.

A.1.2 Gluon spectrum

In this Section we will solve the momentum integrals for the gluon spectrum. There-
fore, we start to plug the unintegrated gluon distribution functions ® 4,5 (Eq. (2.20]))

into Eq. (2.21)):

dN,  asN, /ko
d2bd?Pdy 7wiP2(N2 —1).) (27)2

g*N, d’k (N2 —1) k2 k2
= / 42t exp | —
4PN 1)) (2m)?  ¢°Ne Q%4

G y(za,b+Dby/2,k)Pp(zp,b—by/2,P — k)

s,A
N2 — 1) (P — k)2 P — k)2
DI KE (oK)
N2 1 / K2 (P-Kk)
= £ d2kk2P—k2eXp<— — )
NP OE, S ST @,

(A.2)

For the sake of brevity we do not write the dependencies of the saturation scales
(Qs,4/p of the nuclei. Now we go into polar coordinates with P, = P, P, = 0,
k, = kcos ¢ and k, = ksin ¢, where the integration is easier:

N, N2 —1 7 k2 P24 k2
A, £ 5 /dk: k3 exp (— _r )
s,B 0

Ebd2Pdy  ¢?N.mP2Q2, 2. Q%
: (A.3)
T 2Pkgcosd>
X /d¢ (P + ) — 2Pkcosg| e Tor .
0
Using the identity [141]
1 T
I,(z) = —/dx et 9 cos(ng) (A.4)
m
0
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A.1. Saturation model

for the modified Bessel functions of first kind, the ¢-integration gives us

27 [(PQ + k31, (2]2%) — 2Pk, (2%)] : (A.5)

s,B s,B

In the next step the k-integral can be solved, which leaves us with the following
expression for the gluon spectrum:

P2
dNg _ Nc2 —1 Q AQS Be 9t
d?bd?Pdy  ¢?N.m?P?  (Q2,4 QS7B)2
PYQ? Q% 5 +P2(Q3 4 — Q2 )2 (Q2 4+ Q3 p) +2Q3 4 Q5 5(QF 4 + Q2 p)?
. (24 +Q%p)° '

(A.6)

A.1.3 Initial energy deposition

Using the relation between the integration measure in Milne and Minkowski coordi-
nates, which is drdnd?z+ = %dtddexT, we can now compute the initial transverse
energy density per unit rapidity in a heavy-ion collision via

TdE dE
_ _ (4B AT
(e7)o <d2bdz> <d2bd77>0 (A1)
— [aP|P A.
/ | ’dedQPd‘ . (A.8)

dn,
—9 / P P29 A9
" d2bd2Pdy ’y:n (A-9)

The integral over the momentum P can be carried out analytically and gives us

(N2 —1) QiaQis
(eT)o = 5 o
49 Ncﬁ( s,A + QS,B)

5 2004 TTQLIQs +2Q1,] . (A10)

A.1.4 Self consistent solution for the saturation scale

To obtain the initial transverse energy density from Eq. (2.24) it is necessary to
compute the saturation scale Qs a/5(x, Ta/5(b)) of the nucleus self consistently from

Egs. (2.13) and ([2.23]). Let us rewrite these equations here:
Qs,a/8(x, Tasp(b))e™?

r=— , (A.11)
SNN
Q3 a/p(x,0) = Q% gz N1 — 2)°0¢T4/5(b). (A.12)
This leads to the Equation
Q30004 (b)etv s

(1—2)2 =0, (A.13)

SNN
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A.1. Saturation model

which can be solved for x and then be reinserted into Equation to obtain the
average saturation scale of the nucleus.

To solve Eq. one can use the approximation z < 1 which leads to the
expression

2 ST (b) et PEY
= (Qs,oao ;:i( )e ) (A.14)
and an average saturation scale of the nucleus of
A
Q% 00T a/p(b)et?\ =%
R nTys). (A5

This solution is implemented in the code which was used for the simulations in

Ch. [AM

A.1.5 Number of participants

Let us now assume that the proton consists of N, partons with an effective parton-
parton cross section 0,4, which is mostly a gluon-gluon cross section. The probability
density for partons — which is normalized to 1 — is then given by pparton(r) =
Pparton(T)/Ng, Where pparton(r) is the three-dimensional parton distribution function
(PDF) of the proton. Given the PDF of the proton, we can now define its thickness
function by integrating out the z-direction:

TP<S) = /dZ ppart0n<syz>- (A16)

Note that the thickness function is also normalized to 1 and that the IP-Glasma
model assumes it to be of the form given in Eq. (2.15)).

The probability for an interaction between two partons with impact parameter
b is given by

Pint.(b) = 04gT,(b). (A.17)

Following the Poissonian statistics, the probability of n parton-parton interactions
in a p+p collision is given by

2
Ng
n

P(’I’L, b) = ( ) [1 _pint.<b)]N92_npint.(b)n7 <A18>

while the average number of parton collisions is given by

coll.

(N9 (b)) = Z_Z P(n, b = N2pie (b) = 04y N2Tp(b). (A.19)

For a future version of the code there will be a bisection method which solves Eq. (A.13)) for
2 numerically.
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A.1. Saturation model

Using Eq. (A.19) we can now calculate the probability that there is at least one
interaction between partons:

1= P(0,b) =1~ [1— pine.(b)] (A.20)
=1—[1 -0y pp(b)] (A.21)
~ 1 — e O0aNgTor(P), (A.22)

In the last step the optical assumption N, > 1 was used.
This gives us now the final ingredient to write the differential probability of a
p+p collision at impact parameter b as [142]

dppp 1— e_UggNngp(b)

#b "~ [db 1 — e N Tm®)” (A.23)

inel

The quantity o441V, 92 is the total effective parton cross section o which is optimized
in such a way that the denominator becomes the inelastic p—i—p cross section olfd
for the specific collision energy ,/sxn. A more extended computation of numerical

values is presented in the following part.

inel

A.1.6 Computation of o

Similar to Ref. [30] we use the parametrization

el [ V/SNN 9 45.2 33.8
=25.240.051n (y/ 0.56 In” (/
ON <1 a V) + n (v/snn) + n” (v/snn) + ? + o
(A.24)

for the inelastic nucleon-nucleon cross section obtained from fits to total [143] and
elastic [144] cross sections to deduce the effective parton cross section at a given
center of mass energy ,/syn. This is done by solving the integral equation

AR (Vo) =2 [ dbb[1 = e (425
0

mel

including the proton-proton overlap function T, (Eq. - ) at a fixed value of oy
and y/snn. Then we find the values given in Tab A

In the code the effective inelastic parton-parton cross sections from Table
are implemented for the fixed energies given there indicated by the data points in
the upper panel of Fig. . We have solved Eq. for the energies between the
data points as well (green line, Fig. upper panel).

If energies are considered which are not included in Tab. [A.T] then we use the
parametrization

. /5 d
olnel ( NN) —a+b-In(\/snn) + ¢ In?(/sny) + ———~
1 GeV ln( /SNN)
to approximate the ,/syn dependence of the effective partonic cross section. A fit
using the cross sections from the green line in the upper panel of Fig. is shown
in the lower panel of the same figure together with the resulting fit parameters.

(A.26)
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A.1. Saturation model

Table A.1: Inelastic nucleon nucleon cross section oy

inel in

mb deduced for different

energies \/syy from Eq. ((A.24]) and the corresponding effective parton cross section

oinel in mb.
Vony [GeV] ol [mb] ot [mb)
200 41.6 92.6
900 51.6 154.1
2760 60.8 247.2
5020 66.3 328.0
7000 69.6 387.4
13000 75.9 537.1
800 .
— o' [mb]
7004 % ol [rnb]
—— 10- 0l [mb]
oo © 100k (mb]
500
400 A
300
200
100
= 1 .
Vswn [GeV]
600 .
—— o¢' [mb]
ol =5201.2 = 90L.5 In(v/Suy) + 54.7 In?(/Sy) = 22725 mb
500
400 A
300
200 - ‘A"/’////,///////
100 ___n,,_———"'——’})
- 03 104
Vswn [GeV]
inel

Figure A.1: Top: oy

extracted by solving Eq. (A.25)) (green line) at different

V/3nN- The blue line shows the oii¢! values given by the parametrization (A-24)). The
points indicate the /syn values which are implemented as fixed cases in the code.
Bottom: Fit of the extracted effective partonic cross sections with the parametriza-

tion (A-26).
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In Sec. we will derive the explicit form of the collision kernel of the classical
Boltzmann equation for elastic binary collisions which follows the derivations in |145]
. Then we will extend the classical Boltzmann equation to the relativistic one
in Sec. B2

Additional computations needed for the numerical solution of the Boltzmann
equation described in Sec. [3.4] are presented in Sec. [B.3]

B.1 Collision kernel of the non relativistic Boltz-
mann equation

The right hand side of the Boltzmann equation (Eq. (3.8))) encodes the rate of change
of the distribution function due to collisions. It can be separated into two parts

aft,z @)\  (oftTD)\"" (0f(t T @)\
(A5 (), (), e

coll coll

namely the gain and the loss term. Then the expression (9f/9t)%" d3Fd3adt is
the mean number of particles undergoing a collision and one of the two colliding
particles will then enter the volume d37d®@ around the point (7, @) within the time
t + dt. The same is true for the loss term but the particle will leave the volume

d37d34d around the point (7, @) within the time ¢ + dt.
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B.1. Collision kernel of the non relativistic Boltzmann equation

The explicit form of the collision kernel depends on the form of the particle in-
teractions. Here we will only look at elastic binary collisions of particles without
internal structure. Additionally we have to make the assumption that the inter-
actions are instantaneous and local. Therefore, under this assumption an external
force would have no impact on the collisions.

B.1.1 Loss term of non-relativistic binary collisions

Given two particles with Velocities u resp. 41 which collide, we denote their velocities
after their collision by % ' resp. ;. The final state velocities can be expressed by the
initial ones if the force law of the interaction is known. Describing the interaction
in the center-of-mass frame is more convenient. In this system a particle with the
reduced mass and moving with the relative velocity of the two particles is deflected
from the scattering center. The incoming particle with impact parameter b is then
deflected under the azimuthal angle ¢ and polar angle #. Then the particle flux
through an infinitesimal ring b dbd¢ is given by

b dbdo |id — iy | f(t, 7, i) d3i;. (B.2)

Multiplying this expression by f(t,7,u) d3u gives the number of particle collisions
per unit time with particles having a velocity @. Integration over u; and dividing
by d3@ is then the total rate of change of the distribution function induced by
scatterings of particles with velocity @ out of the interval [, @ + d3u]:

<af(tétf,a)>mss [ /db b/dgb G mlf R R D). (B3)

It is convenient to introduce the differential scattering cross section
d*c(6, ¢) = b dbdg (B.4)

and write the loss term as

aft,_:_) loss B d2 e(b ) ) o N
<<8ZEU)>COH /ds /dz d(QQ)‘u — | f(t, 7 1) f(t, 7 10) (B.5)

with d%2€) = sin 6 dfde.

B.1.2 Gain term of non-relativistic binary collisions

Using the same notations and steps as in the previous subsection we would arrive
at the following expression for the gain term of the collision kernel:

<8f(t .T 0 )gam /d3—»//< d Z(Qiz¢)>/‘ﬁ,_ﬁll

coll
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B.2. The relativistic Boltzmann equation

Now we can use that the collision is considered as elastic which gives the following
conservation relations:

0+t =4+, (B.7)
it =040 (B.8)
Thus, the relation
U — | = ‘ﬁ/ — ' (B.9)
is fulfilled and also the identity
PP d*v = &6/ d*v (B.10)

holds, as the Jacobian of the transformation is one. Additionally, the differential
cross section is invariant under time reversal and parity transformation, which is
called micro-reversibility, and therefore

d®o(6,6) d%(6,9)\’
d’Q g = (dZQ dm) (B.11)

holds. Now we can rewrite the gain term from Eq. using the upper identities
as

gain 2
(W%p) = [aa, [0 TUE D pmanpera). (B12)

coll

Combining the gain and loss part of the collision kernel directly gives the full collision
kernel written in Eq. (3.9).

B.2 The relativistic Boltzmann equation

The relativistic Boltzmann equation is a quite forward extension of the non-relativistic
one. Here we will follow the argumentation in [147].

Scattering processes are characterized by their cross sections which affect the
number of interactions in two colliding particle beams. Let us consider these two
beams with the densities n and n; and the resp. velocities # and u;. The next step
is that we go into the rest frame of beam 1 which gives us the number of interactions
in the volume element dV' and in the time interval d¢ by

dNinteraction
W = ONN1Urel, <B13)

with the relative velocity wu.;. In the rest frame of beam 1 this is just the abso-
lute value of the particles’ velocity in the beam with density n. The number of
interactions should be Lorentz invariant and thus, we write

dNinteraction
— = B.14
FEETE AL (B.14)
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B.2. The relativistic Boltzmann equation

with A in the rest frame of particle 1 given by ou.. It is important to notice
that the cross section measured in the rest frame of one of the beams is an invariant
quantity. The same holds true for the relative velocity. We have also seen in Sec. [3.3]
that the product d3#dt is an invariant quantity. This leads us to the conclusion that
the product Ann; has to be invariant on its own. The transformation of a density
is given by

N = YNyrest, (B.15)

where n,e is the particle density in their rest frame and v = /1 — @ % the Lorentz
factor. This can also be expressed in terms of energy E and mass m of the particles
by n = nyest £/m via E = ym. Now the invariance of Ann; can be recast into the

invariance of
EFE EFE
L-4 LI invariant, (B.16)
P*P1,a —EE +p-p

where we divided by another invariant quantity p®p; o. Going now back to the rest
frame of beam 1 (F; = my, 5 = 0) shows that —A is invariant. Additionally, we
know that in this reference frame the quantity A is given by ou,. Thus, in any
reference frame

papl,a

A= —0uye = 0Up (1 —U-U B.17
Othrel e = Ol ( 1) (B.17)
is valid.

In the next step we want to express the relative velocity in an arbitrary reference
frame. We use the scalar product of the four momenta p*p,, = —EE, + p- p; and
go to the rest frame of particle 1. Thus, we have p; = 0 and obtain

P =—LEE (B.18)
= —ymmy (B.19)

m
= (B.20)

/ - 2
1_urel

with e the relative velocity between the particles. This quantity is invariant under
Lorentz transformations, as well as

p#pl,u = —ym-ymi + *ymﬁ : 'ylmlﬁl (B21)

= —ymmmy (1 — 1 - i) (B.22)
1—u-u

— Cmy T ) (B.23)

V=@ —@?)
in an arbitrary reference frame. Now we can equate the two expressions and solve
for u,e which yields

1—@2)(1 -2
i

1)?

—~

V=) -

1—

V(@ — )2 — (
1

— U - U

(B.24)

Urel =

X | 1

£y
2y

(B.25)
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B.3. Additional calculations for the numerical solution of the Boltzmann equation

by using the identities (- ) = @ %6, — (@ x @6, )? and (@ — 1) = @ >+, > — 200 - .

Going now back to Eq. (B.14)) and plugging in the expression for A from Eq. (B.17)
and the relative velocity u,e gives us finally

dNinteraction

= onniy/(@ —@)2 — (@ x @)?, (B.26)

which is a Lorentz invariant quantity. Let us mention here that the expression

\/ (@ —11)? — (4 x up)? is different from the relativistic relative velocity defined in
Eq. . Therefore it has a name on its own, which is Mgller velocity unigier-

If we now consider the case of massless particles with @ 2 = 1 the Moller velocity
reduces to:

S 2 o o2
UNgller = \/(u —y)" — (U X 1)
= U+ —21 - U, —u “up” (1 — cos?0)
——
=(1—a-i1)?—1—(@-@,)?
SN2, 52 2 2.9 92,2, 2252
:\/(1—u~u1) + U U =1 —u U cos? 0 — U4 “uy” + U U cos? 0

(B.27)

B.3 Additional calculations for the numerical so-
lution of the Boltzmann equation
The calculations in the following part were originally published in the PhD thesis

of C. Gombeaud [57]. We redo them here for the sake of completeness to give an
overview over the transport algorithm ]

B.3.1 Determining the impact parameter of the test parti-
cles

We will now recompute the impact parameter of two particles. Therefore, we assume
that particle 1 is at rest and particle 2 moves with a velocity v5 — v; reached by
a Galilei transformation with —¢;. This situation is depicted in Fig. [B.1 When
particle 2 reaches the line B then the condition

(@o(T) = &1) - 01 =0 (B.28)

is fulfilled, with 7 being the time when particle 2 reaches 3. The position of particle
2 with time dependence is given by

Fa(t) = (Ty — T)) t + T5(0). (B.29)

In the original work everything was presented in french language. This is another reason to
show the calculations here again.
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B.3. Additional calculations for the numerical solution of the Boltzmann equation

Figure B.1: Schematic representation of the collision of particle 1 and particle 2
in the rest frame of particle 1 [57].

Plugging now Eq. (B.29) into Eq. (B.28]) and solving for the time 7 leaves us with
<_’2 — 171) . 1717' + (fg(O) — fl) . _»1 =0 (BBO)

(B.31)

which is the time when particle 2 crosses the line B. Reinserting into Eq. (B.29)
gives us

+ T(0). (B.32)

—~
S
|
St
SN—

=1

Let us recall the definition of an impact parameter b. It is depicted in Fig.
by the green line and it indicates the distance from the center of particle 1 to the
center of particle 2 when it crosses the line B. Mathematically it is given by

o L (@(0) =2y v .
= |(ty — @) ( (217(1 )_ 3)1_) = L4 2,(0) — 1, (B.34)
— — F. ?71
= Vo — U S S~ o + r, B35
(= ) s 1 (B.35)
where we have defined ¥ = 75(0) — 7.
In the next step we compute the square of b which yields:
B2y (T W) (7 5)° Lol ) (M) = (77 0’ (B.36)
(1 -7, - 1) 1— ) - Uy
N € i YA G )" LT ) (M) — (7 )* (B.37)
(1—’(71'H2)2 1_171'772
. 2 s
— 2 —— [(F- @) (F- )], (B.38)

where we have used that the particles are massless and therefore 7% = 7% = 1.
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B.3. Additional calculations for the numerical solution of the Boltzmann equation

We go one step further to show that this expression is indeed covariant by ex-
pressing it as a combination of products of four vectors. These are defined by

[ [t [ Y [ ymae
X1 = <f1> ) Xy = <x—:2> ) p1 = <’ym1171> ) p2 = <7m2?72> <B39)

The square of the vector x = x; —xo = (0, 7) naturally reproduces the 7 % in the first
term of Eq. (B.38]). For the second term we compute the following products of the
four vectors:

X+ p1=ymy (F-01), (B.40)
X P2 = ymy (’I? ’172) s (B41)
p1-p2 = = mamy (1 — 0y - 0) . (B.42)

This gives us the possibility to express b? by
b2 2 ox P (X p2) (B.43)
P1 - P2

Thus, the quantity is indeed Lorentz invariant.
The second possibility to compute the impact parameter — which is actually
equivalent to the one above — uses

‘T_"X (172 — 171)’ = ‘?72 — 171“7:1 sin @ <B44)

with the angle # between 7 and v, — v;. Additionally we can read off in Fig. |B.1
that

|7 sin ) = ‘5‘ Cos v (B.45)
— 1 9
e 7sind (B.46)
CoSs v
The cos o can be obtained via
COS (v — o - (U2 — 1) (B.47)

[Gh][oy — |

Inserting expressions (B.44)) and (B.47)) in Eq. (B.46) directly gives us

’l—;‘ _ ’FX (172 —’171)| _ éz . ['FX ('172 — '171)]’ (B48)

Uy - Uy — 1 vy Uy — 1

where 7% = 1 for massless particles was used again. Squaring the latter expression
one can show that it is equivalent to Eq. (B.38).

B.3.2 Kinematics of a collision

For the final state momenta a schematic picture (Fig.[B.2)) can be drawn for a rotated
frame w.r.t. the laboratory frame, where the calculation is conducted. What has
to be determined is the angle 6 between p; and the z-axis as well as the absolute
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B.3. Additional calculations for the numerical solution of the Boltzmann equation

ylab AN
y .,
-/
1 b2
N s
P
0
b2
>
Llab

Figure B.2: Schematic representation of a collision for the calculation of the final

state momenta [57].

value of p;’. This final state momentum of particle 1 should be expressed in polar

coordinates.
Therefore, we start with the four momentum conservation:

P1 -+ P2 = Py + Ph. (B.49)
As we consider massless particles only, we have p? = —m? = 0 and can rewrite the
latter equation to
(Pr+p2 —P1)* = 0= (p1+p2)* — 20} (P1+ps). (B.50)
Using the definition of the Mandelstam variables
s=(p1+ P2)2> B.51)
t=(p1 —p)’. (B.52)
one quickly finds that they can be rewritten as
s =2p} - (p1+p2), B.53)
t = —2p] - p1, B.54)
with the help of Eq. (B.50) and by expanding t.
With the help of the Mandelstam variables we can write
t S
——s+ -t=0. B.55
2s + 5 ( )
Then we insert —t/2 in the first term and s/2 in the second one:
spy - p1 +tpy - (p1+p2) =0 B.56)
& (s+t)p)-p1+tp;-pe=0. B.57)
Separating now the scalar and vectorial parts leads to
(s+t)p P+t - pa=(s+1) ‘ﬁll“ﬁl‘ + t’ﬁll“ﬁz‘- (B.58)

164



B.3. Additional calculations for the numerical solution of the Boltzmann equation

In the next step we define a unit vector in §,"-direction by @ = 7’/ ‘ﬁl/‘ such that
the latter expression can be recast as

(s+t)u-py+td- Py = (s+1t)|pr] + t]po] (B.59)
& [(s+t)pL+tpo) - U= (s+t) |pi]| + t[pal. (B.60)

We now write 7 = [(s + t) pi + tps] as the vector defining the z-axis of the coordinate
system for the collision. The expression

U-U=(s+1t)|p1] +t|pa (B.61)
provides us with the angle 6 then.

However, for the definition of the scattering angle it is necessary to know t. The
scattering angle is defined in the center-of-momentum frame (indicated by the star)
and chosen to be

0 =x (1 + i) . (B.62)

This form corresponds to an isotropic differential cross section and it prevents the
particles to collide twice. A more detailed discussion of this problem is given in
Sec. B.3.3l

Having all ingredients at hand we can now start with the calculation of the final
state momenta. This is also the way how collisions are treated in the transport
algorithm, where the Cartesian components of the momenta are known for each
particle at each step in time. The first part is the change to the coordinate system
defined by Eq. (B.61]), which corresponds to a rotation around the z-axis by the
angle § = Z(€,,7). We can write

(s +t) [a] + tp2]
|71

cosf =

(B.63)

with the help of Eq. (B.61). Solving this expression for t and going to the center-
of-momentum frame, where v = spj, leads to

t= —; (1 — cos*). (B.64)

Doing the same for (s +t) gives

9*
(s+1t) =scos <2> : (B.65)
In the next step we rewrite Eq. (B.63) by

cosf = — (B.66)
\Ul

with w = (s 4 t) |p1] + t[ps|. Squaring Eq. (B.66]) and subtracting one leads us to

w? — |9’
CE

—2(s + Ot =[P ||pa] + P - o]

|_’|

cos? — 1= (B.67)

(B.68)
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B.3. Additional calculations for the numerical solution of the Boltzmann equation

Then we can use the definition of s to rewrite the pseudo scalar product of p; - po as
s/2 in the massless case. This leaves us with

cos’f — 1= P (B.69)
U
= —sin?@ (B.70)
and therefore we have
st(s+t
NP} -
U
Now we have the cosine and the sine of the scattering angle at hand.
Using the Mandelstam variable t (Eq. (B.54))) can provide us with ’ﬁl":
t=—2p] p1 (B.72)
t T R
< = 5= oy | [ — - ) (B.73)
t
s P == — . B.74
IR (B.74)

By the energy momentum conservation laws the other final state momentum com-
ponents can be determined.

B.3.3 Double collisions

Considering a collision of a point particle with a particle of size 2r can lead to some
non-physical behavior if the scattering angle 6* computed from the impact parameter
b is chosen in such a way that the particles would collide again immediately. Thus,
the sign of #* has to be chosen properly, which is depicted in Fig. [B.3|

approach collision R=170
Ty )
0* <0
vy vy
2r R=0|7
0*>0
risk of double collision one collision only I R=—r'0

Figure B.3: In the left panel we see that with the wrong choice of the scattering
angle a double collision can occur. The right panel shows how to circumvent this
problem by choosing the scattering angle as a function of the impact parameter.
The figure is adapted from [57].
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Appendix

Fluctuations of anisotropic flow
from the finite number of
rescatterings

(C.1 Initial anisotropic flow| . . . . . . . . . . . . ... ... ... 167
[C.2 Fit parameters| . . . . . . . . . .. ... ... 168
[C.3 Complex eccentricity and ellipticflowat b=61tm| . . . . . . . . . .. 169
(C.4  Averaged moments ot the anisotropic flow harmonics| . . . . . . . .. 171
[C.5 Event-plane angle distributions withn=2,38[. . . . . ... ... ... 172
[C.6  Event-plane angle distributions with n =4 . . . . . . . ... ... .. 172

In this appendix additional results for Secs. [£.3}{4.4] are presented. In Sec.[C.1]|will
give the remaining probability distributions of anisotropic flow in the initial state
of the transport simulation, then the fit parameters for the scatter plots of v, /s
and &, /s are discussed in Sec. Then in Sec. we will briefly discuss what
happens in the case of complex eccentricities and flow harmonics in the binning
procedure applied to scatter plot mentioned above. Afterwards, in Sec. [C.4] the
averaged moments for the impact parameters b = 0 and 9 fm are given and the
corresponding event-plane angle distributions are displayed in Sec. [C.5]

C.1 Initial anisotropic flow

For completeness the distributions p(v,/s) are presented in the initial state for the
impact parameters b = 0 and 9 fm. The histograms are shown in Fig. and their
moments are listed in Tab. [C.I] All distributions are extremely similar to the ones
presented in Sec. for b = 0 fm.
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C.2. Fit parameters
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Figure C.1: Initial state probability distributions of vy /s (left) and vs /s (right)
including 5000 events at b = 6 fm (top), b = 9 fm (bottom).

Table C.1: Calculated moments from the probability distributions in Fig. for
Upess With n = 2,3 at b = 6,9 fm including 5000 events. The variance o2 was

divided by its rough estimate 1/(2Np).

o2/ 2N,) ] ] "
b=61fm
Vgc 1.022 +0.020 0.149 £0.054 0.000 £ 0.065
(P 1.010 +0.020 0.032 £0.055 0.022 4+ 0.067
Us.e 1.006 & 0.020 0.045 £ 0.052 —0.091 £ 0.055
Vs 1.002 +0.020 0.022 £0.056 0.017 £ 0.069
“b=9fm
(0 0.994 +0.020 0.013 +0.055 0.043 £ 0.066
Vg 1.002 £0.020 0.1104+0.054 —0.034 +0.071
Usc 0.994 +0.020 0.109 +0.056 0.021 £ 0.072
Vs 0.970 £ 0.020 0.069 4+ 0.057 0.084 £ 0.083

C.2 Fit parameters

The Tables [C.2, [C.3] and [C.4] show the parameters of the fit functions used for the
scatter plots of the final state v, /s as a function of the initial €, /. In all fits a
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C.3. Complex eccentricity and elliptic flow at b = 6 fm

linear relation between eccentricity and flow harmonic was used, except for vy /s at
b =6 and 9 fm, where the non-linear ansatz from Eq. (4.12) was used.

Fixing one condition of impact parameter and (Kn) "~ the fit parameters are
very similar for the cosine and sine parts. They all increase with (Kn)™' for a
given impact parameter. This behavior is already known, but it holds true for the
non-linear parameter Ko 290 as well, which was reported recently in Ref. [84].

Table C.2: Parameters of the linear-fit functions — for vy /s and v3 ¢ /g
at b =0 fm.
<Kn>_1 V2,c U2,s U3,c V3s
Ko Ko Kss Kss3
0.30 0.0455 + 0.0001  0.0455 £ 0.0001  0.0058 £ 0.0001  0.0058 £ 0.0001
3.01 0.1712 + 0.0003 0.1706 £ 0.0003  0.0920 £ 0.0002  0.0920 £ 0.0002
12.06  0.2133 £0.0006 0.2120 4+ 0.0006 0.1490 + 0.0006 0.1490 £ 0.0006

Table C.3: Parameters of the fit functions for v, . /s [non-linear fit Eq. (4.12))] and
v3 /s [linear fit Eq. (4.11)] at b = 6 fm.

(Kn)™1 vy, Vgg Vs Vg
Koz 2,202 Koz K202 K33 K3
0.34 0.0589 4+ 0.0001 0.0018 4+ 0.0015 0.0565 + 0.0002 0.0171 £ 0.0065 0.00791 4+ 0.00004 0.00782 4 0.00004
3.43 0.1924 4+ 0.0003 0.0182 + 0.0043 0.1900 4+ 0.0005 0.0458 £+ 0.0203  0.1069 + 0.0002 0.1062 £ 0.0002
13.73  0.2382 +0.0005 0.0235 + 0.0082 0.2379 + 0.0009 0.0539 £ 0.0391  0.1770 %+ 0.0005 0.1756 £ 0.0005

Table C.4: Parameters of the fit functions for v, . /s [non-linear fit Eq. (4.12))] and
v3 /s [linear fit Eq. (4.11)] at b =9 fm.

(Kn)™' wac Vo V3 Vsg
Ko Ka,220 Ko, Ko,220 Ks3 Ks3
0.41 0.0662 4+ 0.0001  0.0161 £ 0.0007 0.0646 4+ 0.0002 0.0081 £ 0.0031 0.00989 + 0.00003 0.00970 4 0.00003
4.10 0.1981 4+ 0.0002 0.0425 4+ 0.0017 0.1976 4+ 0.0004 0.0400 4+ 0.0086  0.1106 £ 0.0002 0.1091 4 0.0003
14.42  0.2414 +£0.0004 0.0456 £ 0.0029 0.2422 +0.0008 0.0520 £+ 0.0150  0.1697 4 0.0005 0.1670 4 0.0005

C.3 Complex eccentricity and elliptic flow at b =6
fm

The dispersion of the complex initial state eccentricity 522 is shown in Fig. |C.2
for 10* events at b = 6 fm. The impact parameter is still oriented along ®, = 0.
Here the same bins as in Fig. are indicated by the different colors. The final
state complex anisotropic flow is then displayed in Fig. for the smallest and the
largest inverse Knudsen number. Again, the €5 bins from Fig. are indicated
by the colors. Here it becomes obvious that they do not map into the same bins in
vy = Re (vgem’?) due to fluctuations in the response. A second observation is that
events which are indicated by gray points in Fig. as “outliers” in €9, and which
are sorted out in our vs analysis, are not “outliers” in e direction, and thus they
are not the same events which are left aside in the v, s analysis.
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C.3. Complex eccentricity and elliptic flow at b = 6 fm
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Figure C.2: Scatter plot of the initial complex eccentricity e9e?®? =

E€2.¢c + i52,5
for 10* events at b = 6 fm. The bins are the same as in Fig.
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Figure C.3: Scatter plot of the final complex elliptic flow v9e?2 = vy + ive s for

10* events at b = 6 fm with (Kn) ' = 0.34 (left) and (Kn)~' = 13.74 (right). The
bins are the same ones as in Figs. [£.6/and [C.2]

Re [vgem’?]
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C.4. Averaged moments of the anisotropic flow harmonics

C.4 Averaged moments of the anisotropic flow har-
monics
This appendix lists the moments of the distribution py|-(vn,c/s|€n,c/s) about the mean

value Upc/s(en,cs) for the events at b = 0 (Tab. [C.5 and [C.6) and 9 fm (Tab.
and |C.8)), as they were not given in Sec. [4.3.3]

Table C.5: Calculated moments of the probability distributions p,|.(vac/sl€2,c/s)
of the flow harmonics in the final state computed for 10* events at b = 0 fm. We
divided the variance o2 by the linear coefficient from Eq. (4.10)).

<KH>71 U2,c v2,s
1007 /K3, Il 72 10707 /K35 7] V2
0.30 1.482 +0.049 0.1124+0.094 0.161 £0.125 | 1.489 +0.049 0.295 4+ 0.089 0.091 £0.111
3.01 0.905 £ 0.030 0.309 £0.092 0.219+£0.124 | 0.908 £0.031 0.416 £0.095 0.252 £0.140
12.06 2.212+£0.071 0.372+£0.084 0.041 =0.100 | 2.183 £0.070 0.081 +=0.090 0.046 = 0.120

Table C.6: Calculated moments of the probability distributions p,-(v3c/sl€3.c/s)
of the flow harmonics in the final state computed for 10* events at b = 0 fm. We
divided the variance 2 by the linear coefficient from Eq. (4.11)).

<Kn>71 U3 c U3s
10° 07 /K3 5 71| V2 10° 07 /K3 5 | Ve
0.30 33.27+1.03 0.3134+0.083 —0.024 +£0.095 | 3758 £1.15 1.0534+0.054 —0.144 4+ 0.084
3.01 1.663 +0.044 0.074 +£0.093 0.0524+0.128 | 0.183 &= 0.058 0.875 4+ 0.065 —0.080 = 0.094
12.06 5.488 +0.175 0.061 +0.088 —0.031 £0.109 | 0.553 +0.173 0.407 +£0.080 —0.064 £ 0.096

Table C.7: Calculated moments of the probability distributions p,-(vac/sl€2.c/s)
of the flow harmonics in the final state computed for 10% events at b = 9 fm. We
divided the variance o2 by the linear coefficient from Eq. (4.12)).

(Kn)~1 Vae Vo
10% 07 /K3, [l Y2 10" 07 /K3 5 7] Y2
0.41 3.559 £0.149 0.606 £0.127 0.551 £0.269 | 2.668 =0.133 0.383 £0.196 1.334 £ 0.440
4.10 2.376 £0.101 0.683+£0.130 1.147+0.404 | 2.423 +£0.104 0.381 £0.157 0.995 £+ 0.372
16.42 4.837+0.180 0.404 £0.112 0.733 +£0.267 | 4.940 £0.178 0.219+0.113 0.379 &+ 0.187

Table C.8: Calculated moments of the probability distributions p,|.(v3.c/sl€3,c/s)
of the flow harmonics in the final state computed for 10* events at b = 9 fm. We
divided the variance o2 by the linear coefficient from Eq. (4.11]).

<KH>71 U3,c v3,s
10° 07 /K3 5 Il 72 10° 07 /K35 5 ] V2
0.41 2.190 £0.080 0.138 £0.116 0.608 £0.251 | 2.601 £0.089 0.942 +£0.078 0.171 £0.125
4.10 0.823£0.034 0.443+£0.138 1.262+0.351 | 1.000 £0.038 0.386 £0.117 0.548 £ 0.195
16.42 1.304 = 0.045 0.209 £ 0.098 0.267 == 0.159 | 1.499 & 0.050 0.221 +0.100 0.264 £ 0.180
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C.5. Event-plane angle distributions with n = 2,3

C.5 Event-plane angle distributions with n =2, 3

This appendix shows the event-plane angle U,, distributions in the final state about
the corresponding initial state participant-plane orientation ®,, for the event sets at
b=0fm (Fig.|C.4) and b = 9 fm (Fig. [C.5].

3.01 C (Kn) ' = 3 (Kn)™' =
(Kn)™' = 0.30 2.0 (Kn)™' = 0.30
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2.0 1 &
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0.5
0.5 -I"]_WJ—"L'—LPJ”JL ] WIL]'ULJLJ-LP
0.0 = \ T o) 0.0 - ; T x
5 T 0 1 3 5 T 0 i 5
2Ty — By) 3(W5 — By)

Figure C.4: Probability distributions p(2(Wy—®3)) (left) and p(3(V3—®3)) (right)
for events at b = 0 fm for different (Kn)~!. The initial state distribution is indicated
by the label (Kn)~1 = 0.

1 (Kn)™'=0 -
N ( >71 95 C1 (Kn)y'=0
(Kn)™ =041 (Kn)™' = 0.41
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w
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=
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2.
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Figure C.5: Probability distributions p(2(¥o—®2)) (left) and p(3(¥3—P3)) (right)
for events at b = 9 fm for different (Kn)~!. The initial state distribution is indicated
by the label (Kn)~! = 0.

C.6 Event-plane angle distributions with n =4

The distribution of symmetry planes for 5 and €4 at impact parameter b = 9 fm
(Fig. shows a broad peak around zero. For such a large impact parameter it
is expected that the symmetry planes of the two eccentricities are aligned for more
events in contrast to central collisions, where the two angles are entirely uncorrelated.
Induced by this correlation there is also a different behavior for the distributions
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Figure C.6: Probability distributions p(4®, — 2®3) for events at b = 9 fm for
different (Kn)~!. The initial state distribution is indicated by the label (Kn)~! = 0.

p(4(¥y — ®4)) and p(4¥, — 2®,) (Fig. [C.7)), which are now both most peaked in
the case of the smallest considered number of rescatterings. This correlation is then

p(4¥y — 20,)

)
ISE
[ME]

wl)

-

f==)

INE]
wln

4T, — @) ' 4T, — 20,
Figure C.7: Probability distributions p(4(V4—®4)) (left) and p(4¥, —2®,) (right)
for events at b = 9 fm for different (Kn)~!. The initial state distribution is indicated
by the label (Kn)~! = 0.

washed out when the number of rescatterings increases, while for the two larger
values of (Kn) ™" the distributions are not very different from each other.
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Appendix

Early time behavior of spatial

and momentum anisotropies in

kinetic theory across different
Knudsen numbers

[D.1  Energy-weighted mean square radius| . . . . . ... ... ... .... 175
[D.2  Early time evolution of the numerator and denominator of the trian- |
[ gularityez|. ... 177
[D.3 Elliptic momentum anisotropy €5 at large times| . . . . . . . ... .. 178

We present the analytical calculation of the energy-weighted mean square radius
in our simplified setup from Ch. [f] in Sec. D.I] Then we will discuss the carly
time evolution of the numerator and denominator of €3 in Sec. followed by a
discussion of €5 at large times (Sec. complementing the results presented in

Sec. (.6

D.1 Energy-weighted mean square radius

In this section we want to follow the derivation of the fact that the mean square
radius in a two-dimensional system with massless particles and with a collision
kernel in the Boltzmann equation that obeys energy and momentum conservation
is independent of collisions in the system.

Energy and momentum conservation of the collision kernel can be formulated as

e TP -0 0.1)

at any position x and for all Lorentz indices 1 € {0, 1,2}, where p® = E is the energy.
Then we can differentiate the expression with respect to time and interchange the
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D.1. Energy-weighted mean square radius

integral with the derivative. We obtain

[ o 52 =0 (D2)
for any 7 > 0, which is again valid for all points in position space and true for all
times, in particular at the initial time.

The Taylor expansion of the distribution function (5.3) multiplied by the energy

E = |p| leads to terms due to collisions at order t* with k > 1 of the form

p-V, i
(-B5=) a el (D.3)
Calculating the mean square radius with energy weight, which is equal to the de-
nominator of Eq. (2.25]) in the case n = 2 there are integrals at order t* of the
form

/r2 (_p 'EVI)J aE179e]f]]o dPxd?p (D.4)

with £ > 1 and 0 <1 < k— 1. One property of f and C[f] which is used extensively
is that they vanish at spatial infinity.

Starting with the case [ = 0, which is the case for the linear term in ¢ of Eq. ,
we obtain an integral over x of r? times an integral of type with j = k — 1
and p = 0. Due to the energy conservation these terms vanish.

For [ = 1 integrating over x in Eq. by part once erases the gradient and
replaces for instance 2%p,0, by —2xp, in the integrand, while the other term with the
integrated part uses 9F2C[f]|o at infinity equals zero. Then the remaining integral
is

2 / TP T YPy ; YPy gk=201 1]], d2xd%p. (D.5)

Looking only at the momentum space integral, it is of the form (D.3)) with 4 =1 or
2 and thus vanishes due to momentum conservation.
In the case [ = 2 one has to integrate by part over x twice to replace the integrand

of Eq. 2 (p - V)2 F3C[f]]o by 2 (pi —i—pf/) OF3C[f]lo- This gives us
2 / OF=3C[f]]o d*xd?p. (D.6)

This integral vanishes again due to the energy conservation in Eq. with = 0.
Considering cases with [ > 3 the transformation of Eq. by integrating over
x by parts twice is again possible and the integrated terms still vanish at spatial
infinity. This integration by parts replaces terms which look like 72(V,)! by 2(V,)! =2
in the integrand. As [ — 2 > 1, there is still an integrand with a spatial derivative
which vanishes at |x| — oo, such that the further spatial integration gives a zero.
In summary we find that the integrals of the form (D.4]) vanish for our setup,
which is not the case for massive particles or for p, # 0, i.e., three spatial dimensions.
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X
€3

D.2 Early time evolution of the numerator and
denominator of the triangularity &3

Here we want to look at the behavior of the numerator and denominator of the
spatial eccentricity €%, namely the particle-number or energy weighted averages of
—r3 cos(30) and r® when rescatterings during the time evolution are considered. The
departure from the free streaming values for the two quantities scaled by the initial
state values are shown in Figs. and at Kn ~ 25 (left panels) and Kn ~ 5

(right panels).

X.p

fs.

—(r?cos(30))xp + (r’ cos(30))

collisionless system scale roughly linear with the number of rescatterings.
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Figure D.1: Time evolution of the departure of — (r3 cos(30)), o
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number (green) or energy (blue) weighting from its free streaming value, for simu-
lations with Kn ~ 25 (left panel) or Kn ~ 5 (right panel).
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Figure D.2: Time evolution of the departure of <7‘3>xp
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with particle-number

(green) or energy (blue) weighting from its free streaming behavior, for simula-
tions with Kn ~ 25 (left panel) or Kn ~ 5 (right panel).

We find that the values at Kn ~ 5 are approximately 5 times larger than the
ones at Kn ~ 25, such that we can conclude that the relative deviations from the

This

coincides with our findings for the second harmonic in Sec. [5.5
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D.3. Elliptic momentum anisotropy €5 at large times

When a fit with the power laws in Eqs. and is performed we obtain
rather inconclusive results in the range 4-5.7, as the signal is small and evolves very
slow in time. Thus, we do not know how much we can trust the fits here, as the
early-time fits may be dominated by numerical noise, which is also visible in both
panels in Fig. [D.2

Comparing with the second harmonic results in Sec. we can see that the
energy-weighted mean cubed radius deviates from its free streaming behavior and
we find indeed in the analytical proof to show that (rz)xyp with energy weight is
zero, that the arguments do not hold for (r3>x’p. In the proof in Appendix we
have used twice a twofold integration by parts over position space to eliminate r?
and two spatial derivatives in the integrand in the cases [ = 2 and [ > 3. Replacing
r2 by 7% in the proof leads to the fact that the reasoning used to find that the
[ = 2 part vanishes does no longer work. An interesting finding is also that the rate
of growth of <7"3>x7p with energy weight is increased and the (r?’}x’p with particle-
number weight is decreased by rescatterings. The interpretation here is that the
rescatterings redistribute the energy in the system from the inner regions with the
largest energy density in the initial state to the outer region, which gives a quite
intuitive picture.

D.3 Elliptic momentum anisotropy &5 at large times
Going beyond the scope of Ch. [5] which is the early-time behavior, a few results
on the late time behavior of 5 are presented here. Figure compares the long
time evolution of €5, which coincides in our setup with v, to the particle-number

weighted vo. We show the time evolution for the full 2 — 2 collision kernel (full

x10~!

- 1.0 -
0.8+
_ . Kn ~ 0.06
—————————————— - 0.6
"""""" Tl 04
0.2+
U2
0.0 g
e T
\R t/R

Figure D.3: Evolution of the anisotropic flow coefficient vo (green) and the eccen-
tricity €5 in momentum space (blue) for the 2 — 2 and 2 — 0 collision kernel in the
few collisions limit (top panel) and in the hydrodynamic limit (bottom panel). The
arrows indicate the corresponding values at ¢/R =~ 30.

lines) and for the 2 — 0 collision kernel (dashed lines) in the few rescatterings regime
(left panel: Kn ~ 25) and in the fluid-dynamical limit (right panel: Kn ~ 0.06). In
the fluid-dynamical limit only the 2 — 2 collision kernel gives meaningful results,
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D.3. Elliptic momentum anisotropy &5 at large times

thus there are no 2 — 0 results shown. For all the curves the initial phase space
distribution had an eccentricity of € ~ 0.15.

Comparing €% (t) and v (t) we find that they have a quite similar behavior: there
is a rise until ¢/ R ~ 2 and then there is a saturation of the signal or a small decrease
(in the 2 — 2 scenario). For wvy(t) this result nicely agrees with other results using
the same transport algorithm but a different initial profile [83]. The decrease in the
2 — 0 scenario, which is about 20% more pronounced, is in greater detail discussed
in Ref. [107] (Ch. [6).

Quantitatively the &5 values are larger than the vy values for both collision
kernels. Going into the fluid-dynamical regime we find that €5 ~ 2vy at late times,
which was also found in [82] for a two-dimensional expanding system. Overall the vq
and the energy-weighted flow v¥ = €8 have parallel behaviors in both collision kernel
scenarios, which is in contrast to the triangular counterparts vz and v¥ discussed in
Secs. b.4] and [5.6] These behave differently in the 2 — 0 scenario.
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Appendix

Different origins of even and odd
anisotropic flow harmonics at
large Knudsen numbers

“ " scenariol ... ... ... 181
[E.2 Results for Noeee = 0.35 . . . . . . . . 182
(.3 Alternative distribution functionl. . . . . . . . . . . ... ... ... 183

We present the proof that the odd flow harmonics vanish identically in the “loss
term” scenario (Ch. [6) in Sec. [E.I] Afterwards we will present the results for a
larger number or rescatterings (Sec. and we compute the flow harmonics for an
alternative distribution function to crosscheck our findings (Sec. [E.3).

E.1 0Odd flow harmonics in the “loss term?” sce-
nario

In this section we want to proof that the odd flow harmonics — vs, vs, ...— vanish
at all times if only the leading order in the cross section and the loss term in the
collision kernel of the Boltzmann equation are considered.

The computation of the anisotropic flow includes the integral over the transverse
plane

1 E/f(o)(x — Vi, P)f(o)(x —vit, p1) d’x, (E.1)

with the free-streaming distribution function substituted using Eq. (6.5). Changing
variables to &€ = 1 (v + v;) directly yields

T = [ £ —&p) O+ &, p1) dx (E:2)

When assuming that the initial-state phase space distribution factorizes as in Eq.
into a spatial and a momentum part then only the spatial parts are important for
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E.2. Results for Ny =~ 0.35

the x integration, such that Z contains an integral of the form
7 :/F(x ~ ) F(x + £) dx. (E.3)

By integration over the whole position space the odd components of the integrand
would vanish, such that the integrand can be replaced by the even part:

T - ; (P8Pt &) + F(-x—&) F(—x+8)|dx (B.A)
Using the even and odd parts of the function F'
F(x) = Fy(x) + F_(x) with FL(—x) = £F.(x), (E.5)

this can be rewritten. The isotropic part and the even harmonics are encoded in
F,, while the odd harmonics are described by F_. Now we replace F' in Eq. (E.4])
by F, + F_ and we obtain eight terms, where four terms cancel pairwise and we
obtain

7 = / [Fo(x — &) Fy(x+€) + F_(x — &) F_(x + )| d*x. (E.6)

The point where the factorization into a position and momentum part of the distri-
bution function is important is exactly the last step from Eq to Eq. .

It has been found before, e.g., in Ref. [102] within kinetic theory, that a system
without initial anisotropic flow of a given harmonic v,, can build up a flow signal by
linear response only if there is the n-th harmonic present in the geometry, i.e., v,
g,. Or to quadratic order only if the spatial harmonics combine appropriately, i.e.
Uy, X 5k€n_k.|z| The most general form is v, « €, - - - €k, with ky +---+k,, =n. The
spatial modulations of even (including the isotropic part) resp. odd harmonics are
encoded in F'; resp. F_, we find that the combinations F F, or F_F_ in Eq.
can give contributions for v, caused by g, or exe,,_ only for even values of n. This
means that the integral 7' is independent of the azimuthal angles ¢, and ¢; of
the momenta (which are hidden in &) such that after multiplying with the Mgller
velocity and cos(ng,) and integrating over the angles no flow signal can arise for
odd n.

A last note which should be made is that the proof does not include quantum
effects in the collision kernel, but it makes no assumption about the particle mass
or the dimensionality of the system under consideration.

E.2 Results for N, ~ 0.35

This appendix is supposed to show what happens if the number of rescatterings in
the system is no longer small, i.e., Niee. & 0.35 such that in the 2 — 0 scenario
about 70% of the particles disappear during the evolution of the system. Obviously
the assumption of the analytical scenario that the phase-space distribution deviates
not significantly from the free-streaming distribution with the same initial condition
is not fulfilled. We show Results for vy (Fig. and vy (Fig. [E.2). The two figures

!This case is not possible within the analytical approach described in Sec.
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E.3. Alternative distribution function
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Figure E.1: Time dependence of elliptic flow vy in systems with initially eo = 0.15
and on average Ny, =~ 0.35 rescatterings per particle. The green curves are for

systems with elastic binary scatterings, the blue lines for the 2 — 0 scenario and
the red ones show the analytical result (6.12)).

show the v, signal resulting from an initial &, with n = 2 (Fig. orn =4
(Fig. [E.2)). They show similar results, namely the results of the 2 — 2 collision
kernel (green) and the 2 — 0 collision kernel (blue) show significant differences up
to &~ 40% for vy, while for vs even the sign is different. Results from the analytical
calculation are quite close to the 2 — 2 simulation curves, especially for the end
points of the curves. However, this should not be over-interpreted as it might be
a coincidence. We have already discussed in Sec. that for v, at larger values of
Niese. there is no agreement any more, as the 2 — 2 results have positive values.

The right panel of Fig. shows the nonlinear response of vy to €3. Without
trying to over-interpret the results we can see a good agreement between all three
scenarios.

E.3 Alternative distribution function

To make sure that the results are not just caused by the specific form of the dis-
tribution function , we have computed the anisotropic flow signals in the few-
rescatterings regime N,q.. =~ 0.02 using a different distribution

-~ Ny/1-63 r? i cos(j
F(r,0) = ﬁexp (— ! +§;%2 UQ”) : (E.7)
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E.3. Alternative distribution function
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Figure E.2: Time-dependence of quadrangular flow v4 in systems with Npes.. =~
0.35 rescatterings per particle on average. Left: system with an initial ¢4 = 0.15 and
€9 = 0; right: system with an initial state eg = 0.15 and ¢4 = 0. The green curves
are for systems with elastic binary scatterings, the blue lines for the 2 — 0 scenario
and the red ones show the analytical results (left) or Eq. (right).

This distribution was used before for a simulation in the fluid-dynamical regime
in Ref. . In contrast to the distribution this distribution has several ¢,
contributions for a single ;, where n is a multiple of j. The advantage of the
distribution is that it is positive definite for all values of 9.

However, the drawback from the analytical point of view is that not all integrals
can be computed analytically here, so that we implemented the Vegas Monte Carlo
(MC) integration method [148].

In Fig. we show the flow coefficients v, (t) for n € {2,3,4,5} computed with
the MC integration method. We find that the odd flow harmonics are again zero

x10~1

" x10~°
Niese. = 0.02 R —
° 44 resc. . e
5
2 4

41
o

. 01 aie DAL S

loss term
g — 22 .
—24 v3, loss term e N
| v4(d2), loss term 01(62), 2 2 —
vg(8y), loss term === vy(dy), 2 = 2
) — 41 vs, loss term
’ i é . 1 0 1 2 3 4

" t/R

Figure E.3: Time dependence of anisotropic flow harmonics for the initial geo-
metric profile in systems with Nyesc. & 0.02. Left: vg for do = 0.15 (green:
numerical simulations, red: semi-analytical approach). Right: v for d3 = 0.15 (ma-
genta), vy (orange: for d2 = 0.15, purple: for 04 = 0.15), and v5 (cyan, for §5 = 0.15)
in numerical simulations (dashed lines) or computed with Vegas (full lines; the color
bands show the 3¢ error of the MC integration).

within error bars, which matches the results from Appendix The transport
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E.3. Alternative distribution function

simulations give a non-vanishing result for v3(t), while the vy(t) and vy(¢) resulting
from an initial d, signals show a nice agreement between the analytical result and the
simulation. If there is an initial d, the vy(t) agreement is less good. This might be
caused by the numerical noise at early times, since the curves are almost parallel at
later times. All in all we find that the shapes of the vy(t) and v4(t) curves are quite
similar to the results found with the other distribution function in Secs.
and 6.5

185



E.3. Alternative distribution function

186



Appendix

Statistical analysis of the intial
state and final state response in
heavy-ion collisions

[F.1 Characteristics of the probability distributions of the expansion coef- |
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In this appendix we will present results complementing the ones in Ch. [7] Sec-
tion will give us insight into the statistics of the expansion coefficients {¢;} and
point out that there are non-Gaussianities if the impact parameter is non-vanishing
for the large | modes. Then we will present in Sec. the first 60 eigenvectors at
both considered impact parameters and for both initial state models. Sections[F.3.T}
will present the results of the linear response for the individual modes for the
Saturation model. This complements the results for the Glauber model in Sec. [7.2.4]
and allows for a comparison of the two initial state models. In Sec. we will
present an analytical calculation of joint probability distributions of observables un-
der the assumption that the response is purely linear and that the {¢;} are Gaussian
distributed. Finally, Sec. will give a more detailed explanation of the signs and
magnitudes of the covariances.
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F.1. Characteristics of the probability distributions of the expansion coefficients

F.1 Characteristics of the probability distributions
of the expansion coefficients

In this appendix we want to discuss the probability distributions p(¢;) of the ex-
pansion coefficients {¢;} more quantitatively using the first moments — average p,
variance o2, skewness v; and excess kurtosis v, — of the distributions. As we have
constructed the basis in such a way that the coefficients obey Eqs. and , the
coefficients p resp. o2 should be close to 0 resp. 1. Again, we have used the 8192
events at both considered impact parameters and from both initial state models,
similar to Sec. [ T3l
Figures[F.I]and [F.2]show the moments for events at vanishing impact parameter.
Here we find that the first four moments have the values of a centered Gaussian with
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Figure F.1: First four moments (average p, variance o2, skewness v, and excess
kurtosis 2) of the probability distributions p(¢;) in the Glauber model at b = 0 fm.

unit variance (y; = v2 = 0) for the majority of the modes. A very obvious exception
is the mode [ = 0 which exhibits a strong negative resp. positive skewness for the
Glauber resp. Saturation model. Inspecting the modes with a skewness further
reveals that the subsequent modes with a non-zero skewness are [ = 7,18,33,...,
which are those with a radial symmetry as well. For these higher modes the effect
is less visible. One can understand this non-zero skewness of the radial modes using
simple arguments. We will explain this behavior with the help of the Saturation
model, for which the mode [ = 0 is positive in the center of the density distribution
(see bottom left plot in Fig. . If we now consider a random event U + ¢,
with only the zero mode on top of the average state, for the sake of simplicity, there
is then a constraint — especially at the position r = 0 — on the values of the
coefficient ¢g by the positivity of the energy density. Thus, the values of ¢y can not
be too negative. On the other hand the values can not be too large and positive to
ensure the positivity in regions around r =~ 0.5R, which however is the less strict
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Figure F.2: First four moments (average u, variance o2, skewness v; and excess
kurtosis 72) of the probability distributions p(c;) in the Saturation model at b =

0 fm.

constraint, in that it allows for larger absolute values |cg|. In general the distribution
of ¢y can extend more into the positive direction than into the negative one, i.e., it
has a larger tail on the right, thus a positive skewness ;.

Turning now to the case of finite impact parameter (b = 9 fm), we show the
resulting moments in Figs. [[.3land [F.4 Both models lead to moments of the ¢
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Figure F.3: First four moments (average p, variance o2, skewness vy, and excess
kurtosis 72) of the probability distributions p(¢;) in the Glauber model at b = 9 fm.

distributions which deviate more from the Gaussian case than at vanishing impact
parameter. The skewness ~; of the distributions p(¢;) deviates considerably from
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Figure F.4: First four moments (average p, variance o2, skewness v; and excess
kurtosis 72) of the probability distributions p(c;) in the Saturation model at b =
9 fm.

the Gaussian value for some modes, whereas there is no clear trend. In the case of
the excess kurtosis v there is a clear trend to positive values for increasing [. In
summary we find that the broken roataional symmetry at finite impact parameter
leads to a small deviation from Gaussian distributed ¢; coefficients, which increases
for the higher modes.

F.2 Modes for b =10,9 fm

We show the first 60 orthonormal eigenvectors of the density matrix defined in
Eq. for the Glauber model (Fig. at b = 0 fm; Fig. at b = 9 fm)
and the Saturation model (Fig. at b = 0 fm; Fig. at b =9 fm). Here the
orthonormal eigenvectors and not the y/\;-rescaled eigenvectors are shown to make
the comparison easier. Otherwise the norm of the ¥; decreases with [ and thus the
higher modes would become too faint.

F.3 Response of observables in the Saturation model

In this appendix we show the linearity check in Sec. and the response of the
individual modes in the initial and final state for the Saturation model in Sec. [F.3.2
These results complement the ones for the Glauber model in Sec. [7.2.4]

F.3.1 Linearity check

In Fig. we show similar to Fig. the quantity O;’J — O, for different values
of ¢ in the Saturation model at b = 0 fm (upper panel) and b = 9 fm (lower panel).
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Figure F.5: First 60 orthonormal eigenvectors for the Glauber model at b = 0 fm.

Both axes are in units of R.
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The difference to Fig. is that at b = 9 fm some different modes were used, as
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Figure F.9: Oz ; for exemplary modes (O4 subtracted) as a function of § in the
inital state (left) and final state (right). Closed symbols and full lines correspond to
first excitation modes, while open symbols and dashed lines correspond to second
excitation modes. The Saturation model was used for impact parameters b = 0 fm
(top) and b =9 fm (bottom).

the order of the modes is different in the two models.

Generally we find the same results as for the Glauber model also for the Sat-
uration model. That is why we will only mention the differences between the two
models here. In the initial state we can see already by eye that the observable {r?}
is more linear in the Saturation model at b = 0 fm compared to the Glauber model.
This is also represented in Figs. [7.15] and [F.10], where we see that the quadratic
response in the Saturation model is even fainter than in the Glauber model.

F.3.2 Linear and quadratic response coefficients

In Figs. the linear and quadratic responses of the individual observables
to the single mode perturbations are shown for the Saturation model. Qualitatively
we observe similar structures comparing the linear and quadratic responses to the
ones for the Glauber model.
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F.4. Gaussian statistics in linear response theory
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Figure F.10: Linear response coefficients L, ; for the initial state quantities (upper
left) and final state observables (upper right) at b = 0 fm in the Saturation model.
The same plots for b = 9 fm are shown below. All dimensionful observables have
been divided by O,.

F.4 Gaussian statistics in linear response theor

In Sec. [7.1.3] we have seen that the normalized expansion coefficients {¢;} follow
to a good approximation a Gaussian statistics with unit variance centered around
zero. Assuming now that they perfectly follow a Gaussian statistics and that the
fluctuations of the observables are linear in the mode fluctuations, one can perform
analytical calculations to predict the probability distributions serving as approxi-
mation to the true statistical distributions of the corresponding observables. The
assumption of linear responses is only valid for some observables, as we have seen
in Secs. Some observables have constraints which destort their dis-
tributions, e.g., they are always positive or they depend on other observables as in
the case of the eccentricities ¢,, = \/ (Enc)? + (ens)?

We denote by p({¢;}) the joint probability distribution of the expansion coeffi-
cients. As we have designed the basis in such a way that the modes and therefore also
the expansion coefficients are statistically independent, the distribution factorizes
as

r({a}) = 1;[191(01)- (F.1)

Then we introduce the notation O, ({¢;}) for the value of an observable O, given a

!The calculations presented in this section were performed by Clemens Werthmann.
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Figure F.11: Quadratic response coefficients @), for the initial state quantities
(upper left) and final state observables (upper right) at b = 0 fm in the Saturation
model. The same plots for b = 9 fm are shown below. All dimensionful observables

have been divided by O,.

fixed set of coefficients {¢;} and we introduce the short notation

/DCE 11 / de;. (F.2)
l —0o0
Now we can write the probability distribution of O, as

Pa(0a) = [ Dep({a}) 8 (On — Oul{ar}) (F3)

without any approximation. Approximation enter the equation when we assume
that the probability distributions p;(c;) are Gaussians with unit variance, i.e.,

pla) = \/12—7T exp (-22) (F.4)

and when we expand the response in the observable O, to linear order in ¢:

Oa({a}) = 04 + ; Lo (F.5)

Note, that in reality we have to cut off the sum at a finite [,,.,, as well as the product
in the integral measure Dc. With these assumptions we can now write the linear
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F.4. Gaussian statistics in linear response theory

response Gaussian approximation of the O, probability distribution as

/Dc o ( ) 5 (()a — Oy — lmz Lwcl) . (F.6)

27‘(‘ lmax/2
Using the identity

i(z) = /;1; exp (isx) (F.7)

we can rewrite the ¢; integral in the complex Gaussian form and perform the inte-
gration over the expansion coefficients:

ds 1 2 lmax _
G _ e o . . _
Pa(Oy) = / o /Dc 7(270%”/2 exp is zl: Lo +1is (Oa Oa> (F.8)
ds §2Yme Lo Loy ~
= [ 5o [ 5 +is (O — oa)] (F.9)
_ o\ 2
1 (Oa - Oa)

In the last step we have used that the contraction of the two linear response matrices
is the covariance matrix

Cag = LaiLg, (F.11)
l

in the linear response case.
We can easily extend the calculation to a formulation for the joint probability
distribution of n observables O,,,...,O,,. Therefore, we just collect the observ-

ables, their averages and the linear response matrices into vectors Og, Og and Lg;
and we express the n-dimensional Dirac-distribution as a Fourier integral. This
integral is then of n-dimensional complex Gaussian form:

= 1 02 = - lmax N
G l n
ps (Os) = / De (o iy &P (—2> 5™ (O@ — Oz — }l j L&,,c,) (F.12)

drg 1 2 lmax e .
- (W/ De Gy &P |75 715 2 Laser +15° (s~ 0a)
(F.13)
dng §»T Zlmax Ed’lil—lg . .
- - : 5+ (Oa — Oa) F .14
/ (2m)n P [ 9 T18 < (F.14)
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F.4. Gaussian statistics in linear response theory

Here we have defined the linear order covariance matrix of these observables as
Se= LaL (F.16)

being a submatrix of the full linear order covariance matrix, i.e.,
(Z&)z‘j - Cozia]-- (F.17)

Exploiting Cramer’s rule we do not have to specify the covariances any further and
can write the inverse of an n x n matrix A as

1)+
(41) = (=1
i det(A)
where we denote by A;;) the (n —1) x (n — 1) matrix obtained by deleting the j-th

row and i-th column from the matrix A. Using this in the expression for p§ we
obtain

G (A 1 E?’jzl(fl)“rj (6&i75&i> (6523‘ *5&j>det(2&,(j,i))
T —

Oég 2m)" det(Xz) eXP 2det(Zz)

L —det (Ag) (F.18)

(F.19)

We will now turn to observables of the type Oz = /0% + OZ, with Gaussian
distributed O,, and O,,. Then the joint probability distribution can be written as

P§(05) = [ dOu, [ 00, 1, 0,(0s, 00) 6 (05 = \JOL +0,) . (F.20)

Performing a change of coordinates O,, = r cos ¢ and O,, = rsin ¢ makes it possible
to solve the radial integral using the Dirac-distribution:

pg’(Oﬁ) = /dgb/dr pglm(r cos ¢, rsin ) §(Og — ) (F.21)
0 0
2w
=0(0p)0;3 / d¢ pSWQ (Op cos ¢, Ogsin ¢). (F.22)
0

The expression for a two-dimensional joint probability distribution of Op and
O, = /02, + 02, can be obtained by performing the latter variable transformation

twice:
27 2T
p5.(05,0,) = 0(03)046(0,)0, of do Of At pS e sas (05 €08 6, Og sin d, O, cos b, O, sin1h).
(F.23)

This integral is in general highly non-trivial, as the distributions p§ contain couplings
of all observables Ogz induced by their correlations in the argument of the exponen-
tial. One case where we can solve the integration analytically is for a one-dimensional

probability distribution pG Combining Eqgs. and - we obtain

0(05)05 /7 oo | W,Q 03 cosp — Oal) + Coron (Og sin ¢ — OM) —2Ca 0, (Oﬁ cos ¢ — Om) (Og sin ¢ — OM)
RV =T b 2det(Za 0,)

(F.24)
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F.4. Gaussian statistics in linear response theory

The numerator in the exponential of the latter expression can be rewritten by collect-
ing all linear resp. quadratic terms in trigonometric functions into a cos(¢ — 6 )-term
resp. cos(2¢ — f3)-term and an additional ¢-independent part:

Coasasr (OB cos ¢ — Oal)z + Coyoy (05 sin ¢ — Oa2)2

—2Ch a0 (05 cos ¢ — O_al) (Oﬁ sin ¢ — OOQ) (F.25)
= C'QZQQOE c0s® ¢ + Cyay O% sin? ¢ — 2C’a1a20?3 cos ¢ sin ¢

+205 (Cay0:00; = CazazOay ) €056 + 205 (Cay; 0y = Cayay Oay ) sin ¢

+ Cazas O2, + Coyoy 02, — 2C 010,04, Oa, (F.26)
=rycos(¢ — 01) + rocos(2¢ — 0y) + ;C’OQOQO% + ;CalmOé

+ Coyaz 02, + Coyoy 02, — 2C010, 04, Oy, (F.27)

where we have used

r1c0s 60 = 205 (CayayOas — CazasOa, ) (F.28)
risin 01 = 20 (Caya 01 = Caye Oas ) (F.29)
Ty COS By = ;camog - ;calalog, (F.30)
rasinfly = —Co,0,03. (F.31)

Using a trick from Ref. [149] with the identity

0o q
exp (z*ei¢ + ze_i¢> = > e <Z> 1, (2]#]) (F.32)

oo E

we can now write the cosines in the complex exponential representation such that
the prefactors of the exponentials are

61
e
==, (F.33)
ddet (Xa, a0)
102
o€
= - F.34
2T T L det (B, uy) (F:34)
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The final expression for the joint probability distribution is then

0(03) O3 Cazaz0% + Cayay 0% + 2Cay0, 02, + 2C0,0,0%, — 4Ca10,04, Oa,
ex —

G
O =
pﬂ( 2 v det(Ea, an) 4det(Xa, a,)
2r do 1 cos(¢ — 01) + ro cos(2¢ — 0,)
- _ F.35
“J or eXp[ 2 det(Sa; o) (F:35)
0(03) O Coapas 0% + Coya, 0% 4 2C0,0,02 +2C0, 0,02 — 404, 0,04, 04
_ B B8 ox o 202~ 3 a1~ 202 oy 101 Y g 102 1 2
\/ det(Zawz,) 4 det(zal,QQ)

Qﬂ.d [e’s) . q1 0o ) q2
A= o N AT e (S AR UED
m

0 q1=—00 |Zl| ga=—00 |22|
_ 6(0p) Op exp {_ OagazO,% + CalalO% + ZCazainl + 20011&1032 — 4Ca1a20a10a2}
,/det(Zahaz) 4det(2a1,a2)

[ 222\!

X Z ( 5 ) Iy (2]21])14(2]22]). (F.37)
q=—00 2

The function I, denotes the modified Bessel function of order ¢g. For two cases there
is only one term of the sum over ¢ surviving. One is the case where O,, and O,,
are independent of each other, i.e., Cy,n, = 0, and have the same variance, i.e.,
Cayor = Casay- Then the variable z, is zero and we obtain a Rice distribution of Og.
The other special case is the one where the average observables are vanishing, i.e.,
Og, = Oy, = 0, such that z; = 0.

F.5 Explanation of the covariances

We will discuss parts of the covariance matrices in this Appendix, especially signs
and magnitudes thereof. One thing to notice for both models is that C ([pr], {r*})
is negative (see Figs. and . This is due to the fact that the contribution
of each mode at the order of a linear response is negative (see Figs. and .
Considering an increasing system size leads to a decrease in the pressure — equiva-
lent to gradients which become smaller — such that the mean transverse momentum
decreases. For the energy and the charged hadron multiplicity we find a positive
correlation for the Glauber model (Fig. [7.14]), while it is negative in the Saturation
model (Fig. . At first sight the increase in the initial state energy should lead
to more particles in the final state according to Eq. . This equation is how-
ever only valid locally such that particles are only generated according to the local
energy density, as it is done for example in the freeze-out process. We have seen in
Fig. that the (radial) modes in the Glauber model have up to a factor of ~ 3
more energy. Here we have to keep in mind that a given mode does not only change
the total amount of energy but also the shape of the energy density distribution. In
particular we find C (dE/dy, {r?}) < 0 in both models such that the modes which
increase the energy of the system decrease its size and vice-versa. For the particle
yield this implies that the decrease in {r?} will also decrease dNy,/dn. Here are
two effects at work which act against each other. First the increase of the total
energy in the system and second the decrease in the system size. In the case of
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F.5. Explanation of the covariances

the Glauber model the increase in the energy of a radial mode is larger than in the
Saturation model such that it surpasses the effect generated by the change in {r?}.
In the case of the Saturation model the two effects are of the same order, such that
the linear response of the charged hadron multiplicity is small. In Fig. we find
that C (dNu,/dn, [pr]) = 0 at linear order, while for the randomly sampled events
there is a clear negative correlation. This discrepancey between the mode-by-mode
and event-by-event approach can be explained by the fact that we inlude only the
linear response in the mode-by-mode results. This can be improved qualitatively by
including also quadratic terms in the covariance. Then this would be of the form

4
Cla, B) = Z LagLg, + 9 Z QauQps- (F.38)
1 1

We find for both models that the quadratic contribution is always negative, as
already discussed in Sec. and we assumed further that the expansion coef-
ficients {¢;} are Gaussian. The quadratic contributions in the Glauber model are
much smaller then in the Saturation model, such that we can neglect them for the
covariance. However, for the Saturation model the linear and quadratic response is
of the same order such that this explains the difference for the observed covariance

in Fig. [7.24]
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Appendix

Numerical techniques

(G.1 ‘Trapezoidal integration| . . . . . . . . ... ..o 203
(G.2  Bilinear interpolation| . . . . . ... ... 000000 204
(G.3 Delete-d Jackknifel . . . .. ... ..o 0000 205

G.1 Trapezoidal integration

As we need a two-dimensional integration over the quantities stored on the grid
several times in the simulations, we will have a short look at the implementation of
a two-dimensional trapezoidal integration. In the code we integrate over the whole
grid which is defined in the region {(z,y)la < x <b,c <y <d}. The number of
equally spaced sampling points in z-direction is denoted by m and the one in y-
direction by n. Approximating a two-dimensional integral by the trapezoidal rule

yields [150]

b d
[ [ dy f(e.5) = jhoh, (f(a, 0)+ f(b,¢) + fla.d) + F(b.d)

+2Zfayj —|—22fbyj mz__:f(xi,c)—l—27§f(:ci,d)

z(zf<>))
(G.1)

where hy, h, are the integration steps in the corresponding directions. For the sim-
ulations this lengthy formula can be shortened to

/dx/dyf z,y) nz;mg: (@i, 95), (G.2)

as the densities which are stored on the grid vanish within the extent of the grid,
such that the boundary terms do not contribute to the integral.
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G.2 Bilinear interpolation

Bilinear interpolation is a method to interpolate functions of two variables. The
method is based on a very simple idea. First a linear interpolation in one of the
directions is performed and then another linear interpolation in the other direction.
Because of the two linear interpolations the whole two dimensional interpolation
is quadratic. For the interpolation of the point P (see Fig. |G.1) we need the four

Ya p----- *-------- - -------- -------
Py I Py
Yp-----+ R it R
Yifp----- LahEEEEEELE SLETEREEEE LRI TE
Py Iy, P,

- : ra—

Figure G.1: The green points represent the grid points between which the orange
point should be interpolated using a bilinear interpolation.

grid points between which the point lies. These are P;; = (z1,v1), P2 = (21, 92),
Py1 = (x9,11) and Pay = (x9,y2). First we consider the linear interpolation in
x-direction, which yields

f(z,y1) ~ ;2__5 f(Pu) + ; __Zl f(Pa1),
:E22 — xl mQ— a:ll (G'?))
f(z,y2) ~ p— xlf(Plz) t _xlf(Pm)-

Then the interpolation in y-direction is performed and yields

flz,y) ~ jj_‘jlﬂx,yl) + i‘_yyllﬂx,y». (G.4)

Plugging in the interpolation in z-direction, we obtain |151]

1
(72— 2102 — 1) [f (Pra)(z2 — 2)(y2 — y) + f(Pa)(@ — 21) (52 — )

+f(Pi2)(2 — 2)(y — y1) + f(Po2)(x — 21)(y — y1)]
(G.5)

flz,y) ~

for the function f(x,y) in the point P.
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G.3 Delete-d Jackknife

The Jackknife method as it was reformulated in 1956 by Tukey can be used to
construct confidence intervals for many different statistics. In this section we follow
the article [152] and the book [153]. Jackknife methods are in general similar to the
bootstrap technique, with the difference that the deleted samples are not replaced.

We start with the description of the delete-1 Jackknife. Assuming the n data
sets with one deleted element each are given by vectors

Xy= X0, Xi, Xigr, -, Xo) (G.6)

enumerated by i. Then we define the i-th Jackknife sample as the statistics s(-)
evaluated for the i-th sample vector:

P@) =S (Xm) . (G7)

The standard error is then given by [152]

n

n—1 2
7 (1) acicknite =$ — 2 (o0 —r0)) (G.8)

=1

with the average over the Jackknife samples
1 n

PO = = 2P (G.9)
i=1

As the delete-1 method does not work in all cases, we extend it to a more general
case of the delete-d Jackknife, where we randomly delete d elements from the data

vector Y. All Z Jackknife samples, i.e., the data vectors 17', can be collected in

the set S. The form of the standard error is [152]

n—d 2
a(p)d—Jaokknife = |77 Z (P(z) - ,0()) . (GlO)
d <n> i€S

d

This formula is impractical if d increases. Therefore, we slightly change it to [153]

> (o) - P(~>)2 (G.11)

dm {7

o (p)df‘]ackknife = \J

where m is the number of Jackknife samples in the set B, which is a subset of S.
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