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The low density contribution to the tidal deformability and moment of inertia of a
neutron star are calculated via various well known equations of state. The contributions
to the moment of inertia are directly calculated, whilst the tidal deformability’s are
constructed through comparing an equation of state with a fit with the low density region
removed. With the recent measurement of GW170817 12 providing constraints on the
tidal deformability, it is very important to understand what features of the equation of
state have the biggest effect on it.
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1. Introduction

Neutron stars (NS) being the densest known repositories of nuclear matter contain
fascinatingly complex phase changes between their regions of finite and infinite
nuclear matter, more commonly known as their layers, denoted crust and core® .
The crust poses challenges with regards to modelling because of the variety of finite
nuclei that may appear and complex phase structures that can occur®.

On the other hand, after the recent GW170817 measurement 2, there has been
a tremendous push to calculate the tidal deformability (TD) and the moment of
inertia (MOI) 713 across a variety of equations of state (EOS). This is due to the
bounds produced on the TD in Ref 1, 2 of Ay 4 = 190‘:?1’38, which has recently been
analysed via the I-Love-Q relations in Ref. 14 to produce a constraint on the MOI
of T =11.107553.

In this paper we explore the proportional contribution that the low density
region (LDR) of the EOS makes to the MOT and TD.

2. Theoretical Framework

We will be using the well known EOS shown in Fig. 1 acquired from the online
data base in Ref. 15 which details the models in question. In order to calculate the
NS profile, ordinarily one would match the model EOS description of the core to
some low density EOS in order to account for the NS crust or model it directly 6.
We have fit to each EOS using a polytropic of the form given in equation 1 where
A, B,C and D € R. This will act as the EOS without the LDR modelling, with
the original EOS data from Ref. 15 containing LDR modelling. As seen in the
enlargement in Fig. 1

P(e) = Ae® 4 C€P. (1)
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Fig. 1. EOS (pressure P vs energy density ¢) for all the models!®, nucleon only. Two EOS for
each EOS, one with the LDR and one produced from the polytropic fit. The enlargement shows
the LDR with all EOS and their fits displayed (There is much overlap between the EOS for the
LDR).

We will use these fits to analyse the percentile contributions to the TD via direct
comparison of their values. This is done as the TD is defined mathematically as a
boundary point and not something cumulative (e.g. integral) !6:17 so that the direct
calculation of its LDR contribution is impossible. This is equivalent to modelling a
core only NS, consisting of only infinite nuclear matter. The LDR contribution to
the MOI may be calculated directly as it is defined as a cumulative integral 819

The NS masses are obtained by numerically integrating the Tolman-

Oppenheimer-Volkoff (TOV) equations?°

4P __(P() + cn)(om(r) + 47 P(r)) o)
dr r(r —2m(r)) ’
dm

dr

= 47r?e(r), (3)

until P(r = R) = 0 (R the radius of the NS). This produces the mass radius
relations given in Fig. 2. We will define the variation of a parameter a as Aa/a,
which is reported as the percentage difference of that parameter when compared
to its LDR removed counterpart. This is calculated via (MOI variation AI/T is
defined differently as seen in Refs. 12, 21)

Aa _ (awith LDR — QWithout LDR) (4)

« Qwith LDR

Note that this requires one parameter to be fixed. For example the compactness
parameter 3 = M /R, we would fix the mass and look at the variations in the radius
or visa versa. The MOI I is calculated through the formula in Refs. 18, 19, with
AT/ defined in Refs. 12, 21.
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Fig. 2. Mass radius relation for EOS given in Fig. 1. The box represents the 90% confidence
constrained mass region given from the GW170817 measurement !'2. Mass radius curves retain
name and colour convention as in Fig. 1 with dashed versions being the fits.

The tidal Love number, k592!, TD, A, and binary tidal deformability, /~\, equa-
tions are verbatim those seen in Refs. 16, 17, 11. For future reference, the TD and
binary tidal deformability are calculated via

2 i
A= SkEE7, (5)

mia 16 (120 + DAY + (12 + g)g*A

ATid _ (129 )AL+ ( 9)q" A2 (6)

13 (1+q)° ’

where ¢ = mgy, m; and mo < my. With these equations we can now calculate our
desired quantities and the percentage contributions from the LDR.

3. Results and Discussion

Numerically solving the MOI equations 81921 produces Fig. 3 which shows the

proportion of crustal MOI AI over the total MOI I. It should be noted that for
any realistic star?! of solar mass

0.8My < M < 1.92Mo, (7)

we find |AI/I| < 17.5%, with this percentage decreasing rapidly as the mass in-
creases. In particular, a star of solar mass 1.4Mg has |[AT/I| < 7.5%.

In order to calculate the LDR contribution to the tidal deformability, we simply
solve the equations in Refs. 16, 17 for each set of mass radius curves in Fig. 2 and
then make use of equation 4 which produces Fig. 4. We find that |[AA/A| < 15% for
all NS within equation 7’s mass range. However, it is important to note that if we
disregard the three EOS that lie outside the 90% confidence interval from Refs. 1, 2
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Fig. 3. Percentage of the MOI due to the LDR, scaled via the neutron star’s total MOI. Only
shown for the EOS with the LDR.
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Fig. 4. Percentage of the TD due to the LDR, scaled via the neutron star’s total TD. The

enlargement shows a shorter range with the black bar representing the bound Aj 4 = 190f§38.

in Fig. 4, then our new bounds become

IAI/I| <9.0%,  |AA/A| < 12.0%, (8)
|AI/I|M:1,4M® < 3.5%, |AA/A|M:1_4M® < 70%, (9)

within mass range given in Eq. (7). For clarity the tidal Love numbers are displayed
in Fig. 5

This happens in spite of the visibly large difference in the mass radius relations
(by extension the compactness parameter § = M/R) and tidal Love numbers shown
in Fig. 2 and Fig. 5. The variance in the TD remains relatively low due the large
negative power from the 3 term in Eq. (5).
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Fig. 5. Tidal Love numbers kgidal keeping same conventions as in Fig. 2 and Fig. 1

Due to the low variance in the TD, by extension the variance in the BTD is of a
similar order of magnitude as it depends linearly on A; and A, with m1,mo being
its free parameters, i.e, these two parameters offer no more increase in the variance.

These results have been summarised as the following:

e The impact on macroscopic quantities (e.g. mass, radius etc.) from LDR
decreases in significance as the mass increases.

e The TD and MOI are affected to just a small percentage via the inclusion
of the low density EOS for all stars with mass M > 0.8 Mg, and to a greater
extent for stars with mass M > 1.4Mg. Percentages are shown in Egs. (8)
and (9).

This is not to say that the LDR’s effects are uniformly negligible, as seen in
Fig. 2 where the LDR contributes significantly to the radius. With the imminent
measurements of the neutron star radii by NICER, this low density EOS modelling
will prove incredibly significant in ascertaining correct predictions for the radius.

4. Conclusion

In summary we see that despite the LDR’s proportionally significant contribution
to the radius and percentage of the NS content, its contributions to the TD and
MOI are small, especially when considered for a star of 1.4Mg or greater.
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