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Abstract
Quantum discord has been utilised in order to find quantum advantage in an
extension of the Clauser, Horne, Shimony, and Holt game. By writing the
game explicitly as a Bayesian game, the resulting game is modified such the
payoff’s are different. Crucially, restrictions are imposed on the measurements
that Alice and Bob can perform. By imposing these restrictions, it is found
that there exists quantum advantage beyond entanglement for a given quantum
state. This is shown by decomposing the expected payoff into a classical and
quantum term. By optimising over the expected payoff, the classical limit is
surpassed for the given state in the restricted measurement space. This gives an
operational framework in order to witness and determine the quantum discord
for specific states, whilst demonstrating the importance of measurement in
quantum advantage.
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1. Introduction

The search for scenarios where quantum correlations can be utilised in order to perform bet-
ter than their respective classical counterparts at a given task is labelled quantum advantage.
Typically, there has been particular focus on finding systems where non-locality offers sig-
nificant quantum advantage [1–3]. However, there has been little effort in attempting to use
other forms of quantum correlations in order to witness quantum advantage. In particular,
quantum discorded states remain under utilised in the literature, both in quantum game theory
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and quantum networks. Quantum discord was proposed in tandem by Ollivier and Zurek [4]
and Henderson and Vedral [5]. Quantum discord proposes that quantum correlations can exist
even when there is no entanglement, which is often the case for mixed separable states. An
additional characteristic of quantum discord is that it is relatively robust against perturbations
[6] compared to entanglement and non-locality, which means states that are discorded are
more experimentally practical as they are more robust against decoherence [7, 8]. Therefore,
designing protocols which utilise mixed separable states which have non-zero quantum dis-
cord, allows robust, practically implementable networks which can be used for future quantum
technologies.

A significant drawback is that quantum discord is difficult to compute analytically as it is
NP-hard to compute [9] since it is generally a discrete optimisation problemwhich scales expo-
nentially with the dimensionality of the system. Subsequently, various methods have been dis-
cussed in an attempt to approximate it [10]. Onemethod is to use geometric discord [11], which
has found to be bounded by Fisher Information for two qubits [12]. However, the benefit of
geometric discord is limited as it can increase under local reversible operations [13]. There has
been an increased focus in recent years on designing methods for witnessing quantum discord
both theoretically, [14] and even experimentally at the large Hadron collider, demonstrating
the increasing understanding in quantum discord [15]. Therefore, it is of paramount import-
ance that further techniques are explored in order to witness quantum correlations beyond
entanglement, where there is particular focus on devising experimentally feasible protocols.

Following a different approach in order to witness quantum advantage, there has been
increasing use of game theory. This is a branch of mathematics which focuses on optim-
ising players decisions in order to achieve their respective best payoff’s. Game theory was
developed in the middle of the 20th century by von Neumann and Morgenstern [16] and then
extended upon byNash [17]. Typically, game theory allows only classical correlations between
the players. However, it is possible to design a game where the players have access to quantum
correlations, and thus can use the properties of quantum mechanics in order to achieve a better
payoff relative to the respective classical counterpart. This is the origin of quantum game the-
ory. It was pioneered by Meyer [18], and then Eisert et al [19] where the first demonstration of
quantum advantage using game-theoretic techniques was proposed. Since then, quantum game
theory has been implemented in evolutionary models [20, 21], and developed onto quantum
protocols [22, 23] with applications in quantum networks [24]. For a more detailed discussion
of quantum game theory, please see recent reviews [25, 26].

Therefore, it is of significant interest to attempt to unite these two fields and subsequently
witness quantum advantage using game-theoretic techniques. In particular, it is important to
attempt to devise a game which can utilise quantum discord in order to create quantum advant-
age, as this will be of practical benefit due its robustness against disorder. Subsequently, it
will have real-world application as cooperating interacting parties in a network is an everyday
occurrence. This is perhaps best exemplified, by two parties sharing a resource across a net-
work, therefore the larger the expected payoff, the more of the resource each party acquires.
The type of game that will be studied is a Bayesian game, which has shown remarkable success
in modelling auctions, bargaining, and resource allocation [27, 28]. Bayesian games occur in
everyday life, as interacting parties are often faced with optimisation scenarios, with uncer-
tainty in what type of interaction the parties will have. An example could be two people choos-
ing a route to work, if each person chooses the same route, then their journey will take longer,
however if they take different routes, then their journey will be faster. Given this scenario,
what is each person’s best strategy? This simple example illustrates how often Bayesian games
surprisingly arise. Given the development in quantum technologies, it is imperative to study
how quantum correlations impact Bayesian games so protocols can be designed for quantum
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hardware. Currently, Bayesian game theory has only witnessed quantum advantage using a
non-local quantum correlation. This was first proposed for the Clauser, Horne, Shimony, and
Holt (CHSH) game [29] which allows a witness for violation of Bell’s inequality [30].

In this paper, an extension of the CHSH game is proposed which utilises the properties of
quantum discord, in order to witness quantum advantage under a specific set of conditions. The
fundamental difference between classical and quantum correlations is found in the differing
probability distributions, thus it is beneficial to introduce probability in quantum mechanics.

In quantum mechanics, the probability is computed using Born’s rule, which is defined as

Pi = trΠi ρ, (1)

where Pi is the probability, Πi is the projective measurement, and ρ is the density matrix. For
the scenario considered in this paper, the systems considered are bi-partite two particle spin
systems, where the density matrix is mixed separable. Given this, the probability to measure
the spin of one qubit up or down (σ =±1) along a and another qubit (σ ′ =±1) along b (where
a and b are Alice and Bob’s respective detector settings) is given by;

P(σ,σ ′|a,b) = trΠσ|a ⊗Πσ ′|b ρ, (2)

where

Πσ|a =
1
2
[1+σa ·σ] , (3)

where σ is the vector of Pauli matrices such that σ = (σx,σy,σz). It is important to stress that
projective measurements must take place in each subsystem, such that they are separable. If the
projector was not separable, then it would entangle the state, and thus any quantum advantage
could be due to entanglement. Subsequently, any claims about the quantum correlations being
inherently related to quantum discord, would be redundant. Throughout this paper, the meas-
urements take place on the Bloch sphere such that a= (cosϕa sinθa,sinϕa sinθa,cosθa) with
|a|= 1, and the assumption that ϕa = 0. Similarly these assumptions are used for a ′,b,b ′.

2. Quantum discord in a modified CHSH game

The CHSH game is traditionally a Bayesian game, where the players are cooperative. The
Bayesian nature arises due to each player having a private prior probability, where the other
players are unaware of this. This prior probability is used to compute their expected payoff.
For this game, the Nash equilibrium for the game is the maximum payoff that the players
can achieve, as any unilateral deviation to their strategy would result in a worse payoff due
to the cooperative nature of the game. However, the game has only been studied using either
classical states, or non-local states. After outlining the relevant aspects of quantum discord,
the modified form of the CHSH game is introduced. From this, the modified game is shown
to yield quantum advantage, when considering a mixed separable state which has a non-zero
quantum discord in a given measurement space.

2.1. Quantum discord

Quantum discord for a given state quantifies quantum correlations by taking the difference
between the mutual information between two parties A and B before and after a local projective
measurement. This definition reveals how quantum correlations can persist even in the case
of zero entanglement. This implies mixed separable states can possess non-zero discord, and
therefore non-zero quantum correlation. Recall the definition of the mutual information
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I
(
ρAB

)
= S

(
ρA
)
+ S

(
ρB
)
− S

(
ρAB

)
, (4)

where S(ρAB) =− trρAB logρAB =−
∑

i λi lnλi, ρ
AB is the density matrix of the system, and

λi are the eigenvalues of the density matrix. In order to define the quantummutual information
from player A’s perspective given a measurement on player B’s subsystem, the sum over all
local projective measurements is taken. Therefore, the density matrix after measurement has
the form

ρA|ΠB
µ
=

1
pµ

trB
(
1⊗ΠB

µ

)
ρAB

(
1⊗ΠB

µ

)
, (5)

where ΠB
µ = (1/2)(1+µn.σ), µ=±1, where n is the Bloch vector. Note, the notation intro-

duced here is general to avoid confusion with the rest of this paper. Additionally

pµ = tr
(
1⊗ΠB

µ

)
ρAB. (6)

Note the projector used here only acts in one of the subsystems, not both as defined in
equation (2). Therefore, quantum discord is defined using local projective measurements in
one subsystem. If the quantum discord was computed using B’s subsystem given measure-
ments on A’s subsystem, then the projective measurements would take place in A’s subspace.
From these definitions, the conditional entropy can be computed as

S
(
A|ΠB

µ

)
=
∑
µ

pµS
(
ρA|ΠB

µ

)
. (7)

Subsequently, the quantum mutual information is

JA
(
ρAB

)
= S

(
ρA
)
− S

(
A|ΠB

µ

)
. (8)

Therefore, the quantum discord can be defined as

DA
(
ρAB

)
=min

ΠB
µ

[
I
(
ρAB

)
− JA

(
ρAB

)]
=min

ΠB
µ

S
(
A|ΠB

µ

)
+ S

(
ρB
)
− S

(
ρAB

)
. (9)

Note that due to the minimisation over all projective measurements of player B, any quantum
correlations which exist must be due to the initial state, and not due to a particular choice of
projector. The only pure states which yield zero quantum discord take the form

ρAB = ρA⊗ ρB. (10)

Therefore, generally, states of the form

ρAB =
N∑

µ=0

qµρ
A
µ ⊗ ρBµ, (11)

result in non-zero discord, where
∑N

µ=0 qµ = 1. Note how equation (11) is clearly a mixed
separable state as each subsystem acts in its own space. It is important to clarify mixed sep-
arable states can still have zero discord when one of the subsystems is a projector, such that

ρAB =
N∑

µ=0

qµΠ
A
µ ⊗ ρBµ, (12)

and similarly for the projector in the other subsystem. Density matrices of the form in
equation (11) reveal that quantum correlations can exist beyond entanglement through the
definition of quantum discord in equation (9), as will be demonstrated in the solution of the
game.
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Table 1. This table shows the payoff matrix for the traditional CHSH game. Based on
what bits they receive, a,b,a ′,b denote how Alice and Bob’s detectors are set up. From
this, they then perform measurements on their shared states and based on their results,
they are assigned a payoff. Also, α= {a,a ′}, β = {b,b ′} and therefore denotes what
bits the players receive, either 0 or 1.

(α,β) b b ′

↑ ↓ ↑ ↓

a ↑ 1 0 ↑ 1 0
↓ 0 1 ↓ 0 1

↑ ↓ ↑ ↓

a ′ ↑ 1 0 ↑ 0 1
↓ 0 1 ↓ 1 0

There are a few extra comments about this definition. The difficulty in computing discord
is due to the minimisation in a given subsystem. Generally, this is a discrete task, further
complicating the minimisation. Whilst discord is difficult to compute, there has been signi-
ficant progress in calculating the discord in two qubit states [31, 32]. The definition given in
equation (9) is the quantum discord for player A. Therefore, the quantum discord for one sub-
system is not necessarily the same as for the other subsystem, which implies that quantum
discord is in general not symmetric, i.e.DA(ρ

AB) ̸= DB(ρ
AB). However, to derive the definition

for player B, a similar procedure is followed, but the projective measurements will take place
in player A’s subspace. Given the introduction of quantum discord in equation (9), the original
CHSH game can be introduced to explicitly show how quantum correlations can be revealed
and understood using game-theoretic techniques.

2.2. Description of the game

The general operational procedure for the CHSH game can be described as follows: a referee,
Charlie sends bits either 0 or 1 to Alice, and similarly Charlie sends bits either 0 or 1 to Bob.
When Alice receives bit 0, she sets her detector setting to a and then performs a measurement
on her shared state with Bob. When Alice receives bit 1, she sets her detector setting to a ′ and
performs a measurement on her shared state. When Bob receives bit 0, he sets his detector
setting to b, and performs a measurement on their shared state, and when Bob receives bit 1,
he sets his detector setting to b ′ and performs a measurement. Alice and Bob do not com-
municate what bits they have received, so they are unaware which game they are playing. It
is important to emphasise that Alice and Bob’s strategies are entirely classical, therefore any
quantum advantage that can be found will be entirely due to their shared state. Given Alice
and Bob’s combined measurements, we can assign a payoff. For example, if they both receive
bit 0, and therefore are in the type of game given by (a,b), and they both measure spin up,
then they are assigned a payoff of 1, as shown by the payoff table in table 1. These payoff’s are
specifically for the CHSH game, therefore any deviation from table 1 will result in a modified
version of the original game.

The general expected payoff to player A for an arbitrary state for this type of game is given
by

uA =
∑

α,β,σ,σ ′

uα,βA,σ,σ ′PA (α,β)P(σ,σ
′|α,β) , (13)
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Table 2. The numbers denote Alice’s and Bob’s payoff. As before, based on what bits
they receive, a,b,a ′,b ′ denote how Alice and Bob’s detectors are set up. The experi-
mental setup is the same as in table 1, therefore the only difference between the CHSH
game and the modified CHSH game is that the payoff’s have been modified.

(α,β) b b ′

↑ ↓ ↑ ↓

a ↑ −1 1 ↑ −1 1
↓ 1 −1 ↓ 1 −1

↑ ↓ ↑ ↓

a ′ ↑ −1 1 ↑ 1 −1
↓ 1 −1 ↓ −1 1

where uα,βA,σ,σ ′ is a tensor of payoff’s for player A, PA(α,β) is player A’s prior belief of which
type of game they will be in, and P(σ,σ ′|α,β) represents the conditional probability for meas-
uring a given spin depending onwhat type of game the players are in. A similar equationwritten
for player B’s payoff is given by

uB =
∑

α,β,σ,σ ′

uα,βB,σ,σ ′PB (α,β)P(σ,σ
′|α,β) , (14)

where uα,βB,σ,σ ′ are the payoff’s for player B and PB(α,β) is player B’s prior belief of which
type of game they will be in. For the traditional CHSH game, the payoff’s assigned to Alice
and Bob are the same, as well as each player’s prior beliefs, therefore uA = uB. Using classical
statistics, the best payoff Alice and Bob can achieve is 0.75. This can be seen if they choose
their detector settings such that they will always measure spin up, regardless of the type of
game they are in. However, if the players know that they are allowed to share a Bell state,
given by

ρ= |ψ⟩⟨ψ|, |ψ⟩= 1√
2
(|↑↑⟩+ |↓↓⟩) , (15)

then the optimum payoff they can achieve is (1/4)(2+
√
2)≈ 0.85. In both scenarios, the prior

probability is given by P(α,β) = P(α)P(β) as Alice and Bob are independent, and they each
believe P(α) = P(β) = 1/2, therefore P(α,β) = 1/4. This is justifiable as they have no prior
information on what type of game they will be in, so they can only assume each game will be
played uniformly. It is important to note that strict quantum advantage (i.e. surpassing 0.75) can
only be found in the CHSH game for non-local states. However, this does not necessarily mean
there is no quantum advantage that can be gained from a mixed separable quantum correlated
state.

Consider an extension of the game, where the payoff’s are different such that the payoff
table is given in table 2.

This scenario is similar to the traditional CHSH game, where it is a cooperative game and
thus both players maximising their payoff’s is the Nash equilibrium, as their payoff’s are the
same. From this, it is deduced that if either player deviates their strategy, their expected payoff
will be worse. Unlike the previous CHSH game, a non-entangled state will be used in order
to witness quantum advantage utilising quantum correlations. The choice of payoff’s affects
which measurement space the quantum advantage can be found for a given state. It is an inter-
esting problem to find the general relation between the payoff’s, measurement space, and state.
It is established that only certain measurements surpass the classical bound when using a Bell
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Figure 1. This shows the numerical discord for the state in equation (16). It is clear there
is zero quantum correlation at x= 0,π. Elsewhere, there is non-zero quantum correla-
tion, with the maximum occurring around x≈ nπ +π/2, where n ∈ Z. The minimisa-
tion was over θ, and ϕ as defined in the projectors. This can only occur for a two-qubit
state, as the parameterisation for θ and ϕ is only valid for a two particle system. Note,
ϕ is included here for the optimisation to compute the discord, but for the optimisation
in the game, ϕ= 0 to allow analytical tractability.

state, so it is clear that the choice of measurements are important, when related to the payoff’s
and state. This implies witnessing quantum advantage, not only depends on the state and meas-
urement, but also on the payoff’s. This opens up a potential avenue for future research, where
if a state and measurement are known, are there a set of payoff’s which can witness quantum
advantage using the known information. This topic is extended upon in the Discussion.

For the game given in table 2, the shared state between Alice and Bob is discorded, where
it is defined as

ρAB (x)≡ ρABx =
1
2
[|↑↑⟩⟨↑↑|+ |xx⟩⟨xx|] , (16)

where |x⟩= cos(x/2)|↑⟩+ sin(x/2)|↓⟩. This is a mixed separable state as it can be written in
the same form as equation (11), and therefore does not possess any non-locality or entangle-
ment. When numerically computing the discord, the result is given by figure 1.

Since both Alice and Bob know the shared state beforehand, they can tune their respective
detector settings in order to maximise their respective payoff’s. However, this optimisation
includes optimising over each others detector settings. Therefore, each others maximum payoff
depends on what the other player will do. Fortunately, the cooperative nature of this game
yields a solution in which both players would choose the optimum detector settings which
would benefit each other.

2.3. Solution to the game

At this stage, it is important to emphasise that both Alice and Bob have complete knowledge
of each other’s payoff tables, and the state which they share. Their only sources of lack of
knowledge arise since they do not know what the value of the parameter x will be, and what
type of game they will end up playing. Also, it is assumed that the prior P(α,β) = 1/4 as
before. This prior is chosen because the players have no knowledge of what type of game
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they will play. Additionally, the state used to compute the conditional probability is given in
equation (16). Given this knowledge that both Alice and Bob share, they can compute their
expected payoff’s as functions of each other’s choices and the discord parameter x. These are
given by

uA = uB = f(θa,θa ′ ,θb,θb ′ ,x) , (17)

where

f(θa,θa ′ ,θb,θb ′ ,x) =− 1
16

[
2cosθ−a,b+ 2cosθ−a ′,b+ 2cosθ−a,b ′ − 2cosθ−a ′,b ′ + cosθ+a,b

+cosθ+a ′,b+ cosθ+a,b ′ − cosθ+a ′,b ′ + cos
(
θ+a,b− 2x

)
+cos

(
θ+a ′,b− 2x

)
+ cos

(
θ+a,b ′ − 2x

)
− cos

(
θ+a ′,b ′ − 2x

)]
, (18)

where θ−α,β = θα − θβ and θ+α,β = θα + θβ . This expected payoff can be re-written by adding

and subtracting cosθ+a,b+ cosθ+a,b ′ + cosθ+a ′,b− cosθ+a ′,b ′ such that equation (18) becomes

f(θa,θa ′ ,θb,θb ′ ,x) =− 1
16

{
2
[
cosθ−a,b+ cosθ−a ′,b+ cosθ−a,b ′ − cosθ−a ′,b ′ + cosθ+a,b+ cosθ+a ′,b

+cosθ+a,b ′ − cosθ+a ′,b ′

]
+ cos

(
θ+a,b− 2x

)
+ cos

(
θ+a ′,b− 2x

)
+cos

(
θ+a,b ′ − 2x

)
− cos

(
θ+a ′,b ′ − 2x

)
− cosθ+a,b− cosθ+a,b ′

−cosθ+a ′,b+ cosθ+a ′,b ′

}
. (19)

It is important to emphasise that this has not changed the result, but now allows equation (19)
to be written into a purely classical term, and a purely quantum term. Finally, the expected
payoff can be written as

f(θa,θa ′ ,θb,θb ′ ,x) = fCl (θa,θa ′ ,θb,θb ′)+ fQ (θa,θa ′ ,θb,θb ′ ,x) , (20)

where the classical term is given by

fCl (θa,θa ′ ,θb,θb ′) =−1
4
[cosθa (cosθb+ cosθb ′)+ cosθa ′ (cosθb− cosθb ′)] , (21)

and the quantum term has the form

fQ (θa,θa ′ ,θb,θb ′ ,x) =− sinx
8

[
sin

(
θ+a,b− x

)
+ sin

(
θ+a ′,b− x

)
+ sin

(
θ+a,b ′ − x

)
−sin

(
θ+a ′,b ′ − x

)]
. (22)

Due to the sinx term, equation (22) becomes zero at x= 0,π and non-zero elsewhere. This is
a truly quantum contribution, which can be seen by noting that the quantum correlations for
the shared state vanish when x= 0,π, seen explicitly in figure 1.

Given it is possible to split the expected payoff into two contributions, coming from clas-
sical correlations and quantum correlations, opens up the possibility that there may be some
advantage to be gained from the extra quantum term. By maximising over all the variables
with no restrictions, the maximum expected payoff is 0.5 which coincides with the largest
classical payoff. This is expected, as the state considered is a mixed separable state, and sur-
passing this bound would imply non-locality. However, by restricting the measurement space
available to the players, such that they are only allowed to set their measurement angles from
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Figure 2. This plot reveals how there are regions where there is quantum advantage,
for given different values of x, such that the expected payoff is greater than 0.25. The
maxima of this function are found at 7π/8 and 15π/8, which yields 0.301 78.

0 to π/2, yields an unexpected quantum advantage for the players. Numerically maximising
equation (20), it is found that

fmax (θ∗a ,θ
∗
a ′ ,θ∗b ,θ

∗
b ′ ,x∗) = 0.30178≡ f∗, (23)

where θ∗a = θ∗b = π/2, θ∗a ′ = θ∗b ′ = 0, and crucially x∗ = 7π/8. The key result is that a non-
zero x gave the maximum for the expected payoff. For comparison, by considering a purely
classical scenario (x= 0), the maximum expected payoff is 0.25. This is emphasised in
figure 2.

At this stage, it is important to highlight the quantum advantage observed is restricted for
this given state to a given measurement space. For clarity, any mixed-separable discorded state
will never surpass the CHSH bound as it will be local. It is also possible to consider scenarios
where the quantum correlation dominates the classical correlation. Defining the ratio between
the quantum contribution and the classical contribution, yields

κ(θa,θa ′ ,θb,θb ′ ,x) =

∣∣∣∣ fQ (θa,θa ′ ,θb,θb ′ ,x)
fCl (θa,θa ′ ,θb,θb ′)

∣∣∣∣≡ κ, (24)

where the quantum contribution must obey fQ(θa,θa ′ ,θb,θb ′ ,x)⩾ 0 and similarly the classical
part is constrained such that fCl(θa,θa ′ ,θb,θb ′)⩾ 0. Therefore, when κ> 1, this implies the
quantum contribution is larger than the classical contribution, and conversely κ< 1 implies the
classical contribution is dominating the quantum contribution. When the contributions from
both the classical and quantum part are equal, then κ= 1. Similar ratios could be defined for
differing signs, but the absolute value ensures that κ⩾ 0. This ratio gives a measure of how
much quantum correlation is in a given quantum game relative to the classical counterpart.
It is important to emphasise, the total correlation may not reveal quantum advantage in the
particular quantum game. However, it is possible that the classical correlation is zero, and there
is a non-zero quantum correlation resulting in an undefined κ. This is the case for θa = π/2,
θa ′ = π/4, and θb = θb ′ = 0. Whether it is possible to develop a hierarchy between classical
and quantum correlation below the CHSH bound remains an open question.
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2.4. Relations

There are interesting relations which can be derived from the results of the game. These can
be analysed by considering equations (21) and (22) individually, which are given by

fmax
Cl (θ∗a = π/2,θ∗a ′ = 0,θ∗b = π/2,θb ′ = 0) = 0.25=

4
16
, (25)

and

fmax
Q (θ∗a = π/2,θ∗a ′ = 0,θ∗b = π/2,θb ′ = 0,x= 7π/8)≈ 0.05178=

0.828
16

, (26)

which interestingly when combined can be written as

fmax (θ∗a ,θ
∗
a ′ ,θ∗b ,θ

∗
b ′ ,x∗)≈

1
16

(4+ 0.828) =
1
16

(
2+ 2

√
2
)
. (27)

This can be directly compared with the result from the CHSH game using a non-local state,
where the differences are due to the denominator, and an extra factor of 2 in front of

√
2. The

apparent connection to the maximum bound for the CHSH inequality of 2
√
2 was not expected

as the state considered for maximum violation is strictly non-local. Despite this, it is clear that
the extra quantum term in the game considered here gives rise to an extra contribution which
can be utilised for quantum advantage in this Bayesian game.

When calculating the maximum expected payoff, it was noted that an interesting relation
occurs between this expected payoff and the trace of the Hessian matrix. Given the trigono-
metric nature of the expected payoff, it is clear that the second derivatives will return the same
functions with the signs changed. The sum of the second derivatives with respect to their cor-
responding variables is proportional to the expected payoff such that

tr Ĥ=−2f(θa,θa ′ ,θb,θb ′ ,x) , (28)

where Ĥ is the Hessian matrix. Since

tr Ĥ=
∑
i

ϕi, (29)

where ϕi are the eigenvalues of the Hessian matrix yields the relation that

f(θa,θa ′ ,θb,θb ′ ,x) =−1
2

∑
i

ϕi. (30)

Therefore, optimising over the eigenvalues of the Hessian matrix is equivalent to optimising
over the expected payoff function. It is important to stress, this has only been found for this
particular payoff function, but whether there is an underlying relation between the eigenval-
ues of the Hessian and the expected payoff in Bayesian game theory remains an interesting
direction for future research.

3. Discussion

The proposed game offers a proof of concept result, where quantum correlations beyond entan-
glement can yield quantum advantage in Bayesian game theory, highlighting the benefit of
uniting quantum mechanics and game theory. In order to further demonstrate the practical
implementation of this result, future research could devise algorithms and interactive proto-
cols which can utilise the observed quantum advantage. Consequently, this work creates the
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opportunity for further research in algorithm design, specifically for quantum correlations bey-
ond entanglement. Moreover, the game suggested here could be utilised to deduce information
about the specific discorded states, but this is beyond the scope of this paper.

It is important to highlight the difference between this paper, and previous results looking
at local states in quantum game theory [33, 34]. In previous studies on local states, the work
assumes the players apply quantum strategies, often in the form of Hadamard operations. This
is significantly different to this paper, which uses only classical strategies. The key benefit
for utilising classical strategies is that any quantum advantage is entirely due to the state, not
due to a non-local unitary operation on the state which will entangle the state, regardless of
what shared correlation the players originally had. Furthermore, there is no debate on how to
experimentally implement this game, as there is no discussion about how to physically ‘play’
a non-local unitary operation. The analysis considered in this paper is conceptually analogous
to the work of Brunner and Linden [3]. In addition, there has been no previous work on local
states in Bayesian game theory, further demonstrating the novel results shown here.

There are two significant limitations of the analysis performed in this paper. Themain draw-
back is that quantum advantage was demonstrated for a specific discorded state, rather than
proving quantum advantage for a general discorded state. However, this paper opens up the
avenue for developing methodology which can witness quantum advantage using a general
discorded state in a quantum game. Subsequently, this will be a key focus of future research.

Another significant limitation, is due to the restrictions imposed on Alice and Bob’s meas-
urements. Whilst it is beneficial for witnessing quantum correlations, the maximum classical
expected payoff will always be the upper bound for mixed separable states. To further gener-
alise the results, ϕa would also be generally non-zero, similarly for a ′,b and b ′. Whether this
allows further quantum advantage would be a significant question to investigate.

It would be interesting to determine if there is a generic relation between the measurement
space and the ability to witness quantum advantage. The same logic could be applied; if given
a specific quantum state, is there a measurement space which would witness the quantum
correlation. This analysis could be extended to include how the payoff’s affect the quantum
advantage in a Bayesian game.

From a game-theoretic perspective, it would be interesting to modify this game such that
Alice and Bob are competing, thus no longer cooperative. Given this change, how would the
quantum correlations affect theNash equilibrium compared to the classical solution.Moreover,
it should be investigated if modifying the priors allows one player to acquire a larger expec-
ted payoff at the expense of the other player. This may offer further insight into the benefit
of utilising quantum correlations in game theory. As a further extension of this, this quantum
game could be implemented onto a quantum network, where a quantum protocol could be
devised which could offer technological benefit by utilising quantum technologies. It is also
worth studying whether quantum advantage beyond entanglement can be witnessed in extens-
ive form games, as quantum advantage has already been shown for non-local states [35].

It was also interesting to note the similarities between the maximum expected payoff in the
CHSH game, and the result in equation (27). Given the discorded state is inherently local, it is
intriguing to see a factor of 2

√
2 contributing to the quantum advantage. A further unexpected

result that arose from the analysis was the relation between the spectra of the eigenvalues
of the Hessian matrix, and the expected payoff function. Further investigation is required to
determine whether this is a general relation.
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4. Conclusion

Quantum advantage is witnessed in a modified version of the CHSH game, where the advant-
age is entirely due to quantum correlations beyond entanglement. This proof of concept result
was done by taking a specific discorded state, and imposing measurement restrictions on the
players. Using these constraints, the players were able to surpass the classical limit for the
given restrictions, entirely due to the quantum correlations. By utilising game-theoretic tech-
niques, this protocol could be readily implemented in experiments, in order to witness and
characterise quantum advantage.

This is the first result using quantum discord for quantum advantage in Bayesian game
theory. Future research arising from this work will extend quantum discord into a wide range
of quantum games, in order to witness and quantify quantum advantage, with specific focus
on the importance of the measurement space and the relation to the payoff’s in the game.
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[11] Dakić B, Vedral V and Brukner Č 2010 Phys. Rev. Lett. 105 190502
[12] Lowe A and Yurkevich I V 2022 Low Temp. Phys. 48 396
[13] Chang L and Luo S 2013 Phys. Rev. A 87 062303
[14] Wang R, Yao Y, Yin Z and Lo H 2023 Quantum discord witness with uncharacterized devices

(arXiv:2303.11167)
[15] Afik Y and de Nova J 2023 Phys. Rev. Lett. 130 221801
[16] von Neumann J and Morgenstern O 1947 Theory of Games and Economic Behavior (Princeton

University Press)
[17] Nash J F 1950 Proc. Natl Acad. Sci. 36 48

12

https://orcid.org/0000-0002-3714-4193
https://orcid.org/0000-0002-3714-4193
https://doi.org/10.1038/s41586-019-1666-5
https://doi.org/10.1038/s41586-019-1666-5
https://doi.org/10.1126/science.abe8770
https://doi.org/10.1126/science.abe8770
https://doi.org/10.1038/ncomms3057
https://doi.org/10.1038/ncomms3057
https://doi.org/10.1103/PhysRevLett.88.017901
https://doi.org/10.1103/PhysRevLett.88.017901
https://doi.org/10.1088/0305-4470/34/35/315
https://doi.org/10.1088/0305-4470/34/35/315
https://doi.org/10.1103/PhysRevA.80.024103
https://doi.org/10.1103/PhysRevA.80.024103
https://doi.org/10.1038/ncomms1005
https://doi.org/10.1038/ncomms1005
https://doi.org/10.1103/PhysRevLett.107.140403
https://doi.org/10.1103/PhysRevLett.107.140403
https://doi.org/10.1088/1367-2630/16/3/033027
https://doi.org/10.1088/1367-2630/16/3/033027
https://doi.org/10.1103/PhysRevA.100.022321
https://doi.org/10.1103/PhysRevA.100.022321
https://doi.org/10.1103/PhysRevLett.105.190502
https://doi.org/10.1103/PhysRevLett.105.190502
https://doi.org/10.1063/10.0010204
https://doi.org/10.1063/10.0010204
https://doi.org/10.1103/PhysRevA.87.062303
https://doi.org/10.1103/PhysRevA.87.062303
https://arxiv.org/abs/2303.11167
https://doi.org/10.1103/PhysRevLett.130.221801
https://doi.org/10.1103/PhysRevLett.130.221801
https://doi.org/10.1073/pnas.36.1.48
https://doi.org/10.1073/pnas.36.1.48


J. Phys. A: Math. Theor. 57 (2024) 065303 A Lowe

[18] Meyer D A 1999 Phys. Rev. Lett. 82 1052
[19] Eisert J, Wilkens M and Lewenstein M 1999 Phys. Rev. Lett. 83 3077
[20] Iqbal A and Toor A H 2000 Phys. Lett. A 280 249
[21] Iqbal A and Toor A H 2002 Phys. Rev. A 65 022306
[22] Ikeda K and Lowe A 2023 IET Quantum Commun. 4 218
[23] Ikeda K and Aoki S 2021 Quantum Inf. Process. 21 27
[24] Pawela Ł 2016 Physica A 458 179
[25] Khan F S, Solmeyer N, Balu R and Humble T S 2018 Quantum Inf. Process. 17 309
[26] Flitney A P and Abbott D 2002 Fluct. Noise Lett. 02 175
[27] Christodoulou G, Kovács A and Schapira M 2016 J. ACM 63 11
[28] He G, Debbah M and Altman E 2010 EURASIP J. Wirel. Commun. Netw. 2010 391684
[29] Clauser J, Horne M, Shimony A and Holt R 1969 Phys. Rev. Lett. 23 880
[30] Bell J 1964 Phys. Phys. Fiz. 1 195
[31] Girolami D and Adesso G 2011 Phys. Rev. A 83 052108
[32] Maldonado-Trapp A, Hu A and Roa L 2015 Quantum Inf. Process. 14 1947
[33] Wei Z and Zhang S 2017 Inf. Comput. 256 174
[34] Melo-Luna C A, Susa C E, Ducuara A F, Barreiro A and Reina J H 2017 Sci. Rep. 7 44730
[35] Ikeda K 2023 Quantum Inf. Process. 22 66

13

https://doi.org/10.1103/PhysRevLett.82.1052
https://doi.org/10.1103/PhysRevLett.82.1052
https://doi.org/10.1103/PhysRevLett.83.3077
https://doi.org/10.1103/PhysRevLett.83.3077
https://doi.org/10.1016/S0375-9601(01)00082-2
https://doi.org/10.1016/S0375-9601(01)00082-2
https://doi.org/10.1103/PhysRevA.65.022306
https://doi.org/10.1103/PhysRevA.65.022306
https://doi.org/10.1049/qtc2.12066
https://doi.org/10.1049/qtc2.12066
https://doi.org/10.1007/s11128-021-03378-5
https://doi.org/10.1007/s11128-021-03378-5
https://doi.org/10.1016/j.physa.2016.04.022
https://doi.org/10.1016/j.physa.2016.04.022
https://doi.org/10.1007/s11128-018-2082-8
https://doi.org/10.1007/s11128-018-2082-8
https://doi.org/10.1142/S0219477502000981
https://doi.org/10.1142/S0219477502000981
https://doi.org/10.1145/2835172
https://doi.org/10.1145/2835172
https://doi.org/10.1155/2010/391684
https://doi.org/10.1155/2010/391684
https://doi.org/10.1103/PhysRevLett.23.880
https://doi.org/10.1103/PhysRevLett.23.880
https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195
https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195
https://doi.org/10.1103/PhysRevA.83.052108
https://doi.org/10.1103/PhysRevA.83.052108
https://doi.org/10.1007/s11128-015-0943-y
https://doi.org/10.1007/s11128-015-0943-y
https://doi.org/10.1016/j.ic.2017.07.004
https://doi.org/10.1016/j.ic.2017.07.004
https://doi.org/10.1038/srep44730
https://doi.org/10.1038/srep44730
https://doi.org/10.1007/s11128-022-03806-0
https://doi.org/10.1007/s11128-022-03806-0

	Quantum advantage beyond entanglement in Bayesian game theory
	1. Introduction
	2. Quantum discord in a modified CHSH game
	2.1. Quantum discord
	2.2. Description of the game
	2.3. Solution to the game
	2.4. Relations

	3. Discussion
	4. Conclusion
	References


