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The elastic scatterings for the α + 40Ca and the α + 58Ni systems at Elab = 240 MeV have been
analyzed within the framework of the Coulomb-modified Glauber model using two kinds of Gaussian
density parameters for the target nuclei. The first one is to use Gaussian density parameters
obtained from the root-mean-square radius. The second one is to use parameters calculated by
matching the Gaussian density to the two-parameter Fermi density. The results with surface-
matched Gaussian densities provide reasonable agreement with the experimental data, but the
results without matching do not. The oscillatory structures observed in the angular distributions
of both system can be interpreted as being due to the strong interference between the near-side and
the far-side scattering amplitudes. The differences between the phase shifts obtained from the two
methods are examined. We also investigate the effect of these differences on the differential and
reaction cross sections, the transmission functions and the strong absorption radii.
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I. INTRODUCTION

Optical limit approximation (OLA) to the Glauber
model has been used in the description of elastic scat-
tering data at high energies. In the simple Glauber ap-
proach to heavy-ion elastic scattering [1], it is assumed
that the flux attenuation of the elastic channel occurs
by means of nucleon-nucleon collisions along a classical
straight line trajectory. This is not a good approxima-
tion at relatively low and intermediate energies. The
conventional form of the Glauber model was modified
[2,3] to account for the deviation of the projectile trajec-
tory due to the Coulomb field. This type of OLA to the
Glauber model is called as “Coulomb-modified Glauber
model (CMGM)”. A modified Glauber model taking into
account the deflection effect of the trajectory due to the
real nuclear potential was reported [4,5]. Charagi and
Gupta [6] have extended the CMGM to lower energies
for the description of the differential cross section.
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The ingredients in the nuclear phase shift of the
CMGM are the densities of colliding nuclei and the el-
ementary nucleon-nucleon (NN) scattering amplitude.
The nuclear densities are usually assumed as Gaussian
shape, which have an advantage of yielding an analytic
expression for the nuclear phase shift. In the case of
heavier nuclei (A ≧ 40), realistic density distributions
are required to describe the tapered nuclear surface.
Karol [7] has obtained the Gaussian density parameters
by fitting the realistic density to reproduce the exper-
imentally determined nuclear surface texture. Mean-
while, Charagi and Gupta [8] have obtained the Gaussian
density parameters by matching the Gaussian density
profile function to the 2-parameter Fermi profile func-
tion. The elastic scattering angular distributions of 16O
+ 16O system at Elab = 350 and 480 MeV has been ana-
lyzed within the framework of CMGM by matching the
Gaussian density parameters to the modified Fermi ones
[9].
In this paper, we analyze the elastic scatterings of α

+ 40Ca and α + 58Ni systems at Elab = 240 MeV by us-
ing the Gaussian density parameters for the target nuclei
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matched to the 2-parameter Fermi (2pF) density follow-
ing the Karol method [7]. The calculated results will be
compared to the ones without surface-matched Gaussian
densities. Further, we investigate the differences between
the phase shifts obtained from the Gaussian density with
and without matching to the 2pF density, and how these
differences produce an effect on the (differential and re-
action) cross sections, transmission functions and strong
absorption radii. The Coulomb-modified Glauber model
is briefly described in Sec. II. In Sec. III, we present
the theory related with the calculation processes of the
Gaussian density parameters by matching the Gaussian
density to the 2pF density. Section IV is devoted to the
results and discussion, in which we perform a CMGM
analysis for α + 40Ca and α + 58Ni elastic scatterings
at Elab = 240 MeV. Finally, we provide the concluding
remarks in Sec. V.

II. COULOMB-MODIFIED GLAUBER
MODEL

In the optical limit approximation to the Glauber
model, the nuclear phase shift δ(b) for the scattering of a
projectile nucleus of mass number AP on a target nucleus
of mass number AT may be written as [10,11]

δ(b) =
APAT

2kNN

∫ ∞

0

dqqJ0(qb)fNN (q)FP (q)FT (q), (1)

where q is the momentum transfer, kNN is the nucleon
momentum corresponding to the projectile kinetic energy
per nucleon, J0(qb) is the Bessel function of zeroth order,
FP (q) and FT (q) are the projectile (P ) and target (T )
form factors, and fNN (q) is NN scattering amplitude.
If we assume nuclear density ρi(r) as a Gaussian form

ρi(r) = ρi(0) exp(−
r2

a2i
), i = P, T (2)

and use the Fourier transformation of ρi(r), the nuclear
form factor is expressed as

Fi(q) = (
√
πai)

3ρi(0) exp(−q2a2i /4). (3)

For the fNN (q), we take Gaussian parametrization of the
form [12] :

fNN (q) =
kNN

4π
σNN (αNN + i) exp[−βNNq2/2], (4)

where σNN is the NN total cross section, αNN is the
ratio of the real to imaginary parts of the forward NN

scattering amplitude, and βNN is the slope parameter.
Inserting Eqs. (3) and (4) into Eq. (1), an analytic ex-
pression of the nuclear phase shift can be obtained as

δ(b) =
APAT

4R2
π2a3Pa

3
T ρP (0)ρT (0)σNN (αNN+i) exp[− b2

R2
],

(5)
where

R2 = a2P + a2T + 2βNN . (6)

One of the basic assumptions of the conventional
Glauber model is that the projectile follows a straight
line trajectory during a collision with the target nucleus.
For the Coulomb-modified Glauber model taking into the
Coulomb field, the impact parameter b =

√
L(L+ 1)/k

is replaced by the distance of closest approach rc [12]:

rc =
1

k
(η +

√
η2 + L(L+ 1)), (7)

where η is the Sommerfeld parameter. Then the nuclear
phase shift δ(b) in Eq. (5) can be replaced by an expres-
sion δL(rc) in terms of angular momentum L.
The elastic scattering amplitude for spin-zero charged

particle on target nucleus may be written as

f(θ) = fR(θ)+
1

ik

∞∑
L=0

(L+
1

2
) exp(2iσL)(SL−1)PL(cos θ),

(8)
where fR(θ) is the usual Rutherford scattering ampli-
tude, σL is the Coulomb phase shift, k is the wave num-
ber of the system, PL(cos θ) is the Legendre polynomial,
and SL is the nuclear scattering matrix element given by

SL = exp[2iδL(rc)]. (9)

III. GAUSSIAN DENSITY PARAMETERS

For the light nuclei, with A < 40, the density distribu-
tion is usually assumed to be Gaussian form of Eq. (2).
The Gaussian density parameters ρi(0) and ai are related
with the root-mean-square radius Ri

rms by

ai =
Ri

rms√
1.5

, ρi(0) =
1

(ai
√
π)3

, (10)
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Table 1. Input parameters and χ2/N values in the Coulomb-modified Glauber model using Gaussian density parame-
ters ρT (0) and aT obtained by matching the Gaussian density to the 2-parameter Fermi density [13] for the α + 40Ca
and α + 58Ni elastic scatterings at Elab = 240 MeV. We used ρP (0) = 0.06598 fm−3 and aP = 1.396 fm obtained
from the root-mean square radius [14]. An asterisk (*) indicates the best fitted parameters (αNN ) and corresponding
χ2/N values by using CMGM without surface-matched Gaussian density. The χ2/N values in parentheses are the
results using ρT (0) and aT calculated from the Rrms radii [13].

Target σNN Rrms ρT (0) aT βNN αNN χ2/Na

(mb) (fm) (fm−3) (fm) (fm2)
40Ca 68.3 3.399 0.01856 2.443 0.5318 1.646* 1.557 8.75* 5.54 (9.45)
58Ni 68.3 3.753 0.01673 2.631 0.5318 1.322* 1.336 4.14* 3.38 (4.19)

a10% error bars, χ2/N = (1/N)
∑N

i=1

[
σth(θi)−σex(θi)

∆σex(θi)

]2

where the Gaussian density distribution is normalized to
unity. But for heavier nuclei (A ≧ 40), realistic density
distribution is needed for describing the tapered nuclear
surface. To obtain an analytic expression for the nuclear
phase shift of Eq. (5), it is necessary to match the Gaus-
sian density distribution to the realistic density one in
nuclear surface.

The 2-parameter Fermi (2pF) form for the nuclear den-
sities is given as

ρ2pFi (r) =
ρ2pFi (0)

1 + exp[(r − ci)/di]
, (11)

where

ρ2pFi (0) =

[
4π

∫ ∞

0

1

1 + exp[(r − ci)/di]
r2dr

]−1

. (12)

As suggested by Karol [7], the parameters ρi(0) and ai in
Eq. (2) are calculated by requiring ρi(r) at r = ci and r =

ci+ti/2 in the Gaussian distribution to be identical to the
values calculated from the 2pF distribution where ci is
the half-central-density radius and ti = 4.4di is the 90% -
10% surface skin thickness parameter. Consequently, the
parameters for the surface matched Gaussian densities
are obtained as follows [7]:

ρi(0) =
1

2
ρ2pFi (0) exp( c

2
i

a2i
). (13)

and

ai =

[
4citi + t2i
4(ln 5)

]1/2
. (14)

For the target nuclei, two methods are employed to cal-
culate the Gaussian density parameter values of ρT (0)
and aT . The first one (Cal. 1) is simply to use the

Fig. 1. (Color online) Gaussian and 2-parameter Fermi
density distributions for 40Ca and 58Ni target nuclei.
The solid curves denote the results for the 2-parameter
Fermi density [13] and the dotted curves are the results
for the Gaussian one. The nuclear density distributions
are normalized to the total number of nucleons.

Eq. (10) obtained from Ri
rms. The second one (Cal. 2) is

to use the Eqs. (13) and (14) which match Gaussian den-
sities to the 2pF ones. Parameter values of the surface-
matched Gaussian density for the target nuclei are listed
in Table 1 along with the Ri

rms. In Fig. 1, we gave a
plot of the Gaussian and 2pF density distributions for
40Ca and 58Ni target nuclei. In this figure, the nuclear
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density distributions are normalized to the total number
of nucleons. The solid curves denote the results for 2pF
density distributions Eq. (11) using the parameters ci

and di taken from Ref. [13], whereas the dotted curves
are the results for Gaussian density ones Eq. (2) using the
surfaced-matched parameters Eqs. (13) and (14). We can
see in this figure that the agreements between the 2pF
and the fitted Gaussian density distributions are satisfac-
tory in surface region, though two curves were shown to
be greatly different in the central regions. Since most of
the contributions to the differential cross section comes
from the surface region of the colliding nuclei, the big
discrepancies at the central regions between two curves
can be neglected.

IV. RESULTS AND DISCUSSION

The elastic differential cross sections for 240 MeV α

particles on 40Ca and 58Ni targets have been calculated
using the Coulomb-modified Glauber model described in
the previous sections. The inputs required for calcula-
tion are the parameters ρi(0) and ai of Gaussian density,
and σNN , αNN and βNN of NN amplitude. The param-
eters ρP (0) and aP for the projectile are obtained from
Eq. (10), where Ri

rms are taken from Ref. [14]. The NN

total cross section σNN was obtained from Eq. (3) of Ref.
[1] and Eq. (2) of Ref. [15] with ρ = 0.15 fm−3 instead of
using experimental values. Regarding the slope parame-
ter βNN , we use βNN = 0.5318 fm2, which was interpo-
lated from the βNN values at 45 and 100 MeV/nucleon
[14].

The calculations of elastic differential cross sections
have been performed using the CMGM with and without
matching to the 2pF density distribution of target nu-
clei. The results of the differential cross sections for the
α + 40Ca and α + 58Ni elastic scatterings at Elab = 240
MeV are depicted in Fig. 2 together with those measured
experimentally. The experimental data are taken from
Ref. [16,17]. In this figure, the dotted and solid curves
are the results using the Gaussian densities without and
with matching to 2pF density distributions, respectively.
As a whole, dotted curves are slightly shifted to the left
and show somewhat lower values at large angles, in com-
parison with the solid curves. However, by matching the

Fig. 2. (Color online) Elastic scattering angular distri-
butions for the α + 40Ca and α + 58Ni systems at Elab
= 240 MeV. The solid circles denote the observed data
taken from Ref. [16, 17]. The solid and dotted curves
are the calculated results obtained from the CMGM
with and without the surface-matched Gaussian densi-
ties. The dashed curves are the best results using the
CMGM without the surface-matched Gaussian densities.

Gaussian density to the 2pF one, the dotted curves are
moved upward direction at large angles, consequently,
leading to fairly good agreements with the experimental
data. It can further be seen in Table 1 and Fig. 2 that
the results calculated from the surface-matched Gaussian
density parameters provided better fits with the experi-
mental data (especially at large angles) than the results
from non-surfaced-matched ones.
To examine the necessity of matching the 2pF den-

sity in nuclear surface to a Gaussian density, we have
also performed a CMGM calculation with Eq. (10) by
adjusting the parameters αNN to get best possible fit
to the data. The best results are shown in Fig. 2 by
the dashed curves and the corresponding αNN parame-
ters are listed in Table 1. As Fig. 2 and Table 1 show,
the dashed curves show similar structures to the dotted
curves, though dashed curves provide somewhat lower
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Fig. 3. (Color online) Differential cross sections (solid
curves), near-side contributions (dotted curves), and
far-side contributions (dashed curves) following Fuller’s
formalism [18] obtained from the Coulomb-modified
Glauber model with the surface-matched Gaussian den-
sities for α + 40Ca and α + 58Ni elastic scatterings at
Elab = 240 MeV.

χ2/N than dotted ones. It is seen that the agreements
between solid curves and experimental data are improved
for α + 40Ca and α + 58Ni systems at Elab = 240 MeV,
in comparison with the results with dashed ones. We
find in Table 1 that χ2/N values obtained from surface-
matched Gaussian density parameters are smaller than
those from non-surface-matched ones. The improved
agreements with the elastic data indicate that the use
of the surface-matched Gaussian density is important in
the description of elastic scattering involving heavy nu-
cleus.

In order to understand the nature of angular distribu-
tions for α + 40Ca and α + 58Ni systems at Elab = 240
MeV, the near-side and the far-side decompositions of the
scattering amplitude with the surface-matched Gaussian
densities were also performed by following the Fuller’s
formalism [18]. The contributions of the near-side (dot-
ted curves) and far-side (dashed curves) components to
the elastic scattering cross sections are shown in Fig. 3

Fig. 4. (Color online) Real and imaginary parts of
the phase shifts obtained from the CMGM with (solid
curves) and without (dotted curves) the surface-matched
Gaussian densities for α + 40Ca and α + 58Ni elastic
scatterings at Elab = 240 MeV.

along with the differential cross sections (solid curves).
This figure shows that the near-side contributions dom-
inate for small angles, and the far-side ones for large
angles. The near-side and the far-side contributions to
the elastic cross sections have equal magnitude at the
crossing angles θcross = 6.40◦ for α + 40Ca and θcross =
7.85◦ for α + 58Ni. The differential cross section is not
just a sum of the near-side and the far-side cross sections
but contains the interference between the near-side and
far-side amplitudes as shown in Fig. 3. The oscillatory
structures observed in the angular distributions of both
system are due to the strong interference between the
near- and the far-side components. The interference os-
cillations have maximum amplitudes near those crossing
angles due to enhanced far-side ones. The behaviors of
large-angle cross sections are mainly determined by the
far-side amplitude.
As well known, the nuclear phase shift is very impor-

tant ingredient in describing the elastic cross sections.
We plotted in Fig. 4 the real and imaginary parts of
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Table 2. Phase shift analysis results from the Gaussian
density parameters with (Cal. 2) and without (Cal. 1)
matching the Gaussian density to the 2-parameter Fermi
density for the α+40Ca and α+58Ni elastic scatterings at
Elab = 240 MeV.

Target Cal. 1 Cal. 2
40Ca 58Ni 40Ca 58Ni

θcross (deg) 6.40◦ 7.85◦

L1/2 38.24 43.41 37.56 42.23
Rs (fm) 6.421 7.107 6.311 6.921
σRs (mb) 1295 1587 1251 1505
σR (mb) 1312 1588 1258 1492

the nuclear phase shift for α + 40Ca and α + 58Ni sys-
tems at Elab = 240 MeV. In this figure, the dotted and
solid curves are the phase shifts by using the Gaussian
parameters without and with matching the 2pF densi-
ties. As a whole, the phase shifts obtained from surface-
matched Gaussian density parameters produce higher
values at small L and lower ones at large L, in com-
parison with the ones from non-surface-matched ones.
As Fig. 4 shows, the solid curves decrease more rapidly
compared to the dotted ones so that two curves have
equal magnitude at L ∼ 34 for α + 40Ca and L ∼ 37

for α + 58Ni. One notices that solid curves have some-
what lower values around the critical angular momen-
tum L1/2 corresponding to surface collision, for which
| exp(−Im[2δL(rc)])|2 = 1/2, in comparison with the
dotted curves. Since the elastic scattering cross sections
are sensitive mainly to the surface region, the differences
of phase shift around L1/2 produce somewhat different
behaviors of elastic angular distributions.

Such difference of phase shifts has an influence on the
transmission function TL = 1− |SL|2. The TL functions
are plotted in Fig. 5 as a function of angular momen-
tum L. The transmission function provides a picture
of the absorption in the surface region. As expected,
the transmission functions obtained from phase shifts
with surface-matched Gaussian density parameters (solid
curves) show more rapidly decreasing shape compared to
the ones from those without surface-matched ones (dot-
ted curves) around surface regions, consequently produc-
ing slightly smaller critical angular momentum (L1/2).
A further investigation of the situation can be gained
by looking at the strong absorption radius (Rs) and the
reaction cross sections (σRs and σR). The Rs is defined

Fig. 5. (Color online) Transmission functions TL ob-
tained from the CMGM with (solid curves) and without
(dotted curves) the surface-matched Gaussian densities
for α + 40Ca and α + 58Ni elastic scatterings at Elab =
240 MeV.

as the distance of closest approach determined from the
formula Rs = {η +

√
η2 + L1/2(L1/2 + 1)}/k, and also

reflected in the reaction cross section. The values of
L1/2,Rs are listed in Table 2 along with the ones of σRs

and σR. As this Table shows, the geometrical reaction
cross sections (σRs = πR2

s) are comparable to the ones
σR obtained from partial wave sum, which is determined
by σR = (π/k2)

∑∞
L=0(2L + 1)TL. We can see that the

Rs and the σR obtained from the surface-matched Gaus-
sian densities are somewhat less than the ones from the
non-surface-matched ones.

V. CONCLUDING REMARKS

An analysis of α + 40Ca and α + 58Ni elastic scat-
tering data at Elab = 240 MeV have been made within
the framework of the Coulomb-modified Glauber model
using two kinds of Gaussian density parameters for the
target nuclei: one is obtained from root-mean-square
radius, and the other is from matching the Gaussian
density to the 2-parameter Fermi density. The calcu-
lations using two kinds of Gaussian density parameters
for elastic differential cross sections have been compared.
We have found that the calculated results obtained from
the surface-matched Gaussian density parameters repro-
duced reasonably well the elastic cross section structure,
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and gave better fits with the experimental data, in com-
parison with the results from non-surface-matched ones.
This tell us the necessity of the use of surface-matched
Gaussian density in the analysis of elastic scattering in-
volving heavy nucleus. Through the near-side and the
far-side decompositions of the elastic cross section, the
oscillatory structures observed in the angular distribu-
tions of both system are considered to be due to strong
interference between the near-side and the far-side scat-
tering components. The behaviors of the large-angle
cross sections are attributed to the dominance of the far-
side scattering.

The phase shifts from the surface-matched Gaussian
density decrease more rapidly and have somewhat lower
values around the critical angular momentum L1/2, com-
pared to the results from non-surface-matched ones. We
can infer that the differences of phase shift around L1/2

produced somewhat different behaviors of elastic cross
sections because most of the contributions to the dif-
ferential cross sections are comes from the surface re-
gion. Such behaviors of phase shift reflected also in the
strong absorption radii and the reaction cross sections.
The strong absorption radii and the reaction cross sec-
tions using the surface-matched Gaussian density param-
eters gave somewhat lower values than the results using
non-surface-matched ones. These changes are thought to
be occurred by the behavior of imaginary phase shift in
the surface region around the critical angular momentum
L1/2.
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