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Abstract
The (3+1)-dimensional double sine-Gordon equation plays a crucial role in various physi-
cal phenomena, including nonlinear wave propagation, field theory, and condensed matter 
physics. However, obtaining exact solutions to this equation faces significant challenges. In 

this article, we successfully employ a modified 
(

G
′

G2

)

-expansion and improved tan
(

�(�)

2

)

-expansion methods to construct new analytical solutions to the double sine-Gordon equa-
tion. These solutions can be divided into four categories like trigonometric function solu-
tions, hyperbolic function solutions, exponential solutions, and rational solutions. Our key 
findings include a rich spectrum of soliton solutions, encompassing bright, dark, singular, 
periodic, and mixed types, showcasing the (3+1)-dimensional double sine-Gordon equa-
tion ability to model diverse wave behaviors. We uncover previously unreported complex 
wave structures, revealing the potential for complex nonlinear interactions within the 
(3+1)-dimensional double sine-Gordon equation framework. We demonstrate the modified 
(

G
′

G2

)

-expansion and improved tan
(

�(�)

2

)

-expansion methods effectiveness in handling 

higher-dimensional nonlinear partial differential equations, expanding their applicability in 
mathematical physics. These method offers enhanced flexibility and broader solution cate-
gories compared to conventional approaches.

Keywords  (3 + 1)-Dimensional double sine-Gordon equation · Solitons solutions · 

Modified 
(

G′

G2

)

-expansion method · Improved tan
(

�(�)

2

)

-expansion method

1  Introduction

The (3+1)-dimensional double sine-Gordon equation, a well-known nonlinear partial dif-
ferential equation with many applications in mathematical physics, describes the evolution 
of complex wave patterns in multidimensional space and time. Evolution equations, which 
include both ordinary and partial differential equations, describe how systems change over 
time, while nonlinear partial differential equations are involved partial derivatives and 
emphasize nonlinear connections among variables, setting them apart within the realm of 
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evolution equations (Al-Ali 2013; Zheng 2004; Evans 2022). In many branches of mathe-
matical physics, including field theory, condensed matter physics, and nonlinear wave 
propagation, the (3+1)-dimensional double sine-Gordon equation is the gold standard. 
However, it has shown to be a challenging task to uncover its secrets through exact solu-
tions. In this paper, we explore into the analytical solutions of this interesting equation, 

uncovering new perspectives into its behaviour by the implementation of a modified 
(

G′

G2

)

-expansion and improved tan
(

�(�)

2

)

-expansion methods.

In space-time dimension, the classical Sine-Gordon equation is a significant nonlinear 
evolution partial differential equation. It has a significant history (Harrison 1999), includes 
a wide range of solutions, and exhibits complex dynamics. They have revealed usage in 
several disciplines of physics (Kivshar and Malomed 1989; Dauxois and Peyrard 2006). 
In past years, more attention has been paid to the impact of inhomogeneities on the spread 
of solitons (Kumar and Kumar 2022; Yang et al. 2019). Solitons flow with constant speed 
and shape as an integrable solution in the classical sine-Gorden model. Solitons may, dis-
play more complex motion with varying velocity and structure under various situations 
due to the inhomogeneities inside the medium (Contoyiannis et al. 2021). This might be 
a useful impact for quick communication, quick movement, or perhaps a potential soliton 
cannon (Ekomasov et al. 2018; Manoranjan 2021). The exact soliton solutions for the sine-
Gordon equation were found in Hirota (1973) using Hirota’s approach (Zagrodziński 1979) 
using Lamb’s method, Leibbrandt (1978) using the Backlund transformation (Kaliappan 
and Lakshmanan 1979). Other authors have taken a variety of different approaches based 
on various ways to solve the equation.

There are exact solutions for many different variations of the sine-Gordon equation, 
which is a significant nonlinear partial differential equation in mathematical physics with 
various applications (Gani et al. 2019; Gul et al. 2018; Joseph 2020a, b; Mohammadi and 
Riazi 2019). There are numerous applications for the sinh-Gordon equation and its modi-
fications, and a number of the precise solutions for these equations utilizing the Lie group 
and the straightforward equation methods may be found in Magalakwe et al. (2015, 2022), 
Faridi et al. (2024), Akbar et al. (2023), Eslami and Rezazadeh (2016), Eslami et al. (2014), 
Asghari et al. (2023a), Asghari et al. (2023b), Inan et al. (2017), Duran et al. (2012), Uddin 
et al. (2011), Inan et al. (2011) and Asghari et al. (2023).

The group of 
(

G′

G

)

-expansion methods is special and gives nonlinear evolution 

equations approximately exact solutions. Li and Liu (2008) developed the 
(

G′

G

)

-expan-

sion method to construct new traveling wave solutions to nonlinear evolution equations 

related issues. The extended 
(

G′

G

)

-expansion method, which Zayed and Gepreel (2009) 

presented in 2009, successfully confirmed the effectiveness and accuracy of the 
(

G′

G

)

-expansion method. The two variables 
(

G′

G
,
1

G

)

-expansion method can be used to cre-

ate traveling wave solutions of nonlinear evolution equations, as has occasionally been 
shown by many scientists and mathematicians. The concept was first presented forward 

by Li et al. (2010) in the year 2010. Recently, several writers have suggested the 
(

G′

G2

)
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-expansion method to obtain novel soliton solutions for numerous nonlinear evolution 

equations. The modified 
(

G′

G2

)

-expansion method, which has more unknown parame-

ters, is the penultimate innovation of the 
(

G′

G2

)

-expansion approach.

The tan
(

�(�)

2

)

-expansion method has a wide range of applications. For various 

nonlinear fractional physical models, Manafian and Farshbaf Zinati (2020) use the 

tan

(

�(�)

2

)

-expansion approach to find trigonometric function, hyperbolic function, 

exponential function and rational function solutions. Ugurlu et al. (2017) obtained trave-
ling wave solutions of the potential KdV equation (pKdV), and the (3+1)-dimensional 

shallow water wave equation (SWWE) with the help of the tan
(

�(�)

2

)

 - expansion 

method. The (2+1)-dimensional Kadomtsev–Petviashvili–Benjamin–Bona–Mahony 
(KP-BBM) wave equation was solved using this method by Khan et al. (2018), who got 
several different types of exact solutions. Abundant soliton solutions for Rad-
hakrishnan–Kundu–Laksmanan (RKL) equation with Kerr law non-linearity by Akram 
et al. (2021) and Younis et al. (2021) using the suggested method.

The main advantage of these approaches is their ability to provide exact analytical 
solutions for various kinds of nonlinear partial differential equations. These are particu-
larly helpful since they provide researchers with closed-form expressions that highlight 
the functional forms of the solutions. These methods follow a structured and systematic 
approaches. Researchers can easily access the approaches due to their systematic nature, 
which also helps to organise the solution process. Nonlinear partial differential equa-
tions are common in mathematical physics and other scientific fields, and these tech-
niques are specifically made to deal with them. These are especially useful for solving 
equations with nonlinear terms, providing insight into the behavior of complex systems. 
These approaches have the disadvantage that, although they are effective for particular 
classes of nonlinear partial differential equations, their ability to be generalised may be 
restricted in other situations. Certain forms of nonlinear partial differential equations, 
particularly those with incredibly complicated or irregular solutions, may provide dif-
ficulties for the approaches to handle. Numerical techniques or other analytical methods 
might be better suitable in these situations.

2 � Description of the methods

Consider a nonlinear partial differential equation

where � = �(x, y, z, t) is unknown variable, x, y, z, and t are denoted partial derivatives. 
Now we introduce the wave transformation

where v is wave speed. The following nonlinear ordinary differential equation is obtained 
after substituting Eqs. 2.2 into 2.1

(2.1)P
(

� ,�x,�y,�z,�xy,�xz,�yt,⋯
)

,

(2.2)�(x, y, z, t) = Φ(�), � = x + y + z − vt,
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where prime denotes derivatives.

2.1 � The modified 
(

G′

G2

)

‑expansion method

Step 1. Assume the solution of Eq. 2.3 has the following form

where G = G(�).

where �, �, and � are constant coefficients, while M
0
,Mj and M−j (j = 1, 2,⋯ ,N) are 

unknown constants. Additionally, only one of Mj or M−j can be zero at once; neither Mj nor 
M−j can be zero simultaneously. Using the homogeneous balance principle on Eq. 2.3, we 
can calculate the value of the real number N.

Step 2. A system of algebraic equations is obtained by inserting Eqs. 2.4 and 2.5 into 2.3, 

gathering all coefficients that have the same power of 
(

G′

G2

)j

 where (j = 0, 1, 2,⋯) equal to 

zero. The system of algebraic equations can be solved by Maple software.
Step 3. The ordinary differential Eq. 2.5 has five possible types of solutions, as described 

in the following:
Type 1: If 𝜎𝜒 > 0 and � = 0 then

Type 2: If 𝜎𝜒 < 0 and � = 0 then

 Type 3: If � = 0,� ≠ 0 and � = 0 then

Type 4: If � ≠ 0 and � ≥ 0 then

(2.3)W
(

Φ,Φ�
,−vΦ�

, v2 Φ��
,⋯

)

= 0,

(2.4)Φ(�) = M
0
+

N
∑

j=1

[

Mj

(

G�

G2

)j

M−j

(

G�

G2

)−j
]

,

(2.5)
(

G�

G2

)�

= � + �

(

G�

G2

)

+ �

(

G�

G2

)2

,

(2.6)
�

G�

G2

�

=

√

����

�

Ω
1
cos

�

√

�����

�

+ Ω
2
sin

�

√

�����

�

�

�

�

Ω
2
cos

�

√

�����

�

− Ω
1
sin

�

√

�����

�

� .

(2.7)
�

G�

G2

�

= −

√

����

�

Ω
1
sinh

�

2

√

�����

�

+ Ω
1
cosh

�

2

√

�����

�

+ Ω
2

�

�

�

Ω
1
cosh

�

2

√

�����

�

+ Ω
1
sinh

�

2

√

�����

�

− Ω
2

� .

(2.8)
(

G�

G2

)

= −
Ω

1

�
(

Ω
1
� + Ω

2

) .
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Type 5: If � ≠ 0 and 𝜆 < 0 then

where Ω
1
,Ω

2
 are arbitrary real numbers and � = �2 − 4��.

Step 4. The exact solutions of Eq.  2.1 can be obtained by inserting the values of 

M
0
,Mj,M−j and G

′

G2
 into Eq. 2.4 and then putting into Eq. 2.2.

2.2 � The improved tan
(

�(�)

2

)

‑expansion method

Step 1. Suppose the solution of Eq.  2.3 has the following form Manafian and Farshbaf 
Zinati (2020), Khan et al. (2018) and Akram et al. (2021)

where Mj and M−j are unknown constants, such that both Mj ≠ 0 and M−j ≠ 0 and �(�) sat-
isfies the following ordinary differential equation

for sake of simplicity we convert sin (�(�)) and cos (�(�)) into tan (�(�)∕2) , so we can write

Step 2. Inserting Eqs. 2.11, along with  2.12, 2.13 into Eq. 2.3, then setting the coefficients 

of same powers of 
(

tan

(

�(�)

2

))j

 , where (j = 0, 1, 2,⋯) equal to zero, we obtained a sys-

tem of algebraic equations.
We will consider the following special solutions of Eq. 2.12:
Type 1: If 𝜆 = 𝜎2 + 𝜃2 − 𝜒2 < 0 and � − � ≠ 0 then

Type 2: If 𝜆 = 𝜎2 + 𝜃2 − 𝜒2 > 0 and � − � ≠ 0 then

(2.9)
�

G�

G2

�

= −
�

2�
−

√

�

�

Ω
1
cosh

�
√

�

2
�

�

+ Ω
2
sinh

�
√

�

2
�

��

2�

�

Ω
2
cosh

�
√

�

2
�

�

+ Ω
1
sinh

�
√

�

2
�

�� .

(2.10)
�

G�

G2

�

= −
�

2�
−

√

−�

�

Ω
1
cos

�
√

−�

2
�

�

− Ω
2
sin

�
√

−�

2
�

��

2�

�

Ω
2
cos

�
√

−�

2
�

�

+ Ω
1
sin

�
√

−�

2
�

�� ,

(2.11)Φ(�) =

N
∑

j=0

Mj

(

k + tan

(

�(�)

2

))j

+

N
∑

j=1

M−j

(

k + tan

(

�(�)

2

))−j

,

(2.12)�
�

(�) = � sin (�(�)) + � cos (�(�)) + � ,

(2.13)sin (�(�)) =
2 tan (�(�)∕2)

1 + tan2 (�(�)∕2)
, cos (�(�)) =

1 − tan
2 (�(�)∕2)

1 + tan2 (�(�)∕2)
.

(2.14)𝜙(𝜉) = 2 tan
−1

�

𝜎

𝜃 − 𝜒
−

√

−𝜆

𝜃 − 𝜒
tan

�
√

−𝜆

2
𝜉

�

�

.
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Type 3: If 𝜆 = 𝜎2 + 𝜃2 − 𝜒2 > 0, 𝜃 ≠ 0 and � = 0 then

Type 4: If 𝜆 = 𝜎2 + 𝜃2 − 𝜒2 < 0,𝜒 ≠ 0 and � = 0 then

Type 5: If 𝜆 = 𝜎2 + 𝜃2 − 𝜒2 > 0, 𝜃 − 𝜒 ≠ 0 and � = 0 then

Type 6: If � = 0 and � = 0 then

Type 7: If � = 0 and � = 0 then

Type 8: If �2 + �2 = �2 then

Type 9: If � = � = � = s� then

Type 10: If � = � = s� and � = −s� then

Type 11: If � = � then

Type 12: If � = � then

(2.15)𝜙(𝜉) = 2 tan
−1

�

𝜎

𝜃 − 𝜒
+

√

𝜆

𝜃 − 𝜒
tanh

�
√

𝜆

2
𝜉

�

�

.

(2.16)𝜙(𝜉) = 2 tan
−1

�

𝜎

𝜃
+

√

𝜃2 + 𝜎2

𝜃
tanh

�
√

𝜃2 + 𝜎2

2
𝜉

�

�

.

(2.17)𝜙(𝜉) = 2 tan
−1

�

−
𝜎

𝜒
+

√

𝜒2 − 𝜎2

𝜒
tan

�
√

𝜒2 − 𝜎2

2
𝜉

�

�

.

(2.18)𝜙(𝜉) = 2 tan
−1

�

�

𝜃 + 𝜒

𝜃 − 𝜒
tanh

�
√

𝜃2 − 𝜒2

2
𝜉

�

�

.

(2.19)𝜙(𝜉) = tan
−1

[

e2𝜃𝜉 − 1

e2𝜃𝜉 + 1

,
2e𝜃𝜉

e2𝜃𝜉 + 1

]

.

(2.20)𝜙(𝜉) = tan
−1

[

2e𝜎𝜉

e2𝜎𝜉 + 1

,
e2𝜎𝜉 − 1

e2𝜎𝜉 + 1

]

.

(2.21)𝜙(𝜉) = 2 tan
−1

[

𝜎𝜉 + 2

(𝜃 − 𝜒)𝜉

]

.

(2.22)𝜙(𝜉) = 2 tan
−1

[

es𝜎𝜉 − 1

]

.

(2.23)𝜙(𝜉) = −2 tan
−1

[

es𝜎𝜉

−1 + es𝜎𝜉

]

.

(2.24)𝜙(𝜉) = −2 tan
−1

[

(𝜎 + 𝜃)e𝜃𝜉 − 1

(𝜎 − 𝜃)e𝜃𝜉 − 1

]

.
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Type 13: If � = −� then

Type 14: If � = −� then

Type 15: If � = 0 and � = � then

Type 16: If � = 0 and � = � then

Type 17: If � = 0 and � = −� then

Type 18: If � = 0 and � = 0 then

Type 19: If � = � then

where 𝜉 = 𝜉 + C.
Step 4. The exact solutions of Eq. 2.1 are obtained by inserting the values of M

0
,Mj,M−j 

and �(�) into Eq. 2.4 and then putting the value of �(x, y, z, t) into Eq. 3.5.

3 � Application of the methods

Consider the (3 + 1) dimensional double sine-Gordon equation Wang (2021) as:

Now

(2.25)𝜙(𝜉) = 2 tan
−1

[

(𝜃 + 𝜒)e𝜃𝜉 + 1

(𝜃 − 𝜒)e𝜃𝜉 − 1

]

.

(2.26)𝜙(𝜉) = 2 tan
−1

[

e𝜃𝜉 + 𝜃 − 𝜎

e𝜃𝜉 − 𝜃 − 𝜎

]

.

(2.27)𝜙(𝜉) = 2 tan
−1

[

𝜎e𝜎𝜉

1 − 𝜒e𝜎𝜉

]

.

(2.28)𝜙(𝜉) = −2 tan
−1

[

𝜒𝜉 + 2

𝜒𝜉

]

.

(2.29)𝜙(𝜉) = 2 tan
−1

[

𝜒𝜉

]

.

(2.30)𝜙(𝜉) = −2 tan
−1

[

1

𝜒𝜉

]

.

(2.31)�(�) = �� + C.

(2.32)𝜙(𝜉) = 2 tan
−1

[

e𝜎𝜉 − 𝜒

𝜎

]

,

(3.1)�xx + 2�xy − �xz + �yy − �zy − �xt − �yt + �zt = sin� + sin 2� .

(3.2)�(x, y, z, t) = ei�(x,y,z,t)
,
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Also

The (3+1)-dimensional sine-Gordon equation is changed to an equivalent nonlinear partial 
differential equation, which is represented as, by substituting Eqs. 3.3 and 3.4 into Eq. 3.1.

Making wave transformation

where � = �x + �y + �z − v t . For sake of simplicity take � = � = � =1. To convert into 
nonlinear partial differential equation, substitute Eqs. 3.7 into 3.6

3.1 � Exact solutions by the improved 
(

G′

G2

)

‑expansion method

With N = 1 , Eq. 2.4 contains the following formal solution

Substituting Eqs. 3.9 and  2.5 into Eq. 3.8 and collecting all coefficients that have the same 

powers of 
(

G�

G2

)i

, i = 0, 1,⋯ , 8, equals to zero, the following system of algebraic equations 
is obtained

(3.3)�(x, y, z, t) =
1

i
ln�(x, y, z, t),

(3.4)sin � =
� − �−1

2i
, sin 2� =

�2 − �−2

2i
, cos � =

� + �−1

2
,

(3.5)�(x, y, z, t) = cos
−1

(

�(x, y, z, t) + �−1(x, y, z, t)

2

)

,

(3.6)

2��xx − 2�2
x + 4��xy − 4�x �y − 2��xz + 2�x �z

+ 2��yy − 2�2
y − 2��yz + 2�y �z − 2��xt

+ 2�t �x − 2��yt + 2�t �y + 2��zt

− 2�t �z − �4 − �3 + � + 1 = 0.

(3.7)� = Φ(� ),

(3.8)2 (2 + v) Φ(� ) Φ
��

(� ) − 2 (2 + v)
(

Φ
�

(� )
)2

− Φ4 − Φ3(� ) + Φ(� ) + 1 = 0,

(3.9)Φ(� ) = M
0
+ M

1

(

G�

G2

)

+ M−1

(

G�

G2

)−1

,
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Solving Eq. 3.10 with the help of Mathematica, we have

Plugging Eq. 3.13 along with Eqs. 3.9 into 3.7 then we obtained following soliton solutions 
of 3.1,

Type 1: If 𝜎 𝜒 > 0 and � = 0 then

(3.10)

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

4 �2M2
−1 − M4

−1 + 2 v �2M2
−1 = 0,

4 � �M2
−1 + 4 v �2M0M−1 − M3

−1 + 8 �2M0M−1
+ 2 v � �M2

−1 − 4M0M3
−1 = 0,

6 v � �M0M−1 − 3M0M2
−1 − 4M1M3

−1 + 8 v �2M1M−1
+ 16 �2M1M−1 − 6M2

0M
2
−1 + 12 � �M0M−1 = 0,

−3M2
0M−1 − 3M1M2

−1 − 4M3
0M−1 + 32 � �M1M−1

+ 8 � � M0M−1 − 4 � � M2
−1 − 2 v � � M2

−1
+ 4 v � � M0M−1 + 4 �2M0M−1 + M−1 − 12M0M1M2

−1
+ 2 v �2M0M−1 + 16 v � �M1M−1 = 0,

M0 + 4 � �M0M1 + 4 � � M0M−1 − M4
0 − 4�2M2

−1
+ 2 v � �M0M1 − 6M0M1M−1 + 2 v � � M0M−1

+ 16 �2M1M−1 − 4 �2M2
1 + 16 v � � M1M−1 − M3

0
− 2 v �2M2

1 + 1 + 32 � � M1M−1 − 12M2
0M1M−1

+ 8 v �2M1M−1 − 6M2
1M

2
−1 − 2 v�2M2

−1 = 0,
16 v � � M1M−1 + 2 v �2M0M1 − 12M0M2

1M−1 + M1
− 2 v � �M2

1 − 4 � �M2
1 + 4 v � � M0M1 − 3M2

0M1
− 4M3

0M1 + 32 � � M1M−1 + 8 � � M0M1 − 3M2
1M−1 + 4 �2M0M1 = 0,

−3M0M2
1 + 16�2M−1M1 − 6M2

0M
2
1 − 4M3

1M−1 + 12 � � M0M1
+ 8 v�2M−1M1 + 6 v � � M0M1 = 0,

8�2M0M1 + 4 � � M2
1 − M3

1 + 2 v � � M2
1 + 4 v�2M0M1 − 4M0M3

1 = 0,
2 v�2M2

1 + 4�2M2
1 − M4

1 = 0.

(3.11)M
0
= −

1

2
± �

√

3

−�2 + 4 � �
, M

1
= 0,

(3.12)M−1 = ± �

√

3

−�2 + 4 � �
, v = − 2 −

3

2
(

�2 − 4 � �
) .

(3.13)

M
0
= −

1

2
± �

√

3

−�2 + 4 � �
, M

1
= ±�

√

3

−�2 + 4 � �
,M−1 = 0, v = − 2 −

3

2
(

�2 − 4 � �
) .
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where � = x + y + z − vt.

Type 2: If 𝜎 𝜒 < 0 and � = 0 then

where � = x + y + z − vt. Type 3: If � = 0,� ≠ 0 and � = 0 then

where � = x + y + z − vt. Type 4: If � ≠ 0 and � = �2 − 4�� ≥ 0 then

(3.14)�
1,1
(x, y, z, t) = cos

−1

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

�

−
1

2
±

√

3

2

�

Ω
2
cos (

√

���)−Ω1
sin (

√

���)
Ω

1
cos (

√

���)+Ω2
sin (

√

���)

�

�2

+ 1

− 1 ±
√

3

�

Ω
2
cos (

√

���)−Ω1
sin (

√

���)
Ω

1
cos (

√

���)+Ω2
sin (

√

���)

�

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,

(3.15)

�
2,1
(x, y, z, t) = cos

−1

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

�

−
1

2
±

√

3

2

�

Ω
1
cos

�√

���
�

+ Ω
2
sin

�√

���
�

Ω
2
cos

�√

���
�

− Ω
1
sin

�√

���
�

��2

+ 1

−1 ±
√

3

�

Ω
1
cos

�√

���
�

+ Ω
2
sin

�√

���
�

Ω
2
cos

�√

���
�

− Ω
1
sin

�√

���
�

�

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,

(3.16)

�
3,2
(x, y, z, t) = cos

−1

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

�

−
1

2
∓

√

3

2

�

Ω
1
cosh

�

2

√

�����

�

+Ω
1
sinh

�

2

√

�����

�

−Ω
2

Ω
1
sinh

�

2

√

�����

�

+Ω
1
cosh

�

2

√

�����

�

+Ω
2

��2

+ 1

−1 ∓
√

3

�

Ω
1
cosh

�

2

√

�����

�

+Ω
1
sinh

�

2

√

�����

�

−Ω
2

Ω
1
sinh

�

2

√

�����

�

+Ω
1
cosh

�

2

√

�����

�

+Ω
2

�

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,

(3.17)

�
4,2
(x, y, z, t) = cos

−1

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

�

−
1

2
∓

√

3

2

�

Ω
1
sinh

�

2

√

�����

�

+Ω
1
cosh

�

2

√

�����

�

+Ω
2

Ω
1
cosh

�

2

√

�����

�

+Ω
1
sinh

�

2

√

�����

�

−Ω
2

��2

+ 1

−1 ∓
√

3

�

Ω
1
sinh

�

2

√

�����

�

+Ω
1
cosh

�

2

√

�����

�

+Ω
2

Ω
1
cosh

�

2

√

�����

�

+Ω
1
sinh

�

2

√

�����

�

−Ω
2

�

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,

(3.18)�
5,3
(x, y, z, t) = cos

−1
(

−
5

2

)

,

(3.19)

�6,4(x, y, z, t) = cos−1

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

⎛

⎜

⎜

⎜

⎜

⎜

⎝

− 1
2
∓ i

√

3
�

⎛

⎜

⎜

⎜

⎜

⎜

⎝

� +

2 � �

⎛

⎜

⎜

⎜

⎝

Ω2 cosh
⎛

⎜

⎜

⎜

⎝

√

�
2

�

⎞

⎟

⎟

⎟

⎠

+Ω1 sinh
⎛

⎜

⎜

⎜

⎝

√

�
2

�

⎞

⎟

⎟

⎟

⎠

⎞

⎟

⎟

⎟

⎠

−�

⎛

⎜

⎜

⎜

⎝

Ω2 cosh
⎛

⎜

⎜

⎜

⎝

√

�
2

�

⎞

⎟

⎟

⎟

⎠

+Ω1 sinh
⎛

⎜

⎜

⎜

⎝

√

�
2

�

⎞

⎟

⎟

⎟

⎠

⎞

⎟

⎟

⎟

⎠

−
√

�

⎛

⎜

⎜

⎜

⎝

Ω1 cosh
⎛

⎜

⎜

⎜

⎝

√

�
2

�

⎞

⎟

⎟

⎟

⎠

+Ω2 sinh
⎛

⎜

⎜

⎜

⎝

√

�
2

�

⎞

⎟

⎟

⎟

⎠

⎞

⎟

⎟

⎟

⎠

⎞

⎟

⎟

⎟

⎟

⎟

⎠

⎞

⎟

⎟

⎟

⎟

⎟

⎠

2

+ 1

−1 ∓ i 2
√

3
�

⎛

⎜

⎜

⎜

⎜

⎜

⎝

� +

2 � �

⎛

⎜

⎜

⎜

⎝

Ω2 cosh
⎛

⎜

⎜

⎜

⎝

√

�
2

�

⎞

⎟

⎟

⎟

⎠

+Ω1 sinh
⎛

⎜

⎜

⎜

⎝

√

�
2

�

⎞

⎟

⎟

⎟

⎠

⎞

⎟

⎟

⎟

⎠

−�

⎛

⎜

⎜

⎜

⎝

Ω2 cosh
⎛

⎜

⎜

⎜

⎝

√

�
2

�

⎞

⎟

⎟

⎟

⎠

+Ω1 sinh
⎛

⎜

⎜

⎜

⎝

√

�
2

�

⎞

⎟

⎟

⎟

⎠

⎞

⎟

⎟

⎟

⎠

−
√

�

⎛

⎜

⎜

⎜

⎝

Ω1 cosh
⎛

⎜

⎜

⎜

⎝

√

�
2

�

⎞

⎟

⎟

⎟

⎠

+Ω2 sinh
⎛

⎜

⎜

⎜

⎝

√

�
2

�

⎞

⎟

⎟

⎟

⎠

⎞

⎟

⎟

⎟

⎠

⎞

⎟

⎟

⎟

⎟

⎟

⎠

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,
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where � = x + y + z − vt.

Type 5: If � ≠ 0 and 𝜆 = 𝜃2 − 4𝜎𝜒 < 0 then

where � = x + y + z − vt.

3.2 � Exact solutions by the improved tan
(

�(�)

2

)

‑expansion method

Equation 2.11 contains the following formal solution

(3.20)

�
7,4
(x, y, z, t) = cos

−1

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

⎛

⎜

⎜

⎜

⎜

⎜

⎝

−
1

2
∓

i

2

�

3

�

⎛

⎜

⎜

⎜

⎜

⎜

⎝

� −

√

�

⎛

⎜

⎜

⎜

⎝

Ω
1
cosh

⎛

⎜

⎜

⎜

⎝

√

�

2
�

⎞

⎟

⎟

⎟

⎠

+Ω
2
sinh

⎛

⎜

⎜

⎜

⎝

√

�

2
�

⎞

⎟

⎟

⎟

⎠

⎞

⎟

⎟

⎟

⎠

Ω
2
cosh

⎛

⎜

⎜

⎜

⎝

√

�

2
�

⎞

⎟

⎟

⎟

⎠

+Ω
1
sinh

⎛

⎜

⎜

⎜

⎝

√

�

2
�

⎞

⎟

⎟

⎟

⎠

⎞

⎟

⎟

⎟

⎟

⎟

⎠

⎞

⎟

⎟

⎟

⎟

⎟

⎠

2

+ 1

−1 ∓ i

�

3

�

⎛

⎜

⎜

⎜

⎜

⎜

⎝

� −

√

�

⎛

⎜

⎜

⎜

⎝

Ω
1
cosh

⎛

⎜

⎜

⎜

⎝

√

�

2
�

⎞

⎟

⎟

⎟

⎠

+Ω
2
sinh

⎛

⎜

⎜

⎜

⎝

√

�

2
�

⎞

⎟

⎟

⎟

⎠

⎞

⎟

⎟

⎟

⎠

Ω
2
cosh

⎛

⎜

⎜

⎜

⎝

√

�

2
�

⎞

⎟

⎟

⎟

⎠

+Ω
1
sinh

⎛

⎜

⎜

⎜

⎝

√

�

2
�

⎞

⎟

⎟

⎟

⎠

⎞

⎟

⎟

⎟

⎟

⎟

⎠

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,

(3.21)

�8,5(x, y, z, t) = cos−1

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

⎛

⎜

⎜

⎜

⎜

⎜

⎝

− 1
2
±
√

3
�

⎛

⎜

⎜

⎜

⎜

⎜

⎝

� +

2 � �

⎛

⎜

⎜

⎜

⎝

Ω2 cos
⎛

⎜

⎜

⎜

⎝

√

−�
2

�

⎞

⎟

⎟

⎟

⎠

+Ω1 sin
⎛

⎜

⎜

⎜

⎝

√

−�
2

�

⎞

⎟

⎟

⎟

⎠

⎞

⎟

⎟

⎟

⎠

−�

⎛

⎜

⎜

⎜

⎝

Ω2 cos
⎛

⎜

⎜

⎜

⎝

√

−�
2

�

⎞

⎟

⎟

⎟

⎠

+Ω1 sin
⎛

⎜

⎜

⎜

⎝

√

−�
2

�

⎞

⎟

⎟

⎟

⎠

⎞

⎟

⎟

⎟

⎠

−
√

−�

⎛

⎜

⎜

⎜

⎝

Ω1 cos
⎛

⎜

⎜

⎜

⎝

√

−�
2

�

⎞

⎟

⎟

⎟

⎠

−Ω2 sin
⎛

⎜

⎜

⎜

⎝

√

−�
2

�

⎞

⎟

⎟

⎟

⎠

⎞

⎟

⎟

⎟

⎠

⎞

⎟

⎟

⎟

⎟

⎟

⎠

⎞

⎟

⎟

⎟

⎟

⎟

⎠

2

+ 1

−1 ± 2
√

3
�

⎛

⎜

⎜

⎜

⎜

⎜

⎝

� +

2 � �

⎛

⎜

⎜

⎜

⎝

Ω2 cos
⎛

⎜

⎜

⎜

⎝

√

−�
2

�

⎞

⎟

⎟

⎟

⎠

+Ω1 sin
⎛

⎜

⎜

⎜

⎝

√

−�
2

�

⎞

⎟

⎟

⎟

⎠

⎞

⎟

⎟

⎟

⎠

−�

⎛

⎜

⎜

⎜

⎝

Ω2 cos
⎛

⎜

⎜

⎜

⎝

√

−�
2

�

⎞

⎟

⎟

⎟

⎠

+Ω1 sin
⎛

⎜

⎜

⎜

⎝

√

−�
2

�

⎞

⎟

⎟

⎟

⎠

⎞

⎟

⎟

⎟

⎠

−
√

−�

⎛

⎜

⎜

⎜

⎝

Ω1 cos
⎛

⎜

⎜

⎜

⎝

√

−�
2

�

⎞

⎟

⎟

⎟

⎠

−Ω2 sin
⎛

⎜

⎜

⎜

⎝

√

−�
2

�

⎞

⎟

⎟

⎟

⎠

⎞

⎟

⎟

⎟

⎠

⎞

⎟

⎟

⎟

⎟

⎟

⎠

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,

(3.22)

�
9,5
(x, y, z, t) = cos

−1

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

⎛

⎜

⎜

⎜

⎜

⎜

⎝

−
1

2
∓

i

2

�

3

�

⎛

⎜

⎜

⎜

⎜

⎜

⎝

� −

√

−�

⎛

⎜

⎜

⎜

⎝

Ω
1
cos

⎛

⎜

⎜

⎜

⎝

√

−�

2
�

⎞

⎟

⎟

⎟

⎠

−Ω
2
sin

⎛

⎜

⎜

⎜

⎝

√

−�

2
�

⎞

⎟

⎟

⎟

⎠

⎞

⎟

⎟

⎟

⎠

Ω
2
cos

⎛

⎜

⎜

⎜

⎝

√

−�

2
�

⎞

⎟

⎟

⎟

⎠

+Ω
1
sin

⎛

⎜

⎜

⎜

⎝

√

−�

2
�

⎞

⎟

⎟

⎟

⎠

⎞

⎟

⎟

⎟

⎟

⎟

⎠

⎞

⎟

⎟

⎟

⎟

⎟

⎠

2

+ 1

−1 ∓ i

�

3

�

⎛

⎜

⎜

⎜

⎜

⎜

⎝

� −

√

−�

⎛

⎜

⎜

⎜

⎝

Ω
1
cos

⎛

⎜

⎜

⎜

⎝

√

−�

2
�

⎞

⎟

⎟

⎟

⎠

−Ω
2
sin

⎛

⎜

⎜

⎜

⎝

√

−�

2
�

⎞

⎟

⎟

⎟

⎠

⎞

⎟

⎟

⎟

⎠

Ω
2
cos

⎛

⎜

⎜

⎜

⎝

√

−�

2
�

⎞

⎟

⎟

⎟

⎠

+Ω
1
sin

⎛

⎜

⎜

⎜

⎝

√

−�

2
�

⎞

⎟

⎟

⎟

⎠

⎞

⎟

⎟

⎟

⎟

⎟

⎠

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,

(3.23)Φ(� ) = M
0
+M

1

(

k + tan

(

�(� )

2

))

+M−1

(

k + tan

(

�(� )

2

))−1

,
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Substituting Eqs. 3.23, 2.12 and 2.13 into  3.8 and collecting all coefficients that have the 

same powers of tan
(

�(� )

2

)i

, i = 0, 1,⋯ , 8, equals to zero, the following result of alge-

braic equations is solved with the help of Maple

Plugging 3.24 along with Eqs. 3.23 into 3.7 then the soliton solutions of Eq. 3.1 are listed 
below

Type 1: When 𝜆 = 𝜎2 + 𝜃2 − 𝜒2 < 0 and � − � ≠ 0 then

where 𝜁 = (x + y + z − vt) + C.

Type 2: When 𝜆 = 𝜎2 + 𝜃2 − 𝜒2 > 0 and � − � ≠ 0 then

where 𝜁 = (x + y + z − vt) + C.

Type 3: When 𝜆 = 𝜎2 + 𝜃2 − 𝜒2 > 0 , � ≠ 0, and � = 0 then

where 𝜁 = (x + y + z − vt) + C. Type 4: When 𝜆 = 𝜎2 + 𝜃2 − 𝜒2 < 0 , � ≠ 0, and � = 0 
then

(3.24)

M
0
=

±
√

3(k � − � − k �) −

�

−
�

�2 + �2 − �2
�

2

�

−
�

�2 + �2 − �2
�

,

M
1
= ±

√

3(� − �)

2

�

−
�

�2 + �2 − �2
�

,

M−1 =0, v = −
4
�

�2 + �2 − �2
�

+ 3

2
�

�2 + �2 − �2
�

(3.25)𝜓
1,1
(x, y, z, t) = cos

−1

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

�

−
1

2
∓

√

3

2
tan

�
√

−𝜆

2
𝜁

��2

+ 1

−1 ∓
√

3 tan

�
√

−𝜆

2
𝜁

�

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,

(3.26)𝜓
2,2
(x, y, z, t) = cos

−1

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

�

−
1

2
∓ i

√

3

2
tanh

�
√

𝜆

2
𝜁

��2

+ 1

−1 ∓ i
√

3 tanh

�
√

𝜆

2
𝜁

�

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,

(3.27)𝜓
3,3
(x, y, z, t) = cos

−1

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

�

−
1

2
∓ i

√

3

2
tanh

�
√

𝜎2 + 𝜃2

2
𝜁

��2

+ 1

−1 ∓ i
√

3 tanh

�
√

𝜎2 + 𝜃2

2
𝜁

�

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,
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where 𝜁 = (x + y + z − vt) + C. Type 5: When 𝜆 = 𝜎2 + 𝜃2 − 𝜒2 > 0 , � − � ≠ 0, and � = 0 
then

where 𝜁 = (x + y + z − vt) + C. Type 6: When � = 0, and � = 0 then

where 𝜁 = (x + y + z − vt) + C. Type 7: When � = 0, and � = 0 then

Type 8: When � = � = � = s � then

Type 9: When � = � = s � and � = −s � then

(3.28)𝜓
4,4
(x, y, z, t) = cos

−1

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

�

−
1

2
∓

√

3

2
tan

�
√

𝜒2 − 𝜎2

2
𝜁

��2

+ 1

−1 ∓
√

3 tan

�
√

𝜒2 − 𝜎2

2
𝜁

�

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,

(3.29)𝜓
5,5
(x, y, z, t) = cos

−1

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

�

−
1

2
±

1

2

�

3

𝜒 − 𝜃
tanh

�
√

𝜃2 − 𝜒2

2
𝜁

��2

+ 1

−1 ±

�

3

𝜒 − 𝜃
tanh

�
√

𝜃2 − 𝜒2

2
𝜁

�

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,

(3.30)

𝜓
6,6
(x, y, z, t) = cos

−1

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

�

−
1

2
∓ i

√

3

2
tan

�

1

2
tan

−1

�

e2𝜃𝜁 − 1

e2𝜃𝜁 + 1

,
2e𝜃𝜁

e2𝜃𝜁 + 1

��

�2

+ 1

−1 ∓ i
√

3 tan

�

1

2
tan−1

�

e2𝜃𝜁 − 1

e2𝜃𝜁 + 1

,
2e𝜃𝜁

e2𝜃𝜁 + 1

��

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,

(3.31)�
7,7
(x, y, z, t) = cos

−1

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

�

−1 ± i
√

3

2

�2

+ 1

−1 ± i
√

3

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

(3.32)�
8,8
(x, y, z, t) = cos

−1

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

�

−1 ± i
√

3

2

�2

+ 1

−1 ± i
√

3

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.
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where 𝜁 = (x + y + z − vt) + C.

Type 10: When � = � then

where 𝜁 = (x + y + z − vt) + C.

Type 11: When � = � then

where 𝜁 = (x + y + z − vt) + C. Type 12: When � = −� then

where 𝜁 = (x + y + z − vt) + C. Type 13: When � = −� then

where 𝜁 = (x + y + z − vt) + C. Type 14: When � = 0 and � = 0 then

(3.33)𝜓
9,9
(x, y, z, t) = cos

−1

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

�

−1 ± i
√

3

2
∓ i

√

3 es𝜎𝜁

es𝜎𝜁 − 1

�2

+ 1

−1 ± i
√

3 ∓ i
2

√

3 es𝜎𝜁

es𝜎𝜁 − 1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,

(3.34)𝜓
10,10

(x, y, z, t) = cos
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⎛
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⎜

⎜

⎜

⎜

⎜

⎝

�

−
1

2
∓ i

√

3

2

�

1+(𝜎−𝜃)e𝜃𝜁

(𝜎−𝜃)e𝜃𝜁−1

�

�2

+ 1

−1 ∓ i
√

3

�

1+(𝜎−𝜃)e𝜃𝜁
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�

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,

(3.35)𝜓
11,11

(x, y, z, t) = cos
−1

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

�

−
1

2
∓ i

√

3

2

�

1+(𝜃−𝜒)e𝜃𝜁
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�

�2

+ 1

−1 ∓ i
√

3

�

1+(𝜃−𝜒)e𝜃𝜁

(𝜃−𝜒)e𝜃𝜁−1

�

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,

(3.36)𝜓
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(x, y, z, t) = cos
−1

⎛

⎜

⎜

⎜

⎜

⎜
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1

2
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√

3

2

�
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�
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3

�
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�

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,

(3.37)𝜓
13,13
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⎛
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⎜

⎜

⎜

⎜

⎜

⎝
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1

2
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3

2

�
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�
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√

3

�

1 +
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�
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where � = x + y + z − vt. Type 15: When � = � then

(3.38)�
14,14

(x, y, z, t) = cos
−1

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

�

−
1

2
∓

√

3

2
tan

�

�� + C

2

�

�2

+ 1

−1 ∓
√

3 tan

�

�� + C

2

�

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,

(3.39)�
15,15

(x, y, z, t) = cos
−1

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

�

−1 ± i
√

3

2

�2

+ 1

−1 ± i
√

3

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

Fig. 1   3D and contour graphs of �3,2 for different values of parameters: 
Ω1 = 1, Ω2 = −10.2, � = 2, � = 0, � = −0.35, y = 0, z = 0

Fig. 2   3D and contour graphs of �4,2 for different values of parameters: 
Ω1 = 0.5, Ω2 = 0.002, � = 1.9, � = 0, � = −0.65, y = 0, z = 0
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Fig. 3   3D and contour graphs of �6,4 for different values of parameters: 
Ω1 = 4.2, Ω2 = 1.2, � = 5, � = 1.5, � = 0.19, y = 0, z = 0

Fig. 4   3D and contour graphs of �7,4 for different values of parameters: 
Ω1 = 14.2, Ω2 = 4.2, � = 5, � = 1.5, � = 0.19, y = 0, z = 0

Fig. 5   3D and contour graphs of �9,5 for different values of parameters: 
Ω1 = −15.29, Ω2 = 7.02, � = 4.03, � = 6.5, � = 1.89, y = 0, z = 0
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Fig. 6   3D and contour graphs of �2,2 for different values of parameters: 
� = 2, � = 0, � = −0.35, C = −0.005, y = 0, z = 0

Fig. 7   3D and contour graphs of �5,5 for different values of parameter: 
� = 0, � = 1.5, � = 1, C = −5, y = 0, z = 0

Fig. 8   3D and contour graphs of �9,9 for different values of parameters: 
� = −3.03, � = 2.02, � = 0.05, C = −102.5, j = −0.05, y = 0, z = 0



	 Z. Manzoor et al.

1 3

  807   Page 18 of 23

Fig. 9   3D and contour graphs of �10,10 for different values of parameters: 
� = 100.03, � = −2.02, � = 100.03, C = −0.005, y = 0, z = 0

Fig. 10   3D and contour graphs of �11,11 for different values of parameters: 
� = 0, � = 3.2, � = 0.52, C = −0.5, y = 0, z = 0

Fig. 11   3D and contour graphs of �12,12 for different values of parameter: 
� = 118.03, � = 2.02, � = −118.03, C = −0.005, y = 0, z = 0
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4 � The graphical representation

In order to visualize the physical behavior of the solutions and explain the shape of soli-
tons, this part displays the solitions solutions using 3D, and contour graphs.

5 � Physical interpretation

We explained the 3D and contour plots that are shown in the graphical representation part 
in this section. These graphs have the goal to illustrate the wave function’s structure and 
the physical characteristics of the obtained solutions. We discuss the interpretation of these 
graphs and their importance in understanding the characteristics of the solutions. The wave 
function can be visualised using both the 3D graph and the contour graph, which can reveal 
details about the dynamics of the system and help understand its behaviour. They are use-
ful in determining whether solitons, nonlinear effects, and other interesting wave function 
characteristics are present. The Figs.  1, 2, 3 and 4 display combination of periodic and 
singular soliton solutions. Similarly, the Fig. 5 display periodic solutions. Furthermore, the 
Figs. 8, 9, 10, 11 and 12 display combination of periodic and rational solution, and Figs. 6, 
7 display combination of periodic and dark soliton solution.

6 � Conclusion

This research investigated the modified 
(

G′

G2

)

-expansion and the improved tan
(

�(�)

2

)

 

expansion, two novel expansion techniques for the analysis of the (3 + 1)-dimensional 
double sine-Gordon equation. Every technique offers a wide range of solutions, includ-
ing rational, hyperbolic, exponential, and trigonometric functions, each with complex 
physical explanations and possible practical uses. After applying these two techniques, 

we came to the conclusion that modified 
(

G′

G2

)

-expansion has a wider application range, 

Fig. 12   3D and contour graphs of �13,13 for different values of parameters: 
� = 5, � = 0.35, � = −0.35, C = −1.5, y = 0, z = 0



	 Z. Manzoor et al.

1 3

  807   Page 20 of 23

a simpler study of soliton interactions, and is more easily applied to nonlinear partial 

differential equations. 
(

G′

G2

)

 technique provides only a few different kinds of solutions. 

While, the improved tan
(

�(�)

2

)

 -expansion offers a wider range of options, some of 

which are inaccessible through the modified 
(

G′

G2

)

 -expansion. This method use is more 

complex and results in certain excessive solutions. However, the resulting soliton solu-
tions of this method improve our knowledge of nonlinear wave processes by providing 
insight into physical phenomena such as ocean waves. Both expansion techniques solve 
the (3 + 1)-dimensional double sine-Gordon equation with amazing efficiency and may 
be used to solve other kinds of nonlinear partial differential equations. This work pro-
vides an important starting point for future investigations into the (3 + 1)-dimensional 
double sine-Gordon equation and provides fascinating new perspectives on nonlinear 
wave phenomena and the capabilities of creative analytical techniques. In the future, we 
will examine soliton interactions in more detail, including multi-soliton structures and 
higher-order interactions. We will also utilise this equation to simulate real-world sys-
tems that have extra complexity, such as impurities and external potentials. We can bet-
ter understand complex physical systems and create even more powerful tools for solv-
ing the challenges of nonlinear research by following the indicated future directions.
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