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Abstract: We present an extension of many-body downfolding methods to reduce the resources
required in the quantum phase estimation (QPE) algorithm. In this paper, we focus on the Schrieffer—
Wolff (SW) transformation of the electronic Hamiltonians for molecular systems that provides signifi-
cant simplifications of quantum circuits for simulations of quantum dynamics. We demonstrate that
by employing Fock-space variants of the SW transformation (or rank-reducing similarity transforma-
tions (RRST)) one can significantly increase the locality of the qubit-mapped similarity-transformed
Hamiltonians. The practical utilization of the SW-RRST formalism is associated with a series of
approximations discussed in the manuscript. In particular, amplitudes that define RRST can be evalu-
ated using conventional computers and then encoded on quantum computers. The SW-RRST QPE
quantum algorithms can also be viewed as an extension of the standard state-specific coupled-cluster
downfolding methods to provide a robust alternative to the traditional QPE algorithms to identify the
ground and excited states for systems with various numbers of electrons using the same Fock-space
representations of the downfolded Hamiltonian. The RRST formalism serves as a design principle for
developing new classes of approximate schemes that reduce the complexity of quantum circuits.

Keywords: quantum computing; practical quantum algorithms; quantum chemistry

1. Introduction

The coupled-cluster (CC) theory [1-11] has assumed a preeminent role in providing a
high-accuracy description of diversified classes of many-body systems [6,12-18], quantum
field theory [19-23], quantum hydrodynamics [24,25], nuclear structure theory [26-28],
quantum chemistry [29-36], and material sciences [37-47]. Many strengths of the single-
reference CC formalism (SR-CC) originate in the exponential parametrization of the ground-
state wave function and closely related linked cluster theorem [48,49].

The standard CC downfolding techniques [50-57] provide a many-body form of the
effective (downfolded) Hamiltonians that can be used to calculate ground-state energies in
reduced-dimensionality active spaces as long as the so-called external amplitudes defining
the ground-state out-of-active-space correlation effects are known or can be effectively ap-
proximated. Although these methods have originated in the context of single-reference CC
theory leading to active-space representations of non-Hermitian effective Hamiltonians, it
became clear that the utilization of the double unitary CC (DUCC) Ansatz can provide Her-
mitian formulations for downfolded/effective active-space Hamiltonians, which thereafter
have intensively been tested and validated in the context of quantum simulations based on
the utilization of various quantum solvers. For example, the quantum phase estimation
(QPE) [58-64] and variational quantum eigensolvers (VQE) [65-82] were invoked to obtain
ground-state energies of molecular systems. These tests demonstrated that DUCC-based
downfolded Hamiltonians and corresponding dimensionality reduction could accurately
reproduce the electronic energies for basis sets of the sizes that are currently beyond the
reach of the most advanced quantum algorithms and quantum hardware [81-85]. The
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Hermitian CC downfolding procedures were also discussed and tested in the context of
quantum dynamics and excited-state simulations [52,53,55]. Due to the state-specificity
of the downfolding procedures, the latter attempts require detailed knowledge of the
external Fermionic degrees of freedom for excited states and the construction of separate
effective Hamiltonians for each excited state. Although extraction of excited-state external
correlation effects is possible for some classes of excited states, which can be captured by
approximate Equation-of-Motion CC (EOMCC) methods [86-88], the generalization of this
formalism to general-type excited states may be numerically challenging. A part of the
problem is also associated with translating the EOMCC Ansatz defined by commuting
operators into a language of unitary CC expansions involving non-commuting operators.

Instead of following this strategy, in this paper, we discuss the class of Fock-space
Schrieffer-Wolff (SW) transformation-inspired downfolding procedures designed to sim-
plify the many-body form of the Hamiltonian. In analogy to the standard DUCC-based
techniques, the SW-transformation-based (or rank-reducing similarity transformation
(RRST)) formulations utilize the partitioning of one-electron states (spin—orbitals) into ac-
tive and external spin—orbitals. Although the RRST cannot eliminate all components of the
Hamiltonian that involve creation/annihilation operators carrying the external spin—orbital
indices (the so-called external component of the Hamiltonian), the RRST is designed in a
way that leads to a simple form that involves only local actions of qubits in corresponding
quantum algorithms such as QPE. In the context of QPE methodology, this form not only
makes qubit mappings simpler but can enable more efficient utilization of the Trotter for-
mulas. In contrast to the standard DUCC downfolding, the proposed approach and related
approximations eliminate its state-specific character and provide a description of multiple
electronic states corresponding to the ground and excited states at least well approximated
by the set of active orbitals. An exciting feature of the discussed framework is its univer-
sal character (in the sense of Fock space) in describing many-body systems with various
numbers of electrons (particles), where the number of particles is specified when the action
of the Hamiltonian (or the corresponding quantum evolution operator) on specific states
takes place. The discussed development is primarily motivated by impressive progress in
developing Fock-space generalization of CC formulations [8§9-93].

In analogy to all existing algorithms, the RRST formalism can be viewed as a platform
for developing broad classes of approximations. In this paper, we will outline the hybrid
algorithm that combines the classical-computing part associated with the determination
of the RRST and the quantum-computing part, which provide a mean for modeling time
evolution generated by the RRST downfolded Hamiltonian.

2. Rank-Reducing Unitary Similarity Transformations of Many-Body Hamiltonians

The dynamics of the quantum system are given by the evolution operator Q)(f)
Q) = e H 1)

where we assume that the Hamiltonian H is time-independent and takes the following
second-quantized form in the basis of N spin—orbitals

N N
1
H= 2 hga;aq + 1 Z Ufgaza;asa, , 2
pag=1 pgrs=1

where p,q,1,s are spin—orbital indices and hg and vfsq are one- and two-electron (anti-

symmetrized) integrals defining H; and Hj operators, respectively. The a; (ap) operator
corresponds to a creation (annihilation) operator for the electron in p-th spin-orbital.
In quantum computing applications, especially in quantum phase estimations, various
representations of the electronic Hamiltonian (induced, for example, by the unitary transfor-
mations) can be used. This is a consequence of the fact that the spectrum of the Hamiltonian
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remains unchanged upon these transformations. Let us denote a general unitary transfor-
mation U as
U =20 )

where the operator A(t) is anti-Hermitian
AT = —Aw), )

and similarity-transformed Hamiltonian H(t) is defined as

A(t) = e A0 H(#)eAD) (5)

In analogy to the H operator, the similarity-transformed Hamiltonian is also Hermitian.
In consequence, probing the phase with the H and corresponding time evolution operator ()(t)

Q(t) = e—itl:l(t) _ e—A(t)Q(t)eA(t) (6)

should detect the same values of energy/phase (subject to the various choices of initial
state). A typical illustration of the above techniques is the interaction and Heisenberg
pictures widely used in quantum mechanics, which have recently been explored in the
context of quantum computing simulations. The interaction-picture-based approach has
recently been studied in the context of quantum computing [94-96].

In this paper, we will pursue a slightly different goal associated with the design of
time-independent unitary transformation generated by the time-independent anti-Hermitian
operator B (B! = —B) such that

H=¢8Ge, 7)

where the properties of the G operator and the form of the B operator assuring these
properties will be discussed later. For the sake of the following discussion, let us introduce
the partitioning of the orbitals (spin-orbitals) into active (with corresponding first 2(n — k)
qubits) and external (with qubits enumerated as 2(n — k) + 1, ...,2n) as shown in Figure 1.
Additionally, we will assume that all spin—orbitals are arranged in a way that spin-up (1)
and spin-down (|) spin—orbitals occupying the same orbitals P (isoenergetic spin—orbitals)
are neighboring as shown in the following scheme.

QL. [P AP ®)

If spin-orbitals p and g are isoenergetic we will denote it by g = e(p) (or p = e(g)).

k : ab, ..

n - - D,q, -

n-k : a,pB, ..

Figure 1. The orbital (spin—orbital) domain is partitioned into n — k active and k external orbitals (1
stands for the total number of orbitals). The active spin-orbitals are denoted as «, 5, ..., the external
spin—orbitals as 4, b, ..., and generic spin—orbitals as p, g, .... In general, the active spin-orbitals
do not have to be defined as the “lowest” lying spin-orbitals using some energy-related criteria.
At this moment, the nature of active/external spin-orbitals remains unspecified. The total number of
spin-orbitals N is defined as N = 2n. For simplicity, in this paper, we assume that the orbital energies
are non-degenerate.
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The two classes of spin-orbitals induce the partitioning of the second-quantized
operators into internal and external parts that are defined by creation-annihilation operator
strings (CAQOSs) carrying only active spin—orbital indices (active part) and strings that
contain at least one creation/annihilation operator carrying external spin—orbital index
(external part), respectively. The internal and external parts of arbitrary operator X can be
symbolically denoted as

P(X) ©)

for the internal part and

P(X) (10)

for the external part. Typical examples of CAOSs entering internal and external parts are
Eg —ala pand Ej = alab, respectively, where the general form of the excitation operator
EPT is defined as EFY = aJr aT .asa, (the ELT operator is antisymmetric with respect to
swapping adjacent spm—orbltal indices). Furthermore, it is convenient to decompose the
external part into its diagonal part (ﬁd(X)), iso-energetic off-diagonal (73ie(X )), and ener-
getically distinct off-diagonal (Proq (X)) that is defined by the following classes of CAOSs
(in all EFY below, we assume that p<g<...andr<g<...):

Pa(X) — {ELEMED ..}, (11)
5 b
Pie(X) — {Ee(a)’ e(a)e(a) e(a)e(b)’ e } ’ (12)
ﬁeod(X) — {Ej, Ef, ...} (all off-diagonal CAOSs that are not isoenergetic). (13)

The isoenergetic part, 73i€(X), is defined by off-diagonal external excitation opera-
tors where the sums of energies corresponding to all upper spin-orbitals and energies
corresponding to lower spin—orbital indices are equal according to the spin—orbital en-
ergy ordering shown in Figure 1. For example, this includes situations when each upper
spin-orbital index (p) has a corresponding isoenergetic lower spin-orbital index (e(p)) ac-
cording to the spin—orbital energy ordering shown in Figure 2. We will also define external
off-diagonal part, ﬁod(X), defined as

~

Pod(X) = Pie(X) + Proa(X). (14)

For example, using these decompositions, the electronic Hamiltonian H (for simplicity,
in this manuscript, we focus on the spin-independent Hamiltonians) can be decomposed as

H = P(H) + P(H) = P(H) + Pa(H) + Pie(H) + Peoa(H) (15)
where
P(H) = Zh"‘Eg+ PO AA e (16)
a<B;y<d
Pa(H) = ZhﬂEuZzJ““E“qu (17)
a<b
Pio(H) = Zhg(a) 20 JrZUmEM )+ > OMES (18)
a<b
Poa(H) = Zh“E“+Zh“E”+2hﬂEb+ 3o
ab;y<d
ap ~apf B ap N b pab
+ Z Uogbog + Z Ueq Ecq Z oISESE + Y olhEY
a<pB;yd a<pe<d a<byy<é ab;yd
+ D) VEEm+ Y VWER+ Y, VAEN (19)

a<b;yd ab;e<d a<be<d
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and Y symbol represents the summation over off-diagonal non-isoenergetic terms. As-
suming that n — k < k, one can see that ﬁeod(H ) includes the largest number of terms of all
components defining the decomposition (15). It is also obvious that, in general, the 73d(X )
of an arbitrary operator X can be expressed in terms of particle number operators, 1,

np = ala,, (20)
which can symbolically be denoted as
Pa(X) = fx({np}hly). (21)
For example,
P4(H) = Sl {np}p 1 Zh ng + vananu + nggnanb . (22)
ab

---------------

Figure 2. A typical example of the external off-diagonal isoenergetic excitation operator E%/ e(w)e(a)’

3. Schrieffer-Wolff Rank-Reducing Similarity Transformations

In this Section, we discuss the possibility of designing unitary transformation gener-
ated by the time-independent anti-Hermitian operator B (see Equation (7)).

G=e¢PHe B, (23)

that assures specific properties of the G operator and consequently simplifies qubit mapping
of the evolution operator )(t). In particular, we will prove the following Theorem:

Theorem 1. There exist conditions for anti-Hermitian B-operator that render the G operator in
the following form: G = P(G) + Py(G) + Pie(G). Moreover, the action of P4(G) + P;e(G) on the
qubits corresponding to external spin—orbitals (assuming the ordering of spin—orbitals and qubits in
accordance with Equation (8)) is local.

Proof of Theorem 1. To eliminate the ﬁeod( G) we impose the condition for the B operator
Peoi(G) = Peod(e"He ™) =0, (24)

which can explicitly be expanded in terms of multi-commutator expansion using Haus-
dorff expansion

Peod(H) = Peoa([H, B]) + 5 Peoa([[H, B], B]) ... = 0. (25)

N\H
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Solving the above equations in the Fock space requires some attention. One should
realize that the dimensionality of Equations (25) is much bigger than the number of non-zero
terms contributing to Prod (H) in Equation (25) and is equal to the number of all excitation-
type operators spanning Prod space in Equation (13). The perturbative analysis of the
solution of Equation (24) (see Appendix A) shows that at the first order of perturbation
theory, the number of amplitudes defining B is precisely equal to the number of non-zero
elements of ﬁeod(H ). However, higher orders of many-body perturbation theory generate
higher many-body components in space P.oq- For this reason, in the general case, the B
operator is expressed in terms of all operators in set (13) and satisfy the condition

B = ﬁeod(B) ’ (26)

which guarantees that the number of equations and unknowns are equal. As will be
discussed later, various approximate techniques can be used to approximate the B operator
using a smaller number of variables. If the solution of Equation (24), labeled as B*, can be
found (or effectively approximated by limiting the rank of the multi-commutator expansion)
on classical computers, then the G operator with the desired properties is given by

G =P He ")+ Py(eP He B") + Py (P He B . 27)

The parts of G contributing to action on the qubits corresponding to external spin—
orbitals are 73,1(63* He B") and ﬁie(eB* HeB"). These two classes of elements are advan-
tageous components of G when designing quantum circuits with low complexity. The
diagonal part, according to Equation (21), obviously involves the particle number operators
that are qubit-local. On the other hand, the encoding of general operators contributing to
the ﬁig(eB* He~B") requires encoding a chain of E?(a) / E?(IX) and their Hermitian conjugates.
It turns out, however, that these operators involve gates only on the pairs of adjacent qubits
[Q 1][Q |] in the representation given by scheme (8) (assuming a non-degenerate character
of orbital energies as shown in Figure 1). It can be easily inspected by using for example
Jordan—-Wigner (JW) qubit encoding [97].

o - QF®Z>, (28)

a4 - Q ®Z7, (29)
where

QF = %(aé‘—iaqy), (30)

Q; = %(agﬂag), (31)

;1 = (75_1@...@(712, (32)

and o7, qu , and 0 represgnt P.auli gates on g-th qubit, that the general ”IgT“Q | can be
expressed as local two-qubit action

511 ®Q5,®Qg, ® 151 - (33)

where I, ., and Iy} _; symbolically represent tensor products of the unit operator to the
left and to the right of the Q 1 and Q | qubits, respectively. O

An interesting consequence of Equation (24) is the fact that the solution B* cannot
commute with the Hamiltonian H. If it was the case, i.e.,

[B*,H] = [%",H] = 0 (34)
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then the corresponding equation (Equation (24)), which becomes

~

Peod(H) =0, (35)

has no solutions (where we assumed the non-trivial case of a Hamiltonian ﬁeod(H ) # 0).

The unitary transformation generated by the B operator was used to eliminate the
most non-local, in the sense of qubit utilization, ﬁeod(G) part of the G operator. In a similar
fashion, one can also eliminate the 731-g(G) contribution to the external excitations. However,
an added layer of complexity is associated with the numerical nature of the problem that
must be considered. For example, certain classes of solvers, like many-body perturbations
theory, may stumble into numerical problems associated with the vanishing denominators
for isoenergetic components of B. These problems can be remedied (in addition to using
zeroth order Hamiltonians that break symmetries of the system) by using additional unitary
“gauge” transformation and breaking the energetic symmetry of the external isoenergetic
off-diagonal terms (vide infra). If the numerical issues can be effectively handled, then
the “domain” of the B operator can be extended to the external isoenergetic off-diagonal
excitations, and the following Corollary holds:

Corollary 1. If equations can be solved for the B operator with the solution B* in the extended
excitations domain involving isoenergetic external off-diagonal excitations, i.e.,

Pie(eP He B) + Py (ePHe B) = Poy(ePHe B) = 0 (36)
then the operator G takes the form
G =Pl He P") + Py(eP He B, (37)

where are ﬁd(eB*He_B*) is expressed solely in terms of the particle number operators, i.e.,
Pa(e® He ") = fo({np}y ).

To date, we have been discussing the application of the single unitary transformation
generated by the unitary operator e? (or e~ 2 in the context of Equation (23)). However,
there exists flexibility in choosing the form of the unitary transformation. For example,
the product of two unitary transformations, e.g.,

U =eBe®, (38)
where CT = —C, can transform the H operator to the I' operator in an analogous way in
Equation (23),

[ =eBeCHe Ce B (39)

with the same spectral properties as the original Hamiltonian H. However, the purpose of
the additional transformation generated by the anti-Hermitian operator C is to produce the
form of the auxiliary Hamiltonian Hc,

He = e“He €, (40)

that eases the process of solving analogs of Equation (24)

~

Peod(ePHce™P) =0, (41)

or Equation (36)

A~

Pie(ePHce ™) + Poog(ePAce ™) = Poy(ePAce™8) = 0. (42)
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For this reason, we can view the € operator as an auxiliary transformation of the
Hamiltonian H. The idea behind using the auxiliary transformation is to employ as robust
(or even postulated) form of the C operator as possible. In particular, the C operator can in-
clude different types of excitation operators than the B operator. For example, it can contain
many-body effects in the active space only. The utilization of the auxiliary transformation
offers us flexibility in exploring various scenarios, including the possibility of spatial /spin
symmetry breaking in the simulations of molecular systems, without altering the spectral
properties of the original Hamiltonian H.

4. QPE Formulations Based on the SW-RRST Representation of Many-Body
Hamiltonians

The main idea of the QPE is in the controlled execution of the powers of the ()
operator according to the progression

o - o —...an?...... Q(t) (43)

where m designates the number of ancilla qubits used to read the phase(s) of the unitary
evolution operator (see Figure 3a). When a standard representation of the Hamiltonian H
is used, the qubit encoding of the 2/-th power of ()(f) operator,

Q(t)Zj _ (efitH)Zf , (44)

utilizes all N “physical” qubits. When representation (7) is invoked, the same operator
power can be expressed as

Q(t)zf — (e BemitGeBY2 — efB(efitG)ZfeB ) (45)

where B and G operators are given by Equations (7) or (23). The main difference between
(44) and (45) (see Figure 3 instes (b) and (c)) is that the sequence (e’”G)Zj can be executed
using localized qubit gates in the sense of earlier discussion of G-operator properties.
The additional advantages stem from the fact that the external part of the G operator 73((3)
involves a simpler form of the gates and large classes of operators that commute with the

~

internal part of the G operator, P(G), which simplifies the form of the Trotter formula.
We will explain it on the example of the G operator discussed in Corollary 1, where G is

decomposed into internal 75( G) and external 73(G) parts, and where the external part is
expressed in terms of number operators P(G) = f(;({np}pNzl) since P(G) only contains

diagonal elements as a result of Corollary 1. Let us further decompose 73(G) into the part

that mixes particle number operators for active and external spin—orbitals (73M(G)) and
the part that is solely expressed in terms of the particle number operator corresponding to
external spin—orbitals only (Pg(G)). Therefore the following commutation relations holds

~ ~ ~

[P(G), Pe(G)] = [Pu(G), PE(G)] =0, (46)
therefore
e o—it[P(G)+Pu(G)] =it Pe(G)
— ¢ itPe(G),it[P(G)+Pu(G)] (47)

where the e~#[P(G)+Pu(G)] term requires a Trotter formula to be implemented. At the
same time the ¢~#7E(C) terms as depending only on the particle number operators (or

their products) can be calculated exactly, which is a consequence of the fact that all n,’s
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operators defining 735(G) commute. For example, the JW qubit mapping of n, and n,n,
can be represented by a simple local circuits

1

o A-a), (48)
1

mpttg = (1 —0p)® (g —0y), (49)

where 1, and ¢}, are identity and Pauli Z matrices (gates) on p-th qubit. We also used a
simplified notation, where

—0,)=..91®..0(1,-0)®..04®...0(1;-0,)®...0L;®... . (50)

The corresponding qubit representations of

.t Lt
_jtep M e

e 2 ¢ 2 9p , (51)
I (1p=0)®(14—05) (52)

e—ithpi’lp

e—itawn},nq

- €

where a, and ay, are scalars, require two types of circuits (shown below, respectively) that

—1 Z T Z Z
encode general e "% and e~ "®®7 operators

p — RZ(ZG)) _

and

9 —P— R:(20)

D
Ay

which demonstrates the locality of the qubit encoding of the ¢—itPE(G)

operator (or its
approximate form defined by a truncated form of the Pr(G) operator).
Further analysis of qubit encoding of (45) requires explicit expansion of P(G) and

75M(G) in terms of Pauli strings P;, i.e.,

P(G) = 8P, (53)

Pu(G) = Y hiP;. (54)
j
where g; and ﬁ]- are scalars. There is a simple way how Trotter formula can be utilized to
expand e_it [75(G) +73M (G)] :

oM@+ Pu(O ~ (XY (1)), (55)

where

13
[Te " (56)

i

>
—
~
~—
Il

,tﬁj
0, (57)

=
=
I
=
N

]

According to the definition of 73M(G) all Pauli strings in expansion (54) are defined
through the Z-gates, hence

Y(r) = e il (58)
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Now, let us assume that r is even and notice that for sufficiently large r, the ordering
of the factors X(r) and Y(r) in (55) can be arbitrary, i.e., it can be rewritten as

o—it[P(C)+Pu(G)]

12

(X(Y ()Y ()X (1)) (59)
= (X(Me T ENIX()E (60)

Combining (45) and (47) with (60) leads to the further simplifications of the Q(t)zj:
Ot = e B[(X(r)e ™ TiPX (1)) 512 2 PE(C)eh (61)
for sufficiently large values of r parameter (see Figure 3 insets (c) and (d)).

(a)

oLl -
a1 7t
ey - ormit [
7t
N qubits
0z’ QG e-it2/PE(6)
(d)
r
2
2(n—k)
LD X(r) qubits
Qg efig):jﬁij

2k
qubits

Figure 3. Schematic representations of the QPE algorithm (inset (a)) and algorithm for the evaluation
of the 2j-th power of the Q)(t) operator (insets (b,c)) in the representation involving G operator given
by Equation (7). See the text for descriptions of each diagram.

If the operator B can be effectively calculated /approximated, the above formula offers
several interesting properties:

e  all terms depending on the 73M( G) and 73E(G) can be evaluated exactly,
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o the P(G)is2(n — k)-local (in the sense of Ref. [98]), i.e., is defined interactions involving
at most 2(n — k) qubits (assuming qubit ordering defined in scheme (8)),

e for (n —k) « k, if the operator B can be approximated by single and double excitations
(approach consistent with the first order of perturbation theory), then the number of
terms that need to be included in the B operator is proportional to (1 — k) x k> (smaller
number of terms compared to the original Hamiltonian H, which is proportional to
n*). Additionally, there are only two instances when the e =8 /¢® transformations have
to be performed to encode Q(t)% (see, Equation (45)).

¢ expansion (61) is reminiscent of the QAOA (Quantum Approximate Optimization Al-
gorithm) Ansatz [99-103] consisting of alternating sequence of cost (Pum (G)-dependent
part) and mixer (P( G)-dependent part) layers.

Furthermore, in analogy to the Fock-space coupled-cluster formulations (for example,
the valence-universal (VU-CC) theories), the B and G operators along with the correspond-
ing time evolution operator ()(t) can act on the states |®(n,)) corresponding to various
number of electron (1,), i.e.,

a?|e(ne)), 62)

providing access to energies of neutral, ionized, doubly-ionized, etc., electronic states
having non-zero overlap with |©(n,)). A similar algorithm can be used to evaluate phase
using representation (39) based on the auxiliary unitary transformation.

5. Approximations

The potential of reducing hardware requirements discussed in the previous Section
is inextricably connected to our ability to approximate solutions of non-terminating ex-
pansions (15) using their finite-rank commutator expansion (16). We envision this step
to be entirely performed using conventional computers. This step is justified because the
process of solving equations for finite-rank commutator expansions is associated with
polynomial scaling.

In analogy to the existing quantum algorithms, including a broad class of VQE and
QPE formulations, classes of approximations are indispensable to translate the problem
into the form of circuits for quantum computers or their classical emulators. For example,
the broad class of Trotter-based approximations is needed for realizing unitary CC-driven
variants of the VQE formalism and evolution operators in the QPE formalism. It does
not come as a surprise that for the SW-RRST approximation, the situation is no different.
The main factors that need to be taken into account when defining approximate SW-RRST
formulations are as follows:

1.  The excitation-rank of the many-body form of the transformed G Hamiltonian.
Our experience with Hilbert-space-type downfolding indicates that one- and two-
body effective interactions can provide satisfactory results when active space is ade-
quately defined [56].

2. The rank of the many-body effects in the B operator. The elementary perturbative
analysis for the case discussed in Corollary 1 indicates that the 0-th order of B is
equal to zero, the 1-st order contributed to one- and two-body terms, while the 2-nd
order introduces higher-rank effects (see the analysis in Appendix A). It suggests that
simple models based on the inclusion of one- and two-body effects in the B operator
are justified.

3. The working equations for B-amplitudes. Due to their non-terminating nature,
the algebraic form of Equations (24) or (36) has to be approximated due to their
non-terminating nature. A numerically feasible way of introducing sufficiency con-
ditions for B-operator amplitudes is to use finite commutator-rank expansion in
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Equations (24) or (36). The class of approximations termed SW-RRST(/) consist of
retaining commutators up to the /-th rank. For formulation (24) we have

1

I
Peod(H 2 )'< [ [H,B],...], B])) = 0. (63)

whereas for (36) one gets

1
Z .[H,B],...],Bl;) = 0. (64)

While the linear SW-RRST(1) is the simplest approximation consistent with the low-
order perturbative analysis, one may have to deal with the singular or nearly singular
forms of the equation. Similar problems have been observed in the early studies of
the CC theory [104]. Several techniques akin to almost-linear CC approximations are
discussed in Refs. [105-107], including the auxiliary transformation discussed earlier,
have the potential to offset singular behavior. Another factor that was shown to play
a key role in the removal of singularities of linear CC equation is associated with the
inclusion of non-linear terms, which is the main motivation for the development of
higher-rank SW-RRST(I) approximations (I > 1).

Another important aspect of the proposed approximation is the choice of the orbital
basis that should be driven by the targeted quantum system.

6. Conclusions

In summary, we have discussed the extension of the traditional downfolding methods
to the Fock-space formulation using the Schrieffer—Wolff-type transformations. We have
presented the basic properties of this formalism that leads to a simplified form of the
similarity-transformed Hamiltonian G that, in the context of the quantum circuit complexity,
is dominated by its 2(n — k)-local internal part. The remaining external part of the G
operator, depending on the specific form of the approach, either given by conditions (24)
or (36), is defined by simple operators (for example, particle number operators) that can
be determined exactly. An additional advantage of the SW-RRST approach is that the
external components of the G operator can be factored out and do not need to be handled
by the Trotter expansion. While we have discussed the general features of the SW-RRST
formalism and its approximation, in the following papers, we will analyze the numerical
solutions to the SW-RRST(/) equations and the effect of non-linear terms on the amplitudes
defining the anti-Hermitian B operator. An essential aspect of the numerical analysis
is the determination of the feasibility of auxiliary similarity transformation that breaks
symmetries of the targeted quantum system.
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Abbreviations

The following abbreviations are used in this manuscript:

ASET Second-order Active-space Embedding

CAOS creation-annihilation operator strings
CcC Coupled-Cluster
CCT Canonical Transformation Theory

DUCC Double Unitary CC
EOMCC Equation-of-Motion CC

JW Jordan-Wigner

NISQ Noisy Intermediate-scale Quantum

QAOA Quantum Approximate Optimization Algorithm
QPE Quantum Phase Estimation

RRST Rank-Reducing Similarity Transformation
RRST(/)  RRST approximation of /-th rank

SW Schrieffer-Wolff

VQE Variatonal Quantum Eigensolver

VU-CC Valence-Universal CC

Appendix A. Perturbative Estimates of the B Operator

Our perturbative analysis of the B operator will utilize the following partitioning of
the Hamiltonian (2) into 0-th order part Hy (assumed to be diagonal) and perturbation W

H(A) = Hy + AW (A1)

where Hy and W are generally defined as

Hy = Z(h,’; - vf,’)al,a,, = Z epazap (A2)

pA p

and
W = Vi+V,, (A3)
Vi = Z vga;r,aq , (A4)
P

1 pq_t ot

V, = 1 p;s Uys Aplgdsty . (A5)

At this point, we assume the diagonal form of the Hy operator without specifying the
form of the V; operator, which can generally be a spatial /spin symmetry-breaking operator.
In particular, we are not assuming that €),’s are Hartree-Fock spin-orbital energies, which
would be challenging in situations when Hartree-Fock external orbitals are degenerate.
These problems can be addressed by the proper definition of Hy (or by the properly
designed gauge transformation mentioned earlier).
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For simplicity, we assume that the perturbative expansion for the B operator is conver-
gent and takes the form

0
B=> ABW, (A6)
i=0
where i refers to the order of perturbative expansion. Introducing (A6) into sufficiency

conditions (24) (similar analysis is valid for the variant described in Corollary 1 or for the
Hamiltonian Hc (40))

Proa(eZim0 BV (Hy 1+ AW)e™ T VB _ g, (A7)

We get, using BCH expansion, equations for perturbative components of the B operator.
For example,
e  0-th order:
Peod([Ho, BV =0, (A8)
where we utilized the fact that Hy is a diagonal operator (ﬁeod(HO) = 0), which leads
to B(O) = 0.
e 1-storder:
Peod(W — [Ho, BY]) =0, (A9)
which yields one- and two-body components only.
e  2-nd order:

Praa(~[Ho, B + 5 [[Ho, B, BO] - [W, BV]) = 0, (A10)

which generates lowest-order three-body interactions (stemming from the [W, B()] term).

As a consequence of the non-linear character of the expansion (A7), higher orders
of perturbation theory generate higher-rank many-body components. It is interesting to
notice that the rank of excitation vs. its perturbation order is essentially the same as in the
standard SR-CC theory.
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