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ABSTRACT: The rise of quantum information science has spurred chemists to prepare new molecules that serve as useful building
blocks in quantum technologies of the future. Implementation of molecular spin-based qubits requires new methods to induce high
spin polarization of samples. Herein, we report design criteria to develop axially symmetric spin-1/2 molecules amenable to optically
induced magnetization (OIM), a technique using circularly polarized (CP) excitation to deliver spin polarization. We apply these
criteria to develop a series of tungsten(V) chalcogenide complexes that are demonstrated to have large spin-sensitive responses to
CP light using magnetic circular dichroism (MCD) that could allow up to ∼20% spin polarization through OIM. Pulsed electron
paramagnetic resonance (EPR) spectra reveal these systems have improved relaxation times over molecules like K2IrCl6, a species
recently investigated by OIM, and field-swept electron spin−echo (FS-ESE) experiments show they have a remarkable lack of
anisotropy in their phase-memory Tm times. The design criteria are general and point toward future ways to improve OIM-
initializable qubits.

The development of molecular spin-based qubits1 requires
that spins fulfill several criteria outlined by DiVincenzo

for quantum computing2 or Degen for quantum sensing.3 Of
these criteria, use of molecular spin most prominently demands
advancement in methods of “initialization,” the process of
selective spin polarization into a pure |0⟩ or |1⟩ state. Spin
polarization is usually done thermally: application of an
external magnetic field splits the MS levels, and a Boltzmann
population of these levels is then achieved on the timescale of
the spin−lattice (T1) relaxation time.4 Conceptually, greater
spin polarization can be easily reached by applying a larger
magnetic field or cooling a sample further.5 Practically, this is
difficult. The combination of low temperatures and high fields
does provide high polarization, but such instrumentation6 can
be prohibitively costly, and cooling below helium temperatures
can cause increasingly slow T1 relaxation.

7,8

Nonthermal ways to polarize spin sidestep these issues, and
optical methods have proven especially promising.9−11 These
techniques leverage electronic excitation and molecular design
to influence spin, allowing chemists to untether spin
polarization from Boltzmann population and spin T1
relaxation. We are interested in a spin-sensitive optical
phenomenon known as “optically induced magnetization”
(OIM). OIM is deeply intertwined with a technique more
familiar to chemists, magnetic circular dichroism (MCD):
MCD measures the differential response of MS levels to
circularly polarized (CP) light (Δϵ = ϵLCP − ϵRCP),12,13
whereas OIM exploits this differential response to preferen-
tially bleach one MS level. Despite demonstration of OIM in a
wide variety of systems,14−18 the method has not been well-
explored to manipulate molecular spin. This will surely change
after a recent report demonstrating the usefulness of OIM to
explore ultrafast spin dynamics of K2IrCl6.

19

Selection of K2IrCl6 relied on its octahedral geometry and its
2T2g ground state (GS) orbital angular momentum (OAM),
promoting a large MCD/OIM response but also causing
exceedingly short coherence (phase-memory) Tm times, even
at 20 K.19 Such rapid decoherence impairs many applications
in quantum technologies by limiting the computations that can
be performed or the information that may be sensed by a
qubit.2,3 Herein, we report a more flexible molecular design
strategy to optimize OIM responses that allows us to explore
the preparation of S = 1/2 molecules of axial symmetry that
lack any GS OAM. Our design strategy led us to a series of
tungsten(V) chalcogenide complexes [1·E]− (Figure 1a) that
could give up to ∼20% spin polarization by OIM. Pulsed
electron paramagnetic resonance (EPR) experiments reveal
improved spin relaxation characteristics for these complexes
due to their lack of GS OAM or a low-lying excited state (ES),
and field-swept electron spin−echo (FS-ESE)21 EPR measure-
ments reveal a remarkable insensitivity of phase-memory (Tm)
times to magnetic field.
Using the language of MCD theory, maximization of OIM is

equivalent to maximization of the “C term” MCD response,
something driven by spin−orbit coupling (SOC) in transition-
metal systems.22 The K2IrCl6 system experienced strong SOC
due to the residual (“fictitious”)4 OAM in its GS, but there is
no reason SOC splitting must come from the GS. Instead, we
were inspired by ruby, where OIM can be performed from its

Received: March 3, 2025
Revised: April 17, 2025
Accepted: May 12, 2025
Published: May 20, 2025

Communicationpubs.acs.org/JACS

© 2025 The Authors. Published by
American Chemical Society

18424
https://doi.org/10.1021/jacs.5c03783

J. Am. Chem. Soc. 2025, 147, 18424−18430

This article is licensed under CC-BY 4.0

D
ow

nl
oa

de
d 

vi
a 

D
E

U
T

SC
H

E
S 

E
L

E
K

T
R

O
N

E
N

-S
Y

N
C

H
R

O
T

R
O

N
 o

n 
Ju

ne
 5

, 2
02

5 
at

 1
1:

11
:4

4 
(U

T
C

).
Se

e 
ht

tp
s:

//p
ub

s.
ac

s.
or

g/
sh

ar
in

gg
ui

de
lin

es
 f

or
 o

pt
io

ns
 o

n 
ho

w
 to

 le
gi

tim
at

el
y 

sh
ar

e 
pu

bl
is

he
d 

ar
tic

le
s.

https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Ian+E.+Ramsier"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Alysia+Mandato"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Sunil+Saxena"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Wesley+J.+Transue"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/showCitFormats?doi=10.1021/jacs.5c03783&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.5c03783?ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.5c03783?goto=articleMetrics&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.5c03783?goto=recommendations&?ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.5c03783?goto=supporting-info&ref=pdf
https://pubs.acs.org/toc/jacsat/147/22?ref=pdf
https://pubs.acs.org/toc/jacsat/147/22?ref=pdf
https://pubs.acs.org/toc/jacsat/147/22?ref=pdf
https://pubs.acs.org/toc/jacsat/147/22?ref=pdf
pubs.acs.org/JACS?ref=pdf
https://pubs.acs.org?ref=pdf
https://pubs.acs.org?ref=pdf
https://doi.org/10.1021/jacs.5c03783?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://pubs.acs.org/JACS?ref=pdf
https://pubs.acs.org/JACS?ref=pdf
https://acsopenscience.org/researchers/open-access/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


orbitally nondegenerate 4A2 GS to a degenerate 2E ES.14 This
2E ES of ruby lacks residual OAM; yet, SOC still causes
splitting into two Kramers doublets. Because SOC is the
dominant driver of this splitting, spin and orbital angular
momenta strongly mix to deliver a highly MS-selective MCD/
OIM response.23 Clearly, threefold orbital degeneracy is not
required for OIM.
Simply put, any point group possessing degenerate

irreducible representations (irreps) may allow for orbital-
based optimization of OIM. This certainly includes cubic point
groups (Oh, Td, etc.), but also all axial point groups of
threefold-or-higher symmetry. At its simplest, OIM max-
imization should therefore incorporate

• axial (C(n ≥ 3)(v/h), D(n ≥ 3)(h), D(n ≥ 2)d, S2n ≥ 4) or
isometric (T(d/h), O(h), I(h)) point groups

• an optical transition involving an orbitally degenerate
state

• SOC splitting of similar or greater magnitude to the line
width of the electronic transition

.18 An OIM-initializable qubit should additionally target
increased spin coherence through

• avoidance of GS OAM and low-lying ESs
• a large absorptivity (ϵ) to allow more dilute samples

Of the few examples of molecular OIM we are aware of,18,19
every system fails to satisfy at least one of these five criteria.
We selected tungsten(V)−oxo complex [1·O]− as a

promising system: tetragonal d1 oxos generally have a low-
lying 2E ES (Figure 1c),24 and 5d metals have strong SOC
(ζW(V) = 3483 cm−1).25 Heating a THF solution of
WOCl3(THF)2

26 and sodium 2,6-diisopropylphenoxide
(NaODipp, 4 equiv) overnight (69 °C, 18 h) provided deep

blue [Na(THF)6][1·O] in 50% recrystallized yield. A
preliminary X-ray diffraction study (Figure 1b) revealed a
nearly C4-symmetric anion with a geometry close to an ideal
square pyramid (τ5 = 0.052(6)).27 An optical 2B2 → 2E
transition was observed in the UV−vis−NIR absorption
spectrum (16 100 cm−1, Figure 2a) with a prominent shoulder
due to tungsten(V) SOC, and a relatively large absorptivity for
a d−d transition (270 M−1 cm−1). Thus, [1·O]− satisfied all
our design requirements.

We were pleased to find the MCD spectrum of [1·O]−

shows large intensities associated with its 2E ES. The SOC
splitting of this state was clearly indicated by the characteristic
bisignate (“pseudo-A”) line shape, the negative and positive
features corresponding to E1/2 and E3/2 levels, respectively (see
the SI). The MCD intensities of these levels were quantified
through their “C0/D0” ratios, a ratio of MCD C term intensity
(“C0”) to absorption intensity (“D0”). For a simple spin-1/2
GS lacking OAM and low-lying ESs, the maximum possible
magnitude of |C0/D0| is g/2, half the GS g value (see the
derivation given in the SI); however, molecules typically
feature ratios far smaller (Chart 1). The values for the [1·O]−

Figure 1. (a) The [1·E]− compounds have bulky aryloxide ligands
that enforce pseudo-C4v geometry, confirmed by (b) the crystal
structure of [Na(THF)6][1·O]. (c) The d orbital splittings for [1·O]−

are shown with C4v irrep labels. (d) SOC splits the 2E state into two
components labeled by C4v* double group irreps.20

Figure 2. (a) Room-temperature UV−vis−NIR absorption and MCD
spectra of [Na(THF)6][1·O] (THF solution). (b) The maximum
spin polarization through OIM is |Δϵsatlim/2ϵ|, estimated here for [1·
O]− in two ways (see text and the SI). (c) The absorption and MCD
spectra of the heavier chalcogenide complexes reveal a 2A1 transition.
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2B2 → 2E transitions (−0.46(3) and +0.32(4)) were quite
large, multiple times larger than those of TEMPO• and
Cu(acac)2 exemplars, and approach the values for [ ]IrCl6

2

,13,28 an ion specifically chosen for OIM studies due to its
residual GS OAM.19

The MCD C0/D0 ratio is a useful heuristic, but more direct
insight for OIM would come from measuring Δϵ for each
individual MS level. This can be accomplished in the saturation
limit. Magnetic saturation occurs under sufficiently low
temperatures or high fields that most molecules populate a
single MS level. In the limit of complete saturation, the MCD
spectrum reveals the intrinsic Δϵ for the single lowest-energy
MS level. MCD intensity in the presence of saturation is
nonlinear,29

i
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where E is the excitation energy, γ a proportionality constant,
μB the Bohr magneton, B the magnetic field, kB the Boltzmann
constant, T the temperature, and f(E) a line shape function
(see the SI). We used eq 1 to estimate MCD in the saturation
limit Δϵsatlim in two ways: from room-temperature data, and
from cryogenic MCD data (5 K, 7 T). The maximum spin
polarization that can be achieved by OIM is |Δϵsatlim/2ϵ| (see
the SI), and both methods of estimating Δϵsatlim/2ϵ reveal that
CP excitation of the 2B2 → 2E transition can deliver up to 15%
(E3/2) or 20% (E1/2) spin polarization, depending on
wavelength of excitation (Figure 2b). For context, such a
large polarization can only be achieved thermally at 1−1.5 K in
X-band EPR experiments.
Analogous chalcogen congeners [1·S]− and [1·Se]− were

also synthesized to explore their MCD intensities. The former
was prepared by treating W(ODipp)4

30 with NaSCPh3 (1
equiv, THF), a convenient source of S• − upon release of CPh3•.
Stirring overnight then washing with ether provided teal
[Na(THF)6][1·S] in 36% yield after recrystallization. The
latter complex was prepared in a two-step one-pot procedure:
W(ODipp)4 was first treated with PPh3Se to form the terminal
selenide complex, and then reduction with NaCPh3 formed the
tungsten(V) anion. Recrystallization provided vibrant green
[Na(THF)x(Et2O)y][1·Se] in 26% isolated yield.
The MCD spectra of [1·S/Se]− show the appearance of the

2B2 → 2A1 ligand field transition, likely caused by weaker σW�E
interactions in the heavier chalcogenides. This assignment
follows from its negative MCD response, indicating E1/2
symmetry, and is corroborated by model CASSCF/RI-
NEVPT2 calculations (see the SI).31 We ascribe the weaker |
C0/D0| ratios (Chart 1) of the 2B2 → 2A1 transitions to a lack of
ES orbital degeneracy. For such nondegenerate states, the sum-
over-states perturbation theory formalism22 says C term
intensity is proportional to the reciprocal energy difference
to other states coupling through SOC. This is an important
distinction from 2E states, underscoring that design of
molecules with large MCD/OIM responses should target
transitions involving orbital degeneracy.
All three chalcogenide complexes can be observed by

continuous-wave (CW) EPR experiments at temperatures at
least up to 80 K due to their lack of GS OAM and thus slower

Chart 1. 2B2 → 2E Transitions of [1·E]− Species Have Far
Stronger MCD Intensities than Other S = 1/2 Organic or
Transition Metal Species with Smaller SOC; Their C0/D0
Ratios Approach Those of [IrCl6]2−, a System with GS OAM

Figure 3. (a) The CW EPR spectra show approximate C4 symmetry for all anions with slight rhombic distortions for [1·S/Se]−. (b) Spin T1 and Tm
measurements show slower relaxation for [1·E]− anions than K2IrCl6 (values from ref 19) due to the latter’s GS OAM. (c) Normalized contours in
the FS-ESE spectrum of [1·Se]− show nearly flat Tm times independent of field.
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relaxation properties. Inversion recovery and Hahn-echo X-
band EPR experiments were used to directly measure T1 and
Tm times (Figure 3), giving values higher than those of K2IrCl6
(10−100 times higher at 20 K);19 in fact, even higher values
may be attainable through techniques like deuteration,32

picket-fence saturation recovery experiments,33 and Carr−
Purcell−Meiboom−Gill (CPMG) pulse sequences.34 Despite
this increase in coherence for [1·E]− complexes, these Tm
relaxation times are still modest likely due to the strong SOC
within the systems.35 A balance clearly needs to be struck
between maximizing MCD/OIM using heavy atom SOC while
avoiding the collapse of spin coherence, and this will be a
fascinating area for future exploration.
The T1 and Tm measurements also showed unexpectedly

consistent relaxation times when measured in the g∥ and g⊥
regions of the spectra. Such behavior differs from related
species,36 which often show large variations across the
spectra.37 This insensitivity to magnetic field was demonstrated
using a 2D FS-ESE EPR experiment21 conducted on [1·Se]−,
showing nearly constant Tm times across the entire spectrum.
Studies are ongoing to uncover correlations between relaxation
times, molecular symmetry, and MCD/OIM intensity.
With this work, we hope to highlight that a large synthetic

space remains to be explored in the development of optimal
molecules for OIM. Our results ease the restrictive Oh design
strategy for OIM, showing that chemists can exploit axial
symmetry to deliver large MCD responses. This increased
flexibility should allow targeting of other properties important
for qubits, especially spin relaxation times. Ligand design may
be particularly useful, as the ODipp ligands here were selected
for ease of use30 rather than promotion of spin coherence.38−40

We are conducting experiments toward these ends, and toward
balancing spin and optical lifetimes for future implementation
of OIM in molecular qubit systems on the nanosecond time
scale.41
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