
Development of Statistical Tools for Studies of the Rapid
Neutron Capture Process

by

Yukiya Saito

B.Sc., The University of Tokyo, 2016

M.Sc., The University of British Columbia, 2018

A THESIS SUBMITTED IN PARTIAL FULFILLMENT

OF THE REQUIREMENTS FOR THE DEGREE OF

Doctor of Philosophy

in

THE FACULTY OF GRADUATE AND POSTDOCTORAL

STUDIES

(Physics)

The University of British Columbia

(Vancouver)

April 2023

© Yukiya Saito, 2023



The following individuals certify that they have read, and recommend to the Fac-
ulty of Graduate and Postdoctoral Studies for acceptance, the thesis entitled:

Development of Statistical Tools for Studies of the Rapid Neutron Cap-
ture Process

submitted by Yukiya Saito in partial fulfillment of the requirements for the degree
of Doctor of Philosophy in Physics.

Examining Committee:

Reiner Krücken, Professor, Physics & Astronomy, UBC
Supervisor

Iris Dillmann, Senior Research Scientist, TRIUMF
Co-supervisor

Janis A. McKenna, Professor, Physics & Astronomy, UBC
University Examiner

Trevor Campbell, Associate Professor, Statistics, UBC
University Examiner

Morten Hjorth-Jensen, Professor, Physics, Michigan State University and Univer-
sity of Oslo
External Examiner

Additional Supervisory Committee Members:

Alison Lister, Associate Professor, Physics & Astronomy, UBC
Supervisory Committee Member

Jeremy Heyl, Professor, Physics & Astronomy, UBC
Supervisory Committee Member

Gary Hinshaw, Professor, Physics & Astronomy, UBC
Supervisory Committee Member

ii



Abstract

The rapid neutron capture process (r-process) is a complex nucleosynthesis mech-

anism for the creation of heavy nuclei, which occurs under extreme astrophysical

conditions, as expected to occur in compact binary mergers and some types of

core-collapse supernovae. An accurate understanding of the r-process is crucial

for explaining the abundances of roughly half the elements heavier than iron in the

solar system. Not only are the predictions of the r-process abundance pattern af-

fected by the thermodynamical conditions of such astrophysical events, significant

uncertainty also arises from the properties of thousands of neutron-rich nuclides

involved in the process. While many of the neutron-rich nuclei may become ex-

perimentally accessible in the near future, it is essential to quantify the uncertainty

originating from theoretical descriptions of atomic nuclei and identify key nuclear

physics inputs of the numerical simulations of the r-process.

In this thesis, several statistical methods have been developed and applied to

scrutinize the uncertainty of nuclear physics inputs in the studies of the r-process

nucleosynthesis. The variance-based sensitivity analysis method identifies influ-

ential nuclear physics inputs in a statistically rigorous manner and probes their

effect on elemental abundance patterns. The ensemble Bayesian model averaging

method provides a simple framework for combining competing theoretical nuclear

physics models based on experimental data and quantifying their uncertainties.

Furthermore, an emulator of r-process abundance calculations has been developed

using artificial neural networks, which dramatically speeds up the calculations of

abundance patterns, potentially allowing for scaling up various statistical analyses.

While the effectiveness of these methods has been shown for the specific features

of the observed solar abundance pattern and nuclear physics observables, they are
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readily applicable to broader aspects of the studies of the r-process nucleosynthe-

sis.
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Lay Summary

The origin of elements heavier than iron is not completely understood. Especially

the process that can create the heaviest elements in the Universe called the “r-

process” continues to be a topic of active research. In order to fully explain the

abundances of nuclear species observed in the solar system, we need to understand

the properties of many atomic nuclei that do not exist in nature, in addition to where

the r-process can occur. This thesis describes statistical and machine learning tools

that can help us evaluate how well we know some of the key nuclear physics rele-

vant to the r-process, and what we need to know to understand it better.
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Chapter 1

Introduction

When I was born,
Earth shed tears to equal my birth weight.

I was made from a bit of Heaven and Earth.
— Shuntarō Tanikawa,

To Go Home (1979)

All of the visible matter around us, including ourselves, is made of combina-

tions of electrons, protons, and neutrons, together forming what we know as chem-

ical elements. The wide variety of chemical elements in nature, from hydrogen

to uranium, can be characterized by their atomic nuclei, which are composed of

specific numbers of protons and neutrons. While protons and neutrons (nucleons)

are not elementary particles themselves—they are made of elementary particles

called quarks bound together by another type of elementary particles called gluons,

which mediate the strong force described by the theory of quantum chromodynam-

ics (QCD)—it is possible to provide rather coherent descriptions of atomic nuclei

by treating protons and neutrons as the fundamental degree of freedom. We will

see some aspects of it in this chapter. The field of physics based on the nucleon

degree of freedom is called (low-energy) nuclear physics.

Nuclear astrophysics, which is the focus of the current thesis, is at the intersec-

tion of nuclear physics and astrophysics, where we aim to understand the origin of

chemical elements based on our knowledge of stellar structure and evolution, and

the nuclear physics processes that occur inside stars and explosive astrophysical

1



events. The field of modern nuclear astrophysics was formalized by the seminal

works of Burbidge et al. (1957) [1] and Cameron (1957) [2]. The general term

which describes the production of chemical elements in the Universe is called nu-

cleosynthesis.

1.1 Structure of the Thesis
In this chapter (Chapter 1), we will first review various nucleosynthesis pro-

cesses, with an emphasis on the processes which produce the heaviest elements in

nature and their relations to the properties of atomic nuclei (Section 1.2). Among

many nucleosynthesis processes, the focus of the current thesis is the rapid neu-

tron capture process (r-process), which synthesizes the heaviest elements in the

Universe (Section 1.2.2). The r-process is believed to occur in neutron-rich and

explosive astrophysical environments, such as compact binary mergers and some

types of (core-collapse) supernovae, involving thousands of neutron-rich nuclei

and diverse types of nuclear reactions. Thus, modeling of the observables of the

r-process, such as abundance patterns and electromagnetic emissions, requires de-

tailed descriptions of the astrophysical environments and the properties of neutron-

rich nuclei, which are currently not very well understood.

In order for an accurate understanding of the r-process, it is essential to quan-

tify the uncertainties of nuclear physics models as well as their effect on the r-

process observables. In this thesis, we focus on the r-process abundance pattern in

the solar system, which is one of the most well-known observables. Therefore, in

Section 1.3, a method to compute the nuclear abundance evolution in astrophysical

environments called a nuclear reaction network and its computational aspects will

be discussed.

The current thesis puts an emphasis on the nuclear physics of the r-process,

which will be discussed in Chapter 2. Section 2.1 discusses the peak structures

in the observed solar r-process abundance pattern and their relations to the nu-

clear physics processes. In Section 2.2, different approaches for describing nuclear

masses, which are some of the most fundamental properties of atomic nuclei, will

be discussed. As shown in this section through an example of nuclear mass mod-

els, theoretical predictions of the properties of nuclei start to diverge and become
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uncertain without experimental constraints, especially in the neutron-rich region,

where the r-process operates.

Statistical frameworks are powerful tools for uncertainty quantification in math-

ematical (numerical) models (e.g. nuclear mass models, nuclear reaction network

models, and so on). Furthermore, they can also be used for identifying influential

inputs of the models that contribute the most to the uncertainty of the prediction of

the models. This is called a sensitivity analysis. In Section 3, an overview of the

statistical and machine learning techniques used in the main contributions of the

current thesis (Chapters 4, 5, and 6) will be given.

Section 3.1 discusses the framework of Bayesian statistics. Section 3.2 de-

scribes the Markov chain Monte Carlo (MCMC) method, which is often used for

parameter estimation in Bayesian statistics. The statistical framework and com-

putational techniques introduced in these sections are applied to the uncertainty

quantification of theoretical nuclear mass models in Chapter 4, using the mass

models described in Section 2.2.

Section 3.3 explains the basics of the variance-based sensitivity analysis method.

This method defines sensitivity as a contribution of the input(s) to the variance

(propagated uncertainty) of the output of a numerical simulation. In Chapter 5,

this method has been applied to nuclear reaction network abundance calculations,

investigating the influence of the newly measured β -decay properties and their un-

certainties for a number of neutron-rich nuclei in the rare-earth region. It provides

a more statistically rigorous framework for sensitivity analyses than previous stud-

ies and provides more detailed information on how the inputs affect the predicted

abundance patterns.

Section 3.4 introduces the basics of highly flexible machine learning models

called artificial neural networks (ANNs). In Chapter 6, ANNs have been used to

model the changes in abundance patterns predicted by nuclear reaction network

calculations, as a result of changes in the values of nuclear physics inputs, such as

nuclear masses and half-lives of the nuclides of interest. In this context, the ANN

models are considered to be emulators of the nuclear reaction network calcula-

tions. These emulators are able to compute abundance patterns significantly faster

than full nuclear reaction network calculations, therefore, they potentially enable

statistical analyses, such as variance-based sensitivity analyses, at a much larger
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scale.

In Chapter 7, a summary of the contributions of the current thesis is given and

the outlook is discussed.

1.2 Synthesis of Elements
Figure 1.1 shows the abundance pattern of elements and isotopes in the solar sys-

tem. This abundance pattern contains rich information on how the elements have

been synthesized in our solar system. It is mainly obtained from observation of

the intensity of elemental absorption and emission lines in the Solar spectrum, and

analyses of a specific class of meteorites that retain the isotopes that existed in the

early Solar system [3]. Below, a brief overview of the origin of elements from the

lightest elements to the heavy elements past iron is given. Especially the rapid neu-

tron capture process (r-process), which creates the heaviest elements that exist in

the Universe and is the focus of the current thesis, will be discussed in more detail.

Figure 1.1: Abundance of elements and isotopes in the solar system as a func-
tion of mass number. Figure adapted from Ref. [4]
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1.2.1 Nucleosynthesis up to Iron

Synthesis of Elements in the Big Bang and by Cosmic-Ray Spallation

The first nucleosynthesis process took place minutes after the Big Bang, which

produced the lightest nuclei such as 1,2H, 3,4He, and 7Li. This is called Big Bang

nucleosynthesis (BBN). About 75% of the produced nuclei are 1H (protons), and

the rest of the 25% is mainly 4He (α-particles). The other nuclei are produced

in orders of magnitude smaller amounts. The disagreement between theoretical

predictions and observations on the amount of 7Li is a longstanding problem and

is referred to as the “lithium problem” [5, 6].

The next lightest elements observed in the Solar System are 6Li, 9Be, 10B and
11B, whose abundances are about six orders of magnitude smaller than the species

produced in the BBN. However, these are not chronologically the next species to

be produced after the BBN. This is because the BBN only produces negligible

amounts of these nuclei and even if they are produced, they would be quickly con-

sumed in the early stage of stellar burning due to their low Coulomb barriers. Due

to their unknown origin at that time, Burbidge et al. (1957) referred to their produc-

tion mechanisms as “x-process”. Today, their production is attributed to spallation

reactions of CNO nuclei (see the following paragraphs for details) abundant in

stellar atmospheres (cosmic-ray spallation) [7].

Stellar Burning

The production of nuclides up to the iron peak occurs within the cores of stars

through nuclear fusion reactions. It is often referred to as “stellar burning”. The

reason why stellar burning can only produce elements up to iron is that, as shown

in Figure 1.2, fusion reactions up to the iron peak release energy due to increasing

binding energies towards heavier masses. This creates internal pressure to prevent

stars from collapsing gravitationally. However, fusion reactions can no longer re-

lease energy beyond the iron peak. The increase in proton number means higher

Coulomb barriers; therefore, stellar burning of heavy elements is highly hindered.

Today, the following stellar burning phases are known to exist: hydrogen burn-

ing, helium burning, carbon burning, neon burning, oxygen burning, and silicon
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burning. Depending on its total mass, a star may go through one or several of these

burning stages. Only massive stars with more than 8 solar masses (8 M⊙) can ignite

all burning phases and end their lives in a core-collapse supernova [8, 9].
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BE(62Ni)/A = 8.795 [MeV]

BE(208Pb)/A = 7.867 [MeV]

Figure 1.2: Trend of the nuclear binding energy per nucleon (BE/A) as a
function of mass number A for stable isotopes up to 208Pb. The most
tightly bound nucleus is 62Ni with BE/A = 8.795 MeV. The data are
from AME2020 [10].

Star formation begins in an interstellar gas cloud, which consists mainly of

primordial hydrogen and helium. Stars formed at late stages are already “contam-

inated” with material from previous star generations (metallicity). The gas cloud

starts to contract due to the attractive gravitational force, and the gravitational po-

tential energy is converted into thermal energy and radiation. As its density in-

creases and the atoms are ionized, the radiation starts to raise the temperature and

pressure [8, 11].

When the central temperature reaches about 10 million Kelvin, hydrogen burn-
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ing begins. Stars undergoing hydrogen burning occupy a particular band on a graph

of luminosities and effective temperatures (Hertzsprung-Russell diagram) and are

referred to as main-sequence (MS) stars. This is the longest stage in the life of a

typical star (e.g., roughly 1010 years for a 1 M⊙ star) [9, 11].

In principle, hydrogen burning fuses four 1H nuclei to produce a 4He nucleus.

However, the probability of this direct reaction occurring is too small to explain

the luminosity of stars. In fact, 4He nuclei are produced in a sequence of nuclear

reactions in the core called the pp (proton-proton) chains. The timescale of the

process is dominated by the first reaction in the pp-chains, which is p+ p → d +

e+ + ν , where d, e+, and ν denote a deuterium (2H) nucleus, a positron, and a

neutrino, respectively. This reaction is slow because, in addition to the Coulomb

barrier of the protons, it involves the weak interaction, which converts a proton into

a neutron in the field of a second proton, unlike many other stellar fusion reactions,

which are mediated by the strong nuclear force and the Coulomb force [8, 9]. For

the Sun, the beginning of the pp-chains is estimated to be 4.5 Gy ago and it would

take 4.8 Gyr from now to exhaust the hydrogen in the core [8, 12]. If stable carbon

or nitrogen nuclides from previous star generations are present in the stellar plasma,

the CNO cycles can alternatively complete the net reaction of hydrogen burning.

After all the hydrogen is consumed in the core, the star further contracts due to

the gravitational force and it increases the temperature. Eventually, the abundant
4He in the core is ignited and produces mainly 12C via the triple-α process and 16O

by another capture of an α-particle. This is called helium burning. For stars whose

masses are in the range 0.5M⊙ ≲ M ≲ 8M⊙, helium burning is the last stage of

core burning. They eventually evolve into the stage called asymptotic giant branch

(AGB), where the carbon-oxygen core is surrounded by a burning helium shell,

and the helium burning region is surrounded by a hydrogen burning shell [8, 13].

Stars with masses larger than ∼ 8M⊙ undergo hydrostatic carbon burning after

the helium is consumed and the temperature increases due to a further contraction

of the core. Carbon burning creates a core mainly consisting of 16O, 20Ne, 24Mg,

and 23Na. If the initial masses of stars exceed ∼ 10M⊙, they are capable of ignit-

ing even further hydrostatic burning stages, called neon burning, oxygen burning,

and silicon burning. Through significantly more complicated networks of nuclear

reactions, they eventually produce nuclei in the mass A = 52-56 region. The nu-
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clei in the mass region are commonly referred to as iron-peak nuclei, which are

some of the most tightly bound nuclei (Figure 1.2). While silicon burning creates

a Fe/Ni-core made of iron-peak nuclei such as 56Ni, 54Fe, and 56Fe, the details of

the composition of the products sensitively depend on the degree of neutron excess

in the stellar plasma and its thermodynamical conditions such as temperature and

density [9, 11].

Stellar Explosions

The composition of nuclei synthesized in the core, however, deviates from the

abundance pattern observed in the solar system. This is because the synthesized

nuclei need ejection mechanisms, and such explosive processes significantly alter

the composition of the nuclei. Core-collapse and thermonuclear supernovae are

considered to be responsible for such an ejection of material, including iron peak

nuclei, into the interstellar medium [8].

Core-collapse supernovae occur at the end of the lives of massive stars (≳
8M⊙). Depending on specific absorption lines in the optical spectra, which re-

flect the composition of the outer layers, they can be categorized into type II, Ib,

and Ic supernovae. At the end of the silicon burning, the core becomes electron-

degenerate. Electron degeneracy pressure arises due to a large density of electrons

confined in the same volume; therefore, electrons start to occupy high-momentum

states since multiple electrons cannot occupy the same state due to the Pauli ex-

clusion principle. When the mass of the core reaches the Chandrasekhar limit

(∼ 1.4M⊙), the electron degeneracy pressure can no longer support its mass and

the core instantaneously collapses (on a timescale of less than a second [14]) due to

gravity. Once the core surpasses nuclear density (∼ 2×1014 gcm−3, according to

the liquid-drop model, Section 2.2.1), where the nuclear force becomes repulsive,

it rebounds and generates an outward shock wave. The hot and dense core forms

a protoneutron star as a result of the photodissociation of the iron-peak nuclei and

electron captures.

By the time the shock wave reaches the outer edge of the core, the kinetic en-

ergy is lost due to the emission of neutrinos. Although the mechanism of revival of

the shock is not yet fully understood, the neutrino-matter interaction is considered
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to be the predominant process (neutrino-driven wind). From the shock propagating

through layers with different compositions, a range of elements such as 16O, 28Si,
36Ar, 40Ca (“α-nuclei”) and iron-peak nuclei, predominantly 56Ni are synthesized

and ejected [15].

Another major mechanism of supernovae is due to a thermonuclear explo-

sion. This is classified as type Ia supernovae because of the presence of silicon

absorption lines in the spectra. It is believed that the viable progenitors of type

Ia supernovae are carbon-oxygen (C+O) white dwarfs in a binary system accret-

ing hydrogen- or helium-rich matter from a non-degenerate companion (single-

degenerate scenario); a C+O white dwarf plunging into the envelope of a giant

companion and merging with its core (core degenerate scenario); or a merger of two

C+O white dwarfs (double-degenerate scenario). White dwarfs are the final stage

of low- to intermediate-mass stars, which are supported by the electron degeneracy

pressure. Although detailed mechanisms of triggering a thermonuclear explosion

are still actively studied, in general it is caused by a white dwarf approaching the

Chandrasekhar limit through accretion of matter or a merger, and heating due to

gravitational compression triggers a thermonuclear explosion (Ref. [16] and refer-

ences therein). The explosion mainly produces iron-peak nuclei as well as some

intermediate-mass nuclei in the outer layer of the white dwarf, although the yields

depend on the composition of the core and the detail of the explosion [8, 17, 18].

The notable fact is that the light curve of type Ia supernovae is predominantly pow-

ered by 56Ni, which undergoes a β -decay to 56Cu, and finally to 56Fe. About half

to two thirds of the 56Fe in the Galaxy is considered to have been produced by type

Ia supernovae [9].

1.2.2 Evidence of the Rapid Neutron Capture Process

As the proton number increases past the iron peak, nucleosynthesis via charged-

particle and fusion reactions becomes increasingly unlikely due to the large Coulomb

barriers. The decreasing trend of nuclear binding energy per nucleon past iron (Fig-

ure 1.2) also indicates that further fusion reactions cannot produce energy. Condi-

tions achieved within the explosions of stars discussed in the previous section also

tend to produce iron-peak nuclei, due to their large binding energies. In order to
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produce heavy elements (Pb and beyond), neutron capture processes are necessary.

Solar Abundance Pattern

The first evidence of neutron capture processes can be seen in the double-peak fea-

tures of the solar abundance pattern (Figure 1.1) around A ∼ 130 and 140, as well

as A ∼ 195 and 205, corresponding to the neutron magic numbers N = 82 and 126,

respectively. The higher and lower mass peaks of the double peaks are believed to

originate from the slow neutron capture process (s-process) and the rapid neutron

capture process (r-process), respectively, through accumulation of abundances due

to the increased stability at neutron magic numbers (e.g., smaller neutron capture

cross sections). In the s-process, neutron captures occur on a timescale of 10–100

years, which is slower than that of β -decays. On the other hand, in the r-process,

the typical timescale of neutron captures is on the order of millisecond or less.

The s-process, which occurs in asymptotic giant branch (AGB) stars and dur-

ing the hydrostatic burning phases of massive stars (> 8M⊙), synthesizes heavy

elements through an iteration of neutron captures and β -decay near the valley of

β -stability [19]. Due to its low neutron density (106–12 cm−3) in the environment,

there is sufficient time (tens to hundreds of years) for the nuclei to decay back to

stability, despite their long half-lives of the nuclei near the valley of stability. The

wide range of neutron densities gives rise to weak and main s-processes, where

the weak component mainly produces nuclei with A < 90 in massive stars and the

main component creates nuclei up to 209Bi in AGB stars. Sources of neutrons in

the s-process are the α-induced reactions 13C+α → 16O+n, occurring in the He-

(∼75 %) and C-rich (∼25 %) intershell region during the H-shell burning. Addi-

tional neutrons are provided by the 22Ne+α →25 Mg+ n reactions, occuring in

the thermal pulses of AGB stars, caused by He-shell flashes (explosive expansions

of the He shell) [8, 9]. Approximately half of the abundances of elements heavier

than iron that exist in the solar system can be explained by the s-process [20].

On the other hand, the r-process is believed to occur in neutron-rich (typically

neutron density of ≳ 1020 cm−3) [9] and explosive environments and is responsible

for the other half of the abundances of the heavy elements. Due to the fast and

successive neutron captures, it operates in the neutron-rich region on the chart of
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nuclides. Therefore, in the r-process, the masses of nuclei are smaller than in the

s-process when the nucleosynthesis path encounters the neutron magic numbers.

The peaks arise as a result of accumulation of material at the closed neutron shells,

where neutron capture slows down. The differences of the masses of nuclei when

the nucleosynthesis paths encounter the neutron shell closures cause the double-

peak structures observed in the solar abundance pattern (Figure 1.1). Conceptual

schematics of this mechanism are shown in Figure 1.3, taking the neutron magic

number N = 82 as an example.

Figure 1.3: Conceptual paths of s- and r-process nucleosynthesis around the
neutron magic number N = 82. The circles show the locations on the
line of stability where accumulation of material occurs due to the re-
spective neutron capture processes. The inset figure shows the corre-
sponding solar abundance pattern taken from Ref.[21].
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Recently, a third neutron capture process called the “intermediate” neutron cap-

ture process (i-process) has been a topic of investigation [22–25]. This process is

believed to operate at intermediate neutron densities of ∼ 1015 cm−3. Some ob-

servations of carbon-enhanced metal poor stars indicate abundance patterns that

cannot be explained by a superposition of regular s- and r- processes, and the i-

process may be able to explain such observations. The i-process was first proposed

in Ref. [22] to occur in He-flashes in thermally-pulsing AGB stars and post-AGB

stars, where neutrons are provided by the 13C+α → 16O+ n reactions. Recent

studies indicate that rapidly accreting white dwarfs in binary systems are also a

possible site [25]. The path of the i-process is believed to lie between the paths of

the s- and r-processes, 2-6 neutrons away from stability.

In addition, other heavy element nucleosynthesis processes are known to ex-

ist as a result of charged particle and photon-induced reactions, such as rp-, ν-,

ν p-, and γ-processes. However, their contributions are limited to just a fraction of

the overall elemental abundances compared to the s- and r-processes and are not

apparent in the overall abundance pattern (Figure 1.1).

Since the s-process is well understood in terms of the properties of involved

nuclei and astrophysical sites, the r-process abundance pattern can be derived by

subtracting the contribution of the s-process from the observed solar abundance

pattern. Figure 1.4 shows two different derived r-process abundance patterns from

Refs. [26, 27]. As discussed above, large peaks are visible at A ∼ 130 and 195

due to the neutron shell closures at N = 82 and 126, which are referred to as the

second and third abundance peaks, respectively. These peaks are believed to be

formed as a result of a “main” r-process, which is responsible for the synthesis of

the heavy elements up to and beyond the third peak, as opposed to a “weak” r-

process, which is primarily responsible for the formation of the first r-process peak

at A ∼ 80 [28, 29]. Furthermore, a smaller peak can be seen between the second

and third peaks. It is commonly referred to as the rare-earth peak. The origin of

the peak structures will be discussed in more detail in Section 2.1.1.
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Figure 1.4: Derived solar r-process abundance patterns from Refs. [26]
(green squares) and [27] (red triangles).

Observations of Metal-Poor Stars

Observations of metal-poor stars in the Milky Way’s stellar halo (a spherical pop-

ulation of stars that surrounds our Milky Way Galaxy) provide further evidence

for the r-process. Metal-poor stars have significantly smaller abundances of met-

als (elements heavier than hydrogen and helium, e.g. iron) compared to the so-

lar system. In general, the metallicity of the interstellar medium increases as the

time passes due to various nucleosynthesis processes. Therefore, metal-poor stars,

which are formed in the early stage of the formation of our galaxy, could pro-

vide opportunities to isolate signatures of the r-process. In fact, observations of

metal-poor stars with enhancement in the r-process-only elements (elements that

are produced exclusively or almost exclusively in the r-process, e.g., Eu), show

abundance patterns that closely match the solar r-process abundance pattern for

Z = 56–78 (Figure 1.5), providing evidence for a “robust” main r-process, which

produces nearly identical abundance patterns in separate astrophysical events. Fur-

thermore, some metal-poor stars exhibit significant star-to-star abundance scatter

of lighter (Z ≤ 50) elements, providing evidence for a weak r-process, most likely
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originating from different mechanisms than the main r-process.
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FIG. 2 Solar r-process abundances as determined by Cowan
et al. (1991) and Goriely (1999). The largest uncertainties
are clearly visible for A . 100 (weak s process region) and
around lead.

its overall neutron-capture element level is depressed rel-
ative to Fe (Sneden and Parthasarathy 1983, see also the
more extensive analysis of Honda et al. 2006). An ini-
tial abundance survey in metal-poor (MP) stars (Gilroy
et al., 1988) considered 20 red giants, finding a common
and easily spotted pattern of increasing overabundances
from Ba (Z = 56) to Eu (Z = 63) among the rare-
earth elements. With better echelle spectrographic data
came discoveries of many more r-process-rich stars, lead-
ing Beers and Christlieb (2005) to sub-classify them as
“r-I” with 0.3  [Eu/Fe]  +1.0 and [Ba/Eu] < 0, and
as “r-II” with [Eu/Fe] > +1.0 and [Ba/Eu] < 0.

The most detailed deconvolution of abundances into
nucleosynthetic contributions exists for the solar system,
as we have accurate abundances down to the isotopic
level as a result of meteoritic and solar atmospheric mea-
surements (e.g. Cameron, 1959; Asplund et al., 2009;
Lodders et al., 2009, see Fig. 1). Identifying the r-
process contributions to the solar system neutron-capture
abundances is usually accomplished by first determining
the s-process fractions, (e.g. Käppeler, 1999; Arlandini
et al., 1999; Burris et al., 2000; Käppeler et al., 2011).
The remaining (residual) amount of the total elemental
abundance is assumed to be the solar r-process contri-
bution (see Figures 1 and 2). Aside from the so-called
p-process (Arnould and Goriely, 2003; Rauscher et al.,
2013; Nishimura et al., 2018) that accounts for the minor
heavy element isotopes on the proton-rich side of the val-
ley of instability, as well as the ⌫-process (Woosley et al.,
1990) and the ⌫p-process (Fröhlich et al., 2006b), only
the s and r-processes are needed to explain nearly all of
the solar heavy element abundances.

Early observations of CS 22892-052 (Sneden et al.,
1994, 2003) and later CS 31082-001 (Hill et al., 2002;
Siqueira Mello et al., 2013) and references therein), in-
dicated a “purely” or “complete” solar system r-process
abundance pattern (see Figure 3). The total abundances

of these, mostly rare-earth, elements in the stars were
smaller than in the Sun but with the same relative pro-
portions, i.e., scaled. This indicated that these stars, that
likely formed early in the history of the Galaxy, experi-
enced already a pollution by a robust r-process.

!"#$%&'()$*+,-'.

FIG. 3 Top panel: neutron-capture abundances in 13 r-
II stars (points) and the scaled solar-system r-process-only
abundances of (Siqueira Mello et al., 2013), mostly adopted
from (Simmerer et al., 2004). The stellar and solar sys-
tem distributions have been normalized to agree for ele-
ment Eu (Z = 63), and than vertical shifts have been ap-
plied in each case for plotting clarity. The stellar abundance
sets are: (a) CS 22892-052, (Sneden and Cowan, 2003); (b)
HD 115444, (Westin et al., 2000); (c) BD+17 3248, (Cowan
et al., 2002); (d) CS 31082-001, (Siqueira Mello et al., 2013);
(e) HD 221170, (Ivans et al., 2006); (f) HD 1523+0157,
(Frebel et al., 2007); (g) CS 29491-069, (Hayek et al., 2009);
(h) HD 1219-0312, (Hayek et al., 2009); (i) CS 22953-003,
(François et al., 2007); (j) HD 2252-4225, (Mashonkina et al.,
2014); (k) LAMOST J110901.22+075441.8, (Li et al., 2015);
(l) RAVE J203843.2-002333, (Placco et al., 2017); (m) 2MASS
J09544277+5246414, (Holmbeck et al., 2018). Bottom panel:
mean abundance di↵erences for the 13 stars with respect to
the solar system r-process values.

However, the growing literature on abundance analyses
of VMP stars has added to our knowledge of the aver-
age r-process pattern, and has served to highlight depar-
tures from that pattern. Additions to the observational
results since the review of Sneden et al. (2008) include
Roederer et al. (2010b, 2014a); Li et al. (2015); Roed-
erer et al. (2016); Roederer (2017); Aoki et al. (2017);

Figure 1.5: Scaled elemental abundances of neutron-capture elements in
metal-poor stars in the Galactic Halo compared to the r-process abun-
dance pattern observed in the solar system (solid lines). The abundance
patterns are scaled to match the abundances for Eu (Z = 63). The verti-
cal shift of each abundance pattern is for display purposes. Labels (a)–
(m) correspond to different metal-poor stars. The bottom panel shows
deviations of the mean abundances of the metal-poor stars from the r-
process solar abundance pattern. Figure was taken from Ref. [4].
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Kilonovae

A more direct evidence connecting the r-process nucleosynthesis to a specific

astrophysical event was obtained as an electromagnetic counterpart of the grav-

itational wave event GW170817, originating from a binary neutron star merger

[30, 31]. The observation agreed well with predictions of light-curves powered by

the radioactive decays of the r-process nuclei synthesized in the neutron star merger

ejecta [32, 33]. Such emission of light is called a “kilonova” or “macronova”. In

order to model the evolution of the spectra of the kilonova, at least two compo-

nents originating from different types of ejecta were necessary: the “blue” emission

peaking at optical wavelengths a day after the merger, which mainly contains light

r-process elements originating from the fastest moving outer layer of the ejecta,

and the “red” component peaking at near-infrared wavelengths roughly a week

after the merger, which contains lanthanide/actinide elements whose optical opac-

ity is largely due to their complex electron shell structures. The blue component

was found to be consistent with a combination of hot and fast dynamical ejecta

from the collision interface and neutrino-driven wind ejecta, and the red compo-

nent most likely originates from the post-merger accretion disk outflows (see the

following section for the descriptions of the ejecta). These features of the light

curve were interpreted as clear indications of the production of heavy r-process

elements [34, 35].

1.2.3 Possible Sites of the r-Process

Due to the observation of the kilonova associated with GW170817, which showed

evidence of the synthesis of heavy elements, binary neutron star mergers are now

considered to be one of the most promising candidates as the r-process site. While

the inferred nucleosynthesis yield and rate of GW170817 suggest that such mergers

could be responsible for most of the r-process nuclei in the solar system [34, 35],

existence of other sources is not excluded. Below, a brief review of some of the

possible sites of the r-process are given.
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Neutron Star Mergers and Neutron Star-Black Hole Mergers

Since the main r-process requires a neutron-rich environment and explosive mech-

anisms to eject material, mergers of binary neutron stars (NS mergers) were con-

sidered to achieve such conditions long before the observation of GW170817 [36–

39]. Ejecta of NS mergers can be categorized into the following three components

[4]: (i) dynamic ejecta, (ii) neutrino-driven wind ejecta, and (iii) accretion disk

outflows.

The dynamic ejecta consists of two additional components: a tidal compo-

nent [38, 40] and a shock-heated component originating from the contact interface

[41–43]. The tidal component consists of cold unprocessed neutron-rich material

thrown out of the surface of the neutron stars due to the tidal interaction during the

final part of the inspiral right before merging. In the tidal component, due to the

extremely neutron-rich (low electron fraction Ye
1) environment, the heating from

radioactive decays, and the relatively slow expansion of the ejecta, the r-process

produces nuclei up to mass number A∼ 280, where fission is the main decay mode.

The fission fragments again capture neutrons and may undergo fission several times

(fission cycling). In such neutron-rich ejecta, the resulting abundance pattern tends

to reproduce the features of the solar r-process abundance pattern for A > 140, re-

gardless of the modeling details of the fission yields [44, 45]. In the shock-heated

component, the high temperature enhances electron and positron capture, making

the ejecta less neutron rich [46]. Furthermore, it has been suggested that the elec-

troweak processes due to the neutrino flux from a hypermassive neutron star, which

is one of the possible central remnant objects of NS mergers, can make the ejecta

even less neutron-rich [47]. However, the extent of the effect depends sensitively

on the details of the modeling.

Typically, NS mergers create either a stable NS (maximum mass: 2.2-2.9 M⊙
[48]), a massive NS (MNS, whose mass is larger than the maximum mass of a

stable NS and smaller than the maximum mass allowed by uniform rotation), a hy-

permassive NS (HMNS, whose mass exceeds the maximum mass for a uniformly

rotating NS), or a black hole (BH), depending on the mass and spin of the remnant

1In neutral plasma, the electron fraction Ye = ∑i ZiYi represents the neutron-to-proton ratio, where
Yi and Zi are the abundance and the proton number of the nuclear species i. For example, Ye = 0.5
implies an equal number of protons and neutrons in the plasma.
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[49]. When the central NS remnant is supported by the temperature and rotation,

it does not immediately collapse into a BH even when the mass exceeds the max-

imum mass for a neutron star. Such a central remnant emits neutrinos and creates

a neutrino-driven outflow mainly in the polar direction [50, 51]. The outflow is

exposed to the flux of neutrinos for a long enough time, therefore, it can reach an

equilibrium:

νe +n ⇆ p+ e−, (1.1)

ν̄e + p ⇆ n+ e+, (1.2)

making the material less neutron-rich or possibly slightly proton rich (Ye > 0.5).

This condition only allows for a weak r-process, producing elements below the

second r-process peak (A < 130).

After NS mergers, often an accretion disk or torus is formed surrounding the

central compact remnant. For a binary system of neutron stars with a typical mass

of ∼ 1.35M⊙, including GW170817 where the masses of the individual neutron

stars were inferred to be in the range 1.17-1.60 M⊙ [30], the central remnant forms

a HMNS and then eventually collapses into a BH [52]. If the lifetime of the HMNS

is longer than approximately 1 s, the neutrinos emitted from the hot HMNS can

make the ejecta less neutron-rich, with an electron fraction exceeding Ye = 0.3

[53–55]. In this case, similarly to the case of neutrino-wind driven ejecta, only

light r-process elements can be produced (weak r-process). If the lifetime is shorter

than roughly 1 s, the effect of the neutrino flux is limited, and the main long-term

ejection mechanisms are due to viscous heating and recombinations of α particles.

While some nucleosynthesis calculations based on a disk outflow condition report

synthesis of the whole range of the r-process nuclei, from nuclei with A ≲ 130 to

nuclei beyond the third peak with A ≳ 195, the results are sensitive to the nuclear

physics inputs, especially the choice of mass models, as well as the properties of

the disk outflow [56, 57].

In the case of NS-BH mergers, mass ejection occurs only if the NS is tidally

disrupted by the BH, which is dependent on the mass ratio of the BH and NS and

the spin of the BH [58, 59]. Unless the NS directly plunges into the BH, tidal and

disk outflow ejecta can be formed. In general, nucleosynthesis in each component
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proceeds similarly to the case of NS mergers.

Core-Collapse Supernovae

Core-collapse supernovae have long been considered to be one of the most promis-

ing candidates of the site of the r-process nucleosynthesis. This is because core-

collapse supernovae are explosive events which can produce a proto-neutron star

as a remnant. However, as discussed in Section 1.2.1, the ejecta of standard core-

collapse supernovae are believed to be powered by the neutrinos emitted during

the cooling of a hot proto-neutron star (neutrino-driven wind). Realistic treatments

of neutrinos and proto-neutron stars in the simulations of core-collapse supernovae

suggest that the ejecta are most likely not very neutron-rich or even proton-rich

[60, 61], similarly to the case of the neutrino-driven wind ejecta in NS mergers.

Therefore, at most only a weak r-process can occur.

However, some special classes of core-collapse supernovae could potentially

lead to a successful main r-process. One of such possibilities is a magneto-rotational

supernova, in which a jet-like explosion, induced by a core collapse with a strong

magnetic field and/or a fast-rotating core, accelerates neutron-rich material away

from the newly-formed proto-neutron star [35, 62]. The results of relativistic 3D

magneto-hydrodynamical simulations for a 15 M⊙ progenitor showed a successful

r-process beyond the third peak at A ∼ 195 in jet-like ejecta in the polar direc-

tion [63]. Further investigations employing various magnetic field strengths show

that, especially when the initial magnetic fields are small, the explosions can be

deformed and experience longer exposures to neutrinos, therefore, the material be-

comes less neutron-rich and the r-process is weakened [64–66]. While this type

of supernovae is expected to be rare, it may also provide the possibility to explain

the star-to-star scatter of some of the elements in metal-poor stars (Section 1.2.2)

[4, 67].

Another possibility is a collapsar, motivated by the observation of an excep-

tionally energetic supernova SN 1998bw, which is likely accompanied by a long-

duration gamma-ray burst (lGRB) GRB 980425 [68]. In this scenario, a rapidly

rotating massive star collapses into a rotating BH, and an accretion disk is formed

around the newly-formed BH. Above a certain mass accretion rate, jet-like explo-
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sions can occur, causing lGRBs [69]. While the material in the accretion disk is

not initially neutron-rich, electrons in the inner disk region become degenerate and

start to turn protons into neutrons via electron captures [70]. Such neutron-rich

flows may produce a wide range of the r-process elements. Multi-dimensional

MHD simulations of accretion disk outflows suggest that a large amount of r-

process ejecta could account for the solar r-process abundances even if the event is

extremely rare [71, 72]. However, uncertainties remain in the properties of progen-

itors and explanations for some of the observations, such as lGRB and the presence

of a significant amount of 56Ni [4].
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1.3 Nuclear Reaction Network Calculations
Nuclear reaction networks are often used to study the evolution of nuclear abun-

dances during astrophysical events. From the evolutions of nuclear abundances, it

is also possible to compute the amount of energy release due to nuclear decays.

The energy release is particularly important for modeling kilonova lightcurves.

Typically, nucleosynthesis calculations are performed using hydrodynamical

trajectories (temporal evolution of temperature and/or density) obtained from tracer

particles in hydrodynamical simulations of astrophysical events of interest (post-

processing). Tracer particles record the evolution of the positions and thermody-

namic properties of the surrounding astrophysical plasma. These simulations also

provide an initial composition of nuclear species, which is then evolved through

nuclear reaction networks along the astrophysical trajectories.

To obtain the evolution of nuclear abundances, astrophysical trajectories are di-

vided into small time steps and the following system of ordinary differential equa-

tions is solved (integrated) for nuclear abundances at each time step:

dYi

dt
= ∑

j
Ni

jλ jYj +∑
j,k
Ni

j,k ρNA ⟨ j,k⟩YjYk

+ ∑
j,k,l

Ni
j,k,l ρ

2NA
2 ⟨ j,k, l⟩YjYkYl, (1.3)

where Yi is the nuclear abundance of the nucleus i, defined so that ∑iYiAi = ∑i Xi =

1, with Xi being the mass fraction of the nucleus i. ρ is the density of the astrophys-

ical medium, which is obtained from hydrodynamical simulations. The factors Ni
j,

Ni
j,k, and Ni

j,k,l account for how many particles of nucleus i are created or destroyed

in the reaction, while correcting for over-counting due to having the same nuclear

species in a reaction. λi, NA ⟨ j,k⟩, and NA ⟨ j,k, l⟩ are one-body reaction or decay

rate, two-body reaction rate between nuclei i and j, and three-body reaction rate

between nuclei j, k, and l. One-body reactions include reactions of nuclei with

photons (photodissociation), electrons (electron capture), and neutrinos. The one-

body, two-body, and three-body reaction rates typically depend on the temperature

of the medium, which can be given by hydrodynamical simulations, but it is also

possible to compute the temperature at each time step using the density and entropy
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of the system.

Performing nuclear reaction network calculations and obtaining the final abun-

dance pattern according to the system of coupled ordinary differential equations

(ODEs) is considered to be solving an initial value problem with respect to the ini-

tial conditions. This system of ODEs is considered stiff, since the abundances and

their changes in each time step ranges over many orders of magnitude. For a stiff

system of ODE, the implicit Euler method is often used to obtain the evolution

of the abundances. Following the notation in Ref. [73], let YYY (t) denote a vector

of abundances at time t, then in the implicit Euler method the abundances at time

t +∆t are obtained as

YYY (t +∆t) = YYY (t)+∆t ẎYY (t +∆t). (1.4)

This method is called “implicit” since it depends on the gradient at the future time

t +∆t. Rearranging Eq. 1.4,

0 = FFF(xxx, T (t +∆t), ρ(t +∆t)), (1.5)

where FFF ≡ xxx−YYY (t)
∆t

− ẎYY (xxx, T (t +∆t), ρ(t +∆t)), (1.6)

where xxx ≡ YYY (t +∆t), which are the abundances at the future time step t +∆t, and

T and ρ are the temperature and the density of the environment at the time step,

respectively, which come from the astrophysical trajectory. This is obtained from

finding a root (solution) of Eq. 1.5 with respect to xxx. The Newton-Raphson (NR)

iterative method is commonly used for this root finding problem. Starting from an

initial guess of xxx0 = YYY (t), the iteration at step n can be written as

[JFFF(xxxn)] · (xxxn+1 − xxxn) = FFF(xxxn, T (t +∆t), ρ(t +∆t)), (1.7)

where JFFF is the Jacobian matrix, whose matrix elements can be written as

(JFFF)i, j =
∂Fi

∂Yj
=

δi, j

∆t
− ∂Ẏi

∂Yj
, (1.8)

where δi, j is the Kronecker delta. ∂Ẏi
∂Yj

is given by taking the derivative of Eq. 1.3
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with respect to Yj.

The Jacobian constitutes a sparse matrix where only ∼0.1 % of the elements

are non-zero [74–77]. While existing references often use an expression where the

inverse of JFFF is multiplied to both sides of Eq. 1.7. However, in reality, the inverse

is never calculated. This is because an inverse of a sparse matrix is generally not

sparse, and calculating such an inverse is computationally inefficient. To solve

Eq. 1.7 for xxxn+1−xxxn, optimized linear solvers, such as (oneMKL) PARDISO [78],

are commonly used.

NUCLEARREACTIONNETWORK.JL

In order to investigate the possibilities of improving the efficiency of the calcula-

tion, we have implemented a nuclear reaction network for the r-process nucleosyn-

thesis, using the programming language JULIA [79]. This work was performed

together with TRIUMF co-op student Paul Virally (University of Waterloo) from

Sep.-Dec. 2021 [77]. We chose to use the relatively new language JULIA, which

has a high-level syntax that makes the implementation of complex structures and

algorithms simpler, while achieving high-performance comparable to traditional

languages such as C++ and FORTRAN, upon appropriate code optimizations.

Three months of code development resulted in the ability to compute the abun-

dance patterns for complex astrophysical scenarios of the r-process, such as neu-

tron star mergers including fission. Our code is tentatively named NUCLEAR-

REACTIONNETWORK.JL [80]. The accuracy of our code for a neutron star merger

scenario is shown in Figure 1.6, and it yields essentially the identical results as the

established nuclear reaction network code PRISM [81], which is used for all of

the work presented in this thesis.

Our code implements a semi-parallel computation scheme where the stored

reaction/decay data are shared among the separate nuclear reaction network calcu-

lations that run in parallel on separate CPUs whenever possible. In order to test

the effect of the parallelization scheme, the amount of memory usage has been

measured as a function of the number of parallel runs of nuclear reaction network

calculations. If our parallelization scheme is effective, the amount of memory us-

age would grow sublinearly with the number of parallel runs. The blue dots in
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Figure 1.7 show that the memory consumption of our code grows approximately

linearly with the number of parallel runs. The orange dashed line represents the

linear growth of memory consumption based on a run of our code with a single

CPU. This result implies that our parallel computation scheme is not effective,

most likely due to local copies of the reaction/decay data associated with each run.

The memory consumption of a run of PRISM (green dot) and its linear extrap-

olation (green dashed line) are shown in the same figure for comparison. Since

PRISM does not implement any parallel calculation scheme, only the memory

usage for a single run has been measured.

While our parallelization scheme did not result in an improvement in the ef-

ficiency of the calculations, Figure 1.7 shows that our code is approximately four

times more memory efficient than PRISM, which is a state-of-the-art nucleosyn-

thesis code. Since our typical run lengths (wall time) are about twice as long as

PRISM, overall our code is twice as resource efficient, since the resource con-

sumption is proportional to the requested memory size times the wall time.

Another finding of this development is that, while existing references point

out that most of the computational cost is spent on solving the linear equation

Eq. 1.7, as shown in Figure 1.8 our profiling of the computational cost points to the

possibility that the most computational time is spent on constructing the Jacobian

matrices (Eq. 1.8).

Since construction of the Jacobian is computationally expensive, it seems that

a reasonable approach to reduce this cost is to offload the operations onto general-

purpose graphical processing units (GPUs), which allow for highly parallel com-

putations. However, since elements of the Jacobian matrix can have contributions

from multiple nuclear reactions, it has been found that this computation cannot be

readily parallelized.
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Figure 1.6: Comparison between PRISM [81] (panel (a)), NUCLEARREAC-
TIONNETWORK.JL [80] (panel (b)), and the relative differences (panel
(c)) in the calculated abundances as a function of mass number A. A
neutron star merger trajectory was used. The relative differences are

defined as 100× |Y PRISM
A −Y NRN.JL

A |
Y PRISM

A
[%]. Figure credit: P. Virally (U Wa-

terloo) [77].
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Chapter 2

Nuclear Physics of the r-Process

So far we have seen that there are multiple possible r-process sites, and the compo-

sition of the ejecta of each astrophysical scenario differs significantly. Attributing

the observed solar r-process abundance pattern to specific astrophysical scenarios

remains a challenging task. In addition to our understanding of the astrophysical

conditions, significant uncertainties also remain in the theoretical descriptions of

the properties of nuclei, such as masses, β -decay properties, neutron capture cross

sections, fission rates and yields, and so on. In this chapter, we will briefly review

how the nuclear physics inputs to the modeling of the r-process affect the predic-

tions. An overview of various theoretical descriptions of nuclear masses, which are

some of the most fundamental properties of nuclei, will also be discussed.

2.1 The Basics of the r-Process Abundance Pattern

2.1.1 Prominent Peaks in the Solar Abundance Pattern

How the nuclear physics properties give rise to some of the features of the r-

process, such as the second and third peaks, can be understood by assuming some

equilibrium conditions. When there are sufficient neutrons in the environment rela-

tive to the number of seed nuclei, which capture the neutrons, and the temperature

is sufficiently large (≳ 1 GK), a chemical equilibrium between neutron captures

(denoted as (n,γ)) and photodissociations (reverse reactions of neutron captures,
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denoted as (γ,n)) is established (panel (a) of Figure 2.1). This condition is often

achieved in the early stage of the r-process nucleosynthesis. Under this condition,

the abundance pattern in an isotopic chain (the same proton number Z but different

neutron number N), is determined from the ratio of two neighboring isotopes (Saha

equation) [4, 8]:

Y (N +1,Z)
Y (N,Z)

= nn ·
G(N +1,Z)

2G(N,Z)
·
(

A+1
A

)3/2

·
(

2πℏ2

mukT

)3/2

· exp
(

Sn(N +1,Z)
kT

)
, (2.1)

where Y (N,Z) is the abundance of the isotope (N,Z), nn is the neutron number

density, A is the mass number A = N +Z, mu is the nucleon mass, T is the tem-

perature of the environment, and Sn(N,Z) is the one-neutron separation energy

of the nucleus (N,Z). ℏ is the reduced Planck constant and k is the Boltzmann

constant. G(N,Z) is called a partition function of the nucleus (N,Z), defined as

G = ∑µ(2Jµ + 1)exp
(
−Eµ/kT

)
, where µ is a label of the state (including the

ground state), Jµ is its spin, and Eµ is its energy. The dependence of the abundance

ratios on nuclear masses is clear through the dependence on the neutron separation

energies, which are the mass (binding energy) differences of the neighboring nuclei

on an isotopic chain. The abundance maximum in the isotopic chain is obtained

when Y (N +1,Z)≃Y (N,Z). Since at neutron magic numbers (e.g., N = 82, 126),

the one-neutron separation energy of the neighboring nuclei Sn(N +1,Z) becomes

significantly smaller than Sn(N,Z), accumulation of material tends to occur at the

magic numbers. In realistic nuclear reaction network calculations, which do not

explicitly assume the (n,γ)⇆ (γ,n) equilibrium, the reverse reaction (photodisso-

ciation) rates are calculated via a similar expression, the so-called detailed balance

[11]:

λ(γ,n) =⟨σv⟩(n,γ) ·
G(N,Z) ·Gn

G(N +1,Z)
·
(

A
A+1

)3/2

·
(

mukT
2πℏ2

)3/2

· exp
(−Sn(N +1,Z)

kT

)
, (2.2)
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where ⟨σv⟩ is a velocity-integrated cross section (the quantity NA ⟨σv⟩ is called a

reaction rate), and Gn = 2 is the partition function of a neutron. Therefore, the

accumulation of material within the isotopic chain inevitably depends on nuclear

masses. The nuclei whose abundances are accumulated in the equilibrium are often

referred to as “waiting-point” nuclei (panel (b) of Figure 2.1).
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5.6 Nucleosynthesis Beyond the Iron Peak 525
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Figure 5.75 Basic building blocks of the
r-process path. Part (a) shows an isotopic
chain in (n,!)↔(! ,n) equilibrium (waiting
point approximation). For reasons of clarity,
it is assumed that most of the abundance
resides in a single isotope (shaded square).
Part (b) shows how β−-decays of the wait-
ing point nuclides transfer matter from one

isotopic chain to the next. The steady flow
approximation assumes that the abundance
of each element Z is inversely proportional
to the total β-decay constant of the chain.
Part (c) shows the special case when the r-
process path encounters a neutron magic
number.

where the symbols have the same meanings as in Section 5.3.4. In the above
numerical expression, the number densities and Q-values are in units of cm−3

and MeV, respectively, while the normalized partition functions and the spins of
the heavy nuclei are set equal to unity. Suppose first that all values of Qn! in a
given isotopic chain are the same. For a specific temperature and neutron density,
we can then solve Eq. (5.197) for the value of Qn! that gives rise to the same
abundances throughout the chain, N(Z,A + 1) ≈ N(Z,A). For example, with
T = 1.25 GK and Nn = 1022 cm−3, and again neglecting spins and normalized

Figure 2.1: Basic workings of the r-process under the (n,γ) ⇆ (γ,n) equi-
librium and β -flow equilibrium conditions. Panel (a) shows an isotopic
chain in an (n,γ) ⇆ (γ,n) equilibrium and the gray color indicates a
waiting point nucleus (see text for definition), (b) shows how material is
transported to subsequent isotopic chains from the waiting point nuclei,
and (c) shows a typical path of nucleosynthesis when encountering a
neutron magic number. Figure taken from Ref. [8]
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The meaning of waiting point nuclei becomes clear by considering another type

of equilibrium involving β−-decay (which converts a neutron into a proton). When

the (n,γ)⇆ (γ,n) equilibrium occurs due to abundant neutrons, the rate at which

material is transported from an isotopic chain (proton number Z) to the next (Z+1)

is approximately constant [4]:

∑
N

λβ (N,Z)Y (N,Z) = Y (Z)∑
N

λβ

Y (N,Z)
Y (Z)

= Y (Z)λ eff
β

= const., (2.3)

where Y (Z) is the abundance for the whole isotopic chain with proton number Z,

λβ is the β -decay rate, and λ eff
β

is the β -decay rate weighted by the abundance

of each isotope. This is called a “β -flow equilibrium” or a “steady-flow approx-

imation”. Thus, the most abundant isotope during the (n,γ)⇆ (γ,n) equilibrium

(waiting point nucleus) has the largest contribution to λ eff
β

. Therefore, the flow

of material into the next isotopic chain has to “wait” for these nuclei to undergo

β -decays. Around the neutron magic numbers, the waiting point nuclei tend to be

the isotopes with the neutron magic numbers; therefore, the abundance flow goes

up vertically along the magic numbers (panel (c) of Figure 2.1). As the nucle-

osynthesis path approaches the valley of β -stability, the β -decay half-lives become

larger, therefore, there is a delay in converting material to higher Z and abundance

builds up around these points. This picture qualitatively explains how the second

(A ∼ 130) and third (A ∼ 195) r-process peaks arise corresponding to the neutron

magic numbers at N = 82 and N = 126.

In neutron-rich conditions such as dynamic ejecta in NS mergers, as the r-

process produces increasingly heavy nuclei through the successive neutron cap-

tures, photodissociations, and β -decays, the path of nucleosynthesis reaches nu-

clei where fission is the main decay mode. Fission redistributes the material into

smaller masses and has been suggested to be crucial to creating the features in the

abundance pattern observed in the solar r-process abundance pattern [45, 51, 83,

84]. The redistributed material can capture neutrons and undergo fission several

times (fission cycling). There are various channels of fission, such as spontaneous

fission, neutron-induced fission, β -delayed fission, and so on.
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2.1.2 The Rare-Earth Peak

In the late time of the r-process, when the temperature and the available number

of neutrons decrease, the material starts to decay towards stability. This is called

the r-process freeze-out. During the freeze-out, the timescales of neutron captures

and β -decays become similar, and the balance of these processes may determine

some of the features of the abundance pattern, including the rare-earth peak (REP,

A ∼165) [85–88]. Fission during the freeze-out may also have a significant impact

on the formation of the rare-earth peak, as well as the second (A ∼ 130) and third

(A ∼ 195) abundance peaks [89–91]. Furthermore, some neutron-rich nuclei un-

dergo (one or multiple) neutron emissions following β -decays (β -delayed neutron

emission). Since this not only alters the path of the decay chains towards stability,

but also provides free neutrons during the freeze-out, it can have a significant effect

on the final abundance pattern.

According to this picture, understanding the synthesis of the lanthanides (A =

150-180) in this mass region may allow us to probe the detailed conditions of

the freeze-out and the mechanisms of the r-process that robustly reproduce the

abundance pattern occurring in stars over a wide range of metallicities [85, 86].

The formation of the REP is sensitive to variables that control the neutron

density and neutron-to-seed ratio in the late stages of the r-process, such as the

timescale for the expansion of the material. However, these astrophysical condi-

tions are entangled with nuclear physics processes that provide additional neutrons,

of which β -delayed neutron emissions can be a main contributor [92]. The mass

region and nuclei responsible for the formation of the REP have previously been

inferred [86]. However, the most important nuclei lie about 10–15 mass units away

from the valley of stability, and the experimental knowledge of β -decay properties

for these neutron-rich isotopes has so far been very limited [93].

Several authors have proposed that during the r-process freeze-out the compe-

tition between β−-decays and neutron captures shape the REP while the material

decays back to stability [85–88, 92, 94]. Neutron emission following β−-decays of

neutron-rich nuclei may also have a significant impact on the abundance pattern by

providing additional neutrons to the environment and changing the mass number

of the nuclide. Therefore, it is important to understand the relationship between
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the r-process abundance pattern and nuclear observables, such as β -decay half-

lives (T1/2) and β -delayed neutron emission probabilities (Pn values). This topic is

further explored in Chapter 5.

2.1.3 Modeling of Nuclear Physics Inputs

As illustrated in Figure 2.2 for the case of nuclear masses (also see Section 2.2),

the properties of many of the neutron-rich nuclei relevant to the r-process have yet

to be experimentally determined. Inevitably, r-process simulations have to rely on

the theoretical models of nuclear masses, β -decays, neutron captures, fission, and

so on. Here, a summary of nuclear physics models is given that are often used in

studies of the r-process.

The nuclear mass is arguably the most fundamental property of a nucleus. This

is not only because nuclear masses allow us to probe the properties of the nu-

clear many-body system, but also almost all the properties of nuclei needed for the

r-process depend on the masses. This is because, for any reaction or decay, (differ-

ences of) the masses determine the reaction Q-value, which is the energy released

(if Q > 0) or absorbed (if Q < 0) as a result of the reaction or decay. For more

detailed discussions on nuclear mass models, see Section 2.2.

β -decay rates are typically obtained using a nuclear mass model as well as

a method called quasi-particle random-phase approximation (QRPA), which de-

scribes the excited states of the daughter nucleus using quasi-particles, which is

a convenient concept for describing the pairing correlations in many-body prob-

lems (see Section 2.2.4 as well as Chapter 6, 7, and 8 of Ref. [95]). The most

commonly used theoretical β -decay rates are the ones of FRDM+QRPA [96–98]

(for FRDM, see Section 2.2.3). There exist more microscopic approaches such

as the Skyrme Finite Amplitude Method (FAM) [99], which is a computationally

efficient implementation of QRPA, employing the Skyrme interaction (Eq. 2.28),

and the relativistic QRPA method based on the covariant density functional theory

[100]. In all of the above models except for Ref. [96], Gamow-Teller (allowed)

transitions as well as first-forbidden transitions are taken into account.

The most common approach for computing neutron capture rates are Hauser-

Feshbach statistical model calculations [101]. In such calculations, neutron cap-
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ture cross sections are calculated by averaging over resonances in the compound

nucleus, resulting in cross sections that vary smoothly with energy. The nuclear

level density, the γ-ray strength function, which describes the probabilities of γ-ray

transitions of the compound nucleus, and light-particle potentials are necessary for

these calculations. There exist several implementations of these calculations often

used for the studies of the r-process, such as TALYS [102], NON-SMOKER [103],

CoH [104], and so on.

While fission is expected to play an important role in the r-process under ex-

tremely neutron-rich environment, due to its sensitive dependence on the height

of fission barriers (energy required to undergo fission) of nuclei in the region

where little experimental constraints exist, theoretical modeling remains challeng-

ing. Nevertheless, there have been various studies that computed fission barriers

[105–108], rates of different fission channels [81, 105, 109–111], and fission yields

[112–116].

2.1.4 Roles of Nuclear Physics Inputs

The nuclear physics models discussed above collectively define a nuclear reac-

tion network, and consequently, determine the predictions of r-process abundance

pattern. However, each nuclear physics input, such as masses, neutron capture

rates, β -decay properties (half-lives and neutron emission probabilities), fission

properties (rates and yields), etc., plays a different role in the nucleosynthesis pro-

cess. In this section, we will review the basic roles of such nuclear physics inputs

focusing on their effect on the formation of r-process abundance pattern.

Nuclear Masses

Under the picture of the “classical” r-process, where the equilibrium between

neutron capture and photodissociation, i.e., (n,γ)⇆ (γ,n), is assumed, the abun-

dance ratios in an isotopic chain (nuclei with the same proton number Z) are de-

termined by the Saha equation (Eq. 2.1). For a given neutron density nn and tem-

perature T , the abundance ratio at the abundance maximum in an isotopic chain

can be approximated as Y (N,A) ≃ Y (N + 1,Z). Assuming that for neighboring

isotopes, the partition functions are also similar, i.e., G(N,Z) ≃ G(N + 1,Z), the
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abundance maximum is located at the same neutron separation energy Sn for any

isotopic chain. This means that the “path” of the r-process is solely determined

by the Sn values given astrophysical conditions (nn,T ). The waiting-point nuclei

in each isotopic chain are those where the local abundance maxima occur, and

material is transferred into the next isotopic chain.

The effect of nuclear masses, however, is not limited to the location of the r-

process path. The masses determine the Q-values (the amount of energy release

/ absorption) of all reactions and decays; therefore, accurate modeling of nuclear

masses is essential for descriptions of every component of nuclear reaction net-

works.

β -Decay Half-Lives

While the ratio of abundances within an isotopic chain during the (n,γ) ⇆
(γ,n) equilibrium are determined by the Sn values, the total abundance of a whole

isotopic chain Y (Z) = ∑N Y (N,Z) is affected by β−-decays that connect one iso-

topic chain to another through A
ZXN →A

Z+1 X ′
N−1+e−+ ν̄e, where X and X ′ are some

elements with proton numbers Z and Z+1, respectively, e− is an electron, and ν̄e is

an electron antineutrino. While there are enough neutrons in the environment and

isotopic chains are connected by successive β -decays, the isotopic chains reach a

β -flow equilibrium [117, 118]:

Y (Z) ·λ eff
β

= const., (2.4)

where λ eff
β

≡ ∑N λβ (N,Z) · Y (N,Z)
Y (Z) is the effective β -decay rate of the isotopic chain

Z. The value of λ eff
β

is dominated by the half-life of the waiting-point nucleus

within the isotopic chain. Since β -decay half-lives and rates are related by T1/2 =

ln2/λβ , the isotopic abundances are proportional to the effective β -decay half-

lives, i.e., Y (Z) ∝ T eff
1/2. This means that the shape of the final abundance pattern is

largely determined by the half-lives of the waiting point nuclei. Especially at the

neutron magic numbers such as N = 50,82, and 126, which correspond to waiting

points, the half-lives tend to be longer than other nuclei on the path, leading to the

peaks of the final abundance pattern at A ≃ 80,130, and 195, respectively.

Since β -decays are responsible for the flow of material towards higher proton
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numbers, the timescale of β -decays also determines how far the r-process path

can reach in terms of proton number within the timescale of the expansion of the

astrophysical plasma (∼ 1s). Therefore, the global trend of the theoretical β -decay

half-lives is expected to affect the predicted production of heavy nuclei and the

extent of the contributions of fission, which is the main decay mode around and

below the next neutron magic number N = 184.

β -Delayed Neutron Emission

β−-decays of neutron rich nuclei are followed by emissions of one or more

neutrons when the neutron separation energy falls below the Qβ value. When the

(n,γ) ⇆ (γ,n) equilibrium breaks down and the material decays back to stability

at the late stage of the r-process (∼ 1s after the beginning of the r-process), which

is commonly referred to as the “freeze-out”, β -delayed neutron emissions can alter

the abundance pattern established during the equilibrium. This is because, in ad-

dition to the fact that neutron emissions change the mass number of a nucleus, the

emitted neutrons can also be captured during the freeze-out. Since neutrons may

be captured by any nucleus in the plasma, depending on neutron density during the

freeze-out, β -delayed neutron emissions may globally affect abundance patterns

[4]. Therefore, experimental determination and accurate theoretical modeling of

β -delayed neutron emission probabilities are necessary to correctly understand the

flow of material at the late stage of the r-process.

Neutron Capture

During the (n,γ)⇆ (γ,n) equilibrium the abundance pattern does not depend

on the neutron capture rates (Eq. 2.1). However, if the environment is extremely

neutron-rich or the temperature is not hot enough, the equilibrium is not necessarily

established. In this case, neutron capture rates are relevant, since the timescale

of neutron captures and β -decays become comparable. Furthermore, during the

freeze-out, competition of neutron captures and β -decays smoothes out the odd-

even staggering in the abundance pattern versus mass number due to the staggering

in neutron separation energies [4].
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Fission

If the environment is sufficiently neutron rich and the speed of successive β -

decays allows the production of nuclei approaching the next neutron magic number

N = 184, fission can affect the abundance pattern by distributing the fragments of

nuclei with large mass numbers into the lighter mass regions [45]. These fragments

can again capture neutrons to produce fission nuclei and repeat this cycle several

times (fission cycling). Since every fission cycle doubles the number of heavy

nuclei, fission can increase the abundance of heavy nuclei relative to light particles.

Furthermore, fission also provides free neutrons in the environment and may affect

the dynamics of the freeze-out in addition to β -delayed neutron emissions.

Currently, experimental investigations of nuclear fission remain challenging

due to the difficulties in producing heavy neutron-rich nuclei.

2.2 Nuclear Mass Models
As discussed in Section 2.1, nuclear masses play an essential role in predicting

abundance patterns of the r-process nucleosynthesis. However, experimental de-

termination of nuclear masses, especially short-lived neutron-rich nuclei, remains

a challenging task. Figure 2.2 shows the chart of nuclides with measured nuclear

masses based on the Atomic Mass Evaluation 2020 (AME2020) [10], in compar-

ison to the region where positive one- and two-neutron separation energies (Sn

and S2n, respectively) as well as positive one- and two-proton separation energies

(Sp and S2p, respectively) are predicted based on the FRDM2012 nuclear mass

model (Section 2.2.3). In AME2020, the masses of 2427 nuclides with N,Z ≥10

are listed, while FRDM2012 predicts that 7174 nuclei with N,Z ≥10 exist. It also

shows that nuclear masses have been measured almost to the theoretical limit of ex-

istence (dripline) on the neutron-deficient side, while the masses of many neutron-

rich nuclei have not yet been experimentally studied. Although next-generation

radioactive isotope beam facilities such as the now operational FRIB (Facility for

Rare Isotope Beams) in the United States, FAIR (Facility for Antiproton and Ion

Research) in Germany (which is still under construction), TRIUMF-ARIEL (Ad-

vanced Rare Isotope Laboratory) in Canada (under construction), and RIBF at

RIKEN in Japan (operational) will be able to produce more neutron-rich nuclei,
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precise experimental studies of such short-lived nuclei remain difficult. Since at

least in some cases (e.g. binary neutron star merger), the path of the r-process is

expected to extend all the way to the neutron dripline, which is the neutron-rich

limit beyond which nuclei are no longer bound, it is necessary to have reliable

theoretical description of nuclear masses to accurately understand the observed r-

process abundance pattern and other observables.
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Figure 2.2: Comparison of the regions on the chart of nuclides where nu-
clear masses have been experimentally determined (as listed in the
AME2020 [10]) and the nuclei that are predicted to be bound, i.e. posi-
tive one- and two-neutron separation energies (Sn and S2n, respectively)
and one- and two-proton separation energies (Sp and S2p, respectively)
predicted by FRDM2012 [119] (see Section 2.2.3). The vertical and
horizontal lines correspond to the magic numbers.

In this section, an overview of the theoretical concepts of some of the most

commonly used nuclear mass models will be provided. In particular, emphasis is

placed on the finite-range droplet model (FRDM, Section 2.2.3) and the Hartree-

Fock-Bogoliubov (HFB) mass model (Section 2.2.4), which are some of the most
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successful mass models using the macroscopic-microscopic (mic-mac) approach

and the microscopic approach, respectively.

2.2.1 Liquid Drop Model and Semiempirical Mass Formula

Nuclear masses are often expressed in the form of the binding energy of a nucleus

as a function of neutron number N and proton number Z

B(N,Z) = (NMn +ZMp − [M(N,Z)−ZMe])c2, (2.5)

where Mn is the mass of a neutron, Mp the mass of a proton, M(N,Z) the mass

of a nucleus with N neutrons and Z protons, Me the mass of an electron, and c

the speed of light. The fact that the mass of a nucleus is smaller than the sum of

the nucleons (neutrons and protons) that constitute the nucleus was first discovered

by Aston (1920) [120], according to Ref. [121]. Later, Eddington [122] suggested

that the observed mass defect is due to the binding energies of the nuclei. Further

measurements of nuclear masses and their interpretation revealed that, for nuclei

with more than about twelve nucleons, the binding energy per nucleon B(N,Z)/A

stays roughly constant at around 8 MeV, where A = N +Z represents the number

of nucleons (see Fig. 1.2). Combined with the observed near constant nuclear

densities, this led to the notion that one nucleon in the nucleus interacts only with

its nearest neighbors. If all possible pairs of nucleons in a nucleus interact with

each other, then the total binding energy of the nucleus would be proportional

to the number of pairs 1
2 A(A− 1), meaning that the binding energy per nucleon

would be proportional to the mass number A [95]. This leads to the concept of the

saturation of the nuclear forces, which originates, among other properties, from

its short-range nature. Thus, the roughly constant nucleon density within a nucleus

and the relatively sharp drop in density at the surface can be qualitatively explained

by the saturation property of the nuclear force.

Based on the observation of how nucleons interact with each other in a nu-

cleus, Weizsäcker [123] and Bethe and Bacher [124] were the first to propose the

semiempirical formula (macroscopic mass formula) for nuclear binding energies,
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which was inspired by the liquid-drop picture of atomic nucleus [125, 126]:

B(N,Z) = aV A−aSA2/3 −aC
Z(Z −1)

A1/3 +aI
(N −Z)2

A
+δ (A), (2.6)

where the values of the parameters were obtained by fitting it to the data from

AME2012 [127]:

aV = 15.64; aS = 17.58; aC = 0.71; aI = 23.07 [MeV]. (2.7)

The first term of Eq. 2.6 is called the volume term. Assuming that a nucleus is a

sphere with a constant density and a sharp surface, the radius R can be estimated as

R = r0A1/3, where r0 is empirically determined as r0 = 1.2 [fm]. Thus, this term is

proportional to A ∝ R3. Similarly, the second term is called the surface term, which

is proportional to A2/3 ∝ R2. It arises from the fact that the nucleons at the surface

interact with fewer nucleons than the ones inside the nucleus. The aC term rep-

resents the Coulomb energy, which is proportional to the number of proton pairs

(∝ Z(Z − 1)). The aI term represents the symmetry energy, which favors a con-

figuration with the same number of protons and neutrons. However, heavy nuclei

typically have more neutrons than protons. This is due to the Coulomb repulsion,

which makes the potential for a proton shallower. Finally, the term δ (A) corre-

sponds to the pairing effect. There exist different expressions and dependencies on

A of this term, but here we adopt the version by Mendoza-Temis: [126]

δ (A) =


13.59 ·A−1/2 for even-even nuclei,

0 for even-odd and odd-even nuclei,

−13.59 ·A−1/2 for odd-odd nuclei.

(2.8)

This is because like nucleons (neutron-neutron or proton-proton) energetically fa-

vor to be in a pair. It can be seen from the experimental observations that, for

example, the ground-state spins (sum of the orbital angular momentum and the

intrinsic spin) of even-even nuclei (nuclei with even number of neutrons and pro-

tons) are always coupled to 0+ and those of odd-odd nuclei generally show nonzero

ground-state spins.
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Figure 2.3: Deviation of the nuclear binding energies modeled by the
semiempirical mass formula (BELDM) from the experimentally deter-
mined binding energies (BEexp) as listed in AME2020 [10], as func-
tions of neutron number N and proton number Z. The vertical lines
correspond to the magic number N,Z = 2,8,20,28,50,82, and 126.

The deviation of the experimental binding energies from the predictions by

the semiempirical mass formula is shown in Figure 2.3. Large deviations are ob-

served at N = 28, 50, 82, 126 and Z = 28, 50, 82. These numbers, in addition to

N,Z = 2, 8, 20, are known as magic numbers, where the nuclei become exception-

ally strongly bound due to the fully occupied shells, analogous to closed electron

shells in atomic structures. This shows that the liquid-drop model (LDM), which

describes the bulk properties of nuclei, does not capture well such microscopic ef-

fect originating from the nuclear shell structure. As discussed in more detail in

the following, much of the effort in developing more realistic nuclear mass mod-

els has been put into reconciling the macroscopic description of nuclei with the

microscopic effect.

Models that have microscopic corrections to macroscopic descriptions of atomic
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nuclei are often referred to as microscopic-macroscopic (mic-mac) models. The

first step towards adding a microscopic effect to the liquid-drop model was taken by

Myers and Swiatecki (1966) [128]. In their mass model, shell effects were treated

as “bunching” of single-particle levels through a simple algebraic representation.

Furthermore, a shape parameterization was introduced to allow for deviations from

spherical symmetry, which is assumed by the liquid-drop model. Pairing of like nu-

cleons (nn or pp pairs) was taken into account by adding a term 11A−1/2 MeV for

odd-odd nuclei (nuclei with odd N and odd Z) and subtracting the same term for

even-even nuclei from the total binding energy. A Wigner term, which corrects

for the systematic underbinding of nuclei around N = Z, was also included. These

corrections improved the root-mean-squared (rms) error between experimental and

calculated masses to around 1 MeV from 2.97 MeV without such corrections [121].

2.2.2 The Strutinsky Theorem

A more rigorous approach for including shell corrections to a macroscopic model

was made possible by the Strutinsky theorem [129, 130], which was later general-

ized by Myers and Swiatecki (1982) [128]. From a microscopic perspective, this

method can be understood as an approximation to the Hartree-Fock (HF) method

(see Section 2.2.4), in which nucleons independently move around in a average

(mean-field) potential. Myers and Swiatecki (1982) [131] had shown that, using a

smooth diagonal single-particle density matrix ρ̃ , which approximates the HF self-

consistent single-particle density ρHF, the HF energy EHF, which is a functional of

ρHF, can be expanded in powers of δρ ≡ ρHF − ρ̃

EHF ≡ E[ρHF]≃ E[ρ̃]+∑
i

niε̃i − tr h̃ρ̃ +O(δ ρ̃
2). (2.9)

h̃ ≡ h[ρ̃] is an approximation to the exact HF Hamiltonian h[ρHF], ε̃i are the corre-

sponding single-particle energies, and ni are their occupation numbers. The term

E[ρ̃] can be, for example, determined from the liquid-drop model (Section 2.2.1),

the droplet model (Section 2.2.3), or the energy determined from the extended

Thomas-Fermi method (Section 2.2.5). The single-particle Hamiltonian h̃ has the

usual form of − ℏ2

2M ∇∇∇
2 +V , where V is the (deformed) potential of choice, which
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usually contains the spin-orbit effect as well. The term tr h̃ρ̃ is the smoothed ver-

sion of the sum of the single-particle energies

tr h̃ρ̃ ≡ ∑̃
i

niε̃i ≡ Ẽs.p., (2.10)

where the original sum of the single-particle energies is

Es.p. ≡ ∑
i

niε̃i. (2.11)

Strutinsky (1967, 1968) [129, 130] expressed this Es.p. as

Es.p. =
∫

∞

−∞

εg(ε) dε, (2.12)

where

g(ε) = ∑
i

niδ (ε − ε̃i). (2.13)

In order to obtain Ẽs.p., the simplest approach is to replace g(ε) with g̃(ε), which

is a sum of Gaussian,

g̃(ε) =
1

γ
√

π
∑

i
ni exp

[
−(ε − ε̃i)

2

γ2

]
, (2.14)

where γ is the width of the smoothing, which is set to be at least as wide as the

spacing between the average spacing of the major shells. The smoothed sum of the

single-particle energies is then

Ẽs.p. =
∫

∞

−∞

ε g̃(ε) dε. (2.15)

This is the basic concept of the Strutinsky shell correction method. The procedure

is often referred to as the standard averaging method.

2.2.3 Finite Range Droplet Model (FRDM)

The finite-range droplet model (FRDM) developed by Möller et al. (2016, 1995)

[119, 132], which has been one of the most successful and commonly used macroscopic-
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microscopic (“mic-mac”) global mass models, included not only the Strutinsky

shell corrections but also pairing corrections based on the Bardeen-Cooper-Schrieffer

(BCS) theory of superconductivity [133] as well as the Wigner term. As the name

suggests, in the FRDM the liquid-drop model was replaced by the “droplet” model,

originally developed by Myers and Swiatecki (1969, 1974) [134, 135], which is de-

scribed below.

Macroscopic Part

One of the improvements made in the macroscopic droplet model was to allow

a finite incompressibility of nuclei, which was simply infinite in the liquid-drop

model. It allows a finite nucleus to be squeezed by the surface tension and di-

lated by the Coulomb force. This was achieved by introducing a dilation variable

ε = (ρ0 −ρc)/3ρ0 and a central asymmetry variable δ = (ρn −ρp)/ρc to the vol-

ume (bulk) term of the liquid-drop model, where ρ0 is the equilibrium density of

infinite nuclear matter and ρc = ρc
n +ρc

p is the sum of the central (bulk) density of

neutrons and protons. The surface term was also modified so that the neutron and

proton surfaces are separate, which is consistent with the observations of real nu-

clei (e.g. the observation of a neutron skin [136]). These improvements provided a

framework for describing dynamic phenomena such as the giant dipole resonance.

Furthermore, more sophisticated treatments of the Coulomb energy, such as the

exchange effect, surface diffuseness, redistribution of protons, and the finite pro-

ton size, were introduced to depart from the simple picture of a uniformly charged

sphere with a defined surface assumed in the liquid-drop model. Deformation was

also accounted for through deformation-dependent factors.

The “finite-range” property of the model comes from the finite range of the

nuclear force. This was incorporated into the model by multiplying the surface

term of the liquid-drop model with a shape-dependent factor B1:

B1 =
A−2/3

8π2r2
0a4

∫ ∫ (
2− |rrr− rrr′′′|

a

)
exp(−|rrr− rrr′′′|/a)

|rrr− rrr′′′|/a
d3rrr d3rrr′′′, (2.16)

which is a folding of an empirical saturating two-body potential expressed by the

Yukawa-plus-exponential model, whose range is a. The double integral is over a
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sharp-surfaced (deformed) matter distribution whose volume is V = (4π/3)r3
0A.

The constant in front of the integrals becomes 1 when a becomes 0. The Coulomb

energy was also refined by taking into account the diffuseness of the charge distri-

bution characterized by the diffuseness constant aden.

The other major improvement to the macroscopic model was the introduction

of the phenomenological exponential compressibility term, proposed by Treiner

et al. [137]. This modification addressed the overestimation of the central density

by the standard droplet model.

Microscopic Part

In mic-mac models, the total potential energy can generally be expressed as a func-

tion of neutron number N, proton number Z, and the shape of the nucleus [119]

Epot(N,Z,shape) = Emac(N,Z,shape)+Es+p(N,Z,shape), (2.17)

where Emac is the contribution from the macroscopic model and Es+p is the shell-

plus-pairing correction. While microscopic correction is technically the shell-plus-

paring correction added to the macroscopic deformation energy relative to the

macroscopic spherical energy, in practical calculations it is Es+p that is calculated

to obtain the microscopic corrections. Given a deformation of a nucleus, Es+p is

solely determined from the single particle levels using the Strutinsky’s theorem and

a pairing model.

In order to calculate the shell corrections, it is necessary to first specify the

single-particle potential V felt by a nucleon

V =V1 +Vs.o.+VC, (2.18)

where V1 is the spin-independent nuclear part of the potential, Vs.o. is the spin-orbit

potential, and VC is the Coulomb potential. The first spin-independent part is the

folded-Yukawa potential

V1(rrr) =− V0

4πapot3

∫
V

exp
(
−|rrr− rrr′′′|/apot

)
|rrr− rrr′′′|/apot

d3rrr′′′, (2.19)
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where apot is called the potential diffuseness constant, and the volume integral is

over the volume of the (deformed) potential, whose volume is 4
3 πR3

pot. Note that

Rpot, which is the potential radius, is different from the range of the nuclear force

a. The spin-orbit potential is

Vs.o. =−λ

(
ℏ

2mnucc

)2
σσσ ·∇∇∇V1(rrr)× ppp

ℏ
, (2.20)

where λ is the spin-orbit interaction strength, mnuc is the nucleon mass, σσσ is the

Pauli spin matrices, and ppp is the nucleon momentum. The third Coulomb potential

is

VC(rrr) =
Ze2

(4π/3)r03A

∫ drrr′′′

|rrr− rrr′′′| , (2.21)

where the integral is over a (deformed) sharp-surfaced region, whose volume is

(4π/3)r0
3A with r0 being the charge-radius constant r0 = (4πρ0/3)−1/3.

From the potential V , a single-particle Schrödinger equation is solved to obtain

single-particle energies ei, which are then used to obtain the shell corrections using

the standard averaging method based on the Strutinsky theorem. To solve for the

single-particle energies, the matrix elements of the Hamiltonian are generated from

a set of deformed, axially symmetric, harmonic-oscillator basis functions.

As for the pairing correction, the FRDM adopts the Lipkin-Nogami pairing

model [138–140], which is a variation of the Bardeen-Cooper-Schrieffer (BCS)

theory. The Lipkin-Nogami approximation overcomes the limitation of the BCS

model, which is the large spacing of single-particle levels at the Fermi surface, by

taking into account effects associated with particle-number fluctuations. The pair-

ing strengths G for neutrons and protons are determined by postulating an effective-

interaction pairing gap ∆G:

∆Gn =
rmicBS

N1/3 for neutrons, (2.22)

∆Gp =
rmicBS

Z1/3 for protons, (2.23)

where BS is one of the deformation-dependent factors and rmic is the pairing param-

eter determined from a fit. In this picture, a constant level density in the vicinity

of the Fermi surface, leading to a smooth level density which is obtained in the
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Strutinsky method. This allows the sums in the gap equation to be replaced by an

integral that can be evaluated analytically. Note that the pairing treated in the mi-

croscopic part of the FRDM only considers nn and pp pairing—np pairing is not

considered.

In total, the most recent model FRDM2012 has 17 parameters which are deter-

mined from a fit to the mass data, and 21 parameters which are determined from

other considerations. Improvements from the older version FRDM1992 include

improvements of the parameter optimization method, new experimental mass data,

improved energy minimization method, inclusion of axial symmetry, adjustment of

additional parameters, and improvements of the ground state correlation energies.

The FRDM2012 achieves an rms error of 0.602 MeV for nuclei with mass numbers

A ≥ 20 relative to the known masses in the AME2020 [10].

2.2.4 Hartree-Fock-Bogoliubov (HFB) Mass Models

The Hartree-Fock-Bogoliubov (HFB) mass models take a microscopic approach

originally developed by Samyn et al. (2002) [141] and Goriely et al. 2002 [142],

which achieved a performance comparable to FRDM in reproducing experimen-

tally determined nuclear masses [143]. A high-level review of the Hartree-Fock

method as well as its extension called the Hartree-Fock-Bogoliubov method is

given in the following. The key design aspects of the HFB mass models will also

be discussed.

The Hartree-Fock Method

A fully microscopic approach for modeling nuclear masses or binding energies

is to start with a realistic nucleon-nucleon interaction and solving the many-body

Schrödinger equation. Such approach is called the ab initio method. However, it is

not yet possible to predict the properties of atomic nuclei across the whole chart of

nuclides.

One of the more computationally tractable and scalable approaches to micro-

scopically calculate nuclear masses is to assume that the nucleons in a nucleus

move independently in an average (mean-field) potential generated by the other

nucleons. Such a theoretical framework is provided by the Hartree-Fock (HF)
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method. In the HF theory, the average single-particle potential is called the Hartree-

Fock potential

HHF =
A

∑
i=1

h(i), (2.24)

whose ground state energy EHF
0 is an approximation to the exact ground state of the

many-body system. The corresponding eigenfunction Φ(1, . . .A) of the Hamilto-

nian is anti-symmetrized product of single-particle functions (Slater determinant)

|HF⟩= |Φ(1 . . .A)⟩=
A

∏
i=1

a†
i |−⟩ , (2.25)

where a†
k and ak are Fermion creation and annihilation operators corresponding to

the single-particle wave functions ϕk, respectively, and |−⟩ is the bare vacuum.

The single-particle wave functions ϕk themselves are also eigenfunctions of the

single-particle Hamiltonian h, and the single-particle Schrödinger equation is(
− ℏ2

2M
∇∇∇

2 +U
)

ϕk = εkϕk, (2.26)

where U is the single-particle potential determined from the effective nuclear force

of choice. The set of equations can be considered as the HF equations in the co-

ordinate space, while it is common to work in a configuration space, which are

characterized by the occupied and empty levels in the state |HF⟩. The set of Slater

determinants {Φ} consisting of the A single-particle basis ϕk (k = 1,2, . . . ,A) is

used as a trial wave function for the variational method to minimizing the HF-

energy

EHF = ⟨Φ|H|Φ⟩ ≡
∫

d3rrr E(rrr), (2.27)

where H is the many-body Hamiltonian and E(rrr) is called the energy density func-

tional. Thus, the HF-wave function |HF⟩ is obtained by minimizing EHF. It is

important to note that the HF method is an approximation to the exact many-body

system, therefore, the wave functions and corresponding energies are usually not

identical to the exact ones.
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The Hartree-Fock-Bogoliubov Method

As mentioned in the overview of the Hartree-Fock method, in general, wave func-

tions obtained through a configuration mixing of Slater determinants are not iden-

tical to the exact nuclear wave functions. The deviations of the mean-field picture

from the actual nuclear many-body systems are often referred to as correlations.

One of the most prominent correlations is pairing of like nucleons (neutron-neutron

and proton-proton), as observed in the odd-even staggering of nuclear binding en-

ergies (e.g. the pairing term in the semiempirical mass formula Eq. 2.6). One of

the approaches to incorporate the pairing effect is to model the particle-particle

correlations using the BCS theory, which was originally developed to describe su-

perconductivity by introducing a concept called quasi-particles, which is appro-

priate for describing the pairing of fermions. An attempt has been made to create

a global mass model using the so-called HF-BCS procedure [144]. In this model,

quasi-particles and the pairing potential were introduced in a generalized single-

particle picture described by the HF theory. However, this treatment of pairing is

known to become unphysical for neutron-rich nuclei, which is a significant prob-

lem, especially in the modeling of the r-process nucleosynthesis.

The Hartree-Fock-Bogoliubov (HFB) method generalizes and unifies the HF

method and the BCS model. The single-particle and pairing aspects are treated

simultaneously by determining wave functions consisting of freely moving quasi-

particles through the variational principle.

The first of the series of the HFB mass models was published in 2002 by Samyn

et al. (2002) [141], which was named HFB-1, shortly followed by HFB-2 [142].

Among many, one of the common features of all the HFB mass models is the use of

the Skyrme force. The ten-parameter form of the Skyrme interactions is a widely

used zero-range phenomenological effective force between nucleons labeled with
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i and j:

vi j = t0(1+ x0Pσ )δ (rrri j)

+ t1(1+ x1Pσ )
1

2ℏ2 {pppi j
2
δ (rrri j)+δ (rrri j)pppi j

2}

+ t2(1+ x2Pσ )
1

2ℏ2 pppi j
2 ·δ (rrri j)pppi j

2

+
1
6

t3(1+ x3Pσ )ρ
γ
δ (rrri j)

+
i
ℏ2W0(σσσ i +σσσ j) · pppi j ×δ (rrri j)pppi j, (2.28)

where rrri j = rrri−rrr j, pppi j =−iℏ(∇∇∇i−∇∇∇ j) is the relative momentum, Pσ = 1
2(1+σσσ1 ·

σσσ2) is the two-body spin-exchange operator, and ρ = ρn+ρp is the local nucleonic

density with ρn and ρp being the local neutron and proton density, respectively. The

first term with t0 describes a pure zero-range δ -force with a spin-exchange. The

t1 and t2 terms simulate a finite effective range and the term with t3 is a density

dependent force. The last term is a two-body spin-orbit term.

In the recent developments of the HFB mass models, additional terms with t4
and t5 were introduced, which are density-dependent generalizations of the t1 and

t2 terms, adding up the total number of parameters to 16. Furthermore, an addi-

tional spin-orbit degree of freedom was added at the level of the energy-density

functional, which is the expectation value of an effective Hamiltonian on a quasi-

particle vacuum. In the study of mass model averaging described in Chapter 4,

we have used the HFB-31 mass model, which is the most recent development. In

this model, the pairing force of like nucleons were modeled to fit the pairing gaps

∆q(ρn,ρp), where q denotes neutron or proton (q = n or p), to the calculations of

pure neutron matter and charge-symmetric (equal numbers of neutrons and pro-

tons) nuclear matter based on realistic two- and three-body nuclear forces. This

allows for a more consistent description from nuclei to neutron stars, which is one

of the most neutron-rich systems. However, this treatment necessitates an inclusion

of a phenomenological surface term, which depends on the local density gradients,

in the pairing force to maintain a good fit to the experimentally measured nuclear

masses. In addition to the pairing effect, corrections in the form of the Wigner

terms and the spurious collective energy due to the rotation associated with the vi-
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olation of angular momentum conservation and the deformation dependence of the

vibration have been included to the model.

The parameters of the Skyrme force, the pairing effect, the Wigner terms, and

the collective energy corrections were fitted to the 2353 measured masses of nuclei

with N and Z ≥ 8 listed in the Atomic Mass Evaluation (AME) 2012 [127]. The

HFB-31 model resulted in an rms error of 0.579 MeV for nuclei with mass numbers

A ≥ 20 with respect to the AME2020 [10].

2.2.5 Extended Thomas-Fermi Plus Strutinsky Integral (ETFSI)
Mass Models

One of the problems of macroscopic-microscopic mass models such as the FRDM

is the inconsistency between the macroscopic and microscopic parts. In the FRDM,

the parameter values of the microscopic shell corrections are known to differ from

the macroscopic counterparts [145]. However, the problem associated with the mi-

croscopic HF methods (HFB and HF-BCS) when they were first developed was the

prohibitive computational cost, especially for deformed nuclei. Therefore, the use

of a semiclassical approximation to the HF method called the Extended Thomas-

Fermi (ETF) approximation1 was proposed to reduce the computational cost. The

point of using the ETF method is to obtain the smooth macroscopic part of the

mass model using a Skyrme force; then the same force can be used to calculate

the shell corrections through the Strutinsky method (Section 2.2.2). This method

is called the Extended Thomas-Fermi plus Strutinsky integral (ETFSI). Using the

Skyrme force (Eq. 2.28) with appropriate constraints, the exact HF energy EHF can

be written as [146]

EHF ≡ E[ρHF]

=
∫

E(τq(rrr), JJJq(rrr), ρq(rrr), ρ
′
q(rrr), . . .)d

3rrr, (2.29)

where ρHF is the HF density matrix, τq and JJJq (q = n or p) are the kinetic energy

density and the spin-current density, respectively, ρq(rrr) = ∑
A
i φ ∗

i,q(rrr)φi,q(rrr) is the

1The theoretical formalism of the extended Thomas-Fermi approximation is quite lengthy and the
detailed discussion of this method is outside the scope of this thesis, therefore, interested readers are
referred to e.g., Ref [95].
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diagonal part of the single-particle density matrix, and ρ ′
q(rrr) is its gradient. τq and

JJJq are not only dependent on ρq(rrr), but also on the off-diagonal elements of the

density matrix ρq(rrr,rrr′). According to Ref. [146], the essence of the ETF method

is to approximate τq and JJJq by τ̃q and J̃JJq, respectively, which depend only on the

diagonal elements of the density matrix, i.e., ρq(rrr), so that

E[ρHF]≃ EETF[ρETF]

≡
∫

EETF(ρq(rrr), ρ
′
q(rrr), . . .) d3rrr. (2.30)

Eliminating the off-diagonal elements significantly speeds up the calculation com-

pared to the full HF method, although not as fast as standard mic-mac models [147].

Now using the Strutinsky method (Sec. 2.2.2), the HF energy EHF ≡ E[ρHF] can be

approximated as

EHF ≃ EETF +∑
i

niε̃i − tr h̃ρETF +O(δρETF
2), (2.31)

where the shell corrections can be obtained using the same Skyrme force used for

calculating EETF. Since we have access to ρETF, it is not necessary to perform aver-

aging of the single-particle energies. While the ETFSI model is mostly redundant

since full HF (HFB) calculations are now possible, it is still valuable in calculating

fission barriers. The last version of the ETFSI mass model called ETFSI-2 [148]

resulted in an rms deviation of 1.085 MeV for nuclei with mass numbers A ≥ 20

with respect to the AME2020 [10].

2.2.6 Weizsäcker-Skyrme (WS) Mass Models

Another approach to improve the consistency between the macroscopic part and the

microscopic part in mic-mac mass models has been proposed by Wang et al. [145,

149–152]. Similarly to Eq. 2.17, the total energy of the model E is the sum of the

macroscopic part and the Strutinsky shell correction ∆E

E(A,Z,β ) = ELD(A,Z)∏
k≥2

(1+bkβ
2
k )+∆E(A,Z,β ), (2.32)
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where βk are the deformation parameters for quadrupole (k = 2), octupole (k = 3)

deformation and so on, and bk are the corresponding adjustable parameters to take

into account the effect of deformation in the macroscopic energy. ELD is a variation

of the semiempirical mass formula (Eq. 2.6)

ELD(A,Z) = aV A+aSA2/3 +aC
Z(Z −1)

A1/3 (1−Z−2/3)+aII2A+apairA−1/3
δnp,

(2.33)

where

δnp =



2−|I| : N and Z even ,

|I| : N and Z odd ,

1−|I| : N even ,Z odd , and N > Z,

1−|I| : N odd ,Z even , and N < Z,

1 : N even ,Z odd , and N < Z,

1 : N odd ,Z even , and N > Z,

(2.34)

and

aI = csym

[
1− κ

A1/3 +
2−|I|

2+ |I|A

]
, (2.35)

with csym and κ being parameters determined from a fit. The term which involves

I approximately works as the Wigner term.

Their approach to maintain the consistency between the macroscopic part and

the microscopic corrections is to use the Skyrme force through the ETF approxi-

mation to determine or verify some of the parameters, such as bk and asym, then use

the same force to calculate the shell correction by the Strutinsky method. Since the

model consists of the semiempirical (Weizsäcker) mass formula and the shell cor-

rection based on the Skyrme force, it is often referred to as the Weizsäcker-Skyrme

(WS) model.

The latest version WS4 includes further corrections such as constraints on mir-

ror nuclei, residual pairing effect, triaxial deformation, and surface diffuseness.

The mass model achieved an rms error of 0.293 MeV for nuclei with mass num-

bers A ≥ 20, relative to the AME2020.
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2.2.7 Duflo-Zuker (DZ) Mass Model

The mass model developed by Duflo and Zuker (1995) [153] (DZ) is another mass

model often used in studies of the r-process nucleosynthesis. In this section, an

overview of the basic concept of the model is provided. While this model is more

fundamental than the mic-mac models, it is not fully microscopic since it is not ex-

plicitly built upon nucleon-nucleon interactions. The starting point of the construc-

tion of the model is the assumption that a two-body “pseudopotential” is smooth

enough to perform HF calculations. Based on this assumption, the corresponding

Hamiltonian H can be separated into the monopole part Hm and the multipole part

HM:

H = Hm +HM. (2.36)

The monopole part Hm is treated phenomenologically to reproduce the saturation

property of the nuclear force and able to reproduce the exact energy of closed

shells, as well as their single particle or hole states. The multipole part HM can

be derived in a parameter-free way from the realistic nucleon-nucleon interactions

and contains residual interactions, which describe pairing, quadrupole correlations,

Wigner correlations and so on.

There exist different versions of the DZ mass models with 10, 28, and 31 in-

dependent parameters. While the 10- and 28-parameter versions (referred to as

DZ10 and DZ28, respectively) are described in their paper [153] and the mass ta-

bles are widely available, for the 31-parameter version (DZ31) only the code is

distributed [154]. The performance based on the AME2012 is essentially compa-

rable (σrms(DZ28) = 0.360 MeV and σrms(DZ31) = 0.362 MeV) [151], therefore,

in the study described in Chapter 4, we employ the more accessible DZ28 version.

The rms error of DZ28 for nuclei with mass numbers A ≥ 20 with respect to the

AME2020 is 0.427 MeV.

2.2.8 Models by Koura, Uno, Tachibana, and Yamada (KUTY)

A similar approach to standard mic-mac models was proposed by Koura et al. [155,

156]. The total mass predicted by the model M(Z,N) is expressed as

M(Z,N) = Mg(Z,N)+MS(Z,N)+Meo(Z,N), (2.37)
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where Mg(Z,N) is called the gross term, which captures the general trend of the

masses, MS is called the shell term, which accounts for the deviations from the

general trend predicted by the gross term, and Meo is called the even-odd term,

which corrects for the even-odd staggering in masses that are not captured by the

shell term. The gross term is similar to the semiempirical mass formula, but the

physical meaning of each term is slightly different:

Mg(Z,N)c2 =MHc2Z +Mnc2N +a(A)A+b(A)|N −Z|
+ c(A)(N −Z)2/A+EC(Z,N)− kelZ2.39, (2.38)

where MH and Mn are the mass excess of a hydrogen atom and a neutron, respec-

tively. EC is the Coulomb term and kel is the binding energy of the electrons.

a(A), b(A), and c(A) are further parametrized by ai, bi, ci (i = 1,2,3,4) and α j

( j = a,b,c), which are determined from a fit.

The starting point of the shell effect term is the construction of a spherical

single-particle potential for neutrons and protons. The potential consists of the

spin independent component, which is a modified Woods-Saxon potential and the

spin-orbit component. From this single-particle energies are obtained, from which

crude shell energies are obtained. The crude shell energies are refined by pairing

corrections obtained by assuming the BCS-type pairing. The effect of deformation

is modeled by a superposition of spherical nuclei, which is computationally less

expensive than modeling the deformation using deformed potentials.

The even-odd term is obtained from experimental masses and the gross + shell

parts of the mass model, which corrects for the deviations that could not be ac-

counted for by the treatment of the shell energies.

The rms error of the latest version KUTY05 for nuclei with mass numbers

A > 20 is 1.109 MeV relative to the AME2020.

2.2.9 Brief Comparison of Mass Models

The performances (rms errors σrms) of the nuclear mass models discussed so far

with respect to the experimentally determined nuclear masses (from the AME2020 [10])

are summarized in Table 2.1. The rms errors are calculated for nuclei with mass

numbers A ≥ 20, since some of the mass models do not provide predictions below

55



A = 20.

Mass Model σrms(AME2020) [MeV]

FRDM2012 [119] 0.602
DZ28 [153] 0.427
HFB31 [143] 0.579
ETFSI-2 [148] 1.085
WS4 [152] 0.293
KUTY05 [156] 1.109

Table 2.1: A summary of rms errors of the mass models discussed in Sec-
tion 2.2, with respect to the experimentally determined masses listed in
the AME2020 [10]. The rms errors are calculated for nuclei with mass
numbers A ≥ 20.

Figure 2.4 shows the residuals of the theoretical mass models as functions of

neutron number, with respect to the experimental nuclear masses from the AME2020.

For most of the mass models, the discrepancies of the predictions from the exper-

imental masses become large for small neutron number. This is largely due to the

mean-field assumptions of the mass models, which become less valid for lighter

masses.

Figure 2.5 shows comparisons of the mass models described in the previous

sections for nickel (Ni, Z = 28), tin (Sn, Z = 50), and gadolinium (Gd, Z = 64) iso-

topes, as well as the experimentally determined masses listed in the AME2020 [10],

relative to the FRDM2012 predictions. It can be seen that the predictions of nu-

clear masses by different models are in close agreement where experimental data

exist since they have been constrained in this area. However, they start to diverge

as the predictions are extrapolated towards neutron-rich regions, and the difference

between the models can be as large as 15-20 MeV, which will result in large uncer-

tainties in the calculations of r-process observables (e.g. abundance patterns and

kilonova lightcurve). In Chapter 4, a method to incorporate the variations in the

mass predictions by different models and to quantify the overall uncertainty will

be explored.

The effect of employing different mass models on the predictions of the abun-

dance patterns of the r process is shown in Figure 2.6. In these plots, in addition
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Figure 2.4: Residuals of mass excess of the theoretical mass models listed
in Table 2.1 as functions of neutron number N, with respect to the ex-
perimental nuclear masses from the AME2020 [10]. The vertical lines
correspond to the neutron magic numbers N = 20,28,50,82, and 126,
respectively.

to the explicit dependence of the photodissociation rates on the neutron separation

energies (Sn) through the detailed balance (Eq. 2.2), the dependence of the forward

rates, i.e., the neutron capture rates on the Sn values are considered for consistency.

The astrophysical trajectories are neutron star merger (panel (a)) and hot neutrino-

driven wind (panel (b)), same as the ones used in Chapters 5 and 6. Note that
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Figure 2.5: Comparisons of the mass models and the experimental masses
listed in the AME2020 [10], relative to the predictions of the
FRDM2012 for (a) Z = 28 (Ni), (b) Z = 50 (Sn), and (c) Z = 64 (Gd)
isotopes.

instead of the DZ28 and ETFSI-2 models listed in Table 2.1, the DZ31 [154] and

ETFSI [146] are used due to the availability of data. Data were provided by M.

R. Mumpower (LANL, private communication). The plots show that the choice

of mass models has a significant impact on the theoretical predictions of r-process

abundance patterns. In reality, virtually all the reaction, decay, and fission rates, as

well as fission fragment distributions, are affected by the choice of mass models.
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Therefore, the impact of nuclear mass models is expected to be more significant

than what is shown in Figure 2.6.
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(b) Hot neutrino-driven wind
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Figure 2.6: Comparisons of the predictions of the r-process abundance pat-
terns employing different mass models. The top panel (a) shows the case
of neutron star merger scenario, and the bottom panel (b) shows the case
of hot neutrino-driven wind scenario. The astrophysical trajectories are
the same as the ones used in Chapters 5 and 6. Note that instead of
the DZ28 and ETFSI-2 models listed in Table 2.1, the DZ31 [154] and
ETFSI [146] models are used due to the data availability. Data were
provided by M. R. Mumpower (LANL, private communication).

60



Chapter 3

Statistical Inference and Machine
Learning Methods

The method of science can be considered as a loop of inference, in which mathe-

matical theories and hypotheses are constructed to explain observations, and new

predictions by the theories and hypotheses are tested by further observations. Sta-

tistical inference, which is based on the language of probability, is a method of

choice for testing such hypotheses and estimating unknown parameters in the math-

ematical theories from observed data.

In recent years, in many fields of physics and astronomy including low en-

ergy nuclear physics, estimating uncertainties associated with theoretical models

has been a topic of investigation (see Refs. [157, 158] and references therein). Es-

pecially Bayesian statistics (Section 3.1) is gaining popularity since it provides a

suitable framework for quantifying uncertainties in terms of probability statements.

In Bayesian statistics, parameter estimations are often performed using the Markov

chain Monte Carlo (MCMC) method. The basics of the method are described in

Section 3.2. The Bayesian framework illustrated in these sections is applied to the

uncertainty quantification of nuclear mass models in Chapter 4.

Monte Carlo methods can also be applied to sensitivity analyses, whose pur-

pose is to identify influential inputs that contribute the most to the output uncer-

tainty of a numerical model. In Section 3.3, the variance-based sensitivity analysis

method is introduced, which infers the “sensitivity” indices based on Monte Carlo
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estimators. This method is used in Chapter 5 to identify the β -decay properties of

neutron-rich nuclei in the rare-earth peak region (see Section 2.1.2) which are the

most responsible for the propagated uncertainty of the output of nuclear reaction

network calculations (Section 1.3), within the newly obtained experimental results.

Section 3.4 discusses the basics of artificial neural networks (ANNs), which

form the basis of the method explained in Chapter 6. ANNs are highly flexible

machine learning models, which can be trained to learn, for example, the relations

between the inputs and outputs of numerical simulations, e.g. nuclear reaction

network calculations, thereby essentially emulating the simulations. In Chapter 6,

emulators are constructed for nuclear reaction network calculations. This signif-

icantly speeds up the calculations and will help reduce the computational cost of

statistical tasks such as variance-based sensitivity analyses.

3.1 Bayesian Statistics
It is shown that if a set of rational “beliefs” can be numerically represented, based

on a simple set of axioms, manipulations of the degrees of beliefs follow the sum

and product rules of probability [159–164]

p(x) =
∫

p(x,y)dy : sum rule,

p(x,y) = p(y | x)p(x) : product rule,
(3.1)

where p(x) and p(y) are the probability density functions (PDFs) of x and y, re-

spectively, p(x,y) is the joint PDF, p(y | x) is the PDF of y conditional on x.

Let us assume that θ is a (set of) parameters that describe the characteristics of

the population from which θ is obtained. If p(θ) describes our prior belief about

the best value of θ before obtaining any observation that could provide information

on θ , this p(θ) is called a prior distribution. When data D are obtained, for each

θ , if p(D | θ) describes the degree of our belief about D being the expected ob-

servation given that θ is the true value. This p(D | θ) is called a sampling model

or a likelihood function. From the sum and product rules (Eq.3.1), Bayes’ theo-

rem (Bayes’ rule) can be derived, which provides an optimal method to update our
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belief of θ given the new observation (data) D [163–165]

p(θ |D) =
p(θ ,D)

p(D)
=

p(D | θ)p(θ)∫
p(D | θ̃)p(θ̃) dθ̃

. (3.2)

The probability distribution p(θ | D) obtained as a result of Bayes’ theorem is

called a posterior distribution. The Likelihood function and the prior distribution

together constitute a probability model. The core of Bayesian computation is to

develop the model p(θ ,D) = p(D | θ)p(θ) and perform the computation to sum-

marize p(θ |D) [166].

It is often challenging to mathematically formulate our prior beliefs to specify

the prior distribution p(θ). The popular approach to overcome this challenge is

the use of weakly informative priors. This means that with a reasonably large

amount of data, likelihood dominates and the prior distribution has little effect on

the outcome. This can be achieved, for example, by embedding the information

on the scale of the parameters or the predictions of the probabilistic model [163,

167–169]. Note that unbounded flat priors (unbounded uniform distributions) are

usually not recommended, partly because the integral of an unbounded uniform

distribution gives infinity (called an improper prior), and the integral of likelihood

functions does not necessarily equal one, therefore, the posterior would not have

properties of a PDF [164, 167, 170].

Posterior distributions cannot usually be analytically obtained unless special

types of priors are used (e.g. conjugate priors) [166]. Therefore, posteriors are

numerically estimated by constructing an empirical distribution of the posterior,

since often it is still possible to evaluate priors and likelihood at each point. The

most commonly used method is Markov chain Monte Carlo (MCMC), which will

be described in the following section.

Typically, a Bayesian posterior distribution is summarized by a (credible) in-

terval that contains a certain fraction of the distribution, e.g., 95 %. This can be

interpreted as the probability that the interval contains the unknown quantity of in-

terest based on our prior belief and observations. This is a different concept from

a frequentist (confidence) interval in a sense that the interval obtained with, for

example, 95 % confidence indicates that if the same observation is repeated many

times, 95 % of the constructed intervals would contain the true value of the quantity
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of interest [166].

Furthermore, interpretation of the likelihood function p(D | θ) also differs be-

tween Bayesian and frequentist paradigms. In Bayesian statistics, the observed

data D is fixed and the uncertainty in the parameter θ is expressed as a distribution

of θ . On the other hand, from a frequentist’s point of view, the parameter θ is con-

sidered to be fixed, and its error bars are estimated by considering the distribution

of possible data sets D.

In Chapter 4, a concrete example of the Bayesian probabilistic modeling will

be presented.

3.2 Monte Carlo Method and Markov Chain Monte
Carlo

When the distribution of the quantity of interest cannot be analytically obtained, it

is common to simulate a sequence random variables X1, X2, . . . and compute the

corresponding quantity of interest g(X i) (i = 1,2, , . . .), then compute the statistical

quantities of interest, e.g., mean, variance, and so on.

Suppose that we can simulate independently and identically distributed random

variables X1,X2, . . . ,Xn and they have the same distribution as X , which is denoted

as f (X). If g is some function where g(X) cannot be analytically obtained but we

wish to estimate the expectation

µ = E[g(X)] =
∫

g(X) f (X) dX , (3.3)

then the Monte Carlo estimate of µ is

µ̂n =
1
n

n

∑
i=1

g(X i). (3.4)

Similarly, the variance of g(X), σ2, can be estimated by

σ̂2
n =

1
n

n

∑
i=1

(g(X i)− µ̂n)
2. (3.5)

This is the basic concept of (ordinary) Monte Carlo.
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Markov Chain

As discussed in the previous Section 3.1, Markov chain Monte Carlo (MCMC)

is often the method of choice to compute analytically intractable posterior dis-

tributions in Bayesian statistics. Markov chain is a sequence of random variables

X1, X2, . . ., where the conditional distribution of Xd+1 given all the previous points

xi (i = 1, 2, . . . , d) depends only on the last point xd . The lower case means that

they are realizations (observed values) of the variables X i (i = 1, 2, . . . , d). That

is,

p(Xd+1 | xd , xd−1, . . . , x1) = p(Xd+1 | xd). (3.6)

The Metropolis Algorithm

Below, we will review the basic concept of MCMC by taking the random-walk

Metropolis (Metropolis-Hastings) algorithm as an example. The notation follows

that of Ref. [166]. Similarly to Section 3.1, let θ denote the parameter(s) of interest,

and D be the observed data. The procedures of the algorithm are the following

[166]:

1. Choose a starting point θ 0 where the posterior PDF p(θ 0 |D) is positive.

2. For d = 1, 2, . . ., repeat:

(a) Sample a proposal θ ∗ from a proposal distribution Jd(θ
∗ | θ d−1). For

the random-walk Metropolis algorithm, this proposal distribution is

chosen to be symmetric, i.e., Jd(θ
a | θ b) = Jd(θ

b | θ a) for any a, b,

and d.

(b) Compute the ratio of the density (acceptance ratio):

r =
p(θ ∗ |D)/Jd(θ

∗ | θ d−1)

p(θ d−1 |D)/Jd(θ d−1 | θ ∗)
=

p(θ ∗ |D)

p(θ d−1 |D)
(3.7)

(c) Set

θ
d =

{
θ
∗ with probability min{1,r},

θ
d−1 otherwise.

(3.8)
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The starting point in Step 1 can be based on some approximation of the property

of the posterior. Practically, the first portion of the generated points before the

Markov chain stabilizes is often discarded as a burn-in period. In Step 2 (a), a

normal (Gaussian) distribution, for example, can be used as a symmetric proposal

distribution. Step 2 (c) can be executed by generating a uniform random value ud (a

value drawn from the unit uniform distribution [0,1]), then accepting the proposal

θ ∗ if r > ud , otherwise rejecting it and retaining the old value θ d−1.

The reason why this simple algorithm can estimate the correct posterior dis-

tribution (target distribution) is due to the Ergodic Theorem. It states that, if the

sequence {θ 1, θ 2, . . .} is an irreducible, aperiodic, and recurrent Markov chain,

then it has a unique distribution that is stationary, and the stationary distribution

equals the target distribution. The details of the proof for the case of the Metropolis

algorithm are described in Refs. [163, 166].

In an irreducible Markov chain, it is possible to jump from any state eventually

to any other state. This property is satisfied in a random-walk, since the proposal

distribution Jd has positive probability everywhere. Aperiodicity is where a Markov

chain does not visit a specific value periodically, e.g., every k-th iterations. Starting

a Markov chain at some value θ , if the probability of returning to the value θ after

an infinite number of steps is equal to 1, then this Markov chain is said to be

recurrent. A random-walk Markov chain satisfies all of these properties.

When a sample θ d is drawn from a stationary distribution π and θ d+1 is gen-

erated conditionally on θ d from the Markov chain, then the unconditional distribu-

tion of θ d+1 is also π . The proof that the stationary distribution of the Metropolis

algorithm is unique and equals the target distribution p(θ | D) can be given by

computing the joint probability of θ a and θ b drawn from p(θ |D) labeled so that

p(θ b | D) > p(θ a | D), and showing that the marginal distributions of θ a and θb

computed from the joint probability are identical to p(θ |D) (see e.g. Ref. [166]).

In practice, it is known that a random walk becomes increasingly inefficient in

exploring high-dimensional parameter spaces. Most commonly used probabilistic

programming languages, such as STAN, PYMC, BUGS, EMCEE, and so on, im-

plement a sampler called the “No-U-Turn Sampler (NUTS)”, which is an extension

to the Hamiltonian Monte Carlo (HMC) method. In HMC, the parameter space is

explored in analogy to Hamiltonian dynamics, like a ball moving on a friction-less
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curved surface. Therefore, the point of the sample moves around as if the point

has a momentum, and the movement of the point is affected by the gradient of the

logarithmic of the posterior (log-posterior) distribution with respect to the param-

eters [171–173]. However, HMC has parameters that require manual and careful

tuning to control its behavior. NUTS overcame this challenge by automatically

tuning such parameters through a recursive algorithm [174]. In Chapter 4, we will

employ NUTS implemented by PyMC [175].

3.3 Variance-Based Sensitivity Analysis Method
In the context of the r-process nucleosynthesis, a notable previous work on sensi-

tivity analysis focusing on nuclear physics inputs in nucleosynthesis calculations

has been performed by Ref. [82]. Sensitivity here means how much predicted ob-

servables of the r-process, such as abundance patterns and kilonova lightcurves, are

affected by the change in the nuclear physics inputs such as nuclear masses, decay

half-lives, and so on. Identifying nuclear physics inputs with large sensitivities al-

lows us to focus the experimental and theoretical effort on such nuclei to improve

our understanding of the r-process. In their work, sensitivities of the calculated

abundances to various nuclear physics observables, such as β -decay half-lives, β -

delayed neutron emission probabilities, neutron capture rates, and masses, were

estimated for the entire chart of nuclide.

While this work has provided significant insight into the dependence of the

calculated abundances on the individual nuclear physics inputs, their sensitivity

analysis method faced several challenges. The sensitivities were estimated by

changing one input at a time, with or without propagating the variation to other

inputs, and summing the absolute differences of the output from the baseline over

all mass numbers. This one-at-a-time scheme implicitly assumes linearity and ad-

ditivity in the response of the calculation to the change in the input [176]. Since

nucleosynthesis calculations often show non-linear relations between variations of

reaction/decay rates and abundance changes [177], the sensitivity estimates based

on this scheme are potentially unreliable. Furthermore, with this method the space

of the input variables, whose dimension is equal to the number of the variables, is

largely unexplored.
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Ref. [177] studied the effect varying the (α,n) reaction rates employing a

Monte Carlo approach, in the context of neutrino-driven ejecta in core collapse su-

pernovae. With the Monte Carlo method it is possible to explore the entire variable

space. In identifying the key reaction rates, Spearman’s correlation coefficient was

employed as sensitivity metric, which assumes a monotonic relationship between

the output (elemental abundance) and the variation of an input (e.g. an (α,n) re-

action rate). While the assumption of a monotonic relationship is an improvement

from the linear assumption in Refs. [178, 179], which employed Pearson’s corre-

lation coefficient, there is no guarantee that the relationship is always monotonic.

In our sensitivity analysis, we employ the variance-based sensitivity analysis

method. This method is also based on a Monte Carlo approach and it determines

the individual contribution of input variables to the uncertainty (variance) of the

output of the model [180]. The same method has recently been applied in a study

of ab initio nuclear theory [181].

Below, we outline the variance-based sensitivity method based on the work

presented in Ref. [180] The notation in this section follows that of the paper. Inter-

ested readers are referred to [180, 182] for more detailed discussions of the method.

As explained in the main text of the current work, this method quantifies the con-

tribution of the uncertainty (variance) of each input variable to the uncertainty of

the output. In the work presented in Chapter 5, the input variables correspond to

the experimental β -decay half-lives (T1/2) and the β -delayed one-neutron emis-

sion probabilities (P1n), and the output corresponds to the nuclear abundances as

a function of mass numbers. A more detailed introduction to the variance-based

sensitivity analysis method is provided below.

Suppose that a numerical model can be expressed as Y = f (X1,X2, . . . ,Xk),

where Y is the output (e.g. nuclear abundance for a given mass number), Xi (i =

1,2, . . . ,k) are the input variables (e.g. T1/2 and P1n values), and f (·) is the simula-

tion (e.g. nucleosynthesis post-processing code). Assuming for now that X1,X2, . . . ,Xk

are independently and uniformly distributed in [0,1], the following decomposition

of the overall output variance V (Y ) is proven unique by [183]:

V (Y ) = ∑
i

V (1)
i +∑

i
∑
j>i

V (2)
i j + · · ·+V (k)

12...k, (3.9)
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where Vi is the output variance due to the variance of input variable Xi, and the

definition is similar for Vi j and other higher order terms. Dividing both sides by

V (Y ),

1 = ∑
i

S(1)i +∑
i

∑
j>i

S(2)i j + · · ·+S(k)12...k, (3.10)

where S(1)i =V (1)
i /V (Y ) is called a first-order sensitivity index for Xi, S(2)i j =V (2)

i j /V (Y )

is a second-order sensitivity index, and so on. These partial variances V (1)
i , V (2)

i j

and so on can be written as (see [180, 183] for more details)

V (1)
i =VXi (EXXX∼i(Y | Xi)) , (3.11)

V (2)
i j =VXiX j

(
EXXX∼i j(Y | Xi,X j)

)
(3.12)

−VXi (EXXX∼i(Y | Xi))−VX j

(
EXXX∼ j(Y | X j)

)
, (3.13)

and so on. In Eq. 3.11, EXXX∼i(Y | Xi) denotes the expectation value (average) of Y

when the value of Xi is fixed, and EXXX∼i means that the average is taken over all

the possible values of all the variables except for Xi. Therefore, VXi (EXXX∼i(Y | Xi))

means that the variance of the expected value is computed over all the possible

values of Xi. More intuitively, as shown in Fig. 3.1, this is equivalent to calculating

the average of the values of Y of the samples by “slicing” the samples at a given

value of the input Xi, then estimating how much the average varies as the samples

are sliced at all the possible values of Xi. With this, the sensitivity indices can be

written as

S(1)i =
VXi (EXXX∼i(Y | Xi))

V (Y )
, (3.14)

S(2)i j =
VXiX j

(
EXXX∼i j(Y | Xi,X j)

)
−VXi (EXXX∼i(Y | Xi))−VX j

(
EXXX∼ j(Y | X j)

)
V (Y )

(3.15)

= S(2),closed
i j −S(1)i −S(1)j ,

and so on, where S(1)i and S(2)i j are called first-order and second-order sensitivity

indices, respectively, and S(2),closed
i j ≡

VXiX j

(
EXXX∼i j (Y |Xi,X j)

)
V (Y ) is called the closed second-

order sensitivity index, since the definition is closed within the subset of inputs{
Xi,X j

}
.
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Xi

Y

EX∼i(Y | Xi)

VXi(EX∼i(Y | Xi))

V (Y )

Figure 3.1: Conceptual schematics of the meaning of the value
VXi (EXXX∼i(Y | Xi)) in Eq. 3.11.

While we have assumed so far that the input variables are uniformly distributed

in [0,1], this method can be used with general distributions such as a normal dis-

tribution or uniform distributions that are not in [0,1], since random numbers uni-

formly distributed in [0,1] can be transformed to desired distributions through in-

verse transform sampling, as long as they are independently distributed and their

cumulative distribution functions are known. The sensitivity indices can then be

defined in a similar manner for general distributions [182].

Monte Carlo estimate of sensitivity indices

In practice, the sensitivity indices (e.g. Eqs. 3.14 and 3.15) cannot be computed an-

alytically. Therefore, we compute their Monte Carlo estimates instead. In order to

illustrate the Monte Carlo method, we use first-order sensitivity indices (Eq. 3.14)

as an example.

Suppose that we have k variables of interest and wish to use N samples to com-
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pute their Monte Carlo sensitivity estimates. The first step is to generate samples

that are uniformly distributed in [0,1]. While random numbers can be used for this

purpose, we employ a Sobol quasi-random sequence implemented in a Python

library called SALib [184]. Sobol quasi-random sequences are designed to gen-

erate multi-dimensional uniform samples in [0,1] to efficiently explore the entire

variable space by filling the gap between previously sampled points [180]. Using

the quasi-random sequence, we generate N × 2k samples and split them into two

matrices of size N × k.

The next step is to transform the uniformly distributed samples for each vari-

able in the two matrices into the desired distributions. In the study described

in Chapter 5, the half-lives are assumed to follow truncated normal (Gaussian)

distributions with their means and standard deviations defined by the experimen-

tal values and uncertainties. The β -delayed one-neutron emission probabilities

(P1n values) are either truncated normal distributions or uniform distributions in

[0,(upper limit of P1n)]. The samples uniformly distributed in [0,1] can be trans-

formed into these distributions through inverse transform sampling. For conve-

nience, we call the first of the two transformed N × k matrices AAA and the second

matrix BBB. Using these matrices, the first-order sensitivity index is estimated by

(based on Eq. 16 of [180] and Eq. 30 of [182])

Ŝi
(1)

=

1
N ∑

N
j=1 f (AAA) j

(
f (BBB[i]

AAA ) j − f (BBB) j

)
V̂ (Y )

, (3.16)

where Ŝi
(1)

denotes a Monte Carlo estimate of S(1)i , and f (AAA) j as well as f (BBB) j are

the output of the simulation run with the j-th row ( j = 1,2, . . . ,N) of the matrices AAA

and BBB, respectively. BBB[i]
AAA is a N×k matrix whose i-th column (i = 1,2, . . . ,k) comes

from the matrix AAA but all the other columns come from the matrix BBB. Consequently,

f (BBB[i]
AAA ) j is the output of the simulation run with the j-th row of BBB[i]

AAA . V̂ (Y ) is the total

variance of the output of the simulation, computed with all the generated samples.

Errors of the computed sensitivity indices can be estimated using a method called

bootstrapping [185].
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3.4 Neural Networks
While the variance-based sensitivity analysis method (Section 3.3) is useful for

identifying influential parameters in the model and MCMC (Section 3.2) is useful

for estimating the likely values of the parameters from the data, one is sometimes

interested in extracting the patterns and physical laws from the data. In such case,

it is often effective to fit flexible models to the data. Neural networks have recently

gained popularity due to their flexibility and ability to interpolate/extrapolate the

observed data [186]. Such models can be used for constructing fast emulators of

complex numerical models, which would otherwise take a large amount of compu-

tational cost and time. In this section, the basics of neural networks are presented,

which are used in Chapter 6 to construct an emulator of a nuclear reaction network

calculation code (Section 1.3).

Feed-forward Artificial Neural Network

Feed-forward artificial neural networks (ANNs) can be described as a series of

functional transformations, where an input (vector) xxx is propagated through in-

termediate layers, and finally to the output (vector) yyy [164, 186]. For example,

if an ANN has three layers that are connected in a chain, it can be expressed as

f (xxx) = f (3)
(

f (2)
(

f (1)(xxx)
))

. An ANN with trainable parameters, or weights www,

defines a mapping yyy = f (xxx,www), which is trained to approximate some function

yyy = f ∗(xxx). Training is typically performed using variations of (stochastic) gradi-

ent descent algorithms to minimize cost functions, such as the mean squared error

cost function. The information from the cost function is propagated backwards

through the network to compute the gradient of the cost function with respect to

the trainable parameters, using the back-propagation algorithm. Much of the de-

sign of architectures of ANNs goes into the choice of type, number (depth) and

width of layers, and how each layer is connected. In what follows, the two types of

layers used in the design of the current architecture of ANNs are described. Please

see Ref. [186] for more details.

Implementation of the neural networks are done by using an ANN library

called KERAS [187], which provides a high level application programming inter-

face (API) for TENSORFLOW [188] in PYTHON.
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Fully Connected Layers

In a fully connected (or dense) layer, linear combinations of the input of the layer

are first constructed. Taking the first layer of the ANN as an example and following

the notation in [164], the linear combination can be written as

a j =
D

∑
i=1

w(1)
ji xi +w(1)

j0 , (3.17)

where j = 1, . . . ,M with M being the dimension of the layer, D the dimension of

the input xxx = x1, . . . ,xD, w(1)
ji the weights with the superscript (1) denoting first

layer, and w(1)
j0 the biases. Each of a j is subsequently transformed using nonlinear

activation function h(·) to obtain outputs of the layer

z j = h(a j). (3.18)

In the work presented in Chapter 6, the activation function is chosen to be the

rectified linear unit (ReLU) h(a j) = max{0,a j} [189], which is one of the most

widely used activation functions. The subsequent layers take the output of the

previous layers, and the functional transformations can be operated in the same

manner. In the final layer, the identity activation function (where the output of the

function is identical to the input) is used to allow for unbounded values.

Convolutional Layers

Convolutional neural networks (CNNs) are a type of ANNs where convolution is

used in at least one of the layers. CNNs are used most extensively in the field

of computer vision. The central assumption in CNNs is that nearby pixels in the

image data or neighboring data points in time-series data are strongly correlated

[164, 186]. Based on this assumption, it is possible to extract the local features

in the data. The general convolution operation for multidimensional arrays can be

expressed as [186]

S(i, j) = (I ∗K)(i, j)

= ∑
m

∑
n

I(m,n)K(i−m, j−n), (3.19)
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where I is a multidimensional array image input, K is called a kernel (which is a

multidimensional array that stores the adaptive weights), and S(i, j) is the output

and is often referred to as a feature map.

In the actual implementation of convolution for machine learning purposes,

convolution is typically performed for a small subregion in an input image for each

element in a feature map. Furthermore, the weights in a feature map are used for

all the elements in an input, which is the concept called “weight (parameter) shar-

ing”. These reduce the number of weights that are stored in the memory, making

it possible to process images that have a large number of pixels. Each unique set

of weights is often referred to as a filter, which acts to detect different features in

the input data. The use of convolutional layers for nuclear data is motivated by the

fact that the properties of neighboring nuclei on the chart of nuclides are highly

correlated.

Uncertainty quantification with deep ensembles

In emulation of computer codes, one of the most popular approaches is to use a

probabilistic model called Gaussian processes (GPs) [190, 191, 191, 192]. GPs

provide a natural way to quantify the prediction uncertainty in terms of the quality

of the emulation. On the other hand, typical ANNs including CNNs have determin-

istic weights, therefore their predictions are also deterministic. One approach to

overcome this limitation for ANNs is to employ Bayesian neural networks (BNNs)

[171] where the weights are expressed as probability distributions. Similarly to

GPs, it is possible to quantify the prediction uncertainty of BNNs due to their

probabilistic nature. However, the computational complexity of BNNs is large

compared to traditional ANNs, and the application to CNNs is technically chal-

lenging for non-experts.

The approach we employ in this thesis to quantify prediction uncertainty is

called deep ensembles, which is a simple and scalable method and has been shown

to provide robust and accurate estimates of uncertainty, comparable to BNNs [193].

The central idea of deep ensembles for regression is to create a copy of M (en-

semble size, in our case, M = 10) ANNs with the same architecture with random

initialization. The final layer of the ANN architecture is replaced with a layer with
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two outputs: a predictive mean µ(xxx) and a predictive variance σ2(xxx). The predic-

tive mean and variance of the ensemble are obtained by treating the ensemble of

ANNs as a uniformly weighted mixture of Gaussian distributions.
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Chapter 4

Ensemble Bayesian Model
Averaging of Nuclear Mass
Models

Since the first introduction of the nuclear liquid drop model, the theoretical de-

scription of nuclear masses has seen great progress, which gave rise to many

related but different approaches. It is now possible to describe the ground state

properties of nuclei across the chart of nuclei with theories of different scales (see

Section 2.2): Macroscopic-microscopic theories such as the Finite-Range Droplet

Model (FRDM) [119, 132], Weizsäcker-Skyrme (WS) models [145, 149, 150,

152], microscopically inspired Duflo-Zucker models [153], and more microscopic

theories such as the nuclear density functional theory (DFT) with different interac-

tions or energy density functionals (EDFs) [143, 194, 195].

These global mass models play a particularly important role in understanding

the origin of heavy elements in the Universe via the rapid neutron capture process

(r-process) [45, 82, 196, 197]. This is because the nuclear masses determine the Q-

value (energy release) of nuclear reactions and decays, which also affect their rates

(rates ∝ Q3–7 [198, 199]), but the masses of the vast majority of neutron-rich iso-

topes relevant to the r-process have yet to be experimentally studied. The masses

also determine the fission barriers, which become important for very heavy nuclei

where fission is the dominant decay mode. Therefore, mass models used in nucle-
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osynthesis studies have a significant impact on the resulting abundance patterns and

kilonova lightcurves. However, one of the challenges in understanding the impact

of mass models in nucleosynthesis is that, in general, we do not have uncertainty

estimates associated with the theoretical masses. While there has been an effort

to quantify uncertainty in microscopic theories [200, 201], the mass models that

are typically used in nucleosynthesis studies, especially macroscopic-microscopic

and phenomenological models, do not come with quantified prediction uncertainty.

One may calculate the root-mean-squared error of each mass model with respect

to the observations, but it most likely underestimates the uncertainty where no data

exist (see Figure 2.5). Furthermore, the possibility of quantifying the uncertainty

by combining multiple mass models and observations has largely been unexplored.

This poses a challenge in quantifying the uncertainty in r-process nucleosynthesis

that arises from uncertain nuclear masses.

As the next-generation radioactive isotope beam facilities allow us to have ac-

cess to more neutron-rich isotopes, it becomes possible to test the performances

of the mass models in the extremely neutron-rich regions of the chart of nuclides.

However, in experimental studies of nuclear masses, usually only the new experi-

mental results are compared to the theoretical predictions. It is often done by cal-

culating the root mean squared (RMS) error (for examples of mass measurements

relevant to the r-process, see Refs. [202–205]), but this does not fully combine all

the available experimental data. Therefore, a statistical method to test the predic-

tions of various theoretical models and evaluate the impact of new measurements

on the uncertainty of extrapolated masses would be an improvement to the current

situation.

In this work, we will apply a method called ensemble Bayesian model averag-

ing (EBMA) introduced by Ref. [206] to combine available experimental data and

multiple theoretical mass models as well as quantify the mass uncertainty. This

method models an ensemble of theoretical mass models as a mixture of normal dis-

tributions, whose parameters are estimated based on the observations. The EBMA

combines model calibration, selection, averaging, and uncertainty quantification

in a single framework and the resulting probabilistic model is highly interpretable.

This Bayesian method is quite general and it can be readily applied to other nuclear

physics observables such as β -decay half-lives.
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Recently, data-driven modeling of nuclear masses using machine learning tech-

niques has been quickly gaining popularity [207–214]. Especially, probabilistic

models have achieved high accuracy while providing an estimate of uncertainty.

These machine learning approaches usually model the residuals of a theoretical

nuclear mass model from experimental data, and are providing corrections to the

theoretical mass model. However, while there have been attempts to construct

physically interpretable models [214], it is generally difficult to gain insight into

the underlying physics from the learned residuals. Furthermore, these machine

learning methods do not provide a way to perform a model selection to test exist-

ing theoretical models that are described with known physics.

The purpose of this study, on the other hand, is not to create another mass

model or to improve existing ones. Rather, we aim to investigate how well a set of

theoretical models can reproduce experimental data and quantify the performance

of each model in the ensemble. This quantifies the uncertainty in extrapolating

the experimental data. Our approach should be considered as a method for model

averaging, selection, calibration, and uncertainty quantification, using only existing

theoretical models.

4.1 Method

4.1.1 Bayesian model averaging

We start by describing the general framework of Bayesian model averaging (BMA).

BMA is applicable when more than one statistical model that describes the data

reasonably well is available, and one wishes to account for the uncertainty in the

analysis arising from conditioning on a single model. BMA computes a weighted

average of the probability density functions (PDFs), weighted by the posterior

probability of the “correctness” of each model given the training data. Follow-

ing the description in Refs. [206, 215], the posterior distribution of the observable

of interest ∆, defined by BMA, is

p(∆ | D) =
K

∑
k=1

p(∆ | Mk,D) p(Mk | D), (4.1)
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where p(∆ | Mk,D) is the posterior PDF of the observable of interest based on a

single statistical model Mk, and p(Mk | D) is the corresponding posterior model

probability, which represents how well model Mk fits the data D. The posterior

model probabilities can be considered as weights, since their sum is equal to 1.

4.1.2 Ensemble Bayesian model averaging

One of the limitations in the applicability of the BMA method is that the partici-

pating models themselves need to be probabilistic. However, in nuclear physics,

many models only provide point estimates of the quantity of interest. Therefore, we

need to extend the BMA framework to handle such deterministic models. Raftery

et al. [206] introduced the ensemble Bayesian model averaging (EBMA) method,

which computes the weighted average of an ensemble of bias-corrected determin-

istic models, as a finite mixture of normal distributions. In the EBMA framework,

the predictive model is

p(∆ | m1, . . . ,mk) =
K

∑
k=1

wk gk(∆ | mk), (4.2)

where wk is the weight of the model mk, whose posterior represents the probability

of the model k being the best one, based on the observed data D. gk(∆ |mk) is a nor-

mal PDF with mean defined by the bias-corrected deterministic model predictions

and standard deviation σk:

gk(∆ | mk) = N(∆ | ak +bkmk,σ
2
k ), (4.3)

where ak and bk are the bias-correction coefficients, which are discussed in more

detail in the following section. In the original EBMA by Raftery et al. [206], a con-

stant standard deviation was used across all the models in the ensemble; however,

we take it as model dependent (denoted by subscript k), which is a more natural

way to construct a mixture model.
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Bias correction

In constructing EBMA models, although not strictly necessary, Ref. [206] linearly

corrects the bias of the prediction of each model, as shown in Equation 4.3. Since

most mass models are already fit to experimental data, the values of the bias-

correction coefficients are expected to be ak ∼ 0 and bk ∼ 1, where the original

prediction of the model is obtained when ak = 0 and bk = 1.

Ref. [206] suggests that ak and bk for each k = 1, . . . ,K are determined by linear

regression. Another way to determine these parameters ak and bk is by Bayesian

linear regression and taking the maximum a posteriori (MAP) values, which is a

slightly more probabilistic treatment. However, in our case, the two approaches

yield virtually identical values.

Bayesian inference

The parameters of interest in our statistical inference are the weights wk(k= 1, . . . ,K)

and the standard deviations of the normal distributions that correspond to each of

the theoretical mass models in the ensemble. Therefore, prior distributions for the

parameters must be specified. In general, we try to choose the prior distributions

to be as weakly informative as possible. For the weights, since the weights have to

sum up to one: ∑
K
k=1 wk = 1, we model the parameters with a Dirichlet distribution

of order K, which meets this requirement. Therefore, the prior for the weights is

p(w1,w2, . . . , wk) = Dirichlet(w1,w2, . . . , wk | α1,α2, . . . , αk)

=
Γ
(
∑

K
k=1 αk

)
∏

K
k=1 Γ(αk)

K

∏
k=1

wαk−1
k , (4.4)

where α1,α2, . . . , αk are called the “concentration parameters”, and Γ(·) is the

gamma function1. The concentration parameters of the Dirichlet distribution are

set to 1 to ensure that the prior distributions are only weakly informative. The prior

distributions for the standard deviations are chosen to be exponential distributions

with the rate parameters equal to 1, which has been suggested to be one of the

weaker priors [168].

1Γ(z)≡ ∫ ∞

0 tz−1e−tdt.
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The likelihood of the normal mixture model is defined as

L(w1, . . . , wK , σ
2
1 , . . . , σ

2
K)

= ∏
n,p

(
K

∑
k=1

wkgk(∆n,p | mk,n,p)

)
, (4.5)

where the subscripts n and p represent the neutron and proton number of the nuclei

where the observations exist. In practice, the logarithm of the likelihood (log-

likelihood) is often used for computation to avoid numerical problems.

With the prior distributions and the likelihood function, it is now possible to

formulate the posterior distributions for the parameters of the EBMA model.

p(www,σσσ222 | D) ∝ L(www,σσσ222) p(www) p(σσσ222), (4.6)

where www = w1, . . . ,wK and σσσ222 = σ2
1 , . . . ,σ

2
K and D denote observational data. The

prior distributions are denoted as p(www) and p(σ2), respectively.

Predictive variance

In EBMA models, the uncertainty of the quantity of interest is provided in the

form of variance of the posterior predictive distribution. Based on Ref.[206] but

reflecting the fact that our σk depends on model k, the predictive variance can be

written as

Var(∆ | m1,m2, . . . ,mK) =
K

∑
k=1

wk

(
(ak +bkmk)−

K

∑
k1

wk(ak +bkmk)

)2

+
K

∑
k=1

wkσ
2
k , (4.7)

where the first term corresponds to the spread of predictions by the member mass

models of the ensemble, and the second term corresponds to the expected deviation

from the observations of each mass model, weighted by the posterior weights.
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Differences to related works

It is worth discussing the key differences between our framework and the related

studies that use the BMA method, namely, Refs.[209, 210, 216–218]. In their

BMA framework, the uncertainty quantification of the considered mass models

is performed by constructing Gaussian Process (GP) emulators, which learn the

corrections to the mass models from the residuals with respect to the observed

values. Therefore, the quality of prediction and corresponding uncertainty mainly

rely on the performance of the GP emulator. The BMA weights are calculated

either based on some criteria such as nuclei being bound, or the performances of

each mass model on the test data. One of the drawbacks of this method is that

the derived weights are point estimates and the resulting BMA uncertainty is a

deterministic weighted average of the GP uncertainties. Furthermore, one has to

be cautious in performing extrapolations using GPs, since an unconstrained GP

converges to its mean with fixed uncertainty away from the data [190, 219].

On the other hand, the EBMA framework keeps the deterministic nature of the

mass models in the ensemble. Instead, the weights and variances associated with

each mass model are modeled probabilistically based on the experimental data.

The probabilistic distributions are reflected onto the resulting predictive uncertainty

through the Bayesian framework. In this framework, the predictions of each mass

model that constitute the EBMA model are only linearly calibrated; therefore, the

local trend of the predictions remain unchanged.

4.1.3 Setup of numerical experiment

In the numerical experiments discussed in the current work, all the probabilis-

tic models have been implemented using PyMC [175], which is a probabilistic

programming language written in Python. PyMC offers an implementation of

a highly efficient sampler called No-U-Turn-Sampler (NUTS), which adaptively

tunes the parameters associated with the Hamiltonian (or Hybrid) Monte Carlo

method [171, 220]. Conventionally, parameter estimation in mixture models is

performed with the Expectation Maximization (EM) algorithm to avoid the so-

called “label switching problem” [221, 222]. The label switching problem arises

in mixture models like the EBMA models, since the likelihood (Eq. 4.5) remains
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unchanged under permutation of the labels (k = 1, . . . K) of the mixture compo-

nents gk(∆ | mk). This makes the analysis of the posterior distributions challeng-

ing. However, the EM algorithm does not guarantee convergence to the global

optimal weights and variances, especially in high-dimensional problems. Further-

more, MCMC methods would be able to provide much more complete information

on the posterior distributions. In our numerical experiments, we did not find evi-

dence of a label switching problem due to employing the MCMC method. This is

most likely because, in our normal mixture models, the means of the normal dis-

tributions are always specified by the predictions of bias-corrected mass models,

which works as an identifiability constraint.

The quantity of interest in our study is the one-neutron separation energy (Sn),

which is directly relevant to the r-process. The mass models included in our

ensembles are the Duflo-Zucker mass model with 29 parameters (DZ29) [153],

FRDM2012 [119], HFB31 [143], KUTY05 [156], ETFSI2 [148], and WS4 [152].

In most of our numerical experiments, we take the Sn values from the AME2020 [10]

as observations. In evaluating the quality of uncertainty estimates for unseen data,

we use the Sn values from AME2003 [223] for constructing our models and then

test them with the new data points in AME2020. In the AME2020, 319 new Sn data

points with proton number Z = 16-105 are available compared to the AME2003.

The new data points in the AME2020 compared to the AME2003 are shown in

Figure 4.1.
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Figure 4.1: Comparison of the AME2003 data with the latest AME2020 data
for one-neutron separation energies Sn, illustrated on the chart of nu-
clides. The blue squares show the new Sn in the AME2020 values that
did not exist in the AME2003. The Sn values listed in the AME2003 are
shown in orange color.

We consider four different ways to categorize the Sn data. The first category

is the data for the whole chart of nuclides, which employs all the available exper-

imental data at once. The second and third are data for each isotopic and isotonic

chain, respectively. This focuses on the evolution of the Sn values as a function of

proton and neutron number (isotopic and isotonic, respectively). The last is iso-

baric (equal mass number A), to demonstrate that it is possible to create an EBMA

model for each isobaric chain, which is relevant to the trend of β−-decay Q-values.
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4.2 Results and Discussion

4.2.1 Comparison with observations

To compare the predictions of the EBMA model with the observations (data from

AME2020), nominal EBMA predictions are taken as the MAP values of the pre-

dictive distributions of Sn, with the bias-correction parameters, weights, and the

standard deviations σk (Equation 4.3) determined also from the AME2020 values.

Since the AME2020 values are used for both fitting and evaluation of the perfor-

mance, this analysis reveals how well the EBMA method can reproduce known

experimental data using the constituent mass models.

Figures 4.2 and 4.3 show the deviations of the EBMA predictions of the one-

neutron separation energies (Sn) from the AME2020 values. The value of the σSn of

the fit of the entire chart of nuclides (panel (a)) shows that the averaged mass model

created by the EBMA method can reproduce the experimental values slightly better

(σ (a)
RMSE = 0.232 MeV) than the best performing model, which is the WS4 model

[152] with σWS4
RMSE = 0.257 MeV (see Table 4.1). Further reduction in σRMSE is

achieved when Sn of each isotopic chain is fit separately (panel (b) of Figure 4.2).

This suggests that some models in the ensemble perform better than the overall

best-performing mass model (WS4) for some isotopic chains. This can be verified

by inspecting the weights of the EBMA model and will be discussed in more detail

in Section 4.2.2. The best performance in reproducing the experimental Sn is ob-

tained when separate EBMA models are optimized for each isotonic chain (panel

(c) of Figure 4.3). This means that the mass models can capture the isotonic trends

of Sn (Sn as functions of neutron number N) much better than the isotopic trends

(Sn as functions of proton number Z), at least for the available experimental data.

The fit of each isobaric chain resulted in the RMSE value of 0.171 MeV, which sits

between the isotopic and isotonic models (panel (d) of Figure 4.3).
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Figure 4.2: Root mean squared error (RMSE) [MeV] of the neutron separa-
tion energies Sn reconstructed by the EBMA models fitted with (a) the
whole chart of nuclides and (b) each isotopic chain (Z = const.), com-
pared to the AME2020 [10].
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Figure 4.3: Same plot as Figure 4.2, but for (c) each isotonic chain (N =
const.), and (d) each isobaric chain (A = const.).
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4.2.2 Weights in the EBMA models

EBMA models are constructed using the Sn data from AME2020 in three different

ways: optimizing the EBMA models with 1) the data for the whole chart of nu-

clides, 2) each isotopic chain, and 3) each isotonic chain, respectively. Table 4.1

lists the 95 % posterior highest density intervals (HDIs) of the EBMA weights

and variances, which are the narrowest intervals that include 95 % of the posterior

distributions, when the EBMA model is optimized with the observed Sn data for

the whole chart of nuclides. The posterior weight, which can be interpreted as the

probability of the model being the best one, is the largest for the WS4 model, fol-

lowed by DZ29 and FRDM12. The order of the top three mass models is the same

as the order of the smallest root-mean-squared errors (RMSEs) with respect to the

AME2020 [10]. On the other hand, the standard deviations or variances of the nor-

mal distributions in the mixture model do not agree with the RMSE values. This is

because the mixture model is a weighted sum of the normal distributions and is fit-

ted to the data at once, not individually. It is not apparent why the posterior weight

of the HFB-31 model is much smaller than the others, although the RMSE value

(0.472 MeV) is smaller than the KUTY05 (0.746 MeV) and ETFSI2 (0.828 MeV)

models. The HFB-31 mass model performs relatively well on average in reproduc-

ing the observed data, but it is possible that the local trend of the Sn values does not

agree with the observation, therefore resulting in the small weight. Such local dis-

agreement could also explain the large interval of the posterior standard deviation

for the model (Table 4.1).
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Table 4.1: 95 % posterior highest density intervals (HDI) of the EBMA
weights and standard deviations (variances), fitted with the AME2020
Sn values. The notation (a,b) denotes an interval with a being the lower
bound and b being the upper bound, respectively. RMSE shows the root
mean squared error of each mass model with respect to the AME2020
values.

Mass model Weight Standard deviation RMSE [MeV]

WS4 (0.392, 0.539) (0.186, 0.221) 0.257

DZ29 (0.154, 0.277) (0.134, 0.196) 0.292

FRDM12 (0.145, 0.264) (0.143, 0.196) 0.350

KUTY05 (0.021, 0.127) (0.134, 0.292) 0.746

ETFSI2 (0.001, 0.048) (0.063, 0.450) 0.828

HFB31 (0.000, 0.029) (0.138, 1.073) 0.472

The colors in Figure 4.4 show the mass model with the largest weight within

the ensemble for each isotopic (panel (a)), isotonic (panel (b)), and isobaric chain

(panel (c)). The color scale represents the value of the weight. The weight is the

posterior probability of the mass model being the best one, based on the training

using the AME2020 data. Trends of the best models in different regions are visible,

especially when the ensembles are created for each isotopic chain.
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Figure 4.4: Maximum a posteriori (MAP) values of the largest weight in the
EBMA ensemble determined for each (a) isotopic chain, (b) isotonic
chain, and (c) isobaric chain.
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4.2.3 Uncertainty quantification with EBMA

One of the main goals of this study is to quantify the uncertainty of deterministic

mass models. EBMA achieves it by creating a weighted average of a collection of

mass models, based on the performance of each model during the training. In the

EBMA model, the predictive uncertainty includes not only the spread of the fore-

casts among the member of the ensemble but also take into account the weighted

variance of each member model according to the performance during the training

[206]. The interpretability of the uncertainty is another advantage of the EBMA

method.

Figure 4.5 shows the size of the 68% highest density interval (HDI), which is

roughly comparable to ±1σ interval of the normal distribution, with EBMA mod-

els fitted for the entire chart of nuclides (panel (a)), each isotopic chain (panel (b)),

each isotonic chain (panel (c)), and each isobaric chain (panel (d)), respectively.

The fit is performed using the AME2020 data and the predictions are made for all

the nuclei available in all the member mass models within the ensemble. In all

the cases, it can be seen that the size of the uncertainty is constrained where the

data exist, but increases towards the edge of the chart of nuclides, especially in the

neutron-rich direction. This means that the predictions by the mass models con-

stituting the ensemble start to diverge as we move further from the last data point,

regardless of how the ensembles are made, as shown in Figure 4.6.

Comparing the four plots of Figure 4.5, the increase in the size of uncertainty in

the neutron-rich region is the smallest for the fit using the whole chart of nuclides

(panel (a)). This is likely because the weights for the whole chart of nuclides

can be determined using all the available data, whereas for each isotopic, isotonic,

and isobaric chains, the weights are determined only from the data in each chain.

Although the isotonic fit was best performing in terms of reproducing the experi-

mental data (Figure 4.3), it can be seen from the panel (c) of Figure 4.5, the size of

uncertainty rapidly grows where experimental data do not exist.
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Figure 4.5: Trends of the sizes of 68% highest density intervals of the EBMA
models, fitted with the AME2020 Sn data for (a) the whole chart of
nuclides, (b) each isotopic chain, (c) each isotonic chain, and (d) each
isobaric chain. The charts with isotonic and isobaric fits are truncated
at large neutron number and mass number, respectively, because there
are not enough data points within the chains to determine the EBMA
parameters.
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Figure 4.6: Comparisons of one-neutron separation energies (Sn) predicted
by each mass model used in this study and the experimental masses
from the AME2020 [10], relative to the predictions of the FRDM2012
for (a) Z = 28 (Ni), (b) Z = 50 (Sn), and (c) Z = 64 (Gd) isotopes.

Quality of uncertainty estimates

As discussed in Section 4.1.2, the predictive uncertainty given by the EBMA model

has a straightforward interpretation. Now we investigate the quality of the estima-

tion of the size of uncertainty. We first construct EBMA models and quantify

prediction uncertainties using the data from the AME2003 [223], then evaluate the
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quality of the uncertainties based on the new data from the AME2020 [10].

Figure 4.7 shows the distribution of the new Sn data relative to the sizes of un-

certainties given by the EBMA models fitted with the data for the whole chart of

nuclides (panel (a)), fitted for each isotopic chain (panel (b)), isotonic chain (panel

(c)), and isobaric chain (panel (d)). The number of new data points included in

the fit (n in Figure 4.7) is not necessarily 319 for the isotopic/isotonic/isobaric fits

because at the edge of the chart of nuclides, often there are not enough data points

in the isotopic/isotonic/isobaric chains and the posterior weights do not converge.

Such data points are excluded from the fits. The size of the EBMA uncertainty

is taken as the 68% highest (posterior) density interval (HDI.68), which is the nar-

rowest 68% credible interval on the posterior distribution. If the distribution is a

perfect normal distribution, 68% corresponds to the ±1σ interval symmetric about

the mean. To study how the observation distributes relatively to the HDI.68, we de-

fine δ , which represents an observed Sn value normalized by the size of HDI.68. Let

hlow and hup represents the lower and upper boundaries of the HDI.68, respectively,

δ =
Sn −hlow

hup −hlow −0.5, (4.8)

where 0.5 is subtracted to symmetrize the distribution around 0. Comparing the

average sizes of the 68% intervals (HDI.68), on average, the model fitted with the

whole chart of nuclides (panel (a) of Figure 4.7) provides the most constrained

size of the uncertainty of 0.48 MeV. On the other hand, the models fitted for each

isotopic (panel (b)), isotonic (panel (c)), and isobaric (panel (d)) chain have larger

credible intervals. This is most likely due to the fewer observation data points

in each isotopic, isotonic, or isobaric chain compared to the data for the whole

chart of nuclides. For the isotopic and isotonic fits (panels (c) and (d)), some

data points around δ ∼ 2 can be seen, suggesting that the models optimized for

isotopic/isotonic chains may be more sensitive to observations that do not follow

the trend within the isotopic/isotonic chain. This means that the isotopic/isotonic

models may be used for detecting anomalous masses or separation energies with

respect to the trend within the isotopic/isotonic chain. The quantified uncertainty

may also be used to estimate the probabilities of certain nuclei to be bound as in

Refs [210, 217, 224], which will be addressed in future work.
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Figure 4.7: Distributions of the new data points in AME2020 compared to
AME2003, with respect to the 68% HDIs predicted by the EBMA mod-
els fitted with the AME2003 data for (a) the whole chart of nuclides, (b)
each isotopic chain, (c) each isotonic chain, and (d) each isobaric chain.

4.3 Conclusions
We have explored the possibility of quantifying the uncertainty of deterministic

mass models using the EBMA method. The EBMA method models an ensemble

of bias-corrected mass models as a mixture of normal distributions, whose param-

eters are estimated by MCMC using the No-U-Turn-Sampler (NUTS). The EBMA

models have been constructed in four different ways of fitting, namely, the whole
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chart of nuclides, each isotopic chain, each isotonic chain, and each isobaric chain.

In reproducing the observed one-neutron separation energies (Sn), in all cases,

the maximum a posteriori (MAP) estimates of the EBMA models result in smaller

root mean squared deviations from the AME2020 data than the best model in the

ensemble, namely the WS4 model. While the EBMA model fitted for the whole

chart of nuclides results in a larger σRMS value than the isotopic/isotonic/isobaric

fit, it provides a more constrained and accurate uncertainty.

For all cases, the 68% HDIs estimated from AME2003 data contain roughly

95% of the new observations in AME2020. This suggests that the extrapolations

of the Sn values provided by the current EBMA models based on the AME2003

data and the six deterministic theoretical mass models work well for the new data

in AME2020. Furthermore, based on the distributions of the new AME2020 data

with respect to the size of the 68% HDIs, we conclude that the EBMA method

provides meaningful but conservative uncertainty estimates.

The advantage of the current method is its simplicity of the model. As opposed

to the previous works [209, 210, 216–218], the current EBMA method does not

require probabilistic machine learning models that quantify the uncertainties while

correcting for the deviations of each model from the experimental values. There-

fore, the EBMA method is applicable to various nuclear physics observables such

as β -decay rates and possibly neutron capture rates.
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Chapter 5

Variance-Based Sensitivity Study
with Experimental Data

In this chapter, a proof-of-concept work of the variance-based sensitivity analysis

method, which was introduced in Section 3.3 is presented. This study utilized

newly measured β -decay half-lives (T1/2) and β -delayed one-neutron emission

probabilities (P1n) by the BRIKEN collaboration [225], using the radioactive iso-

tope beam produced at the RIKEN Nishina center in Japan. The BRIKEN detector

array consists of 140 3He neutron counters and at the center of the array, a double-

sided silicon strip detector array called AIDA is placed for the detection of beam

implantation and β -particles from the radioactive decays. This chapter is based on

our recent publication [93]. The experimental data analysis was performed by G.

Kiss and A. Vitéz-Sveiczer (ATOMKI, Hungary), and my role was to perform an

analysis regarding the astrophysical implications of the new experimental data in

the context of the rapid neutron capture process (r-process), which is described in

detail below.

In this experiment, T1/2 and P1n values of 28 neutron-rich rare-earth isotopes

(159–166Pm, 161–168Sm, 165–170Eu, and 167–172Gd) were measured. The isotopes

were produced at the Radioactive Isotope Beam Factory (RIBF) at RIKEN Nishina

Center by impinging a 345 MeV / nucleon 238U primary beam with an intensity of

60 pnA onto a 5 mm-thick 9Be target. The fragments of the primary beam were

selected and identified by the BigRIPS fragment separator [226].
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Out of the 28 half-lives, 9 half-lives were determined for the first time and all

the P1n values were newly determined. Figures 5.1 and 5.2 summarize the experi-

mental results, compared to the previous experimental data and various theoretical

predictions.

Figure 5.1: Half-lives determined in this experiment (black squares), in com-
parison to previous measurements (red circles) from Ref.[227], as well
as theoretical predictions of different models: FRDM+QRPA+HF [98],
RQRPA (labeled as RHB+QRPA) [100], and pnFAM [99]. Figure taken
from our publication Ref. [93].

5.1 Astrophysical implication of the experimental results

5.1.1 Method

With respect to the current experimental values and their uncertainties, we perform

an uncertainty quantification and a variance-based sensitivity analysis [180] (Sec-
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Figure 5.2: β -delayed one-neutron emission probabilities (P1n) determined
in this experiment (black squares), in comparison to theoretical predic-
tions of different models: FRDM+QRPA+HF [98], RQRPA [100], and
RQRPA+HF (labeled as pn-RQRPA+HF) [228]. Figure taken from our
publication Ref. [93].

tion 3.3) of the calculated r-process abundance pattern. As discussed in detail be-

low, by treating the physical quantities of interest, namely T1/2 and P1n, as variable

inputs of the nuclear reaction network calculation, we can assess their influence on

the calculated abundance patterns.

Uncertainty quantification

Uncertainty quantification reveals how the uncertainties of the nuclear observables

collectively translate to the uncertainty of the calculated abundance pattern. This

has been performed in various previous studies [82, 196, 229], mainly using theo-

retical values for a wide range of nuclides and focusing on the uncertainty of the

overall abundance pattern.
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Table 5.1. Half-lives (T1/2) and β -delayed neutron emission probabilities (P1n)
measured in the present work. Table taken from our publication Ref. [93].

Isotope T1/2 P1n Isotope T1/2 P1n
[ms] [%] [ms] [%]

159Pm 1648+43
−42 ≤ 0.6 167Sm 334+83

−78 ≤ 16
160Pm∗ 874+16

−12 ≤ 0.1 168Sm 353+210
−164 ≤ 21

161Pm 724+20
−12 1.09+0.11

−0.11
165Eu∗ 2163+139

−120 ≤ 0.4
162Pm 467+38

−18 1.79+0.19
−0.19

166Eu 1277+100
−145 0.63+0.17

−0.17
163Pm∗ 362+42

−30 5.00+0.73
−0.74

167Eu 852+76
−54 1.95+0.38

−0.38
164Pm 280+38

−33 6.18+1.80
−1.79

168Eu 440+48
−47 3.95+0.83

−0.83
165Pm 297+111

−101 13.26+6.23
−6.15

169Eu 389+92
−88 14.62+5.82

−5.09
166Pm 228+131

−112 ≤ 52 170Eu 197+74
−71 ≤ 24

161Sm 4349+425
−441 ≤ 2.7 167Gd 2269+1817

−988 ≤ 12
162Sm 3369+200

−303 ≤ 1.0 168Gd 2947+467
−387 ≤ 0.8

163Sm 1744+180
−204 ≤ 0.1 169Gd∗ 926+95

−102 ≤ 0.7
164Sm 1422+54

−59 ≤ 0.7 170Gd 675+94
−75 ≤ 3

165Sm 592+51
−55 1.36+0.40

−0.40
171Gd 392+145

−136 ≤ 10
166Sm 396+56

−63 4.38+1.25
−1.38

172Gd 163+113
−99 ≤ 50

∗The half-lives may include both ground-state and isomeric state decays.

In this work, we perform an uncertainty quantification with the experimental

uncertainties of the half-lives and β -delayed one-neutron emission probabilities

(P1n), specifically focusing on the rare-earth peak (REP). This assesses the uncer-

tainty of the abundance pattern induced by the current experimental uncertainties.

If the size of the induced uncertainty is significantly larger than that of the measured

solar abundance, it generally means that a more precise measurement is necessary

within the set of nuclides. Since there are other sources of uncertainties from nu-

clear physics inputs, as well as astrophysical inputs, this uncertainty provides a

lower limit.

We further compare these uncertainties of the calculated abundance patterns

obtained from this experiment with the ones calculated with the previously mea-
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sured β−-decay half-lives taken from [227], supplemented with the theoretical val-

ues from FRDM2012+QRPA [98] where previous experimental values do not exist.

In this comparison, however, the uncertainties of P1n from the current measurement

have been used for both calculations. This is because it is difficult to assume rea-

sonable uncertainties on theoretical values and, as will be shown in Section 5.1.2,

the largest contribution to the uncertainties come from the half-lives. Therefore,

this comparison quantifies the impact of the current measurements on the β−-decay

half-lives.

Variance-based sensitivity analysis

The aim of this work is to apply the analysis method to the calculation of r-process

abundances in the REP region, with the nuclear reaction network calculation being

our model, T1/2 and P1n values from the current experiment being the inputs to be

varied, and the abundances as a function of mass number in the REP region being

the output of the model. In this study, we compute the first-order sensitivity indices

S(1) (see Section 3.3), which account for the contributions of the uncertainty of in-

dividual variables to the uncertainty (variance) of the output. Since the sensitivity

metric is based on the variance, i.e. the size of variation in the output in response

to the variation of inputs, it does not rely on any assumption of the type of relation-

ship, e.g. monotonic or linear. This allows for a straightforward interpretation of

the sensitivity metric and identification of key nuclides and their nuclear properties

that are responsible for the uncertainty of the calculated abundance pattern.

Furthermore, this framework allows for taking into account the dependence of

the output on multiple input variables (second- or higher-order sensitivity indices),

if they exist, which has not been addressed in the previous applied sensitivity anal-

ysis methods.

Generation of Monte Carlo samples

The values of the first-order sensitivity indices S(1) are estimated from the samples

generated from Sobol quasi-random sequences. Sobol sequences are determinis-

tic and designed to fill variable spaces more evenly and efficiently than ordinary

pseudo-random sequences, which allow for a faster convergence of Monte Carlo
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estimators (Eq. 3.16).

In both of the tasks of uncertainty quantification and sensitivity analysis, we

use normal (Gaussian) distributions as distributions of most of the experimental

values, where the mean values are equal to the nominal experimental values and

the standard deviations are equal to the experimental uncertainties. In case of asym-

metric uncertainties, the larger values have been used. Picking larger uncertainties

to symmetrize the Gaussian distributions greatly simplifies the analysis while pro-

viding a conservative estimate of the uncertainty of the abundance pattern. When

only upper limits are provided for P1n values, it is assumed that they follow uniform

distributions between 0 % and the upper limit values (accordingly, if we had lower

limits the distribution would go from the lower limit value up to 100%).

For the uncertainties of the FRDM2012+QRPA half-lives used in the compar-

ison described in Section 5.1.1, the size is assumed to be a factor of 10 around

the predicted decay rates, following the uncertainty analysis in Ref. [82]. Any

non-physical samples, such as negative half-lives or P1n values, are discarded.

1000 samples of each of T1/2 and P1n value have been generated and used as in-

puts for nuclear reaction network calculations to obtain the nucleosynthesis yields

of the r-process. The nuclear reaction network code PRISM [81] has been used

for the calculations. We employ two astrophysical trajectories (temperature and

density evolution): a dynamical ejecta from a neutron-star merger and a neutrino-

driven wind. Both scenarios have been extensively studied as some of the most

promising sites of the r-process.

The neutron-star merger trajectory is from Ref. [230] based on the simulations

by Refs. [231] and [232], which takes into account the self-heating based on the

FRDM2012 mass model [119].

The hot neutrino-driven wind trajectory (hereafter referred to as hot wind) cor-

responds to a hot r-process condition with low entropy of S=30 kB, an initial elec-

tron fraction of Ye = 0.20, and an expansion timescale of 70 ms based on Ref. [233],

which is discussed in more detail in Ref. [82]. In the calculations, it is assumed

that the emitted neutrons following the β -decays instantly thermalize and reach

energies equal to the average energy of the neutrons in the environment, which is

determined by the temperature of the astrophysical site.

Rates of β−-decays, β−-delayed neutron emission probabilities, neutron cap-
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ture rates, fission rates and yields, etc., included in the network are identical to

the ones in Ref. [234]. Whenever available, the theoretical rates and reaction Q-

values have been replaced by the experimental values reported in AME2016 and

Nubase2016 [235, 236]. For the nuclides measured in this study (Table 5.1), the

current experimental values replaced any of the existing β−-decay rates (T1/2) and

β -delayed one-neutron emission probabilities (P1n).

5.1.2 Results

Figure 5.3 shows the 2σ intervals of the abundances calculated with the samples

drawn from the distributions discussed above, allowing variation of the half-lives

and P1n values of 159-166Pm, 161-168Sm, 165-170Eu, and 167-172Gd, for both of the

employed astrophysical trajectories. Derived isotopic solar r-process abundances

[26, 27] are also shown for reference. The averages of the abundance patterns

have been scaled at A = 157 to match the calculation of the neutron star merger

scenario. It is common practice to scale either calculated or solar abundance pat-

terns to make a comparison, as they are both relative abundances. In this work,

we choose to scale all the abundances to match A = 157, which is the base of the

REP on the low mass side. This allows for a clear comparison of the height of

the peaks of the calculated and the solar abundance patterns. While the calcula-

tions do not provide a great match to the solar abundances, the idea of this work

is to learn about the dependence of calculated abundances in the REP region on

the varied nuclear physics inputs, using some of the representative astrophysical

conditions. In order to identify the cause of the significant discrepancies between

the calculated abundance patterns and the solar abundance pattern, it is necessary

to quantify the abundance uncertainties due to the assumptions and approximations

in the astrophysical trajectories, in addition to the quantification of nuclear physics

uncertainties.

Comparisons between the 2σ uncertainty bands calculated from the current

experimental uncertainties (solid bands), and the uncertainty bands calculated with

the previous experimental half-lives taken from [227], supplemented with the the-

oretical half-lives from FRDM2012+QRPA [98] (hatched band), are shown in Fig-

ure 5.4. As stated above, the uncertainty of the theoretical values are assumed to
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Figure 5.3: Calculated relative r-process abundance pattern for the neutron
star merger scenario (blue line) and the hot wind scenario (orange). The
band represents the 2σ interval propagated from the uncertainties of the
current experimental results. The green boxes and red triangles indicate
the derived relative solar r-process abundance pattern from [26] and
[27]. The abundance patterns are scaled to match the mean value of the
calculated abundance in the neutron star merger scenario at A = 157.

be a factor of 10, following the analysis by [82]. Both calculations use the current

experimental uncertainties of the P1n values for the β -delayed neutron emission

probabilities, therefore, this comparison quantifies the impact of the current exper-

imental half-lives.

In the neutron star merger scenario (Figure 5.4, top panel), the current experi-

ment reduces the uncertainties for the mass numbers A = 162-176. The reduction

is especially significant for A = 162-166 and 169-172. For the hot wind scenario

(Figure 5.4, bottom panel), while the reduction in uncertainty is not as significant,

the effect of the new data can be seen at A = 165-167 and A = 169-170.
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Figure 5.4: Comparisons of 2σ uncertainty bands of the calculated abun-
dance patterns between the current experimental uncertainties of
T1/2 and P1n values (solid bands), and the uncertainties of T1/2
from Ref. [227] supplemented with the theoretical half-lives from
FRDM2012+QRPA [98] where previous experimental values do not ex-
ist, with the uncertainties of P1n values also from the current experiment
(hatched bands). The top panel corresponds to the neutron star merger
scenario and the bottom panel corresponds to the hot wind scenario. In
both cases, all the abundance patterns are scaled to match the mean of
the abundance in the neutron star merger scenario at A = 157. See text
for details.
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In both trajectories, Figures 5.3 and 5.4 show that the current experimental data

still have significant effect on the uncertainties of the right (heavier) wing of the

REP. Therefore, in our following analysis, we will mainly focus on the abundances

of the mass numbers A= 168-173 and identify the sources of the uncertainty within

the current set of experimental values. Since this analysis accounts only for the un-

certainty of the current measurements, it should be noted that the size of uncertainty

on the abundance pattern represents only a lower limit.

Figure 5.5 shows a snapshot the r-process path (at t= 0.732 s) of the neutron

star merger scenario. The location of the isotopes of interest in the chart of nuclides

relative to the path suggests that they are synthesized completely during freeze-out

when the material decays back to stability. Therefore, analyzing how the decay

properties such as half-lives and P1n affect the abundances around the rare-earth

peak through the variance-based sensitivity analysis may provide further insights

into the freeze-out of the r-process. Since most of the analyses below will be

common for both trajectories, i.e. neutron star merger and hot wind, we primarily

focus on the neutron star merger scenario.

First order sensitivity indices

First-order sensitivity indices S(1) estimate the amount of contribution of each vari-

able (T1/2 and P1n values, in this study) to the variance of the abundances. Ta-

bles 5.2 and 5.3 show the nuclides with the largest S(1) values, which means the

largest contribution to the abundance variances, for A = 168-173, for the neutron

star merger and hot wind trajectory, respectively.

From the Tables 5.2 and 5.3, it can be seen that samarium (Z=62) and gadolin-

ium isotopes (Z=64) account for most of the abundance variances for these mass

numbers in both astrophysical scenarios. For example, in the case of the neutron

star merger scenario, based on the values of the sensitivity indices, it can be con-

cluded that the half-lives of 168Sm and 168Gd account for 60.9 (± 6.6)% and 24.3

(± 4.6)% of the variance (propagated uncertainty) of the abundances at A = 168,

respectively. The effect of the half-life of 168Sm propagates also to the uncertain-

ties of abundances for A = 172 and 173, which is discussed in more detail below.

On the other hand, the influence of the P1n values is relatively small in this astro-
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Figure 5.5: A snapshot of the r-process path in the neutron star merger sce-
nario at t=0.732 s. The purple squares show the isotopes whose half-
lives and β -delayed neutron emission probabilities have been measured
in this work. The solid gray boxes indicate the isotopes with nega-
tive one-neutron separation energies (S1n < 0) in the FRDM2012 mass
model [119]. The inset shows the temperature and density profile of the
trajectory.

physical scenario.

In the case of the hot wind scenario, on average, a larger contribution from the

uncertainty of the P1n values has been observed (Table 5.3). This is likely because

the environment is less neutron-rich compared to the neutron star merger scenario

[82], therefore, β -delayed neutron emissions become a more important source of

neutrons, especially in the late time of the r-process.

As a general trend, the uncertainties of half-lives have the largest effect on the

abundances for the corresponding mass number of the isotope, and a smaller effect

for larger mass numbers. As one might expect, one-neutron emission probabilities

(P1n) can have influence on the abundance for the mass number A− 1, where A is

the mass number of the parent nucleus. For example the uncertainty of P1n(
165Pm)
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Table 5.2: Table of nuclear input variables that have a significant contribution to the uncertainties of the
calculated abundances for A = 168-173 in the neutron star merger scenario. Columns 4–9 show the first-
order sensitivity indices (S(1)), which represent the contribution of individual variables to the abundance
uncertainty, with 95 % confidence intervals. The maximum relative uncertainty (third column) is the
ratio of the size of the larger one of upper or lower experimental uncertainty to the nominal value,
in percentage. (100) indicates that the P1n value only has an upper limit and the size of its relative
uncertainty is 100%, according to the convention in [237]. Long dashes (—) indicate that the nominal
value of 100×S(1) is smaller than 0.5 [%]. Values larger than 10 [%] are highlighted in boldface.

Max. relative 100×S(1) (95% C.I.) [%]

Nuclide Variable uncertainty [%] A = 168 169 170 171 172 173
165Pm T1/2 37.4 1.9 (± 1.1) 3.2 (± 1.5) 4.9 (± 1.9) 2.7 (± 1.5) 0.8 (± 0.9) —
166Pm T1/2 57.5 — — 0.5 (± 0.6) 0.7 (± 0.7) — —
166Sm T1/2 15.9 — 1.7 (± 1.2) 4.8 (± 1.9) 3.8 (± 1.7) 1.5 (± 1.0) 0.8 (± 0.7)
167Sm T1/2 24.9 0.6 (± 0.6) — — 1.1 (± 0.9) 0.9 (± 0.8) 0.6 (± 0.7)
168Sm T1/2 59.5 60.9 (± 6.6) 55.1 (± 7.1) 14.6 (± 4.4) 32.6 (± 5.0) 43.5 (± 5.5) 41.6 (± 5.6)
168Eu T1/2 10.9 0.5 (± 0.7) — — — — —
169Eu T1/2 23.7 — 3.6 (± 1.4) — — 0.9 (± 0.8) 0.7 (± 0.7)
170Eu T1/2 37.6 — — 0.6 (± 0.9) — — —
167Gd T1/2 80.1 6.1 (± 2.5) 26.6 (± 4.3) 34.2 (± 6.2) 14.6 (± 3.9) 3.5 (± 1.8) 1.2 (± 1.1)
168Gd T1/2 15.8 24.3 (± 4.6) 8.3 (± 2.7) 8.1 (± 2.8) 2.2 (± 1.5) — —
169Gd T1/2 11.0 — 0.8 (± 0.8) — — — —
170Gd T1/2 13.9 — — 25.2 (± 4.7) 1.4 (± 1.2) 2.6 (± 1.4) 3.5 (± 1.7)
171Gd T1/2 37.0 — — — 20.5 (± 4.1) 4.6 (± 2.0) 1.0 (± 1.1)
172Gd T1/2 69.3 — — — 3.6 (± 2.1) 35.7 (± 5.1) 49.3 (± 5.9)
165Pm P1n 47.0 — 0.6 (± 0.6) 0.7 (± 0.5) — — —
168Sm P1n (100) — — — 0.8 (± 0.8) 0.6 (± 0.6) —
169Eu P1n 39.8 5.4 (± 2.1) — 3.7 (± 1.6) 3.6 (± 1.7) 1.3 (± 1.0) 0.6 (± 0.7)
170Eu P1n (100) — 0.5 (± 0.6) — — — —
172Gd P1n (100) — — — 5.5 (± 2.0) 3.2 (± 1.5) 0.6 (± 0.7)

S(1)(T1/2) total: 94.9 (± 8.6) 100.1 (± 9.2) 93.9 (± 9.9) 84.0 (± 8.5) 95.1 (± 8.3) 99.7 (± 8.6)

S(1)(P1n) total: 5.9 (± 2.3) 1.1 (± 1.1) 5.6 (± 2.0) 11.0 (± 2.9) 5.7 (± 2.0) 2.0 (± 1.1)

S(1) total: 100.9 (± 8.9) 101.3 (± 9.2) 99.5 (± 10.1) 95.0 (± 9.0) 100.7 (± 8.6) 101.6 (± 8.6)
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Table 5.3: Table of nuclear physics inputs that have a significant contribution to the uncertainties of calcu-
lated abundances for A = 168-173 in the hot wind scenario. Columns 4–9 show the first-order sensitivity
indices (S(1)), which represent the contribution of individual variables to the abundance uncertainty, with
95 % confidence intervals. The maximum relative uncertainty (third column) is the ratio of the size of
the larger one of upper or lower experimental uncertainty to the nominal value, in percentage. (100) indi-
cates that the P1n value only has an upper limit and the size of its relative uncertainty is 100%, according
to the convention in [237]. Long dashes (—) indicate that the nominal value of 100×S(1) is smaller than
0.5 [%]. Values larger than 10 [%] are highlighted in boldface.

Max. relative 100×S(1) (95% C.I.) [%]
Nuclide Variable uncertainty [%] A = 168 169 170 171 172 173

165Pm T1/2 37.4 — 0.5 (± 0.6) — — — —
168Sm T1/2 59.5 96.1 (± 14.1) 71.4 (± 7.0) 95.2 (± 8.2) 56.8 (± 7.1) 44.6 (± 7.2) 80.7 (± 13.3)
169Eu T1/2 23.7 — 2.6 (± 1.4) 0.5 (± 0.6) — — —
167Gd T1/2 80.1 — 0.6 (± 0.6) — — — —
168Gd T1/2 15.8 — 2.8 (± 1.5) — — — —
170Gd T1/2 13.9 — — 1.1 (± 0.9) 0.7 (± 0.8) — —
171Gd T1/2 37.0 — — — 6.9 (± 2.6) 0.5 (± 0.7) 1.8 (± 1.2)
172Gd T1/2 69.3 — — — 9.9 (± 3.2) 53.3 (± 7.6) 11.1 (± 3.3)
168Sm P1n (100) 2.0 (± 1.5) 3.5 (± 1.7) 0.5 (± 0.6) — — —
169Eu P1n 39.8 1.0 (± 0.9) 10.8 (± 2.9) 0.5 (± 0.7) — — —
170Eu P1n (100) — 6.7 (± 2.3) 2.1 (± 1.2) — — —
172Gd P1n (100) — — — 25.2 (± 4.6) 2.6 (± 1.7) 5.5 (± 2.1)

S(1)(T1/2) total: 97.0 (± 14.1) 78.9 (± 7.4) 97.4 (± 8.3) 74.6 (± 8.2) 98.6 (± 10.5) 93.8 (± 13.7)

S(1)(P1n) total: 3.0 (± 1.8) 21.5 (± 4.1) 3.7 (± 1.6) 25.9 (± 4.7) 2.8 (± 1.7) 5.6 (± 2.1)

S(1) total: 100.0 (± 14.3) 100.5 (± 8.5) 101.1 (± 8.4) 100.5 (± 9.5) 101.3 (± 10.7) 99.4 (± 13.9)

accounts for 59.7% of the variance for A = 164 in the neutron star merger scenario.

Effect of the size of uncertainty

Maximum relative uncertainties of each input variable, which we define to be the

size of the ratio of the larger one of upper or lower uncertainty to the nominal

value, are also shown in the third column of Tables 5.2 and 5.3. The half-lives of
168Sm, 167Gd, and 172Gd, which are some of the most influential in the neutron star

merger scenario within the current data set, all have relatively large uncertainties of

60-80 %. However, a large relative uncertainty does not necessarily mean a large

influence on the abundance uncertainty, as can be seen from the Tables 5.2 and 5.3.

For example, the half-life of 172Gd, whose relative uncertainty is larger than that of
168Sm, has a similar or smaller contribution to the abundance at A = 172 and 173
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than 168Sm, which may also suggest that the mechanisms of the abundance pattern

formation are different between inside the rare-earth peak (A = 155-170) and the

heavy-mass wing of the peak (A > 170).

In order to investigate the effect of the size of input uncertainty on the sensitiv-

ity indices, we conduct a test under the neutron star merger condition. In this test,

the size of uncertainty of the half-life of 168Sm, which has been identified as one of

the most influential inputs in both of the astrophysical trajectories, is artificially de-

creased to the relative uncertainty of 20 % from the current value of 59.5 %, while

the mean value is kept the same. Note that this does not consider the possibility

that the true mean value of the half-life can lie outside the currently considered

20 % relative uncertainty.

In the neutron star merger scenario, the half-life of 168Sm has first order sen-

sitivity indices of S(1)= 60.9 %, 43.5 %, and 41.6 % for A = 168, 172, and 173,

respectively (Table 5.2) when the relative uncertainty is 59.5 %. This means that

if the half-life could be fixed without any uncertainty, we would be able to reduce

the uncertainty of the calculated abundances by 60.9 %, 43.5 %, and 41.6 % for

A = 168, 172, and 173, respectively. Since experimentally fixing the half-life or

any other observables without uncertainty is impossible, therefore, it is worthwhile

to investigate the effect of reducing the uncertainty.

Figure 5.6 shows a comparison between the calculated uncertainty (variance)

of the abundance pattern using the original experimental uncertainty (light blue)

and when the relative uncertainty of the half-life of 168Sm is reduced to 20 % from

59.5 % (dark blue), in the neutron star merger scenario. As predicted from the

sensitivity indices, the uncertainties have been significantly reduced for A = 168

and 169, and to a smaller degree for the larger mass numbers.

Table 5.4 shows the sensitivity indices with the reduced 168Sm half-life uncer-

tainty. While the value of 100×S(1) of the half-life of 168Sm for A = 168 decreased

to 17.6 % from 60.9 % (Table 5.2), it is still a significant contribution to the output

variances. It is also worth pointing out that the half-life of 168Gd now has a larger

contribution to the variance at A = 168, although its relative uncertainty is only

15.8 %. For the mass numbers A = 172 and 173, now the half-life of 172Gd has

the dominant contributions. At the same time, it can be seen from the table that

the sensitivity has been more fragmented across the input variables compared to
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Figure 5.6: Calculated relative r-process abundance pattern for the neutron
star merger scenario (blue line). The green and red boxes are the derived
relative solar r-process abundance pattern from [26, 27]. The band in
light blue color represents the 2σ interval propagated from the uncer-
tainties of the original experimental results. The band in dark blue color
represents the 2σ interval when the relative uncertainty of the half-life
of 168Sm is artificially reduced to 20 %, with the same mean value. All
the abundance patterns are scaled to match the mean of the calculated
abundances at A = 157 for the neutron star merger scenario.

the case shown in Table 5.2, elevating the relative sensitivity of the half-lives of the

gadolinium isotopes.

Therefore, the half-lives of gadolinium isotopes may be considered significant

sources of uncertainty of the calculated abundances in addition to the 168Sm half-

life, within the set of isotopes of interest in the current study.
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Table 5.4: Table of nuclear input variables that have a significant contribution to the uncertainties of the cal-
culated abundances for A = 168-173 for the neutron star merger scenario, with the relative uncertainty
of the half-life of 168Sm reduced to 20.0 %. Columns 4–8 show the first-order sensitivity indices (S(1)),
which represent the contribution of individual variables to the abundance uncertainty, with 95 % confi-
dence intervals. The maximum relative uncertainty (third column) is the ratio of the size of the larger
one of upper or lower experimental uncertainty to the nominal value, in percentage. (100) indicates that
the P1n value only has an upper limit and the size of its relative uncertainty is 100%, according to the
convention in [237]. 20.0* for the half-life of 168Sm denotes that the relative uncertainty is artificially
reduced to 20.0 %. Long dashes (—) indicate that the nominal value of 100× S(1) is smaller than 0.5
[%]. Values larger than 10 [%] are highlighted in boldface.

Max. relative 100×S(1) (95% C.I.) [%]
Nuclide Variable uncertainty [%] A = 168 169 170 171 172 173

165Pm T1/2 37.4 3.5 (± 1.5) 5.9 (± 2.0) 5.4 (± 2.2) 3.6 (± 1.8) 1.3 (± 1.1) 0.6 (± 0.7)
166Pm T1/2 57.5 — 0.6 (± 0.4) 0.5 (± 0.6) 0.8 (± 0.7) 0.5 (± 0.6) —
166Sm T1/2 15.9 0.8 (± 0.7) 3.1 (± 1.6) 5.2 (± 2.0) 4.9 (± 2.0) 2.2 (± 1.2) 1.1 (± 0.9)
167Sm T1/2 24.9 1.4 (± 1.0) 0.5 (± 0.6) — 1.5 (± 1.1) 1.5 (± 1.1) 1.0 (± 0.9)
168Sm T1/2 20.0* 17.6 (± 3.8) 13.0 (± 3.3) 1.0 (± 0.9) 9.4 (± 2.8) 12.1 (± 3.1) 9.7 (± 2.8)
167Eu T1/2 8.9 — 0.5 (± 0.6) — — — —
169Eu T1/2 23.7 — 7.1 (± 2.1) — 0.6 (± 0.7) 1.4 (± 1.1) 1.0 (± 0.9)
170Eu T1/2 37.6 — — 0.8 (± 0.9) — — —
167Gd T1/2 80.1 12.5 (± 4.3) 50.8 (± 6.4) 39.7 (± 6.8) 19.8 (± 4.9) 5.4 (± 2.4) 1.8 (± 1.4)
168Gd T1/2 15.8 50.6 (± 6.9) 16.0 (± 3.5) 9.5 (± 2.9) 3.0 (± 1.7) 0.6 (± 0.8) —
169Gd T1/2 11.0 — 1.6 (± 1.1) — — — —
170Gd T1/2 13.9 — — 29.2 (± 5.2) 1.9 (± 1.4) 4.1 (± 1.8) 5.5 (± 2.1)
171Gd T1/2 37.0 — — — 28.0 (± 4.8) 7.0 (± 2.7) 1.5 (± 1.5)
172Gd T1/2 69.3 — — — 4.8 (± 2.5) 54.4 (± 6.1) 73.8 (± 6.9)
165Pm P1n 47.0 — 1.2 (± 0.8) 0.9 (± 0.5) 0.6 (± 0.4) — —
168Sm P1n (100) — — 0.6 (± 0.8) 1.4 (± 1.0) 1.1 (± 0.7) 0.7 (± 0.6)
169Eu P1n 39.8 11.3 (± 3.0) — 4.5 (± 1.8) 5.0 (± 2.1) 2.1 (± 1.3) 1.0 (± 0.8)
172Gd P1n (100) — — — 7.4 (± 2.4) 4.8 (± 1.8) 0.9 (± 0.8)

Impact of 168Sm half-life during the freeze-out

By inspecting the samples generated for the variance-based sensitivity analysis,

one may learn how the abundances depend on the nuclear physics inputs. We

again take the half-life of 168Sm as an example to demonstrate this, focusing on the

neutron star merger scenario. Figure 5.7 shows the correlations of abundances for

several mass numbers with the half-life of 168Sm. Comparing the panels (a) and

(b) of the figure, it can be seen that the abundance has a clear correlation with the
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Figure 5.7: Correlation of abundances for A = 167,168,172, and 173 with
the half-life of 168Sm, as well as the first-order sensitivity indices (S(1)),
in the neutron star merger scenario. The correlation is sharp for a large
sensitivity index (e.g. panel (b)), and the distribution is blurred for a
small sensitivity index (e.g. panel (a)).

half-life when the sensitivity index is large.

The mechanism of this correlation becomes clear by analyzing the abundance

flows due to β -decay and neutron capture. Figure 5.8 shows the relative isotopic

abundances as functions of time (upper panels), the abundance flows (middle pan-

els) and their total contributions, i.e. integrals of the abundance flows over time

(lower panels) due to neutron capture and β -decay (labeled as (n,γ) and β− in

the figure, respectively) for 168Sm, 168Eu, and 168Gd. They are separated into two

cases: the sampled half-life of 168Sm is larger than 0.55 [s] (Case 1) or smaller than

0.20 [s] (Case 2), for the neutron star merger scenario. The red dashed lines in the

upper and middle panels represent the relative abundance of neutrons as a function
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of time.
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Figure 5.8: The top panels (a)–(c) show the abundance evolution of the iso-
topes 168Sm, 168Eu, and 168Gd as functions of time in the neutron star
merger scenario. The vertically hatched yellow bands correspond to the
case where the half-life of 168Sm is greater than 0.55 [s], and the solid
gray bands correspond to the half-life smaller than 0.20 [s]. The middle
panels (d)–(f) show the abundance flows of β−-decay (labeled as β−,
hatched with “//”) and neutron capture (labeled as (n,γ), solid bands) as
functions of time, for 168Sm, 168Eu, and 168Gd, respectively, extracted
from the generated samples. The red dash-dotted line is the neutron
abundance as a function of time, which shows that these isotopes are
synthesized after the neutron abundance significantly drops (freeze-out).
The bottom panels (g)–(i) show the integrals of the abundance flows,
i.e., the areas below the solid and dotted lines in the top panels. In all
the panels, the solid outlines represent Case 1: T1/2(168Sm) > 0.55 [s]
and the dashed outlines represent Case 2: T1/2(168Sm) < 0.20 [s].
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It shows that these isotopes are synthesized after the neutron abundance drops

significantly (freeze-out). The total contributions of the flows of (n,γ) and β− are

also shown in Figure 5.9 for the isotopic chains of Sm, Eu, and Gd up to mass

number A = 172. In the figure, the width of the arrows correspond to the total

amount of (n,γ) and β−-decay flows. Contributions from the reverse reaction of

neutron capture (i.e. photodissociation) are negligible for all cases. Flows due to

β -delayed neutron emission are also not shown since they only have contributions

up to a few % on average, in this neutron star mergers scenario (Table 5.2).

2

2.5 × 10−3
ȲFlow(β−) = 3.4 × 10−3

ȲFlow ((n, γ)) = 8.2 × 10−4

8.8 × 10−4

5.1 × 10−4
4.4 × 10−4

2.5 × 10−4

3.3 × 10−4

(a)

(b)

(c)

Figure 5.9: The arrows show the total abundance flows (the same quantity as
the panels (g)–(i) in Figure 5.8), averaged over the generated samples,
in the neutron star merger scenario. The red color corresponds to the
case where the half-life of 168Sm is smaller than 0.20 [s] and blue color
larger than 0.55 [s]. The panels (b) and (c) focus on the flows from
172Gd and 168Gd, respectively. The propagated influence of the half-life
of 168Sm is visible, which results in affecting the final abundances.

Panel (d) of Figure 5.8 shows that the half-life of 168Sm has a significant effect

on the abundance flow from the isotope due to β -decay, while leaving the flow

due to neutron capture relatively unaffected. The integrated abundance flow from
168Sm shown in panel (g) indicates that the flow due to β -decay is increased when

the half-life of 168Sm is small. The increased amount of 168Eu is quickly consumed

by neutron captures, as shown in pink color in the panels (e) and (h). This, in turn,

means that the longer half-life of 168Sm provides a smaller amount of 168Eu that

can be converted to larger masses through neutron capture, therefore resulting in

the smaller abundances for higher mass numbers, as shown in panels (c) and (d)

of Figure 5.7. This effect can also be seen in panels (a) and (b) of Figure 5.9 and
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explains why the abundances for A = 172 or 173 decrease as the half-life of 168Sm

increases.

This means that the half-life of 168Sm has a significant influence on the neutron

capture flow in the Eu isotopic chain, since 168Sm is synthesized almost at the same

time as the neutron abundance starts to drop (panel (a), Figure 5.8), meaning that

some neutrons are still available for neutron capture, while photodissociation is no

longer active. In panels (i) of Figure 5.8 and (b) of Figure 5.9, it can be seen that

the flow from 168Gd due to β -decay (hatched histogram in blue color) is larger

when the half-life of 168Sm is longer. This is because the longer half-life of 168Sm

extends the flow of β -decay of 168Eu into the late time of the r-process where

neutron capture is no longer significantly active, thus leaving more material at the

same isobaric mass chain by avoiding being consumed by neutron capture.

Overall, the half-life of 168Sm affects not only the flow of β -decay of 168Sm

but also the flow of neutron capture in the Eu isotopic chain up to mass number

A = 172, 173 and heavier. This is also the case in the Gd isotopic chain, however,

to a lesser extent. The balance between the β -decays and the neutron captures de-

termine the final abundance pattern. Therefore, in order to properly account for the

uncertainties of the abundance pattern from the nuclear physics inputs, uncertain-

ties of neutron capture rates have to be included as well. This will be addressed in

future work.

5.2 Summary and Conclusions
The β -decay properties of 28 neutron-rich Pm, Sm, Eu, and Gd isotopes were

measured at RIKEN Nishina Center. Using the BRIKEN neutron counter array, β -

delayed neutron emission probabilities were derived for the first time in this mass

region. The existing half-life database has been significantly extended towards

more neutron-rich species.

Nuclear reaction network calculations for the r-process employing a neutron

star merger and a hot wind scenario have been carried out. Uncertainty quantifi-

cation through the network calculations and comparison with the previous mea-

surement supplemented with the assumed theoretical uncertainties showed that the

currently measured half-lives reduce the propagated uncertainty (variance) of the
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calculated abundances of the heavier wing of the REP at A = 165–173.

A new variance-based sensitivity analysis method has been introduced to iden-

tify nuclear physics inputs of importance within the current experimental uncertain-

ties. The analysis has been performed using the characteristic abundance pattern

of the rare-earth peak region.

The results of the analysis indicate that only a handful of variables account for

nearly all the uncertainty (variance) of the abundance pattern. The results also sug-

gest that the contributions of the uncertainty of the currently measured β -delayed

one-neutron emission probabilities (P1n) are significantly smaller than the half-lives

in the case of neutron star mergers. The uncertainties of the P1n values have larger

contributions to the abundance pattern in the hot wind scenario, most likely due to

the less neutron-rich environment compared to the neutron star merger scenario.

The half-life of 168Sm, which has been measured for the first time in the current

experiment, shows a significant influence on the high-mass tail of the rare-earth

peak (A = 168-173) in both astrophysical scenarios. The calculated sensitivity

indices and the numerical experiment on artificially reducing the uncertainty of

the half-life of 168Sm also indicate that the half-lives of 167-172Gd are significant

sources of the uncertainty on the calculated abundance patterns. The analysis of the

abundance flows due to neutron captures and β -decays in the neutron star merger

scenario revealed that when the time scales of the β -decays of 168Sm and neutron

captures are comparable, the material can be transferred to higher masses such as

A = 172 and 173 through chains of neutron capture mainly within the Eu isotopic

chain.

The large sensitivity of the abundances to the half-life of 168Sm is most likely

due to 168Sm being synthesized at the beginning of the r-process freeze-out when

some neutrons are still available for neutron capture. This sensitivity analysis

method thus provides a detailed view of how the flows of material in the r-process

are affected by the nuclear physics inputs, in addition to identifying influential in-

put variables.

In general, the observation that only a handful of nuclides contribute to the

uncertainty of the abundance pattern is consistent with the fact that the r-process

nuclear reaction network is a highly over-parameterized model. This means that

the number of input variables (rates, initial condition, astrophysical trajectory etc.)
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is larger than the number of output variables (abundances).

From a large number of input variables, the variance-based sensitivity anal-

ysis method can effectively identify influential variables, as demonstrated above,

by focusing on localized features of the abundance pattern and a subset of input

variables. This method relies on an assumption that the variables of interest have

“reasonable” uncertainties. If experimental uncertainties are not available, which

is currently the case for many of the nuclear observables of neutron-rich nuclei,

theoretical uncertainties would be required to identify influential input variables.

The astrophysical analysis in this work does not concern theoretical β -decay

properties of nuclei that are outside of the current experiment. However, as shown

in Fig. 5.1, some systematic discrepancies between the observed β -decay half-lives

and the theoretical predictions are present. In future work, it may be useful to cali-

brate the theoretical predictions based on the available experimental data and per-

form uncertainty quantification and a sensitivity analysis, in order to investigate the

implication on the trend of β -decay properties by the experimental data, and its ef-

fect on calculated abundance patterns. Furthermore, it will be necessary to include

more isotopes as well as more nuclear observables, such as masses and neutron

capture rates to draw more general conclusions. Possible dependence between the

observables, e.g. masses and β−-decay half-lives, should also be accounted for

within the sensitivity analysis method.
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Chapter 6

Emulation of a Nuclear Reaction
Network Calculation Code

In studies of heavy element nucleosynthesis, especially the rapid neutron capture

process (r-process), it is widely recognized that the properties of atomic nuclei,

e.g. masses, shell structures, decay half-lives, and β -delayed neutron emission

probabilities, affect the resulting abundance pattern of astrophysical nucleosynthe-

sis events (Chapter 2).

A common method to investigate the impact of nuclear physics inputs on the

r-process abundance pattern is to run a large number of nuclear reaction network

calculations while varying the relevant inputs, e.g. β -decay half-lives (T1/2), neu-

tron separation energies (Sn), neutron capture rates, etc., following the design of

the numerical experiment [82, 177–179, 196, 229]. The resulting calculated abun-

dance patterns can then be used to obtain Monte Carlo estimates of the propagated

uncertainty and sensitivity of the varied inputs. While the nuclear reaction network

calculations can be run in parallel (in a so-called embarrassingly parallel scheme)

for these purposes, the computational cost will still be significant. If one hopes to

include a large number of inputs in the Monte Carlo studies, the required number of

data points exponentially grows due to “the curse of dimensionality”. In variance-

based sensitivity analyses (e.g., Ref. [93]), the problem is even more challenging

since a “sufficient” number of unique data points is required for each of the input

variables of interest, and it is difficult, if not impossible, to know a priori how
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many data points are sufficient.

Another class of statistical analysis using nuclear reaction network calculations

is solving inverse problems, that is, to find the optimal values of nuclear physics

inputs that best reproduce the observed solar r-process abundance pattern [238,

239]. Usually the Markov chain Monte Carlo method is used for minimizing the

χ2 likelihood . The nature of Markov chains forces sequential evaluation of nuclear

reaction network calculations (Section 3.2). Since each of the calculations typically

takes a few minutes, it would take an extremely long time before sufficient statistics

is obtained. This will prevent us from verifying the convergence of the posterior

distributions and detailed analysis of them. To avoid this problem, Refs. [238, 239]

reduced the number of independent variables by parameterizing the correction to

the mass surface to reproduce the detailed features of the rare earth peak. However,

in this method, ambiguity around the probabilistic models still remains since such

constraints on the parameters should ideally be embedded in the prior distributions.

Another way to tackle the problem is to reduce the computational cost. A

common approach is to model the map between inputs and outputs with a flexible

function such as Gaussian processes (GPs) [190, 191, 191, 192]. In this work,

however, we aim to model the map between a large number of inputs and outputs,

where GPs are not suitable. Therefore, we employ artificial neural networks which

can work well with a large number of input and output dimensions [186]. We also

introduce a way to quantify the uncertainty associated with the emulator, using a

technique called “deep ensembles” (Section 3.4) [193].

6.1 Numerical Experiment

6.1.1 Emulating nuclear reaction network calculations with ANNs

The basic idea of this work is to emulate the variation in the calculated r-process

nucleosynthesis yield when varying the nuclear physics inputs of nuclei of in-

terest. The nucleosynthesis yields, or the final abundances as a function of the

mass number A are calculated by performing nuclear reaction network calcula-

tions. As discussed in Section 1.3, performing a nuclear reaction network calcula-

tion amounts to solving an initial value problem of a system of ODEs. Therefore,
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in our work, emulating the abundance calculations means modeling the function

f (·) that takes some nuclear physics quantities as inputs and maps the initial abun-

dance pattern a function of the mass number A, YYY AAA(t = t0), to the final abundance

pattern YYY AAA(t = t f ), where t f is sufficiently larger than the timescale of the r-process

nucleosynthesis, e.g. t f = 1 Gyr.

In this work, we vary one-neutron separation energies (Sn) and the β -decay

half-lives (T1/2) of the 212 nuclei in the rare-earth region shown in Figure 6.1 and

focus on their effect on the rare-earth peak (Section 2.1.2). Therefore, this model

has 424 input variables in total. The neutron separation energies and half-lives

are stored as a vector and we denote them as SSSnnn and TTT 1/2, respectively. They are

sorted first by the proton number of the nuclei and then the number of neutrons.

Therefore, the function f (·) we aim to model with an ANN is expressed as

YYY AAA(t = t f ) = f (SSSnnn,TTT 1/2). (6.1)

Note that the function f (·) is conditional on the initial abundance pattern YA(t = t0),

astrophysical trajectory, other nuclear physics inputs, and all the other inputs of the

nuclear reaction network calculations.
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Figure 6.1: The red squares in the figure shows the nuclei included as input
variables in the construction of the emulator. For comparison, the nuclei
included in the experimental databases are shown too: AME2020 [10]
and Nubase2020 [240]. Furthermore, the nuclei measured in Ref. [93]
and discussed in Chapter 5 are shown as well with the label “BRIKEN
REP”. The “CoH+FRDM12 ncap” shows where theoretical neutron
capture rates exist, which are identical to Refs. [82, 229].

6.1.2 Distributions of theoretical nuclear physics inputs

For the training of an ANN emulator, we first need to define how the input vari-

ables, namely each Sn and T1/2, are distributed. If the distributions of the variables

of interest are known from uncertainty quantification of theoretical models or from

experimental uncertainties, they may be used. However, the FRDM2012 mass

model [119] and the β -decay half-lives from FRDM+QRPA [98] used in this work

currently do not have well-defined uncertainties associated with the theoretical pre-

dictions. In this work, we employ the distributions introduced in Ref. [82]. The

size of the uncertainties for the Sn values are assumed to be ±0.5 MeV, uniformly

distributed around the FRDM values. For the β -decay half-lives (T1/2), we as-

sume that the decay rates (λ = ln(2)/T1/2) are distributed according to log-normal
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distributions:

p(λ ) =
1

λ
√

2πσ
exp
[
−(µ − ln(λ ))2

2σ2

]
, (6.2)

where µ is the theoretical rate from the FRDM+QRPA prediction and σ2 is the

variance of the underlying normal distribution, which is set to σ = ln(2) to allow

for a factor of 10 in the decay rate variation.

Practically, however, if samples drawn from the distributions of the variables

are directly used for training of the ANNs, it is likely that the tails of the distribu-

tions do not have a sufficient number of samples. This would be especially the case

for the log-normal distributions introduced above. Therefore, we replace the log-

normal distributions with log-uniform distributions that cover the ±3σ intervals of

the underlying normal distributions described by Equation 6.2:

p(ln(λ )) =


1

6σ
for ln(λ ) ∈ [µ −3σ , µ +3σ ],

0 otherwise.
(6.3)

Furthermore, to ensure that the samples evenly cover the entire variable space, we

employ Sobol sequences, which are designed to efficiently fill up multidimensional

variable spaces [180].

6.1.3 Data pre-processing and training of ANNs

In order for ANNs to achieve optimal performance, it is necessary to pre-process

the input data [241]. The main strategy for input data pre-processing in this work

is standardization, which makes the input samples distribute with zero means and

standard deviations of one. For the β -decay rates λ , standardization is performed

on a logarithmic scale. Standardization of one-neutron separation energies (Sn) is
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performed on a linear scale:

p̄(λ ) =
ln(p(λ ))− ln

(
λ th
)

σ
sample
λ

, (6.4)

p̄(Sn) =
p(Sn)−Sn

th

σ
sample
Sn

, (6.5)

where λ th and Sn
th denote the theoretical predictions of the FRDM+QRPA model [98]

and the FRDM2012 mass model [119], respectively, σ
sample
λ

and σ
sample
Sn

are the

standard deviations of the sample distributions of λ and Sn, respectively.

ANN models have been constructed using a deep learning application program-

ming interface (API) written in PYTHON called KERAS [187], which is built on

TENSORFLOW [188]. See the following section for the optimized architecture of

the ANN models.

Training has been performed using a type of stochastic gradient descent method

called AMSGRAD [242], which is a variant of one of the most commonly used

methods called ADAM [243]. Training of our ANNs has been done with 300k

samples, of which 280k have been used to optimize the weights in the ANN, and

the remaining 20k samples have been used for validation to check the performance

of the ANN for unseen input data. 10k samples have been additionally generated

after the training is complete, to be used as a test data set for performance evalua-

tion.

We consider two astrophysical scenarios: neutron star (NS) merger and hot

neutrino-driven wind, identical to the ones used in Chapter 5. See Section 5.1.1 for

details.

6.2 Results and Discussion

6.2.1 Optimized Emulator Architecture

Since no previous literature has been found on emulating nuclear reaction network

calculations with ANNs to the best of our knowledge, we employ a systematic and

automated way to explore optimal ANN architectures to establish the starting point

for the architecture optimization. For this purpose, we use a method called neural
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architecture search (NAS), implemented in a library called AUTOKERAS [244].

AUTOKERAS systematically varies the architecture and automatically records the

best performing model. The architecture search is guided by Bayesian optimiza-

tion, which allows for an efficient exploration of neural network architecture.

Based on the best performing architecture found by NAS, we further tune the

architecture by hand, mostly by changing the number of layers, the number of

filters in the convolutional layers, and the number of units in the fully connected

layers.

The results of the neural network architecture optimization by NAS and by

hand are summarized in Table 6.1. Our best performing architecture consists of

convolutional layers followed by fully connected (dense) layers. In total, including

the “Flatten” layer, which converts the stacked 2D data into a single vector, there

are 7 layers. We have found that the use of convolutional layers is essential for

achieving satisfactory performance. As discussed in Section 3.4, the advantage of

using convolutional layers is that they can take into account the correlation between

the properties of neighboring nuclei on the chart of nuclides. Rectified Linear

Unit (ReLU) [189], which is one of the most widely used activation functions, has

been used for all the layers except for the final layer. For the final layer, a linear

activation was used to allow for unbounded output values. Since the output of this

layer is simply a (weighted) linear combination of the output of the previous layer,

it is called a “linear” layer. Note that the architecture does not have any physical

interpretation. The performance of the ANN model is evaluated in detail in the

following sections.
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Table 6.1: Architecture of the neural network optimized by neural architecture search, then by
hand. See Section 6.2.1 for discussion.

Layer No. Layer type Activation Kernel size Number of filters Number of units

1 Convolutional ReLU 3 128 —

2 Convolutional ReLU 3 128 —

3 Convolutional ReLU 3 128 —

4 Convolutional ReLU 3 128 —

5 Flatten — — — —

6 Fully connected ReLU — — 1024

7 Fully connected Linear — — 31

6.2.2 Performance

Figures 6.2 and 6.3 show comparisons between the output of the original nuclear

reaction network calculations (PRISM) [81] and the output of the ANN emulator,

using the test data set consisting of 10k samples for the two astrophysical scenarios

employed. Note that the figures only show 1k samples to avoid overcrowding the

plot. Comparing the top two panels of the figures indicates that the ANN emulator

captures the general trends of the calculated abundances very well. The bottom

panel of the figures shows the deviations of the output of the emulator (logY emu
A )

from the original (PRISM) calculations (logY orig
A ), relative to the original calcula-

tions, defined as

y ≡ logY emu
A − logY orig

A

logY orig
A

. (6.6)

The σy shown in the bottom panel is the standard deviation of y, calculated using

the entire 10k test samples. For the neutron star (NS) merger scenario, the stan-

dard deviation of the value y is σy = 0.011 (1.1%). For the hot neutrino-driven

wind scenario, it is σ = 0.02 (2%). The larger variation of the abundances in

the hot neutrino-driven wind scenario is most likely because the (n, γ) ⇆ (γ, n)

equilibrium (see Section 2.1.1) is established, which is affected by the neutron
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separation energies. In the NS merger scenario, due to its extremely neutron-rich

condition, the path of the r-process nucleosynthesis is pushed all the way to the

neutron dripline, therefore the final abundance pattern is less affected by the varia-

tion of the values of Sn.
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Figure 6.2: Comparison of the results between the original nuclear network
calculation by PRISM [81] (top left panel) and our ANN emulator (top
right panel), using the test data set, for the neutron star merger scenario,
focusing on the rare-earth peak (REP) region A = 150–180. The bot-
tom panel shows the deviations of the output of the emulator from the
original (PRISM) calculations, relative to the original calculations. σy

is their standard deviation, calculated using 10k samples. The plot only
shows 1k samples to avoid overcrowding the plot. The solar abundance
patterns are from Refs. [26] and [27], and they are scaled to match the
average of the PRISM calculations at A = 163, which is the local abun-
dance maximum in this mass region.
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Figure 6.3: Same figure as Figure 6.2, but for the neutrino-driven hot wind
scenario.

The main advantage of using emulators is their speed. While a nuclear reaction

network calculation is not an extremely computationally expensive calculation, a

single run of PRISM for the neutron star merger scenario takes roughly 400 sec-

onds on an Intel Xeon CPU E5-2683 v4, available on the compute cluster Graham

of the Digital Research Alliance of Canada. Multiple calculations can be run in-

dependently in parallel, but each run requires a compute core and about 4 GB of

memory. On the other hand, obtaining a single abundance pattern from our emula-

tor only takes about 0.1 second, using a NVIDIA Tesla P100 GPU, also available

on GRAHAM. Furthermore, returning outputs for multiple input samples is also

efficient—it takes about 1 second to predict 10k abundance patterns for the test

data set.
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6.2.3 Uncertainty Quantification

Uncertainty quantification of ANN predictions has been performed using deep en-

sembles (Section 3.4) [193]. The top panel of Figure 6.4 shows an example of the

uncertainty quantification of an ANN prediction of an abundance pattern for the

REP region (mass number 150 ≤ A ≤ 180) drawn from the test dataset, compared

to the original abundance pattern calculated with PRISM. It shows that the size of

the uncertainty band is small enough to resolve the details of the abundance pat-

tern. The bottom panel of the same figure shows how many of the 10k test samples

of the original calculations are covered by the ±1σ and ±2σ uncertainty bands.

Since our uncertainty is assumed to follow a Gaussian distribution, roughly 68 %

and 95 % of the data points are expected to be covered by the ±1σ and ±2σ un-

certainty bands, respectively. In our numerical experiment, it can be seen from

the figure that about 80-94 % and 98-99 % of the original calculations are cov-

ered by the ±1σ and ±2σ uncertainty bands, respectively. This means that our

uncertainty bands are somewhat under-confident (the size of uncertainty is over-

estimated); nevertheless, this simple method can provide meaningful estimates of

prediction uncertainty.
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Figure 6.4: Panel (a) shows the emulated abundance pattern and the esti-
mated ±1σ uncertainty band of one of the test samples, compared to
the original (PRISM) calculation. Panel (b) shows how many of the
original calculations of the 10k test samples are covered by the ±1σ

and ±2σ uncertainty bands, respectively.
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6.3 Conclusions
In this chapter, we have shown that it is possible to emulate nuclear reaction net-

work calculations with traditional ANNs consisting of convolutional layers fol-

lowed by fully connected layers. Emulators have been constructed for two astro-

physical scenarios: neutron star mergers and the hot neutrino-driven wind. The

performance of the emulator has been demonstrated focusing on the rare-earth

peak region (150 ≤ A ≤ 180), by treating the β -decay rates and the one-neutron

separation energies of 212 isotopes as input variables for our ANN (in total 424

input variables). For both astrophysical trajectories, the ANNs can approximate

the original calculations by the nuclear reaction network calculation code PRISM

with less than 5 % deviation.

The dramatic speed-up of r-process abundance calculations, roughly by a fac-

tor of 4000, would enable large-scale statistical analyses that require performing

nuclear reaction network calculations a large number of times, such as uncertainty

quantification, Bayesian inverse problems, and variance-based sensitivity analyses.

Furthermore, we have demonstrated a simple method for estimating the pre-

dictive uncertainty of the ANN using deep ensembles, and the quality of the un-

certainty estimation has been evaluated. The method provides conservative but

meaningful uncertainty bands.

In future work, an exploration of more optimized ANN architectures possibly

beyond the traditional ANNs will be performed. It would also be ideal to include

many more isotopes and different types of nuclear reactions and decays, such as

fission, and include more broader features of the r-process abundance patterns,

such as second and third abundance peaks (N = 82 and N = 126, respectively).
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Chapter 7

Summary and Outlook

7.1 Summary of the Contributions of This Thesis
The current thesis has discussed the applications of various statistical techniques

to the problems relevant to the r-process nucleosynthesis. The following is a sum-

mary of the main contributions of this thesis.

The Ensemble Bayesian Model Averaging Method

In Chapter 4, the ensemble Bayesian model averaging (EBMA) method has been

applied to the uncertainty quantification of neutron separation energies (Sn). The

EBMA method determines the weights of the theoretical models in the ensemble

based on the experimental data. The Bayesian posterior distributions of the EBMA

model parameters are then used to quantify the uncertainty of Sn. The numerical

experiments have shown that the EBMA method provides reasonable uncertainty

estimates, although their sizes are somewhat overestimated.

The Variance-Based Sensitivity Analysis Method

In Chapter 5, the variance-based sensitivity analysis method has been demonstrated

using the newly determined experimental uncertainties of the β -decay properties

of neutron-rich nuclei in the rare-earth peak (REP) region. Influential β -decay

properties that affect the calculated abundance patterns have been identified within
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the set of nuclei of interest.

The “sensitivity” in this method is defined as the contribution of the input(s)

to the variance (propagated uncertainty) of the output, therefore, the interpretation

of the sensitivity is clearer in terms of the corresponding r-process observables,

compared to previous work such as Refs. [82, 177–179]. Since this method relies

on the Monte Carlo method, inspection of the Monte Carlo samples allows for

detailed investigations of how certain nuclear physics inputs affect the observables

such as abundance patterns, as demonstrated in Chapter 5.

Emulation of a Nuclear Reaction Network Calculation Code

In Chapter 6, it has been demonstrated that artificial neural networks are capable of

emulating nuclear reaction network calculations that compute r-process abundance

patterns, employing two astrophysical scenarios. This work also focused on the

rare-earth peak (REP) region. The ANN models were able to reproduce well the

changes in abundances corresponding to the variation in the β -decay half-lives and

one-neutron separation energies (Sn) of 212 isotopes. Uncertainty quantification of

the predictions of the ANN models was also demonstrated using the method called

“deep-ensemble”.

The benefit of emulators is their speed. For calculating a single abundance

pattern, the emulator achieved a factor of 4000 improvement in speed, compared to

one of the state-of-the-art nuclear reaction network calculation codes PRISM [81].

7.2 Outlook
The EBMA method is readily applicable to other nuclear physics observables that

are relevant to the r-process nucleosynthesis, such as decay rates and temperature-

dependent reaction rates. This would allow us to quantify the uncertainty in the

calculations of the r-process observables (e.g., abundance patterns and kilonova

lightcurves) coming from the choices of nuclear physics models. Effect of different

nuclear physics models are usually studied by simply comparing the results of the

calculations with different models, therefore, quantification of such uncertainties

would be a meaningful development. Furthermore, as investigated in the literature

using different approaches, as in Refs. [210, 217, 224], this method can also be used
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to compute the probabilities that certain nuclei are predicted to be bound. In the

future, it would be of interest to investigate the agreement of the results obtained

from the EBMA method with the previous predictions.

The variance-based sensitivity analysis in the context of the r-process can be

greatly generalized by using the nuclear reaction network calculation emulators.

The fast emulators would allow for a significant increase in the number of inputs in

the analysis, which would otherwise have been challenging, since it would require

millions of runs of nuclear reaction network calculations. Although the variance-

based method requires well-defined input uncertainties, which makes the sensitiv-

ity analyses of theoretical nuclear physics inputs difficult, since their uncertainties

are not usually available, the EBMA method can overcome this problem. There-

fore, combining the methods developed in the current thesis will open up a way to

perform rigorous and detailed sensitivity analyses for a large number of neutron-

rich nuclei.

Furthermore, the framework of the variance-based method allows for inclu-

sion of correlated uncertainties, which will be useful for studying the effect of nu-

clear masses on the uncertainties of decay and reaction rates, for example. While

propagation of mass uncertainties to the decay / reaction rates has been previously

performed, they typically neglect the uncertainties of the decay / reaction rate cal-

culations. Therefore, the variance-based method provides a suitable framework for

improving this situation. Accurate sensitivity analyses are crucial for motivating

and directing the experimental effort to measure key nuclear physics properties

relevant to the r-process. This can help efficiently reduce the uncertainty in our

understanding of the r-process nucleosynthesis originating from nuclear physics.

The fast nuclear reaction network calculation emulator would also benefit other

studies such as “reverse-engineering” of nuclear physics properties from the r-

process observables using the MCMC method, as in Refs. [238, 239]. Since the

MCMC method generally requires numerous sequential runs of nuclear reaction

network calculations, the impact of the speed-up by a factor of thousands will be

particularly large.

With more multi-messenger observations of the r-process nucleosynthesis events

(such as binary neutron star and neutron star-black hole mergers) in the future, ap-

plications of statistical methods can play an important role in analyzing the impli-
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cations of the multi-messenger observations in terms of the physics of neutron-rich

nuclei. For example, comprehensive and detailed sensitivity analyses of the nuclear

physics inputs for the kilonova lightcurves would be of great interest. Furthermore,

with fast emulators, it may become possible to constrain the properties of neutron-

rich nuclei from the observations of kilonovae through statistical inference meth-

ods. Thus, this thesis contributes to laying the groundwork for the development of

statistical tools that can be used for such analyses.

Statistical methods are appropriate tools for studying nuclear physics in the

context of the r-process nucleosynthesis, considering that thousands of nuclei are

involved in the process. They also provide convenient frameworks for uncertainty

quantification, sensitivity analysis, and other inference tasks. However, the con-

venience of statistical methods could also result in flawed conclusions without un-

derstanding the assumptions and limitations of the method, as can be seen in some

literature. Therefore, it will be important to carefully analyze and understand the

foundation as well as the applicability of the methods.

135



Bibliography

[1] E. M. Burbidge, G. R. Burbidge, W. A. Fowler, and F. Hoyle. Synthesis of
the elements in stars. Rev. Mod. Phys., 29:547–650, 1957.
doi:10.1103/RevModPhys.29.547. → pages 2, 5

[2] A. G. W. Cameron. Stellar evolution, nuclear astrophysics, and
nucleogenesis. Technical Report CRL-41, Atomic Energy of Canada Ltd.,
1957. → page 2

[3] K. Lodders. Solar system abundances and condensation temperatures of
the elements. The Astrophysical Journal, 591(2):1220, 2003.
doi:10.1086/375492. → page 4

[4] J. J. Cowan, C. Sneden, J. E. Lawler, A. Aprahamian, M. Wiescher,
K. Langanke, G. Martı́nez-Pinedo, and F.-K. Thielemann. Origin of the
heaviest elements: The rapid neutron-capture process. Rev. Mod. Phys., 93:
015002, 2021. doi:10.1103/RevModPhys.93.015002. → pages
xii, 4, 14, 16, 18, 19, 28, 31, 36

[5] D. Tytler, J. M. O’Meara, N. Suzuki, and D. Lubin. Review of big bang
nucleosynthesis and primordial abundances. Physica Scripta, 2000(T85):
12, 2000. doi:10.1238/Physica.Topical.085a00012. → page 5

[6] R. H. Cyburt, B. D. Fields, K. A. Olive, and T.-H. Yeh. Big bang
nucleosynthesis: Present status. Rev. Mod. Phys., 88:015004, 2016.
doi:10.1103/RevModPhys.88.015004. → page 5

[7] N. Prantzos. Production and evolution of li, be, and b isotopes in the
galaxy. Astronomy & Astrophysics, 542:A67, 2012.
doi:10.1051/0004-6361/201219043. → page 5

[8] C. Iliadis. Nuclear physics of stars. John Wiley & Sons, 2015. → pages
6, 7, 8, 9, 10, 28, 30

136

http://dx.doi.org/10.1103/RevModPhys.29.547
http://dx.doi.org/10.1086/375492
http://dx.doi.org/10.1103/RevModPhys.93.015002
http://dx.doi.org/10.1238/Physica.Topical.085a00012
http://dx.doi.org/10.1103/RevModPhys.88.015004
http://dx.doi.org/10.1051/0004-6361/201219043


[9] T. Rauscher. Essentials of Nucleosynthesis and Theoretical Nuclear
Astrophysics. 2514-3433. IOP Publishing, 2020.
doi:10.1088/2514-3433/ab8737. → pages 6, 7, 8, 9, 10

[10] W. J. Huang, M. Wang, F. G. Kondev, G. Audi, and S. Naimi. The ame
2020 atomic mass evaluation (i). evaluation of input data, and adjustment
procedures. Chinese Physics C, 45(3):030002, 2021.
doi:10.1088/1674-1137/abddb0. → pages
xi, xiii, xiv, 6, 37, 38, 41, 47, 51, 52, 55, 56, 57, 58, 83, 86, 88, 93, 94, 122

[11] D. Arnett. Supernovae and nucleosynthesis: an investigation of the history
of matter, from the big bang to the present. Princeton University Press,
1996. → pages 6, 7, 8, 28

[12] D. D. Clayton. Principles of stellar evolution and nucleosynthesis.
University of Chicago press, 1983. → page 7

[13] S. Höfner and H. Olofsson. Mass loss of stars on the asymptotic giant
branch. The Astronomy and Astrophysics Review, 26(1):1, 2018.
doi:10.1007/s00159-017-0106-5. → page 7

[14] H.-T. Janka. Explosion mechanisms of core-collapse supernovae. Annual
Review of Nuclear and Particle Science, 62(1):407–451, 2012.
doi:10.1146/annurev-nucl-102711-094901. → page 8

[15] A. Burrows and D. Vartanyan. Core-collapse supernova explosion theory.
Nature, 589(7840):29–39, 2021. doi:10.1038/s41586-020-03059-w. →
page 9

[16] M. Livio and P. Mazzali. On the progenitors of type ia supernovae. Physics
Reports, 736:1–23, 2018. ISSN 0370-1573.
doi:10.1016/j.physrep.2018.02.002. On the progenitors of Type Ia
supernovae. → page 9

[17] K. Nomoto, K. Iwamoto, N. Nakasato, F.-K. Thielemann, F. Brachwitz,
T. Tsujimoto, Y. Kubo, and N. Kishimoto. Nucleosynthesis in type ia
supernovae. Nuclear Physics A, 621(1):467–476, 1997.
doi:https://doi.org/10.1016/S0375-9474(97)00291-1. → page 9

[18] F.-K. Thielemann, J. Isern, A. Perego, and P. von Ballmoos.
Nucleosynthesis in supernovae. Space Science Reviews, 214(3):62, 2018.
doi:10.1007/s11214-018-0494-5. → page 9

137

http://dx.doi.org/10.1088/2514-3433/ab8737
http://dx.doi.org/10.1088/1674-1137/abddb0
http://dx.doi.org/10.1007/s00159-017-0106-5
http://dx.doi.org/10.1146/annurev-nucl-102711-094901
http://dx.doi.org/10.1038/s41586-020-03059-w
http://dx.doi.org/10.1016/j.physrep.2018.02.002
http://dx.doi.org/https://doi.org/10.1016/S0375-9474(97)00291-1
http://dx.doi.org/10.1007/s11214-018-0494-5
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R. Surman, and P. Möller. β -delayed fission in r-process nucleosynthesis.
The Astrophysical Journal, 869(1):14, 2018.
doi:10.3847/1538-4357/aaeaca. → pages
xv, 22, 24, 25, 34, 102, 126, 127, 133

[82] M. R. Mumpower, R. Surman, G. C. McLaughlin, and A. Aprahamian. The
impact of individual nuclear properties on r-process nucleosynthesis.
Progress in Particle and Nuclear Physics, 86:86–126, 2016. ISSN
0146-6410. doi:https://doi.org/10.1016/j.ppnp.2015.09.001. → pages
25, 67, 76, 99, 102, 104, 107, 119, 122, 133

[83] O. Korobkin, S. Rosswog, A. Arcones, and C. Winteler. On the
astrophysical robustness of the neutron star merger r-process. Monthly
Notices of the Royal Astronomical Society, 426(3):1940–1949, 2012.
doi:10.1111/j.1365-2966.2012.21859.x. → page 31

[84] S. Goriely. The fundamental role of fission during r-process
nucleosynthesis in neutron star mergers. The European Physical Journal A,
51(2):22, 2015. doi:10.1140/epja/i2015-15022-3. → page 31

[85] R. Surman, J. Engel, J. R. Bennett, and B. S. Meyer. Source of the
rare-earth element peak in r-process nucleosynthesis. Phys. Rev. Lett., 79:
1809–1812, 1997. doi:10.1103/PhysRevLett.79.1809. → page 32

[86] M. R. Mumpower, G. C. McLaughlin, and R. Surman. Formation of the
rare-earth peak: Gaining insight into late-time r-process dynamics. Phys.
Rev. C, 85:045801, 2012. doi:10.1103/PhysRevC.85.045801. → page 32

[87] M. R. Mumpower, G. C. McLaughlin, and R. Surman. The rare earth peak:
An overlooked r-process diagnostic. The Astrophysical Journal, 752(2):
117, 2012. doi:10.1088/0004-637X/752/2/117.

[88] M. R. Mumpower, G. C. McLaughlin, and R. Surman. Influence of neutron
capture rates in the rare earth region on the r-process abundance pattern.
Phys. Rev. C, 86:035803, 2012. doi:10.1103/PhysRevC.86.035803. →
page 32

[89] I. V. Panov, I. Yu. Korneev, and F. K. Thielemann. The r-process in the
region of transuranium elements and the contribution of fission products to
the nucleosynthesis of nuclei with a ≤130. Astronomy Letters, 34(3):
189–197, 2008. doi:10.1134/S1063773708030067. → page 32

145

http://dx.doi.org/10.3847/1538-4357/aaeaca
http://dx.doi.org/https://doi.org/10.1016/j.ppnp.2015.09.001
http://dx.doi.org/10.1111/j.1365-2966.2012.21859.x
http://dx.doi.org/10.1140/epja/i2015-15022-3
http://dx.doi.org/10.1103/PhysRevLett.79.1809
http://dx.doi.org/10.1103/PhysRevC.85.045801
http://dx.doi.org/10.1088/0004-637X/752/2/117
http://dx.doi.org/10.1103/PhysRevC.86.035803
http://dx.doi.org/10.1134/S1063773708030067


[90] S. Goriely, J.-L. Sida, J.-F. Lemaı̂tre, S. Panebianco, N. Dubray, S. Hilaire,
A. Bauswein, and H.-T. Janka. New fission fragment distributions and
r-process origin of the rare-earth elements. Phys. Rev. Lett., 111:242502,
2013. doi:10.1103/PhysRevLett.111.242502.

[91] M. Eichler, A. Arcones, A. Kelic, O. Korobkin, K. Langanke, T. Marketin,
G. Martinez-Pinedo, I. Panov, T. Rauscher, S. Rosswog, C. Winteler, N. T.
Zinner, and F.-K. Thielemann. The role of fission in neutron star mergers
and its impact on the r-process peaks. The Astrophysical Journal, 808(1):
30, 2015. doi:10.1088/0004-637X/808/1/30. → page 32

[92] A. Arcones and G. Martı́nez-Pinedo. Dynamical r-process studies within
the neutrino-driven wind scenario and its sensitivity to the nuclear physics
input. Physical Review C, 83:045809, 2011.
doi:10.1103/PhysRevC.83.045809. → page 32
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