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la sala de lectura de matemática en la USB y tantos sitios más. Sabrina, por haberme
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Abstract

We consider the possibility that the majority of dark matter in the Universe consists of black

holes of primordial origin, and study the prospects of generating them in single-field models

of inflation. Three different scenarios are presented. The first two rely on the presence of

an ultra-slow-roll phase in inflation due to an inflection point in the potential. One of these

scenarios is characterized by a quartic polynomial potential and is (arguably) the simplest

model of inflation able to produce a large population of primordial black holes. The second

scenario is aimed at ameliorating the tuning problems present in inflection-point models, and

involves a setup that employs the advantages of gravitational collapse in a long epoch of early

matter domination, as well as a potential based on a string-inspired class of models in which

the inflaton is identified with a non-compact axion field. The third scenario we consider is

fundamentally different from the inflection-point models, and consists on obtaining the large

peak in the power spectrum of curvature perturbations necessary for black hole formation

from a transient dissipative phase during inflation. In this case the enhancement of the power

spectrum occurs due to the presence of a stochastic thermal noise source in the equation of

motion for the fluctuations.

We consider the impact of quantum diffusion on the inflationary dynamics during an

ultra-slow-roll phase and show, by means of a fully analytical approach, that the power spec-

trum of comoving curvature perturbations computed in stochastic inflation matches precisely,

at the linear level, the result obtained by solving the Mukhanov-Sasaki equation. Finally,

we compute the stochastic background of gravitational waves generated in each scenario. In

particular, we study the gravitational waves induced during an early matter-dominated era

and determine how much of the parameter space remains available after taking into account

the bounds on the gravitational wave energy density arising from the abundance of light

elements produced during Big-Bang nucleosynthesis and cosmic microwave background ex-

periments. We examine the gauge dependence of the resulting signal and, by using a heuristic

argument based on symmetry properties and dimensional analysis, determine the full gauge-

invariant expression for the energy density of gravitational waves at next-to-leading order

in perturbations. We discuss the prospects of detecting the resulting signal with the LISA

experiment.
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Resumen

Consideramos la posibilidad de que la mayor parte de la materia oscura del universo consista

de agujeros negros de origen primordial y estudiamos la capacidad de los modelos de inflación

con un único campo de producirlos. Presentamos tres escenarios distintos. Los primeros dos

hacen uso de una fase en la cual el campo rueda muy lentamente gracias a la presencia de

un punto de inflexión en el potencial. Uno de estos escenarios está caracterizado por un

potencial polinómico de cuarto orden y es (posiblemente) el modelo más simple de inflación

que es capaz de producir una población considerable de agujeros negros primordiales. El

segundo escenario tiene como objetivo aminorar los problemas de ajuste fino presentes en

los modelos con puntos de inflexión e involucra una configuración que emplea las ventajas

del colapso gravitacional en una época temprana en la que el universo estaŕıa dominado por

materia no relativista, aśı como un potencial basado en una clase de modelos inspirados

por la teoŕıa de cuerdas en los que el inflatón es identificado con un campo axiónico no

compacto. El tercer escenario que consideramos es fundamentalmente distinto de los modelos

con puntos de inflexión y consiste en obtener el incremento del espectro de perturbaciones de

curvatura necesario para la formación de agujeros negros a partir de una fase disipativa de

corta duración durante la inflación. En este caso el incremento en la amplitud del espectro

ocurre gracias a la presencia de una fuente estocástica de ruido térmico en la ecuación de

movimiento de las fluctuaciones.

Estudiamos también el impacto que tiene la difusión cuántica sobre la dinámica infla-

cionaria durante una fase en la cual el campo rueda muy lentamente y demostramos, medi-

ante un enfoque totalmente anaĺıtico, que el espectro de las perturbaciones calculado en el

formalismo de inflación estocástica es exactamente igual al obtenido al resolver la ecuación

de Mukhanov y Sasaki. Finalmente, calculamos el fondo estocástico de ondas gravitacionales

generado en cada escenario y, en particular, estudiamos las ondas gravitacionales inducidas

durante una fase temprana en la cual el universo estaŕıa dominado por materia no relativista

y determinamos qué región del espacio de parámetros es eliminada después de tomar en

cuenta las cotas sobre la densidad de enerǵıa de las ondas gravitacionales que provienen de

la abundancia de elementos ligeros producidos durante la nucleośıntesis y experimentos del

fondo cósmico de radiación. Examinamos la dependencia del resultado bajo transformaciones

de coordenadas y, utilizando un argumento heuŕıstico basado en propiedades de simetŕıa y

análisis dimensional, determinamos la expresión completa y manifiestamente invariante bajo

cambios de coordenadas de la densidad de enerǵıa de las ondas gravitacionales a orden sub-

dominante en las perturbaciones. Discutimos la posibilidad de detectar la señal resultante

utilizando el experimento LISA.
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Introduction

The dark matter problem

At present, there is overwhelming evidence that the matter content of our Universe cannot

be entirely accounted for. Dark matter makes up around 85% of the amount of matter

consistent with observations, whereas the standard, baryonic matter accounts for the rest.

The earliest evidence of dark matter came in the 1930s [5], when the virial theorem was used

to estimate the velocity dispersion of galaxies in the Coma Cluster, and it was determined

that baryonic matter alone would yield a result about two orders of magnitude smaller than

the observed one [6]. The idea of dark matter, however, did not take off until the 1970s,

when it was determined that galaxy rotation curves flatten as the distance from the galactic

center increases [7], a fact that cannot be described by using baryonic matter alone. Since

then, the amount of evidence in favor of some as-yet-unknown, electromagnetically non-

interacting form of matter has vastly grown, and ranges from the gravitational lensing of

distant sources produced by dark matter [8] and the measurement of the dark matter energy

density from the peaks in the angular power spectrum of the cosmic microwave background

(CMB) anisotropies [9] to the measurement of the rate of expansion of the Universe using

type Ia supernovae [10, 11].

From the point of view of particle physics, a series of well-motivated dark matter can-

didates have been proposed [12], although none of them have been detected so far. These

include, for instance, weakly interacting massive particles (WIMPs) proposed due to the ob-

servation that a particle with a self-interaction cross section characteristic of the electroweak

force would produce the correct abundance of dark matter today, particles arising from su-

persymmetric extensions to the Standard Model, sterile neutrinos which would interact with

the rest of the Standard Model only through gravity, and axions, proposed as a possible

solution to the so-called strong CP problem of quantum chromodynamics. On the side of as-

trophysics, objects typically far less luminous than stars were also considered as viable dark

matter candidates, such as planets, brown dwarfs, neutron stars, and black holes. These were

collectively labeled as massive compact halo objects, or MACHOs, and most were ultimately

ruled out due to gravitational microlensing surveys, and the determination of the amount

of baryonic matter from measurements of the abundance of light elements produced during

Big Bang nucleosynthesis [5].

A compelling alternative which has so far stood the test of time is the possibility that

dark matter is comprised of black holes formed before nucleosynthesis (and therefore via

mechanisms different from the usual stellar collapse) and with masses that cannot be probed
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by gravitational microlensing. These objects are known as primordial black holes (PBHs).

Since these black holes do not interact electromagnetically, they are viable cold dark matter

candidates, where the attribute cold refers to the fact that, being compact objects with

non-relativistic velocities, a fluid of PBHs would behave as presureless dust. The possibility

that black holes could have formed in the early Universe due to its higher energy density

was first introduced in [13–15], but they were first proposed as dark matter candidates in

[16]. Assuming the majority of dark matter to be comprised of PBHs, in this thesis we will

investigate different aspects about their formation and observable astrophysical signatures.

The most studied mechanism of PBH formation relies on gravitational collapse triggered by

large density fluctuations in the early Universe. These density fluctuations are often assumed

to originate during a period of accelerated expansion known as cosmic inflation.

Cosmic inflation

The discovery of the cosmic microwave background [17] was one of the most important scien-

tific findings of the last century, and solidified the Big Bang model of cosmology. However, it

also brought with itself a series of puzzles that we still struggle to explain today. Arguably,

the most important of these issues are the horizon and flatness problems. The first one refers

to the fact that the CMB temperature is nearly uniform across the entire visible Universe,

even though different regions across this observable patch were causally disconnected at the

time photons decoupled from the primordial plasma. The second one refers to the fact that

the spatial curvature of the Universe, which is a free parameter of the theory, is strongly

constrained to be a very small number, leading to a fine-tuning problem. Although one could

always dismiss these issues by appealing to the fine-tuning of initial conditions, a dynamical

explanation would be highly desirable. The inflationary paradigm [18–20] aims to deliver

such an explanation and solve both of these issues in a single stroke by postulating that the

Universe went through an early phase of accelerated expansion.

The appeal of cosmic inflation is not restricted to the solution of the CMB puzzles, how-

ever. Soon after the discovery of the CMB and motivated by the idea that the formation

of structure in the Universe must have been seeded by small density fluctuations, cosmol-

ogists began looking for anisotropies in the CMB radiation [21]. The first measurements

of this anisotropy were performed by the COBE satellite [22], which found a nearly Gaus-

sian and scale-invariant distribution of temperature fluctuations of order δT/T ∼ O(10−5).

A distribution with precisely these characteristics can be obtained within the inflationary

framework, adding to the success of the idea. In the simplest models of inflation, a phase of

accelerated expansion can occur if the energy density of the Universe is dominated by a scalar

field that slowly rolls down a potential. Quantum fluctuations of this field then translate

into the anisotropies we observe in the CMB, and provide the seeds for the formation of the

large scale structure in the Universe. These perturbations can be shown to freeze once their

associated wavenumber becomes comparable to the Hubble rate, and are therefore blind to
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subhorizon dynamics until their horizon re-entry, which allows us to easily connect them to

CMB observations.

There are many CMB experiments active at present, such as Planck and BICEP, which

have managed to either set strong bounds on inflationary observables or measure them with

high precision. The tilt of the scalar power spectrum, for instance, has been measured at the

0.1% level at the time of writing [23], whereas the tensor-to-scalar ratio r that measures the

difference between the amplitude of the scalar power spectrum and that of the primordial

stochastic gravitational wave background is constrained at the percent level [24]. Experi-

ments such as the ground-based CMB-S4 telescopes [25] and the LiteBIRD satellite [26] are

set to begin operating within the next decade and will further tighten these measurements

and potentially detect other not-yet-seen features of the CMB, such as the imprint left by

primordial gravitational waves in the CMB polarization in the form of B-modes.

Primordial black holes

PBHs are very compelling dark matter candidates. On the theoretical side, the simplest

models of formation do not require any additions to the Standard Model of particle physics

other than inflation. On the other hand, being compact objects, they also exhibit a wide

variety of astrophysical signatures [27]. At the time of writing, PBHs can account for all the

dark matter provided their masses lie in the window

10−16 M⊙ ≲MPBH ≲ 10−11M⊙. (1)

The upper limit in this range of masses is due to microlensing observations using the Subaru

Telescope’s HSC camera [28], and the lower end is due to the fact that black holes with

very small masses would be evaporating today (or have evaporated already if the masses are

sufficiently small), emitting Hawking radiation and leading to the observation of extragalactic

[29, 30] and galactic [31, 32] γ-rays, the tightest bound being the latter, imposed by the

INTEGRAL satellite. We remark that there are other bounds on the lower end of this

range, such as the ones arising from the study of electromagnetic energy injection in the

CMB [33, 34], the injection of electron-positron cosmic rays into the galaxy due to Hawking

radiation, which would be observed by the Voyager 1 probe [35], and the annihilation of

positrons contributing to the Galactic 511 keV line [36–38]. Throughout this thesis we will

be concerned only with the mass range shown in (1), but let us point out that PBHs with

higher masses are constrained by microlensing observations from EROS/MACHO [39] and

OGLE [40], by the effect their accretion would have on the CMB [41, 42], and the non-

observation of the stochastic gravitational wave background by LIGO [43].

A bound due to gamma-ray burst femtolensing [44] existed previously in the mass range

(1), but was disputed in [45], where it was argued that most gamma-ray bursts are too

large to be used for femtolensing observations. The possibility that a subset of bursts with

appropriate sizes could be used was also entertained in [45], although a large number of them
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would have to be detected by future experiments for this to be a viable observational tool.

Other previously existing bounds in this mass range include the explosion of white dwarfs

[46] due to runaway thermonuclear fusion caused by the friction generated by the transit

of a sufficiently massive black hole through the star, and the accretion and subsequent

destruction of a neutron star by black holes [47]. These bounds were disputed in [48], where

the capture rate of black holes by neutron stars was derived1 and hydrodynamic simulations

were performed to estimate the temperature and timescale of the shock produced by a black

hole that passes through a white dwarf. These results determined the constraints to be less

effective than previously thought.

At this point, the relation between the inflationary paradigm and the formation of PBHs

should not come as a surprise. In the simplest and most studied PBH formation mechanisms,

inflation provides the seeds for the large density fluctuations that trigger the gravitational

collapse of matter into black holes [50] at later stages. The density fluctuations observed

in the CMB turn out to be far too small to produce a significant amount of black holes,

so for PBHs to constitute a sizable fraction of the observed dark matter, said fluctuations

must be enhanced at distance scales that are much smaller than the ones constrained by

CMB experiments. This enhancement of the density fluctuations can be accomplished in

single-field models of inflation if the inflaton traverses through a region of its potential with

an approximate inflection point, which would then trigger a so-called ultra-slow-roll (USR)

phase [51] which increases the primordial spectrum PR of curvature perturbations. As we will

discuss later on, large density fluctuations can also be produced from a transient dissipative

phase during inflation due to the interaction between the inflaton field and an underlying

bath of thermalized radiation, which leads to a source of stochastic noise in the equation of

motion for the fluctuations that enhances the primordial spectrum. The enhancement of the

power spectrum can also be obtained in two-field hybrid models of inflation, see [52] for the

earliest implementation of this idea. Throughout this thesis we will be concerned only with

inflationary mechanisms of PBH formation, but let us remark that other, non-inflationary

alternatives have also been proposed, such as the collapse of topological defects [53–57], the

collision of vacuum bubbles [58, 59], the collapse of Fermi balls [60], the increased probability

of gravitational collapse during a phase transition due to a change in the equation of state of

the Universe [61], and the collapse of a large buildup of particles in a shrinking false vacuum

bubble [62].

Let us turn our attention to the aforementioned inflection-point models of PBH produc-

tion. The first attempt to implement this mechanism was put forward in [63],2 but interest

in the idea remained largely dormant until the first detection of gravitational waves by LIGO

[65]. Since then, the field has seen a revitalized interest and a large number of proposed mod-

els have emerged. One of the first modern takes on the inflection-point idea was performed

1See also [49] for further work in this direction.
2See also [64], where a linear potential with a smooth change in slope able to generate an enhancement

in the power spectrum was studied, although not with the purpose of producing PBHs.
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in [66], where a potential based on the ratio of two polynomials was proposed. Shortly af-

terwards, the possibility that the feature in the potential could have a radiative origin was

explored in [67, 68]. In [68] it was assumed that the inflaton had a polynomial potential

dominated by the quartic term, and the inflection point then arises from the precise tuning

of the coefficients of the logarithmic quantum corrections. In addition, to fit the CMB data,

[68] considered a completely general but non-minimal coupling between the inflaton and the

Ricci scalar, which flattens the potential at large field values. The possibility of obtaining

the feature by carefully adjusting the coefficients of a polynomial potential, without the need

for quantum corrections, was also studied in [68]. More exotic examples of models are those

motivated by string theory and supergravity, such as axion-like potentials [69], or potentials

constructed within the framework of supersymmetric α-attractor models [70].

These models do not come without disadvantages, however. In general, the inflection

point is not a feature that arises naturally in these potentials, and their parameters must

instead be engineered specifically for this purpose. On the other hand, to accomplish the

enhancement of the primordial spectrum, a severe tuning of the parameters in the potential

is usually required. There are two reasons for this. The first is that the size of the power

spectrum is exponentially sensitive to the decrease in the speed of the inflaton when it

reaches the inflection point. If the parameters are not carefully adjusted, the inflaton either

overshoots the local minimum that usually precedes the inflection point at high speed (so

that fluctuations are barely enhanced and PBHs are underproduced), or it gets stuck in said

local minimum. Another issue is that the speed necessary to produce a significant amount

of PBHs in a given model is often at odds with the speed necessary to yield enough e-folds

of inflation to solve the horizon and flatness problems of the CMB. The region in parameter

space that can satisfy all of these constraints is usually very narrow. The second reason for

the tuning is that PBHs are usually assumed to be formed during the radiation-dominated

(RD) era preceding Big Bang nucleosynthesis, so that the current PBH abundance depends

exponentially on the power spectrum, and small deviations from the sweet spot in which

the fraction of PBHs as dark matter is O(1) therefore result in PBH abundances orders of

magnitude too small to be of interest for the dark matter problem. In this thesis we will

see how some of these problems can be ameliorated in the context of a specific inflationary

potential inspired by axion monodromy inflation.

One effect that was not taken into account in the early treatments of inflection-point

models of PBH production is that of quantum diffusion. In single-field inflation, we typ-

ically assume the homogeneous part of the field to behave classically, and only treat the

perturbations quantum mechanically. In the standard picture, these perturbations become

constant and classical once they cross the Hubble horizon, determining the power spectrum.

Quantum fluctuations could, however, backreact on the classical trajectory of the inflaton, a

possibility that cannot be handled by the above description. This effect must instead be un-

derstood in the framework of stochastic inflation [71], in which long-wavelength fluctuations
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are sourced by small-wavelength ones. The latter behave as classical random variables and

their effect can be described via a set of stochastic differential equations. It is known that in

the slow-roll regime this procedure leads to a PR in agreement with the result of standard

perturbation theory at the linear level (see e.g. [72]), but whether or not this result holds if

the inflaton goes through a USR phase (as in the aforementioned inflection-point models) is

less clear. In the presence of a USR phase, it has been speculated that the backreaction could

potentially modify the peak height of PR, the location of the peak itself, or even broaden

the PBH mass function [68]. Studying the effect of quantum diffusion is therefore important

for the correct determination of the PBH abundance, and is a subject we will treat in this

thesis. Another advantage of the stochastic inflation formalism is that it also allows the

calculation of the non-Gaussian corrections to the probability distribution function of the

primordial curvature fluctuations, which can have an effect on the PBH abundance [73–76].

Gravitational waves

The primordial stochastic background of gravitational waves, which is potentially within

the reach of detectors that will begin operating in the near future (such as LISA [77]) and

is comparable to the CMB in the implications it would have for cosmology, has long been

considered a powerful tool to probe the physics of the early Universe. There are many reasons

for this, not the least of which is the fact that gravitational waves can probe processes and

energy scales inaccessible by other means, such as phase transitions, topological defects and

reheating after inflation. Another reason is that by using the techniques of cosmological

perturbation theory, it is possible to show that at leading order in perturbations the tensor

modes of the metric (that is, the gravitational waves) decouple from other degrees of freedom

and propagate freely, affected only by the expansion of the Universe and carrying information

about the processes that generated them [78].

The fact that PBH formation requires a large scalar power spectrum leads to an enhance-

ment of the second-order tensor modes of the metric, which are sourced by terms quadratic

in first-order scalars in Einstein’s equations [79–81]. Moreover, if PBHs constitute all of the

dark matter, then it should be possible to detect the corresponding induced stochastic back-

ground of gravitational waves if they form during a RD era and, in particular, if their masses

lie within the mass window (1), then this stochastic background would be observable3 by

the LISA experiment [77, 82, 83]. This is due to the fact that, assuming a monochromatic

mass distribution, the mass of a PBH that forms during a RD era due to collapse induced by

large scalar fluctuations is related to the peak frequency of the corresponding gravitational

wave spectrum via [82, 83]

MPBH ≃ γ
(
3× 10−15M⊙

)(0.1Hz

fpeak

)2

, (2)

3However, it is not clear at present that a PBH signal can be distinguished from other sources.
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where γ is an O(1) efficiency factor. It can be seen from this equation that the frequencies

that LISA can test correspond to unconstrained PBH masses in the window (1). Not only

this, but the amplitude of the signal also turns out to lie roughly four orders of magnitude

above the LISA sensitivity curve, as we will show.

The possibility that gravitational waves can be induced at second order in perturba-

tions was, to the best of our knowledge, first suggested in [79], although the idea did not

gain traction until it started to be considered as a possible way to probe the existence of

PBHs. The reason for this is that the amplitude of these induced gravitational waves is

typically suppressed with respect to the first-order contribution, and they therefore only

become relevant when there is a large peak in the scalar power spectrum, as is the case in

the aforementioned inflationary models of PBH production. These gravitational waves are

induced not only during inflation, but also afterwards, once the perturbations re-enter the

horizon, and therefore contain information about both the mechanism that produced them

and the subsequent cosmological history.

If we want to use gravitational waves as an observable to probe the existence of PBHs, it

is necessary to carefully examine the calculation of the signal in order to determine whether

the results can be trusted. It has been pointed out recently that the usual calculation of the

stochastic background of gravitational waves induced at second order from scalar fluctuations

is not entirely solid, since the second-order tensor piece of the metric is not a gauge-invariant

variable [84–89]. This gauge dependence then propagates to the observable quantity of

interest: the energy density of gravitational waves. It has been recently claimed [86, 90] that

despite the above remarks, the usual calculation of the energy density of gravitational waves

is valid beyond leading order in perturbations, and this quantity is approximately gauge-

invariant as long as it is measured late in the radiation era, since the scalars that source the

second-order tensor modes decay quickly with time in this case, so that the latter propagate

linearly and effectively become first-order quantities [86]. However, the energy density of

gravitational waves should be a gauge-invariant quantity which is well-defined at all times,

independently of when it is measured. The determination of the correct expression for this

quantity beyond leading order in perturbations remains an open problem, one that we shall

explore in more detail in this thesis.

Overview of the thesis

In this thesis we consider two different implementations of the inflection-point mechanism of

PBH formation. The first consists on making the (arguably) simplest possible choice for the

potential of the inflaton, namely, a quartic polynomial, together with a non-minimal coupling

to the Ricci scalar [2, 68]. If the coefficients in the polynomial are chosen appropriately, this

leads to the presence of an inflection point in the potential. As we will see, in this model the

main issue is that the tilt of the power spectrum at CMB scales is in mild tension with the

experimentally measured values if we require that enough PBHs with masses in the window
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(1) are produced to account for all the dark matter. We will show that this issue can be

resolved by either considering very simple, well-motivated extensions of the cosmological

ΛCDM model (such as the addition of neutrino masses), or by adding higher-dimensional

operators (the presence of which is to be expected anyway) to the potential. The second

possibility we consider is more elaborate and is aimed at alleviating the aforementioned

downsides of inflection-point models of PBH production. The key aspects in this second setup

are an inflationary potential which naturally features the existence of several local minima,

and an early matter-dominated (eMD) epoch right after inflation (which can be obtained, for

instance, from perturbative reheating), during which the likeliness of gravitational collapse

is augmented [50, 91, 92]. We find that these two ingredients can also lead to the formation

of a sizable fraction of PBHs with masses in the range (1) [1].

The reason that an eMD era ameliorates some of the aforementioned tuning problems is

that, due to the absence of radiation pressure, it is easier for the matter cloud to collapse, so

the enhancement of the power spectrum required for the PBHs to form turns out to be orders

of magnitude smaller than in the standard radiation scenario, even after taking into account

the fact that the angular momentum and non-sphericity of the cloud inhibit collapse [92,

93]. Moreover, although the dependence of the PBH abundance on the power spectrum is

still exponential during the eMD era, its sensitivity to small changes in the amplitude of the

fluctuations that induce collapse turns out to be much milder than in the RD scenario. The

formation of PBHs during an eMD phase has been well-studied in the literature, see e.g. [91]

for early work and [92–94] for recent updates. As we will show, in order to take full advantage

of the eMD scenario (in the sense that a sizeable PBH abundance is obtained with a power

spectrum that is as close as possible to its value at CMB scales), the transition temperature

between the eMD and the RD eras must be of order ≲ 105 GeV. Similar conclusions were

reached in previous works. Here, we expand with respect to estimates previously presented

in [70, 93].

So far we have focused exclusively on inflection-point models of PBH production. As we

mentioned earlier, however, there are other possibilities. In particular, black holes could be

generated from a transient dissipative phase during inflation, a mechanism that is funda-

mentally different from the inflection-point models discussed above. The effect of dissipation

on the dynamics of the background inflaton field can be described by introducing a friction

term ∝ Γϕ̇ in its equation of motion [95, 96]. One might conjecture that this term could slow

down the inflaton in the same way that an inflection point in the potential does, leading to

a large enhancement of the power spectrum. As we will show, this argument is not correct,

since, although the background dynamics of the inflaton are similar in both scenarios, the

equations of motion for the fluctuations are quite different. However, as we mentioned ear-

lier, the power spectrum can still be enhanced due to the presence of a stochastic source of

thermal noise for the fluctuations that originates from the interaction between the inflaton

and an underlying thermalized radiation bath. We assume this source to be active only for
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a short period in order to produce PBHs with adequate masses in the range (1). We model

our scenario using a phenomenological approach, assuming that the dissipative coefficient

Γ has a localized peak and a well-motivated temperature dependence. We perform a full

numerical analysis of the dynamics by directly solving the stochastic differential equations

for the perturbations. We integrate the system for multiple realizations of the thermal noise,

thereby obtaining a histogram for PR(k) at each k, allowing us to determine its statistical

properties. The most interesting quantity is not necessarily the full probability distribution

for the power spectrum, however, but rather its expectation value, which is a determinis-

tic quantity. We show that this expectation value can be calculated by reformulating the

stochastic system of differential equations for the fluctuations as a single deterministic matrix

differential equation for their two-point functions.

In addition to the exploration of the specific models of PBH formation discussed above,

in this thesis we also reassess the computation of the primordial power spectrum, in the

presence of a USR phase, using the framework of stochastic inflation, both analytically and

numerically [3]. We find that (at linear order) the power spectrum computed using the

full machinery of stochastic inflation agrees with the result of standard perturbation theory,

and we confirm our results numerically using the aforementioned polynomial model. We

find that the choice of the coarse-graining scale is critical, since in the presence of a USR

phase perturbations take longer to classicalize, and so the standard choice made in slow-roll

inflation is no longer valid. We do not study higher-order correlators for the perturbations

in this thesis, but we remark that the fact that the power spectrum remains unchanged does

not necessarily imply that stochastic effects are irrelevant for the black hole abundance, since

large non-Gaussianities are still expected to modify their formation probability [73, 74, 97].

Since scenarios in which PBHs form during an eMD era have significant advantages, it is

worth asking whether the gravitational wave signal in this case changes with respect to the

usual radiation scenario. Specifically, we would like to know whether the resulting stochastic

background can be detected by future experiments, such as LISA and BBO/DECIGO. One

might conjecture that this is not the case, since, as discussed earlier, the enhancement of

the scalar power spectrum required for PBHs to be able to account for all dark matter

is much smaller in this scenario. However, we will show that due to the fact that scalar

fluctuations do not decay with time during a matter-dominated era, the gravitational wave

spectrum increases in amplitude as the transition temperature between the eMD and RD

eras decreases. This additional enhancement counters the relatively small amplitude of the

scalar power spectrum, rendering the stochastic gravitational wave background observable

by LISA. We also examine whether the resulting spectrum satisfies the bound on the present

abundance of gravitational waves ΩGW arising from measurements of the CMB [98] and

the abundance of light elements produced during Big Bang nucleosynthesis [99], and find

that this leads to a severe constraint in the eMD scenario, ruling out part of the available

parameter space. How much of the parameter space is ruled out depends on the transition
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temperature, but as we will see, for certain values of this quantity this bound can be even

stronger than the ones coming from Hawking radiation experiments.

The gauge dependence of the second-order tensor modes of the metric has been exten-

sively studied for both matter- and radiation-dominated Universes (see e.g. [84, 85, 89]). In

the eMD-to-RD transition scenario, however, the Universe goes through both phases, so it is

important to include the two in the computation. This calculation is presented here for the

first time, and we find that because the eMD era has a finite duration, the set of problematic

gauges coincides with the one in the pure RD case [85]. In particular, we examine the issue

by considering four different gauges (Newtonian, uniform curvature, uniform expansion and

comoving), and find that the results coincide at late times (that is, deep into the RD era) for

the first three gauges. We postulate that the issue of the gauge dependence stems from the

incorrect assumption that the corrections at subleading order in perturbations to the abun-

dance of gravitational waves ΩGW can be obtained by simply substituting4 hTT
ij → 1

2
hTT
ij in

the usual formula (the derivation of which can be found in e.g. [100, 101]),

ΩGW(τ, k) =
1

6

(
k

H

)2

⟨Ph(τ, k)⟩W, (3)

where Ph denotes the power spectrum of hTT
ij , τ denotes conformal time, H = aH the

conformal Hubble parameter, and the brackets denote an average over many wavelengths.

Indeed, ΩGW must be a gauge-invariant, observable quantity, and cannot be expressed in

terms of the gauge-dependent hTT
ij . In this thesis, we provide a heuristic derivation of the

full expression for this quantity, which is valid in any gauge and independent of the energy

content of the Universe, by using an argument based on symmetry properties and dimensional

analysis.

The thesis is structured as follows. In Chapter 1 we review the basic aspects of inflation

and primordial black hole formation in matter- and radiation-dominated eras. In Chapter 2

we implement the idea of black hole production through an inflection point in the potential

by using two different inflationary models, one based on a polynomial potential and another

one inspired by axion monodromy. In Chapter 3 we explore the effect that the quantum

diffusion of the inflaton field has on the power spectrum of comoving cuvature perturbations.

In Chapter 4 we discuss how black holes can form due to a transient dissipative phase during

inflation. Finally, in Chapter 5 we calculate the gravitational wave signals in each scenario,

and discuss their observational prospects.

4We use hTT
ij to denote the first-order, transverse, traceless tensor modes, and the bold symbol hTT

ij to
denote second-order modes.
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Introducción

El problema de la materia oscura

En la actualidad, existe una gran cantidad de evidencia que apunta al hecho de que el

contenido de materia del universo no se puede explicar por completo. La materia oscura

constituye alrededor del 85% de la cantidad de materia consistente con las observaciones,

mientras que la materia bariónica estándar representa el resto. La evidencia más temprana

de materia oscura se produjo en la década de 1930 [5], cuando se usó el teorema virial para

estimar la dispersión de velocidades de las galaxias en el cúmulo de Coma y se determinó

que la materia bariónica por śı sola daŕıa un resultado aproximadamente dos órdenes de

magnitud menor que el observado [6]. La idea de la materia oscura, sin embargo, no despegó

sino hasta la década de 1970, cuando se determinó que las curvas de rotación de las galaxias se

aplanan a medida que aumenta la distancia al centro galáctico [7], un hecho que no se puede

describir usando solo materia bariónica. Desde entonces, la cantidad de evidencia a favor de

alguna forma de materia que aún no se conoce y que no interactúa electromagnéticamente

ha crecido enormemente y va desde la desviación de la luz proveniente de fuentes distantes

cuando la materia oscura actúa como lente gravitacional [8] y la medición de la densidad de

enerǵıa de la materia oscura utilizando los picos en el espectro angular de potencias de las

anisotroṕıas del fondo cósmico de microondas (CMB, por sus siglas en inglés) [9] hasta la

medición de la tasa de expansión del universo utilizando supernovas de tipo Ia [10, 11].

Desde el punto de vista de la f́ısica de part́ıculas han sido propuestos una serie de can-

didatos con una motivación f́ısica sólida para explicar la materia oscura [12], aunque ninguno

de ellos ha sido detectado hasta ahora. Estos incluyen, por ejemplo, part́ıculas masivas que

interactúan débilmente (WIMPs, por sus siglas en inglés), propuestas debido a la observación

de que una part́ıcula con una tasa de autointeracción caracteŕıstica de la fuerza electrodébil

produciŕıa la abundancia correcta de materia oscura observada hoy en d́ıa, part́ıculas que

surgen de extensiones supersimétricas al Modelo Estándar, neutrinos estériles que interac-

tuaŕıan con el resto del Modelo Estándar solo a través de la gravedad y axiones, propuestos

como una posible solución al problema de CP fuerte de la cromodinámica cuántica. Del lado

de la astrof́ısica, objetos t́ıpicamente mucho menos luminosos que estrellas también fueron

considerados durante un tiempo como candidatos viables a la materia oscura, tales como los

planetas, las enanas marrones, las estrellas de neutrones y los agujeros negros. Estos obje-

tos de halos compactos masivos (MACHOs, por sus siglas en inglés) fueron, en su mayoŕıa,

descartados debido a observaciones de microlentes gravitacionales y la determinación de la

cantidad de materia bariónica a partir de mediciones de la abundancia de elementos ligeros
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producidos durante la nucleośıntesis del Big Bang [5].

Una alternativa viable que hasta ahora ha superado la prueba del tiempo es la posi-

bilidad de que la materia oscura esté compuesta por agujeros negros formados antes de la

nucleośıntesis (y, por lo tanto, a través de mecanismos distintos al colapso estelar habitual)

y con masas que no pueden ser probadas por microlentes gravitacionales. Estos objetos se

conocen como agujeros negros primordiales (PBHs, por sus siglas en inglés). Dado que estos

agujeros negros no interactúan electromagnéticamente, son candidatos viables como materia

oscura fŕıa, donde el atributo fŕıo se refiere a que, al ser objetos compactos con velocidades no

relativistas, un fluido de PBHs se comportaŕıa como polvo sin presión. La posibilidad de que

los agujeros negros se hayan formado en el universo primitivo debido a la mayor densidad de

enerǵıa se introdujo por primera vez en [13–15], aunque la primera vez que fueron propuestos

como candidatos a la materia oscura fue en [16]. Suponiendo que la mayoŕıa de la materia

oscura esté compuesta por PBHs, en esta tesis investigaremos diferentes aspectos sobre su

formación y señales astrof́ısicas observables. El mecanismo más estudiado de formación de

PBHs se basa en el colapso gravitatorio provocado por grandes fluctuaciones de densidad en

el universo primitivo. Estas fluctuaciones de densidad podŕıan generarse durante un peŕıodo

de expansión acelerada conocido como inflación cósmica.

Inflación cósmica

El descubrimiento del fondo cósmico de microondas [17] fue uno de los hallazgos cient́ıficos

más importantes del siglo pasado y solidificó el modelo cosmológico del Big Bang. Sin

embargo, también trajo consigo una serie de acertijos que aún hoy nos cuesta explicar. Podŕıa

decirse que los más importantes de estos problemas son los problemas de horizonte y planitud.

El primero se refiere al hecho de que la temperatura del CMB es casi uniforme en todo el

universo visible, aunque las diferentes regiones de este parche observable eran causalmente

disconexas en el momento en que los fotones se desacoplaron del plasma primordial. El

segundo se refiere al hecho de que la curvatura espacial del universo, que es un parámetro libre

de la teoŕıa, debe de ser un número muy pequeño para ser consistente con las observaciones,

lo cual genera un problema de ajuste fino. Aunque uno siempre podŕıa descartar estos

problemas apelando al ajuste fino de las condiciones iniciales, tener una explicación dinámica

seŕıa lo ideal. El paradigma inflacionario [18–20] tiene como objetivo ofrecer tal explicación

y resolver ambos problemas simultáneamente postulando que el universo pasó por una fase

temprana de expansión acelerada.

Sin embargo, el atractivo de la inflación cósmica no está limitado a la solución de los

acertijos del CMB. Poco después del descubrimiento del CMB y motivados por la idea de

que la formación de estructura en el universo deb́ıa de tener origen en pequeñas fluctua-

ciones de densidad producidas en el universo temprano, los cosmólogos comenzaron a buscar

anisotroṕıas en la radiación del CMB [21]. Las primeras mediciones de esta anisotroṕıa

fueron realizadas por el satélite COBE [22], que encontró una distribución de fluctuaciones
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de temperatura de orden δT/T ∼ O(10−5). Una distribución con precisamente estas carac-

teŕısticas se puede obtener en el paradigma inflacionario, lo cuál contribuyó al éxito de la

idea. En los modelos más simples de inflación puede ocurrir una fase de expansión aceler-

ada si la densidad de enerǵıa del universo está dominada por un campo escalar que rueda

lentamente por su potencial. Las fluctuaciones cuánticas de este campo se traducen luego

en las anisotroṕıas que observamos en el CMB y proporcionan las semillas para la formación

de la estructura a gran escala en el universo. Se puede demostrar que estas perturbaciones

se congelan una vez que su número de onda asociado se vuelve comparable al parámetro de

Hubble y, por lo tanto, son ciegas a la dinámica subhorizonte hasta que entran de nuevo en

el mismo, lo cual nos permite conectarlas fácilmente con las observaciones del CMB.

En la actualidad, existen una gran cantidad de experimentos del CMB activos, tales

como Planck y BICEP, que han logrado o bien establecer fuertes ĺımites sobre los observables

inflacionarios, o medirlos con alta precisión. La inclinación del espectro de potencias escalar,

por ejemplo, ha sido determinada con una precisión relativa del 0.1% al momento de escribir

esta tesis [23]. Similarmente, existe una cota al nivel porcentual sobre el cociente tensor-

escalar r que mide la diferencia entre la amplitud del espectro de potencias escalar y la

del fondo primordial estocástico de ondas gravitacionales [24]. Experimentos tales como los

telescopios terrestres CMB-S4 [25] y el satélite LiteBIRD [26] empezarán a operar durante

la próxima década, reforzando aún más estas mediciones y posiblemente detectando otras

caracteŕısticas aún no vistas del CMB, como la huella dejada por las ondas gravitacionales

primordiales en la polarización del mismo en forma de modos B.

Agujeros negros primordiales

Los PBHs son candidatos intrigantes para explicar la materia oscura. Desde el punto de

vista teórico, los modelos de formación más simples no requieren ninguna adición al Mod-

elo Estándar de f́ısica de part́ıculas además de la inflación. Por otro lado, al ser objetos

compactos, los mismos exhiben también una amplia variedad de señales astrof́ısicas [27]. Al

momento de escribir esta tesis, los PBHs pueden constituir toda la materia oscura siempre

que sus masas se encuentren en la ventana

10−16 M⊙ ≲MPBH ≲ 10−11M⊙. (4)

El ĺımite superior de este rango de masas se debe a las observaciones de microlentes gravita-

cionales utilizando la cámara HSC del Telescopio Subaru [28], mientras que el ĺımite inferior

se debe al hecho de que los agujeros negros con masas muy pequeñas se estaŕıan evapo-

rando hoy (o se habŕıan evaporado ya si sus masas fueran lo suficientemente pequeñas),

emitiendo radiación de Hawking y conduciendo a la observación de rayos γ extragalácticos

[29, 30] y galácticos [31, 32], siendo la cota más fuerte ésta última, impuesta por el satélite

INTEGRAL. Existen también otros ĺımites en el extremo inferior de este rango, como los

que surgen del estudio de la inyección de enerǵıa electromagnética en el CMB [33, 34], la
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inyección de rayos cósmicos de electrones y positrones en la galaxia debido a la radiación de

Hawking, que seŕıa observada por la sonda Voyager 1 [35] y la aniquilación de los positrones

que contribuyen a la ĺınea galáctica de 511 keV [36–38]. En esta tesis estaremos interesados

solo en el rango de masas mostrado en (4), pero señalamos que los PBHs con masas más

altas están limitados por las observaciones de microlentes de EROS/MACHO [39] y OGLE

[40], por el efecto que tendŕıa su acreción en el CMB [41, 42] y por la no observación del

fondo estocástico de ondas gravitacionales por el interferómetro LIGO [43].

Anteriormente exist́ıa un ĺımite debido a observaciones de femtolentes gravitacionales

producidos por ráfagas de rayos gamma [44] en el rango de masas (4), pero el mismo fue

disputado en [45], donde se argumentó que la mayoŕıa de las ráfagas de rayos gamma son de-

masiado grandes para ser utilizadas como lentes. En [45] también se consideró la posibilidad

de utilizar un subconjunto de ráfagas con tamaños apropiados, aunque un gran número de

ellas tendŕıa que ser detectado por experimentos futuros para hacer de esta una herramienta

de observación viable. Otros ĺımites previamente existentes en este rango de masas incluyen

la explosión de enanas blancas [46] debido a la fusión termonuclear causada por la fricción

generada por el tránsito de un agujero negro suficientemente masivo a través de la estrella

y la acreción y posterior destrucción de una estrella de neutrones por agujeros negros [47].

Estos ĺımites fueron discutidos en [48], donde se derivó la tasa de captura de agujeros negros

por estrellas de neutrones5 y se realizaron simulaciones hidrodinámicas para estimar la tem-

peratura y la escala de tiempo del choque producido por un agujero negro que pasa a través

de una enana blanca. Estos resultados determinaron que las cotas eran menos efectivas de

lo que se pensaba anteriormente.

La relación entre el paradigma inflacionario y la formación de PBHs no debeŕıa de sor-

prender al lector ahora. En los mecanismos de formación de PBHs más simples y estudiados,

la inflación proporciona las semillas para las grandes fluctuaciones de densidad que desenca-

denan el colapso gravitatorio de la materia en agujeros negros [50] en etapas posteriores. Las

fluctuaciones de densidad observadas en el CMB resultan ser demasiado pequeñas para pro-

ducir una cantidad significativa de agujeros negros, por lo que para que los PBHs constituyan

una fracción considerable de la materia oscura observada, el tamaño de dichas fluctuaciones

debe de incrementar a escalas de distancia que son mucho más pequeñas que las observadas

por los experimentos del CMB. Este incremento de las fluctuaciones de densidad se puede

lograr en modelos de inflación de un solo campo si el inflatón atraviesa una región de su

potencial con un punto de inflexión aproximado, lo cual desencadena una fase de rodamiento

muy lento (USR, por sus siglas en inglés) [51] durante la cual aumenta el espectro primordial

PR de perturbaciones de curvatura. Como veremos más adelante, también se pueden pro-

ducir grandes fluctuaciones de densidad a partir de una fase disipativa transitoria durante

la inflación debido a la interacción entre el inflatón y un baño subyacente de radiación en

equilibrio térmico que a su vez conduce a una fuente de ruido estocástico en la ecuación

5Véase también [49] para más trabajo en esta dirección.
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de movimiento para las fluctuaciones. El incremento del espectro de potencias también se

puede obtener en modelos h́ıbridos de inflación de dos campos, véase [52] para la primera

implementación de esta idea. A lo largo de esta tesis nos ocuparemos únicamente de los

mecanismos inflacionarios de formación de PBHs, pero recalcamos que también se han prop-

uesto otras alternativas no inflacionarias, tales como el colapso de los defectos topológicos

[53–57], la colisión de burbujas de vaćıo [58, 59], el colapso de bolas de Fermi [60], el au-

mento en la probabilidad de colapso gravitacional durante una transición de fase debido a

un cambio en la ecuación de estado del universo [61] y el colapso de una gran acumulación

de part́ıculas en una burbuja de vaćıo falso que se encoge [62].

Desviemos ahora nuestra atención a los modelos antes mencionados de producción de

PBHs con un punto de inflexión. La primera implementación de este mecanismo fue presen-

tada en [63],6 pero el interés en la idea permaneció en gran medida latente hasta la primera

detección de ondas gravitacionales por parte de LIGO [65]. Desde entonces, el campo ha

experimentado un interés renovado y ha surgido una gran cantidad de modelos propuestos.

Una de las primeras versiones modernas de la idea del punto de inflexión se encuentra en

[66], donde se propuso un potencial basado en el cociente de dos polinomios. Poco después

se exploró en [67, 68] la posibilidad de que el punto de inflexión en el potencial pudiera

tener un origen radiativo. En [68] se asumió que el inflatón teńıa un potencial polinómico

dominado por el término cuártico y el punto de inflexión surge entonces del ajuste preciso

de los coeficientes de las correcciones cuánticas logaŕıtmicas. Además, para ajustar los datos

del CMB, [68] consideró un acoplamiento no mı́nimo completamente general entre el inflatón

y el escalar de Ricci, que aplana el potencial a valores grandes del campo. La posibilidad

de obtener el punto de inflexión ajustando cuidadosamente los coeficientes de un potencial

polinómico sin necesidad de recurrir a correcciones cuánticas también fue estudiada en [68].

Algunos ejemplos más exóticos de modelos son aquellos motivados por la teoŕıa de cuerdas

y la supergravedad, tales como los potenciales axiónicos [69], o los potenciales construidos

dentro del marco de modelos supersimétricos de atractores α [70].

Sin embargo, estos modelos no vienen sin desventajas. En general, el punto de inflexión

no es una caracteŕıstica que surja naturalmente en estos potenciales, de modo que los mismos

deben de ser construidos espećıficamente con este propósito. Por otro lado, para lograr el in-

cremento del espectro primordial, generalmente se requiere un fuerte ajuste de los parámetros

en el potencial. Existen dos razones para esto. La primera es que el tamaño del espectro de

potencias es exponencialmente sensible a la disminución en la velocidad del inflatón cuando

el mismo alcanza el punto de inflexión. Si los parámetros no se ajustan con cuidado, el

inflatón o bien pasa sobre el mı́nimo local que suele preceder al punto de inflexión a alta

velocidad (de modo que las fluctuaciones apenas incrementan y no se produce una cantidad

significativa de PBHs), o se atasca en dicho mı́nimo local. Otro problema es que la velocidad

6Véase también [64], donde fue propuesto un potencial lineal con un cambio suave en la pendiente capaz
de generar un incremento en el espectro, aunque no con el propósito de producir PBHs.
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necesaria para producir una cantidad significativa de PBHs en un modelo dado a menudo

está en conflicto con la velocidad necesaria para producir suficiente inflación para resolver

los problemas de horizonte y planitud del CMB. La región en el espacio de parámetros que

puede satisfacer todas estas restricciones suele ser muy estrecha. La segunda razón para el

ajuste es que generalmente se supone que los PBHs se forman durante la era dominada por

la radiación (RD, por sus siglas en inglés) que precede a la nucleośıntesis del Big Bang, de

modo que la abundancia actual de PBHs depende exponencialmente del espectro de poten-

cias y las pequeñas desviaciones del punto óptimo en en el que la fracción de PBHs como

materia oscura es O(1), por lo tanto, dan como resultado abundancias órdenes de magni-

tud más pequeñas que las de interés para el problema de la materia oscura. En esta tesis

veremos cómo algunos de estos problemas pueden aliviarse en el contexto de un potencial

inflacionario espećıfico inspirado en la monodromı́a axiónica.

Un efecto que no se tuvo en cuenta en los primeros modelos de producción de PBHs

con un punto de inflexión es el de la difusión cuántica. En la inflación de un solo campo,

generalmente asumimos que la parte homogénea del campo se comporta de manera clásica

y solo tratamos las perturbaciones de forma cuántica. En el escenario estándar, estas per-

turbaciones se vuelven constantes y clásicas una vez que cruzan el horizonte de Hubble,

determinando el espectro de potencias. Sin embargo, las fluctuaciones cuánticas podŕıan

reaccionar sobre la trayectoria clásica del inflatón, una posibilidad que no puede ser mane-

jada por la descripción anterior. En cambio, este efecto debe entenderse en el marco de

la inflación estocástica [71], en el que las fluctuaciones de longitud de onda corta actúan

como fuente para las de longitud de onda grande. Estas últimas se comportan como vari-

ables aleatorias clásicas y su efecto puede describirse mediante un conjunto de ecuaciones

diferenciales estocásticas. Se sabe que en el régimen de rodamiento lento este procedimiento

conduce a un PR igual al obtenido utilizando la teoŕıa de perturbaciones estándar a nivel

lineal (véase [72]), pero no está claro si este resultado se cumple o no si el inflatón pasa

por una fase de USR (como en los modelos de punto de inflexión antes mencionados). En

presencia de una fase USR, se ha especulado que la reacción de las perturbaciones podŕıa

potencialmente modificar la altura del pico de PR, la ubicación del pico en śı, o incluso hacer

más ancha la función de masa de los PBHs [68]. Por lo tanto, estudiar el efecto de la difusión

cuántica es importante para la correcta determinación de la abundancia de los PBHs y es un

tema que trataremos en esta tesis. Otra ventaja del formalismo de la inflación estocástica es

que también permite el cálculo de las correcciones no gaussianas a la función de distribución

de probabilidad de las fluctuaciones de curvatura primordiales, que pueden tener un efecto

sobre la abundancia de los PBHs [73–76].

Ondas gravitacionales

El fondo estocástico primordial de ondas gravitacionales, que está potencialmente al alcance

de detectores que comenzarán a operar en el futuro cercano (tales como LISA [77]) y es
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comparable al CMB en las implicaciones que tendŕıa para la cosmoloǵıa, se ha considerado

durante mucho tiempo como una poderosa herramienta para sondear la f́ısica del universo

primitivo. Hay muchas razones para esto, una de las cuales es el hecho de que las ondas grav-

itacionales pueden sondear procesos y escalas de enerǵıa inaccesibles por otros medios, tales

como transiciones de fase, defectos topológicos y el recalentamiento después de la inflación.

Otra razón es que, usando las técnicas de la teoŕıa de perturbaciones cosmológica, es posible

mostrar que, a primer orden en las perturbaciones, los modos tensoriales de la métrica (es

decir, las ondas gravitacionales) se desacoplan de otros grados de libertad y se propagan

libremente, afectados solo por la expansión del universo y transmitiendo información sobre

los procesos que las generaron [78].

El hecho de que la formación de PBHs requiera de un espectro de potencias escalar rela-

tivamente grande conduce a un incremento en los modos tensoriales de segundo orden de la

métrica que surge como consecuencia de la presencia de términos cuadráticos en perturba-

ciones escalares de primer orden en las ecuaciones de Einstein [79–81] para las perturbaciones.

Además, si los PBHs constituyen toda la materia oscura, entonces debeŕıa ser posible detec-

tar el fondo estocástico de ondas gravitacionales inducido si los mismos se forman durante

una era de radiación y, en particular, si sus masas se encuentran dentro de la ventana (4),

entonces este fondo estocástico seŕıa observable7 por el experimento LISA [77, 82, 83]. Esto

se debe al hecho de que, suponiendo una distribución de masas monocromática, la masa de

un PBH que se forma durante una era de radiación debido al colapso inducido por grandes

fluctuaciones escalares está relacionada con la frecuencia máxima del espectro de ondas grav-

itacionales correspondiente a través de la expresión [82, 83]

MPBH ≃ γ
(
3× 10−15M⊙

)(0.1Hz

fpeak

)2

, (5)

donde γ es un factor de eficiencia O(1). A partir de esta ecuación se puede ver que las

frecuencias que LISA puede sondear corresponden a masas de PBHs en la ventana (4). No

solo esto, sino que la amplitud de la señal también se encuentra aproximadamente cuatro

órdenes de magnitud por encima de la curva de sensibilidad de LISA, como mostraremos

luego.

La posibilidad de que las ondas gravitacionales pudieran ser inducidas a segundo orden en

teoŕıa de perturbaciones fue, hasta donde sabemos, sugerida por primera vez en [79], aunque

la idea no ganó fuerza sino hasta que comenzó a considerarse como una posible forma de

sondear la existencia de PBHs. La razón de esto es que la amplitud de estas ondas gravita-

cionales inducidas suele estar suprimida con respecto a la contribución de primer orden, por

lo que solo cobran relevancia cuando existe un gran pico en el espectro de potencias escalar,

como es el caso de los modelos inflacionarios de producción de PBHs antes mencionados.

7Sin embargo, actualmente no está claro que una señal producida por PBHs se pueda distinguir de otras
fuentes.

23



Estas ondas gravitacionales se inducen no solo durante la inflación, sino también después,

una vez que las perturbaciones vuelven a entrar en el horizonte, y por lo tanto contienen

información sobre el mecanismo que las produjo y la historia cosmológica posterior.

Si queremos utilizar las ondas gravitacionales como un posible observable para sondear

la existencia de PBHs, es necesario examinar cuidadosamente el cálculo de la señal para

determinar si se puede confiar en los resultados. Se ha señalado recientemente que el cálculo

habitual del fondo estocástico de ondas gravitacionales inducidas a segundo orden a partir

de fluctuaciones escalares no es del todo sólido, ya que la perturbación tensorial de segundo

orden de la métrica no es una variable invariante bajo cambios de coordenadas [84–89]. Esta

dependencia del sistema de coordenadas se propaga a la cantidad observable de interés: la

densidad de enerǵıa de las ondas gravitacionales. Recientemente se afirmó [86, 90] que, a

pesar de los comentarios anteriores, el cálculo habitual de la densidad de enerǵıa de las ondas

gravitacionales es válido más allá del orden dominante en las perturbaciones y esta cantidad

es aproximadamente invariante bajo cambios de coordenadas siempre que se mida tarde en

la era de radiación, ya que los escalares que generan los modos tensoriales de segundo orden

decaen rápidamente con el tiempo en este caso, de modo que estos últimos se propagan

linealmente y efectivamente se convierten en cantidades de primer orden [86]. Sin embargo,

la densidad de enerǵıa de las ondas gravitacionales debe de ser una cantidad invariante bajo

cambios de coordenadas que esté bien definida en todo momento, independientemente de

cuándo se mida. La determinación de la expresión correcta para esta cantidad más allá del

orden dominante en las perturbaciones sigue siendo un problema abierto, que exploraremos

con más detalle en esta tesis.

Visión general de la tesis

En esta tesis consideramos dos implementaciones diferentes del mecanismo de producción de

PBHs con un punto de inflexión. El primero consiste en hacer la elección más simple posible

para el potencial del inflatón, esto es, un polinomio cuártico, junto con un acoplamiento no

mı́nimo al escalar de Ricci [2, 68]. Si los coeficientes en el polinomio se eligen apropiadamente,

esto conduce a la presencia de un punto de inflexión en el potencial. Como veremos, en este

modelo el problema principal es que la inclinación del espectro de potencias a escalas del

CMB se encuentra en tensión con los valores medidos experimentalmente si requerimos que

se produzcan suficientes PBHs con masas en la ventana (4) para explicar toda la materia

oscura. Mostraremos que este problema se puede resolver considerando extensiones muy

simples y bien motivadas del modelo cosmológico ΛCDM (como la adición de las masas de

los neutrinos), o agregando operadores de mayor dimensión (cuya presencia es de esperar de

todos modos) al potencial. La segunda posibilidad que consideramos es más complicada y

tiene como objetivo aliviar las desventajas antes mencionadas de los modelos de producción

de PBHs con puntos de inflexión. Los aspectos clave en esta segunda configuración son

un potencial inflacionario que naturalmente contiene varios mı́nimos locales y una época
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temprana dominada por materia no relativista (eMD, por sus siglas en inglés) justo después

de la inflación (que se puede obtener, por ejemplo, del recalentamiento perturbativo), durante

la cual la probabilidad de colapso gravitatorio aumenta [50, 91, 92]. Encontramos que estos

dos ingredientes también pueden conducir a la formación de una fracción considerable de

PBH con masas en el rango (4) [1].

La razón por la que una era de eMD alivia algunos de los problemas de ajuste fino antes

mencionados es que, debido a la ausencia de presión de radiación, es más fácil que una nube

de materia colapse, por lo que el incremento del espectro de potencias requerido para que

se formen los PBHs resulta ser órdenes de magnitud más pequeño que en el escenario de

radiación estándar, incluso después de tener en cuenta el hecho de que el momento angular

y la no esfericidad de la nube suprimen el colapso [92, 93]. Además, aunque la dependencia

de la abundancia de los PBHs del espectro de potencias sigue siendo exponencial durante

la era de eMD, su sensibilidad a pequeños cambios en la amplitud de las fluctuaciones que

inducen el colapso resulta ser mucho más leve que en el escenario de RD. La formación de

PBHs durante una fase de eMD ha sido ampliamente estudiada en la literatura, véase, por

ejemplo, [91] (uno de los primeros trabajos), o [92–94] para actualizaciones recientes. Como

mostraremos, para aprovechar al máximo el escenario de eMD (en el sentido de que se pueda

conseguir una abundancia considerable de PBHs con un espectro de potencias lo más cercano

posible a su valor a escalas del CMB), la temperatura de transición entre las eras de eMD

y RD debe ser de orden ≲ 105 GeV. En trabajos anteriores se ha llegado a conclusiones

similares; en esta tesis mejoramos las estimaciones presentadas en [70, 93].

Hasta ahora nos hemos centrado exclusivamente en los modelos de producción de PBHs

con un punto de inflexión. Sin embargo, como mencionamos anteriormente, existen otras

posibilidades. En particular, los agujeros negros podŕıan generarse durante una fase disipa-

tiva transitoria durante la inflación, un mecanismo que es fundamentalmente diferente de

los modelos de punto de inflexión discutidos anteriormente. El efecto de la disipación en la

dinámica del inflatón se puede describir introduciendo un término de fricción ∝ Γϕ̇ en su

ecuación de movimiento [95, 96]. Uno podŕıa conjeturar que este término podŕıa ralentizar al

inflatón de la misma manera que lo hace un punto de inflexión en el potencial, conllevando a

su vez un incremento del espectro. Como mostraremos, este argumento no es correcto, ya que,

aunque la dinámica del inflatón es similar en ambos escenarios, las ecuaciones de movimiento

de las fluctuaciones son bastante diferentes. Sin embargo, como mencionamos anteriormente,

el espectro de potencias puede incrementar debido a la presencia de una fuente estocástica

de ruido térmico para las fluctuaciones cuyo origen yace en la interacción entre el inflatón y

un baño de radiación en equilibrio térmico subyacente. Asumimos que esta fuente está activa

solo por un peŕıodo corto para producir PBHs con masas adecuadas en el rango (4). Mode-

lamos nuestro escenario utilizando un enfoque fenomenológico, suponiendo que el coeficiente

disipativo Γ tiene un pico localizado y una dependencia de la temperatura con una moti-

vación teórica sólida. Realizamos un análisis numérico completo de la dinámica resolviendo
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directamente las ecuaciones diferenciales estocásticas para las perturbaciones. Integramos el

sistema para múltiples realizaciones del ruido térmico, obteniendo aśı un histograma para

PR(k) en cada k, permitiéndonos determinar sus propiedades estad́ısticas. Sin embargo,

la cantidad más interesante no es necesariamente la distribución de probabilidad completa

para el espectro de potencias, sino su valor esperado, que es una cantidad determinista.

Mostramos que este valor esperado se puede calcular reformulando el sistema estocástico de

ecuaciones diferenciales para las fluctuaciones como una única ecuación diferencial matricial

determinista para sus funciones de correlación a dos puntos.

Además de la exploración de los modelos espećıficos de formación de PBHs discutidos

anteriormente, en esta tesis también reevaluamos el cálculo del espectro de potencias pri-

mordial, en presencia de una fase de USR, usando el marco de la inflación estocástica, tanto

anaĺıtica como numéricamente [3]. Encontramos que (a orden lineal) el espectro de poten-

cias calculado usando la maquinaria del formalismo de inflación estocástica concuerda con el

resultado obtenido utilizando la teoŕıa de perturbaciones estándar, y confirmamos nuestros

resultados numéricamente usando el modelo polinómico antes mencionado. Encontramos que

la elección de la escala que separa a las fluctuaciones clásicas de las cuánticas es fundamental,

ya que en presencia de una fase de USR, las perturbaciones tardan más en clasicalizarse y,

por lo tanto, la elección estándar realizada en el escenario inflacionario de rodamiento lento

usual ya no es válida. No estudiamos correladores de orden superior para las perturbaciones

en esta tesis, pero señalamos que el hecho de que el espectro de potencias no cambie a orden

lineal no implica necesariamente que los efectos estocásticos sean irrelevantes para la abun-

dancia de agujeros negros, ya que se espera que las no-gausianidades modifiquen también su

probabilidad de formación [73, 74, 97].

Dado que los escenarios en los que se forman PBHs durante una era de eMD tienen

ventajas significativas, vale la pena preguntarse si la señal de ondas gravitacionales en este

caso cambia con respecto al escenario de radiación habitual. Espećıficamente, nos gustaŕıa

saber si el fondo estocástico resultante puede detectarse mediante experimentos futuros, como

LISA y BBO/DECIGO. Uno podŕıa conjeturar que este no es el caso, ya que, como se discutió

anteriormente, el incremento del espectro de potencias escalar requerido para que los PBHs

puedan dar cuenta de toda la materia oscura es mucho menor en este escenario. Sin embargo,

mostraremos que debido al hecho de que las fluctuaciones escalares no decaen con el tiempo

durante una era de eMD, el espectro de ondas gravitacionales aumenta en amplitud a medida

que disminuye la temperatura de transición entre las eras de eMD y RD. Este incremento

adicional contrarresta la amplitud relativamente pequeña del espectro de potencias escalar,

lo que hace que el fondo estocástico de ondas gravitacionales sea observable por LISA.

También examinamos si el espectro resultante satisface los ĺımites sobre la abundancia actual

de ondas gravitacionales ΩGW que surgen de las mediciones del CMB [98] y la abundancia de

elementos ligeros producidos durante la nucleośıntesis del Big Bang. [99] y encontramos que

esto restringe el escenario de eMD eliminando parte del espacio de parámetros disponible. La
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porción del espacio de parámetros que se descarta depende de la temperatura de transición,

pero como veremos, para ciertos valores de esta cantidad, este ĺımite puede ser incluso más

fuerte que los que provienen de los experimentos de radiación de Hawking.

La dependencia de los modos tensoriales de segundo orden de la métrica del sistema de

coordenadas se ha estudiado ampliamente tanto para universos dominados por materia no

relativista como por radiación (véase, por ejemplo, [84, 85, 89]). Sin embargo, en el escenario

de transición de eMD a RD el universo pasa por ambas fases, por lo que es importante incluir

las dos en el cálculo. Este cálculo se presenta aqúı por primera vez y encontramos que, debido

al hecho de que la época de eMD tiene una duración finita, el conjunto de sistemas de

coordenadas problemáticos coincide con el del caso de RD [85]. En particular, examinamos

el problema considerando cuatro sistemas de coordenadas diferentes (newtoniano, curvatura

uniforme, expansión uniforme y comovimiento), y encontramos que los resultados coinciden

en a tiempos tard́ıos (es decir, al final de la era de RD) para los primeros tres. Postulamos

que el problema de la dependencia de coordenadas se deriva de la suposición incorrecta

de que las correcciones a orden subdominante en perturbaciones a la abundancia de ondas

gravitacionales ΩGW pueden obtenerse simplemente sustituyendo8 hTT
ij → 1

2
hTT
ij en la fórmula

habitual (cuya derivación puede ser encontrada en [100, 101], por ejemplo),

ΩGW(τ, k) =
1

6

(
k

H

)2

⟨Ph(τ, k)⟩W, (6)

donde Ph denota el espectro de potencias de hTT
ij , τ denota el tiempo conforme, H = aH el

parámetro de Hubble conforme y los corchetes denotan un promedio sobre muchas longitudes

de onda. De hecho, ΩGW debe ser una cantidad observable invariante bajo transformaciones

de coordenadas, de modo que no puede expresarse en términos de hTT
ij solamente. En esta

tesis proporcionamos una derivación heuŕıstica de la expresión completa para esta cantidad,

válida en cualquier sistema de coordenadas e independiente del contenido energético del

universo, usando un argumento basado en propiedades de simetŕıa y análisis dimensional.

La tesis se estructura de la siguiente manera. En el Caṕıtulo 1 revisamos los aspectos

básicos de la inflación y la formación de agujeros negros primordiales en eras dominadas

por materia no relativista y radiación. En el Caṕıtulo 2 implementamos la idea de pro-

ducir agujeros negros a través de un punto de inflexión en el potencial usando dos modelos

inflacionarios diferentes, uno basado en un potencial polinómico y otro inspirado en la mon-

odromı́a axiónica. En el Caṕıtulo 3 exploramos el efecto que tiene la difusión cuántica del

inflatón sobre el espectro de potencias de perturbaciones de curvatura. En el Caṕıtulo 4

discutimos cómo se pueden formar agujeros negros debido a una fase disipativa transitoria

durante la inflación. Finalmente, en el Caṕıtulo 5 calculamos las señales de ondas gravita-

cionales en cada escenario y discutimos las posibilidades de observarlas en el futuro.

8Usamos hTT
ij para denotar los modos tensoriales de primer orden, transversales y sin traza, y el śımbolo

en negrita hTT
ij para denotar modos de segundo orden.
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CHAPTER

1
Black holes from cold inflation

In this introductory chapter we review the basic facts about inflation, reheating and the

formation of primordial black holes. In Section 1.1 we briefly review how inflation provides

a solution to the horizon and flatness problems of the cosmic microwave background and

establish the conventions and notation we will use throughout the rest of the thesis. In

Section 1.2 we compute the mass and abundance of these black holes depending on whether

they form during a radiation or early matter-dominated era, and we determine the size of

the fluctuations necessary for these primordial black holes to be able to account for the

entirety of the observed dark matter. In Section 1.3 we show how an early period of matter

domination can be obtained via perturbative reheating, and determine the number of e-

folds of inflation necessary to solve the horizon and flatness problems. Finally, in Section

1.4 we solve the equation of motion for the comoving curvature perturbation analytically

(by making a suitable set of assumptions), and review the mechanism by which the power

spectrum is enhanced in the presence of an inflection point in the inflationary potential.

1.1 ■ Cold inflation

In this section we briefly review the basic facts about inflation. An extensive review can

be found in [102]. We begin by assuming that the Universe is dominated by a perfect fluid

with equation of state p = wρ and that spacetime is described by the Friedmann-Lemâıtre-

Robertson-Walker metric, which is given in conformal time dτ = adt and in spherical coor-

dinates by

ds2 = a2
(
− dτ 2 +

dr2

1− kcr2
+ r2dΩ2

)
. (7)

We refer to the constant kc as the spatial curvature of the Universe. This is a number that

must be determined experimentally, and is not fixed by any fundamental principles. The

scale factor a(τ) is a function of time that describes how the size of a spatial patch changes

with the expansion of the Universe. The evolution of a is determined by the Friedmann

equations

H2 =
ρ

3M2
p

− kc
a2
, (8)

Ḣ +H2 = − 1

6M2
p

(ρ+ 3p), (9)
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which can be obtained from Einstein’s equations and where H = ȧ/a is the Hubble param-

eter. Throughout this thesis we use dots to denote derivatives with respect to cosmic time

(· ≡ d/dt) and primes to denote derivatives with respect to conformal time (′ ≡ d/dτ ). The

first of these equations can be recast as

Ω− 1 = Ωk, with Ω =
ρ

3M2
pH

2
, Ωk =

kc
a2H2

. (10)

The quantity Ωk is constrained to be Ωk ≪ 1 by CMB experiments (see e.g. [23, 103]). This

is a puzzling fact, since, as we will see momentarily, the quantity (aH)−1, known as the

comoving Hubble radius, increases in time for conventional matter sources (e.g. dust and

radiation), so in order to satisfy the constraint we must have kc ≪ 1. This is known as

the flatness problem. From now on we set kc = 0, which makes the Friedmann equations

invariant under a rescaling of a and therefore allows us to normalize the scale factor to unity

today, a0 = 1.

The particle horizon is the maximum distance a photon can travel from the Big Bang at

t = 0 to some later time t (and therefore determines the size of the observable Universe),

∆r = ∆τ =

∫ t

0

dt′

a(t′)
∝ 1

aH
∝ aq, q =

1

2
(1 + 3w). (11)

The fact that (aH)−1 ∝ aq can be shown by solving the Friedmann equations. As mentioned

earlier, the scale factor a describes the evolution of the size of a spatial patch. A patch with

size Rp(τ0) = R0 today will have size Rp(τ) = a(τ)R0 at some other time τ . We see from the

above equation, however, that the particle horizon does not grow linearly with a, but rather

as ∆r ∝ aq. Since the particle horizon represents the size of a causally connected patch, we

see that for conventional matter sources (e.g. radiation with w = 1/3 or dust with w = 0), a

spatial patch that is causally connected today must have been disconnected at some point

in the past. Nevertheless, measurements show that the CMB temperature is nearly uniform

across the entire visible Universe (on sufficiently large scales). The question of how this

equilibrium was achieved if the patch was causally disconnected at some point is known as

the horizon problem.

The key observation now is that if the Universe had gone through a phase in which

(aH)−1 decreases, then at some point the spatial patch corresponding to the observable

Universe would have been larger than the particle horizon (provided this phase was long

enough), solving the horizon problem. Similarly, the quantity Ωk ∝ (aH)−1 is driven to a

small value, solving the flatness problem. We refer to such a phase as inflation. From eq. (11)

we see that such a period requires w < −1/3. The simplest way in which this condition can

be satisfied is if the energy budget of the Universe is dominated by a scalar field slowly

rolling down a potential. To see this, let us consider the corresponding Lagrangian for such
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a field assuming it is minimally coupled to gravity

L =
1

2
M2

pR +
1

2
(∂µϕ)

2 − V (ϕ). (12)

The pressure and energy density of the field are, assuming that the field is homogeneous,

ρ =
1

2
ϕ̇2 + V (ϕ), (13)

p =
1

2
ϕ̇2 − V (ϕ). (14)

Thus, if the kinetic energy is negligible compared to the potential, we have w = p/ρ ≃ −1 <

−1/3, and therefore a period of inflation takes place. To quantify how negligible the kinetic

energy is with respect to the potential, it is convenient to define

ϵ ≡ − Ḣ

H2
, η ≡ −1

2

ϵ̇

Hϵ
. (15)

These are known as the slow-roll parameters. It can be shown from Friedmann’s equations

that inflation takes place when ϵ < 1. The regime in which ϵ ≪ 1 and |η| ≪ 1 is known as

slow-roll inflation. This inflationary period only lasts a finite amount of time, since eventually

the field reaches the minimum of the potential and the potential and kinetic energy become

comparable, leading to ϵ > 1 and ending inflation. The field then proceeds to oscillate around

the minimum of the potential, decaying into other fields and populating the Universe with

radiation. This process is known as reheating.9

One of the core features of inflation is that it allows us to understand the CMB anisotropies.

For this we need to make use of cosmological perturbation theory, reviewed in detail with our

conventions in Appendix A. The field is expanded into a homogeneous background piece ϕ(t)

and a space-dependent perturbation δϕ(t,x). Similarly, we can expand the metric around

the homogeneous FLRW background as10

ds2 = −a2 (1 + 2φ) dτ 2 + 2a2∂iBdx
idτ + a2

[
(1− 2ψ) δij + 2∂i∂jE

]
dxidxj. (16)

If we work in Newtonian gauge (B = E = 0) and in the absence of anisotropic stress, we can

use one of Einstein’s equations to set φ = ψ. The energy density, pressure, and momentum

9This is not the only way in which inflation can end, however. Another possibility is that the inflation
gradually transfers its energy to a thermal bath of radiation throughout its evolution. Eventually, the
radiation energy density begins to dominate and inflation ends. This scenario is known as warm inflation,
and will be studied in Chapter 4.

10Vector perturbations are not typically produced in single-field inflation (and in any case decay quickly
with the expansion of the Universe), so we ignore them. We also neglect tensor perturbations for the time
being, these will be treated in detail in Chapter 5.
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perturbations for the Lagrangian (12) are, respectively,

δρ = ϕ̇δϕ̇− ϕ̇2ψ + Vϕδϕ, (17)

δp = ϕ̇δϕ̇− ϕ̇2ψ − Vϕδϕ, (18)

δq = −ϕ̇δϕ, (19)

and the remaining Einstein’s equations are then, in Fourier space,

3H(ψ̇k +Hψk) +
k2

a2
ψk = − 1

2M2
p

(
ϕ̇δϕ̇k − ϕ̇2ψk + Vϕδϕk

)
, (20)

ψ̇k +Hψk =
1

2M2
p

ϕ̇δϕk, (21)

ψ̈k + 4Hψ̇k + (2Ḣ + 3H2)ψk =
1

2M2
p

(
ϕ̇δϕ̇k − ϕ̇2ψk − Vϕδϕk

)
. (22)

The connection to CMB observables is most easily made by making use of the following

gauge-invariant variable, known as the comoving curvature perturbation,

−Rk ≡
H

ρ+ p
ϕ̇δϕk + ψk. (23)

By combining Einstein’s equations (20–22), we can find a second-order differential equation

for this quantity

R̈k + (3− 2η)HṘk +
k2

a2
Rk = 0. (24)

This is known as the Mukhanov-Sasaki equation, and will be studied in detail in Section 1.4.

This equation is usually solved by imposing the so-called Bunch-Davies initial conditions,

Rk = − e−ikτ

2Mpa
√
kϵ
, (25)

which can be obtained by asking that the state that minimizes the expectation value of the

Hamiltonian in the far past coincides with the Minkowski vacuum [102]. The main quantity

of interest for us will be the power spectrum of R, defined via

PR(k) ≡
k3

2π2
|Rk|2

∣∣∣∣
k≪aH

. (26)

The power spectrum ofR can be related to the temperature and density fluctuations observed

in the CMB, so its behaviour on small scales 10−4Mpc−1 ≲ k ≲ 0.5Mpc−1 is well-known.

On these scales, the power spectrum is well described by the following nearly scale-invariant

function,

PR(k) ≃ As

(
k

k⋆

)ns−1

, (27)
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where k⋆ is some arbitrary reference scale, usually taken to be k⋆ = 0.05 Mpc−1. The

amplitude and spectral index have been determined to be As ≃ 10−9 and ns ≃ 0.965 at this

scale [23, 103]. As we will show in Section 1.4, a spectrum with these characteristics can be

obtained within the framework of slow-roll inflation if the potential is chosen appropriately.

This is one of the great successes of the inflationary paradigm. As we will see momentarily,

the power spectrum is also the quantity that determines whether black holes can form.

1.2 ■ Primordial black holes

As discussed in the previous section, inflation provides the seeds for the density fluctuations

we observe today. Had these fluctuations been large enough at a particular scale, they could

have induced gravitational collapse of the matter in the surrounding region, leading to the

formation of a black hole [50]. The masses of the resulting black holes, as we will show,

would then be determined by the scale at which these fluctuations are large. In this section

we review the calculation of the mass and abundance of these black holes in radiation and

matter-dominated eras. A schematic representation of the evolution of the scale factor across

the various phases of the cosmological history in the scenario we consider is shown in Fig. 1.

To be clear, we consider PBH formation only during an eMD era, and not during the late

MD era that follows Big Bang Nucleosynthesis.

The mass and abundance of the PBHs depend on the equation of state of the Universe

when the wavenumber of the fluctuations that induce collapse becomes comparable to the

Hubble radius after inflation. During RD the radiation pressure opposes the gravitational

collapse, whereas during MD any overdensity grows since the pressure is zero. We use

tm = 2/(3Hm) to denote the time at which the eMD era ends. For simplicity, we consider

that the Universe thermalizes instantaneously at tm and becomes radiation dominated. Given

that in RD the Hubble expansion rate is H = 1/(2t) and the energy density during this

period is therefore ρ = 3M2
p/(4t

2), we can define the temperature Tm of the radiation bath

at thermalization through ρ = (π2/30)g⋆(T )T
4 as

Tm =

(
Mp

tm

)1/2(
4π2g⋆(Tm)

90

)−1/4

, (28)

where g⋆ =
∑

b g⋆b + (7/8)
∑

f g⋆f counts the effective number of degrees of freedom and the

sums over b and f run, respectively, over the baryonic and fermionic species whose masses are

below T at any given time. In the Standard Model, for temperatures above the electroweak

phase transition one has g⋆ = 106.75.

An early phase of MD after inflation can occur during perturbative reheating if the

inflaton oscillates rapidly in a quadratic minimum [104]. In this case, we can identify the

temperature Tm with the reheating temperature and we will often refer to it in this way. We

will elaborate more on the connection between Tm and inflation in Section 1.3. However, it

32



Figure 1: Schematic depiction of the evolution of the conformal Hubble factor H ≡ aH in the
scenarios we consider. Tm denotes the temperature at which the instantaneous transition between
the early matter era (eMD) and the radiation era (RD) occurs. Tf denotes the temperature at the
end of the RD era.

is worth noting that there are other possibilities to realize a phase of eMD (e.g. oscillations

of other heavy scalars) and our discussion until Section 1.3 does not depend on the origin of

this phase.

As mentioned above, PBHs form from the collapse of regions with large density fluctu-

ations when their spatial extension, characterized by some scale k, becomes comparable to

the size of a Hubble patch. The mass of the individual PBHs is mainly given by the mass

contained in this Hubble patch at the time of horizon re-entry for the scale k. This scale

cannot be defined unambiguously; see [105] for a recent discussion. A common approxima-

tion for peaked spectra identifies k with the location of the peak of the primordial spectrum

in linear perturbation theory. We will use this approximation, which is sufficient for our

purposes. Then, the mass MPBH of individual PBHs is

MPBH = 4πγ
M2

p

H
, (29)

whereH is equal to 1/(2t) for RD after inflation and 2/(3t) for an eMD phase. The coefficient

γ quantifies the efficiency of the collapse. Numerical analyses in the case of RD indicate that

γ depends on the spectral shape of the density fluctuations and that the actual mass depends

mildly on the density threshold that triggers the formation of a PBH [106]. We will neglect

these dependencies and use γ = 0.2 for RD (see [50, 106]), which is accurate enough for our

purposes. The actual efficiency of the collapse in MD is uncertain but may be expected to be
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higher than in RD due to the absence of radiation pressure. For concreteness, we take γ = 1

for MD throughout this thesis, although we keep γ unspecified in most of the expressions

below.

An overdensity of comoving scale k re-enters the Hubble horizon at time tk, when the

condition k = a(tk)H(tk) ≡ akHk is satisfied. If this occurs during an eMD phase which ends

at time tm, we can write: ak = (ak/am) (am/a0), where am ≡ a(tm) and a0 is the scale factor

today, which we normalize to one. Entropy conservation from tm until today implies that

am/a0 = (T0/Tm) (g⋆s(T0)/g⋆s(Tm))
1/3, where T0 is the current CMB temperature. During

the phase of eMD there is no thermal equilibrium, but the scaling ak/am = (Hm/Hk)
2/3 can

be used. Combining these results with the condition for horizon crossing and using that

3M2
pH

2
m = (π2/30)g⋆(Tm)T

4
m to eliminate Hm, we obtain

ak =
π2

90
g⋆(Tm)

g⋆s(T0)

g⋆s(Tm)

T 3
0 Tm
k2M2

p

, (30)

where we are keeping the number of effective entropy (g⋆s) and temperature (g⋆) relativistic

degrees of freedom distinct and T0 is the temperature of radiation today. This expression

allows us to write the PBH mass of eq. (29) as

MPBH = γ
2π3

45

(
T0
k

)3
g⋆s(T0)

g⋆s(Tm)
g⋆(Tm)Tm for eMD. (31)

If the PBHs form during RD, the expression for their mass can be obtained following a

similar logic. In this case

ak =
π

3
√
10

(
g⋆s(T0)

g⋆s(Tk)

)2/3
T 2
0

kMp

√
g⋆(Tk), (32)

and therefore

MPBH = γ
4π2

3
√
10

(
T0
k

)2(
g⋆s(T0)

g⋆s(Tk)

)2/3√
g⋆(Tk)Mp for RD. (33)

The PBH mass thus scales as k−2 if PBHs form during RD and as k−3 if they form during

eMD. In the latter case the PBH mass depends also on the duration of the eMD phase

through the reheating temperature Tm, see eq. (28). For the purpose of comparison, it is

useful to write both mass expressions in terms of some benchmark values for k, Tm, and the

mass of the Sun (M⊙) [1],

MPBH ≃ 2.8× 10−16

(
γ

0.2

)(
g⋆(Tk)

g⋆s(Tk)

)2/3(
106.75

g⋆(Tk)

)1/6(
1014 Mpc−1

k

)2

M⊙ for RD, (34)

MPBH ≃ 2.4× 10−17γ

(
g⋆(Tm)

g⋆s(Tm)

)(
1014 Mpc−1

k

)3(
Tm

105 GeV

)
M⊙ for eMD. (35)
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The expressions above have been obtained by setting T0 = 2.7255 K [107], g⋆(T0) = 2.00, and

g⋆s(T0) = 3.91. These values for the entropy and temperature degrees of freedom correspond

to assuming that all three neutrinos are non-relativistic today, see [105].

We are interested in the current abundance of PBHs with respect to that of dark matter:

fPBH =
Ω0

PBH

Ω0
DM

. (36)

In the approximation of rapid collapse of the overdensity, fPBH can be written in terms of β,

i.e. the ratio of the collapsing energy density to the total energy density at the time of the

collapse:

β =
1

γ

ρPBH(tk)

ρ(tk)
. (37)

Here ρPBH and ρ are the PBH and total energy densities, respectively.

In the case of PBHs formed during an eMD phase, by means of entropy conservation and

using ρm = (π2g(Tm)/30)T
4
m, we obtain

fPBH = γβ
Ω0
γ

Ω0
DM

g⋆(Tm)g⋆s(T0)

g⋆(T0)g⋆s(Tm)

Tm
T0
, (38)

where we have assumed that the transition between the different epochs depicted in Fig. 1

is instantaneous.

The analogous expression for RD is obtained from eq. (38) by simply setting Tm = Tk,

where Tk is the temperature of the radiation at the time of formation. In this case we can

write Tk as a function of the Hubble rate and relate this to the PBH mass through eq. (29).

Then, the expressions for the PBH abundance as a function of the quantity β in the RD and

eMD cases are, respectively [1]

fPBH ≃
(
γ

0.2

)3/2(
β

8.9× 10−16

)(
g⋆(Tk)

106.75

)−1/4(
g⋆(Tk)

g⋆s(Tk)

)(
MPBH

10−15 M⊙

)−1/2

(RD), (39)

fPBH ≃ γ

(
β

5.5× 10−15

)(
g⋆(Tm)

g⋆s(Tm)

)(
Tm

105 GeV

)
(eMD). (40)

The temperature dependence of the PBH abundance in the eMD case implies that a shorter

duration of this phase (i.e. a higher reheating temperature) implies a larger abundance, see

eq. (28). This is simply due to the fact that PBHs, being cold dark matter, dilute slower than

radiation as the Universe expands. Therefore, the longer the duration of the RD phase is (i.e.

the shorter the eMD phase is), the higher the abundance of PBHs. Notice that we could also

write fPBH in the eMD case as a function of the PBH mass, using eq. (35). However, unlike in

the RD case of eq. (39) this introduces explicitly the wavenumber k, which makes the formula

more cumbersome. We often assume that the distribution of PBH masses at formation time
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is monochromatic, which is a good approximation for sufficiently peaked primordial spectra.

If this condition is not satisfied, the total PBH abundance can be obtained by integrating∫
fPBH(MPBH)d log(MPBH).

So far we have obtained general expressions for the abundance as functions of the col-

lapsing energy density fraction β, but we have not discussed how this quantity is computed

in each case. In the RD case we use the approximation

β(k) =
1√

2πσ2(k)

∫ ∞

δc

exp

[
− δ2

2σ2(k)

]
dδ, for RD. (41)

In this expression δ = δρ/ρ is the density contrast in the total matter gauge (since this is the

quantity that can be extracted from numerical simulations [108, 109]), δc is the estimate for

the δ threshold for gravitational collapse during RD and σ2(k) is the variance of the density

contrast smoothed over a comoving distance scale ∼ 1/k, given by

σ2(k) =
4(1 + w)2

(5 + 3w)2

∫
dq

q

( q
k

)4
PR(q)W

2(q/k) , (42)

where w = 1/3 for RD. In this expression PR(k) is the dimensionless power spectrum of the

comoving curvature perturbation R and W (x) is a window function which we will take to be

Gaussian. The expression (41) is obtained by applying the Press-Schechter formalism [110]

and assuming that the primordial fluctuations leading to PBH formation are Gaussian. The

Gaussian approximation will be sufficient for our purposes in this thesis, but we will have

more to say on non-Gaussianities at the end of Section 3.3. The value of δc is known to

depend on the profile of the collapsing overdensities, but should be between 0.4 and 0.5, see

[111–113].

The physical interpretation of eq. (41) is transparent: only overdensities above the thresh-

old δc can collapse into a black hole. For PBHs formed during eMD, the situation is very

different, due to the absence of radiation pressure. In this case, eq. (42) still applies (now

with w = 0) but, for sufficiently large variances, the collapsing energy fraction has been

estimated to be11 [91, 92]

β(k) ≃ 0.056 σ5(k), for eMD and σ ≳ σang. (43)

This formula was derived in [92] by applying the so-called Zel’dovich approximation [114]

to model the nonlinear growth of density perturbations in the framework of Newtonian

cosmology. The perturbations are assumed to follow a Gaussian distribution, and deviations

from spherical symmetry are encoded in a deformation tensor whose entries are parameterized

11Inhomogeneities of the collapsing overdensity may further suppress PBH formation during eMD [94].
However, such extra suppression depends on certain assumptions on the final stages of the collapse, which
might be evaded in realistic setups; see the discussion in [94]. For these reasons, we neglect inhomogeneities
in our estimates and use eqs. (43) and (44) throughout this thesis.
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by using the Doroshkevich distribution [115]. The non-sphericity of the collapsing cloud

leads to a pancake collapse [114], so that the Schwarzschild criteria can no longer be used

to determine whether a black hole forms, and it must instead by replaced by the hoop

conjecture [116]. These ingredients lead to a complicated integral for the collapse probability

distribution that must be performed numerically. The above expression is the result of a

numerical fit to this integral and should therefore be regarded as a semi-analytical formula.

This expression for β, which accounts for the effect of asphericities in the collapsing region, is

valid only if σ is larger than a certain value12 σang ≃ 0.005 [93]. Below this value, the effect of

the angular momentum of the collapsing region becomes relevant, and the expression above

must be replaced by [93]

β(k) ≃ 1.9× 10−7fq(qc)I6σ2(k) exp

[
−0.147

(
I2

σ(k)

)2/3
]
, for eMD, and σ ≲ σang. (44)

This formula is obtained by applying the theory of angular momentum in structure formation

developed in [117] to PBH collapse. The Kerr bound, which relates the mass of a spinning

black hole to its angular momentum and determines the condition under which the black

hole singularity is hidden by an event horizon, is adopted as the formation criteria, and the

fluctuations are once again assumed to follow a Gaussian distribution. In the above formula,

I is an O(1) parameter13[93] and fq(qc) is the fraction of mass with a level of quadrupolar

asphericity q smaller than a threshold qc ≃ 2.4(I σ)1/3. Following the estimates of [93] we

will assume fq(qc) = 1 in our numerical examples.

From eqs. (41) and (44), it is clear that in order to obtain a sizeable abundance at a

specific mass, the power spectrum PR of curvature fluctuations produced during inflation

must be enhanced at the scales of interest (i.e. those unconstrained by current experiments).

The simplest way to model the peaked power spectrum resulting from the kind of models

we will consider is by using a Dirac delta,

PR(k) = Aδkδδ(k − kδ). (45)

The variance of the density contrast, given in eq. (42), can be computed directly in this case.

For a Gaussian window function, we obtain

σ2(k) = Aδ
8(1 + w)2

π(5 + 3w)2

(
kδ
k

)4

exp

(
−k

2
δ

k2

)
. (46)

This can be plugged directly into eqs. (39) and (40) to obtain the PBH abundance. The

12We remark that the numerical fits in eqs. (43, 44) fail around σang, thereby making β discontinuous at
this value.

13The variance of the angular momentum ⟨L2⟩ and σ are related through I via 45t⟨L2⟩1/2 ≃ 8πI(ar)5ρσ,
where r is the initial comoving radius of the overdensity and ρ is the homogeneous energy density of the
eMD universe.
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Figure 2: Left panel: PBH abundance for the three examples shown in Table 1, together with
galactic γ-ray constraint in [32] and HSC lensing [48, 118] constraints. Right panel: sensitivity
of fPBH to the transition temperature and the amplitude of the power spectrum in eq. (45) for the
central values in the RD and eMD2 examples. The shaded regions depict an order of magnitude
change in the abundance, and it remains unchanged on the dashed lines.

result is depicted in the left panel of Fig. 2 for three different parameter choices, shown in

Table 1.

Example Aδ kδ Tm

eMD1 0.00021 1013.5Mpc−1 105GeV
eMD2 0.00046 1012.7Mpc−1 104GeV
RD 0.041 1012.7Mpc−1 ∞

Table 1: Parameter choices for three examples that yield an abundance fPBH of O(1), depicted in
Fig. 2. In RD we need PR ∼ 10−2 to obtain fPBH ∼ O(1), whereas in eMD we need PR ∼ 10−4.

The previous equations also summarize a key difference between PBH formation in eMD

and RD. Whereas in RD the PBH abundance is exponentially sensitive to the primordial

power spectrum PR, in the eMD case this dependence is a power-law for fluctuations larger

than σang. The reason for this difference lies in the threshold for gravitational collapse: in RD

this is given by δc, while in eMD essentially any overdensity undergoes gravitational collapse,

due to the very small Jeans length of non-relativistic matter.14 Angular momentum effects

need to be taken into account in eMD if σ is small enough. In that case, the approximate

14The Jeans length determines the critical radius above which an overdensity collapses and is proportional
to the speed of sound of the fluctuations.
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Figure 3: Left panel: PBH abundances and masses (at the peak of the distribution), together with
the constraint of eq. (47), and the galactic γ-ray constraint in [32], with kδ fixed as in the eMD1

example of Table 1. Right panel: same as left panel, for the eMD2 example of Table 1. The values
of Tm and Aδ corresponding to each example are shown with a star. The eMD1 example lies right
at the edge of the constraint in eq. (47), which we remark should be understood as an order of
magnitude estimate.

power-law behavior of β is lost, but its sensitivity to the primordial power spectrum is

still much milder than in RD. In the right panel of Fig. 2 we compare the sensitivity of β to

changes in PR. The PBH fraction changes much more dramatically with PR for PBHs formed

during RD than in eMD. This translates into a higher level of tuning in the parameters of

the inflationary potential if PBHs with fPBH ∼ 1 form during RD.

Eqs. (41) and (43) should be supplemented with an additional constraint which arises from

requiring that the collapsing fluctuation reaches the non-linear regime during the eMD era.

This requirement significantly limits the available parameter space, which we show in Fig. 3.

Using that the linear density contrast grows as the scale factor during matter domination,

one finds that only fluctuations larger than σnl ≃ (Hm/Hk)
2/3 reach non-linearity before the

end of the eMD epoch. Smaller fluctuations take longer to reach the non-linear regime and

thus do not complete the collapse during eMD. This constraint can be conveniently expressed

as follows [92]

σ ≳ 1.9× 10−4

(
g⋆(Tm)

106.75

)(
106.75

g⋆s(Tm)

)2/3(
Tm

105GeV

)2(
1014Mpc−1

k

)2

. (47)
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When the rotation of the collapsing fluctuation plays a role (i.e. for σ ≲ σang) a different

constraint arises. This can be understood as follows: during the linear evolution of an

overdensity, its angular momentum grows; in particular, the longer the duration of the linear

evolution, the stronger will be the effect of angular momentum on the gravitational collapse.

Therefore, a different lower bound on σ arises from requiring that the growth of angular

momentum does not prevent PBH formation. The resulting constraint is σ ≳ 5Hm/(2IHk)

–we refer the reader to [93] for its derivation– and can be rewritten as

σ ≳ 10−5

(
1

I

)(
g⋆(Tm)

106.75

)3/2(
106.75

g⋆s(Tm)

)(
Tm

105GeV

)3(
1014Mpc−1

k

)3

. (48)

We remark, however, that these bounds (especially the latter) should be understood as an

order of magnitude estimate and not a hard cutoff. The precise determination of the effect

of angular momentum on the collapse of PBHs requires further study, in particular from

the point of view of numerical simulations. In what follows we restrict our attention to the

constraint in eq. (47), which is slightly stronger than the one above for the parameters we

are interested in.

The advantage of considering an eMD phase for PBH formation is reflected in Fig. 3,

where we plot the PBH masses according to (35) as well as the abundance fPBH obtained

by combining eqs. (40) and (44), which is the appropriate expression for β in the region

of parameter space where σ ≲ σang.
15 We also show the observational bounds on PBH

masses from Hawking evaporation [32] as well as the constraint (47). In the viable region of

parameter space, the minimal amplitude of the primordial power spectrum which is needed

to obtain fPBH = 1 is PR ≳ 10−4 (for reheating temperatures Tm ≲ 105 GeV). This is five

orders of magnitude above the value at CMB scales and two orders of magnitude smaller than

the benchmark value PR ≳ 10−2 required in RD. We remark that the reason that the most

interesting range of reheating temperatures is Tm ≲ 105 GeV is that for higher reheating

temperatures the constraint of eq. (47) comes into effect and the collapse occurs at least

partially during RD, so that the probability that a black hole will form becomes strongly

suppressed. The slightly weaker constraint of eq. (48) also kicks in around the same region,

so the probability is further suppressed by the high angular momentum of the collapsing

matter cloud. Black hole formation is still possible for higher reheating temperatures, but

then the amplitude of the power spectrum required to obtain fPBH ≃ 1 would be higher than

the PR ≳ 10−4 value quoted above and shown in Fig. 3. Only for reheating temperatures of

order Tm ≲ 105 GeV can we take full advantage of the eMD era. In addition, we remark that

15The analysis of [93] suggests that the value σang ≃ 0.005 should be taken as an order of magnitude
estimate, rather than as a sharp threshold. In particular, effects of order higher than second in angular
momentum may lower this value of σang and extend the validity of (43). This would lead to slightly smaller
values of PR being required for fPBH smaller than one, which are more advantageous for PBH formation,
but the constraint (47) would then disfavor a larger region of parameter space, leading to slightly lower
reheating temperatures.
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eqs. (34, 35), make clear the fact that the most interesting scales for the formation of PBHs

of interest for the dark matter problem are around k ∼ 1014 Mpc−1, since only for these

scales do we obtain masses in the unconstrained window (1). As can be seen from the eMD1

and eMD2 examples of Table 1 and Fig. 3, the only effect of varying this scale is that the

reheating temperature Tm required to take full advantage of the eMD era changes slightly.

1.3 ■ Perturbative reheating

In the previous section we found that intermediate reheating temperatures Tm ≲ 105 GeV

are required to take full advantage of an eMD phase and produce PBHs with masses in the

unconstrained window (1) and fPBH ∼ 1 (see Fig. 3 and the relevant discussion). While we did

not specify the origin of the eMD phase, reheating provides a straightforward option. In this

section we briefly describe how an early period of matter domination can be obtained from

perturbative reheating (or, more generally, from having a scalar field oscillate around the

minimum of a quadratic potential [104]). We consider the Lagrangian for a minimally coupled

scalar in eq. (12). A potential is generically quadratic if expanded around its minimum,16

V ≃ 1

2
m2ϕ2. (49)

The field ϕ obeys the equation of motion

ϕ̈+ 3Hϕ̇+ Vϕ = 0. (50)

During this oscillating phase the field trajectory can be parameterized as [119]

ϕ(t) = Φ(t) sin(mt), (51)

where the envelope function Φ(t) encodes the information about the redshift and decay of

the inflaton. By averaging the energy density (13) and pressure (14) of the field over one

oscillation, we obtain

⟨ρ⟩ = 1

2
⟨ϕ̇2⟩+ 1

2
m2⟨ϕ2⟩ ≃ 1

2
m2Φ(t)2, (52)

⟨p⟩ = 1

2
⟨ϕ̇2⟩ − 1

2
m2⟨ϕ2⟩ ≃ 0, (53)

where we have assumed that the timescale over which Φ(t) varies is much smaller than the

period of one oscillation. We therefore find that a field oscillating in a quadratic potential

indeed behaves as presureless dust. If the main contribution to the energy budget of the

16There are of course exceptions to this (for instance, if the potential is a monomial ϕk with k ̸= 2, or if
there is some symmetry preventing the appearance of a quadratic term), but generically this is the leading
term in a series expansion around the minimum.
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Universe during this period of reheating is due to ϕ, the Universe is effectively matter-

dominated.

A perturbative description of reheating such as the one presented above is not always

appropriate due to the occurrence of preheating [119]. This is the process by which explosive

particle production takes place as a consequence of parametric resonance driven by the

inflaton oscillations. The occurrence of preheating typically quenches the existence of a

prolonged phase of eMD [120]. Therefore, it is worth stating the conditions under which

preheating is prevented. We illustrate this by considering a coupling of the form µϕχ2

between the inflaton ϕ and another scalar field χ. The envelope function Φ(t) in eq. (51)

is given by Φ(t) = Mp/(
√
3πmt), with mt ≃ n/2π, where n is the number of accumulated

oscillations at time t [119]. By studying the growth of χ fluctuations, efficient preheating

can be shown to occur as long as both of the following conditions are fulfilled [119]:

µ ≲ 32Φ(t), and 4µΦ(t) ≳
√
m3H. (54)

Violating one of these two conditions is enough to ensure that preheating does not happen.

The first of these inequalities will be satisfied initially (for small n) provided that µ ≪ Mp.

However, the second condition can be violated if µ is sufficiently small, preventing preheating

from occurring at this stage. Once n is large enough, both conditions are violated and thus

preheating never occurs.

Let us therefore impose that preheating does not occur and derive the value of µ such

that Tm ≲ 106 GeV can be achieved. For the reheating channel under consideration, the

perturbative decay rate of ϕ into χ is given by Γ = µ2/(8πm). In the absence of preheating,

perturbative reheating proceeds until H ∼ Γ, when the energy density stored in the inflaton

is approximately 3M2
pΓ

2. Equating this to the energy density of the radiation bath (under

our assumption of instantaneous transition between eMD and RD), we get

Tm =
√

ΓMp

(
π2g⋆(Tm)

90

)−1/4

≃ 105 GeV

(
µ

103 GeV

)(
1013 GeV

m

)1/2

. (55)

Therefore, Tm ∼ O(105) GeV is achieved if µ ∼ 10−16Mp for typical values of the inflaton

mass in high scale models, m ∼ 1013 GeV. It is straightforward to check that for such small

values of µ the second of the conditions (54) is violated, which shows that the estimate (55)

is consistent with the assumption of inefficient preheating.

It remains to be seen whether such small values of µ are feasible in concrete scenarios of

inflation and reheating. Interestingly, in inflationary models inspired by string compactifi-

cations, such as the one we will consider in Section 2.3, the inflaton can be a modulus and

thus couple only gravitationally to light degrees of freedom. In this case, the decay rate Γ is

Planck-suppressed, its typical form for decay into a scalar pair being Γ ∼ m3/(48πM2
p ) (see

e.g. [121]). For m ∼ 5 × 10−6Mp this translates into µ ∼ 10−11Mp. For these values of
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µ, preheating is again avoided. However, reaching Tm ≲ 106 GeV still requires an extra

suppression of the decay rate. Model building possibilities in this direction can be found e.g.

in [121], in the framework of the large volume scenario [122, 123] of moduli stabilization.

Let us relate the reheating temperature to the number of e-folds (dN = Hdt) between

the time at which the largest observable scales left the horizon and the end of inflation. The

number of e-folds elapsed from the moment a scale k satisfies k = aH during inflation until

its end is17

N(k) = 63.55 +
1

4
log

Ω0
r

h2
− log

k

a0H0

− 1

12
log

ρend
ρm

+
1

4
log

ρk
ρend

+
1

4
log

ρk
(1016GeV)4

, (56)

where H0 = 100h km s−1Mpc−1 and ρk is the energy density of the universe at k = aH

during inflation. The subscripts end and m refer to the end of inflation and the end of the

period of eMD. The quantity Ω0
r is the current radiation density. We can relate ρm to Tm

simply through

ρm =
π2

30
g⋆(Tm)T

4
m. (57)

Given a model of inflation, we can determine ρk and ρend and then use the last two equations

to find out the required reheating temperature Tm for a specific value of N(k). For instance,

if we assume 10Hend ∼ Hk ≃ 1013GeV, so that 102ρend ∼ ρk ∼ (1016GeV)4, we get

N(k) ≃ 49− log

(
k

0.05 Mpc−1

)
+

1

3
log

(
Tm

105 GeV

)
, (58)

where we have used the values of the cosmological parameters in [23, 103]. If the reheating

temperature is Tm ∼ 105 GeV, inflation lasts approximately 50 e-folds after fluctuations of

wavenumbers comparable to the Planck fiducial scale (k⋆ = 0.05 Mpc−1) exit the horizon.

As can be seen from eqs. (34, 35), the most interesting scales for PBH formation (regardless

of whether they form during an eMD or RD era) are around k ∼ 1014 Mpc−1, in the sense

that it is only for these scales that we obtain masses in the unconstrained range (1) of

interest for dark matter. According to eq. (58), these fluctuations should exit the horizon

during inflation approximately 15 e-folds before the end of inflation. Before moving on, let us

remark that the ∼ 50 e-folds number quoted above refers only to the time elapsed between

the moment k⋆ leaves the horizon and the end of inflation. The total duration of inflation is

unconstrained.

17A similar expression was first given in [124]. We have followed an analogous derivation and chosen to
write the numerical factors differently.
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1.4 ■ The curvature perturbation

We have seen that to produce a population of PBHs of interest for dark matter we need a

power spectrum of order18 PR ∼ 10−4 − 10−2 (depending on whether the black holes form

during eMD or RD) at scales k ∼ 1014 Mpc−1. As we discussed in Section 1.1, however,

CMB observations have determined the power spectrum to have an amplitude PR ∼ 10−9

on large distance scales (k ≲ 0.5 Mpc−1). This means that we need to introduce some

mechanism to enhance the power spectrum on small scales. In this section we discuss how

this can be accomplished in single-field inflation by solving the Mukhanov-Sasaki equation

(24) analytically. Similar analytical models have also been studied elsewhere, e.g. in [126].

See also [109, 127, 128] for in-depth discussions of the dynamics leading to an enhancement

of the power spectrum.

The Mukhanov-Sasaki equation (24) for Rk is, in terms of the number of e-folds,

d2Rk

dN2
+ (3− ϵ− 2η)

dRk

dN
+

k2

a2H2
Rk = 0. (59)

In the models we will consider, the condition ϵ ≪ 1 is always satisfied, so we can set ϵ ≃ 0

for simplicity. We see from eq. (15) that this implies Ḣ ≃ 0, so that H can be considered

constant. The last simplifying assumption we make is to take η as a piecewise constant

function. In particular this should reproduce the correct spectrum in the slow-roll (SR)

regime, where η ≃ 0. As we will see, in the models we will consider in Chapter 2, the slow-

roll regime holds initially, but then η reaches a large, positive value once the field encounters

the inflection point in the potential. The reason for this will be explained at the end of this

section. We refer to this period in which η ≫ 1, which lasts a few e-folds at most, as an

ultra-slow-roll (USR) phase. Finally, once this period is over, η relaxes back to a negative

value, so that ϵ starts growing and inflation eventually ends. The evolution of η we consider

is illustrated in the left panel of Fig. 4. The value of η on each phase is denoted by ηi. Since

H can be considered constant and a ∝ eN by definition, we have

aH = a⋆e
N−N⋆H, (60)

where N⋆ is an arbitrary reference time, which we choose as the time at which the SR phase

ends and the USR phase begins. We can set N⋆ = 0 and normalize a⋆ = 1. The solution to

18One of the main assumption underlying these estimates is that the primordial perturbations follow
a Gaussian distribution. As we have mentioned already, non-Gaussianities could potentially alter these
numbers. However, we remark that, as pointed out in [125], due to the exponential sensitivity of the PBH
abundance on the power spectrum, the effect of non-Gaussianities can be countered by simply multiplying
the power spectrum by a factor of O(1). We therefore expect that these numbers are robust as an order of
magnitude estimate.
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Figure 4: Left panel: simplified evolution of the slow-roll parameter η we consider in this section
(black, solid) compared to the typical evolution of η in numerical models of PBH production from
an inflection point (red, dashed). Right panel: examples of different spectra computed with eq. (67).
The reference scale k⋆ has been chosen as the scale that crosses the horizon at the time at which
the USR phase begins. We set η1 = 0, η3 = −1, and the duration of the USR phase as ∆N2 = 2.5
for all examples in this panel.

eq. (59) in the i-th phase is then, in terms of Bessel functions of the first kind,

R(i)
k =

1

Mp

√
π

8Hϵ1
e−(3−2ηi)N/2

[
αiJ(3−2ηi)/2

(
ke−N/H

)
+ βiJ−(3−2ηi)/2

(
ke−N/H

)]
, (61)

where we have assumed that η1 = 0 so that ϵ is constant in this phase, and we denote its

value by ϵ1. If modes are assumed to be in the Bunch-Davies vacuum in the far past –see

eq. (25)– then the integration constants are, in the first phase,

α1 = −1, β1 = −i. (62)

The constants αi and βi in the subsequent phases can be found by imposing continuity of

the solutions and their derivatives at the beginning of each phase.

An important fact is that, because aH grows exponentially during inflation, the last term

in eq. (59) is negligible at late times. At this stage one of the two solutions to the equation

becomes Rk ≃ constant and the other one decays quickly in time, so that the perturbation

freezes once it crosses the horizon (a time defined by the condition k = aH) and is therefore

unaffected by the subhorizon dynamics. This is the reason that, as we anticipated in Section

1.1, Rk is the preferred variable to make the connection between inflation and the CMB

observables. As we will see momentarily, in the presence of a USR phase this fact remains
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true, although perturbations no longer freeze shortly after crossing the horizon, but rather

after the USR phase ends (a fact that will have important consequences when we discuss

quantum diffusion in Chapter 3). The power spectrum of Rk is obtained by evaluating the

curvature perturbation at some late time during the third phase, after it has frozen

PR(k) = lim
N→∞

k3

2π2
|R(3)

k (N)|2. (63)

The limit can be found by using the following identity

lim
y→0

y−mJm(y) =
2−m

ΓE(m+ 1)
, (64)

where ΓE denotes Euler’s Gamma function. Combining this with eq. (61), we have

lim
N→∞

R(3)
k ∝ lim

N→∞
e−(3−2η3)N/2

[
α3(k)

(
ke−N/H

)(3−2η3)/2 + β3(k)
(
ke−N/H

)−(3−2η3)/2
]

(65)

∝
(
k/H

)−(3−2η3)/2β3(k), (66)

up to some overall normalization factor which does not depend on k and is not important

for our current purpose. Therefore,

PR(k) ∝ |β3(k)|2
(
k/H

)2η3 . (67)

In particular, if η1 = η2 = η3 = 0, then β3 = i and the power spectrum is exactly scale

invariant, as we anticipated at the end of Section 1.1. The explicit analytical expression for

β3 is quite cumbersome and not particularly illuminating, so we do not write it explicitly.

Examples of spectra computed using eq. (67) for different parameter choices are shown in the

right panel of Fig. 4. In these examples the power spectrum is approximately scale-invariant

for small values of k, whereas for k ≃ k⋆ (where k⋆ = H is the reference scale, chosen as the

scale that crosses the horizon at the time at which the USR phase begins) the spectrum is

enhanced by several orders of magnitude.

When the power spectrum is enhanced, there is often a dip (which we define as the

lowest point in the power spectrum) present before the peak. We will now show that there

is a simple way to estimate both the size of the peak and the position of the dip in the

power spectrum. To estimate the size of the peak notice that the solution to eq. (59) is, on

superhorizon scales k ≪ aH where the last term can be neglected,

Rk ≃ Rcross +
dR
dN

∣∣∣∣
Ncross

∫ N

Ncross

exp

[
−
∫ N ′

Ncross

(3− 2η)dN ′′
]
dN ′, (68)

where we have assumed that the solution becomes valid around the time of horizon crossing

Ncross. In standard slow-roll inflation we have η = 0 and the second term in this expression
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Figure 5: Size of the peak (colored contours) and position of the dip (dashed lines) in the power
spectrum, obtained by using the approximate expressions in eqs. (69) and (72), respectively, for the
benchmark values η1 = 0 and η3 = −1. The enhancement of seven (five) orders of magnitude
required to account for the observed dark matter abundance with primordial black holes if they form
during a radiation-dominated (early matter-dominated) era is denoted by the label RD (eMD).

is exponentially suppressed, so that only the first term, which is constant, contributes, and

Rk freezes outside the horizon as we saw earlier. If η > 3/2, the second term will grow

exponentially and quickly overcome the first one. This is the origin of the enhancement of the

power spectrum. This enhancement therefore occurs only after the mode has left the horizon

(on subhorizon scales, the solution in eq. (68) is not valid, and the mode simply oscillates in

the Bunch-Davies vacuum). For constant η the integral can be computed explicitly and the

size of the peak can be estimated via

PR(kpeak)

PR(k ≪ k⋆)
≃
∣∣∣∣Rpeak

Rcross

∣∣∣∣2 ≃ ∣∣∣∣2η2 − 1− i

6− 4η2

(
1− e−(3−2η2)∆N2

)∣∣∣∣2, (69)

where the prefactor comes from assuming that the Bunch-Davies solution (25) is still valid

at horizon crossing and using it to determine the ratio (dR/dN)cross/Rcross in eq. (68). We

have also used the fact that the mode kpeak that undergoes the greatest enhancement is the

one that crosses the horizon just as the USR phase begins. The reason for this is that if the

mode leaves the horizon before the first phase is over, it will be exponentially suppressed

due to the second term of eq. (68). Modes that leave after the second phase has begun will
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spend less time outside of the horizon, and the enhancement will therefore be smaller. This

means that the peak will always be located roughly at

kpeak ≃ k⋆, (70)

where we remind the reader that we chose the reference scale k⋆ as the one that crosses

the horizon as the second phase begins. The dip in the power spectrum occurs because as

the second term in eq. (68) grows and overcomes the first one, a partial cancellation occurs

between both. Thus, if the second term is never large enough (that is, whenever η ≲ 3/2

or if the phase is too short), no dip will be present. Since the dip is always located before

the peak (which is roughly at k⋆) its position kdip can be obtained by expanding eq. (67)

as a power series in k/k⋆ around k = 0 and finding the value kdip at which the resulting

expression vanishes at leading order in k/k⋆. We have[
PR(k)

PR(k ≪ k⋆)

]1/2
∝
∣∣∣∣1− k2

k2dip
+O

[
(k/k⋆)

3
]∣∣∣∣. (71)

The resulting expression is,19 for the benchmark parameters η1 = 0 and η3 = −1,

k2dip
k2⋆

≃ e(3−2η2)∆N2

adip + bdipe(3−2η2)∆N2 + cdipe(1−2η2)∆N2
, (72)

where we have defined the coefficients,

adip ≡ 8η2(η2 + 1)

3 + 4η2(η2 − 2)
, bdip ≡ 10η2

3− 2η2
, cdip ≡ 2η2 + 2

2η2 − 1
. (73)

Eq.(72) is plotted in Fig. 5. For parameters in the shaded region of this figure the right-hand

side of eq. (72) becomes negative and thus there is no dip present in the spectrum.

As we have seen, a brief phase of η > 3/2 enhances the power spectrum. We mentioned

earlier that such a phase can be achieved if the inflaton reaches a relatively flat region in the

potential (in particular, it can happen if the potential has a near-inflection point). Let us

make the connection between these two statements. If the potential is flat, the last term in

the equation of motion (50) for the inflaton can be neglected, leading to

ϕ̈+ 3Hϕ̇ ≃ 0. (74)

On the other hand, by combining the Friedmann equations (8) and (9) we can show that

Ḣ = − ϕ̇2

2M2
p

. (75)

19A similar expression was obtained in [126] for the particular case η2 = 3.
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This equation does not involve any approximations. By combining these two equations we

find M2
p Ḧ ≃ 3Hϕ̇2, which in turn leads to

ϵ̇ = 2
Ḣ2

H3
− Ḧ

H2
≃ 2Hϵ2 − 6

H

ϕ̇2

2M2
p

≃ −6Hϵ −→ η = −1

2

ϵ̇

Hϵ
≃ 3. (76)

where we have neglected the small ϵ2 term. We therefore find that if Vϕ ≃ 0, then η ≃ 3,

leading to an enhancement of the power spectrum. This is often referred to as an ultra-slow-

roll phase. As we have seen, however, the spectrum will be enhanced whenever η > 3/2,

so throughout this thesis we use the term ultra-slow-roll to refer to this regime, even if

η ̸= 3. This implies, in particular, that the potential does not need to be exactly flat for the

spectrum to be enhanced, i.e. an approximate inflection point suffices.
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CHAPTER

2
Inflationary potentials

In this chapter we will study two different implementations of the inflection point mechanism

of PBH production. The first model is studied in Section 2.1 and consists on making the

simplest possible choice for the inflaton potential; namely, a polynomial, together with a non-

minimal coupling to the Ricci scalar. We find that the main issue in this model is the mild

tension that arises between the predicted tilt of the power spectrum and the current CMB

measurements. We will show that this tension can be alleviated if simple extensions to the

base ΛCDMmodel are considered, such as the addition of neutrino masses. In Section 2.2, we

show that another way of ameliorating this tension is by adding higher-dimensional operators

to the potential, the presence of which cannot be avoided. In Section 2.3 we consider a

model inspired by axion monodromy inflation aimed at alleviating some of the fine-tuning

issues present in most models of PBH production from an inflection point by considering

a potential that naturally features several local minima, as well as the addition of an early

matter-dominated era after inflation during which gravitational collapse is enhanced.

2.1 ■ Polynomial potential

As we saw in Section 1.4, a brief period of ultra-slow-roll in which the slow-roll parame-

ter η reaches a large, positive value can enhance the power spectrum by several orders of

magnitude. Such a period can be achieved if the inflaton reaches a relatively flat region in

the potential, such as an inflection point. The first attempt to implement this mechanism

was put forward in [63], where a potential with a plateau able to generate a large peak in

the curvature power spectrum was considered. However, in subsequent years the idea re-

mained largely dormant until the first detection of gravitational waves by LIGO [65], which

revitalized interest in the field. Many proposals have been explored since then, from the pos-

sibility of obtaining the feature in the potential from quantum corrections [67, 68] to more

exotic models such as axion-like potentials [69], or potentials arising from supersymmetric

α-attractor models [70].

In this section we will be interested in the simplest inflationary model with this feature.

The model we study here was first proposed in [68], where a potential characterized by

a quartic polynomial was considered, together with a non-minimal coupling to the Ricci

scalar. The non-minimal coupling can be eliminated by performing a field redefinition, which

translates into the appearance of a polynomial dividing the potential. This model is very

similar to one of the first modern takes on the inflection-point idea, namely, the one in [66],

50



where a potential based on the ratio of two polynomials was proposed. There are two crucial

differences between both models. The first one is the origin of the dividing polynomial in the

potential, which in [68] appears due to the field redefinition, whereas in [66] it was postulated

from the start. The second one is the fact that, due to the aforementioned redefinition, the

canonically normalized field that is identified with the inflaton is different in both models.

These differences have a relevant phenomenological consequence: the examples provided in

[66] lead to PBHs several orders of magnitude heavier, which are allowed only at the level

of fPBH ≲ 0.1 due to the microlensing bounds from the EROS project [39]. Another related

work is [129], which differs from the one presented here in two respects: a running of the

quartic coupling of the inflaton above a mass threshold is introduced, and the power spectrum

is computed only in the slow-roll approximation. The radiative potential presented in [68]

also resembles the one studied here, although in that case the polynomial is assumed to be

dominated by the quartic term, and the inflection point arises from the tuning of logarithmic

quantum corrections, rather than from the coefficients of the polynomial. A flattening of the

potential at large field values is accomplished in that case also by considering a non-minimal

coupling to the Ricci scalar.

Following the discussion in [68], let us consider the Lagrangian for a scalar field non-

minimally coupled to gravity in the Jordan frame,

L = −1

2
(M2

p + ξϕ2)R +
1

2
gµν∂

µϕ∂νϕ− V (ϕ). (77)

There is no symmetry that forbids the coupling ξϕ2R from appearing in the Lagrangian,

and thus its presence cannot be avoided.20 We can get rid of this coupling by performing a

field-dependent conformal transformation of the metric,

gµν →
(
1 +

ξϕ2

M2
p

)
gµν . (78)

The Lagrangian then becomes, in the so-called Einstein frame,

L = −1

2
M2

pR +
1

2

[
1 + ξ(1 + 6ξ)ϕ2/M2

p

(1 + ξϕ2/M2
p )

2

]
gµν∂

µϕ∂νϕ− V (ϕ)

(1 + ξϕ2/M2
p )

2
. (79)

The new kinetic term of ϕ can be canonically normalized by means of the field redefinition

dh

dϕ
=

√
1 + ξ(1 + 6ξ)ϕ2/M2

p

1 + ξϕ2/M2
p

. (80)

20A non-minimal coupling to gravity of the form ϕR which is linear in the field ϕ can be eliminated by a
field redefinition at the prize of redefining Mp in the Jordan frame.
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The solution to this differential equation is

h =

√
1 + 6ξ

ξ
sinh−1

[
(ϕ/Mp)

√
ξ(1 + 6ξ)

]
−

√
6 tanh−1

[ √
6ξ(ϕ/Mp)√

1 + ξ(1 + 6ξ)(ϕ/Mp)2

]
, (81)

where we have used the boundary condition h(ϕ = 0) = 0. The equation of motion for the

new, canonically normalized field is

d2h

dN2
+ 3

dh

dN
− 1

2

(
dh

dN

)3

+

[
3− 1

2

(
dh

dN

)2
]
d logU

dh
= 0, (82)

where we denote by U [ϕ(h)] ≡ V [ϕ(h)]/[1 + ξϕ(h)2/M2
p ]

2 the potential of the canonically

normalized field h. Suppose that in eq. (77) we choose a generic polynomial potential for ϕ,

V (ϕ) =
∑

anϕ
n. (83)

The corresponding physical potential in the Einstein frame is then [68]

U [ϕ(h)] =
a4

(1 + ξϕ2/M2
p )

2

(
ã2ϕ

2 + ã3ϕ
3 + ϕ4 +

∑
n≥5

ãnϕ
n

)∣∣∣∣
ϕ(h)

, (84)

where ãn ≡ an/a4. If we restrict ourselves to the case an≥5 = 0, this potential has the right

properties to provide a working inflationary model, since it has a minimum at ϕ = 0 where

inflation ends and it flattens, thanks to the presence of the non-minimal coupling, at large

field values. This fact remains approximately true if an≥5 ̸= 0 as long as these coefficients

are sufficiently small. We will have more to say about this case in the next section.

We look for viable inflationary solutions in the special case in which the values of the

parameters ai and ξ are such that an approximate stationary inflection point is present a few

e-folds before the end of inflation at the field value ϕ = ϕ0. To this end it is convenient to

rewrite the above potential with a different set of parameters. A stationary inflection point

is defined by the two conditions Uϕ(ϕ0) = Uϕϕ(ϕ0) = 0. If we impose these conditions we

can eliminate the coefficients ã(2,3). Some trivial algebra then gives the following potential,

U(ϕ) =
λϕ4

4!(1 + ξϕ2/M2
p )

2

{
ϕ2
0

ϕ2
(1 + c2)

[
2

(
3 + ξ

ϕ2
0

M2
p

)
+
∑
n≥5

ãnFn(ϕ0, ξ)

]
− ϕ0

ϕ
(1 + c3)

[
8−

∑
n≥5

ãnGn(ϕ0, ξ)

]
+

(
3 + ξ2

ϕ4
0

M4
p

)[
1 +

∑
n≥5

ãnϕ
n−4

]}
, (85)
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Figure 6: Shape of the potential in eq. (88) for ϕ0 = 1 and ξ = 0.1 in the presence of an exact
stationary inflection point (c2 = c3 = 0, solid black line) and for a slight deformation of it (0.02 ⩽
c2 = c3 ⩽ 0.1, red lines with increasing tonality of red). The region shaded in light gray illustrates
the effect of changing ξ in the range ξ = 0.1±0.075 (while keeping c2 = c3 = 0), with larger values of
ξ corresponding to milder slopes of the potential. Increasing the value of ξ, therefore, has the effect
of reducing the classical velocity with which the inflaton field reaches the approximate stationary
inflection point. Too large values of ξ eventually trap the inflaton field in the local minimum.

where, without loss of generality, we have defined λ ≡ 24a4/(3 + ξ2ϕ4
0/M

4
p ), and

Fn(ϕ0, ξ) ≡
3

2
n(n− 3)ϕn−4

0 + (6− 5n+ n2)ξ
ϕn−2
0

M2
p

− 1

2
(n− 4)(n− 3)ξ2

ϕn0
M4

p

, (86)

Gn(ϕ0, ξ) ≡ (2− n)nϕn−4
0 + (8− 6n+ n2)ξ2

ϕn0
M4

p

. (87)

We have also introduced two small parameters c(2,3) to replace ã(2,3) in such a way that the

potential in eq. (85) has an exact stationary inflection point when c(2,3) = 0. If we restrict

this expression to the fourth-order case ãn≥5 = 0, we have

U(ϕ) =
λϕ4

4!(1 + ξϕ2/M2
p )

2

[
3 + ξ2

ϕ4
0

M4
p

− 8(1 + c3)
ϕ0

ϕ
+ 2(1 + c2)

(
3 + ξ

ϕ2
0

M2
p

)
ϕ2
0

ϕ2

]
. (88)

We remark that all we have done is replace the parameters a(2,3,4) in eq. (83) for the more

useful λ and c(2,3), but the potentials are completely equivalent. The shape of this potential

is shown in Fig. 6 for different values of the parameters.

Let us restrict our attention to the potential in eq. (88). Higher-dimensional operators

will be considered in the next section. In the left panel of Fig. 7 we show the inflationary
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dynamics corresponding to the solution of eq. (82) for the following parameters

c2 = 0.011, c3 = 0.0089, ϕ0 =Mp, and ãn≥5 = 0, (89)

while the values of λ and ξ are tuned in order to obtain, respectively, the correct normaliza-

tion of the power spectrum As at CMB scales and the maximum amount of PBH abundance

compatible with observations. We will present the result of a scan over different values of

c(2,3), with λ and ξ tuned accordingly, later in this section, but the solution for the param-

eters in eq. (89) is representative of the entire parameter space. Typical values of λ and ξ

for the solutions that we find are of order λ ∼ O(10−9) and ξ ∼ O(0.1). We remark that in

this section we only consider PBH formation during a radiation-dominated era. Formation

during an early matter-dominated era will be considered in the model of Section 2.3.

The blue line in Fig. 7 represents the physical potential U [ϕ(h)] as a function of the

canonically normalized field h. Inflation starts at large field values and ends at the absolute

minimum of the potential, at h = 0. Before the end of inflation, the potential features

the presence of an approximate stationary inflection point with a local minimum and a

subsequent local maximum. The solid red line represents the inflaton velocity dh/dN as a

function of the canonically normalized field h. From the time at which the reference scale

k⋆ = 0.05Mpc−1, where we fit the CMB observables, exits the horizon until the end of

inflation we count ∆N ≃ 51.4 e-folds. This is enough to solve the horizon and flatness

problems, as discussed in Section 1.3.21 When the inflaton draws near the approximate

stationary inflection point its velocity suddenly decreases to nearly zero, so that it almost

stops, but has just enough inertia to overcome the barrier. As discussed in the previous

section, this part of the dynamics is known as an ultra-slow-roll (USR) phase [51], and

corresponds to the vertical region shaded in pink, which lasts for approximately ∆N ≃ 3.08

e-folds (we define it as the phase in which η > 3/2, following the discussion in Section 1.4).

The power spectrum corresponding to this solution and calculated by solving the Mukhanov-

Sasaki equation (24) numerically is shown in the right panel of Fig. 7.

In order to make contact with CMB observables, at scales 10−4Mpc−1 ≲ k ≲ 0.5Mpc−1,

we fit our power spectrum with the parametric function

logPR(k) = logAs +

(
ns − 1 +

α

2
log

k

k⋆
+
ϑ

6
log2

k

k⋆
+ . . .

)
log

k

k⋆
, (90)

with α = dns/d log k, ϑ = d2ns/d log k
2. At the pivot scale k⋆ = 0.05Mpc−1, we find22

log(1010As) ≃ 3.06, ns ≃ 0.9491, α ≃ −10−3, ϑ ≃ 2× 10−4. (91)

21Whether or not the horizon and flatness problems are solved really depends on the elapsed number of
e-folds between the time at which the largest observable scale k ≃ 10−3Mpc−1 crosses the horizon and the
end of inflation, but the difference between both numbers is of a few e-folds at most, so in practice using
either is okay, given the uncertainty on e.g. the duration of reheating.

22We always refer to CMB parameters (such as ns) at the pivot scale k⋆ = 0.05Mpc−1.
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Figure 7: Left panel: inflaton velocity (red line, units given on the left-side y-axis) as a function of
the (canonically normalized) inflaton field value (bottom x-axis). Physical potential (blue line, units
given on the right-side y-axis) as a function of the (canonically normalized) inflaton field value.
Right panel: power spectrum of comoving curvature perturbations as a function of the comoving
scale k obtained by solving numerically the Mukhanov-Sasaki equation (24).

For the tensor-to-scalar ratio, we find, by means of the slow-roll approximation, r ≃ 0.03.

All these values but the spectral index, ns, are in good agreement with observations.23 The

fit of the spectral index ns results in a 3σ tension with the latest Planck constraints if one

takes the analysis obtained assuming the 6-parameter base ΛCDM model or the extension

in which the running of the spectral index is added as an additional free parameter24 [23],

ΛCDM : ns = 0.9649± 0.0042, (92)

ΛCDM+
dns
d log k

: ns = 0.9641± 0.0044. (93)

A scan over the parameters of the potential25 seems to suggest that values of ns slightly

smaller than the one expected on the basis of eqs. (92, 93) is a general result, and not just a

vice of the specific numerical solution analyzed in this section. More in detail, we find that

increasing the value of ns in order to reduce the tension with eqs. (92, 93) results in a shift of

the peak of the PBH mass distribution towards smaller values ofMPBH. Even though we find

23We remark that including the BICEP and Keck Array data tightens the bound on r quoted in [23, 103]
from r < 0.11 at k⋆ = 0.05Mpc−1 to r < 0.035, see [24, 130]. Our polynomial model still satisfies this
stronger constraint.

24The addition of BAO data increases the best fit value of ns in both cases just at the level of 0.2%, see
[23].

25A less intensive scan was already performed for [68], with the same qualitative result, which we now
confirm.
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Figure 8: Left panel: fraction of the dark matter in the form of PBHs as a function of the
PBH masses. The values of ns corresponding to solutions whose mass distribution is peaked at
each particular mass are shown as dashed vertical lines. Solutions with acceptable values for the
cosmological parameters As, r, α, ϑ, ∆N and satisfying the Hawking evaporation constraint populate
the white region. The extra-galactic γ-ray constraints in [29, 30] are shown in dashed red, and the
bound of [32] in solid red. Right panel: fractional abundance of PBHs with respect to the dark matter
abundance as a function of the PBH mass for the parameter values discussed in the text, with and
without higher-dimensional operators (HDOs), assuming the PBHs form during an RD era. The
solution in green satisfies the extra-galactic γ-ray constraints in [29, 30], but there is a small overlap
if the stronger bound of [32] is considered. This overlap can be eliminated by considering slightly
lower O(1) abundances or by shifting the peak of the distribution to higher masses at the price of
having lower values of ns (see left panel).

that in these cases it is still possible to obtain a peak in the power spectrum of order ∼ 10−2,

the Hawking evaporation constraints kick in and very rapidly forbids sizable abundances of

PBHs. On the contrary, moving the peak of the PBH mass distribution towards larger values

of MPBH implies a decrease of the spectral index below ns ≃ 0.94− 0.95, thus exacerbating

the tension with CMB observables.

The above facts are illustrated in the left panel of Fig. 8, where we show the result of

a scan over the parameter space of the model. All solutions found are characterized by

acceptable values for the CMB observables As, r, α, ϑ in eq. (90) and by the condition that

the time elapsed from the moment that the pivot scale leaves the horizon until the end of

inflation is ∆N > 50 e-folds. The plot confirms that values of the spectral index ns > 0.95

are compatible with a fraction of dark matter in the form of PBHs smaller than 10−3 while

a sizeable fraction can be obtained only if ns ≃ 0.948 or smaller.

In light of the above discussion, it is important to interpret the actual relevance of
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the spectral index tension. The value of ns quoted in eq. (92) refers to the 6-parameter

base ΛCDM model while the one in eq. (93) to the extension in which also the running of

the spectral index is added as a free parameter. We can however consider other popular

extensions of the 6-parameter base ΛCDM model [103]. Indeed, there are valid motivations

to believe that the base ΛCDM model does not capture all the relevant physics throughout

the evolution of the Universe. For instance, in the base ΛCDM model the neutrinos are

massless, and although this is a reasonable first-order approximation, neutrino oscillations

indicate that neutrinos have a small but non-zero mass. It is, therefore, more than legitimate

to extend the base ΛCDMmodel by including the sum over the active neutrino masses,
∑
mν .

Another plausible extension includes the effective number of relativistic degrees of freedom,

Neff . Quoting from the official Planck 2018 release [103]:

ΛCDM+Neff : ns = 0.9589± 0.0084, (94)

ΛCDM+Neff +
∑

mν : ns = 0.9587± 0.0086, (95)

ΛCDM+Neff +
dns
d log k

: ns = 0.950± 0.011, (96)

and in all these motivated extensions the tension with respect to the value ns ≃ 0.95 is

significantly reduced. It is indeed known that including a marginalization over the total

neutrino mass or the number of relativistic degrees of freedom could induce a shift towards

lower values in the determination of ns
26 [132]. On a more speculative ground, the increasing

statistical significance of the so-called “Hubble tension” (the discrepancy between the values

of the present day Hubble expansion rate H0 derived from the local distance ladder and the

CMB, see [133]) further motivates the need of some new physics beyond the base ΛCDM

model. Following this line of reasoning, in [134] a global analysis of current cosmological

data in a cosmological scenario that is significantly more extended than the one provided

by the base ΛCDM model was considered. They included as free parameters α, Neff , Σmν

and the equation of state of dark energy, finding a preferred value of the spectral index of

order ns ≃ 0.95. In light of these results, we argue that values of the spectral index of

order ns ≃ 0.94 − 0.95 favored by our analysis (assuming the majority of dark matter to

be comprised of PBHs) could consistently fit in the context of a cosmological model that

extends the standard base ΛCDM one.

Before closing this section, let us mention how the different uncertainties in the calculation

of the mass and abundance of PBHs could affect the results presented here. In this section, we

have assumed that the mass of the PBHs is proportional to the mass contained in one Hubble

volume at horizon crossing. Numerical simulations, in combination with the application of

peaks theory, suggest that the mass of the PBHs depends on the shape of the perturbation

from which it is formed [135]. Moreover it is related to the mass in a Hubble volume at a

26See also [131], where the cosmological parameters were derived in the context of a model with a strongly
self-interacting massive neutrino, resulting in lower values of ns.
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time slightly different from the horizon crossing time. The effect of these issues is encoded

in the efficiency factor γ in eq. (34). Unfortunately, at present the calculation of this factor

carries O(1) uncertainties that do not allow to determine precisely the relation between the

mass MPBH and the scale k at which the enhancement of the power spectrum occurs. This

is important because, as shown in Fig. 8, shifting the mass by a factor ≳ 3 would push

solutions with ns = 0.95 away from the Hawking evaporation constraints. In this way it

would be possible to explain all the dark matter in terms of PBHs with these solutions.

These uncertainties therefore prevent a reliable determination of the fate of the models with

low ns.

Another issue is the threshold δc in eq. (41), the value of which is also uncertain [111–113]

and seems to depend on the shape of the power spectrum [135] (see, however, [136], where

a universal threshold is proposed). The exact value of this quantity only determines the

size of the PBH abundance and is therefore unlikely to affect the results of this section,

which rely only on the relation between the mass of the PBHs and the comoving scale at

which the peak in the spectrum is located. A similar remark can be made about the effect

of non-Gaussianities. We have derived our results by using the Gaussian approximation in

eq. (41). However, as we have mentioned already, the value of the power spectrum required

to obtain fPBH ∼ O(1) could be altered in the presence of the non-Gaussian corrections to

this equation, which would appear as additional factors inside the integrand. Nonetheless,

as explained in [125], since this equation is exponentially sensitive to the amplitude of the

power spectrum, the effect of non-Gaussianities can be countered by simply changing the

power spectrum by an O(1) factor. Such a change can be easily accomplished in the exam-

ples we have discussed in this section by slightly changing the value of the ξ parameter in

the potential, which has no bearing on ns. In other words, the ns problem is essentially inde-

pendent of the non-Gaussian corrections to the PBH abundance, since the issue in question

is the position of the PBH mass distribution, which is controlled by eq. (34), an expression

that is independent of the β function in eq. (41).

2.2 ■ Higher-dimensional operators

In this section we consider a simple, and arguably natural, way of circumventing the ns ten-

sion. Instead of restricting ourselves to the case ãn≥5 = 0, let us consider higher-dimensional

operators (HDOs) in the potential. The HDOs considered in this section can be generated in

the context of a toy ultraviolet completion to the theory discussed in Appendix B. We shall

argue that a natural organization of the series of HDOs leads to good inflationary solutions

with a value of the spectral index in perfect agreement with Planck data. In fact, a single

five-dimensional operator with a naturally small coefficient and negligible higher-order terms

is sufficient.
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In models of large-field inflation one should generically take into consideration HDOs in

the inflaton potential. It is then natural to question whether these corrections might spoil

solutions that lead to a considerable abundance of PBHs at the renormalizable level, either

by lowering the abundance, or by changing the power spectrum parameters at CMB scales.

A precise characterization of the HDOs is of course possible only if one knows the ultraviolet

completion of gravity. Nevertheless, it is still possible to gain an interesting insight from a

minimal set of assumptions. To validate our construction, we shall follow two simple rules:

i) The HDOs must be subdominant compared to the leading renormalizable terms.

ii) The HDOs must be organized in the form of a “convergent” series. The meaning of

this will be immediately clear.

Let us explain our rationale in more detail. If we rewrite eq. (84) as follows

U(ϕ) =
a4

(1 + ξϕ2/M2
p )

2

[
ã2ϕ

2 + ã3ϕ
3 + ϕ4

(
1 +

∑
n≥5

ãnϕ
n−4

)]
, (97)

the conditions i) and ii) translate into the order relation

· · · < ãnϕ
n−4 < · · · < ã5ϕ < 1, (98)

meaning that, at each order n ⩾ 5 in the expansion, the coefficient ãn has to be small enough

compared to the previous one to compensate the additional power of ϕ, which can easily be

O(10) at CMB scales. The description in terms of the effective operators breaks down at

large field values where eq. (98) ceases to be valid. Driven by a pure phenomenological

approach, one can, for instance, fix the coefficient ã5 to a very small number such that

the condition ã5ϕ < 1 is satisfied all along the inflationary trajectory while setting the

remaining coefficients ãn⩾6 to zero. It can indeed be checked that, if we take for simplicity

the same values for c(2,3) and ϕ0 chosen in eq. (89), the presence of a dimension-five HDO

with coefficient ã5 ∼ O(10−3) (together with ãn⩾6 = 0) is enough to give acceptable solutions

with ns ≃ 0.960 and the correct mass and abundance of PBHs. However, it is better to follow

some organization principle that may help elucidate the physical interpretation of eq. (98).

Broadly speaking, the ultraviolet theory that generates the HDOs in eq. (97) will be

described, at least, by a mass scale M and a dimensionless coupling g. Let us discuss how

these fundamental quantities enter in our construction. We rewrite each HDO as

On = anϕ
n =

ϕn

Λn−4
n

, n ≥ 5, (99)

where, for each operator, we introduce a suppression scale Λn (which is not necessarily

equal to Mp). The scale Λn defines the strength of the effective interaction On, and it is

given by the ratio between a mass scale and a certain power of couplings. A simple but
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pertinent example is that of the electroweak scale v. Its inverse squared, the Fermi constant

GF = 1/v2, defines the strength of the dimension-six four-fermion operator in the Fermi

theory, and can be defined by means of the ratio between the W mass and the weak gauge

coupling. As anticipated, we make the simplified assumption that the ultraviolet completion

that is responsible for the generation of the effective operators in eq. (99) is characterized

by a single coupling g and a single mass scale M . In such a case, by means of dimensional

analysis [137], we expect in the weak coupling limit the scaling

1

Λn
=
g
n−2
n−4

M
−→ 1

Λn−4
n

= g2
( g
M

)n−4

≡ g2

Λn−4
, (100)

where Λ ≡M/g. We refer the reader to Appendix B for a detailed derivation of the scaling

in eq. (100). The mass scale M can be considered as the mass associated to new degrees of

freedom populating the ultraviolet theory, while g characterizes their self-coupling as well as

their coupling with ϕ. Consequently, if we compare, in the spirit of eq. (97), the HDO On

with the renormalizable term a4ϕ
4, we can write (keeping only track of powers of M and g,

and neglecting O(1) proportionality coefficients)

a4ϕ
4 +On = a4ϕ

4

[
1 +

(
g2

a4

)(
g

M

)n−4

︸ ︷︷ ︸
ãn

ϕn−4

]
. (101)

From dimensional analysis, we know that the coefficient a4 has the dimension of a coupling

squared. This implies that the ratio g2/a4 is a genuine dimensionless number (see Appendix

B for details). The hierarchy among the coefficients ãn for n ≥ 5 can be obtained if Λ > ϕ.

More precisely, the conditions in eq. (98) translate into

1

Λ
< min

{
a4
g2

1

ϕin

,
1

ϕin

}
, (102)

where ϕin corresponds to the field value at the time at which the largest observable comoving

scale k ≃ 10−3Mpc−1 crosses the horizon (since we need to trust our theoretical description

at least up to such field values). Clearly, as we already mentioned, for sufficiently large

values of ϕ the hierarchy in eq. (98) will break down. This is just a manifestation of the old

problem of initial conditions in large-field inflation. We stress that this problem is by no

means unique to our model, but completely generic for large field inflation, and we do not

aim to solve it here. We simply assume that the slow-roll approximation is valid at ϕ = ϕin.

One further condition needs to be satisfied. As it is clear from the previous discussion, we

expect new states associated to the ultraviolet completion of our effective theory to lie at

the mass scale M . We have to check, therefore, that the energy density during inflation is

not high enough to excite these states (which could alter our effective inflationary potential).

This means that the relation H < M = gΛ must hold.
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Bearing in mind these conceptual limitations, let us investigate some numerical conse-

quences of the potential of eq. (97). If we set for simplicity g2 = a4, the HDOs are controlled

by one single dimensionful free parameter, the inverse scale 1/Λ, and we have

U(ϕ) =
a4

(1 + ξϕ2/M2
p )

2

[
ã2ϕ

2 + ã3ϕ
3 + ϕ4

(
1 +

∑
n≥5

cn
ϕn−4

Λn−4

)]
, (103)

where the coefficients cn are O(1) dimensionless numbers whose exact values cannot be

computed with dimensional analysis alone. Qualitatively, the effect of the HDOs is shown in

the left panel of Fig. 9 where we consider for illustration Λ−1 = 10−3M−1
p , ξ = 0.3, ϕ0 =Mp

and c(2,3) = 0, together with cn = 1 for n ̸= 2, 3 (dashed red line). The solid black line is

obtained by setting cn = 0 for all n. At small field values, the stationary inflection point

is not affected by the presence of the HDOs since it is controlled by the quartic and cubic

coefficients. At large field values, on the contrary, the presence of the HDOs introduces a

small deviation with respect to the renormalizable case (solid versus dashed line), and alters

the first and second derivatives of the potential, thus changing the slow-roll parameters at

the CMB pivot scale k⋆.

We will now consider two benchmark examples of solutions. In the first example, we

assume cn = 1 for n ̸= (2, 3). For each value of Λ−1 we consider inflationary solutions

which give rise to fPBH ≃ 1 and consistently fit CMB observables at large scales. In order

to facilitate the comparison with the renormalizable case, in Fig. 9 we show solutions with

fixed number of e-folds ∆N ≃ 51 from the time at which the pivot scale k⋆ crosses the

horizon until the end of inflation. The values of c(2,3) and ϕ0 are the same used in eq. (89)

for the renormalizable case while λ and ξ are tuned, for each value of Λ, in such a way to

obtain, respectively, the correct normalization of the power spectrum at CMB scales and

the condition fPBH ≃ 1 on the abundance of PBHs. Furthermore, it is important to remark

that all solutions shown in the right panel of Fig. 9 have, by construction, the position of

the peak of the power spectrum, kpeak, fixed at the value kpeak ≃ 1.5 × 1014 Mpc−1. This

choice gives an abundance of PBHs peaked at MPBH ≃ 5× 1017 g, which is compatible with

the possibility of having 100% of dark matter in the form of PBHs. Moreover, it eliminates

all those solutions, like the ones in the left panel of Fig. 8, in which larger values of ns are

obtained at the expense of a larger kpeak (and larger ∆N). We consider HDOs up to n = 8,

and check that our results remain stable if further higher-order terms are added. In the

right panel of Fig. 9 we show, for each one of these solutions, the corresponding value of ns.

If Λ−1 is too small, the impact of the HDOs is negligible and it is possible to have 100%

of dark matter in the form of PBHs only for values of the spectral index that are 3 σ away

from the central value of Planck, as discussed earlier and shown in the left panel of Fig. 8.

However, by increasing the value of Λ−1 without clashing against eq. (98) (region shaded in

gray), the small correction introduced at large ϕ gives values of the spectral index that are

in perfect agreement with the current observational bounds. This is shown by the red solid
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Figure 9: Left panel. Corrections to the potential in eq. (97) due to the presence of HDOs. Right
panel. Inflationary solutions that give 100% of dark matter in the form of PBHs in the plane
(1/Λ, ns) where Λ = M/g defines the suppression scale that controls the impact of HDOs (with
large values of Λ that correspond to more and more suppressed HDOs). All remaining cosmological
observables respect their corresponding CMB constraints. We show solutions with fixed number of
e-folds ∆N ≃ 51. We show two representative cases. The first case corresponds to the solid red
line, and represents the impact of the HDOs in eq. (103) with g2 = a4 and cn = 1. The second case
corresponds to the dashed red line, and represents the impact of the HDOs in eq. (103) with g2 = a4
and cn = (−1)n+1. The blue star marks the solution whose PBH abundance is plotted in the right
panel of Fig. 8 (blue region with dashed boundary).

line in Fig. 9.

Let us now consider specifically the solution marked by the blue star which has ns ≃ 0.96

and Λ−1 ≃ 2× 10−3M−1
p . As specified before, we include in our analysis HDOs up to n = 8

but for Λ−1 ≃ 2× 10−3M−1
p it is possible to see that the first two with n = (5, 6) dominate

over the remaining ones. The corresponding population of PBHs is shown in the right panel

of Fig. 8 (blue region with dashed boundary). We find that having 100% of dark matter

in the form of PBHs is in excellent agreement with CMB observations (though as already

mentioned, the tensor to scalar ratio r = 0.03 is fairly close to the bound obtained by adding

the BICEP and Keck Array data to the Planck analysis [24, 130]). The solution also satisfies

the strongest Hawking evaporation constraints imposed by the INTEGRAL satellite [31, 32].

The value of a4 is fixed by the amplitude of the power spectrum at CMB scales, and we find

a4 ≃ 10−10. Since we assumed g2 = a4, we have g ≃ 10−5. From our discussion, it follows

that for the mass scale M = gΛ we have M ≃ 10−2Mp. The condition H < M is therefore

verified, since H ∼ √
a4/ξ ≃ 10−5Mp. The same conclusion holds true for all solutions in

the right panel of Fig. 9.
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In the second example that we consider we take cn = (−1)n+1. This choice can be

justified, for instance, in the context of toy ultraviolet completions such as the one discussed

in Appendix B. We perform the same analysis discussed before, and our result is shown by

the red dashed line in Fig. 9. Also in this case the series of HDOs can fix the ns tension. For

large values of Λ, the impact of HDOs is negligible, as in the case with cn = 1. Larger values

of Λ−1, in comparison to the case cn = 1, are needed in order to obtain the same ns. The

reason is that in the case cn = (−1)n+1 the alternating signs cause a partial cancellation of

the HDOs.

To better understand how the presence of HDOs solves the ns tension and gives an

abundance of PBHs in the right mass window, it is instructive to emphasize three points.

The first is that the modification of the potential induced by HDOs increases the value of

the slow-roll parameter η towards less negative values. This O(1) change in η is enough to

modify, at the percent level, the value of ns, from ns ≃ 0.948 to ns ≃ 0.970. The second is

that the presence of HDOs makes the power spectrum considerably more flat at large scales,

going from ns ≃ 0.948 to ns ≃ 0.970. As a consequence, the dip of the power spectrum

shifts towards larger values of k. The shift in the position of the dip of PR(k), for an ultra-

slow-roll phase of the same duration, would also shift the position of the peak of PR(k)

towards larger k, producing PBHs with unacceptably small mass. Finally, note that without

including HDOs, we do not have the freedom to change the potential at large field values.

Consequently, the simplest way to get a larger ns is to fit CMB observables at larger field

values. If we assume the renormalizable potential to be dominated by the quartic term, it is

indeed possible to obtain, by means of the slow-roll approximation, the qualitative scaling

ns = 1 − 16/[(1 + 6ξ)ϕ2
CMB] + O(1/ϕ3

CMB). However, increasing ϕCMB increases, in turn,

the value of ∆N and shifts the peak of the power spectrum towards smaller scales. This

qualitative behavior characterizes all solutions in Fig. 8 which produce a sizable abundance

of PBHs. Although we do not have a rock-solid mathematical proof, our numerical scan

suggests that this is a generic feature of the fourth-order polynomial model. These simple

points make clear that the ns tension can be solved with HDOs while obtaining PBHs as the

totality of dark matter in perfect agreement with observational constraints.

It is worth noting now that the perturbative unitarity breaking scale for the potential of

eq. (85) is ΛU = Mp/ξ [138, 139]. New dynamics must arise at a scale lower or equal than

ΛU in order to restore unitarity. The values of ξ ∼ O(0.1) that we find in our solutions push

ΛU above Mp. It is thus tantalizing that M ∼ 10−2Mp ≪ ΛU, as we can speculate with the

possibility that the new states arising at the mass scale M (and the corresponding HDOs)

may harbinger a UV completion ensuring unitarity beyond ΛU.

The numerical analysis carried out in this section shows that small corrections to the

inflaton potential generated by HDOs –whose presence, in particular in the context of large-

field models of inflation, has no reason to be neglected– have the capability to fix the ns

tension pointed out earlier. Before concluding, it is worth mentioning some possible ex-
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tensions of our analysis. First, the condition g2 = a4, that we imposed for simplicity, has

no fundamental reason to be true, and relaxing it would open an additional direction in

the parameter space (g,Λ) that would be interesting to explore. Second, one can in princi-

ple add HDOs that include field derivatives; for instance an effective operator of this kind

with canonical mass-dimension d would have the general form O∂
d = (1/Λd−4

∂ )∂n∂ϕnϕ with

d = n∂ + nϕ. These operators can arise, for instance, in the context of the toy UV theory

discussed in Appendix B. Although we expect these operators to be slow-roll suppressed at

large field values, where HDOs are most relevant, it would be interesting to include them in

the analysis.

2.3 ■ Monodromy-inspired potential

In this section we move away from the simple polynomial model we studied earlier to present a

more elaborate scenario aimed at alleviating some of the downsides of inflection-point models

of PBH production; specifically, the fact that the inflection point often has to be introduced

in the potential in an ad hoc manner, and the fact that PBH formation in a radiation-

dominated (RD) era leads to a severe fine-tuning of the parameters in the model. Our setup

is characterized by a string-inspired inflationary potential which naturally features several

local minima, and an early matter dominated (eMD) epoch after inflation.

Our scenario is inspired by axion monodromy inflation (AMI) [140, 141]. In this frame-

work, the inflaton is a pseudo-scalar field with a discrete shift symmetry which is broken by

a non-periodic potential term. The inflaton potential features axionic oscillations, superim-

posed on a monodromic term. When the amplitude of these modulations is large enough,

near-inflection points and local minima appear in the inflationary trajectory. AMI can arise

from string compactifications, where the inflaton field is generically accompanied by other

heavy scalar fields, called moduli. As the inflaton travels ≳Mp distances during inflation, the

heavy moduli tend to shift from their VEVs and backreact on the inflationary trajectory,

leading to a flattening of the inflaton potential [142, 143] at large field values. The non-

periodic part of the potential is generally quadratic for ϕ ≲Mp and behaves as a monomial

for ϕ ≳ Mp. In certain realizations of AMI, which will be of particular interest for us, the

amplitude of the axionic potential oscillations is suppressed at large field values [144]. There-

fore, AMI can provide inflationary potentials which exhibit two distinct regions (see Fig. 10):

the first one, close to the global minimum, can feature the critical points that are desired

for PBH formation; the second region, at large field values, does not display oscillations and

is instead ideal to realize large field inflation. This setup can naturally accommodate a long

eMD epoch after the end of inflation, before the inflaton decays completely and reheats the

Universe. The minima of the potential for small field values is approximately quadratic and

can support small oscillations of the inflaton. As per the discussion in Section 1.3, if these

oscillations dominate the energy budget of the Universe, the latter enters into a phase of eMD
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after inflation. Besides, in the framework of moduli stabilization in string compactifications

[122, 123], the inflaton is often identified with a modulus field, meaning that it couples only

gravitationally to the visible and hidden sectors. Therefore, reheating occurs at a slow pace

via Planck-suppressed operators and the eMD phase can have a prolonged duration. AMI

potentials typically feature the following functional form

V (ϕ) = Vmon + Vcos =
m2F 2

2p

[(
1 +

ϕ2

F 2

)p
− 1

]
+ Λ(ϕ)4 cos

(
ϕ

f
+ δ

)
. (104)

Let us first focus on Vmon. This term features three parameters: two energy scales,

F and m, and an exponent p, which may be either positive or negative. For ϕ ≪ F ,

this part of the potential is well approximated by a parabola. For ϕ ≫ F , the potential

either grows as ϕ2p (if p > 0), or saturates to a plateau (if p < 0). In most constructions

p ≤ 1, meaning that the parabola tends to flatten at large field values. Typically, these

flattening effects kick in at ϕ ∼ F ≲ Mp, possibly fitting nicely with general arguments

against the validity of single-field EFT descriptions of large field inflation, such as the weak

gravity conjecture [145] (see [146, 147] for applications to axion inflation, and [148–150] for

related conjectures). Observationally, this feature is essential for the viability of (104) as an

inflationary potential. Indeed, power-like potentials with p ≥ 1 are strongly constrained by

CMB data, since they predict a large amplitude of primordial B-modes [23]. Models with

p = 1/3, 1/2 [143] are still marginally compatible with CMB data. Here we will focus on

p < 1, while allowing also for concrete values of p (such as 1/6) beyond the ones that have

been obtained so far in concrete stringy setups. An explicit realization of AMI with p < 0

–a possibility that we will consider– has been provided in [151].

Let us now discuss the second part of the potential (104), Vcos. This contains the distinc-

tive axionic oscillations, superimposed on Vmon. Crucially, their amplitude Λ(ϕ)4 depends

on the inflaton value. We follow [143] and parameterize this dependence as follows

Λ(ϕ)4 = Λ4
0 e

−
(
ϕ
ϕΛ

)pΛ
, (105)

with ϕΛ ≳Mp and pΛ either positive or negative. Putting (104) and (105) together, we can

write [1]

V (ϕ) = m2f 2

{
1

2p

F 2

f 2

[(
1 +

ϕ2

F 2

)p
− 1

]
+ κe

−
(
ϕ
ϕΛ

)pΛ
cos

(
ϕ

f
+ δ

)}
+ V0, (106)

where we have added a constant V0, which ensures V = 0 at the reheating minimum. The

implications of Vcos then depend on pΛ, p and the rescaled amplitude of the oscillations

κ ≡ Λ4
0/(m

2f 2). Let us consider the impact of κ and neglect the exponential prefactor for
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now. Close to ϕ = 0 we can approximate eq. (106) by

V (ϕ) ≈ m2f 2

[
1

2

ϕ2

f 2
+ κ cos

(
ϕ

f
+ δ

)]
. (107)

It is then straightforward to see that the potential (107) exhibits local minima for κ ≥ 1,

whereas for κ < 1 the oscillating part of the potential only gives rise to small bumps in the

axion potential. We are interested in local minima which appear close to the bottom of the

inflationary potential (i.e. for ϕ/Mp ≪ 10) and we will thus consider κ ≥ 1.

Let us now return to the full potential. Depending on the sign of pΛ the amplitude of the

oscillations is exponentially suppressed or enhanced at large field values. The value of pΛ

is determined by the source of the non-perturbative effects that induce Vcos and by moduli

stabilization. See [144] for examples with both pΛ > 0 and pΛ < 0. We are interested in

pΛ > 0 since then oscillations are absent at ϕ≫ ϕΛ and the flatness of the potential allows to

fit the CMB without tuning, while still featuring local minima at smaller field values. This

particular behavior of the inflationary potential is also somewhat similar to what has been

used in the relaxion mechanism [152]. Finally, let us discuss the parameter δ, which should

be included on general grounds, since Vmon and Vcos have a priori no reason to be aligned.

Furthermore, the choice δ = 0 leads to the presence of two degenerate minima at the bottom

of the potential, which may lead to stable domain walls during the reheating phase, when

the field can oscillate along the full potential. For these reasons, in what follows we take

δ ∼ 1.

The potential in eq. (106) is shown in Fig. 10 for different parameter choices. The figure

illustrates the key feature of our inflationary potentials: beyond ϕ ∼ 2Mp, the potential is

essentially indistinguishable from a standard monomial with power controlled by p, while at

small field values the periodic axionic oscillations lead to a rich structure of local minima,

the depth of which is controlled by κ. This parameter can be changed without affecting the

inflationary potential at large field values. Inflation along our potential proceeds as follows.

First, for large field values (ϕ≫Mp), the inflaton slowly rolls down the potential. This phase

is the one responsible for the small CMB temperature anisotropies. Then, an ultra-slow-roll

phase can be achieved as the inflaton traverses one of the local minima at ϕ ∼ Mp. In this

regime, as we have seen, super-horizon curvature fluctuations are exponentially enhanced,

leading to PBH formation upon horizon re-entry. Interestingly, in this scenario the two

phases are decoupled from one another.

Due to the presence of local minima, the inflaton does not necessarily end up in the

global minimum of the potential. In fact, in the regime κ ≫ 1 the field typically gets

classically stuck in one of the local minima closest to the global minimum. Let us estimate

the tunneling rate to the global minimum from one of the nearest neighbouring local minima.

This is proportional to e−St , where the tunneling action St can be easily estimated in the
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Figure 10: Shape of the potential in eq. (106) for V0 = 0, F = Mp, f = 0.1Mp, pΛ = 2, ϕΛ = Mp,
and δ = −1. The solid black line corresponds to p = 1/6 and κ = 8. The region shaded in
light gray illustrates the effect of changing p in the range −1/2 ≤ p ≤ 1/3, with larger values of
p corresponding to steeper potentials at large field values. The effect of varying κ in the range
8 ≤ κ ≤ 35 is shown as red lines with increasing brightness.

thin-wall approximation [153] as follows:

St ≃
27π2

2

σ4

(∆V )3
∼ 27π2

2

(∆ϕ)4(κm2f 2)2

(m2f 2)3
∼ 27π2

2
κ2
(
f

m

)2

. (108)

Here we have approximated the tension of the bubble wall as σ ∼ ∆ϕ
√
Λ4

0, with ∆ϕ ∼ f

the distance in field space between minima and ∆V the difference in height between the

minima. For p = 1, the amplitude of the temperature anisotropies in the CMB implies

m ∼ 10−6Mp. For |p| < 1, the CMB normalization depends also on F and larger values

of m are allowed. Typical values of f in string compactifications are 10−3Mp ≲ f ≲ Mp.

Therefore, for κ ∼ O(10) (as it will be in our examples) St is very large and tunneling to

the global minimum is an extremely suppressed process, regardless of the prefactor. The

constant V0 is chosen in such a way that the minimum where the inflaton stops has V0 = 0.

After inflation ends, the inflaton then oscillates around an approximately quadratic minimum

and gives rise to the desired epoch of eMD. The Universe may then have a neighbouring AdS

vacuum (the global minimum of the full potential in eq. (106), if the inflaton gets stuck in a

preceding local minimum). As we have shown, this does not pose any cosmological threat
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to the stability of the Universe.

Let us remark now that a potential (also inspired by AMI) with multiple approximate

inflection points was considered in [69] in the context of PBH formation (during radiation

domination). It differs from ours in several respects that are worth mentioning. The most

important difference is that the potential of [69] features oscillations also at large field values.

This implies that the CMB is fit in this case by tuning very finely the parameters of two

trigonometric functions, in such a way that the CMB scales coincide with a sufficiently flat

region of the potential for large field values. The axion decay constant in the case of [69] takes

larger values: f ≳ 0.6 Mp. In our case the CMB observables are essentially independent

of the axion decay constant, which means f takes somewhat smaller values: f ≳ 0.2Mp.

Another difference is that the examples of [69] do not display multiple minima, but rather a

successions of approximate plateaus. In that case inflation ends at the absolute minimum of

the potential. Instead, we consider the possibility of several local minima where the inflaton

may get stuck. Finally, [69] focused on PBH formation during RD, while we take into account

the possibility of a long eMD epoch, which allows for a significant tuning reduction in the

inflationary parameters.

We now proceed to solve the Mukhanov-Sasaki equation (24) numerically to find the

power spectrum PR and the PBH abundance for concrete examples that satisfy the most

recent Planck constraints [23, 103]. The potential in eq. (106) can feature many local minima

whose depth grows as the inflaton travels from larger to smaller values. During its trajectory

the inflaton passes through several of these minima, and the enhancement of the primordial

spectrum becomes most pronounced when it goes through the next-to-last minimum, before

stopping definitively; since it is in this region that it slows down the most. The depth of the

minima is controlled by the parameter κ, as we mentioned earlier. Any large enough value of

κ ensures the existence of minima which may lead to abundant PBH formation. The actual

value of the abundance is determined by the speed of the inflaton as it climbs out of the

next-to-last minimum before reheating. This speed is, in turn, fixed by the precise value of

κ. In our examples, we adjust the parameter κ to obtain fPBH ∼ O(1), and find κ ∼ O(10).

The smaller amplitude of PR required to account for all the dark matter with PBHs formed

in eMD tends to reduce the number of e-folds that the inflaton field spends traversing the

local minimum responsible for PBH formation with respect to the case of RD. Therefore,

imposing fPBH ∼ O(1) with masses in the window (1), some examples of potentials that are

ruled out for PBH formation during RD due to an excess of inflation –see [124] and eq. (56)–

may become viable changing κ appropriately if the PBHs form during an eMD phase. The

same can be expected to occur for other models with an approximate inflection point.

Let us now discuss the effects of the rest of the parameters of the potential. We start with

F and ϕΛ, which control the location in field space at which the flattening effects kick. We

take them to be of order Mp. The parameter f ≲Mp governs the width of the local minima.

We can distinguish between different scenarios depending on its value. For values of f close
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Figure 11: Primordial spectra for Examples 1 (left) and 2 (right). The dotted and dashed lines
correspond to the parameters choices in Table 2 labeled RD and eMD, respectively. The solid lines
(not included on the table) are shown for ease of comparison and correspond to setting I = 1,
together with κ = 8.253 for Example 1, and κ = 14.984 for Example 2.

toMp, the inflaton encounters at most one local minimum before inflation ends. In this limit

the model is essentially an implementation of the standard mechanism of PBH production

from a quasi-inflection point. We will not consider this situation here, but we remark that it

is a possibility capable of producing an interesting population of PBHs for the dark matter

problem, if κ ∼ O(1). In the opposite limit, for f ≪ 1, the inflaton may roll all the way

down to the global minimum and oscillate in a region of the potential which can encompass

several local minima. This case is not relevant for PBH formation and we will not consider

it either.27 We thus focus on intermediate values of f for which the inflaton still travels

over several minima before inflation ends. We find that if f ≲ 0.1Mp and PR ∼ O(10−4) is

imposed at its maximum, the field generically does not spend enough time (typically at most

∼ 5 e-folds) on the local minimum previous to the end of inflation. In this case inflation does

not last long enough to solve the horizon problem. We focus on f = 0.2Mp in our examples.

We will consider two concrete choices for the parameter p, one with p > 0 and the other

one with p < 0. In particular, we find that the largest positive value of p which is compatible

with the latest Planck data and at the same time leads to a significant amount of light PBHs

is smaller than p = 1/3, which is the smallest positive exponent for which an explicit string

construction currently exists [143]. We choose p = 1/6 to produce our first example and

p = −1/2 for our second example. We focus on the case in which the inflaton gets stuck in

the local minimum closest to the global minimum, which corresponds to rather large values

27However, it may present interesting consequences for reheating [154].
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of κ. The scenario with the inflaton rolling all the way down to the global minimum can also

be easily realized for both p > 0 and p < 0, by taking smaller values of κ. In both cases, we

set V = 0 at the minimum of the potential where the field ends its trajectory.

f δ pΛ ϕΛ p F m · 105 V0 · 1011 κ (eMD/RD)

• Example 1 0.2Mp -1 1 1.15Mp 1/6 0.75Mp 3Mp −5.1M4
p 8.254/8.254538

• Example 2 0.2Mp -1 1 1.15Mp -1/2 1.85Mp 2Mp 2.0M4
p 14.986/14.986471

ϕ⋆ ns r α ∆N(eMD/RD) fPBH(eMD/RD) MPBH

• Example 1 6.85Mp 0.970 0.068 -0.009 51/57 0.9/0.4 10−13M⊙

• Example 2 6.04Mp 0.970 0.036 0.02 52/56 0.2/0.6 10−15M⊙

Table 2: Parameters and predictions for the two examples we consider. The parameters give the
correct normalization of the spectra at k⋆ = 0.05 Mpc−1, corresponding to ϕ = ϕ⋆. The CMB
parameters are given at this scale, and ∆N denotes the number of e-folds from ϕ⋆ to the end of
inflation. The values of κ are given with the precision needed to attain the corresponding fPBH in
each case. We have set Tm = 104GeV and I = 3.1 for Example 1, and Tm = 2 · 105GeV and
I = 4.4 for Example 2.

We show the resulting curvature power spectra in Fig. 11 for p = 1/6 and p = −1/2.

The parameters of these two examples are given in Table 2. Additionally, for each one of

these values of p, we obtain two different power spectra by considering two choices of κ. The

spectra shown with continuous lines in Fig. 11 lead to fPBH ∼ O(0.1−1) if the collapse occurs

during the eMD epoch with reheating temperature Tm ≲ 106 GeV. For these examples, we

use the expression for β which takes angular momentum into account, (44) with fq(qc) = 1.

We have chosen I = 3.1 for Example 1, and I = 4.4 for Example 2. In contrast, the spectra

in dashed lines lead to a large fPBH if they form during RD, and require further tuning of

κ. The predictions for the inflationary observables and the PBH masses and fractions in our

examples are also reported in Table 2.28 We remark that although the examples presented

in Table 2 satisfy the most recent Planck constraints, they do not satisfy the bound on r

obtained if the BICEP and Keck Array data are included in the analysis [24, 130], which

was published after [1] and is r < 0.035 (although Example 2 is within ∼ 1 σ of this value).

It might be possible to find examples that satisfy this stronger constraint if larger negative

values of p are considered. We also point out that our examples satisfy the strongest Hawking

evaporation constraints imposed by the INTEGRAL satellite [31, 32].

Since the suppression of the PBH formation probability away from the peak of the spec-

28The abundance in the case of RD has been computed using eq. (41), which assumes Gaussian fluctuations.
However, due to the large change in the inflaton velocity in the region of the potential responsible for
PBH formation, large non-Gaussianities may be produced. The impact of non-Gaussianities on the PBH
abundance is not entirely understood yet but, as shown in [125], it is possible to compensate for their effect
by slightly changing the size of the power spectrum, or, alternatively, the threshold δc in eq. (41) for the case
of PBH formation during RD, so taking them into account will not significantly alter our results. The effect
of non-Gaussianities on PBH formation during an MD era in models of inflation with an inflection point
remains to be studied.
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Figure 12: Distribution of PBH masses for Examples 1 (left) and 2 (right). The largest masses
shown in each panel correspond to the last modes that undergo collapse during the eMD era. The red
region corresponds to the bound in [32]. We have also included for comparison the curves obtained
by setting I = 1, with κ = 8.253 for Example 1, and κ = 14.984 for Example 2.

trum is much milder in eMD than in RD, the mass distribution functions (depicted in Fig. 12)

decay much more quickly in the latter case. This means that the extragalactic γ-ray bounds

coming from PBH evaporation become more difficult to evade (for a given k value at the

peak of the spectrum) if the PBHs form during an eMD era. This is a generic aspect of the

eMD scenario for light PBHs. We find that the the bounds can be evaded in our examples,

provided that the parameter I in eq. (44) is around I ∼ 3. For I = 1 only a very narrow

primordial power spectrum can take full advantage of the eMD phase without clashing with

the evaporation bounds. The largest masses shown in Fig. 12 correspond to the last modes

that undergo collapse during the eMD era. The shape of the distribution for larger masses

depends (unless one assumes pure RD right after inflation) on the details of the transition

between eMD and RD, but we expect a rapid decay of the abundance due to the fact that

the collapse occurs at least partially during the RD stage.

From these examples, we are able to extract the amount of tuning on the parameter κ

which is required in order to obtain fPBH ∼ 1 in our setup. We focus on this parameter

because it is the one that controls the depth of the minima in the potential and therefore

the enhancement of the spectrum, as illustrated in the examples of Table 2. We quantify

the tuning [155] by calculating
∣∣∆κ/κ∣∣, where ∆κ is the difference in κ between a successful

example with fPBH ∼ 1 and the closest κ which invalidates the example, with the rest of the

parameters kept fixed. In other words, ∆κ is given by the minimal precision with which κ

needs to be specified to obtain fPBH ∼ 1. In the eMD case, we find that κ has to be chosen
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with a relative precision (tuning) of order 10−2 % for p = 1/6 and 6 · 10−3 % for p = −1/2.

For RD, we instead find that the required tuning is increased to order 10−5 % for p = 1/6

and 6 · 10−6 % for p = −1/2. Thus, an eMD phase alleviates the tuning in the potential

parameters by three orders of magnitude. We expect this conclusion to remain valid for

other models, since they are mainly a consequence of the discussion in Section 1.2.
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CHAPTER

3
Quantum backreaction

In this chapter we reasses the calculation of the primordial power spectrum in the presence

of an ultra-slow-roll phase by using the stochastic inflation formalism. In Section 3.1 we

review the basic facts about the framework and describe the role of the coarse-graining

scale. In Section 3.2 we derive the classicalization condition for the curvature perturbation

in presence of a USR phase, using the occupation number density as a proxy. In Section

3.3 we use the analytical solution to the Mukhanov-Sasaki equation presented in Section 1.4

to find analytical expressions for the correlation functions of the noise terms that appear

in the background equations of motion for the inflaton and show that the power spectrum

in the stochastic inflation formalism coincides, at the linear level, with the result obtained

by means of standard perturbation theory. Finally, in Section 3.4 we confirm our results

numerically in the context of the polynomial model introduced in the previous chapter.

3.1 ■ Stochastic inflation

In the standard inflationary picture, the inflaton field is split into a homogeneous background

piece and a space-dependent perturbation. The background piece is treated classically, and

only the perturbation is treated quantum-mechanically. Soon after horizon crossing, the

Fourier modes of the perturbation are placed in highly squeezed states which undergo a

quantum-to-classical transition [156, 157], leading to the classical distribution of temperature

fluctuations that we observe in the CMB. In this formalism, the classical background field

follows a set of deterministic equations of motion and its evolution determines the behaviour

of the perturbations. This treatment, however, does not take into account the possibility

that perturbations might backreact on the classical inflaton trajectory, a shortcoming that

the framework of stochastic inflation aims to remedy.

In the stochastic inflation formalism [71], the inflaton field is instead split into a coarse-

grained, long-wavelength piece, and a short-wavelength perturbation. This splitting is per-

formed by choosing a suitable coarse-graining scale kσ, which must be introduced into the for-

malism by hand. Motivated by the fact that during slow-roll perturbations classicalize soon

after horizon crossing, the most appropriate choice for this scale turns out to be kσ = σaH,

where the coarse-graining parameter σ can be set to σ ≲ 1 in the slow-roll regime. Notice

that kσ is a time-dependent function. The physical picture is then that short-wavelength

modes gradually leave the horizon as time passes and thus the coarse-grained part of the field

changes dynamically. After classicalizing, the short-wavelength perturbations behave as clas-
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sical stochastic variables which act as sources of stochastic noise for the coarse-grained fields,

which now follow non-deterministic, Langevin equations of motion. During slow-roll, this

procedure is known to yield a power spectrum of curvature perturbations in agreement with

the usual perturbation theory approach at the linear level (see e.g. [72]). However, whether

the same result holds in the presence of an ultra-slow-roll phase is a delicate issue. As we

will show, since perturbations in this case take longer to classicalize after horizon crossing,

the choice of the coarse-graining scale is critical, and only for kσ = σaH with σ ∼ O(10−5)

can the results of the formalism be trusted.

In [158] it was argued that in the presence of a USR phase, the probability distribution of

the fluctuations could be altered significantly, ultimately leading to different results for the

mass and abundance of primordial black holes formed in models of inflection-point inflation.

The issue was later studied in [159], which made use of a potential based on the ratio of

two polynomials first presented in [66] and concluded that in the presence of a USR phase

the power spectrum of curvature perturbations computed at the linear level is enhanced by

several orders of magnitude with respect to the usual perturbation theory result. These

results were later disputed in [160], where it was instead concluded that the formalism

leads to a power spectrum in agreement with the standard result at the linear level and at

leading order in the slow-roll expansion, claims that were confirmed in [161], where it was

concluded that the stochastic corrections to the power spectrum in the presence of a USR

phase are negligible even beyond leading order in the slow-roll parameters. The validity of

the formalism beyond slow-roll was also addressed in [162], which agreed with the conclusions

of [161]. The calculation of the power spectrum was performed in the article that this chapter

is based on [3], where we found that, as we shall see, the power spectrum computed in the

stochastic formalism and at the linear level agrees with the standard result as long as the

coarse-graining scale is appropriately chosen.

Let us remark that, although interesting on their own, these results are not the end

of the story. If one of the main motivation for studying the stochastic formalism beyond

slow-roll is to determine the correct way to calculate the mass and abundance of PBHs

formed in inflection-point models of inflation, then higher-order correlators should also be

considered. In fact, within the framework of stochastic inflation it is possible to calculate

the full probability distribution of the fluctuations. Analytical results in this direction can

be found in [73, 74, 97]. These articles were published shortly after [3] (or around the

same time), and all agree that the probability distribution for the primordial fluctuations,

although Gaussian at the peak, decays exponentially, a fact that is relevant for the correct

determination of the PBH mass distribution. These results were confirmed numerically in

[75, 76]. In this thesis we do not study higher-order correlators, but it is important to point

out their relevance for PBHs.

We now reassess the computation of the primordial power spectrum in the presence of

a USR phase using the framework of stochastic inflation, both analytically and numerically,
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following the discussion in [3]. To separate the long- and short-wavelength modes, we can

split the quantized inflaton field ϕ̂(t,x) in two different pieces,

ϕ̂(t,x) = ϕ̂C(t,x) + ϕ̂Q(t,x), (109)

where

ϕ̂C(t,x) =

∫
d3k

(2π)3
W [kσ(t)− k]

[
akϕk(t)e

ix·k + h.c.
]
, (110)

ϕ̂Q(t,x) =

∫
d3k

(2π)3
W [k − kσ(t)]

[
akϕk(t)e

ix·k + h.c.
]
. (111)

Here, ϕ̂C(t,x) represents the coarse-grained part of the field containing the long-wavelength

modes, and ϕ̂Q(t,x) contains the short-wavelength ones. In what follows, we will treat

the latter as a perturbation which acts as a source for the coarse-grained piece ϕ̂C. The

quantities ak and its hermitian conjugate a†k represent creation and annihilation operators.

Whether a mode is short- or long-wavelength is determined by the window function W and

the cutoff scale kσ. As we have anticipated already, in standard slow-roll, perturbations

can be shown to classicalize (as we will do in the next section) shortly after they cross the

horizon. Therefore, an appropriate choice for the cutoff scale in this case is kσ = σaH, with

σ ≲ 1 a constant parameter. The situation in the presence of a USR phase changes, however,

since perturbations take longer to classicalize after horizon crossing. In this case, the cutoff

scale can still be chosen as kσ = σaH, but the cutoff parameter must be σ ≪ 1. The exact

value this quantity must have to correctly capture the dynamics is model-dependent, but we

will estimate it to be σ ∼ O(10−5) in the next section for standard inflection point models.

We will have more to say on the role of this parameter at the end of this section. We choose

the window function to be the Heaviside step function,

W [kσ(t)− k] = Θ[kσ(t)− k]. (112)

Since the only role of the window function is to determine whether a mode has classicalized

or not, results should not depend strongly on its choice.29 The simple choice shown above

has the convenient consequence that the stochastic noise appearing in the equation of motion

for the coarse-grained field can be modelled as a Wiener process, as we will see momentarily.

It is important to stress that both fields ϕ̂C and ϕ̂Q in eq. (109) have an intrinsic quantum

nature. Since the window function selects modes with k < kσ, the spatial dependence in ϕ̂C

29We remark, however, that it was noted in [163] that sharp cutoffs such as the one chosen here lead to
issues in the noise correlators at large spatial distances. Smooth window functions have been proposed in
[164–166]. As far as we are aware, the effect that varying the window function would have in the presence
of a USR phase has not been studied, and would be an interesting direction for future work.
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can be neglected on these scales compared to the temporal one, and we can define

ϕ̂C(t,x) ≃ ϕ̂C(t) ≡ ϕ̄(t). (113)

In other words, the coarse-grained field ϕ̂C can be considered homogeneous, at each time

t, over a length scale Lσ(t) ≡ (σaH)−1. Similar considerations apply to the conjugate

momentum π̂ of the field, which can also be decomposed in long- and short-wavelength

pieces

π̂(t,x) = π̂C(t,x) + π̂Q(t,x), (114)

where

π̂C(t,x) =

∫
d3k

(2π)3
W [kσ(t)− k]

[
akπk(t)e

ix·k + h.c.
]
, (115)

π̂Q(t,x) =

∫
d3k

(2π)3
W [k − kσ(t)]

[
akπk(t)e

ix·k + h.c.
]
, (116)

in analogy with eqs. (109, 110, 111).

Let us determine the equation of motion for ϕ̄ when ϕ̂Q is thought of as a perturbation. We

work using the spatially flat gauge ψ = E = 0. Our convention for the metric perturbations

is given in eq. (16) (see also Appendix A for a review of perturbation theory). The equations

of motion of the full inflaton field ϕ̂(t,x) and its conjugate momentum π̂(t,x) take the form

dϕ̂

dt
=

1

a3
(1 + φ)π̂ +

1

a
(∇B) · (∇ϕ̂), (117)

dπ̂

dt
=

1

a
∇ · (π̂∇B) + a∇2ϕ̂+ a∇ · (φ∇ϕ̂)− a3(1 + φ)Vϕ(ϕ̂). (118)

If we now plug eq. (109) –together with an analogue decomposition for the conjugate momen-

tum π̂(t,x)– into eqs. (117, 118), we find, linearizing in ϕ̂Q and π̂Q, the system of Langevin

equations (see Appendix C for a review of stochastic differential equations)

dϕ̄

dt
=

π̄

a3
+ ξϕ, (119)

dπ̄

dt
= −a3Vϕ(ϕ̄) + ξπ, (120)

where we have defined the so-called noise operators (since ak is an operator)

ξϕ ≡ −
∫

d3k

(2π)3
dW
dt

[
akϕke

+ix·k + a†kϕ
⋆
ke

−ix·k
]
, (121)

ξπ ≡ −
∫

d3k

(2π)3
dW
dt

[
akπke

+ix·k + a†kπ
⋆
ke

−ix·k
]
, (122)
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where the Fourier modes ϕk(t) and πk(t) defined in (110, 115) satisfy the Hamiltonian system

ϕ̇k =
1

a3
(π̄φk + πk) , (123)

π̇k = − π̄
a
k2Bk − ak2ϕk − a3

[
φkVϕ(ϕ̄) + ϕkVϕϕ(ϕ̄)

]
. (124)

The time derivative of the window function is, in accordance with eq. (112),

dW
dt

=
d

dt
Θ[k − kσ(t)] = −δ[k − kσ(t)]

dkσ(t)

dt
. (125)

In Fourier space, the metric perturbations obey

Hφk =
1

2M2
p

ϕk
dϕ̄

dt
, (126)

k2

a
Bk = 3Hφk +

1

2M2
p

[
ϕk
H
Vϕ(ϕ̄)−

φk
H

(
dϕ̄

dt

)2

+
ϕ̇k
H

dϕ̄

dt

]
. (127)

By combining these equations we obtain

ϕ̈k + 3Hϕ̇k +
k2

a2
ϕk +

{
Vϕϕ(ϕ̄)−

1

M2
p

1

a3
d

dt

[
a3

H

(
dϕ̄

dt

)2]}
ϕk = 0. (128)

If we define uk ≡ aϕk/Mp and change variables to conformal time adτ = dt (recall that
′ ≡ d/dτ ), we obtain the stochastic inflation analogue of the Mukhanov-Sasaki equation

u′′k +

(
z′′

z
− k2

)
uk = 0, with z ≡ ϕ̄′

H
, (129)

where the difference with respect to the standard perturbation theory result (24) once we

identify uk = zRk is that z is constructed using the coarse-grained field ϕ̄(t), and not the

classical background field ϕ(t). Similarly, the quantity ϕk (or uk) should be understood as

a Fourier mode of the short-wavelength perturbation in eq. (111) and not as the standard

quantity δϕk from perturbation theory.

Despite their intrinsic quantum nature, a classical interpretation can be assigned to ϕ̄ and

ξϕ and ξπ in eqs. (119, 120). If we compute the equal-time commutator [ξϕ(t,x), πϕ(t,x
′)],

we find, in the limit kσ|x− x′| ≪ 1

[ξϕ(t,x), ξπ(t,x
′)] ∝ ϕkσ(t)π

⋆
kσ(t)− ϕ⋆kσ(t)πkσ(t) ≃ 0. (130)

Since the commutator vanishes, the variables ξϕ and ξπ can be considered classical (this

implies that a similar interpretation can be assigned to ϕ̄ and π̄). However, at this stage we

cannot assign to them any specific numerical value since they are still defined in terms of

operators. This simply means that, from a classical point of view, they must be considered
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stochastic variables whose statistical properties are fully determined by computing their

correlation functions (that is, by identifying quantum expectation values with statistical

moments). It is straightforward to check that ⟨0|ξϕ,π(t,x)|0⟩ = 0. We define the two-point

correlation matrix

Θ(t,x; t′,x′) ≡

(
⟨0|ξϕ(t,x)ξϕ(t′,x′)|0⟩ ⟨0|ξϕ(t,x)ξπ(t′,x′)|0⟩
⟨0|ξπ(t,x)ξϕ(t′,x′)|0⟩ ⟨0|ξπ(t,x)ξπ(t′,x′)|0⟩

)
, (131)

with elements

Θfg ≡ ⟨0|ξf (t,x)ξg(t′,x′)|0⟩ = 1

6π2

dk3σ
dt

fkσ(t)g
⋆
kσ(t)

sin(kσ|x− x′|)
kσ|x− x′|

δ(t− t′). (132)

The two-point correlation functions are therefore nonzero only at t = t′, a property that

defines the so-called white noise. This noise also happens to be Gaussian, since higher-order

correlators can be expressed in terms of the two-point functions due to Wick’s theorem.

These facts, which originate from our choice of window function in eq. (112) justify modelling

the noise in the Langevin equations (119, 120) as a Wiener process (see Appendix C for the

definition of a Wiener process and a review about stochastic differential equations). Other

choices of window functions lead to colored noise sources, for which the standard techniques

of stochastic differential equations involving Wiener processes cannot be applied. In the

following, we shall restrict our analysis to the simplest case of white noise, although we

remark that other choices are also acceptable (see e.g. [164–166]). As we mentioned already,

since the only role of this function is to distinguish classicalized modes from quantum modes,

the results should not depend heavily on this choice. We are interested in the effect of the

noise on length scales ∆x ≡ |x − x′| over which the coarse-grained field is homogeneous,

∆x ≪ Lσ. This implies that we can evaluate eq. (132) at the same spatial point, x ≃ x′.

Eq. (132) becomes

Θfg(t,x; t
′,x) = Θfg(t)δ(t− t′), Θfg(t) ≡

d log kσ
dt

k3σ
2π2

fkσ(t)g
⋆
kσ(t)︸ ︷︷ ︸

Pfg(t,kσ)

, (133)

where Pfg(t, kσ) is the power spectrum of the fluctuations (ϕ, π) evaluated for each time t

at the corresponding coarse-graining cutoff wavenumber kσ.

Let us summarize the above results and highlight a few points. The equations of motion

(119, 120) can be interpreted as Langevin equations for the classical stochastic variables ϕ̄

and π̄. The quantities ξϕ and ξπ then behave as sources of stochastic noise, which we model

as Wiener processes due to the fact that their correlation functions, given by eq. (133), are

non-vanishing only at equal times. These equations of motion can be solved numerically by

discretizing the time variable and drawing (from a Gaussian distribution) a different value

for the noise sources at each time step. After repeating this procedure for a large number
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of realizations, the statistical properties of the system can be determined. This procedure,

however, is a very difficult numerical task, since the amplitude of the background noise, given

by eq. (133), is determined by the evolution of the fluctuations. The correct way to handle

the evolution would then be to solve for the background and perturbations simultaneously,

see e.g. [76]. An alternative approach is to expand the coarse-grained fields about their

classical counterparts at first order, ϕ̄ = ϕcl + δϕst and π̄ = πcl + δπst, where ϕcl and πcl are

defined as the solution of the Langevin equations in the absence of the noise term. This can

be thought of as the first step of a recursive strategy [167, 168]. Following this approach,

the stochastic noise appears as a source for the classical stochastic variables δϕst and δπst.

At first glance, expanding the fields in this way might make it seem like we are just doing

standard perturbation theory. However, notice that the variables δϕst and δπst retain here

their statistical meaning precisely because of the presence of the noise terms in the equations

governing their evolution. It is, therefore, only by computing the corresponding statistical

moments that one can extract information about the distribution of the perturbations. This

is the approach that we shall take from now on.

Until now, we have formulated the problem using cosmic time t as the time variable.

However, in stochastic inflation using different time variables can lead to different physical

results. This is for instance the case if one considers the number of e-folds N instead of the

cosmic time t. This is because changing variables from t toN involvesH, which is a stochastic

variable, since it is a function of ϕ̄. In [72], it was argued that the number of e-folds N is

the time variable which allows one to consistently connect stochastic inflation with results

from QFT on curved space-times (see also [169, 170]). This issue is not really relevant for us

since all of our results in this chapter will be derived using the analytical model presented

in Section 1.4, which assumes that H is constant. Nevertheless, formulating the stochastic

dynamics in terms of the number of e-folds can help elucidate the physical interpretation of

some of the final equations, in addition to being more convenient for numerical calculations.

For this reason, from now on we switch to the description in terms of the number of e-folds.

The Langevin equations then take the form

dϕ̄

dN
= π̄ + ξϕ, (134)

dπ̄

dN
= −(3− ϵ)π̄ − 1

H2
Vϕ(ϕ̄) + ξπ, (135)

where, compared with eqs. (119, 120), we have rescaled the conjugate momentum as π̄/(a3H) →
π̄. This rescaling allows a more direct identification of π̄ with the inflaton velocity. The noise
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operators are

ξϕ = −
∫

d3k

(2π)3
dW
dN

[
akϕke

+ix·k + a†kϕ
⋆
ke

−ix·k
]
, (136)

ξϕ = −
∫

d3k

(2π)3
dW
dN

[
akπke

+ix·k + a†kπ
⋆
ke

−ix·k
]
, (137)

where now ϕk and πk are given by

dϕk
dN

= π̄φk + πk, (138)

dπk
dN

= −(3− ϵ)πk −
π̄k2

aH
Bk −

k2

(aH)2
ϕk −

1

H2

[
φkVϕ(ϕ̄) + ϕkVϕϕ(ϕ̄)

]
. (139)

If we eliminate the metric perturbations by means of the Einstein field equations, we find

d2ϕk
dN2

+ (3− ϵ)
dϕk
dN

+

[
k2

(aH)2
+ (3− ϵ)

Vϕϕ(ϕ̄)

V (ϕ̄)
M2

p − 2ϵ(3 + ϵ− 2η)

]
ϕk = 0. (140)

For the noise correlation function in eq. (133), we have

Θfg(N) ≡ d log kσ
dN

k3σ
2π2

fkσ(N)g⋆kσ(N), (141)

where kσ = kσ(N).

From the discussion presented in this section, it is clear that a proper definition of the

coarse-graining cutoff wavenumber kσ is necessary in order to have a correct interpretation

of the stochastic dynamics. In standard slow-roll inflationary models, the choice kσ = σaH

is well motivated. However, in the presence of a USR phase the horizon-crossing condition

σ ∼ 1 does not offer a correct description of the dynamics of the perturbations and, in

particular, it does not always describe appropriately the time after which the curvature

perturbation stays constant. To illustrate this, we consider the analytical model developed

in Section 1.4. In Fig. 13 we show, by using this model, that modes that leave the horizon

during the USR phase take much longer to freeze than modes that leave at early or late

times. In the next section we will show that, critically, the freezing condition is equivalent

to the classicalization condition. It is therefore important to re-think about the appropriate

definition of kσ in models that feature a USR phase.

3.2 ■ Classicalization of the modes

In this section we present a detailed analysis of the quantum-to-classical transition of in-

flationary perturbations in the presence of a USR phase. We will argue that the definition

kσ = σaH can still be used in this case, provided that the cutoff parameter σ is chosen to
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Figure 13: Left panel: time at which the curvature perturbation freezes outside the horizon for
each k. For modes that leave the horizon at early times or after the USR phase ends, the freezing
occurs shortly after horizon crossing. Modes that leave the horizon during the USR phase take much
longer to freeze. Right panel: power spectrum PR corresponding to the dynamics in the left panel.
The reference scale k⋆ is chosen as the one that crosses the horizon when the USR phase begins.
We have used the analytical model of Section 1.4 with parameters η1 = 0, η2 = 4, η3 = −1, and
∆N2 = 2.

be small enough to allow for the classicalization of the relevant modes to occur. To quantize

the system, let us begin by noting that the Mukhannov-Sasaki equation (129) in real space

can be derived from the following action for u(τ,x)

S =
1

2

∫
dτd3xM2

p

[(
u′ − z′

z
u

)2

− (∇u)2
]
. (142)

Defining the conjugate momentum p = δS/δu′, we obtain p = u′ − (z′/z)u. Consequently,

the Hamiltonian is

H(τ) =
1

2

∫
d3xM2

p

[
p2 + (∇u)2 + 2

z′

z
pu

]
. (143)

We promote u(τ,x) and p(τ,x) to quantum operators û(τ,x) and p̂(τ,x) with equal-time

commutation relations [û(τ,x), p̂(τ,x′)] = iδ3(x−x′). In Fourier space, we find the following

Hamiltonian operator

Ĥ(τ) =
1

2

∫
d3kM2

p

{
p̂k(τ)p̂

†
k(τ) + k2ûk(τ)û

†
k(τ) +

z′

z

[
p̂k(τ)û

†
k(τ) + ûk(τ)p̂

†
k(τ)

]}
, (144)
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with commutation relations [ûk(τ), p̂k′(τ)] = iδ3(k + k′) and [ûk(τ), p̂
†
k′(τ)] = iδ3(k − k′).

We study the evolution of the system in the Heisenberg picture. To this end, we introduce

the time-dependent ladder operators

ûk(τ) =
1√
2k

[
ak(τ) + a†−k(τ)

]
, (145)

p̂k(τ) = −i
√
k

2

[
ak(τ)− a†−k(τ)

]
, (146)

which have equal-time commutation relations [ak(τ), a
†
k′(τ)] = δ3(k − k′). These equations

follow from the usual form of the lowering operator

ak(τ) =

√
k

2
ûk(τ) +

i√
2k
p̂k(τ), (147)

after noticing that

a†k(τ) =

√
k

2
û†k(τ)−

i√
2k
p̂†k(τ) =

√
k

2
û−k(τ)−

i√
2k
p̂−k(τ), (148)

where the last step follows from the reality of u(τ,x) and p(τ,x).

The Hamiltonian is

Ĥ(τ) =
M2

p

2

∫
d3k

{
k

[
ak(τ)a

†
k(τ) + a†−k(τ)a−k(τ)

]
︸ ︷︷ ︸

collection of harmonic oscillators

+i z
′

z

[
a†−k(τ)a

†
k(τ)− ak(τ)a−k(τ)

]
︸ ︷︷ ︸

interacting term (pair creation)

}
. (149)

The first term in square brackets is the standard part describing a collection of free harmonic

oscillators. The second term in square brackets, which vanishes in flat space-time, is an

interacting term between the scalar field and the classical gravitational background. The

interaction is described by the product of two creation operators for the mode k and −k

and it represents the production of pairs of quanta with opposite momentum during the

cosmological expansion. In terms of the Hubble parameters, we find

z′

z
= aH(1 + ϵ− η) ≃

aH slow-roll phase with ϵ ≃ η ≪ 1,

aH(1− η) ultra-slow-roll phase with ϵ≪ 1.
(150)

During a standard phase of slow-roll evolution, the relative importance of the interacting term

is controlled by the relation between k and aH. For k ≪ aH, that is, after the mode with

comoving wavenumber k leaves the horizon, the interacting term dominates and a copious

pair production enhances exponentially the number of quanta in the original Minkowski

vacuum that, consequently, undergoes a quantum-to-classical transition. This justifies the

standard definition kσ = σaH for the coarse-graining cutoff wavenumber in the standard
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slow-roll case. It also justifies our earlier statement that the classicalization condition is

equivalent to asking that the curvature perturbation freezes, since the latter occurs also

around k ≃ aH. When slow-roll is violated, however, the description of the quantum to

classical-transition is more involved. In particular, during an ultra-slow-roll phase η can

take large values, flipping the sign of the interacting term in eq. (150).

Let us calculate the occupation number density operator to determine the effect of the

interacting term in the Hamiltonian. The Heisenberg equations for the creation and annihi-

lation operators can be written in matrix form as

d

dτ

(
ak(τ)

a†−k(τ)

)
=

(
−ik z′/z

z′/z ik

)(
ak(τ)

a†−k(τ)

)
. (151)

The off-diagonal terms are responsible for particle creation in curved space-time. To solve

this system, we use a Bogoliubov transformation. Starting from some given initial condition

at time τ⋆, the ladder operators at time τ can be written as:

ak(τ) = yk(τ)ak(τ⋆) + wk(τ)a
†
−k(τ⋆), (152)

a†−k(τ) = y⋆k(τ)a
†
−k(τ⋆) + w⋆k(τ)ak(τ⋆), (153)

with the condition |yk(τ)|2 − |wk(τ)|2 = 1 which follows from the fact that the commuta-

tion relations among ladder operators must be preserved if the evolution is unitary. From

eqs. (145, 146), we find

ûk(τ) = uk(τ)ak(τ⋆) + u⋆k(τ)a
†
−k(τ⋆), (154)

ip̂k(τ) = pk(τ)ak(τ⋆)− p⋆k(τ)a
†
−k(τ⋆), (155)

where we have defined

uk(τ) ≡
1√
2k

[
yk(τ) + w⋆k(τ)

]
, (156)

pk(τ) ≡
√
k

2

[
yk(τ)− w⋆k(τ)

]
. (157)

It is easy to see that uk(τ) and pk(τ) satisfy the following equations

u′′k(τ) +

(
k2 − z′′

z

)
uk(τ) = 0, (158)

i

[
u′k(τ)−

z′

z
uk(τ)

]
− pk(τ) = 0, (159)

with uk(τ⋆) = 1/
√
2k and pk(τ⋆) =

√
k/2. Here we have switched notation uk → uk and

pk → pk because the solutions to these equations depend only on k = |k| (similarly for
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Figure 14: Left panel: time at which the curvature perturbation freezes outside the horizon for
each k (solid red), together with the time at which the occupation number density reaches the value
nk = 103 dashed red). The cutoff kσ = σaH is also shown for σ = 10−5 (dashed black). Right
panel: evolution of the occupation number density for kpeak (dashed black) and kdip (solid black).
We have used the analytical model of Section 1.4 with parameters η1 = 0, η2 = 4, η3 = −1, and
∆N2 = 2.

yk and wk). Notice that from the condition |yk(τ)|2 − |wk(τ)|2 = 1 we have, by means of

eqs. (156, 157), the condition

i

[
duk(τ)

dτ
u⋆k(τ)−

du⋆k(τ)

dτ
uk(τ)

]
= 1. (160)

The strategy now is to solve eqs. (158, 159) and reconstruct, by inverting eqs. (156, 157), the

evolution of the ladder operators in eqs. (152, 153). The initial conditions for uk and pk

follow trivially from eqs. (152, 153). As far as the initial value τ⋆ is concerned, we assume, as

customary in the context of inflation, that the system starts in the vacuum state |0⟩ defined
by the condition ak(τ⋆)|0⟩ = 0.

The time-dependent occupation number nk(τ) is defined, for each mode k, by the expec-

tation value in the original vacuum state of the time-dependent particle number operator

a†k(τ)ak(τ),

n̄k(τ) = ⟨0|a†k(τ)ak(τ)|0⟩

= ⟨0|
[
y⋆k(τ)a

†
k(τ⋆) + w⋆k(τ)a−k(τ⋆)

][
yk(τ)ak(τ⋆) + wk(τ)a

†
−k(τ⋆)

]
|0⟩

= |wk(τ)|2δ3(0), (161)
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where the δ3(0) has the usual interpretation of spatial volume and arises because we have

computed the total number of particles rather than the number density nk(τ), which should

therefore be defined as nk(τ) ≡ |wk(τ)|2. By following the aforementioned procedure and

using the Wronskian condition (160), the occupation number density can be written as

nk(τ) =
k

2
|uk(τ)|2 +

1

2k
|pk(τ)|2 −

1

2
. (162)

In what follows we will consider the large occupation number condition nk(τ) ≫ 1 as a test

for classicality, in accordance with the discussion below eq. (150). By using

uk =
aϕ̇

MpH
Rk, (163)

together with the analytical model of Section 1.4 –specifically, eq. (61), together with the

fact that ϵ ∝ e−2ηiN– we obtain, in the i-th region,

u
(i)
k (τ) = a

√
2ϵR(i)

k (τ), (164)

p
(i)
k (τ) = ia

√
2ϵ
d

dτ
R(i)
k (τ). (165)

The occupation number density is then

n
(i)
k (τ) = ka2ϵ

(∣∣R(i)
k (τ)

∣∣2 + 1

k2

∣∣∣ d
dτ

R(i)
k (τ)

∣∣∣2)− 1

2
. (166)

The time evolution of this quantity is shown in the right panel of Fig. 14 for two different

modes. In the left panel of this figure, we show the time at which curvature perturbations

freeze outside the horizon, together with the time at which the occupation number density

reaches a value nk ≫ 1. Both curves have qualitatively the same shape, confirming the

statement that requiring the curvature perturbation to freeze outside the horizon is equivalent

to asking that the modes classicalize. As can be seen in the right panel, the exponential

growth of nk that signals the quantum-to-classical transition only occurs after the USR

phase has ended, especially for modes close to kdip, for which nk decreases exponentially for

a few e-folds after the USR phase. This means that the cutoff kσ = σaH remains a good

choice in the presence of a USR phase, but we must be careful to select σ appropriately. As

shown in the left panel of Fig. 14, only for σ ≲ 10−5 do the modes actually have enough time

to classicalize.

3.3 ■ The noise matrix

Now that we have clarified the role of the cutoff choice on the quantum-to-classical transition,

we can move on to the calculation of the noise correlation matrix in eq. (141). To this end
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we can once again exploit the analytical model of Section 1.4. By combining Einstein’s

equations and using uk = aϕk/Mp, we can show that

ϕk =
√
2ϵMpRk, (167)

πk =
√
2ϵMp

[
d

dN
Rk − (η + ϵ)Rk

]
. (168)

Setting kσ = σaH and using ϵ ≪ 1, we find the following explicit expressions for the noise

correlators in terms of the number of e-folds [3],

Θ
(i)
ϕϕ(N) =

(σaH)3

2π2
2ϵiM

2
p |R

(i)
kσ
(N)|2, (169)

Θ
(i)
ϕπ(N) =

(σaH)3

2π2
2ϵiM

2
pR

(i)
kσ
(N)⋆

(
d

dN
R(i)
k (N)

∣∣∣
kσ

− ηiR(i)
kσ
(N)

)
, (170)

Θ(i)
ππ(N) =

(σaH)3

2π2
2ϵiM

2
p

∣∣∣∣ ddNR(i)
k (N)

∣∣∣
kσ

− ηiR(i)
kσ
(N)

∣∣∣∣2. (171)

At lowest order in σ the noise correlation functions admit simple analytical expressions if

we use eq. (61). The results are shown in Table 3.

σ → 0 Phase 1 Phase 2 Phase 3

Θϕϕ(N) H2

4π2
H2

4π2 e
−2η2(N−N⋆) H2

4π2 e
−2η3(N−∆N2−N⋆)−2η2∆N2

Θπϕ(N) 0 − H2

4π2 η2 e
−2η2(N−N⋆) − H2

4π2 η3 e
−2η3(N−∆N2−N⋆)−2η2∆N2

Θππ(N) 0 H2

4π2 η
2
2 e

−2η2(N−N⋆) H2

4π2 η
2
3 e

−2η3(N−∆N2−N⋆)−2η2∆N2

Table 3: Noise correlation functions in the limit σ → 0 [3].

To solve the stochastic dynamics, we consider, as anticipated in Section 3.1, the expansion

of the coarse-grained field about its classical counterpart at first order, namely ϕ̄ = ϕcl +

δϕst and π̄ = πcl + δπst, where ϕcl and πcl define the classical trajectory (that is, they

are obtained by solving the Langevin equations in the absence of the noise terms, so that

they are deterministic quantities and coincide with the background trajectory that would

be obtained in standard perturbation theory) and δϕst and δπst are statistical variables. To

interpret δϕst and δπst, therefore, we have to compute their statistical moments. The latter,

in full generality, are defined by

⟨δϕnstδπmst ⟩S(N) ≡
∫
dϕ̄dπ̄ [ϕ̄− ϕcl(N)]n[π̄ − πcl(N)]mP (ϕ̄, π̄, N), (172)

where P (Φ, N) is the phase-space probability density for the coarse-grained variables ϕ̄ and

π̄ that solves the Fokker-Planck equation (see e.g. [171–173]. See also Appendix C for a
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review of the basic aspects of stochastic differential equations)

∂P

∂N
= −

∑
k

∂

∂Φk

(DkP ) +
1

2

∑
kℓ

Dkℓ
∂2P

∂Φk∂Φℓ

, (173)

where Φ ≡ (ϕ̄, π̄)T. In eq. (173), D is the drift vector with components

D =

(
ϕ̄

−(3− ϵϕ̄)
[
π̄ +M2

pVϕ(ϕ̄)/V (ϕ̄)
]) , (174)

and D is the diffusion matrix

D ≡ 1

2

[
Θ

(i)
ϕϕ(N) + Θ(i)

ππ(N)
]
+
σ1
2

[
Θ

(i)
ϕπ(N) + Θ

(i)
πϕ(N)

]
+
σ3
2

[
Θ

(i)
ϕϕ(N)−Θ(i)

ππ(N)
]
, (175)

where σ(1,2,3) are the Pauli matrices. The drift term in the Fokker-Planck equation describes

the deterministic part of the dynamics while the diffusion term gives the stochastic one. It

is important for what follows to remark that in eq. (174) ϵϕ̄ indicates the Hubble parameter

evaluated on the coarse-grained field ϕ̄, namely 2M2
p ϵϕ̄ = (dϕ̄/dN)2 = π̄2.

By using the Fokker-Planck equation, it is possible to write the equations describing the

evolution of the statistical moments. Let us focus on the two-point statistical correlators

which are relevant for the computation of the power spectrum. We find

d

dN

 ⟨δϕ2
st⟩S

⟨δϕstδπst⟩S
⟨δπ2

st⟩S

 =

 0 2 0

Cϕ Cπ 1

0 2Cϕ 2Cπ


 ⟨δϕ2

st⟩S
⟨δϕstδπst⟩S
⟨δπ2

st⟩S

+

Dϕϕ

Dϕπ

Dππ

 , (176)

where

Cϕ = −M2
p

3− ϵcl
V 2(ϕcl)

[
Vϕϕ(ϕcl)V (ϕcl)− V 2

ϕ (ϕcl)
]
, (177)

Cπ = −3(1− ϵcl) + πcl
Vϕ(ϕcl)

V (ϕcl)
. (178)

where, to be crystal-clear with our notation, we indicate with ϵcl the Hubble parameter ϵ

evaluated on the classical trajectory, namely 2M2
p ϵcl = (dϕcl/dN)2. Eq. (176) is of general

validity, and is obtained by expanding the components of the drift vector around the clas-

sical trajectory and using integration by parts in the Fokker-Planck equation (under the

assumption that, by definition, the phase-space probability density P decays fast enough at

infinity so that the boundary terms in the integration by parts vanish). Eqs. (177,178) can
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be conveniently rewritten in terms of the slow-roll parameters (assuming again that ϵ≪ 1),

Cϕ = −(3− η)η, (179)

Cπ = −3. (180)

We can once again exploit the analytical model of Section 1.4 to solve this system in each

phase by starting from some classical phase-space configuration at some reference initial

time. Let us focus on the behavior of the solutions in phase 3. By starting from a classical

phase-space configuration at the end of the USR phase Nend = ∆N2 +N⋆ (since in phase 2

the noise decreases exponentially as per Table 3),

⟨δϕ2
st⟩

(3)
S

∣∣
Nend

= 0, ⟨δϕstδπst⟩(3)S

∣∣
Nend

= 0, ⟨δπ2
st⟩

(3)
S

∣∣
Nend

= 0. (181)

and using the expressions for the noise at lowest order in σ in Table 3, we find

⟨δϕ2
st⟩

(3)
S =

H2

4π2
e2(η3Nend−η2∆N2)(N −Nend)e

−2η3N , (182)

⟨δϕstδπst⟩(3)S = −η3
H2

4π2
e2(η3Nend−η2∆N2)(N −Nend)e

−2η3N , (183)

⟨δπ2
st⟩

(3)
S = η23

H2

4π2
e2(η3Nend−η2∆N2)(N −Nend)e

−2η3N . (184)

One can check that from a generic initial condition the solution will evolve exponentially fast

towards eqs. (182, 183, 184). The field diffuses in all three directions in phase-space but, cru-

cially, with very precise relations among the two-point statistical correlators. Before moving

on, it is also worth noting that the solution in the first phase is, starting the integration from

some arbitrary initial time N0,

⟨δϕ2
st⟩

(1)
S =

H2

4π2
(N −N0), ⟨δϕstδπst⟩(1)S = 0, ⟨δπ2

st⟩
(1)
S = 0. (185)

This is of course nothing but the standard result in slow-roll inflation according to which

the inflaton field only diffuses along the ϕϕ direction.

The power spectrum of comoving curvature perturbations is defined by the Fourier trans-

form of the two-point correlation function of R

⟨R(x1)R(x2)⟩S =

∫
d3k1

(2π)3
d3k2

(2π)3
eik1·x1+ik2·x2

2π2

k3
PR(k)δ

3(k1 + k2). (186)

Since we are only interested in the result on length scales over which the coarse-grained field

is homogeneous, we can evaluate the correlators at the same spatial point. The integration
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over k will then be limited only to the long wavelength interval k ∈ [0, kσ]. We find

⟨R2⟩S ≡ ⟨R(x)R(x)⟩S =

∫ kσ

0

dk

k
PR(k). (187)

If we now change variable from k to the number of e-folds via k = aH, so that dk/k = dN ,

and take derivatives on both sides, we find that we can write

PR(k) =
d

dN
⟨R2⟩S =

1

2M2
p ϵcl

[
d

dN
⟨δϕ2

st⟩S + 2ηcl⟨δϕ2
st⟩S
]∣∣∣∣
Nσ

, (188)

where the right-hand side must be evaluated at the time Nσ defined by the condition k = σaH

and, as per the discussion in Section 3.2, the cutoff parameter σ must be small enough to

allow for classicalization of the modes to occur. A value of σ ≲ 10−5 is enough for typical

inflection-point models of PBH production, as shown in Fig. 14. If we use eq. (176) to rewrite

d⟨δϕ2
st⟩/dN , we find

PR(k) =
1

2M2
p ϵ3

[
D

(3)
ϕϕ + 2

(
⟨δϕstδπst⟩(3)S + η3⟨δϕ2

st⟩
(3)
S

)]∣∣∣
k=kσ

. (189)

Let us calculate the power spectrum in eq. (189) analytically in the limit σ → 0, in accordance

with the above prescription. In phase 3, as a consequence of eqs. (182, 183), we find that

⟨δϕstδπst⟩(3)S and η3⟨δϕ2
st⟩

(3)
S cancel out. Thus, plugging Θϕϕ from eq. (169) into D

(3)
ϕϕ ,

PR(k) =
(σaH)3

2π2
|R(3)

k (N)|2
∣∣∣∣
k=kσ

, (190)

where, since k = kσ = σHeN ,

R(3)
kσ

=
1

Mp

√
π

8Hϵ1

(
k

σH

)−(3−2η3)/2[
α3(k)J(3−2η3)/2(σ) + β3(k)J−(3−2η3)/2(σ)

]
. (191)

In the σ → 0 limit, we therefore have, using eq. (64)

lim
σ→0

PR(k) =
(σH)3

2π2

1

M2
p

π

8Hϵ1

(
k

σH

)2η3
∣∣∣∣β3(k)σ−(3−2η3)/2

2−(3−2η3)/2

ΓE(η3 − 1/2)

∣∣∣∣2
∝ |β3(k)|2

(
k/H

)2η3 , (192)

which coincides exactly with eq. (67). We conclude that the computation of the power spec-

trum obtained in the context of stochastic inflation matches precisely, even in the presence

of an ultra-slow-roll phase, the result obtained by means of the conventional perturbative

approach.

The above conclusion is in disagreement with the results of [159], where it was argued

that the term proportional to D
(3)
ϕϕ in eq. (189) reproduces the power spectrum obtained by
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solving the Mukhanov-Sasaki equation, and the terms in parentheses yield an additional

enhancement to the power spectrum at its peak. The first of these claims is in agreement

with the calculation in this section, as long as the cutoff parameter σ is small enough to

allow for the modes to classicalize. In the conventional perturbation theory approach, this

corresponds to the usual prescription according to which the power spectrum has to be

evaluated after the perturbation Rk freezes to the final constant value that it maintains

until its horizon re-entry after the end of inflation. On the other hand, we find that the

terms in parentheses in eq. (189) cancel out due to the precise relations among the two-point

functions in eqs. (182, 183, 184). One aspect that differentiates the calculation above from

that of [159] is that we have used the analytical solution to the Mukhanov-Sasaki equation

presented in Section 1.4, whereas a full numerical analysis based on the model of [66] was

performed in [159]. To remedy this difference, a numerical analysis based on the polynomial

model of Section 2.1 will be performed in the next section.

Before moving on, let us comment on the issue of non-Gaussianities. The above conclu-

sions might naively lead us to think that, since the stochastic inflation approach seems to

not have an effect on the power spectrum, the PBH abundance is similarly unaffected. This

is not correct, however. The reason is that what enters into the PBH abundance is not the

power spectrum per se, but the full probability distribution for the fluctuations, which must

be integrated over in order to find the probability of collapse β defined in Section 1.2. One of

the advantages of the stochastic approach is that it allows for the calculation of this proba-

bility distribution, which can be found by directly solving the Fokker-Planck equation (173).

This is the approach that has been pursued in [73, 174], resulting in probability distributions

that decay exponentially. Since the integration over the probability distribution is precisely

over this exponential tail, these references argue that quantum diffusion heavily impacts the

calculation of the PBH abundance. These results have been confirmed numerically in [76].

Although in this thesis we only focus on the calculation of the power spectrum, it would be

interesting to extend the analysis of [73] to the class of models discussed here, featuring an

epoch of slow-roll violation, using the analytical model in Section 1.4.

3.4 ■ Numerical analysis

In this section we will perform a numerical analysis in the context of the polynomial model

discussed in Section 2.1. We remind the reader that the physical, canonically normalized

field in this model is h, not ϕ. To be clear about this fact, in this section we use the notation

hk instead of ϕk. In the following, we consider the solution which has the abundance shown

in green in Fig. 8.

In the left panel of Fig. 15 (compare with the left panel of Fig. 13.) we show for each

comoving wavenumber k the transition time (solid black line) after which the corresponding

mode freezes to its final constant value. We also show contours of kσ = σaH for different
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Figure 15: Left panel: transition time (solid black line) for the comoving wavenumbers k on the
y-axis as function of the number of e-folds. This plot refers to the polynomial model discussed in
Section 2.1. Diagonal red dashed lines correspond to the condition k = kσ = σaH for different σ.
Right panel: power spectrum obtained for the same model by solving numerically the Mukhanov-
Sasaki equation (solid black line). We also show the value of Dhh/(2M

2
p ϵ) for different σ (red dashed

lines). As discussed in the text, this quantity reproduces, in the limit of small σ, the power spectrum
computed by means of the Mukhanov-Sasaki equation. Notice that Dhh/(2M

2
p ϵ) is a function of the

number of e-folds, but for fixed σ the dependence on N can be translated into a k-dependence as
discussed in eq. (188).

values of σ with σ = 1 corresponding to the horizon crossing condition. In the right panel of

the same figure we show the power spectrum obtained by solving numerically the Mukhanov-

Sasaki equation (solid black line). This plot should be compared with the right panel of

Fig. 13 and shows that, as anticipated, the analytical approximation captures all relevant

features of the numerical solution.

The elements of the diffusion matrix in eq. (175) are defined in terms of the noise corre-

lators in eq. (141) which take the form

Θfg(N) =
(1− ϵ)

2π2
k3σfkσ(N)g⋆kσ(N), (193)

with fk, gk = hk, πk and k = kσ = σaH (where now we no longer considerH as a constant, but

rather as a function of time that must be determined numerically by solving the background

equations). Part of the complexity of the numerical calculation is that the σ parameter

must be kept finite. The fact that the relation k = σaH must hold implies that if the

comoving wavenumber k is fixed, then to each N there will correspond a σ such that the

relation is verified. The outcome of this procedure is illustrated in Fig. 16, where we plot the
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Figure 16: Elements of the diffusion matrix D(N) in eq. (175) computed for the numerical model
discussed in Section 2.1. We fix k = 5× 1010 Mpc−1 and show our results as function of N .

components of D(N) as a function of N for the representative value k = 5×1010 Mpc−1. This

choice corresponds to a mode which crosses the horizon at N ≃ 28, before the beginning of

the USR phase. The value of σ corresponding to each N is shown on the top x axis. To make

the relationship between the top and bottom axes clearer, one can just draw a horizontal

line in the left panel of Fig. 15 at the specific value of k analyzed, and see at which N each

value of σaH is crossed. In the first phase (that is for N ≲ 36, before the beginning of the

USR phase) we have a sizable value of σ. Consequently, the approximations given in Table 3

are not valid, since they are obtained in the σ → 0 limit (and for constant H). On the other

hand, for k = 5× 1010 Mpc−1 the value of N at which the USR phase begins corresponds to

a relatively small value of σ, namely σ ∼ 10−5. This value is so small that, from this point

on, our analytical approximations (valid in the σ → 0 limit) are now perfectly recovered

(see Table 3 and compare with the dotted lines in Fig. 16). These results therefore fully

confirm the analytical calculation in the previous section. One of the main messages here

is that in the presence of a USR phase, the entries of the noise matrix cannot be taken as

Dhh = H2/4π2 and Dhπ = Dππ = 0. Rather, the noise decreases exponentially as per the

results of Table 3 and Fig. 16.

With the entries of the diffusion matrix in hand, we can now proceed to the calculation

of the power spectrum in eq. (189). As anticipated in the previous section, the first term
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in this equation can be calculated by evaluating the quantity Dhh/(2M
2
p ϵ) at the time Nσ

defined by k = σaH for each k. The value of Dhh can be read off immediately for any

given N (for k = 5 × 1010 Mpc−1) in Fig. 16. As discussed above, for sufficiently small σ

(in particular, during phase 3), the matrix elements follow the evolution ∝ e−2ηN . Since

this is precisely the way in which ϵ evolves as well, the ratio Dhh/ϵ consequently settles to

a constant value independent of σ, as it should. This fact can be better appreciated in the

right panel of Fig. 15, where we show the resulting value of Dhh/(2M
2
p ϵ) for different choices

of σ. As expected, only for σ ≲ 10−5 do we obtain a power spectrum consistent with the

usual perturbation theory result, since it is only for these values of σ that the modes are

given enough time to classicalize, as can be confirmed by inspecting the left panel of Fig. 15.

These numerical results confirm what we found analytically in eq. (192).

The terms in parentheses in eq. (189) can be found by solving numerically the system

in eq. (176). As for the choice of initial conditions, we start the integration from a clas-

sical phase space configuration, as we did in eq. (181), although we have checked that so-

lutions derived from different sets of initial conditions settle to the same value within a

few e-folds. As before, it is instructive to fix the value of k and consider the solutions as

functions of N (or, equivalently, σ). We find that at late times (for sufficiently small σ)

⟨δhstδπst⟩ and ⟨δh2st⟩ settle to their asymptotic functional forms ∝ Ne−2ηN and the com-

bination ⟨δhstδπst⟩ − (ϵ − η)⟨δh2st⟩ vanishes asymptotically as in the analytical model. For

the mode under consideration (k = 5 × 1010 Mpc−1) this requires σ ≲ 10−5, as for the

Dhh/(2M
2
p ϵ) term.

We therefore find that the numerical analysis of the model introduced in Section 2.1 con-

firms our analytical results. The curvature power spectrum computed in stochastic inflation

at the linear order in perturbations matches precisely the result obtained by solving the

Mukhanov-Sasaki equation using standard perturbation theory. This result is not surprising

per se, since it was already well-established in the context of slow-roll inflation, see e.g. [72].

The non-trivial point of our analysis is that we have extended its validity to the case in

which an USR phase is present, which is relevant for the formation of PBHs in inflection

point models. As a byproduct of our analysis, we have also clarified the role of the stochastic

noise and the issue of the quantum-to-classical transition in this scenario.
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CHAPTER

4
Black holes from warm inflation

In this chapter we consider the generation of a large power spectrum from a transient dis-

sipative phase during inflation using the warm inflation framework, in which the inflaton

gradually transfers its kinetic energy to lighter degrees of freedom throughout its evolution,

to describe the dynamics. In Section 4.1 we present the equations of motion for the back-

ground and fluctuations in the warm inflation formalism, as well as the phenomenological

parameterization for the dissipative coefficient we consider. In Section 4.2 we rewrite the

stochastic equations of motion for the fluctuation as a single, deterministic matrix differen-

tial equation for their two-point functions in order to determine the stochastic average of

the power spectrum. In Section 4.3 we perform a full numerical analysis by directly solving

the stochastic differential equations for the fluctuations for many realizations of the noise,

allowing us to determine the probability distribution for the power spectrum. Finally, in

Section 4.4 we simplify the equations by making a reasonable set of assumptions in order to

solve them analytically, and show that the solution reproduces the most important features

of the spectrum.

4.1 ■ Dissipation during inflation

In the standard inflationary scenario it is assumed that the coupling between the inflaton

and other fields is such that particles produced throughout inflation are quickly diluted by

the expansion. The interaction between both sectors only becomes relevant in the reheating

stage, during which the inflaton oscillates around the minimum of its potential, decaying

into these other fields and populating the Universe with radiation. This is not the only

possible way in which inflation can end, however. A gradual transfer of energy can also

occur between the inflaton and other fields as it rolls down its potential. If we assume that

these other fields comprise a bath of thermalized radiation, eventually their energy density

will overcome that of the inflaton and dominate the Universe, ending inflation without the

need for a separate stage of reheating. This scenario is known as warm inflation, and is

characterized by the presence of a local dissipation term of the form Γϕ̇ in the equation of

motion for the inflaton. Although the presence of such a term due to particle production

had been considered since the early days of inflation, the warm inflation scenario as we know

it today was first proposed in [95, 96]. The first models of warm inflation were unsuccessful

due to the fact that it seemed difficult to keep temperature corrections to the potential

small enough for it to remain relatively flat while still having a large dissipative coefficient,
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issues that were first pointed out in [175]. Models that were able to satisfy these constraints

required uncompelling ingredients such as non-standard interactions or a large number of

fields [176]. It was then realized that evading these issues would be possible if the inflaton did

not couple directly to the light fields that comprised the radiation bath, but rather through

heavy catalyst fields [177]. The quantum corrections induced by these heavy fields could

be cancelled in supersymmetric models while still inducing particle production, and they

therefore became a standard ingredient in later warm inflation models. The microphysics of

warm inflation in scenarios of this kind are discussed in Appendix D.

The formation of PBHs in warm inflation was studied in [178, 179], where dissipative co-

efficients that grow monotonically as inflation progresses were considered, leading to spectra

that are not peaked, but rather grow towards the end of inflation, producing black holes that

are too light to account for the dark matter of the Universe due to the Hawking radiation

bounds on the lower end of the mass range (1). The approach we shall take here is to remain

agnostic about the origin of the dissipative coefficient. We will model our scenario using a

phenomenological approach, assuming that the dissipation is due to a term ∝ Γϕ̇ entering

into the equation of motion of the inflaton, and such that the dissipative coefficient Γ is a

peaked function of the inflaton field –so that we can obtain PBH masses in the unconstrained

range (1)– and proportional to the third power of the temperature of the radiation bath.

This is the main difference between the model in this thesis and the standard warm inflation

scenarios, where the dissipation is assumed to be active throughout the duration of inflation,

as opposed to only for a few e-folds.

Let us begin by assuming that during inflation the inflaton gradually transfers its energy

to a thermalized radiation bath with energy density ρr and temperature T related by

ρr =
π2

30
g⋆T

4. (194)

At the background level, the energy transfer between both components (inflaton and radia-

tion) is modeled via

ϕ̈+ (3H + Γ)ϕ̇+ Vϕ = 0, (195)

ρ̇r + 4Hρr = Γϕ̇2, (196)

ρr + V +
1

2
ϕ̇2 = 3M2

pH
2. (197)

These equations ensure that the total energy-momentum tensor is conserved. If friction

dominates the background dynamics, the initial conditions for these equations are irrelevant

due to the presence of an attractor, much like in the standard slow-roll scenario. This

attractor is characterized by the ratios

ϵϕ ≡ − Vϕ

(3H + Γ)ϕ̇
≃ 1, ϵρ ≡

Γϕ̇2

4Hρr
≃ 1. (198)
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Figure 17: Left panel: T , H and Γ in units of Mp and as functions of the number of e-folds N ,
near the value N = Npeak at which the peak in the primordial curvature spectrum (shown in Fig. 20)
occurs. The analytical expression for Γ as a function of the inflaton background field is given in
eq. (211). The parameters chosen for this benchmark example are given in eq. (212). Right panel:
slow-roll parameters ϵ and η, and the ratios ϵϕ and ϵρ defined in eq. (198).

These ratios, along with the slow-roll parameters (15) and the relevant background quantities,

are shown in Fig. 17 for a benchmark example of the model we consider here. The figure

shows that the dissipative coefficient Γ increases in value, reaching the so-called strongly

dissipative regime Γ ≫ H for a short phase that lasts roughly ∼ 4 e-folds. As can be seen

in the figure, ϵ remains smaller than 1 throughout this phase and the Hubble parameter

remains constant, so that inflation never stops.

Let us move on to the dynamics of the fluctuations. We work in Newtonian gauge and

denote by δϕ and δρ(r) the perturbations of the inflaton field and the radiation energy density,

respectively. We also define

δq(r) =
4

3
ρrδv

(r), (199)

where δv(r) is the velocity perturbation of the radiation. Einstein’s equations are then (see

e.g. [180])

3H(ψ̇k +Hψk) +
k2

a2
ψk = − 1

2M2
p

[
δρ

(r)
k + ϕ̇(δϕ̇k − ϕ̇ψk) + Vϕδϕk

]
, (200)

ψ̇k +Hψk = − 1

2M2
p

(
δq

(r)
k − ϕ̇δϕk

)
, (201)

ψ̈k + 4Hψ̇k + (2Ḣ + 3H2)ψk =
1

2M2
p

[
1

3
δρ

(r)
k + ϕ̇(δϕ̇k + ϕ̇ψk)− Vϕδϕk

]
, (202)
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where the only difference with respect to the standard inflationary scenario in eqs. (20, 21,

20) is the presence of the perturbations of the radiation fluid. The curvature perturbation

(23) is now given by

Rk =
H

ρ+ p

(
δq

(r)
k − ϕ̇δϕk

)
− ψk. (203)

The total energy-momentum tensor T µν = T µν(ϕ) + T µν(r) is conserved, since [181]

∇µT
µν
(ϕ) = Qν , ∇µT

µν
(r) = −Qν , (204)

where the energy transfer vector Qµ contains a stochastic piece, the form of which is deter-

mined by the fluctuation-dissipation theorem (see e.g. [182, 183]),

Qµ = −Γ uν∇νϕ∇µϕ+

√
2ΓT

a3
ξt∇µϕ. (205)

In this expression uν denotes the 4-velocity of the radiation fluid and ξt ≡ dWt/dt, where

dWt is a Wiener increment30 satisfying ⟨ξt(x)ξt′(x′)⟩S = δ3(x − x′)δ(t − t′). Here, as in

Chapter 3, the brackets ⟨· · · ⟩S denote a stochastic average over different realizations. The

linearized equation for δϕ is, in Fourier space [183],

δϕ̈k + (3H + Γ)δϕ̇k +

(
k2

a2
+ Vϕϕ + ϕ̇Γϕ

)
δϕk

+ ΓT
ϕ̇T

4ρr
δρ

(r)
k − 4ϕ̇ψ̇k + (2Vϕ + Γϕ̇)ψk =

√
2ΓT

a3
ξt. (206)

The equations for the radiations perturbations δρ(r) and δq(r) are

δρ̇
(r)
k +

(
4H − ΓT

ϕ̇2T

4ρr

)
δρ

(r)
k − k2

a2
δq

(r)
k + Γϕ̇2ψk

−4ρrψ̇k − (Γϕδϕk − 2Γδϕ̇k)ϕ̇ = −
√

2ΓT

a3
ϕ̇ξt, (207)

δq̇
(r)
k + 3Hδq

(r)
k +

4

3
ρrψk +

1

3
δρ

(r)
k + Γϕ̇δϕk = 0. (208)

Eqs. (206)–(208), together with one of Einstein’s equations, for instance eq. (201), form

a complete set for the four variables δϕ, δρ(r), δq(r) and ψ. These equations can be further

simplified using the following combination of Einstein’s equations:(
2M2

p

k2

a2
− ϕ̇2

)
ψk + δρ

(r)
k + ϕ̇δϕ̇k + (Vϕ + 3Hϕ̇)δϕk − 3Hδq

(r)
k = 0. (209)

Imposing this constraint allows to reduce the number of equations by one, so we can elimi-

30See Appendix C for the definition of a Wiener process and a brief review on stochastic differential
equations.
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nate, for instance, eq. (208). However, we find that not imposing this constraint can be more

stable numerically. We use the initial conditions

δq
(r)
k = 0, δρ

(r)
k = 0, ψk = 0, δϕk = − ϕ̇

2Mp aH
√
kϵ
e−ikτ , (210)

where we have assumed Bunch-Davies initial conditions for δϕ. As we will show later, the

choice of initial conditions is not very relevant, since the noise term leads to an attractor

behaviour for the evolution of the perturbations.

Our main goal is the description of a peak in the curvature power spectrum arising

from transient dissipation. The perturbation equations are driven by a source of noise with

amplitude ∼
√
ΓT , and so they are significantly enhanced whenever Γ is sufficiently large.

If the peak of the spectrum of the curvature perturbation is localized around an adequate

scale, the PBH mass function will be narrow enough so that their masses fit into the window

(1) of interest for dark matter. Therefore, we focus on modeling a dissipative coefficient

Γ that satisfies Γ ≫ H only for a few e-folds. Rather than building a full model of the

complete inflationary history we focus on the local description of the dynamics around the

relevant region. Although we remain agnostic about the details of the microphysics that

gives rise to such a peaked dissipative coefficient, in Appendix D we present a toy example

of a Lagrangian with the necessary features that could potentially serve as a basis for future

models.

We assume the following parameterization of the dissipative coefficient

Γ(ϕ, T ) =
T 3

m2 +M2 tanh2 [(ϕ− ϕ⋆)/Λ]
, (211)

where, as discussed in Appendix D, the T 3 dependence of Γ arises naturally in a specific

low-temperature limit (in which the temperature is much smaller than the mass of the

light fields that comprise the radiation bath), which is common in warm inflation. The

temperature dependence of Γ is not crucial for the stochastic noise to generate a peak in

the primordial power spectrum. A temperature-independent Γ that is peaked as a function

of ϕ also produces a similar effect, but the parameterization (211) resembles more closely

the actual Γ that may be expected from a concrete Lagrangian in which ϕ couples to other

fields.

For our benchmark example of Fig. 17 we choose the following set of parameters:

g⋆ = 8, ϕ⋆ = 22Mp, M = 10−2Mp, m = 1.4× 10−4Mp, Λ = 0.1Mp. (212)

We also consider the following inflaton potential

V (ϕ) =
λ

4
ϕ4, (213)
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Figure 18: Stochastic average of the power spectrum computed for the benchmark parameters of
eq. (212) by varying g⋆ (left panel) and m in units of Mp (right panel). The horizontal axis is
normalized at the scale k = kpeak at which the peak in the benchmark spectrum (with g⋆ = 8 and
m = 1.4× 10−4Mp) occurs.

with λ = 2.5 × 10−15. Since our focus is on studying the phenomenology of the dynamics

generated by dissipation alone, we could choose any other potential compatible with slow-

roll inflation as long as it does not have any peculiar features at the scales we want to

analyze. In addition, the potential V (ϕ) only needs to be valid a few e-folds before and after

the region where Γ ≫ H because we are only concerned with describing the appearance

of a large peak in the primordial power spectrum, which is a local feature. Nevertheless,

the value of λ is chosen in such a way that we obtain the correct amplitude for the power

spectrum, As ≃ 2 × 10−9 [23]. Our choice of parameters leads to a PR with a peak value

of O(10−2), which we expect to yield PBHs with an abundance fPBH ∼ O(1) if they form

during radiation domination, as per the discussion in Section 1.2.

For the initial conditions of the background variables we choose

ϕ(N = 0) = 26Mp,
dϕ

dN

∣∣∣∣
N=0

= −2
√
6

ϕ0

M2
p , ρr(N = 0) = 10−5M4

p , (214)

although the last two are essentially irrelevant due to the presence of the background attrac-

tor discussed in the previous section. This choice makes the background quantities converge

quickly to their attractor values. The time at which the localized growth in Γ occurs (and

therefore the scale at which the peak in the power spectrum is located) can be controlled by

varying ϕ⋆. Decreasing m or M makes the peak of PR larger. In particular, since we choose

m ≪ M , decreasing m makes PR increase without changing the value of Γ far away from

the wavenumbers associated to ϕ⋆, so that PR retains its normalization at small distance

scales. Similarly, increasing Λ makes PR larger. Finally, decreasing g⋆ makes the peak of PR
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larger. To understand why this is the case, let us determine how the coefficient in front of

the thermal noise in the equation of motion for the perturbations (206, 207) scales with g⋆.

This can be done by isolating the temperature dependence of this quantity. Let us define

γ(ϕ) via Γ(ϕ, T ) = γ(ϕ)T 3. Then, by assuming the system is in the attractor solution (198)

and using that Γ ≫ H at the peak, we find

ΓT ∝ γ(ϕ)

[
1

g⋆

V 2
ϕ

H

1

γ(ϕ)

]4/7
. (215)

We therefore find that decreasing g⋆ makes the amplitude of the stochastic noise increase,

thereby increasing the curvature power spectrum. The effect of varying m and g⋆ on the

spectrum is shown in Fig. 18.

4.2 ■ The matrix formalism

Due to the presence of the stochastic thermal noise, the main quantity of interest for us is

the expectation value of the power spectrum at a given comoving scale, which we denote by

⟨PR(k)⟩S. The most straightforward way to compute this quantity (though not necessarily

the most economical) is to solve the stochastic equations (201, 206, 207) for a large sample

of stochastic realizations, and then calculate their average. Alternatively, one can bypass

this procedure by noting that ⟨PR(k)⟩S is a deterministic quantity, so that the system of

stochastic differential equations can then be rephrased as a single, deterministic, matrix

differential equation for the correlators of the scalar fluctuations, in analogy with eq. (176)

in the context of stochastic inflation.

Let us begin by noting that the equations of motion can be written, in Fourier space,

as a system of linear first-order complex stochastic differential equations. Throughout this

section we will work with the number of e-folds as time variable and we define the column

vector

Φ ≡
(
ψk, δρ

(r)
k ,

dδϕk
dN

, δϕk

)T

. (216)

The equations of motion (201, 206, 207) can then be conveniently written as a system of four

first-order stochastic differential equations

dΦ

dN
+AΦ = BξN , (217)

where the matrix A and the column vector B are real and independent of Φ. Explicit

expressions will be given at the end of this section. We also assume that the constraint in

eq. (209) has been imposed to eliminate δq(r) from the system. In this equation, ξN denotes

the Wiener increment from eqs. (206, 207) written in terms of the number of e-folds31 and

31The rule for changing the time variable in the Wiener process is derived in Appendix C.
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satisfying, in Fourier space,

⟨ξN(k)ξN ′(k′)⟩S = (2π)3δ(N −N ′)δ3(k − k′). (218)

We are interested in the curvature perturbation, which can be written as

R = CTΦ, (219)

where the vector C is can be read off eq. (203). The corresponding power spectrum, averaged

over stochastic realizations, can be expressed in terms of the correlation function matrix

⟨ΦΦ†⟩S as

⟨PR(k)⟩S =
k3

2π2
CT⟨ΦΦ†⟩SC

∣∣∣∣
k≪aH

. (220)

It makes no difference whether we work with the real and imaginary parts of Φ, or with Φ

and its complex conjugate Φ⋆. We now choose the latter option. The probability density

P (Φ,Φ⋆, N) for the system to be in state {Φ,Φ⋆} at time N can be obtained by solving the

Fokker-Planck equation32

∂P

∂N
=
∑
kℓ

[
Akℓ

∂

∂Φk

(ΦℓP ) +Akℓ
∂

∂Φ⋆
k

(Φ⋆
ℓP ) + (BBT)kℓ

∂2P

∂Φk∂Φ⋆
ℓ

]
. (221)

The two-point statistical moments are defined as

Q ≡ ⟨ΦΦ†⟩S(N) ≡
∫ ∏

i

dΦi

∫ ∏
j

dΦ⋆
j P (Φ,Φ

⋆, N) ΦΦ†. (222)

The equation of motion for Q can be found differentiating this equation and using the

Fokker-Planck equation.33 The resulting deterministic differential equation for the matrix

Q is
dQ

dN
= −AQ−QAT +BBT. (223)

By solving this deterministic differential equation we can bypass solving the full system of

stochastic differential equations for the perturbations as long as we are only interested in the

stochastic average of the power spectrum, which is given by eq. (220).

Let us give explicit expressions for each one of the matrices used in these equations with

the number of e-folds as the time variable. The matrix of initial conditions Qi ≡ Q(Nini) is,

32The probability density P is a function of two variables (Φ and Φ⋆) which do not obey independent
equations of motion (since the noises ξN and ξ⋆N are correlated), so the fact that we can use the Fokker-
Planck equation in its canonical form is not obvious. A derivation is performed in Appendix C.

33It is also necessary to integrate by parts and use the fact that the probability distribution vanishes on
the integration boundaries.
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in accordance with eq. (210),

Qi =
1

2ka2(Nini)


0 0 0 0

0 0 0 0

0 0 1 + (k/ki)
2 −1− i(k/ki)

0 0 −1 + i(k/ki) 1

 , (224)

where ki is the scale that crosses the horizon at some initial e-fold value Nini. In practice, we

can start integrating at some time Nini such that k/ki ≃ 100, and terminate the integration

a few e-folds after the strongly dissipative phase (in which Γ ≫ H) ends and the mode being

computed satisfies k ≪ aH.

The matrix A is given by

A =


fψ fρ fdϕ fϕ

gψ + 4ρrfψ gρ + 4ρrfρ gdϕ + 4ρrfdϕ gϕ + 4ρrfϕ

hψ + 4(dϕ/dN)fψ hρ + 4(dϕ/dN)fρ hdϕ + 4(dϕ/dN)fdϕ hϕ + 4(dϕ/dN)fϕ

0 0 −1 0

 , (225)

where

fψ = 1 +
k2

3a2H2
− 1

6M2
p

(
dϕ

dN

)2

, gψ = ΓH

(
dϕ

dN

)2

− k2

3a2

[
2M2

p

k2

a2H2
−
(
dϕ

dN

)2]
,

fρ =
1

6M2
pH

2
, gρ = 4− ΓT

HT

4ρr

(
dϕ

dN

)2

− k2

3a2H2
,

fdϕ =
1

6M2
p

dϕ

dN
, gdϕ = −

(
k2

3a2
+ 2ΓH

)
dϕ

dN
,

fϕ =
Vϕ

6M2
pH

2
, gϕ = − k2

3a2H2

(
3H2 dϕ

dN
+ Vϕ

)
−HΓϕ

(
dϕ

dN

)2

,

hψ = 2
Vϕ
H2

+
Γ

H

dϕ

dN
, hρ =

T ΓT
4Hρr

dϕ

dN
,

hdϕ = 3 +
Γ

H
+

1

H

dH

dN
, hϕ =

k2

a2H2
+
Vϕϕ
H2

+
Γϕ
H

dϕ

dN
. (226)

The vectors B and C are

B =


0

−
√

2ΓTH/a3
(
dϕ
dN

)√
2ΓT/(aH)3

0

 , C = 1
3H2(dϕ/dN)2+4ρr


2M2

pk
2/a2 − 4H2

(
dϕ
dN

)2 − 4ρr

1

H2
(
dϕ
dN

)
Vϕ

 . (227)

It is worth stressing that since the stochastic source ends up dominating the evolution of

the perturbations, the choice of initial conditions is in fact not particularly relevant. This fact

will be made more clear in Section 4.4, but for now let us illustrate it through a numerical
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Figure 19: Left panel: time evolution of the averaged power spectrum of each perturbation as a
function of the number of e-folds. Right panel: effect of varying the initial conditions; see the
discussion below eq. (228). Ncross denotes the time at which the scale k indicated in each panel
crosses the horizon (k = aH).

example. Let us parameterize the deviation from the Bunch-Davies initial conditions by

multiplying the initial conditions matrix by a small number εBD,

Qi =
εBD

2ka2(Nini)


0 0 0 0

0 0 0 0

0 0 1 + (k/ki)
2 −1− i(k/ki)

0 0 −1 + i(k/ki) 1

 . (228)

The effect of varying εBD with respect to the case εBD = 1 is shown in the right panel of

Fig. 19. Even for very large values of this parameter, εBD ≃ 106, we find that within roughly

1 e-fold (and several e-folds before horizon crossing) the solutions converge to the same value.

As we mentioned earlier, we find that in some cases the system of differential equations is

numerically more stable if we do not impose the constraint of eq. (209). This gives rise to an

additional equation of motion (for the variable δq(r)). We have checked that the numerical

results using either set of equations are in agreement. The power spectrum obtained from

the solution to this matrix differential equation for the benchmark point (212) is shown as a

solid line in the left panel of Fig. 20. The evolution of the perturbations for the mode kpeak

at which the power spectrum peaks is shown in Fig. 19.
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4.3 ■ Solving the stochastic equations

In principle, to determine the probability distribution for the stochastic variable Φ, one

should solve the Fokker-Planck equation (221), which is a rather difficult task. An alter-

native consists in estimating numerically the probability distribution by using a frequentist

approach, i.e. by solving the system of Langevin equations (217)

dΦ +AΦdN =
1√
2
B
(
dW r

N + idW i
N

)
(229)

over many different realizations, where dW r
N ≡

√
2Re(ξN)dN and dW i

N ≡
√
2Im(ξN)dN are

real-valued, independent Wiener processes.34 This is the approach that we adopt in this

section.

We impose the following initial conditions, in accordance with eqs. (210, 224)

Φ(Nini) =
(
0, 0,

1

a(Nini)

i
√
k√

2ki
+

1

a(Nini)

1√
2k
,− 1

a(Nini)

1√
2k

)T
. (230)

The limits of integration are discussed below eq. (224). We solve the Langevin system with

a fixed time-step Runge-Kutta method.35 The convergence of the solution was checked

by successively decreasing the time-step. We found that decreasing the time step below

∆N = 10−4 produces results for the averaged primordial spectrum that are indistinguishable

at the percent level.

The left panel of Fig. 20 shows (as light blue dots) a collection of 2160 stochastic re-

alizations of the power spectrum for twenty different values of the wavenumber k. In the

same panel, the dark blue dots represent the arithmetic average of all the realizations for

each k. The continuous black curve, in turn, corresponds to the numerical solution of the

matrix equation (223). The right panel shows the relative difference between the frequentist

approach and the matrix formalism solution. The result is a stochastic average which agrees

with the matrix formalism results at the percent level.

The Langevin method provides for us not only the means to determine the first moment

of the probability distribution of the power spectrum, but with enough sampling we can also

determine the full distribution for PR(k) at each value of k. The left panel of Fig. 21 shows the

normalized histogram for the 2160 realizations for log10 PR(k) at k = 0.8 kpeak for illustration.

In this same panel we show as a vertical dashed blue line the corresponding expectation value

over realizations, and as the vertical red dashed line the mean computed using the matrix

formalism (presented in Section 4.2). The continuous black curve corresponds to a skew-

normal fit to the (logarithmic) data. A random variable x is skew-normal distributed if its

34The factor
√
2 is necessary for the correlation functions of Re(ξN ) and Im(ξN ) to be properly normalized,

as discussed in Appendix C.
35We used Wolfram Mathematica and the ItoProcess command to simulate stochastic realizations with

the method “StochasticRungeKutta”.
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Figure 20: Left panel: stochastic average of the power spectrum for 20 different values of k (dark
blue dots). The number of realizations for each value of k is 2160 (represented as the small, light
blue dots). The solid black line represents the average of the power spectrum obtained via the
deterministic matrix differential equation derived in Section 4.2. Right panel: absolute value of the
relative difference between the stochastic average and the matrix average of the power spectrum.
The agreement for each k is at the percent level.

probability distribution function is given by

Pskew-normal(x |µ, σ, α) =
1√
2πσ

e−
(x−µ)2

2σ2 erfc

[
−α(x− µ)√

2σ

]
, (231)

where erfc(x) denotes the complementary error function and {µ, σ, α} are free parameters.

Therefore, we find that the PDF of PR can be modelled as a skew-log-normal distribution.

Defining for each k the difference

∆ log10 PR ≡ log10 PR − log10⟨PR⟩S (232)

we find that its probability distribution is very well approximated by a k-independent skew-

normal distribution. The right panel of Fig. 21 shows the frequentist histogram for the

full set of realizations for eq. (232). Together with it we show the corresponding universal

skew-normal fit (shown in solid black), with parameters

{µ, σ, α} = {0.42, 0.87,−4.15}. (233)

A similar histogram can be created separately for each k, and we find that the standard

deviations of the parameters {µ, σ, α} for each one of these histograms with respect to the

corresponding values for the universal fit shown above are of order {3%, 2%, 9%}.
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Figure 21: Left panel: histogram of log10 PR(k) for 2160 realizations for k = kpeak, together
with a skew-normal fit for the probability distribution function. Right panel: histogram of the k-
independent variable ∆ log10 PR defined in eq. (232) using the full set of 20 × 2160 realizations,
together with a universal skew-normal fit for the probability distribution function.

The variance of the probability distribution function for the power spectrum is quite

large. From Fig. 21 it is clear that, for a specific realization in a particular Hubble patch

the spectrum can reach a value roughly one order of magnitude away from the 10−2 value

required to obtain fPBH ≃ 1 if the PBHs form in RD, leading to either overproduction or

underproduction of PBHs (according to the Gaussian estimate of the abundance). This effect

can always be countered by adjusting any of the parameters in Γ that control the overall size

of the average of the power spectrum, as discussed in Section 4.1, as well as the threshold for

the collapse (on which the abundance depends exponentially within the Gaussian estimate).

4.4 ■ Analytical approximation

To get a better understanding of the evolution of the perturbations and the shape of the

primordial spectrum, it is useful to simplify the equations of motion in such a way that they

can be solved analytically. Let us begin by noting that at late times, the only quantity that

contributes to the curvature perturbation is δϕ,

R ≃ − Hϕ̇

ρ+ p
δϕ ≃ −H

ϕ̇
δϕ

∣∣∣∣
k≪aH

. (234)
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The second observation we make is that, in the equation of motion for δϕ (206), we can

neglect several terms and still reproduce the most important features of the spectrum,

d2δϕk
dN2

+

(
3 +

Γ

H

)
dδϕk
dN

+

(
k2

a2H2
+

Γϕ
H

dϕ

dN

)
δϕk +

3

H2

(
dϕ

dN

)−1

δρ
(r)
k ≃ 0. (235)

This approximation is obtained by discarding terms involving the potential (which are slow-

roll suppressed), the metric perturbation (which can be checked numerically to be a good

approximation), and assuming that Γ ∝ T 3 and the background remains in the attractor at

all times, so that the attractor parameters defined in eq. (198) indeed satisfy ϵϕ = ϵρ = 1.

This last approximation is justified in the right panel of Fig. 17, where it can be seen that

the background quantities only leave the attractor for very brief periods. In addition, we

have found numerically that the stochasticity of the system is encoded in eq. (235) via the

δρ(r) term, and therefore the original noise term on the right hand side of eq. (206) can

be dropped. Let us explain this last approximation in more detail. If we have an explicit

expression for δρ(r) as a function of time, then we can think of the δρ(r) term in eq. (206) as

a source term for δϕ, on the same footing as the ξN term. Numerically, we find that the δρ(r)

term dominates over the ξN term, in the sense that one can set the latter to zero and still

correctly reproduce the key features of the spectrum: the location of the peak, and the size

of the spectrum; the latter within an order of magnitude of the full numerical result. We

remark that this does not mean that the noise ξN is irrelevant. In fact, it is precisely the noise

in eq. (207) which determines δρ(r), and thus in turn δϕ. In other words, the enhancement of

the power spectrum of the comoving curvature perturbation is due to the source term δρ(r)

(the value of which is set by the thermal noise) in the equation of motion for δϕ.

The strategy we will follow now is to propose a phenomenological parameterization for

δρ(r) as a function of time and use it to solve eq. (235). We will also assume that all back-

ground quantities can be approximated as piecewise-constant functions. The benchmark

values we take for each quantity are shown in Table 4, where we introduce the quantity

Σ ≡
√

9ΓT

H3
(236)

for later convenience.

These parameters have been chosen in such a way that we obtain a primordial spectrum

that closely resembles the one derived with the dissipation coefficient (211) for the parameters

in eq. (212). We assume the evolution proceeds in four different phases, which we label from

0 to 3. In phases 0 and 3 we have Γϕ = 0 and Γ ≪ H, so that we are in the weak dissipative

regime. In phases 1 and 2 we have Γ ≫ H. During phase 1 we have Γϕ > 0, and during

phase 2 we have Γϕ < 0. The evolution of the relevant background quantities using this

parameterization is compared to their numerical counterpart, obtained using the parameters

in eq. (212), in Fig. (22). In addition, we parameterize the time evolution of the root mean
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Phase 0 Phase 1 Phase 2 Phase 3

Σ [M
−1/2
p ] 2× 103 3× 105 3× 105 2× 103

Γ [Mp] 10−7 10−3 10−3 10−7

Γϕ
H

dϕ
dN

0 3.4× 102 −3.4× 102 0

Table 4: Benchmark parameters for the analytical calculation of the power spectrum. We also take
phases 1 and 2 to end at N1 = 2.5 and N2 = 5, respectively (we measure the number of e-folds
from the end of phase 0, so that N0 = 0, and we normalize a(N0) = 1, see Fig. 22), as well as
H = 7× 10−6.

square of δρ(r) with the following phenomenological expression,36

⟨|δρ(r)k |2⟩S ≃ 2π2

15
g⋆T

5 ·

e−3N N < Nf ,

e−2Ne∆Nf (H/k) N > Nf ,
(237)

where the time Nf at which the transition occurs is located a couple of e-folds before the

horizon crossing time,

Nf ≡ log(k/H)−∆Nf , (238)

where ∆Nf is an O(1), k-independent constant. We take ∆Nf = 2.1 for definiteness. Despite

its simplicity (which of course cannot capture all the details of the full numerical solution),

this parameterization is enough to understand the most important features of the spectrum.

Since δρ(r) is a stochastic variable, it is not sufficient to parameterize its root mean square

value, but we also need to know its correlation function. To make progress, we will assume

that δρ(r) behaves like a Wiener process,

δρ
(r)
k =

√
⟨|δρ(r)k |2⟩S ξδρN , (239)

where the correlation function for ξδρN is

⟨ξδρN (k)ξδρ
N̂
(q)⟩S = (2π)3δ(N − N̂)δ3(k + q). (240)

The homogeneous solution to eq. (235) can be written as

δϕ
(h)
k = e−νN

[
δϕ+Jµ

(
ke−N/H

)
+ δϕ−J−µ

(
ke−N/H

)]
, (241)

where δϕ± are constants fixed by the initial conditions, Jµ is the Bessel function of the first

36This expression improves over a similar one proposed in [184].

108



-2 0 2 4 6

10-7

10-4

10-1

102

105

Figure 22: The dissipative coefficient Γ, the quantity Σ defined in eq. (236) and the function
|(Γϕ/H)dϕ/dN | as functions of the number of e-folds (and in units of Mp) for the numerical
model with parameters given by eq. (212). The corresponding approximations as piecewise-constant
functions from Table 4 are shown with dashed lines.

kind and

ν =
1

2

(
3 +

Γ

H

)
, µ =

√
ν2 − Γϕ

H

dϕ

dN
. (242)

This is a straightforward generalization of eq. (61) to the dissipative scenario. This solution

and its derivative can also be written in matrix form as(
δϕ

(h)
k

d
dN
δϕ

(h)
k

)
= M

(
δϕ+

δϕ−

)
, (243)

where the time-dependent matrix M is given by

M = e−νN

(
Jµ
(
k
H
e−N

)
J−µ
(
k
H
e−N

)
d
dN
Jµ
(
k
H
e−N

)
− νJµ

(
k
H
e−N

)
d
dN
J−µ
(
k
H
e−N

)
− νJ−µ

(
k
H
e−N

)) . (244)

The constants µ and ν take different values in each one of the four phases. We denote

their values in the j-th phase by µj and νj. The constants δϕ± can be found by imposing

continuity of the solution and its derivative at the end of each phase. We denote these

constants by δϕ±j in the j-th phase. We use Nj to refer to the time at which each phase

ends. In particular, phase 0 begins at −∞ and ends at N0 = 0, and phase 3 ends at N3 = ∞.

To be as general as possible we keep our calculations generic for n + 1 phases, but we will

eventually set n = 3.
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Following the above procedure we can find the constants in the last phase(
δϕ+n

δϕ−n

)
=

(
n∏
j=1

M−1
j (Nj−1)Mj−1(Nj−1)

)(
δϕ+0

δϕ−0

)
. (245)

In this equation, terms with smaller j should be placed at the end of the product.37 The

total solution for δϕ, including both the homogeneous and inhomogeneous solutions is

δϕk = δϕ
(h)
k +

∫ N

−∞

Σ(N̂)

S(N̂)

G(N, N̂)

a(N̂)s/2
ξδρ
N̂
dN̂, (246)

where G is the Green’s function, which we will find below, and

s = 3Θ(Nf −N) + 2Θ(N −Nf ), (247)

S = Θ(Nf −N) +

√
k

H
e−∆Nf/2Θ(N −Nf ), (248)

where Θ is the Heaviside step function. The constants in the homogeneous solution are

obtained by imposing Bunch-Davies boundary conditions in the 0-th region,38(
δϕ+0

δϕ−0

)
= −1

2

√
π

H

(
1

i

)
. (249)

The expectation value of the power spectrum at late times is39

⟨Pδϕ(k)⟩S =
k3

2π2

[
2µn(k/H)−µn

ΓE(1− µn)

]2
|δϕ−n|2 +

k3

2π2

∫ ∞

−∞

Σ(N̂)2

S(N̂)2
|G(N → ∞, N̂)|2

a(N̂)s
dN̂︸ ︷︷ ︸

IP

, (250)

where ΓE(1− µn) denotes Euler’s Gamma function evaluated at (1− µn) and Σ was defined

in eq. (236).

The Green’s function G appearing in the integrand of eq. (250) is

G(N, N̂) =
δϕ

(1)
k (N)δϕ

(2)
k (N̂)− δϕ

(1)
k (N̂)δϕ

(2)
k (N)

d

dN̂
δϕ

(1)
k (N̂)δϕ

(2)
k (N̂)− d

dN̂
δϕ

(2)
k (N̂)δϕ

(1)
k (N̂)

, (251)

where N̂ < N and δϕ
(1,2)
k are two linearly independent solutions to the homogeneous equa-

tion. The calculation of the Green’s function is simpler if instead of writing the homogeneous

solutions as linear combinations of Jµ and J−µ, we use Jµ and Yµ (the Bessel function of the

37Since these are matrices, the order of the factors is relevant.
38We can do this because in this region we are in the weak dissipative regime Γ ≪ H and thus µ ≃ ν ≃ 3/2.
39See Appendix E for a detailed discussion on the assumptions required to arrive at this result from

eq. (246).
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Figure 23: Left panel: stochastic average of the power spectrum using the analytical approach. Right
panel: homogeneous (solid) and inhomogeneous (dashed) solutions –the two terms in eq. (246)– for
modes leaving the horizon at the start and the end of the strongly dissipative phase in which Γ ≫ H.
The inhomogeneous solution, which is independent of initial conditions, always dominates at late
times, indicating the presence of an attractor in the equation of motion for the perturbations. The
parameters chosen for both panels are shown in Table 4.

second kind, which is itself a linear combination of Jµ and J−µ). We therefore write

δϕ
(h)
k = e−νN

[
δϕ̂+Jµ

(
ke−N/H

)
+ δϕ̂−Yµ

(
ke−N/H

)]
, (252)

which is completely equivalent to eq. (241). Since the Green’s function is independent of

the boundary conditions chosen for the two linearly independent solutions, we can follow a

slightly different procedure from before and arbitrarily choose some linearly independent set

of constants in the final region instead of the first. The constants in the previous regions can

then be found by matching the solutions and their derivatives at each boundary. We choose(
δϕ̂

(1)
+n, δϕ̂

(1)
−n
)
= (0, 1) and

(
δϕ̂

(2)
+n, δϕ̂

(2)
−n
)
= (1, 0) for the two solutions.

The reason for using Yµ instead of J−µ and choosing the constants in the final region

instead of the first is that we obtain the following simple limits for the two independent

solutions at late times,

δϕ
(1)
k (N → ∞) = − 1

π
δϕ̂

(1)
−nΓ(µn)2

µn

(
k

H

)−µn
, (253)

δϕ
(2)
k (N → ∞) = 0. (254)
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If N̂ is in the i-th region, the denominator of the Green’s function becomes

d

dN̂
δϕ

(1)
k (N̂)δϕ

(2)
k (N̂)− d

dN̂
δϕ

(2)
k (N̂)δϕ

(1)
k (N̂) =

2

π
e−2νiN̂

(
δϕ̂

(1)
+i δϕ̂

(2)
−i − δϕ̂

(2)
+i δϕ̂

(1)
−i

)
. (255)

It is easy to show that this combination of constants is

1

Ci
≡
(
δϕ̂

(1)
+i δϕ̂

(2)
−i − δϕ̂

(2)
+i δϕ̂

(1)
−i

)
= e2(νi−νi+1)Ni

1

Ci+1

. (256)

Since in the final region we have δϕ̂
(1)
+nδϕ̂

(2)
−n − δϕ̂

(2)
+nδϕ̂

(1)
−n = −1, we obtain the following

expression for Ci,
1

Ci
= −

n−1∏
j=i

e2(νj−νj+1)Nj . (257)

Putting everything together, we find that the Green’s function at late times is, if N̂ is in the

i-th region,

G(N → ∞, N̂) = −Γ(µn)2
µn−1(k/H)−µn︸ ︷︷ ︸

Bn

δϕ
(2)
k (N̂)e2νiN̂Ci. (258)

The integral in eq. (250) then reads

IP =
n∑
i=0

Σ2
iB2

nC2
i

∫ e−Ni−1

e−Ni

vs−1−2νi

S2

[
δϕ̂

(2)
+iJµi(kv/H) + δϕ̂

(2)
−iYµi(kv/H)

]2
dv, (259)

where we have also switched variables to v = e−N . These integrals can be found analytically

in terms of hypergeometric functions.

Now that we have all the necessary ingredients we can compute the power spectrum

analytically by using eqs. (250, 259) and fixing the parameters as in Table 4. To go from δϕ

to R we use eq. (234) in the late time limit, where the ratio between the two is approximately

constant. The resulting power spectrum is shown in Fig. 23. The overall size of the peak of

the spectrum and the oscillations seen in Fig. 20 are present in the analytical solution. We

find that, as with the numerical solution, the peak in the spectrum occurs for modes that

leave the horizon around the end of the strongly dissipative phase. This is a consequence of

the enhancement being an integrated effect, due to eq. (259), as opposed to a local one.

Having an analytical solution allows us to understand why the initial conditions for the

perturbations are irrelevant. All of the information about initial conditions is contained in

the homogeneous solution (241) inside the integration constants δϕ±. However, as shown in

the right panel of Fig. 23, this solution is completely negligible at late times. The spectrum is

completely dominated by the integral in eq. (259), which is independent of initial conditions.

This indicates the presence of an attractor in the equation of motion for the perturbations,

as anticipated earlier.

The analytical approximation developed in this section is not enough to reproduce with
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accuracy the full averaged primordial spectrum. For instance, the actual slope of the log

of the spectrum for k < kpeak is about twice the value that the analytical approximation

gives. However, it does allow us to understand its features qualitatively, and will be useful

in Chapter 5 to estimate the peak value of the gravitational wave signal induced at second

order in perturbation theory for this scenario.
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CHAPTER

5
Gravitational wave signals

In this chapter we calculate the gravitational wave signals induced at second order in pertur-

bations for each one of the scenarios we have presented throughout the thesis. In Section 5.1

we calculate the solution to the equation of motion of the second-order tensor modes when

there is a transition between an early matter-dominated era and a radiation era. In Section

5.2, we examine the gauge-dependence of the result and determine the full gauge-invariant

expression for the energy density of gravitational waves through a heuristic argument based

on symmetry properties and dimensional analysis. In Section 5.3 we connect the solution for

the second-order tensor modes to the energy density of gravitational waves in the aforemen-

tioned transition scenario, and examine the bounds on the gravitational wave abundance

arising from CMB observations and the abundance of light elements produced during nucle-

osynthesis. Finally, in Section 5.4 we calculate the gravitational waves induced during and

after inflation for the dissipative scenario presented in Chapter 4.

5.1 ■ Induced gravitational waves

The detection of a stochastic background of gravitational waves of primordial origin would

have enormous implications for cosmology. At leading order in perturbations and in the

absence of anisotropic stress, gravitational waves decouple from other degrees of freedom

and propagate freely, carrying information about the mechanism that produced them and

the subsequent cosmological history, a fact that makes them a powerful observational tool.

Moreover, they can probe processes and energy scales that are difficult to test by other

means, such as phase transitions and topological defects in the early Universe [78]. If one

goes beyond the leading order description, the stochastic gravitational wave background also

becomes a viable tool to test the existence of PBHs. By expanding Einstein’s equations to

second order, it is possible to show that the tensor degrees of freedom of the metric are

sourced by terms quadratic in first-order scalar perturbations [79–81]. This implies that

the observable quantity of interest for detectors, the energy density of gravitational waves,

is proportional to the square of the power spectrum of curvature perturbations and thus, if

PBHs form via gravitational collapse induced by large density fluctuations, we should expect

the process to leave an imprint on the stochastic gravitational wave backgrond. Moreover,

since the mass of PBHs formed in a radiation-dominated era is related to the peak frequency

in the gravitational wave spectrum via eq. (2), if the peak of the mass distribution of PBHs

lies in the unconstrained window (1), then future gravitational wave experiments such as
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LISA and BBO/DECIGO could potentially detect the signal. Given the fact that, as we

have seen, PBH formation during an eMD has significant advantages, it is worth asking

whether these facts remain true also in this case.

Throughout this chapter we compute this signal for the different scenarios we have pre-

sented in the thesis. These gravitational waves are induced both during and after inflation.

In this section we focus on the post-inflationary contribution, which we compute by assum-

ing that a short early matter-dominated era takes place right after inflation. The case in

which the Universe enters directly into an radiation-dominated era can be recovered from

the results of this section by taking the duration of the eMD era to vanish, as we will see.

Thus, the model-independent results derived in this section apply not only for the polynomial

model of Section 2.1, where we considered only PBH formation during RD, but also to the

monodromy-inspired model of Section 2.3, for which one of the ingredients was the presence

of an eMD era. The calculation of the inflationary signal will be performed in Section 5.4

in the context of the warm inflation model presented in Chapter 4. Although gravitational

waves induced during an eMD era have been studied before [185], the novel part of this thesis

is that we do it in the context of PBH formation by using the results in [92, 93]. We find

that due to the fact that the scalar modes of the metric do not decay in time during an eMD

era, the signal can be enhanced to the point of violating the bounds on the abundance of

gravitational waves today imposed by CMB and BBN observations [98, 99], ruling out part

of the parameter space.

The calculation of this signal is not without difficulties, however. It has been pointed

out numerous times [84–88] that the transverse-traceless tensor part of the metric at second

order is a gauge-dependent variable, and therefore cannot be used to describe gauge-invariant

observables such as the energy density of gravitational waves. The issue was addressed in

[86, 90], where it was claimed that, despite the above remarks, the transverse-traceless

tensor piece of the metric can be used as long as the energy density of gravitational waves is

measured late into the radiation era, since in this case the scalars that source the gravitational

waves decay quickly in time so that the latter propagate in the same way as the first-

order tensor modes do. However, the energy density of gravitational waves should be a

gauge-independent quantity at any time, independently of when it is measured. A heuristic

derivation of the full expression for the energy density of gravitational waves valid beyond

leading order in perturbations will be provided in Section 5.2.

Let us focus, for the time being, on the calculation of the induced gravitational wave signal

in the eMD-to-RD transition scenario. We remind the reader that a schematic depiction of

the scenario we consider is shown in Fig. 1. Throughout this section we will follow the

standard derivation, which can be found, e.g. in [81, 185–187]. The equation of motion for

second-order tensor modes obtained by expanding Einstein’s equations to second order in
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perturbations is, in position space and in the absence of anisotropic stress,

hTT′′

ij + 2HhTT′

ij −∇2hTT
ij = −4T lm

ij slm, (260)

where primes denote derivatives with respect to conformal time (′ ≡ d/dτ ), H = a′/a denotes

the conformal Hubble factor, the bold symbol hTT
ij denotes the second-order transverse,

traceless piece of the metric which satisfies ∂ihTT
ij = δijhTT

ij = 0 (see Appendix A for our

conventions for the metric perturbations), the source term sij is given in Newtonian gauge40

and in the absence of anisotropic stress by (see e.g. [189])

sij = 2∂iψ∂jψ + 4ψ∂i∂jψ − 4

3

ρ

ρ+ p
∂i

(
ψ′

H
+ ψ

)
∂j

(
ψ′

H
+ ψ

)
, (261)

and T lm
ij is the transverse, traceless projector

T lm
ij slm =

∫
d3k

(2π)3
eik·x

(
e+
ije

+lm + e×
ije

×lm
)
ŝlm(k), (262)

where ŝij denotes the Fourier transform of sij. The polarization tensors in this expression

are

e+
ij =

1√
2
(eiēj − ēiej), (263)

e×
ij =

1√
2
(eiēj + ēiej), (264)

where e and ē are two unit vectors satisfying k ·e = k ·ē = e·ē = 0, so that hTT
ij is transverse

and traceless. In eq. (261) we have also neglected the first-order vector perturbations, which

are not typically produced in single-field inflation (in particular, not in the models we consider

here), and the first-order tensor modes, which we assume are negligible in comparison to the

scalar part of the source.

In what follows we will work in momentum space, where

hTT
ij (x) =

∫
d3k

(2π)3
eik·x

(
h+
k e

+
ij + h×

k e
×
ij

)
. (265)

The equation of motion then becomes

hs
′′

k + 2Hhs
′

k + k2hsk = Ssk, (266)

40The full expression for the source, valid for all gauges, is shown in eq. (384). For explicit solutions in
other gauges, see e.g. [84–89]. See also [188] for solutions in general backgrounds.
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where the index s refers to each polarization and

Ssk ≡ −4esij(k)ŝij(k). (267)

Writing the Fourier transform of sij explicitly, we find, assuming the background is dominated

by a perfect fluid with p = wρ,

Ssk(post) =

∫
d3p

(2π)3
es(k,p)

[
8ψpψk−p +

16

3 + 3w

(
ψp +

1

H
ψ′
p

)(
ψk−p +

1

H
ψ′
k−p

)]
, (268)

where es(k,p) ≡ esij(k)pipj and we have added the (post) subscript to emphasize the fact

that this is the post-inflationary expression for the source.41 This notation will be used from

now on to keep our expressions compact. We also remind the reader that the subindices in

the Fourier transforms of the perturbations denote the momenta at which they are evaluated.

The solution to eq. (266) is given by

hsk(τ) =

∫ τ

0

F(post)(τ, τ
′)Ssk(post)(τ

′)dτ ′, (269)

where F(post) is the Green’s function for eq. (266) after inflation ends. Since, for the time

being, we are only interested in the post-inflationary contribution to the source, in this

equation we assume that the amount of gravitational waves induced until the end of inflation

is negligible, so we have imposed the initial condition hsk(0) = 0 where, as is customary, we

have fixed the end of inflation at τ = 0. The upper limit τ denotes any posterior time, but

we will eventually take it to be today.

If we assume that the transition between the eMD and RD eras is instantaneous, the

Hubble factor is given by

H =


2

τ
for τ ≤ τm,

1

τ − τm/2
for τm ≤ τ ,

(270)

where τm is the time at which the transition between eMD and RD occurs. Similarly, the

scale factor is

a =


a(τm)

(
τ

τm

)2

for τ ≤ τm,

a(τm)

(
τ − τm/2

τm/2

)
for τm ≤ τ .

(271)

The Green’s function can be found by computing the homogeneous solutions to eq. (266)

in both eras, imposing continuity of the solutions and their derivatives at τm to determine

the integration constants, and plugging the result into the analogue of eq. (251). The result

41As mentioned earlier, the inflationary contribution to the gravitational wave signal will be derived in
Section 5.4
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is

kF(post)(τ, τ
′) =

a(τ ′)

a(τ)

g1(τ)g2(τ
′)− g1(τ

′)g2(τ)

g′
1(τ

′)g2(τ ′)− g1(τ ′)g′
2(τ

′)
, (272)

where

gi(τ) ≡

kτ [a+i j1(kτ) + a−i n1(kτ)] for τ ≤ τm,

(kτ − kτm/2)[b
+
i j0(kτ − kτm/2) + b−i n0(kτ − kτm/2)] for τm ≤ τ.

(273)

Here, (a, b)±i are integration constants (not to be confused with the scale factor, which will

never have ± superscripts) and jn and nn are spherical Bessel functions of the first and second

kind, respectively. The Green’s function formula only requires both solutions to be linearly

independent, so we are free to choose the constants in one of the regions (this is analogous

to what we did in Section 4.4). The constants in the other region will then be determined

by matching the solutions at the boundary, requiring continuity of the functions and their

derivatives. We therefore choose b+1 = 1, b−1 = 0, and b+2 = 0, b−2 = 1 in the second region,

and determine the a±i to be

a+1 =
1

k2τ 2m

[
sin

(
kτm
2

)(
k2τ 2m + cos(kτm)

)
+ kτm cos

(
kτm
2

)]
, (274)

a−1 =
1

2k2τ 2m

[(
1− 2k2τ 2m

)
cos

(
kτm
2

)
+ 2kτm sin

(
kτm
2

)
− cos

(
3kτm
2

)]
, (275)

a+2 = − 1

2k2τ 2m

[(
1− 2k2τ 2m

)
cos

(
kτm
2

)
+ 2kτm sin

(
kτm
2

)
+ cos

(
3kτm
2

)]
, (276)

a−2 =
1

k2τ 2m

[
sin

(
kτm
2

)(
k2τ 2m − cos(kτm)− 1

)
+ kτm cos

(
kτm
2

)]
. (277)

To perform the integral in eq. (269), we need to relate the value of ψk right after inflation

ends to the value of the curvature perturbation Rk, which, for the scales of interest, is frozen

outside the horizon at this time. The time evolution of ψk after the end of inflation is encoded

in the transfer function Tψk (τ), which can be obtained by solving the equation of motion for

ψk. In the absence of anisotropic stress and in the superhorizon limit, we have the following

relation between the time-dependent ψk and the frozen curvature perturbation Rk, obtained

by straightforward manipulation of Einstein’s equations

ψk(τ) =
3 + 3w

5 + 3w
Tψk (τ)Rk(0). (278)

The transfer function is obtained by solving

ψ′′
k + 3(1 + w)Hψ′

k + wk2ψk = 0. (279)

This equation is obtained, in the absence of anisotropic stress, by manipulating Einstein’s
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equations and assuming that δp = wδρ [189, 190]. The result is, in each epoch,

Tψk (τ) =


a+T + a−T (kτ)

−5 for τ ≤ τm,

3
√
3

kτ − kτm/2

[
b+T j1

(
kτ − kτm/2√

3

)
+ b−T n1

(
kτ − kτm/2√

3

)]
for τm ≤ τ .

(280)

The coefficients can be fixed by imposing Tψk (0) = 1 and T ′ψ
k (0) = 0 and matching the

solutions and their derivatives at τm. The resulting constants are a+T = 1, a−T = 0, and

b+T =
1

36
√
3

[
−

√
3
(
k2τ 2m − 36

)
cos

(
kτm

2
√
3

)
+ 18kτm sin

(
kτm

2
√
3

)]
, (281)

b−T =
1

36
√
3

[
−

√
3
(
k2τ 2m − 36

)
sin

(
kτm

2
√
3

)
− 18kτm cos

(
kτm

2
√
3

)]
. (282)

Plugging the source (268) into the solution (269) and using eq. (278), we obtain the

following expression, valid only in the Newtonian gauge,

hsk(τ) =
1

k2

∫
d3p

(2π)3
es(k,p)Rp(0)Rk−p(0)I(τ, p, |k − p|), (283)

where we have defined the dimensionless quantity

I(τ, p, |k − p|) ≡
∫ τ

0

kF(post)(τ, τ
′)

[
3 + 3w(τ ′)

5 + 3w(τ ′)

]2
Q(τ, p, |k − p|)kdτ ′, (284)

with

Q(τ, p, |k − p|) ≡ 8Tψp T
ψ
k−p + 4

(
Tψp +

1

H
Tψ′p

)(
Tψk−p +

1

H
Tψ′k−p

)
. (285)

The integral in eq. (284) can be performed analytically. We write the result as

I =
1

a(τ)

[
cos

(
kτ − kτm

2

)
I1 + sin

(
kτ − kτm

2

)
I2

]
, (286)

where we assume τ > τm (since we will eventually be interested in the gravitational wave

energy density today) and I1 and I2 are defined as

Ii ≡ 2
a(τm)

kτm

[
IeMD
i + IRD

i (τ → ∞)
]
. (287)

The four quantities IeMD
(1,2) and IRD

(1,2) are complicated functions of k and τm, computed for the

first time in [185] and given in full detail with our conventions in Appendix F. In principle

IRD
i should be a function of τ , but since we are only interested in this quantity at late times

(because we want the abundance of gravitational waves today) and the transfer functions Tψk
decay quickly in time we can simply evaluate it in the τ → ∞ limit to simplify calculations,
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as is standard in the literature, see e.g. [186]. In other words, because of the fast decrease of

Tψk , it the integral in I quickly converges and therefore it makes no difference whether the

upper limit is set to today (which, strictly speaking, would be the correct choice) or infinity.

5.2 ■ Gauge dependence of the signal

In this section we will explicitly show that the transverse-traceless, second-order tensor mode

hTT
ij is not a gauge-invariant variable. We will then provide a heuristic derivation of the full

gauge-invariant expression for ΩGW beyond leading order in perturbations. A brief review

of the relevant aspects of perturbation theory can be found in Appendix A.

Under an infinitesimal coordinate transformation xµ → x̃µ = xµ+ξµ with ξµ = (α, δij∂jβ)

(we set the first-order vector piece βi of the transformation to zero, since we are neglecting

vector modes), the transverse-traceless second-order tensor mode hTT
ij transforms as

hTT
ij → h̃TT

ij = hTT
ij + T lm

ij Σlm, (288)

with [189]

Σij = 2(2H2 +H′)α2δij + 2H(αα′ + ∂kα∂
kβ)δij + 4α(∂i∂jE

′ − ψ′δij)

+ 8αH(∂i∂jE − ψδij) + 4∂k(∂i∂jE − ψδij)∂
kβ + 4(∂i∂kE − ψδik)∂

k∂jβ

+ 4(∂k∂jE − ψδkj)∂i∂
kβ + 2(∂iB∂jα + ∂jB∂iα) + 8Hα∂i∂jβ

− 2∂iα∂jα + 2∂k∂iβ∂
k∂jβ + 2α∂i∂jβ

′ + 2∂i∂j∂kβ∂
kβ + 2∂i∂kβ∂

k∂jβ

+ ∂iβ
′∂jα + ∂jβ

′∂iα, (289)

where the transformation goes from one arbitrary gauge to another and the perturbations E,

B and ψ are defined in the starting gauge. The perturbations E and B, defined in Appendix

A, are the scalar spatial-spatial and spatial-temporal components of the metric perturbation,

which are set to zero in the Newtonian gauge. In momentum space, we have

T lm
ij Σlm =

∫
d3k

(2π)3
eik·x

(
Σ+
k e

+
ij + Σ×

k e
×
ij

)
, (290)

where

Σs
k = −

∫
d3p

(2π)3
esij(k)pipj

{
4αpσk−p + 8Hαp

[
Ek−p + βk−p

]
+

p · (k− p)βp

[
4Ek−p + 2βk−p

]
− 8ψpβk−p + 2αpαk−p

}
, (291)

with σ ≡ E ′ − B being the so-called shear potential, and where we have used the fact that

esij(k)δ
ij = esij(k)k

i = 0. Thus, since the solution to the equation of motion is given (in the
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Newtonian gauge) by eq. (283), then under a gauge transformation (α, δij∂jβ) we have

hsk(τ) =
1

k2

∫
d3p

(2π)3
es(k,p)RpRk−p

[
I(τ, p, |k − p|) + IΣ(τ, p, |k − p|)

]
, (292)

where

IΣ(x, y, z) =− 2

yz

(
3 + 3w

5 + 3w

)2 {
Tα(xy)

[
Tα(xz) + 2Tσ(xz)

]
− 4Tψ(xy)Tβ(xz)

+ 4
H(x)

k
Tα(xy)

[
TE(xz) + Tβ(xz)

]
+ yzTβ(xy)

[
2TE(xz) + Tβ(xz)

]}
. (293)

By combining this equation with eq. (265) we can obtain the solution for hTT
ij in position

space in any arbitrary gauge. The transfer functions T in this equation are defined in an

analogous way to (278), with additional powers of k included appropriately in each function

in such a way that they are rendered dimensionless [85, 89]. For instance, for Tα,

α(τ) ≡ 3 + 3w

5 + 3w

1

k
Tα(τ)Rk(0). (294)

We also use the notation Tψ(xy) ≡ Tψp (τ), and analogously for the rest of the transfer

functions. In the above equation we have also defined the convenient set of dimensionless

variables

x = kτ, y =
p

k
, z =

|k − p|
k

. (295)

In Appendix G, we use the above formula to calculate the induced tensor modes hTT
ij in three

illustrative gauges (uniform curvature, uniform expansion and comoving), and find that the

results in the first two gauges coincide with the Newtonian calculation of the previous section

only at late times (that is, deep into the RD era).

As shown in eq. (288) and exemplified by the calculations in Appendix G, hTT
ij is not a

gauge-invariant variable, and thus it cannot describe any physical observables. This gauge

dependence has been noted numerous times in the literature [84–88]. To determine the

correct, physically relevant gauge-invariant variable we first need to specify which observable

we want to compute. In our case, the observable is the energy density of gravitational waves.

The energy density of gravitational waves, which can be obtained by coarse-graining

Einstein’s equations, depends on the tensor power spectrum [100, 101],

ΩGW(τ, k) =
1

6

(
k

H

)2

⟨Ph(τ, k)⟩W, (296)

where the brackets ⟨· · · ⟩W denote a spacetime average, which in Fourier space can be thought

of as an average over many wavelengths, and Ph denotes the power spectrum of the first-

order transverse, traceless tensor modes hTT
ij . The reason for this average is that gravitational

waves can only be defined when there is a clear separation of scales between the rate of vari-
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ation of the background and that of the perturbations, and taking the average allows us

to extract the long-wavelength part of the energy density of the gravitational waves that

acts as a source for the background metric, see [100, 101]. This expression is only valid at

leading order in perturbations, since it has been derived by neglecting cubic and higher-order

terms in Einstein’s equations for the perturbations (see e.g. [100, 101, 191, 192]). In previous

studies on induced gravitational waves (e.g. [86, 90]), their energy density has been com-

puted beyond leading order in perturbations by simply replacing hTT
ij → 1

2
hTT
ij in the above

expression (assuming that the contribution from the first order tensor modes is negligible).

This replacement is not justified, since one would also need to include in the calculation

other terms arising from the coarse-graining of Einstein’s equations at fourth order in per-

turbations which would contain, in addition to a piece involving the power spectrum of hTT
ij ,

pieces quadratic in first order scalars that would cancel the gauge-dependence. The fact

that these terms are not included leads to a gauge-dependent answer for ΩGW because hTT
ij

is gauge-dependent, which is a manifestation of the fact that the physical degrees of free-

dom corresponding to gravitational waves are completely contained in the tensor modes only

at leading order in perturbations, whereas at subleading orders they are spread across the

tensor and scalar modes.42

The energy density of gravitational waves should be a gauge-invariant observable and thus

it should be possible to derive an expression for it by appropriately coarse-graining Einstein’s

equations. This, however, is easier said than done, since many subtleties and difficulties arise

when one attempts to derive the full expression for ΩGW from first principles.43 Instead of

following this path, we will provide a heuristic derivation of the full expression for this

quantity by using an argument based on symmetry properties and dimensional analysis.

The energy density of gravitational waves is obtained by splitting the metric into a long-

wavelength background and a short-wavelength perturbation

gµν = ĝµν + hµν , (297)

where the background metric varies over a typical length scale L, and the perturbation over

a typical scale λ such that L ≫ λ. This perturbation can be identified with the one that

arises in standard cosmological perturbation theory as long as we restrict our attention to

42We remark that the first-order vector and tensor modes, which we have assumed are negligible, also
contribute.

43The derivation of eq. (296) has been performed in a way that is not manifestly gauge-invariant [100, 101,
191, 192], so the gauge-invariance of the result at higher orders is not guaranteed. This is due to the fact
that defining a unique, covariant averaging procedure in a generic manifold is a non-trivial problem, and it
is unclear whether the existing definitions [191–196] in the context of backreaction are equivalent to each
other. In addition, eq. (296) is usually derived in vacuum (so scalar perturbations are usually neglected),
whereas we assume that the Universe is filled with a perfect fluid. We also expect scalar perturbations to
yield additional backreaction terms if included in the calculation (see e.g. [193]), and it is not clear that a
clean separation of the scalar and tensor contributions to the backreaction stress-energy tensor is generically
possible.
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modes with H ≪ k.44 We are interested in finding an effective equation of motion for the

background metric that includes the effect of the short-wavelength perturbations. In order

to extract the long-wavelength part of the equations, these must be coarse-grained by taking

a spacetime average. By expanding Einstein’s equations in powers of hµν and coarse-graining

them, we find

⟨Gµν − κTµν⟩W = Ĝµν − κT̂µν + ⟨Gµν(h)− κTµν(h)⟩W + ⟨Gµν(h
2)− κTµν(h

2)⟩W + · · ·
≡ Ĝµν − κT̂µν − κT (GW)

µν

= 0, (298)

where κ ≡ 1/M2
p , hatted quantities depend only on the long-wavelength background ĝµν and

the brackets ⟨· · · ⟩W denotes the aforementioned spacetime average. In Fourier space, the

brackets can be thought of as an average over several wavelengths, as we mentioned earlier

(hence the W subscript) [100, 101, 191, 192]. The average of ⟨Gµν(h) − κTµν(h)⟩W is then

assumed to vanish, since the quantity inside is linear in hµν , which is a short-wavelength

quantity. By expanding the Einstein tensor Gµν(h
2) and manipulating the resulting expres-

sion [100, 101], one can then show that at leading (quadratic) order in perturbations, the

stress-energy tensor of gravitational waves is given by

κTGW
µν =

1

4
⟨∇̂µhαβ∇̂νh

αβ⟩W, (299)

which leads to the expression for the energy density in eq. (296). In this expression ∇̂µ

denotes the covariant derivative with respect to the background metric. The cubic order

term vanishes for the same reason that the linear term does, and the next-to-leading order

term, which is the one we are interested in, turns out to be fourth-order in perturbations.

A natural extension of eq. (296) beyond leading order in perturbations is (assuming that

the first order tensor modes vanish, hTT
ij = 0, so that there are no terms mixing hTT

ij and

hTT
ij )

ΩGW(τ, k) =
1

24

(
k

H

)2

⟨PΘ(τ, k)⟩W, (300)

for some gauge-invariant second-order variable Θij of the form

Θij ≡ hTT
ij + T lm

ij θlm, (301)

where θij is quadratic in first-order scalars. In what follows we will assume that after the

coarse-graining the energy density of gravitational waves has this form, examine the possible

terms that could appear in θij, and argue that they vanish in the Newtonian gauge.

44See also [193], where short-wavelength perturbations are shown to act as a source for the long-wavelength
ones.
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We assume that p = wρ and the matter stress-energy tensor is of the form

κTµν = (1 + w)κρ uµuν + wκρgµν . (302)

If we work in the Newtonian gauge, this implies that the only perturbations available for θij

are ψ, κδρ and δv. The most general θij is then given by

θij = cρρκ
2∂iδρ∂jδρ+ cvv∂iδv∂jδv + cρvκ∂iδρ∂jδv + cψv∂iψ∂jδv + cρψκ∂iδρ∂jψ + cψψ∂iψ∂jψ,

(303)

where the coefficients cab depend only on background quantities. We can also have two

derivatives acting on a single perturbation, or, in addition to the two spatial derivatives

with free indices ∂i∂j, time derivatives and contracted spatial derivatives ∂k∂k acting on the

perturbations. These terms will have equal or greater dimensions than the ones above and

will therefore be irrelevant in what follows.

Via dimensional analysis, we can check that most of the terms in eq. (303) are forbidden.

Since the projector T is dimensionless, so is θij, and thus we must have

[cρρ] = −6, [cvv] = 0, [cρv] = −3, [cψv] = −1, [cρψ] = −4, [cψψ] = −2. (304)

The quantity in eq. (300) comes from averaging the fourth-order piece of Einstein’s equations

(since we assume that the first-order tensor modes are negligible),

κT (GW)
µν = ⟨Gµν(h

4)− κTµν(h
4)⟩W. (305)

For eq. (300) to hold, the fourth-order piece of Einstein’s equations must contain a term of

the form

Gµν(h
4)− κTµν(h

4) ⊃ ∂µΘij∂νΘ
ij. (306)

The only dimensionful background quantities that can appear in Einstein’s equations once

we have assumed that the matter stress-energy is that of eq. (302) are H and its derivatives

(and the background energy density ρ̂, which can be related to H through the background

equations), and it is easy to check that they always appear in the numerator. Thus, every

coefficient cab with negative dimensions is forbidden and must therefore vanish. The only

coefficient that could in principle be nonzero is cvv, but if the square of the cvv term were

present (we consider the square because the term in eq. (306) is quadratic in Θ), it would

necessarily come from perturbing the matter stress-energy tensor of eq. (302), as no factors of

δv arise from perturbing the Einstein tensor. However, it is easy to see from this expression

that there is no way to obtain four copies of δv by perturbing the stress-energy tensor, show-

ing that cvv must also vanish. As anticipated below eq. (303), the coefficients of terms with

additional derivatives will have even lower negative dimensions, so they are also forbidden.
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The above argument shows that in the Newtonian gauge45 Θij = hTT
ij . In principle, in

a generic gauge there are many possible candidates for Θij, but we will now show that it

can in fact be uniquely determined. It is easy to check that the following combination is

gauge-invariant,

Xij ≡ hTT
ij + T lm

ij χlm, (307)

where, in momentum space, we have

T lm
ij χlm =

∫
d3k

(2π)3
eik·x

(
X+
k e

+
ij +X×

k e
×
ij

)
, (308)

with46

Xs
k =

∫
d3p

(2π)3
esijpipj

[
2p · (k − p)EpEk−p − 8Epψk−p + 2σpσk−p

]
. (309)

It can also be seen directly from the above expression that in the Newtonian gauge Xij = hTT
ij .

Thus, Xij − Θij = 0 in the Newtonian gauge. But since both Xij and Θij are gauge-

invariant, their difference must be gauge-invariant as well, and since the difference vanishes

in the Newtonian gauge, it must vanish in every gauge.47 We have therefore shown that, as

long as our initial assumption holds –namely, that the energy density of gravitational waves

beyond leading order in perturbations can be obtained by averaging the power spectrum of

a gauge-invariant variable of the form shown in eq. (301)– this energy density must be given

by eq. (300), where, in momentum space –compare with eq. (292)–

Θs
k(τ) =

1

k2

∫
d3p

(2π)3
es(k,p)RpRk−p

[
I(τ, p, |k − p|) + IΘ(τ, p, |k − p|)

]
, (310)

with

IΘ =
2

yz

(
3 + 3w

5 + 3w

)2 {
TE(xy)

[
yzTE(xz)− 4Tψ(xz)

]
+ Tσ(xy)Tσ(xz)

}
, (311)

where we have traded the perturbations in eq. (309) for their transfer functions, see eq. (294).

This is a heuristic argument because we have not shown that eq. (300) actually arises from

averaging Einstein’s equations. As stated earlier, proving this would require more machinery

(in particular, a careful study of backreaction beyond leading order in perturbations using a

formalism such as the one presented in [193], which is beyond the scope of this thesis).

It has been argued in earlier works [86, 90] that calculating ΩGW by replacing hTT
ij → 1

2
hTT
ij

in eq. (296) is justified, as long as we are only interested in the value of ΩGW today, because

45Had we written θij in the most general form, without choosing any specific gauge, we would have simply
found that some terms involving E and B are not forbidden by dimensional analysis alone. Since these terms
vanish in the Newtonian gauge, we arrive at the same conclusion.

46This quantity is obtained simply by guessing which terms must be added to eq. (291) to cancel the gauge
transformation. An alternative way to derive it is presented in Appendix A.

47In other words, if we suppose there exists a gauge invariant Yij such that Yij −Xij ̸= 0, then since this
difference is gauge-invariant, it must hold in particular in the Newtonian gauge. Thus, Yij ̸= hTT

ij in this
gauge and therefore Yij ̸= Θij , proving that Yij cannot be the quantity that enters in eq. (300).
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scalar modes decay quickly during the RD era and therefore second-order tensor modes

propagate linearly at late times. In other words, because at late times the source in eq. (260)

vanishes, the induced second-order tensor modes obey the same equation of motion as the

first-order piece, implying, according to [86, 90], that they effectively become first-order

quantities and therefore can be treated as such for the purpose of calculating the gravitational

wave energy density at late times. The advantage of our calculation with respect to these

arguments is that it is completely independent of the matter content of the Universe, and

therefore of the time at which ΩGW is evaluated. Our explicitly gauge-invariant expression

for ΩGW is valid at all times, provided our initial assumption holds.

5.3 ■ Energy density bounds

In this section we will estimate the abundance of gravitational waves in the eMD → RD

transition scenario by using the monochromatic power spectrum of eq. (45), which will allow

us to easily perform the integral in eq. (283). If gravitational waves stop being generated

at some late time τ near the end of the RD era and their energy density evolves as that of

radiation afterwards, we can relate the abundance of GWs at τ to their abundance today by

using entropy conservation and eq. (296) [186],

ΩGW(T0, k) =
Ωγ(T0)

24

g⋆(T )

g⋆(T0)

(
g⋆s(T0)

g⋆s(T )

)4/3(
k

H

)2

⟨Ph(T, k)⟩W, (312)

where we have switched to temperature as the time variable and replaced hTT
ij → 1

2
hTT
ij in

eq. (296), assuming that hTT
ij is computed in the Newtonian gauge, as per the discussion in

the previous section. To compute the power spectrum, we begin by noting that the two-point

function for hTT
ij is, after some manipulation [185, 186],

⟨hrkhsq⟩Q = 64π7δ3(k+q)
1

k4

∫
d3p

(2π)3
er(k,p)es(k,p)

p3|k − p|3
PR(p)PR(|k−p|)I2(τ, p, |k−p|), (313)

where, on the left-hand side, we have taken the quantum expectation value, see Appendix E.

The next step consists on switching to spherical coordinates, performing one of the angular

integrals, and switching to the variables x = kτ , y = p/k, and z = |k − p|/k defined in the

previous section. The result is the following net change in the integrand∫
d3p

er(k,p)es(k,p)

p3|k − p|3
−→ π

2
δrsk

∫ ∞

0

dy

∫ 1+y

|1−y|
dz

[
4y2 − (1 + y2 − z2)2

4yz

]2
. (314)

The power spectrum is defined by

⟨hrkhsq⟩Q ≡ (2π)3δ3(k + q)δrs
2π2

k3
Ph(τ, k). (315)
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Figure 24: Integral kernel J2
eMD(xm, y, z) in the Newtonian gauge for the two limits of integration

in eq. (316) and three different values of xm (and in the limit xm → 0, corresponding to the case
in which the Universe never goes through the eMD phase). For xm ≲ 1 the kernel is virtually
indistinguishable from the xm → 0 result, so that the eMD era only has a noticeable effect in the
spectrum for modes satisfying xm ≳ 1.

Thus, we have the following formula for the dimensionless power spectrum,

Ph(τ, k) =

∫ ∞

0

dy

∫ 1+y

|1−y|
dz

[
4y2 − (1 + y2 − z2)2

8yz

]2
PR(ky)PR(kz)I

2(x, y, z). (316)

The function I is given by eq. (286). We show the full expression in Appendix F. The result

for the case in which the Universe never goes through an eMD phase, which is also given in

Appendix F, can be obtained by taking the limit xm → 0 in I.

To obtain ΩGW, we need to square I in eq. (286) and average the result by using〈
cos
(
x− xm

2

)
sin
(
x− xm

2

)〉
W

= 0,〈
cos2

(
x− xm

2

)〉
W

=
〈
sin2

(
x− xm

2

)〉
W

=
1

2
.

We find

2a(τ)2⟨I2⟩W = 4
a(τm)

2

x2m

[(
IeMD
1 + IRD

1

)2
+
(
IeMD
2 + IRD

2

)2]
. (317)

By using eqs. (270, 271) we obtain

k2

H2
⟨I2⟩W =

1

2

[(
IeMD
1 + IRD

1

)2
+
(
IeMD
2 + IRD

2

)2]
, (318)
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Figure 25: Left panel: induced abundance ΩGW(T0, k) for the three examples of Table 1, together
with the LISA sensitivity curve [77]. We remind the reader that the two eMD examples have different
associated transition temperatures Tm, shown in the plot on top of the corresponding curves. We
remark that the sharp peaks in this figure (and the dip in the RD curve) are a consequence of
using the Dirac delta spectrum in eq. (45). These features do not show up for smooth spectra, as
exemplified in the next section. Right panel: dependence of the integrated abundance defined by
eq.(327) on kδ for three different transition temperatures Tm, normalized by A2

δ. Growth in each
case begins roughly after xm(kδ) = 1.

so that the final result can be written as [185]

ΩGW(T0, k) =
Ωγ(T0)

48

g⋆(T )

g⋆(T0)

(
g⋆s(T0)

g⋆s(T )

)4/3 ∫ ∞

0

dy

∫ 1+y

|1−y|
dz

[
4y2 − (1 + y2 − z2)2

8yz

]2
·

· PR(ky)PR(kz)J
2
eMD(xm, y, z), (319)

where we have defined the shorthand

J2
eMD(xm, y, z) ≡

[
IeMD
1 (xm, y, z)+I

RD
1 (xm, y, z)

]2
+
[
IeMD
2 (xm, y, z)+I

RD
2 (xm, y, z)

]2
, (320)

which is plotted in Fig. 24. If the Universe never goes through an eMD phase, the result is

obtained in a straightforward manner by taking the limit xm → 0,

J2
eMD(xm → 0, y, z) =

[
IpRD
1 (y, z)

]2
+
[
IpRD
2 (y, z)

]2
, (321)

with IpRD
i as defined in Appendix F.

For the Dirac delta spectrum of eq. (45), the integral in eq. (319) can be performed ana-
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Figure 26: Available parameter space with kδ fixed as in the two eMD examples of Table 1 after
taking the constraint of eq. (328) into account (compare with Fig. 3), as well as the constraint in
eq. (47). The eMD2 example is ruled out by this bound. Although the solid and dashed black lines
are affected by uncertainties in the formulas for the PBH mass and abundance, the numbers quoted
should be correct as an order of magnitude estimate as per the discussion at the end of Section 2.1.

lytically, and the result is

ΩGW(T0, k) = A2
δ

Ωγ(T0)

3072

g⋆(T )

g⋆(T0)

(
g⋆s(T0)

g⋆s(T )

)4/3
k2

k2δ

(
4
k2δ
k2

− 1

)2

J2
eMD

(
xm,

kδ
k
,
kδ
k

)
Θ(2kδ − k),

(322)

where the Θ at the end denotes the Heaviside step function. To evaluate this quantity we can

use the fact that (taking T as some late time in the RD era before the top quark decouples

from the primordial plasma, so that gravitational waves at the scales relevant here have

already been induced)

xm =

(
g⋆s(Tm)

106.75

)1/3(
106.75

g⋆(Tm)

)1/2(
107GeV

Tm

)(
k

1014Mpc−1

)
. (323)

The quantity ΩGW(T0, k) is plotted in Fig. 25. The left panel of this figure depicts the

resulting ΩGW(T0, k) for the three examples of Table 1. Interestingly, all of the examples

yield spectra with very different amplitudes despite all of them having the same abundance

(see Fig. 2). The reason for this is that the height of the induced tensor spectrum depends

on the ratio between Tm and k because of eq. (323). As shown in Fig. 24, for xm ≲ 1 the
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integral kernel is virtually indistinguishable from the xm → 0 case in which the Universe

does not go through an eMD phase. For xm ≳ 1, however, the kernel grows very quickly, due

to the fact that the transfer function Tψk is constant during eMD –see eq. (280)– and thus

the corresponding modes are enhanced.

For collapse to occur during the eMD era, the relevant modes must obviously re-enter

the horizon before the phase ends. That is, collapse during eMD can only happen for modes

with k > km, where

km =
π

3

T0
Mp

(
g⋆(Tm)

10

)1/2(
g⋆s(T0)

g⋆s(Tm)

)1/3

Tm. (324)

It is illustrative to compare the condition xm ≳ 1 to this condition. If we take g⋆s(Tm) =

g⋆(Tm) = 106.75, then the two conditions are, respectively,

k ≳ 1012Mpc−1

(
Tm

105GeV

)
, (kernel enhancement) (325)

k > 4.3× 1010Mpc−1

(
Tm

105GeV

)
, (horizon re-entry during eMD) (326)

so we see that all of the enhanced modes re-enter the horizon during the eMD phase. We

therefore find that if PBHs form during RD, the presence of an eMD era does not affect the

induced GW spectrum at the peak of the distribution, as we would expect.

The net contribution of GWs to the energy budget of the Universe is obtained by inte-

grating

ΩGW(T0) =

∫
ΩGW(T0, k)d log(k). (327)

There exists a bound on this quantity arising from both CMB experiments [98, 99] and from

the abundance of light elements produced during Big-Bang Nucleosynthesis48 [99]. In our

figures we show only the latter bound,

ΩGWh
2 < 1.8× 10−6, (328)

but we remark that the CMB bounds can be slightly stronger, by an O(1) factor, depending

on the choice of initial conditions [98]. Since the enhancement of the tensor spectrum is so

large for PBHs formed in the eMD phase, it is important to check whether this bound is

satisfied. Indeed, we find that it severely limits the available region of parameter space. The

result is plotted in Fig. 26 for the two eMD examples of Table 1 (compare with Fig. 3). The

eMD2 example is ruled out by this new constraint. For PBHs formed during the eMD era,

this bound turns out to be stronger than the one coming from galactic γ-ray constraints

[31, 32] at relatively low transition temperatures Tm ≲ 105.5 GeV, as shown in Fig. 27. We

48We remark that this bound only depends on the assumption that gravitational waves behave as radiation
at the time of BBN (or photon decoupling for the CMB), which is indeed the case in our scenario, as can be
explicitly checked from eq. (319) [185].

130



13.8 14. 14.2 14.4 14.6 14.8

-4.4

-4.2

-4.0

-3.8

-3.6

13.2 13.5 13.8 14.1 14.4
-4.4

-4.2

-4.0

-3.8

-3.6

-3.4

Figure 27: Available parameter space for Tm = 105.7GeV (left panel) and Tm = 105GeV (right
panel), together with the bound in eq. (47). For transition temperatures Tm ≲ 105.5GeV, the con-
straint of eq. (328) is stronger than the bound arising from galactic γ-ray constraints [32]. The
contour lines represent the PBH abundance and masses at the peak of the distribution, which should
be correct as an order of magnitude estimate as per the discussion at the end of Section 2.1.

remark that the reason it is not possible to represent both eMD examples in the same figure

is that the bounds depend on the position of the peak in the power spectrum for each

one –the parameter kδ in eq. (45)– which takes different values in each example (see Table

1 and Fig. 3). Finally, we remark that the formula in eq. (319) is of general validity for

any scalar power spectra. As an example, we show the induced gravitational wave signals

for the polynomial model of Section 2.1 with and without higher-dimensional operators in

Fig. 28. The examples coincide with the ones shown in Fig. 8. The signals in this case are

much smoother than for the Dirac delta spectrum, although the order of magnitude of the

amplitude is the same, as we anticipated in the caption of Fig. 25.

Although we have focused our discussion on the LISA and BBO/DECIGO detectors,

there are many more proposed experiments that can probe the gravitational wave signals

induced by PBHs. On the right panel of Fig. 28 we show the sensitivity curves for LISA

[77], BBO/DECIGO [197], Magis-space and Magis-100 [198], the Einstein Telescope [199]

and advanced LIGO [200]. The first four of these experiments, in particular, could probe

the range of PBH masses of interest for dark matter (1). Other proposed experiments not

shown in the figure with sensitivities in the same range are AION [201] and AEDGE [202].

The advanced LIGO and Einstein Telescope experiments cannot probe the masses in (1),
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Figure 28: Left panel: gravitational waves induced in the polynomial model of Section 2.1, with
and without higher-dimensional operators, if the black holes form during a RD era, together with
the LISA and BBO/DECIGO sensitivity curves. Right panel: projected sensitivities of future grav-
itational wave experiments as a function of the PBH masses if they form during a RD era. The
dashed line represents the approximate expected size of the gravitational wave signal in this case
(see left panel).

but would still be able to detect the gravitational wave signal induced by a population of

sufficiently light black holes. PBHs with these masses can evade the evaporation bounds

arising from extra-galactic γ-rays [29, 30], but are still constrained by the abundance of light

elements produced during nucleosynthesis [203]. In the left panel of Fig. 29 we show a solution

of the polynomial model in Section 2.1 that leads to an abundance of order fPBH ≃ 10−4 of

light PBHs. On the right panel of the same figure we show the induced gravitational wave

signal, which falls above the design sensitivity curve of the advanced LIGO experiment.

To close this section, let us point out that although gravitational waves induced during

an eMD era have been studied before [185], the novel part of our analysis is in doing so in the

context of PBH formation, and including the bound in eq. (328) to determine the available

region of parameter space.

5.4 ■ Gravitational waves in warm inflation

In this section we compute the gravitational waves induced in the warm inflation scenario of

Chapter 4. The calculation is slightly different to the one presented in the previous sections

because both the tensor and scalar power spectra are now stochastic quantities. We also
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Figure 29: Left panel: fraction of the Universe’s mass in PBHs (41) at their formation time as
a function of the PBH mass if the PBHs form during a RD era, together with the BBN bounds
in [203]. Right panel: fraction of the energy density in gravitational waves relative to the critical
energy density of the Universe as a function of the frequency. The PBH abundance shown in these
plots is obtained using the polynomial model of Section 2.1.

compute, in this case, the gravitational waves induced during inflation, which are suppressed

in the inflection-point models.

Let us begin by noting that the source term in eq. (266) can be written, during inflation,

in terms of the total momentum perturbation49 δq (where by total we mean including both

the scalar and radiation components) using eq. (201)

Ssk(pre) =

∫
d3p

(2π)3
esij(k)pipj

[
8ψpψk−p+

4M−2
p

(ρ+ p)

(
δq(r)p − ϕ′

a
δϕp

)(
δq

(r)
k−p−

ϕ′

a
δϕk−p

)]
, (329)

where the (pre) subscript denotes the fact that this is the source term during inflation. We

now make the simplifying assumption that the terms in this expression involving ψ and δq(r)

can be neglected. This assumption is motivated by the analytical model of Section 4.4 and

will be justified at the end of this section. Thus,

Ssk(pre) =

(
4

ρ+ p

)(
ϕ′2

a2M2
p

)∫
d3p

(2π)3
es(k,p)δϕpδϕk−p. (330)

The value of ψ at the end of inflation (τ = 0), which will be the initial condition for the

post-inflationary source, is, on superhorizon scales and assuming the Universe enters an RD

49The momentum perturbations δqi are additive, so the total momentum perturbation can be defined as
the sum of the individual components, δq ≡

∑
i δqi.
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era after inflation ends,

ψk(0) =
2

3
Rk(0) = −2

3

Hϕ′

a(ρ+ p)

∣∣∣∣
0

δϕk(0), (331)

where we have used eqs. (234, 278). The post-inflationary source can then be written as

Ssk(post) =
4

9

H2ϕ′2

a2(ρ+ p)2

∣∣∣∣
0

∫
d3p

(2π)3
es(k,p)δϕp(0)δϕk−p(0)Q(p, |k − p|, τ), (332)

where the function Q was defined in eq. (285).

The Green’s functions for eq. (266) during inflation is

kFpre(τ, τ
′) = − 1

(kτ ′)2

[
k(τ − τ ′) cos(kτ − kτ ′)− (1 + k2ττ ′) sin(kτ − kτ ′)

]
. (333)

where we have used H = −1/τ during inflation. The solution is therefore

hsk(τ) = T hk (τ)h
s
k(0) +

∫ τ

0

Fpost(τ, τ
′)Ssk(post)(τ

′)dτ ′︸ ︷︷ ︸
gsk(τ)

, (334)

where T hk is the (linear) transfer function of hsk in the radiation era,

T hk ≡ sin(kτ)

kτ
, (335)

and

hsk(0) =

∫ 0

τh

Fpre(0, τ
′)Ssk(pre)(τ

′)dτ ′. (336)

The lower integration limit τh is some early time at which we assume hsk(τh) = 0 (that is,

no gravitational waves have been induced at this time).

The expectation value of the tensor power spectrum late in the radiation era contains

three terms,

⟨Ph(k, τ)⟩S = ⟨Ppre(k, τ)⟩S + 2⟨Pmix(k, τ)⟩S + ⟨Ppost(k, τ)⟩S. (337)

These three terms will in turn lead to three different contributions to the gravitational wave

energy density. The first term corresponds to the gravitational waves induced during the

inflationary epoch, and the third term corresponds to the gravitational waves induced during

the subsequent radiation-dominated era. The middle term mixes both contributions and its

value typically lies between the other two.

To perform the rest of the calculation we will use the analytical results of Section 4.4.

The reason for this is that to calculate the tensor power spectrum we need to take the
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quantum expectation value in addition to the stochastic one (in order to make the tensor

power spectrum a deterministic quantity, as we did with PR), and, as discussed in Appendix

E, when eq. (246) is used to split δϕ into the homogeneous and inhomogeneous solutions to

its equation of motion, finding the double expectation value is straightforward, since only

the homogeneous solution is quantized, and only the inhomogeneous piece is stochastic. This

splitting can be done only because the equation of motion for δϕ has been decoupled from

the rest (up to the source term δρ(r)), since the full system of differential equations cannot

be solved by Green’s function methods. This approach should give a reasonable estimate of

the full numerical result. The first term in eq. (337) is defined by50

T hk (τ)
2⟨hrk(0)hsp(0)⟩ = (2π)3

2π2

k3
⟨Ppre(k, τ)⟩Sδrsδ3(k + p). (338)

The quantum expectation value is already included inside Ppre on the right-hand side –

see eq. (444) for the analogous scalar definition– so we only write the stochastic average.

The two-point function on the left-hand side can be computed quantizing the inflaton field

perturbation. The result is, using eqs. (334, 336),

⟨hrk(0)hsp(0)⟩ =
16

M4
p

∫ 0

τh

ϕ′2

a2(ρ+ p)

∣∣∣∣
τ ′
Fpre(0, τ

′)dτ ′
∫ 0

τh

ϕ′2

a2(ρ+ p)

∣∣∣∣
τ ′′
Fpre(0, τ

′′)dτ ′′·

·
∫

d3q

(2π)3
er(k, q)

∫
d3l

(2π)3
es(p, l)⟨δϕ̂q(τ ′)δϕ̂k−q(τ ′)δϕ̂l(τ ′′)δϕ̂p−l(τ ′′)⟩. (339)

The four-point function of δϕ appearing in this equation can be computed using eq. (246),

together with Wick’s theorem. This calculation is done in Appendix E. The resulting ex-

pression can be plugged back into the above equation and, using one of the Dirac deltas to

perform the integral over l, we find

⟨hrk(0)hsp(0)⟩ =
δ3(k + p)

k10

∫ 0

τh

ϕ′2

a2(ρ+ p)

∣∣∣∣
τ ′
kFpre(0, τ

′)kdτ ′
∫ 0

τh

ϕ′2

a2(ρ+ p)

∣∣∣∣
τ ′′
kFpre(0, τ

′′)kdτ ′′·

· 128π
4

M4
p

∫
d3q er(k, q)es(k, q)Qδϕ(q, τ

′, τ ′′)Qδϕ(|k − q|, τ ′, τ ′′)k
3

q3
k3

|k − q|3
, (340)

where we have defined51

Qδϕ(q, τ
′, τ ′′) ≡ q3

2π2

(
δϕ(h)

q (τ ′)⋆δϕ(h)
q (τ ′′) +

∫ min(τ ′,τ ′′)

−∞
Gq(τ

′, τ̂)Gq(τ
′′, τ̂)

9a2

H2ϕ′2 |δρ
(r)
q (τ̂)|2dτ̂

)
.

(341)

50As discussed in Appendix E, the brackets without subscripts denote a double expectation value, quantum
and stochastic.

51Gk(τ, τ
′) denotes the Green’s function defined in eq. (251) evaluated at τ = −e−N/H.
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This quantity has the following properties

Qδϕ(q, τ, τ) = ⟨Pδϕ(q, τ)⟩S, Qδϕ(q, τ
′, τ ′′) = Q⋆

δϕ(q, τ
′′, τ ′). (342)

It is useful to make the integrand in eq. (340) manifestly real and symmetric under τ ′ ↔ τ ′′.

To do so, we take eq. (339), rename the dummy variables τ ′ ↔ τ ′′ and sum the result with

eq. (339) itself. After using the second identity in eq. (342), we find

⟨hrk(0)hsp(0)⟩ =
δ3(k + p)

k10

∫ 0

τh

ϕ′2

a2(ρ+ p)

∣∣∣∣
τ ′
kFpre(0, τ

′)kdτ ′
∫ 0

τh

ϕ′2

a2(ρ+ p)

∣∣∣∣
τ ′′
kFpre(0, τ

′′)kdτ ′′·

· 128π
4

M4
p

∫
d3q er(k, q)es(k, q)Re

[
Qδϕ(q, τ

′, τ ′′)Qδϕ(|k − q|, τ ′, τ ′′)
]
k3

q3
k3

|k − q|3
. (343)

We can now perform the same steps we did below eq. (313) to obtain, for the first term in

eq. (337),

⟨Ppre(k, τ)⟩S = T hk (τ)
2 4

M4
p

∫ 0

τh

ϕ′2

a2(ρ+ p)

∣∣∣∣
τ ′
kFpre(0, τ

′)kdτ ′
∫ 0

τh

ϕ′2

a2(ρ+ p)

∣∣∣∣
τ ′′
kFpre(0, τ

′′)kdτ ′′·

·
∫ ∞

0

dy

∫ 1+y

|1−y|
dz

[
4y2 − (1 + y2 − z2)2

4yz

]2
Re

[
Qδϕ(ky, τ

′, τ ′′)Qδϕ(kz, τ
′, τ ′′)

]
. (344)

To compute the term 2⟨Pmix(k, τ)⟩S, we use

T hk (τ)⟨hrk(0)gsp(τ)⟩ = (2π)3
2π2

k3
⟨Pmix(k, τ)⟩Sδrsδ3(k + p), (345)

where gk(τ) is defined in eq. (334), and similarly for the Ppost term. Following a completely

analogous procedure to the one we just applied to compute ⟨Ppre(k, τ)⟩S, we obtain

⟨Pmix(k, τ)⟩S = T hk (τ)
4

9M2
p

H2ϕ′2

a2(ρ+ p)2

∣∣∣∣
0

∫ 0

τh

ϕ′2

a2(ρ+ p)

∣∣∣∣
τ ′
kFpre(0, τ

′)kdτ ′
∫ τ

0

kFpost(τ, τ
′′)kdτ ′′∫ ∞

0

dy

∫ 1+y

|1−y|
dz

[
4y2 − (1 + y2 − z2)2

4yz

]2
Re

[
Qδϕ(ky, τ

′, 0)Qδϕ(kz, τ
′, 0)

]
Q(ky, kz, τ ′′). (346)

Similarly,

⟨Ppost(k, τ)⟩S =
4

81

∫ τ

0

kFpost(τ, τ
′)kdτ ′

∫ τ

0

kFpost(τ, τ
′′)kdτ ′′

∫ ∞

0

dy

∫ 1+y

|1−y|
dz·

·
[
4y2 − (1 + y2 − z2)2

4yz

]2
⟨PR(ky)⟩S⟨PR(kz)⟩SQ(ky, kz, τ ′)Q(ky, kz, τ ′′), (347)

where we have used eqs. (331, 342) to relate Qδϕ to PR. This completes the calculation of

the tensor power spectrum late into the radiation era.
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To find the energy density (312) we use

⟨T hk (τ)2⟩W =
1

2(kτ)2
, (348)

k⟨T hk (τ)Fpost(τ, τ
′)⟩W =

1

2kτ

(
τ ′

τ

)
cos(kτ ′), (349)

k2⟨Fpost(τ, τ
′)Fpost(τ, τ

′′)⟩W =
τ ′τ ′′

2τ 2

[
cos(kτ ′) cos(kτ ′′) + sin(kτ ′) sin(kτ ′′)

]
. (350)

TheH2 factor in the denominator of ΩGW will cancel out the 1/τ 2 in these averages, yielding a

finite result in the limit τ → ∞. The stochastic average of the energy density of gravitational

waves today is therefore

⟨ΩGW(k)⟩S =
Ωγ(T0)

24

g⋆(T )

g⋆(T0)

(
g⋆s(T0)

g⋆s(T )

)4/3 ∫ ∞

0

dy

∫ 1+y

|1−y|
dz

[
4y2 − (1 + y2 − z2)2

4yz

]2
K(ky, kz),

(351)

where the dimensionless integration kernel K(ky, kz) is

K(ky, kz) = Kpre(ky, kz) +Kmix(ky, kz) +Kpost(ky, kz), (352)

with

Kpre =
2

M4
p

∫ 0

τh

ϕ′2

a2(ρ+ p)

∣∣∣∣
τ ′
kFpre(0, τ

′)kdτ ′
∫ 0

τh

ϕ′2

a2(ρ+ p)

∣∣∣∣
τ ′′
kFpre(0, τ

′′)kdτ ′′·

· Re
[
Qδϕ(ky, τ

′, τ ′′)Qδϕ(kz, τ
′, τ ′′)

]
, (353)

Kmix = Is(y, z)
4

9M2
p

H2ϕ′2

a2(ρ+ p)2

∣∣∣∣
0

∫ 0

τh

ϕ′2

a2(ρ+ p)

∣∣∣∣
τ ′
kFpre(0, τ

′)kdτ ′·

· Re
[
Qδϕ(ky, τ

′, 0)Qδϕ(kz, τ
′, 0)

]
, (354)

Kpost =
1

8
⟨PR(ky)⟩S⟨PR(kz)⟩S J2

eMD(xm → 0, y, z), (355)

where JRD was defined in eq. (321) and

Is(y, z) =

∫ ∞

0

(kτ ′) cos(kτ ′)Q(ky, kz, τ ′)kdτ ′. (356)

This integral can also be performed analytically, see [186].

For completeness, we also present here the expression for the tensor power spectrum

valid in the standard cold inflation case; that is, in the absence of the second term in the
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parentheses of eq. (341). In this case the spectrum can be written as the square of a sum,

Ph(k, τ) =

∫ ∞

0

y

∫ 1+y

|1−y|
z

[
4y2 − (1 + y2 − z2)2

4yz

]2
PR(ky)PR(kz)∣∣∣∣6T hk (τ) ∫ 0

ηh

ρ+ p

ρ

∣∣∣∣
τ ′
kFpre(0, τ

′)S(ky, kz, τ ′)kτ ′ +
2

9

∫ τ

0

kFpost(τ, τ
′)Q(ky, kz, τ ′)kτ ′

∣∣∣∣2, (357)

where

S(ky, kz, τ) ≡ Rky(τ)

Rky(0)

Rkz(τ)

Rkz(0)
. (358)

We now proceed to estimate each one of the terms in eq. (352). Let us focus first on the

Kpre term. This contribution depends on the lower integration limit τh (and as noted in [204]

is formally divergent in the limit τh = −∞ due to the behaviour of scalar perturbations in

the Bunch-Davies vacuum). We deal with this problem by integrating from a finite value

of τh that we identify with the time at which the strongly dissipative phase begins. The

assumption here is that the contribution from the source prior to this time is neglegible.

This assumption is reasonable since up to that time inflation proceeds as in the standard

slow roll scenario (up to the presence of a weak dissipative term that does not alter the

dynamics significantly), and we do not expect the corresponding gravitational wave signal

to be peaked at any particular scale or exhibit any special features, in contrast to the piece

arising due to the strongly dissipative phase. In addition, we notice that the inflationary

contribution to the energy density of gravitational waves diverges in the y = ∞ limit. In

principle, this divergence should be renormalized away by properly computing the induced

gravitational wave signal using the in-in formalism. However, we just impose a cut-off which

renders the result finite. We have verified that our results do not depend on the cutoffs

unless unreasonably large values are chosen. Only the Kmix and Kpre kernels suffer from this

issue, and the post-inflationary contribution is finite. We reiterate that the results of this

section should be regarded as an accurate order of magnitude estimate of the overall size of

the signal.

We can choose the time cutoff around the time at which the dissipative coefficient Γ begins

to increase. In terms of the analytical calculation of Section 4.4, this corresponds to the

beginning of phase 1. For the momentum cutoff we can choose kcutoff ∼ O(10− 100)× kpeak.

The four-dimensional integral in ⟨Ωpre⟩S is quite difficult to perform. However, Kpre is heavily

peaked around a specific time, so the strategy we adopt is to approximate the time integrals

by evaluating the integrand at this time and multiplying it by an appropriately chosen

integration area.

To determine the point in parameter space at which the integrand is peaked, we use that

the integrand is symmetric under τ ′ ↔ τ ′′ and y ↔ z, so the set of maxima of the function

must be symmetric under this transformation. If the function has a unique global maximum

in some region (we do not prove that this is the case, but we have checked it numerically),
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Figure 30: Left panel: maximum value of the integration kernel in eq. (362) on the surface y = z
for the parameters in Table 4. Right panel: gravitational wave signals induced during and after
inflation compared with the LISA sensitivity curve [77].

then it follows that this maximum must be located along the surface with τ ′ = τ ′′ and y = z.

On this surface,

Kpre ≃
1

2M2
p

ϕ′2

a2(ρ+ p)

∣∣∣∣
τmax

(k∆τmax)
2
[
kFpre(0, τmax)

]2
Pδϕ(ky, τmax)Pδϕ(kz, τmax), (359)

where τmax is the value of τ at which the local maximum occurs, and ∆τmax is the integra-

tion area, which must be appropriately chosen as a small square around τmax requiring, for

instance, that the integrand does not decrease by more than an order of magnitude or so, in

such a way that the approximation holds. The integration area is, in terms of the number

of e-folds,

k∆τmax =
k

H
(e−Na − e−Nb), (360)

where ∆N = Nb − Na is the range over which the integrand is large, which spans a couple

of e-folds at most. Let us write Na = Nmax − ∆Nmax and Nb = Nmax + ∆Nmax, with

∆Nmax ∼ O(1); and where Nmax is the time in e-folds corresponding to τmax. Then

k∆τmax = 2
k

H
e−Nmax sinh(∆Nmax). (361)
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The function we need to maximize is therefore52

Kpre =
2k2

M2
pH

2

ϕ′2

a2(ρ+ p)

∣∣∣∣
τmax

sinh2(∆Nmax)

e2Nmax

[
kFpre(0, τmax)

]2
Pδϕ(ky, τmax)Pδϕ(kz, τmax). (362)

The quantity in eq. (362) is shown in the left panel of Fig. 30 for the parameters in Table

4. The discontinuity around N = 5 e-folds is due to the fact that, as mentioned in Section

4.4, we take the background parameters as piecewise-constant functions for this calculation.

Specifically, we take ϕ′2/a2(ρ+ p) = 1 in phases 0 and 3, and ϕ′2/a2(ρ+ p) = 0.02 in phases

1 and 2. In this figure we also take ∆Nmax = 2, which is clearly enough to account for the

region in which the integrand is large. Changing this number by a factor of O(1) does not

change our results.

To obtain the induced gravitational wave signal, we find the time τ at which Kpre is

peaked for each k and perform the momentum integrals numerically. The time-dependent

power spectrum Pδϕ(k, τ) is calculated using the analytical formalism of Section 4.4, as we

anticipated earlier. Specifically, it can be found by keeping the full expression for the Green’s

function in eq. (251) instead of taking the N → ∞ limit. The resulting signal is shown in the

right panel of Fig. 30. We find that the energy density of gravitational waves induced during

inflation is much smaller than that of the gravitational waves induced during the radiation

era. We do not show in this figure the mixed term from eq. (352), but we find that it is well

approximated by ⟨Ωmix⟩S ∼
√

⟨Ωpost⟩S⟨Ωpre⟩S, and is therefore also suppressed with respect

to the post-inflationary contribution.

We stress that approximating the integrand by its peak value is what allows us to neglect

the subdominant terms involving ψ and δq(r) in eq. (329). Let us show that this is a good

approximation by estimating the relative contribution of each term in this equation during

the inflationary epoch. Since the integrand in eq. (329) is symmetric under p ↔ k − p,

for the purpose of finding out which terms contribute the most at the point at which this

integrand reaches its largest value, we can simply evaluate it at |p| = |k − p| as we did for

Kpre. We can then define

SGW(N, k) ≡ 8⟨Pψ(N, k)⟩︸ ︷︷ ︸
Sψ

+
4

(ρ+ p)M2
p

⟨Pδq(r)(N, k)⟩︸ ︷︷ ︸
S
δq(r)

+
4ϕ′2

a2(ρ+ p)M2
p

⟨Pδϕ(N, k)⟩︸ ︷︷ ︸
Sδϕ

, (363)

where we have ignored the mixed terms in eq. (329), since they are always subdominant. This

quantity is shown in Fig. 31 for two different modes, both of which become super-Hubble

near the end of the strongly dissipative phase. The figure illustrates that the time integral of

52The value Nmax at which Kpre peaks is really a function of y, as can be seen in the left panel of Fig. 30.
However, since the largest contribution to the integral comes from the region around ky = kpeak, to make
the calculation numerically less demanding we can simply take Nmax as the value at which the integrand,
evaluated at ky = kpeak, is peaked, and use the same value Nmax for all y. We have explicitly checked that
the peak of the signal remains unchanged if the y-dependence of Nmax is taken into account.
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Figure 31: The different components entering into the quantity SGW defined in eq. (363) are shown
as a function of time for two different values of k. We use the numerical results of Section 4.2.

the scalar source of noise is dominated by the δϕ term. Since the other contributions are at

most of the same order and will therefore not change the size of the peak in the gravitational

wave signal, we can neglect them.

Let us briefly summarize the results of this section. We have made three different ap-

proximations in this calculation. The first is that we approximated the time integrals as

their peak value times an appropriately chosen area. The second is that we have neglected

the contribution of the radiation and metric terms to the gravitational wave source during

the inflationary epoch, and we have checked explicitly that the contribution of these terms

is indeed subdominant. These two approximations are very good and should not change

the order of magnitude of the result. If the time integrals are performed numerically and

the metric and radiation perturbations are included in the source term, we expect that the

size of the signal will change at most by a factor of O(1). The final approximation is more

delicate, and has to do with the fact that the integrals diverge in the far past (and for large

momenta) due to the behaviour of scalar modes in the Bunch-Davies vacuum. We have

assumed that this effect can be taken into account correctly by imposing reasonable cutoffs

in the integrals. We expect this to be the case because, up to the cutoff scale, the evolution

of all quantities proceeds as in standard slow-roll (warm) inflation, so we do not expect the

corresponding gravitational wave signal arising from the renormalization of the divergence to

be peaked at any particular scale or possess any other features. We have checked that indeed

our results are independent of the cutoffs unless unreasonably large choices are made. The

uncertainty due to this approximation is difficult to quantify, but we remark that due to the

aforementioned argument, our results should be correct as an order of magnitude estimate.

141



Conclusions

Primordial black holes are intriguing astrophysical objects. As we have seen, their formation

does not require extensions to the Standard Model other than inflation, so they are relatively

economical dark matter candidates. They also exhibit many astrophysical signatures and,

in particular, in the formation mechanisms we have examined here they would generate a

large signal in the stochastic background of gravitational waves that could be observed in

future experiments. In this thesis we have studied several aspects related to the formation

and observable signatures of these black holes. We have presented three specific scenarios in

which a large population of black holes that could account for the entirety of the observed

dark matter can be generated from single-field inflation. Two of these scenarios rely on

the presence of an approximate inflection point in the inflationary potential, which in turn

generates large primordial fluctuations on scales much smaller than the ones probed by CMB

experiments. In the third scenario, large primordial fluctuations are obtained instead from a

transient dissipative phase during inflation in which a source of thermal noise enhances the

perturbations. Regions where the density fluctuations are large enough collapse into PBHs

when these perturbations become sub-horizon during the radiation epoch.

The first of the models we have presented is characterized by a quartic polynomial infla-

tionary potential, together with a non-minimal coupling between the inflaton and gravity.

If the parameters of the potential are chosen appropriately, this model can generate a large

population of PBHs in the window (1) able to to account for the entirety of dark matter.

If we restrict the analysis to the renormalizable case, we find that the predicted tilt of the

power spectrum on CMB scales is in a 3σ tension with the latest Planck analysis for the

base ΛCDM model once we require fPBH ∼ O(1). This tension can be alleviated either by

considering simple, well-motivated extensions to the base ΛCDM model, such as the ad-

dition of neutrino masses, or by considering higher-dimensional operators in the potential,

whose presence is expected in the context of suitable UV completions of the theory. In the

former case, the spectral index turns out to be smaller than the one reported by Planck, and

compatible with our numerical examples, whereas in the latter case the higher-dimensional

operators change the potential at large field values, allowing for a better fit of the spectrum

at CMB scales.

The second model we have studied is aimed at ameliorating some of the issues present

in inflection-point models of PBH formation; in particular, the fact that the presence of the

inflection point is usually engineered for the sole purpose of PBH production, and that the
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abundance of the PBHs that are generated during the radiation era is exponentially sensitive

to the amplitude of the primordial fluctuations at those scales, so that, in order to account

for a large fraction of the dark matter, the parameter in the potential that controls the

shape of the inflection point must be carefully adjusted. The scenario we present, based on

a monodromy-inspired inflationary potential with oscillations superimposed on a term that

behaves as a monomial at large field values, together with a phase of early matter domination

after inflation, alleviates these issues. In our potential, the existence of the inflection points

does not arise from carefully crafting the parameters, but it is instead a rather generic

property that emerges whenever the axionic oscillations have a relatively large amplitude.

The second ingredient of our scenario can also be easily realized: preheating can be avoided

and a long epoch of matter domination after inflation can take place due to perturbative

reheating, since the minimum of the potential is approximately quadratic. During this period

the likeliness of gravitational collapse is augmented due to the absence of radiation pressure,

so that the size of the fluctuations required for PBHs to be able to account for the entirety

of dark matter is reduced with respect to the usual radiation scenario. Moreover, the PBH

abundance is much less sensitive to small changes in the size of the power spectrum, leading

to a reduction in the tuning of the parameters in the potential. The agreement with CMB

constraints (except for the tensor-to-scalar ratio r) turns out to be excellent in this model.

We have also shown in a model-independent way that PBH formation during an eMD era is

most efficient for reheating temperatures of order ≲ 105 GeV.

We have shown that a large enhancement of the power spectrum can also be obtained

from a transient dissipative phase during inflation. This mechanism is quite different from

the other models we present, since the enhancement is not due to a sharp decrease of the

inflaton velocity, but rather due to a stochastic source of thermal noise in the equation

of motion for the fluctuation that arises from the interaction between the inflaton and an

underlying thermalized radiation bath. We have solved the stochastic differential equations

for the fluctuations numerically to find the probability distribution of the power spectrum,

which turns out to be well-approximated by a skew-normal distribution. Since the quantity of

interest is not necessarily the full probability distribution, but its expectation value, we have

developed a way to calculate the latter by reducing the full system of stochastic differential

equations for the fluctuations to a single, deterministic matrix differential equation for their

statistical moments, which is computationally much less demanding to solve. We have also

shown that it is possible to simplify the system of equations in such a way that it can

be solved analytically. This procedure allowed us to understand qualitatively the most

important features of the spectrum.

In addition to the concrete models we have presented, we have also analyzed the role of

quantum diffusion during inflation in scenarios featuring an ultra-slow-roll phase, which is

particularly relevant for the inflection-point models of PBH production discussed above. The

backreaction of quantum fluctuations on the inflationary dynamics is described in the context
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of stochastic inflation. In this approach the long-wavelength perturbations of the inflaton are

sourced by the short-wavelength ones, which become semi-classical after crossing a suitably-

chosen coarse-graining scale. After this stage, the latter behave as a classical source of

stochastic noise. We have analyzed the role of the quantum-to-classical transition in this

case by using the occupation number density as a test for classicalization, and determined

that the choice of the coarse-graining scale is critical: spurious results are obtained for the

power spectrum if the modes are not given enough time to classicalize. If the coarse-graining

scale is chosen appropriately, the resulting power spectrum coincides, at the linear level,

with the result obtained using the standard methods of perturbation theory. This outcome

was already known in the case of slow-roll inflation (see e.g. [72]) and we have shown that it

holds also in presence of an USR phase. The classicalization of the modes is also shown to

be equivalent to the condition that the modes freeze outside the Hubble horizon, much like

in the standard slow-roll scenario, so that classicalization only occurs after the USR phase

has ended. We have solved the stochastic equations by expanding at first order the coarse-

grained inflaton field and its conjugate momentum around their classical trajectories and

treating their perturbations as classical random variables. The evolution of the perturbations

is then governed by a noise correlation matrix which, in standard slow-roll, is constant

in time and vanishes in the field velocity direction of phase space. We find instead that

during the USR phase its entries decrease exponentially in all of the phase space directions.

The intuitive reason for this is that, as explained before, in this case classicalization is

delayed and the inflow of modes sourcing the coarse-grained part of the field stops. We have

computed the power spectrum of curvature perturbations using an analytical model that,

despite its simplicity, is remarkably powerful and allows us to understand qualitatively the

most important features of the spectrum. We have confirmed our results by repeating the

analysis in a fully numerical manner making use of the polynomial model presented earlier.

The final part of the thesis was focused on the calculation of the stochastic gravitational

wave signals induced at second order in perturbation theory for all of the scenarios we describe

here. In particular, we have discussed the gauge-dependence of the signal, which has already

been noted several times in the literature for matter- and radiation-dominated universes.

We have shown that this gauge-dependence extends to the case in which the Universe goes

through an early matter-radiation transition after inflation. The abundance of gravitational

waves ΩGW beyond leading order in perturbations has been obtained in previous studies by

simply taking the leading-order expression, which depends on the power spectrum Ph of hTT
ij ,

and making the substitution hTT
ij → 1

2
hTT
ij (where the bold symbol hTT

ij denotes the second-

order transverse, traceless tensor modes). We have used a heuristic argument to compute

the full expression for ΩGW, valid in any gauge and independent of the energy content of the

Universe. Our approach shows that the previous substitution yields the correct result only

if hTT
ij is computed in the Newtonian gauge.

We have examined the tensor spectrum induced by large scalar perturbations in the
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scenario in which primordial black holes form during an early matter-dominated era and find

that PBH formation during such a phase is fairly constrained. This is due to the fact that

the scalar perturbations that source the tensor modes do not decay during an early matter-

dominated era, thereby increasing the gravitational wave signal up to the point that the

bounds on ΩGW arising from Big Bang nucleosynthesis and CMB experiments are violated.

However, not all the parameter space is ruled out, and points in the remaining available

region can be probed by the LISA experiment. We have also computed the gravitational

wave signal induced in the warm inflation scenario both during inflation and during the

subsequent radiation-dominated era by taking into account the stochastic nature of the

fluctuations. We find that the result is dominated by the post-inflationary contribution,

which has a size comparable to that of the inflection-point models discussed earlier and is

therefore also observable by LISA. To estimate the inflationary contribution, we have used

our analytical model and introduced a reasonable cutoff (which in any case does not strongly

affect the results) in the time integrals. We have also written an explicit expression for the

term that mixes both contributions, and find that it is also subdominant.

There are several possible directions in which our results could be extended. The formulas

for the mass and abundance of PBHs formed during an eMD era rely on the results of [92,

93], which are purely analytical and involve many approximations. Although we expect the

calculations in Section 1.2 to hold as order of magnitude estimates, more work is needed in

terms of numerical simulations in order to precisely determine the effect of non-sphericity and

angular momentum on PBH formation during an eMD era. In the stochastic inflation chapter

we focused purely on the calculation of the power spectrum, but we remark that it would be

interesting to extend the analysis, using our analytical model, to higher order correlators,

in order to determine the non-Gaussian corrections. One possible way of accomplishing this

would be to follow the approach adopted in [73] in the context of slow-roll inflation, which

consists on computing the full probability distribution function of the comoving curvature

perturbation using the stochastic δN formalism. In our warm inflation scenario we used a

phenomenological parameterization to model the transfer of energy from the inflaton to the

radiation background. Peaked dissipative coefficients such as the one we have proposed are,

however, not common in standard warm inflation scenarios, and although we have provided

a possible route to describe the microphysical origin of this dissipation by starting from a

particular Lagrangian (in Appendix D), more work is needed to find concrete, well-motivated

models. Finally, our argument to derive the full expression for the gravitational wave energy

density is purely heuristic, and it would be interesting to attempt to formalize it by properly

defining a covariant coarse-graining procedure and deriving the expression for the energy

density of gravitational waves from first principles. We hope that all of these directions can

be explored in future work.

145



Conclusiones

Los agujeros negros primordiales son objetos astrof́ısicos intrigantes. Como hemos vito,

su formación no requiere de extensiones al Modelo Estándar además de la inflación, aśı

que son candidatos a la materia oscura cuyo costo es relativamente bajo. Exhiben además

una serie de señales astrof́ısicas y, en particular, en los mecanismos de formación que hemos

examinado en esta tesis se generaŕıa una señal en el fondo estocástico de ondas gravitacionales

que podŕıa ser observada en experimentos futuros. En esta tesis hemos estudiado distintos

aspectos relacionados con la formación y señales observables de estos agujeros negros. Hemos

presentado tres escenarios espećıficos en los que una gran población de agujeros negros capaz

de explicar toda la materia oscura observada puede ser generada a partir de modelos de

inflación con un solo campo. Dos de estos escenarios dependen de la presencia de un punto de

inflexión aproximado en el potencial inflacionario, que a su vez genera grandes fluctuaciones

de enerǵıa primordiales a escalas mucho más pequeñas que las observadas por experimentos

del fondo cósmico de microondas. En el tercer escenario, las fluctuaciones primordiales son

obtenidas de una fase disipativa de corta duración durante la inflación en la cual una fuente

de ruido térmico hace crecer las perturbaciones. Las regiones en las que las fluctuaciones

de densidad son lo suficientemente grandes colapsan en PBHs cuando estas perturbaciones

cruzan de nuevo el horizonte durante la época de radiación.

El primero de los modelos que hemos presentado está caracterizado por un potencial infla-

cionario que consiste en un polinomio de cuarto orden, aśı como un acoplamiento no mı́nimo

entre el inflatón y la gravedad. Si los parámetros del potencial son elegidos apropiadamente,

este modelo puede generar una población de PBHs en la ventana (1) capaz de explicar la

totalidad de la materia oscura. Si restringimos nuestro análisis al caso renormalizable, en-

contramos que la inclinación del espectro de potencias a escalas del CMB se encuentra en

una tensión de 3σ con los últimos análisis de Planck para el modelo base ΛCDM si requeri-

mos fPBH ∼ O(1). Esta tensión puede ser aliviada considerando extensiones simples y bien

motivadas al modelo base ΛCDM, tales como la adición de las masas de los neutrinos, o bien

considerando operadores de dimensiones altas en el potencial, cuya presencia se espera en

el contexto de extensiones ultravioleta de la teoŕıa. En el primer caso, el ı́ndice espectral

resulta ser más pequeño que el reportado por Planck y compatible con nuestros ejemplos

numéricos, mientras que en el segundo caso los operadores cambian el potencial a valores

grandes del campo, permitiendo un mejor ajuste del espectro a escalas del CMB.

El segundo modelo que hemos estudiado intenta mejorar algunos de los problemas pre-
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sentes en los modelos de formación de PBHs con puntos de inflexión; en particular, el hecho

de que el punto de inflexión usualmente esté presente con el único propósito de producir agu-

jeros negros y el que la abundancia de los PBHs generados durante la era de radiación sea

exponencialmente sensible a la amplitud de las fluctuaciones primordiales a esas escalas de

manera que, para poder explicar una porción significativa de la materia oscura, el parámetro

del potencial que controla la forma del punto de inflexión debe de ser ajustado cuidadosa-

mente. El escenario que presentamos, basado en un potencial inspirado por la monodromı́a

axiónica con oscilaciones superpuestas sobre un término que se comporta como un monomio

a valores grandes del campo, junto con una fase temprana en la cual el universo estaŕıa

dominado por materia no relativista, alivia estos problemas. En nuestro potencial, la exis-

tencia del punto de inflexión no surge de ajustar los parámetros cuidadosamente, sino que

es una propiedad genérica que emerge cuando las oscilaciones axiónicas tienen una ampli-

tud relativamente grande. El segundo ingrediente de nuestro escenario puede ser realizado

fácilmente también: el precalentamiento puede ser evitado y una época larga dominada por

materia no relativista puede tener lugar debido al recalentamiento perturbativo, ya que el

mı́nimo del potencial es aproximadamente cuadrático. Durante este periodo, la probabilidad

del colapso gravitacional aumenta debido a la ausencia de la presión de radiación, de manera

que el tamaño de las fluctuaciones requerido para explicar toda la materia oscura con PBHs

se ve reducido con respecto al escenario usual de radiación. Más aún, la abundancia de los

PBHs es mucho menos sensible a pequeños cambios en el tamaño del espectro de potencias,

lo cual conlleva una reducción en el ajuste de los parámetros del potencial. El ajuste de

los parámetros del CMB resulta ser excelente en este modelo (exceptuando el cociente entre

escalares y tensores r). Hemos mostrado también de una forma independiente de modelos

que la formación de PBHs durante una época dominada por materia no relativista resulta

ser más eficiente para temperaturas de recalentamiento de orden ≲ 105 GeV.

Hemos mostrado que un incremento del espectro de potencias puede ser obtenido también

de una fase disipativa de corta duración durante la inflación. Este mecanismo es muy distinto

de los otros modelos que presentamos, ya que el incremento no se debe a un decrecimiento

súbito en la velocidad del inflatón, sino a una fuente estocástica de ruido térmico en la

ecuación de movimiento para las fluctuaciones que surge de la interacción entre el inflatón

y un baño de radiación en equilibrio térmico. Hemos resuelto las ecuaciones diferenciales

estocásticas para las fluctuaciones numéricamente para encontrar la distribución de proba-

bilidad del espectro, que resulta ser correctamente aproximada por una distribución normal

sesgada. Ya que la cantidad de interés no es necesariamente la distribución de probabil-

idad total del espectro, sino el valor esperado del mismo, hemos desarrollado un método

para calcular esta cantidad reduciendo el sistema completo de ecuaciones diferenciales es-

tocásticas a una única ecuación matricial determinista para sus momentos estad́ısticos, la

cual es computacionalmente mucho más fácil de resolver. Hemos mostrado además que es

posible simplificar el sistema de ecuaciones de manera que pueda ser resuelto anaĺıticamente.
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Este proceso nos permitió entender cualitativamente las propiedades más importantes del

espectro.

Además de los modelos concretos que hemos presentado, hemos analizado también el

rol de la difusión cuántica durante la inflación en escenarios que presentan una fase de

rodamiento muy lento, lo cual es particularmente relevante para los modelos de formación

de PBHs con puntos de inflexión discutidos antes. La reacción de las fluctuaciones cuánticas

sobre la dinámica inflacionaria es descrita en el contexto de la inflación estocástica. En este

enfoque las perturbaciones del inflación con longitudes de onda cortas actúan como fuente

para las de longitudes de onda grandes y se vuelven semiclásicas después de cruzar una escala

elegida apropiadamente. Después de este punto, se comportan como una fuente clásica de

ruido estocástico. Hemos analizado el rol de la transición del régimen cuántico al clásico

en este caso utilizando el número de ocupación como una prueba de clasicalización y hemos

determinado que la elección de la escala que separa a la parte clásica del campo de la cuántica

es crucial: se obtienen resultados incorrectos para el espectro de potencias si no se le da a

los modos suficiente tiempo para volverse clásicos. Si la escala se elige apropiadamente, el

espectro coincide, a nivel lineal, con el resultado obtenido utilizando los métodos estándar

de la teoŕıa de perturbaciones. Este resultado era conocido ya en el caso inflacionario usual

(véase por ejemplo [72]) y hemos demostrado que resulta ser cierto también en presencia de

una fase de rodamiento muy lento. El tiempo de clasicalización de los modos resulta ser

equivalente al tiempo que tardan los modos en congelarse fuera del horizonte de Hubble, tal

como en el caso inflacionario usual, de modo que la clasicalización solo ocurre una vez que

ha concluido la fase de rodamiento muy lento. Hemos resuelto las ecuaciones estocásticas

expandiendo a primer orden el inflatón y su momento conjugado alrededor de sus trayectorias

clásicas y tratando las perturbaciones como variables estocásticas clásicas. La evolución de

las perturbaciones está gobernada por una matriz de correlación que, en el caso inflacionario

usual, es constante en el tiempo y se anula solo en la dirección de la velocidad en el espacio de

fase. En contraste, encontramos que durante una fase de rodamiento muy lento sus entradas

decrecen exponencialmente en todas las direcciones. La razón intuitiva de este hecho es

que, como hemos explicado antes, en este caso la clasicalización tarda más y la entrada de

modos que actúan como fuente para la parte clásica del campo se detiene. Hemos calculado

el espectro de potencias utilizando un modelo anaĺıtico que, a pesar de su simplicidad, es

bastante poderoso y nos permite entender cualitativamente las propiedades más importantes

del espectro. Hemos confirmado nuestros resultados repitiendo el análisis numéricamente

utilizando el modelo polinómico antes mencionado.

La última parte de la tesis estuvo enfocada en el cálculo del fondo estocástico de ondas

gravitacionales inducido a segundo orden en teoŕıa de perturbaciones para todos los esce-

narios que describimos aqúı. En particular, hemos discutido la dependencia de la señal del

sistema de coordenadas, que ha sido descrita ya numerosas veces en la literatura para univer-

sos dominados por radiación y materia no relativista. Hemos mostrado que esta dependencia
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se extiende al caso en que el universo pasa a través de una fase temprana dominada por ma-

teria no relativista después de la inflación. La abundancia de las ondas gravitacionales ΩGW

a ordenes subdominantes en perturbaciones ha sido obtenida en estudios previos tomando la

expresión a orden dominante, que depende del espectro de potencias Ph de hTT
ij y haciendo

la sustitución hTT
ij → 1

2
hTT
ij (donde el śımbolo hTT

ij denota los modos tensoriales transversos

y sin traza de segundo orden). Hemos utilizado un argumento heuŕıstico para calcular la

expresión completa para ΩGW, válida en cualquier sistema de coordenadas e independiente

del contenido energético del universo. Nuestro enfoque muestra que la sustitución antes

mencionada produce el resultado correcto solo si la cantidad hTT
ij es calculada en el sistema

de coordenadas de Newton.

Hemos examinado el espectro de potencias tensorial inducido por perturbaciones escalares

grandes en el escenario en que los agujeros negros primordiales se forman durante una época

temprana dominada por materia no relativista y encontramos que la formación de PBHs

durante esta fase está bastante constreñida. Esto se debe al hecho de que las perturba-

ciones escalares que actúan como fuente para las tensoriales no decaen durante esta fase,

incrementando la señal de ondas gravitacionales hasta el punto en que se violan los ĺımites

sobre ΩGW que surgen de experimentos de la nucleośıntesis del Big Bang y el CMB. Sin

embargo, no todo el espacio de parámetros es eliminado y los puntos que quedan disponibles

pueden ser probados por el experimento LISA. Hemos también calculado la señal de ondas

gravitacionales inducida en el escenario de inflación caliente tanto durante la inflación como

durante la era de radiación subsiguiente, tomando en cuenta la naturaleza estocástica de

las fluctuaciones. Encontramos que el resultado está dominado por la contribución post-

inflacionaria, que tiene un tamaño comparable al de los modelos con puntos de inflexión

antes discutidos y es por lo tanto observable también por el experimento LISA. Para estimar

la contribución inflacionaria utilizamos nuestro modelo anaĺıtico e introducimos una escala

de corte razonable (que en todo caso no afecta fuertemente los resultados) en las integrales

temporales. Hemos escrito también expresiones expĺıcitas para el término que mezcla ambas

contribuciones y encontramos que es también subdominante.

Existen una serie de direcciones posibles en las cuales se pueden extender los resultados

presentados aqúı. Las fórmulas para la masa y abundancia de los PBHs formados durante

una época temprana dominada por materia no relativista están basadas en los resultados

de [92, 93], que son totalmente anaĺıticos e involucran una serie de aproximaciones. Los

cálculos de la Sección 1.2 son válidos como estimaciones de órdenes de magnitud, pero es

necesario más trabajo en términos de simulaciones numéricas para determinar de forma

precisa el efecto de la no-esfericidad y el momento angular sobre la formación de PBHs du-

rante una fase temprana dominada por materia no relativista. En el caṕıtulo de inflación

estocástica nos enfocamos únicamente en el cálculo del espectro de potencias, pero seŕıa

interesante también extender el análisis, utilizando nuestro modelo anaĺıtico, a correladores

de orden mayor para determinar las correcciones no gaussianas. Una posible manera de
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lograr esto seŕıa seguir el enfoque adoptado en [73] en el contexto del régimen de rodamiento

lento, que consiste en calcular la distribución de probabilidades de las perturbaciones uti-

lizando el formalismo δN estocástico. En nuestro escenario de inflación caliente utilizamos

una parametrización fenomenológica para modelar la transferencia de enerǵıa del inflatón al

fondo de radiación. Sin embargo, los coeficientes disipativos localizados como el presentado

aqúı no son comunes en escenarios estándar de inflación caliente y aunque hemos desarrol-

lado una posible ruta para describir el origen microf́ısico de esta disipación empezando de

un Lagrangiano particular (en el Apéndice D), se necesita más trabajo para encontrar mod-

elos concretos y bien motivados. Finalmente, nuestro argumento para derivar la expresión

completa para la densidad de enerǵıa de las ondas gravitacionales es puramente heuŕıstico

y seŕıa interesante intentar formalizarlo definiendo apropiadamente un procedimiento para

promediar las ecuaciones de Einstein y derivar aśı la expresión para la densidad de enerǵıa

de las ondas gravitacionales a partir de principios fundamentales. Esperamos que todas estas

direcciones puedan ser exploradas en trabajos futuros.
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Appendices

A ■ Cosmological perturbation theory

In this appendix we review the aspects of cosmological perturbation theory most relevant for

the thesis. A review of second-order perturbation theory can be found in [189]. The starting

point for perturbation theory is the assumption that the metric can be split as

gµν = ĝµν + ϵhµν +
1

2
ϵ2hµν + · · · (364)

for some small parameter ϵ, where ĝµν is some fixed background metric and we use bold

symbols for second-order quantities. Indices are raised and lowered with ĝµν , and covariant

derivatives taken with respect to it as well. This decomposition is not unique, but any

frame in which the metric can be written in this form is related to this one by infinitesimal

diffeomorphisms, or gauge transformations. These gauge transformations are generated by

some vector vµ,

vµ = ϵξµ +
1

2
ϵ2ξµ + · · · . (365)

A generic tensor then transforms as

T µ1···µnν1···νm → T̃ µ1···µnν1···νm = eLvT µ1···µnν1···νm , (366)

where Lv is the Lie derivative with respect to v, and the exponential map is defined by

eLv = 1 + ϵLξ +
1

2
ϵ2
(
L2
ξ + Lξ

)
+ · · · . (367)

Throughout this thesis we assume the following form for the scalar-vector-tensor decom-

position of the metric,

ds2 = −a2 (1 + 2φ) dτ 2 + 2a2∂iBdx
idτ + a2

[
(1− 2ψ) δij + 2∂i∂jE +

1

2
hTT
ij

]
dxidxj. (368)

Each one of these quantities can be expanded in powers of ϵ. Their corresponding equations

of motion can be found by expanding Einstein’s equations in powers of ϵ and equating

coefficients. The quantity hTT
ij denotes the transverse, traceless second order piece of the

metric, which satisfies ∂ihTT
ij = δijhTT

ij = 0. Throughout this thesis we assume that the

first-order vectors and tensor modes vanish, Ei = Bi = hTT
ij = 0. Second-order vectors are

nonzero, but they are irrelevant to our discussion and thus we do not write them.
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Our conventions for the stress-energy perturbations are

δT ττ = −δρ, (369)

δT τi = (ρ+ p)∂i(δv +B) ≡ 1

a
∂iδq, (370)

δT ij = δp δij. (371)

If we denote the components of the vector that generates the gauge transformation by ξµ =

(α, δij∂jβ), these quantities transform as

δρ→ δρ̃ = δρ+ ρ′α, (372)

δp→ δp̃ = δp+ p′α, (373)

δq → δq̃ = δq − a(ρ+ p)α. (374)

By using eqs. (366) and (16) we find the following transformation laws for first-order scalars,

φ→ φ̃ = φ+Hα + α′, (375)

ψ → ψ̃ = ψ −Hα, (376)

E → Ẽ = E + β, (377)

B → B̃ = B − α + β′, (378)

The gauge-transformation law for the second-order tensor mode is given in eq. (289).

The evolution of first-order scalars can be found from the linearized Einstein equations.

In momentum space and conformal time, these are

3H
(
ψ′
k +Hφk

)
+ k2

(
ψk +Hσk

)
= −a2 δρk

2M2
p

, (379)

ψ′′
k +H

(
2ψ′

k + φ′
k

)
+
(
H2 + 2H′)φk = a2

δpk
2M2

p

, (380)

ψ′
k +Hφk = −a δqk

2M2
p

, (381)

σ′
k + 2Hσk + ψk − φk = 0, (382)

where we have neglected anisotropic stress and defined the shear potential σ ≡ E ′ − B. In

what follows we also assume δp = wδρ. Thus, we have five equations for seven variables, two

of which can be set to zero by fixing the gauge, and so the system is completely determined.

The other equation of motion we are concerned with is the one for the second-order tensor

modes, which in position space and in the absence of anisotropic stress is given by

hTT′′

ij + 2HhTT′

ij −∇2hTT
ij = −4T lm

ij slm, (383)
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where T lm
ij is the transverse-traceless projector defined in eq. (262) and the source term sij

is, in a generic gauge [85, 89]

sij = ∂iψ∂jψ + ∂iφ∂jφ−
(
φ′ + ψ′ −∇2σ

)
∂i∂jσ +

(
∂iφ

′∂jσ + ∂jφ
′∂iσ

)
+ 2
(
φ+ ψ

)
∂i∂jψ

− 4

3

ρ

ρ+ p
∂i

(
ψ′

H
+ φ

)
∂j

(
ψ′

H
+ φ

)
− 2∇2E∂i∂jψ + 2

(
ψ′′ + 2Hψ′ −∇2ψ

)
∂i∂jE

− ∂i∂kE
′∂j∂

kE ′ + ∂i∂k∂lE∂j∂
k∂lE + 2

(
∂j∂kψ∂i∂

kE + ∂i∂kψ∂j∂
kE
)
+ 2ψ′∂i∂jE

′

− 2H
(
∂iψ∂jE

′ + ∂jψ∂iE
′
)
−
(
∂iψ

′∂jE
′ + ∂jψ

′∂iE
′
)
−
(
∂iψ∂jE

′′ + ∂jψ∂iE
′′
)

+ ∂i∂j∂k∂
k
(
E ′′ + 2HE ′ −∇2E

)
− ∂i∂kσ∂j∂

kσ. (384)

Let us review the procedure presented in [189] to construct gauge-invariant quantities

by starting from an arbitrary gauge and adding a term to cancel the gauge transforma-

tion. The change of the second-order, transverse, traceless tensor mode hTT
ij under a gauge

transformation is

hTT
ij → h̃TT

ij = hTT
ij + T lm

ij Σlm, (385)

where Σij is given in eq. (289) and depends on the parameters α and β of the coordinate

transformation as well as the perturbations in the starting gauge, and where the projection

tensor T lm
ij , defined in momentum space in eq. (262), extracts the transverse, traceless piece

of Σij, and can be written in position space as

T lm
ij Σlm ≡ Σij +

1

2

(
∇−2∂k∂ℓΣ

kℓ − Σk
k

)
δij +

1

2
∇−2∇−2∂i∂j∂k∂ℓΣ

kℓ

+
1

2
∇−2∂i∂jΣ

k
k −∇−2

(
∂j∂

kΣik + ∂k∂iΣjk

)
. (386)

A gauge-invariant quantity Xij can then be easily obtained by simply adding the transfor-

mation to hTT
ij (computed in the arbitrary starting gauge) [189],

Xij ≡ hTT
ij + T lm

ij Σlm. (387)

Suppose we start from a generic gauge and perform a transformation to the Newtonian

gauge, so that E → Ẽ = 0 and B → B̃ = 0. This fixes the transformation parameters α

and β as

α = B − E ′, β = −E (388)

according to eqs. (377, 378). We reiterate that these are the perturbations in the starting

gauge. By substituting α and β into eq. (289) and writing the resulting expression in mo-
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mentum space, we obtain

Σs
k =

∫
d3p

(2π)3
esij
[
2(E ′

k−p − Bk−p)pipjE
′
p + (k − p)iBk−ppjE

′
p + (k − p)jBk−ppiE

′
p

− 2(k − p)iBk−ppjBp − 8ψk−ppipjEp − 4pjpkEp(k − p)i(k − p)kEk−p

− 2pipjpkEp(k − p)kEk−p + δij(· · · )
]
. (389)

where the ellipses stand for all terms proportional to δij, and Σs
k is the Fourier mode defined

in eq. (290). The terms proportional to ki and δij vanish upon contracting with esij. Thus,

after cleaning up,

Σs
k =

∫
d3p

(2π)3
esijpipj

[
2p · (k − p)EpEk−p − 8ψk−pEp + 2σk−pσp

]
, (390)

which coincides precisely with the quantity defined in eq. (309). There is nothing special

about the Newtonian gauge in this procedure. Other gauge invariant quantities can be

obtained by performing a transformation to a different gauge, which will not necessarily

be equal to Xij. However, the uniqueness argument in Section 5.2 guarantees that Xij is

the only one of these gauge-invariant quantities that can enter into the calculation of the

gravitational wave energy density. See the corresponding discussion for details.

B ■ Power counting and effective theories

In this appendix we review the basics of power counting as a method to organize HDOs. In

order to keep track of the appropriate powers of the couplings in the terms of a Lagrangian, it

is useful to restore ℏ. An equivalent way to account for the presence of ℏ is to introduce units

of energy E and length L, so that [ℏ] = EL (and natural units are recovered if E = L−1). A

Lagrangian density then has dimension [L] = EL−3 as we would expect, which implies that

a canonically normalized scalar field has [ϕ] = E1/2L−1/2. A coupling constant g (a gauge

coupling, for instance) has dimensions [g] = E−1/2L−1/2, and the quartic scalar coupling in a

term such as λϕ4 has dimensions [λ] = E−1L−1, so that [g2] = [λ]. Any scale, such as Mp or

the scale Λ introduced in eq. (100), has dimensions [Λ] = E1/2L−1/2. Instead of using E and

L, it is convenient to switch to units of mass M = L−1 and coupling C = E−1/2L−1/2, so that

[L] = M4C−2, [ϕ] = MC−1 and [ℏ] = C−2. Thus, for the operator in eq. (99) we have

M4C−2 = [On] =

[
1

Λn

]n−4

MnC−n, (391)

where the first equality comes from the fact that this is a term in the Lagrangian. This

implies

Λn = MC−n−2
n−4 . (392)
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Tree-level operators have dimensions

[Otree
n ] =

[
gn−2

Mn−4
ϕn
]
=

Cn−2

Mn−4
[ϕn], (393)

so that we can use g to keep tracks of the powers of coupling C. As per our earlier comment,

loop operators satisfy [Oloop
n ] = ℏg2[Otree

n ], and we expect Oloop
n ≪ Otree

n in a weakly coupled

theory (that is, when g ≪ 1). We can therefore restrict our attention to operators with

tree-level scaling in eq. (100).

It is illustrative to use an explicit toy example to clarify the discussion. Consider the

following two-field Lagrangian

L =
1

2
(∂µΦ)(∂

µΦ)− V (Φ, ϕ), V (Φ, ϕ) =
1

2
M2Φ2 +

c1
2
gMϕΦ2 +

c2
2
gMϕ2Φ, (394)

where we have used powers of g and M to keep track of C and M, as discussed above. The

coefficients c(1,2) are genuine dimensionless numbers that cannot be fixed by dimensional

arguments alone. If we assume that the Φ field is heavy (that is, M ≫ gϕ), then it can be

integrated out, producing a Lagrangian that only depends on ϕ and where the effect of Φ

is included in HDOs. This can be understood by solving the equation of motion for Φ and

plugging the result back into the Lagrangian. Said solution can be formally written as

ΦEoM ≃
[

1

M2
− (□+ c1gMϕ)

M4
+

(□+ c1gMϕ)2

M6
+ . . .

](
− 1

2
c2gMϕ2

)
. (395)

The effective Lagrangian therefore contains, restricting our attention to the last term in

eq. (394) for concreteness,

Leff =
c22
4
g2M2ϕ2

[
1

M2
− (□+ c1gMϕ)

M4
+

(□+ c1gMϕ)2

M6
+ . . .

]
ϕ2

=
c22
4
g2ϕ4 − c1c

2
2

4

g3

M
ϕ5 +

c21c
2
2

4

g4

M2
ϕ6 + · · ·+ operators with derivatives

=
∞∑
n=4

(−1)ncn−4
1 c22

4

gn−2

Mn−4
ϕn + operators with derivatives, (396)

so that the tree-level operators without derivatives have the following scaling

Otree
n⩾4 =

(−1)n+1cn−4
1 c22

4

gn−2

Mn−4
ϕn, (397)

where the extra −1 factor comes from the sign of the potential in eq. (394). Notice that this

example motivates the choice cn = (−1)n that we made in one of the examples of Section 2.2.

We see that a quartic coupling ϕ4 is generated by the UV theory, despite not being present

in the original Lagrangian, justifying the equality g2 = a4 that we assumed for simplicity
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in our analysis of Section 2.2. We also find that integrating out Φ generates HDOs with

derivatives, which should in general be included. The reason for neglecting them in our

analysis of Section 2.2 is that, in the slow-roll regime, where the effect of HDOs is relevant,

these operators can be neglected (since the velocity of the field and higher-order derivatives

are small). The USR phase occurs instead at small field values, where HDOs are suppressed.

Finally, this explicit construction shows that the expansion in terms of effective operators

is valid as long as M ≫ gϕ. This is precisely the condition that led to eq. (102) where we

introduced the scale Λ =M/g.

To close this appendix, let us remark that although we generically expect the scaling in

eq. (393) to hold based on dimensional analysis, important differences can arise in the series

of HDOs depending on the symmetry properties of the UV theory. For instance, if the heavy

field Φ is even under some Z2 symmetry, the only renormalizable terms involving Φ that can

appear in the potential are

V (Φ, ϕ) =
1

2
M2Φ2 +

c12
2
gMϕΦ2 +

c22
4
g2ϕ2Φ2 +

c04
4!
g2Φ4. (398)

In this case, only loop-suppressed operators are generated. One can then perform an analysis

similar to the one presented in Section 2.2, where the most relevant difference is that the

condition g2 = a4 would now be replaced by ℏg4 = a4, which implies g ∼ O(10−2).

C ■ Stochastic differential equations

In this appendix we review the basic facts about stochastic differential equations, including

the definition of a Wiener process and the derivation of the Fokker-Planck equation. Part of

the discussion follows the presentation in [205].

A stochastic differential equation (SDE) driven by a Gaussian noise source for a single

time-dependent variable y(t) can be written in differential form as

dy = f(y, t)dt+ g(y, t)dWt, (399)

where the differentials should be thought of as small increments. The increment dWt is

randomly drawn from a Gaussian distribution at each time step dt,

P (dWt) =
1√
2πσ2

e−dW
2
t /2σ

2

. (400)

The dWt increments at every time step are independent from each other. The quantity

dWt is known as a Wiener increment, and is often written alternatively as dWt = ξtdt.

Throughout this appendix we focus only on stochastic differential equations of the form

(399). The different solutions to eq. (399) obtained via some finite sequence of increments

dWt are referred to as realizations.
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An important fact is that the only way for the distribution in eq. (400) to be well-defined

is if σ2 = dt. Let us illustrate this with a heuristic argument. If we consider the equation

dy = dWt, a particular realization can be obtained by summing each random increment,

y =
∑N

i dWt(i). The variance of y, denoted by V (y), is simply the sum of the variance of

each increment dWt(i) in the sum, since they are assumed to be independent. Suppose σ2 is

equal to some power of dt,

σ2 = dtn. (401)

If T ≡ Ndt denotes the range of time over which we solve the equation, the variance of y is

V (y) =
N∑
i

V (dWt(i)) = Nσ2 = Ndtn = N

(
T

N

)n
= N1−nT n. (402)

In the continuum limit N → ∞, this vanishes for n > 1, and diverges if n < 1. Thus, the

only value that makes sense is n = 1.

Let us return to the original equation (399) and compute the expectation value of dW 2
t ,

⟨dW 2
t ⟩ = ⟨dW 2

t ⟩ − ⟨dWt⟩2 ≡ V (dWt) = dt, (403)

where the expectation values ⟨· · · ⟩ are taken with respect to the distribution in eq. (400).

By using eq. (400) we can also show that the variance of the sum of the dW 2
t(i) is

V

( N∑
i

dW 2
t(i)

)
=

N∑
i

2dt2 = 2
T 2

N
. (404)

Since this quantity vanishes as N → ∞, we see that the sum of all the dW 2
t(i) in the continuum

limit is not actually random, but deterministic, and must therefore be equal to its mean,∫ T

0

dW 2
t =

〈∫ T

0

dW 2
t

〉
=

∫ T

0

⟨dW 2
t ⟩ =

∫ T

0

dt. (405)

Thus, we find that dW 2
t = dt, a result known as Ito’s rule. We can use this result to change

the time variable in a stochastic differential equation via

dWt =

√
dt

ds
dWs. (406)

Ito’s rule also leads to a very important lemma. Consider the Taylor expansion to second

order of any function z(y, t) of the stochastic variable y and time t,

dz =
∂z

∂t
dt+

∂z

∂y
dy +

1

2

∂2z

∂y2
dy2 + · · · . (407)

We would like to write eq. (399) in terms of z instead of y. Using eq. (399) itself to substitute
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dy and dy2 into eq. (407) and keeping only terms linear in dt and dWt so that the equation

retains the same form of (399), we find, keeping in mind that dW 2
t = dt,

dz =

(
∂z

∂t
+ f

∂z

∂y
+
g2

2

∂2z

∂y2

)
dt+ g

∂z

∂y
dWt. (408)

The third term inside the parentheses is the result of this being a stochastic differential

equation. This equation, valid for any z(y, t), is known as Ito’s lemma, and is the stochastic

equivalent of the chain rule. This is the main difference between manipulating regular

differential equations and stochastic ones.

The main quantity of interest when solving a stochastic differential equation is the prob-

ability distribution P (y, t) for the stochastic variable to take the value y at time t. This

distribution can be found via the Fokker-Planck equation, which we now derive. Let us take

the expectation value of both sides of eq. (408) with respect to the probability distribution

P (y, t), assuming that z is not explicitly time-dependent,

d⟨z⟩S
dt

=

〈
f
∂z

∂y

〉
S

+

〈
g2

2

∂2z

∂y2

〉
S

=

∫ (
f
∂z

∂y
+
g2

2

∂2z

∂y2

)
P (y, t)dy

=

∫
z

[
− ∂

∂y
(fP ) +

1

2

∂2

∂y2
(g2P )

]
dy, (409)

where we use ⟨· · · ⟩S to denote the expectation value with respect to P (y, t). Here we have

used the fact that ⟨dWt⟩S = 0 in the first step and integrated by parts in the last step

assuming that the probability distribution vanishes at the boundaries. On the other hand,

the time derivative of the mean of z is also given by

d⟨z⟩S
dt

=
d

dt

∫
z(y)P (y, t)dy =

∫
z(y)

∂

∂t
P (y, t)dy. (410)

Since this must be true for any z(y), we can equate both expressions to find the Fokker-Planck

equation for the probability density,

∂

∂t
P (y, t) = − ∂

∂y

[
f(y, t)P (y, t)

]
+

1

2

∂2

∂y2

[
g2(y, t)P (y, t)

]
. (411)

This is a deterministic equation and thus can be solved by standard PDE methods.

Let us assume that the stochastic variable y depends not only on the time t but also

on the spatial coordinates x. As mentioned earlier, Wiener processes are often written as

dWt = ξtdt. The quantity ξt can be thought of as a distribution, with correlation function

given by

⟨ξt(x)ξt′(x′)⟩S = δ(t− t′)δ3(x− x′). (412)
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The noise correlators in Fourier space are then

⟨ξt(k)ξ⋆t′(k′)⟩S =

∫
d3x

∫
d3x′⟨ξt(x)ξt′(x′)⟩S eikxe−ik

′x′
= (2π)3δ(t− t′)δ3−, (413)

where we have defined the shorthand δ3± = δ3(k± k′). Following a similar procedure for the

other entries, the entire correlation matrix can be computed〈(
ξt(k)

ξ⋆t (k)

)(
ξt′(k

′) ξ⋆t′(k
′)
)〉

S

= (2π)3

(
δ3+ δ3−
δ3− δ3+

)
δ(t− t′). (414)

For the real and imaginary parts of the noise Re(ξt) ≡ ξrt and Im(ξt) ≡ ξit, we find

〈(
ξrt (k)

ξit(k)

)(
ξrt′(k

′) ξit′(k
′)
)〉

S

=
1

2
(2π)3

(
δ3− + δ3+ 0

0 δ3− − δ3+

)
δ(t− t′). (415)

In computing these entries it is necessary to use the parity of the δ-function, δ3(k) = δ3(−k).

We therefore find that the real and imaginary parts of the noise are uncorrelated, but ξt and

ξ⋆t are not.

Throughout the rest of this appendix we will focus on a specific multivariate version of

eq. (399) which is close to the type of equations we deal with in Chapter 4. Let us consider53

dΦ

dt
+AΦ =

1√
2
σξt, (416)

where the stochastic time-dependent variable Φ(t) is an n-dimensional column complex vec-

tor, A is an n × n real matrix, σ is an n ×m complex matrix, and ξt is an m-dimensional

column complex noise vector whose real and imaginary parts have correlation functions

given by the multivariate analogue of eq. (415). We have absorbed the overall 1/2 factor

from eq. (415) into the definition of ξt, leading to the 1/
√
2 factor in eq. (416). We want to

find the probability distribution P (Φ,Φ⋆, t), where Φ⋆ obeys the equation of motion

dΦ⋆

dt
+AΦ⋆ =

1√
2
σξ⋆t . (417)

The noise vectors ξt and ξ⋆t are not independent as per eq. (414). In order to use a generalized

multivariate version of the Fokker-Planck equation (411) for the probability distribution

P (Φ,Φ⋆, t), we need to rewrite eq. (416) in terms of uncorrelated noise sources. To this end,

it is convenient to define the vectors Ψ ≡ (ΦT,Φ†)T and χc ≡ (ξTt , ξ
†
t )

T. The equation of

53Stochastic equations of this form are useful at linear order in perturbation theory and in Fourier space,
where spatial derivatives are effectively decoupled. In particular, the system in eqs. (206 – 208) is of this
form.

159



motion for Ψ is then
dΨ

dt
+αΨ =

1√
2
Σχc, (418)

where

α =

(
A 0

0 A

)
, Σ =

(
σ 0

0 σ

)
. (419)

This notation might make α and Σ look like they have the same shapes, but α is a 2n× 2n

matrix, whereas Σ is a 2n × 2m matrix (the 0 matrices inside have different shapes). The

final step is to write this equation with correlated noises χc (hence the subscript c) in terms

of the uncorrelated noises χu ≡ (ξrTt , ξiTt )T. We have

dΨ

dt
+αΨ =

1√
2
ΣMχχu, (420)

with

Mχ =

(
1 i

1 −i

)
−→ ΣMχ =

(
σ iσ

σ −iσ

)
. (421)

Since the noise sources in eq. (420) are uncorrelated, eq. (411) can be generalized directly,

∂P

∂t
=
∑
kℓ

{
αkℓ

∂

∂Ψk

(ΨℓP ) +
1

2

[
1√
2
ΣMχ

1√
2
MT

χΣ
T

]
kℓ

∂2P

∂Ψk∂Ψℓ

}
, (422)

with

ΣMχM
T
χΣ

T =

(
σ iσ

σ −iσ

)(
σT σT

iσT −iσT

)
=

(
0 2σσT

2σσT 0

)
. (423)

The sums in eq. (422) can be expanded in terms of Φ and Φ⋆ instead of Ψ. We find

∂P

∂t
=
∑
kℓ

[
Akℓ

∂

∂Φk

(ΦℓP ) +Akℓ
∂

∂Φ⋆
k

(Φ⋆
ℓP ) + (σσT)kℓ

∂2P

∂Φk∂Φ⋆
ℓ

]
. (424)

The equation of motion for the two-point statistical moments Q ≡ ⟨ΦΦ†⟩S, defined via

⟨ΦΦ†⟩S(N) ≡
∫ ∏

i

dΦi

∫ ∏
j

dΦ⋆
j P (Φ,Φ

⋆, N) ΦΦ†. (425)

can be found by acting on this equation with a time derivative and using the Fokker-Planck

equation (424). It is also necessary to integrate by parts and assume that the probability

distribution vanishes at the boundaries. The result is

dQ

dt
= −AQ−QAT + σσT. (426)
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D ■ Microphysics of the dissipative coefficient

In this appendix we discuss a particular microphysical realization of a localized dissipative

coefficient Γ during inflation. The purpose of the present discussion, however, is not to

propose a definitive model but simply to show that obtaining a peaked dissipative coefficient

that satisfies all the necessary constraints is, in principle, possible. Specifically, we introduce

a Lagrangian which reproduces the form of the dissipative coefficient (211), assuming that

the fields that couple to the inflaton are part of a thermalized bath. In order to keep the

field content to a minimum we will consider a scenario where, besides the inflaton ϕ, only

two more degrees of freedom participate of the dynamics. The first one, denoted by σ and

assumed to be a scalar, corresponds to the light radiation field in equilibrium. The second

one, also a scalar and denoted by χ, corresponds to a heavy catalyst field. The large effective

mass of χ arises via its coupling to the slowly rolling inflaton field. Through the coupling

of the (unstable) χ with σ, the inflaton energy density can be efficiently dissipated into

radiation. Indirect decay scenarios like this one are among the preferred mechanisms for

realistic warm inflation models [177, 206, 207]. One of the advantages of introducing such

heavy catalyst fields is to prevent the inflaton potential from receiving strong temperature

corrections [207, 208].54

Let us consider the following Lagrangian

L =
1

2

∂µφ∂µφ

J (φ)
+

1

2
∂µχ∂µχ+

1

2
∂µσ∂µσ − 1

2
g2χφ

2χ2 − 1

2
g2σφχσ

2 − U(φ) + · · · . (427)

Here, φ denotes the inflaton, which we assume to have a non-canonical kinetic term. In

this frame, the inflaton φ and the mediator χ interact via a four-legged contact term with

coupling gχ. The term with coupling gσ connects the three fields. After expanding the

inflaton around its classical background value, this term induces the decay of χ into σ. The

dots correspond to other interactions which should be present for the light sector σ to be

thermalized. If this sector is indeed in equilibrium, the presence of the φ → χ → σ channel

modifies the equation of motion of the inflaton. The canonically normalized inflaton ϕ is

related to φ via
dϕ

dφ
=

1√
J (φ)

, (428)

and the equation of motion for ϕ becomes

ϕ̈+ (3H + Γ)ϕ̇+ Vϕ(ϕ) = 0, (429)

where V (ϕ) ≡ U [φ(ϕ)]. We neglect the temperature dependence of the potential in accor-

54In addition, in a simpler construction in which the inflaton directly couples to the radiation field σ,
the dissipation rate is determined by the strength of the inflaton self-coupling. This effectively suppresses
the value of Γ, due to the requirement of the normalization of such self-coupling by the amplitude of the
primordial curvature power spectrum [177].
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dance with our earlier comment. The dissipative coefficient Γ encodes the production of

σ quanta. The appearance of a local dissipative term relies on the assumption that the

microphysical processes which determine Γ operate at time-scales much smaller than those

characteristic of the macroscopic slow-roll of the inflaton and the expansion of the Universe

(the so-called adiabatic Markovian approximation [177, 209]). Additionally, we assume that

the typical interaction time-scale between the constituents of the thermal bath is much

shorter than the time-scales associated to the variation of the background quantities. In this

approximation, the dissipative coefficient is given by [210–212]

Γ(ϕ, T ) = 2
g4χ
T

(
φ
dφ

dϕ

)2 ∫
d4p

(2π)4
n(ω)

[
n(ω) + 1

]
ρ2χ(ω), (430)

where p = (ω,p), nχ(ω) = 1/(eω/T − 1) is the Bose-Einstein distribution, and

ρχ =
4ωpΓχ

(ω2 − ω2
p)

2 + 4ω2
pΓ

2
χ

(431)

is the spectral density of the catalyst field. In this expression ω2
p = |p|2 +m2

χ is the on-shell

frequency, with mχ = gχφ denoting the effective mass of χ in accordance with (427), and

Γχ is the decay width of χ. Our expression for Γ originates from the gχ interaction term

in (427). In principle, the gσ term would also contribute to the dissipation rate, but this

contribution turns out to be loop-suppressed [212]. The aforementioned adiabatic Markovian

approximation translates into the three conditions

Γχ ≫ H (thermalization), Γχ ≫ ϕ̇

ϕ
,
Ṫ

T
(adiabaticity), T ≫ H. (432)

These conditions also ensure that thermal equilibrium is maintained between the light σ and

the heavy χ throughout the strongly dissipative phase (Γ ≫ H).

To evaluate the dissipative coefficient Γ we need the decay width Γχ, which should be

calculated using non-zero temperature QFT. A general expression can be found in e.g. [212].

For simplicity, we will restrict our discussion to the so-called low-temperature limit in what

follows, which corresponds to assuming that T ≪ mχ. We remark however that in principle

none of our assumptions forbid a peaked dissipative coefficient at higher temperatures. The

decay rate for the process χ→ σσ can then be written as

Γχ(ω,p) ≃
g4σφ

2

8πωp(p)
(433)

in a frame of reference that is boosted with respect to the χ rest frame. In terms of this rate,

the adiabaticity condition corresponds to Γχ ≫ |ϕ̇/ϕ|. The low-temperature limit further

suppresses the already small temperature corrections to the potential. Let us introduce the
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Figure 32: Left panel: time evolution of the background quantities T , H and Γ for the dissipative
coefficient in eq. (439) using the parameters in (440). Right panel: constraints from eq. (432),
together with the low-temperature limit T ≪ mχ, for the same parameters as the left panel. The
reference time Nref is chosen as the time at which T/mχ reaches its maximum value.

dimensionless quantities

α ≡ ω

T
, β ≡ |p|

mχ

, λ ≡ T

mχ

, γχ ≡ Γ
(0)
χ

mχ

, (434)

where Γ
(0)
χ ≡ Γχ(mχ,0) is the decay rate in the χ rest frame. The dissipative rate is then

Γ =
8g4χ
mχπ3

(
φ
dφ

dϕ

)2 ∫ ∞

0

dβ

∫ ∞

β/λ

dα

[
βγχ

(α2λ2 − β2 − 1)2 + 4γ2χ

]2(
1

eα − 1

)(
1

eα − 1
+ 1

)
.

(435)

In the low-temperature limit λ≪ 1, we can discard the α and γχ pieces in the denominator

of the term in brackets, which is equivalent to approximating the spectral function as ρχ ≃
4Γχ/m

3
χ [212]. The dissipative rate then simplifies to

Γ ≃
8g4χγ

2
χ

mχπ3

(
φ
dφ

dϕ

)2 ∫ ∞

0

dβ

(
β2

1 + β2

)(
1

eβ/λ − 1

)
≃

20g4χ
(
Γ
(0)
χ

)2
m6
χπ

3

(
φ
dφ

dϕ

)2

T 3, (436)

where we have used the fact that the β integral can be well-approximated by 5λ3/2 for

λ≪ 1.

All of the expressions we have presented so far are independent of the particular shape of

J (φ) in the kinetic term of φ in (427). Successful warm inflation can be obtained by setting

J (φ) = 1, with a dissipative coefficient Γ ∝ T 3/φ2. To recover the phenomenological peaked
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dissipative coefficient we presented in Section 4.1, however, let us consider

J (φ) = 4
φ2

Λ2

[
1 +

4M2φ

m(φ+m)2

]
, (437)

where m, M and Λ are arbitrary dimensionful parameters. The corresponding solution to

eq. (428) can then be written as

φ(ϕ) = m

(
1− f(ϕ)

1 + f(ϕ)

)
, f(ϕ) ≡

{
M2 +m2

M2 +m2 coth2
[
(ϕ− ϕ⋆)/Λ

]}1/2

, (438)

where ϕ⋆ is a free parameter, which we assume is necessary to fix V (ϕ = 0) = 0. By plugging

this transformation into eq. (436), we find

Γ =
5g8σ

4π5g4χΛ
2

{
(m2 +M2)T 3

m2 +M2 tanh2
[
(ϕ− ϕ⋆)/Λ

]}. (439)

Assuming that m ≪ M , we recover eq. (211). In the left panel of Fig. 32 we show the

time evolution of the dissipative rate Γ, the Hubble parameter and the temperature for the

dissipative rate in eq. (439) with parameters

Λ = 0.1Mp, M =Mp, m = 0.05Mp, gχ = 0.08, gσ = 0.28, (440)

together with λ = 4.6 × 10−14 and g⋆ = 10. The right panel of the same figure shows

the conditions in eq. (432), as well as the low-temperature limit T/mχ ≪ 1. All of the

constraints are satisfied and our setup is therefore self-consistent. We remark that if we

want the potential V (ϕ) = U [φ(ϕ)] to be able to support slow roll inflation, the shape of

U(φ) must be quite unconventional, due to the complicated field redefinition in eq. (438).

As we mentioned earlier, however, the purpose of the present discussion is only to show that

obtaining a dissipative coefficient that satisfies all the necessary constraints is possible in

principle. We hope the discussion in this appendix encourages further efforts to search for

well-motivated models that could produce peaked dissipative coefficients.

E ■ Stochastic and quantum expectation values

As shown in Section 4.4, the solution to the simplified equation of motion for δϕ (235) is of

the form

δϕk(N) = δϕ
(h)
k (N) +

∫ N

−∞
Sk(N, N̂)ξN̂(k)dN̂, (441)

where ξN is a Wiener process satisfying (414) and Sk is a function of time, the form of

which is not relevant in what follows. We can quantize the field by writing the homogeneous
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solution in terms of creation and annihilation operators

δϕ̂
(h)
k = δϕ

(h)
k âk + δϕ

(h)⋆
k â†k. (442)

Since we do not quantize the noise, we make the second term in eq. (441) proportional to

the identity operator. The quantum expectation value is defined via ⟨· · · ⟩Q ≡ ⟨0| · · · |0⟩, so
we have

⟨δϕ̂kδϕ̂q⟩Q = ⟨δϕ̂(h)
k δϕ̂(h)

q ⟩Q +

∫ N

−∞

∫ N

−∞
Sk(N, N̂)Sq(N, Ñ)ξN̂(k)ξÑ(q)dN̂dÑ. (443)

The power spectrum is defined via

⟨δϕ̂kδϕ̂q⟩Q ≡ (2π)3
2π2

k3
Pδϕ(k)δ3(k + q). (444)

We can show from eq. (442) that

⟨δϕ̂(h)
k δϕ̂(h)

q ⟩Q = (2π)3|δϕ(h)
k |2δ3(k + q), (445)

and since δϕ
(h)
k is the solution to the homogeneous equation of motion for δϕ, which does not

involve the stochastic noise, this is a deterministic quantity. Note, however, that the second

term in eq. (443) is still stochastic, as it should be, since every realization of the system leads

to a different power spectrum. To obtain a deterministic quantity we can take the stochastic

expectation value ⟨· · · ⟩S, computed by averaging over many realizations. We denote the

double expectation value by brackets without subindices, ⟨· · · ⟩ ≡ ⟨⟨· · · ⟩Q⟩S. Thus,

⟨δϕ̂kδϕ̂q⟩ = (2π)3|δϕ(h)
k |2δ3(k + q) +

∫ N

−∞

∫ N

−∞
Sk(N, N̂)Sq(N, Ñ)⟨ξN̂(k)ξÑ(q)⟩SdN̂dÑ

= (2π)3δ3(k + q)

(
|δϕ(h)

k |2 +
∫ N

−∞

∫ N

−∞
Sk(N, N̂)Sq(N, Ñ)δ(N̂ − Ñ)dN̂dÑ

)
= (2π)3δ3(k + q)

(
|δϕ(h)

k |2 +
∫ N

−∞
Sk(N, N̂)2dN̂

)
. (446)

By combining this with eq. (444), we find

⟨Pδϕ(k)⟩S =
k3

2π2

(
|δϕ(h)

k |2 +
∫ N

−∞
Sk(N, N̂)2dN̂

)
. (447)

This formula holds as long as we assume that the noise term is not quantized and the

stochastic and quantum expectation values are independent from each other.

The four-point function for δϕ can be found in a similar manner. Since these results

bear direct relation to the calculation of Section 5.4, we present them in conformal time. If

we assume that δϕ
(h)
k is Gaussian with respect to the quantum expectation value, and ξτ is
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Gaussian with respect to the stochastic one, then the following identities follow from Wick’s

theorem

⟨δϕ̂(h)
q (τ)δϕ̂

(h)
k−q(τ)δϕ̂

(h)
l (τ ′)δϕ̂

(h)
p−l(τ

′)⟩ = (2π)6δ3k+p

(
δ3q+l + δ3q+p−l

)
δϕ(h)

q (τ)⋆δϕ
(h)
l (τ ′)δϕ

(h)
k−q(τ)

⋆δϕ
(h)
p−l(τ

′), (448)

⟨ξτ (q)ξτ ′(k − q)ξτ ′′(l)ξτ ′′′(p− l)⟩ = (2π)6δ3k+pδτ+τ ′−τ ′′−τ ′′′(
δ3q+p−lδτ−τ ′′′ + δ3q+lδτ−τ ′′

)
, (449)

⟨ξτ (q)δϕ̂(h)
k−q(τ

′)ξτ ′′(l)δϕ̂
(h)
p−l(τ

′′′)⟩ = (2π)6δ3k+pδ
3
q+lδτ−τ ′′δϕ

(h)
k−q(τ

′)⋆δϕ
(h)
p−l(τ

′′′), (450)

where we have introduced the shorthand notation δ3(k) = δ3k for readability, and we have

once again assumed that the quantum and stochastic expectation values are independent

from each other. The four-point function is given by the sum of four terms,

⟨δϕ̂q(τ ′)δϕ̂k−q(τ ′)δϕ̂l(τ ′′)δϕ̂p−l(τ ′′)⟩ = (2π)6
( 4∑

i=1

F
(i)
δϕ

)
δ3(k + p), (451)

where

F
(1)
δϕ =

(
δ3q+l + δ3q+p−l

)
δϕ(h)

q (τ ′)⋆δϕ(h)
q (τ ′′)δϕ

(h)
k−q(τ

′)⋆δϕ
(h)
k−q(τ

′′), (452)

F
(2)
δϕ =

(
δ3q+l + δ3q+p−l

)
δϕ(h)

q (τ ′)⋆δϕ(h)
q (τ ′′)

∫ min(τ ′,τ ′′)

−∞
Sk−q(τ ′′, τ̂)Sk−q(τ ′, τ̂)dτ̂ , (453)

F
(3)
δϕ =

(
δ3q+l + δ3q+p−l

)
δϕ

(h)
k−q(τ

′)⋆δϕ
(h)
k−q(τ

′′)

∫ min(τ ′,τ ′′)

−∞
Sq(τ ′′, τ̂)Sq(τ ′, τ̂)dτ̂ , (454)

F
(4)
δϕ =

(
δ3q+l + δ3q+p−l

)∫ min(τ ′,τ ′′)

−∞
Sq(τ ′, τ̂)Sq(τ ′′, τ̂)dτ̂

∫ min(τ ′,τ ′′)

−∞
Sk−q(τ ′, τ̃)Sk−q(τ ′′, τ̃)dτ̃ .

(455)

We have ignored some contact interaction terms that are not proportional to δ3(k+p). The

upper limit of the integrals arises because, if a < c < b, then∫ b

a

∫ c

a

f(τ)δ(τ − τ ′)dτdτ ′ =

∫ c

a

∫ c

a

f(τ)δ(τ − τ ′)dτdτ ′ +

∫ b

c

∫ c

a

f(τ)δ(τ − τ ′)dτdτ ′︸ ︷︷ ︸
0

=

∫ c

a

f(τ)dτ,

(456)

since a < τ < c but c < τ ′ < b, so that the regions in the second double integral after the

first equality do not overlap, making it impossible to satisfy the constraint τ = τ ′ imposed

by the δ function and forcing the integral to vanish. An analogous result holds for a < b < c.
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F ■ Analytical gravitational wave integrals

The analytical results for the quantities in (287) are, with x = kτ , y = p/k and z = |p−k|/k
[185]

IeMD
i =

1

xm

12

5
a+T |yxm

a+T |zxm

{
a+i

[
(3− x2) sinx− 3x cosx

]
+ a−i

[
(x2 − 3) cosx− 3x sinx

]}∣∣∣xm

0
,

(457)

IRD
i =

3

y3z3x4

{[
F−− cos y−− + F−+ cos y−+ + F+− cos y+− + F++ cos y++

+G−− sin y−− +G−+ sin y−+ +G+− sin y+− +G++ sin y++
]

+ x4(y2 + z2 − 3)2
[
H−−

i Ci(y−−) +H−+
i Ci(|y−+|) +H+−

i Ci(y+−) +H++
i Ci(y++)

+ I−−
i Si(y−−) + I−+

i Si(y−+) + I+−
i Si(y+−) + I++

i Si(y++)
]}∣∣∣∞

xm/2
, (458)

where we have defined

y±± ≡
(
1± y ± z√

3

)
x. (459)

The functions H±±
i and I±±

i are defined by

H++
i =

(
b+T |zxmb

+
T |yxm − b−T |zxmb

−
T |yxm

)
b−i +

(
b+T |zxmb

−
T |yxm + b+T |yxmb

−
T |zxm

)
b+i , (460)

H+−
i = −

(
b+T |zxmb

+
T |yxm + b−T |zxmb

−
T |yxm

)
b−i +

(
b+T |yxmb

−
T |zxm − b+T |zxmb

−
T |yxm

)
b+i , (461)

H−+
i =

(
b+T |zxmb

+
T |yxm − b−T |zxmb

−
T |yxm

)
b−i −

(
b+T |zxmb

−
T |yxm + b+T |yxmb

−
T |zxm

)
b+i , (462)

H−−
i = −

(
b+T |zxmb

+
T |yxm + b−T |zxmb

−
T |yxm

)
b−i +

(
b+T |zxmb

−
T |yxm − b+T |yxmb

−
T |zxm

)
b+i , (463)

I++
i = −

(
b+T |zxmb

+
T |yxm − b−T |zxmb

−
T |yxm

)
b−i +

(
b+T |zxmb

−
T |yxm + b+T |yxmb

−
T |zxm

)
b−i , (464)

I+−
i =

(
b+T |zxmb

+
T |yxm + b−T |zxmb

−
T |yxm

)
b+i −

(
b+T |zxmb

−
T |yxm − b+T |yxmb

−
T |zxm

)
b−i , (465)

I−+
i = −

(
b+T |zxmb

+
T |yxm − b−T |zxmb

−
T |yxm

)
b−i −

(
b+T |zxmb

−
T |yxm + b+T |yxmb

−
T |zxm

)
b−i , (466)

I−−
i =

(
b+T |zxmb

+
T |yxm + b−T |zxmb

−
T |yxm

)
b+i −

(
b+T |yxmb

−
T |zxm − b+T |zxmb

−
T |yxm

)
b−i . (467)

The functions F±± are, in terms of H±±
i and I±±

i ,

F++ = I++
{
18x
[√

3(z + y)− 1
]
+ x3

[√
3(z + y)− 3

][
(z − y)2 − 3

]}
−H++

{
54− 3x2

[
3 + z2 + y2 + 6yz − 2

√
3(z + y)

]}
, (468)

F+− = − I+−
{
18x
[√

3(z − y) + 1
]
+ x3

[√
3(z − y) + 3

][
(z + y)2 − 3

]}
−H+−

{
54− 3x2

[
3 + z2 + y2 − 6yz + 2

√
3(z − y)

]}
, (469)

F−+ = − I−+
{
18x
[√

3(z + y) + 1
]
+ x3

[√
3(z + y) + 3

][
(z − y)2 − 3

]}
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−H−+
{
54− 3x2

[
3 + z2 + y2 + 6yz + 2

√
3(z + y)

]}
, (470)

F−− = I−−
{
18x
[√

3(z − y)− 1
]
+ x3

[√
3(z − y)− 3

][
(z + y)2 − 3

]}
−H−−

{
54− 3x2

[
3 + z2 + y2 − 6yz + 2

√
3(y − z)

]}
. (471)

Similarly, for G±± we have

G++ = −H++
{
18x
[√

3(z + y)− 1
]
+ x3

[√
3(z + y)− 3

][
(z − y)2 − 3

]}
− I++

{
54− 3x2

[
3 + z2 + y2 + 6yz − 2

√
3(z + y)

]}
, (472)

G+− =H+−
{
18x
[√

3(z − y) + 1
]
+ x3

[√
3(z − y) + 3

][
(z + y)2 − 3

]}
− I+−

{
54− 3x2

[
3 + z2 + y2 − 6yz + 2

√
3(z − y)

]}
, (473)

G−+ =H−+
{
18x
[√

3(z + y) + 1
]
+ x3

[√
3(z + y) + 3

][
(z − y)2 − 3

]}
− I−+

{
54− 3x2

[
3 + z2 + y2 + 6yz + 2

√
3(z + y)

]}
, (474)

G−− = −H−−
{
18x
[√

3(z − y)− 1
]
+ x3

[√
3(z − y)− 3

][
(z + y)2 − 3

]}
− I−−

{
54− 3x2

[
3 + z2 + y2 − 6yz + 2

√
3(y − z)

]}
. (475)

The case in which the Universe never goes through an eMD phase, which we denote as pRD

(for pure RD) can be recovered by taking the xm → 0 limit. The result is

IpRD
i ≡ 3(y2 + z2 − 3)

y3z3

{
4yzb−i − b+i π(y

2 + z2 − 3)
[
Θ
(
1− y + z√

3

)
− 1
]

+ b−i (y
2 + z2 − 3)

[
log
(
1− y − z√

3

)
+ log

(
1 +

y − z√
3

)
− log

(
1 +

y + z√
3

)
− log

(∣∣∣1− y + z√
3

∣∣∣)]}. (476)

In deriving these results we have used the identities limx→0[Ci(ax)−Ci(bx)] = log(a)−log(b),

limx→0 Si(x) = 0, limx→±∞ Si(x) = ±π/2, and limx→+∞ Ci(x) = 0.

G ■ Induced gravitational waves in different gauges

In this appendix we calculate the induced second-order tensor modes in different gauges

using eq. (292) in the eMD-to-RD transition scenario55 schematically represented in Fig. 1.

Since we calculated the second-order tensor modes in the Newtonian gauge in Section 5.1,

we can set Tψ = Tφ and TE = TB = Tσ = 0 in eq. (293). Thus, the only transfer function

we need to compute is Tψ –which is given by eq. (280)– and we simply need to determine

55The calculation of IΣ in MD and RD eras was performed in [84, 89] and [85], respectively. The calculation
for an eMD → RD transition is presented here for the first time.
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Tα and Tβ in terms of Tψ from the gauge conditions. Since the transfer function in this

scenario is piecewise-defined, so is IΣ. Even though the Hubble factor and transfer functions

in eq. (293) are continuous by construction, w is not (we assume the eMD → RD transition is

instantaneous), and thus there is a discontinuity at the transition between both eras coming

from this numerical prefactor.

We will perform the calculation in three illustrative gauges: the comoving gauge, the

uniform curvature gauge, and the uniform expansion gauge. The spatial part β of the gauge

transformation vanishes in all three cases if we start from the Newtonian gauge solution

computed in Section 5.1, so we find the following compact expression for IΣ,

IΣ = − 2

yz

(
3 + 3w

5 + 3w

)2

Tα(xy)Tα(xz). (477)

Comoving gauge

This gauge is defined by Ẽ = δq̃ = 0. The gauge transformation in this case is β = 0 and

α = − 2

3 + 3w

ψ′ +Hψ
H2

, Tα(x) = − 2

3 + 3w

k

H2

[
T ′
ψ(x) +HTψ(x)

]
. (478)

The resulting IΣ is, for x < xm,

IeMD
Σ = − 2

25
x2. (479)

For x > xm, on the other hand, we have

IRD
Σ = − 2

y3z3(xm − 2x)4
·{

sin

[
y√
3

(
x− xm

2

)] [
12b−T |yxmy(xm − 2x) +

√
3b+T |yxm

(
−4x2y2 + 4xxmy2 − x2

my2 + 24
)]

+ cos

[
y√
3

(
x− xm

2

)] [√
3b−T |yxm

(
4x2y2 − 4xxmy2 + x2

my2 − 24
)
+ 12b+T |yxmy(xm − 2x)

]}
·{

sin

[
z√
3

(
x− xm

2

)] [
12b−T |zxmz(xm − 2x) +

√
3b+T |zxm

(
−4x2z2 + 4xxmz2 − x2

mz2 + 24
)]

+ cos

[
z√
3

(
x− xm

2

)] [√
3b−T |zxm

(
4x2z2 − 4xxmz2 + x2

mz2 − 24
)
+ 12b+T |zxmz(xm − 2x)

]}
.

(480)

The constants b±T are given in eqs. (281, 282). The behaviour of IΣ, depicted in Fig. 33, is

problematic in this gauge; during the eMD era it grows as x2, whereas in the RD era it

oscillates as x → ∞. The resulting hTT
ij is therefore completely different from the solution

in the Newtonian gauge at late times. We remark that this difference propagates also to the

calculation of ΩGW, which diverges at late times in this gauge, see e.g. [84]. ■
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Figure 33: Integral kernel IΣ for a gauge transformation from the Newtonian to the comoving
gauge for two different values of xm, setting y = z = 1. The result oscillates as x → ∞, and thus
the power spectrum of hTT

ij diverges at late times in this gauge.

Uniform curvature gauge

This gauge is defined by Ẽ = ψ̃ = 0. The gauge transformation in this case is β = 0 and

α =
ψ

H
, Tα(x) =

k

H
Tψ(x). (481)

The resulting IΣ is, for x < xm,

IeMD
Σ = − 9

50
x2. (482)

For x > xm we obtain

IRD
Σ = − 96

y3z3(xm − 2x)4

{
cos

[
y√
3

(
x− xm

2

)] [
6b−T |yxm +

√
3b+T |yxmy(2x− xm)

]
− sin

[
y√
3

(
x− xm

2

)] [√
3b−T |yxmy(xm − 2x) + 6b+T |yxm

]}
·{

cos

[
z√
3

(
x− xm

2

)] [
6b−T |zxm +

√
3b+T |zxmz(2x− xm)

]
− sin

[
z√
3

(
x− xm

2

)] [√
3b−T |zxmz(xm − 2x) + 6b+T |zxm

]}
. (483)

The result for IΣ in this gauge is depicted in Fig. 34. During the eMD era the solution still

grows as x2, but with a different prefactor to the one in eq. (479). During the RD era, on

the other hand, IΣ decays as x−2 when x→ ∞. Thus, as we pointed out earlier, this means

that the result in this gauge coincides with the Newtonian one at late times. ■
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Figure 34: Integral kernels IΣ for gauge transformations from the Newtonian gauge to the uniform
curvature gauge (left panel) and the uniform expansion gauge (right panel), for two different values
of xm and setting y = z = 1. In both cases the result decays faster than x−1 and thus the solution
coincides with the Newtonian one only at late times.

Uniform expansion gauge

This gauge is defined by Ẽ = 3(Hϕ̃+ ψ̃′) + k2σ̃ = 0. The gauge transformation in this case

is β = 0 and

α = − ψ′ +Hψ
H2 −H′ + k2/3

, Tα(x) = − 6

9 + 9w + 2(k2/H2)

k

H2

[
T ′
ψ(x) +HTψ(x)

]
. (484)

The resulting IΣ in the eMD era is

IeMD
Σ = −648

25

x2

(18 + x2y2)(18 + x2z2)
. (485)

After the transition (x > xm), we obtain

IRD
Σ = − 1152

y3z3(xm − 2x)4 (4x2y2 − 4xxmy2 + x2
my2 + 24) (4x2z2 − 4xxmz2 + x2

mz2 + 24)
·{

sin

[
y√
3

(
x− xm

2

)] [
12b−T |yxmy(xm − 2x) +

√
3b+T |yxm

(
−4x2y2 + 4xxmy2 − x2

my2 + 24
)]

+ cos

[
y√
3

(
x− xm

2

)] [√
3b−T |yxm

(
4x2y2 − 4xxmy2 + x2

my2 − 24
)
+ 12b+T |yxmy(xm − 2x)

]}
·{

sin

[
z√
3

(
x− xm

2

)] [
12b−T |zxmz(xm − 2x) +

√
3b+T |zxm

(
−4x2z2 + 4xxmz2 − x2

mz2 + 24
)]
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+ cos

[
z√
3

(
x− xm

2

)] [√
3b−T |zxm

(
4x2z2 − 4xxmz2 + x2

mz2 − 24
)
+ 12b+T |zxmz(xm − 2x)

]}
.

(486)

Once again, the results in this gauge are completely different from the previous ones. In

this case, IΣ decays faster than x−1 as x → ∞, and so the solution coincides with the one

obtained in the Newtonian gauge only at late times. The result is depicted in Fig. 34. ■
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[30] Alexandre Arbey, Jérémy Auffinger, and Joseph Silk. Constraining primordial

black hole masses with the isotropic gamma ray background. Phys. Rev. D

101.2 (2020). arXiv: astro-ph.CO/1906.04750.
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[159] José Maŕıa Ezquiaga and Juan Garćıa-Bellido. Quantum diffusion beyond slow-

roll: implications for primordial black-hole production. JCAP 08 (2018).

arXiv: astro-ph.CO/1805.06731.

[160] Diego Cruces, Cristiano Germani, and Tomislav Prokopec. Failure of the stochastic

approach to inflation beyond slow-roll. JCAP 03 (2019). arXiv: gr-qc/1807.

09057.

[161] Hassan Firouzjahi, Amin Nassiri-Rad, and Mahdiyar Noorbala. Stochastic Ultra

Slow Roll Inflation. JCAP 01 (2019). arXiv: hep-th/1811.02175.

[162] Chris Pattison, Vincent Vennin, Hooshyar Assadullahi, and David Wands. Stochas-

tic inflation beyond slow roll. JCAP 07 (2019). arXiv: astro-ph.CO/1905.06300.

[163] S. Winitzki and A. Vilenkin. Effective noise in stochastic description of infla-

tion. Phys. Rev. D 61 (2000). arXiv: gr-qc/9911029.

[164] M. Liguori, S. Matarrese, M. Musso, and A. Riotto. Stochastic inflation and the

lower multipoles in the CMB anisotropies. JCAP 08 (2004). arXiv: astro-

ph/0405544.

[165] H. P. Breuer and K. E. Kunze. Stochastic inflation with coloured noise. AIP

Conf. Proc. 841.1 (2006). Ed. by Lysiane Mornas and Joaquin Diaz Alonso.

[166] Rafid Mahbub and Aritra De. Smooth coarse-graining and colored noise dy-

namics in stochastic inflation (Apr. 2022). arXiv: astro-ph.CO/2204.03859.

[167] Laurence Perreault Levasseur, Vincent Vennin, and Robert Brandenberger. Recur-

sive Stochastic Effects in Valley Hybrid Inflation. Phys. Rev. D 88 (2013).

arXiv: hep-th/1307.2575.

[168] Laurence Perreault Levasseur. Lagrangian formulation of stochastic inflation:

Langevin equations, one-loop corrections and a proposed recursive ap-

proach. Phys. Rev. D 88.8 (2013). arXiv: hep-th/1304.6408.

[169] F. Finelli, G. Marozzi, A. A. Starobinsky, G. P. Vacca, and G. Venturi. Stochastic

growth of quantum fluctuations during slow-roll inflation. Phys. Rev. D 82

(2010). arXiv: hep-th/1003.1327.

[170] F. Finelli, G. Marozzi, A. A. Starobinsky, G. P. Vacca, and G. Venturi.Generation of

fluctuations during inflation: Comparison of stochastic and field-theoretic

approaches. Phys. Rev. D 79 (2009). arXiv: hep-th/0808.1786.

185

https://arxiv.org/abs/gr-qc/9805014
https://arxiv.org/abs/1804.07124
https://arxiv.org/abs/1805.06731
https://arxiv.org/abs/1807.09057
https://arxiv.org/abs/1807.09057
https://arxiv.org/abs/1811.02175
https://arxiv.org/abs/1905.06300
https://arxiv.org/abs/gr-qc/9911029
https://arxiv.org/abs/astro-ph/0405544
https://arxiv.org/abs/astro-ph/0405544
https://arxiv.org/abs/2204.03859
https://arxiv.org/abs/1307.2575
https://arxiv.org/abs/1304.6408
https://arxiv.org/abs/1003.1327
https://arxiv.org/abs/0808.1786


[171] Julien Grain and Vincent Vennin. Stochastic inflation in phase space: Is slow

roll a stochastic attractor? JCAP 05 (2017). arXiv: gr-qc/1703.00447.

[172] Alexei A. Starobinsky and Junichi Yokoyama. Equilibrium state of a selfinter-

acting scalar field in the De Sitter background. Phys. Rev. D 50 (1994). arXiv:

astro-ph/9407016.

[173] Andrew J. Tolley and Mark Wyman. Stochastic Inflation Revisited: Non-Slow

Roll Statistics and DBI Inflation. JCAP 04 (2008). arXiv: hep-th/0801.1854.

[174] Chris Pattison, Vincent Vennin, Hooshyar Assadullahi, and David Wands. Quantum

diffusion during inflation and primordial black holes. JCAP 10 (2017). arXiv:

hep-th/1707.00537.

[175] Jun’ichi Yokoyama and Andrei D. Linde. Is warm inflation possible? Phys. Rev.

D 60 (1999). arXiv: hep-ph/9809409.

[176] Arjun Berera, Marcelo Gleiser, and Rudnei O. Ramos. A First principles warm

inflation model that solves the cosmological horizon / flatness problems.

Phys. Rev. Lett. 83 (1999). arXiv: hep-ph/9809583.

[177] Arjun Berera and Rudnei O. Ramos. The Affinity for scalar fields to dissipate.

Phys. Rev. D 63 (2001). arXiv: hep-ph/0101049.

[178] Richa Arya. Formation of Primordial Black Holes from Warm Inflation.

JCAP 09 (2020). arXiv: astro-ph.CO/1910.05238.

[179] Mar Bastero-Gil and Marta Sub́ıas Dı́az-Blanco. Gravity waves and primordial

black holes in scalar warm little inflation. JCAP 12.12 (2021). arXiv: hep-

ph/2105.08045.

[180] Chung-Pei Ma and Edmund Bertschinger. Cosmological perturbation theory in

the synchronous and conformal Newtonian gauges. Astrophys. J. 455 (1995).

arXiv: astro-ph/9506072.

[181] Hideo Kodama and Misao Sasaki. Cosmological Perturbation Theory. Prog.

Theor. Phys. Suppl. 78 (1984).

[182] Marcelo Gleiser and Rudnei O. Ramos. Microphysical approach to nonequilib-

rium dynamics of quantum fields. Phys. Rev. D 50 (1994). arXiv: hep- ph/

9311278.

[183] Mar Bastero-Gil, Arjun Berera, Ian G. Moss, and Rudnei O. Ramos. Cosmological

fluctuations of a random field and radiation fluid. JCAP 05 (2014). arXiv:

astro-ph.CO/1401.1149.

[184] Lisa M. H. Hall, Ian G. Moss, and Arjun Berera. Scalar perturbation spectra

from warm inflation. Phys. Rev. D 69 (2004). arXiv: astro-ph/0305015.

186

https://arxiv.org/abs/1703.00447
https://arxiv.org/abs/astro-ph/9407016
https://arxiv.org/abs/0801.1854
https://arxiv.org/abs/1707.00537
https://arxiv.org/abs/hep-ph/9809409
https://arxiv.org/abs/hep-ph/9809583
https://arxiv.org/abs/hep-ph/0101049
https://arxiv.org/abs/1910.05238
https://arxiv.org/abs/2105.08045
https://arxiv.org/abs/2105.08045
https://arxiv.org/abs/astro-ph/9506072
https://arxiv.org/abs/hep-ph/9311278
https://arxiv.org/abs/hep-ph/9311278
https://arxiv.org/abs/1401.1149
https://arxiv.org/abs/astro-ph/0305015


[185] Kazunori Kohri and Takahiro Terada. Semianalytic calculation of gravitational

wave spectrum nonlinearly induced from primordial curvature perturba-

tions. Phys. Rev. D 97.12 (2018). arXiv: gr-qc/1804.08577.
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