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Abstract

We consider the possibility that the majority of dark matter in the Universe consists of black
holes of primordial origin, and study the prospects of generating them in single-field models
of inflation. Three different scenarios are presented. The first two rely on the presence of
an ultra-slow-roll phase in inflation due to an inflection point in the potential. One of these
scenarios is characterized by a quartic polynomial potential and is (arguably) the simplest
model of inflation able to produce a large population of primordial black holes. The second
scenario is aimed at ameliorating the tuning problems present in inflection-point models, and
involves a setup that employs the advantages of gravitational collapse in a long epoch of early
matter domination, as well as a potential based on a string-inspired class of models in which
the inflaton is identified with a non-compact axion field. The third scenario we consider is
fundamentally different from the inflection-point models, and consists on obtaining the large
peak in the power spectrum of curvature perturbations necessary for black hole formation
from a transient dissipative phase during inflation. In this case the enhancement of the power
spectrum occurs due to the presence of a stochastic thermal noise source in the equation of
motion for the fluctuations.

We consider the impact of quantum diffusion on the inflationary dynamics during an
ultra-slow-roll phase and show, by means of a fully analytical approach, that the power spec-
trum of comoving curvature perturbations computed in stochastic inflation matches precisely,
at the linear level, the result obtained by solving the Mukhanov-Sasaki equation. Finally,
we compute the stochastic background of gravitational waves generated in each scenario. In
particular, we study the gravitational waves induced during an early matter-dominated era
and determine how much of the parameter space remains available after taking into account
the bounds on the gravitational wave energy density arising from the abundance of light
elements produced during Big-Bang nucleosynthesis and cosmic microwave background ex-
periments. We examine the gauge dependence of the resulting signal and, by using a heuristic
argument based on symmetry properties and dimensional analysis, determine the full gauge-
invariant expression for the energy density of gravitational waves at next-to-leading order
in perturbations. We discuss the prospects of detecting the resulting signal with the LISA

experiment.



Resumen

Consideramos la posibilidad de que la mayor parte de la materia oscura del universo consista
de agujeros negros de origen primordial y estudiamos la capacidad de los modelos de inflacién
con un unico campo de producirlos. Presentamos tres escenarios distintos. Los primeros dos
hacen uso de una fase en la cual el campo rueda muy lentamente gracias a la presencia de
un punto de inflexién en el potencial. Uno de estos escenarios estd caracterizado por un
potencial polinémico de cuarto orden y es (posiblemente) el modelo méas simple de inflacién
que es capaz de producir una poblaciéon considerable de agujeros negros primordiales. El
segundo escenario tiene como objetivo aminorar los problemas de ajuste fino presentes en
los modelos con puntos de inflexiéon e involucra una configuracion que emplea las ventajas
del colapso gravitacional en una época temprana en la que el universo estaria dominado por
materia no relativista, asi como un potencial basado en una clase de modelos inspirados
por la teoria de cuerdas en los que el inflatén es identificado con un campo axiénico no
compacto. El tercer escenario que consideramos es fundamentalmente distinto de los modelos
con puntos de inflexion y consiste en obtener el incremento del espectro de perturbaciones de
curvatura necesario para la formacién de agujeros negros a partir de una fase disipativa de
corta duracion durante la inflacion. En este caso el incremento en la amplitud del espectro
ocurre gracias a la presencia de una fuente estocastica de ruido térmico en la ecuacién de
movimiento de las fluctuaciones.

Estudiamos también el impacto que tiene la difusion cuantica sobre la dinamica infla-
cionaria durante una fase en la cual el campo rueda muy lentamente y demostramos, medi-
ante un enfoque totalmente analitico, que el espectro de las perturbaciones calculado en el
formalismo de inflacién estocéstica es exactamente igual al obtenido al resolver la ecuaciéon
de Mukhanov y Sasaki. Finalmente, calculamos el fondo estocéstico de ondas gravitacionales
generado en cada escenario y, en particular, estudiamos las ondas gravitacionales inducidas
durante una fase temprana en la cual el universo estaria dominado por materia no relativista
y determinamos qué region del espacio de parametros es eliminada después de tomar en
cuenta las cotas sobre la densidad de energia de las ondas gravitacionales que provienen de
la abundancia de elementos ligeros producidos durante la nucleosintesis y experimentos del
fondo césmico de radiacion. Examinamos la dependencia del resultado bajo transformaciones
de coordenadas y, utilizando un argumento heuristico basado en propiedades de simetria y
analisis dimensional, determinamos la expresion completa y manifiestamente invariante bajo
cambios de coordenadas de la densidad de energia de las ondas gravitacionales a orden sub-
dominante en las perturbaciones. Discutimos la posibilidad de detectar la senal resultante

utilizando el experimento LISA.
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Introduction

The dark matter problem

At present, there is overwhelming evidence that the matter content of our Universe cannot
be entirely accounted for. Dark matter makes up around 85% of the amount of matter
consistent with observations, whereas the standard, baryonic matter accounts for the rest.
The earliest evidence of dark matter came in the 1930s [5], when the virial theorem was used
to estimate the velocity dispersion of galaxies in the Coma Cluster, and it was determined
that baryonic matter alone would yield a result about two orders of magnitude smaller than
the observed one [6]. The idea of dark matter, however, did not take off until the 1970s,
when it was determined that galaxy rotation curves flatten as the distance from the galactic
center increases [7], a fact that cannot be described by using baryonic matter alone. Since
then, the amount of evidence in favor of some as-yet-unknown, electromagnetically non-
interacting form of matter has vastly grown, and ranges from the gravitational lensing of
distant sources produced by dark matter [8] and the measurement of the dark matter energy
density from the peaks in the angular power spectrum of the cosmic microwave background
(CMB) anisotropies [9] to the measurement of the rate of expansion of the Universe using
type Ia supernovae [10, 11].

From the point of view of particle physics, a series of well-motivated dark matter can-
didates have been proposed [12], although none of them have been detected so far. These
include, for instance, weakly interacting massive particles (WIMPs) proposed due to the ob-
servation that a particle with a self-interaction cross section characteristic of the electroweak
force would produce the correct abundance of dark matter today, particles arising from su-
persymmetric extensions to the Standard Model, sterile neutrinos which would interact with
the rest of the Standard Model only through gravity, and axions, proposed as a possible
solution to the so-called strong CP problem of quantum chromodynamics. On the side of as-
trophysics, objects typically far less luminous than stars were also considered as viable dark
matter candidates, such as planets, brown dwarfs, neutron stars, and black holes. These were
collectively labeled as massive compact halo objects, or MACHOs, and most were ultimately
ruled out due to gravitational microlensing surveys, and the determination of the amount
of baryonic matter from measurements of the abundance of light elements produced during
Big Bang nucleosynthesis [5].

A compelling alternative which has so far stood the test of time is the possibility that
dark matter is comprised of black holes formed before nucleosynthesis (and therefore via

mechanisms different from the usual stellar collapse) and with masses that cannot be probed



by gravitational microlensing. These objects are known as primordial black holes (PBHs).
Since these black holes do not interact electromagnetically, they are viable cold dark matter
candidates, where the attribute cold refers to the fact that, being compact objects with
non-relativistic velocities, a fluid of PBHs would behave as presureless dust. The possibility
that black holes could have formed in the early Universe due to its higher energy density
was first introduced in [13-15], but they were first proposed as dark matter candidates in
[16]. Assuming the majority of dark matter to be comprised of PBHs, in this thesis we will
investigate different aspects about their formation and observable astrophysical signatures.
The most studied mechanism of PBH formation relies on gravitational collapse triggered by
large density fluctuations in the early Universe. These density fluctuations are often assumed

to originate during a period of accelerated expansion known as cosmic inflation.
Cosmic inflation

The discovery of the cosmic microwave background [17] was one of the most important scien-
tific findings of the last century, and solidified the Big Bang model of cosmology. However, it
also brought with itself a series of puzzles that we still struggle to explain today. Arguably,
the most important of these issues are the horizon and flatness problems. The first one refers
to the fact that the CMB temperature is nearly uniform across the entire visible Universe,
even though different regions across this observable patch were causally disconnected at the
time photons decoupled from the primordial plasma. The second one refers to the fact that
the spatial curvature of the Universe, which is a free parameter of the theory, is strongly
constrained to be a very small number, leading to a fine-tuning problem. Although one could
always dismiss these issues by appealing to the fine-tuning of initial conditions, a dynamical
explanation would be highly desirable. The inflationary paradigm [18-20] aims to deliver
such an explanation and solve both of these issues in a single stroke by postulating that the
Universe went through an early phase of accelerated expansion.

The appeal of cosmic inflation is not restricted to the solution of the CMB puzzles, how-
ever. Soon after the discovery of the CMB and motivated by the idea that the formation
of structure in the Universe must have been seeded by small density fluctuations, cosmol-
ogists began looking for anisotropies in the CMB radiation [21]. The first measurements
of this anisotropy were performed by the COBE satellite [22], which found a nearly Gaus-
sian and scale-invariant distribution of temperature fluctuations of order 67/T ~ O(107°).
A distribution with precisely these characteristics can be obtained within the inflationary
framework, adding to the success of the idea. In the simplest models of inflation, a phase of
accelerated expansion can occur if the energy density of the Universe is dominated by a scalar
field that slowly rolls down a potential. Quantum fluctuations of this field then translate
into the anisotropies we observe in the CMB, and provide the seeds for the formation of the
large scale structure in the Universe. These perturbations can be shown to freeze once their

associated wavenumber becomes comparable to the Hubble rate, and are therefore blind to



subhorizon dynamics until their horizon re-entry, which allows us to easily connect them to
CMB observations.

There are many CMB experiments active at present, such as Planck and BICEP, which
have managed to either set strong bounds on inflationary observables or measure them with
high precision. The tilt of the scalar power spectrum, for instance, has been measured at the
0.1% level at the time of writing [23], whereas the tensor-to-scalar ratio r that measures the
difference between the amplitude of the scalar power spectrum and that of the primordial
stochastic gravitational wave background is constrained at the percent level [24]. Experi-
ments such as the ground-based CMB-54 telescopes [25] and the LiteBIRD satellite [26] are
set to begin operating within the next decade and will further tighten these measurements
and potentially detect other not-yet-seen features of the CMB, such as the imprint left by

primordial gravitational waves in the CMB polarization in the form of B-modes.
Primordial black holes

PBHs are very compelling dark matter candidates. On the theoretical side, the simplest
models of formation do not require any additions to the Standard Model of particle physics
other than inflation. On the other hand, being compact objects, they also exhibit a wide
variety of astrophysical signatures [27]. At the time of writing, PBHs can account for all the

dark matter provided their masses lie in the window
1071 My, < Mppy <1071 M. (1)

The upper limit in this range of masses is due to microlensing observations using the Subaru
Telescope’s HSC camera [28], and the lower end is due to the fact that black holes with
very small masses would be evaporating today (or have evaporated already if the masses are
sufficiently small), emitting Hawking radiation and leading to the observation of extragalactic
[29, 30] and galactic [31, 32] v-rays, the tightest bound being the latter, imposed by the
INTEGRAL satellite. We remark that there are other bounds on the lower end of this
range, such as the ones arising from the study of electromagnetic energy injection in the
CMB [33, 34], the injection of electron-positron cosmic rays into the galaxy due to Hawking
radiation, which would be observed by the Voyager 1 probe [35], and the annihilation of
positrons contributing to the Galactic 511 keV line [36-38]. Throughout this thesis we will
be concerned only with the mass range shown in (1), but let us point out that PBHs with
higher masses are constrained by microlensing observations from EROS/MACHO [39] and
OGLE [40], by the effect their accretion would have on the CMB [41, 42], and the non-
observation of the stochastic gravitational wave background by LIGO [43].

A bound due to gamma-ray burst femtolensing [44] existed previously in the mass range
(1), but was disputed in [45], where it was argued that most gamma-ray bursts are too
large to be used for femtolensing observations. The possibility that a subset of bursts with

appropriate sizes could be used was also entertained in [45], although a large number of them
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would have to be detected by future experiments for this to be a viable observational tool.
Other previously existing bounds in this mass range include the explosion of white dwarfs
[46] due to runaway thermonuclear fusion caused by the friction generated by the transit
of a sufficiently massive black hole through the star, and the accretion and subsequent
destruction of a neutron star by black holes [47]. These bounds were disputed in [48], where
the capture rate of black holes by neutron stars was derived! and hydrodynamic simulations
were performed to estimate the temperature and timescale of the shock produced by a black
hole that passes through a white dwarf. These results determined the constraints to be less
effective than previously thought.

At this point, the relation between the inflationary paradigm and the formation of PBHs
should not come as a surprise. In the simplest and most studied PBH formation mechanisms,
inflation provides the seeds for the large density fluctuations that trigger the gravitational
collapse of matter into black holes [50] at later stages. The density fluctuations observed
in the CMB turn out to be far too small to produce a significant amount of black holes,
so for PBHs to constitute a sizable fraction of the observed dark matter, said fluctuations
must be enhanced at distance scales that are much smaller than the ones constrained by
CMB experiments. This enhancement of the density fluctuations can be accomplished in
single-field models of inflation if the inflaton traverses through a region of its potential with
an approximate inflection point, which would then trigger a so-called ultra-slow-roll (USR)
phase [51] which increases the primordial spectrum Pz of curvature perturbations. As we will
discuss later on, large density fluctuations can also be produced from a transient dissipative
phase during inflation due to the interaction between the inflaton field and an underlying
bath of thermalized radiation, which leads to a source of stochastic noise in the equation of
motion for the fluctuations that enhances the primordial spectrum. The enhancement of the
power spectrum can also be obtained in two-field hybrid models of inflation, see [52] for the
earliest implementation of this idea. Throughout this thesis we will be concerned only with
inflationary mechanisms of PBH formation, but let us remark that other, non-inflationary
alternatives have also been proposed, such as the collapse of topological defects [53-57], the
collision of vacuum bubbles [58, 59], the collapse of Fermi balls [60], the increased probability
of gravitational collapse during a phase transition due to a change in the equation of state of
the Universe [61], and the collapse of a large buildup of particles in a shrinking false vacuum
bubble [62].

Let us turn our attention to the aforementioned inflection-point models of PBH produc-
tion. The first attempt to implement this mechanism was put forward in [63],% but interest
in the idea remained largely dormant until the first detection of gravitational waves by LIGO
[65]. Since then, the field has seen a revitalized interest and a large number of proposed mod-

els have emerged. One of the first modern takes on the inflection-point idea was performed

1See also [49] for further work in this direction.
2See also [64], where a linear potential with a smooth change in slope able to generate an enhancement
in the power spectrum was studied, although not with the purpose of producing PBHs.
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in [66], where a potential based on the ratio of two polynomials was proposed. Shortly af-
terwards, the possibility that the feature in the potential could have a radiative origin was
explored in [67, 68]. In [68] it was assumed that the inflaton had a polynomial potential
dominated by the quartic term, and the inflection point then arises from the precise tuning
of the coefficients of the logarithmic quantum corrections. In addition, to fit the CMB data,
[68] considered a completely general but non-minimal coupling between the inflaton and the
Ricci scalar, which flattens the potential at large field values. The possibility of obtaining
the feature by carefully adjusting the coefficients of a polynomial potential, without the need
for quantum corrections, was also studied in [68]. More exotic examples of models are those
motivated by string theory and supergravity, such as axion-like potentials [69], or potentials
constructed within the framework of supersymmetric a-attractor models [70].

These models do not come without disadvantages, however. In general, the inflection
point is not a feature that arises naturally in these potentials, and their parameters must
instead be engineered specifically for this purpose. On the other hand, to accomplish the
enhancement of the primordial spectrum, a severe tuning of the parameters in the potential
is usually required. There are two reasons for this. The first is that the size of the power
spectrum is exponentially sensitive to the decrease in the speed of the inflaton when it
reaches the inflection point. If the parameters are not carefully adjusted, the inflaton either
overshoots the local minimum that usually precedes the inflection point at high speed (so
that fluctuations are barely enhanced and PBHs are underproduced), or it gets stuck in said
local minimum. Another issue is that the speed necessary to produce a significant amount
of PBHs in a given model is often at odds with the speed necessary to yield enough e-folds
of inflation to solve the horizon and flatness problems of the CMB. The region in parameter
space that can satisfy all of these constraints is usually very narrow. The second reason for
the tuning is that PBHs are usually assumed to be formed during the radiation-dominated
(RD) era preceding Big Bang nucleosynthesis, so that the current PBH abundance depends
exponentially on the power spectrum, and small deviations from the sweet spot in which
the fraction of PBHs as dark matter is O(1) therefore result in PBH abundances orders of
magnitude too small to be of interest for the dark matter problem. In this thesis we will
see how some of these problems can be ameliorated in the context of a specific inflationary
potential inspired by axion monodromy inflation.

One effect that was not taken into account in the early treatments of inflection-point
models of PBH production is that of quantum diffusion. In single-field inflation, we typ-
ically assume the homogeneous part of the field to behave classically, and only treat the
perturbations quantum mechanically. In the standard picture, these perturbations become
constant and classical once they cross the Hubble horizon, determining the power spectrum.
Quantum fluctuations could, however, backreact on the classical trajectory of the inflaton, a
possibility that cannot be handled by the above description. This effect must instead be un-

derstood in the framework of stochastic inflation [71], in which long-wavelength fluctuations
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are sourced by small-wavelength ones. The latter behave as classical random variables and
their effect can be described via a set of stochastic differential equations. It is known that in
the slow-roll regime this procedure leads to a Pr in agreement with the result of standard
perturbation theory at the linear level (see e.g.[72]), but whether or not this result holds if
the inflaton goes through a USR phase (as in the aforementioned inflection-point models) is
less clear. In the presence of a USR phase, it has been speculated that the backreaction could
potentially modify the peak height of Pgr, the location of the peak itself, or even broaden
the PBH mass function [68]. Studying the effect of quantum diffusion is therefore important
for the correct determination of the PBH abundance, and is a subject we will treat in this
thesis. Another advantage of the stochastic inflation formalism is that it also allows the
calculation of the non-Gaussian corrections to the probability distribution function of the

primordial curvature fluctuations, which can have an effect on the PBH abundance [73-76].
Gravitational waves

The primordial stochastic background of gravitational waves, which is potentially within
the reach of detectors that will begin operating in the near future (such as LISA [77]) and
is comparable to the CMB in the implications it would have for cosmology, has long been
considered a powerful tool to probe the physics of the early Universe. There are many reasons
for this, not the least of which is the fact that gravitational waves can probe processes and
energy scales inaccessible by other means, such as phase transitions, topological defects and
reheating after inflation. Another reason is that by using the techniques of cosmological
perturbation theory, it is possible to show that at leading order in perturbations the tensor
modes of the metric (that is, the gravitational waves) decouple from other degrees of freedom
and propagate freely, affected only by the expansion of the Universe and carrying information
about the processes that generated them [78].

The fact that PBH formation requires a large scalar power spectrum leads to an enhance-
ment of the second-order tensor modes of the metric, which are sourced by terms quadratic
in first-order scalars in Einstein’s equations [79-81]. Moreover, if PBHs constitute all of the
dark matter, then it should be possible to detect the corresponding induced stochastic back-
ground of gravitational waves if they form during a RD era and, in particular, if their masses
lie within the mass window (1), then this stochastic background would be observable® by
the LISA experiment [77, 82, 83]. This is due to the fact that, assuming a monochromatic
mass distribution, the mass of a PBH that forms during a RD era due to collapse induced by
large scalar fluctuations is related to the peak frequency of the corresponding gravitational

wave spectrum via [82, 83]

01Hz>2’ )

M@H:7@x1m“M@(f -
pea.

3However, it is not clear at present that a PBH signal can be distinguished from other sources.
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where 7 is an O(1) efficiency factor. It can be seen from this equation that the frequencies
that LISA can test correspond to unconstrained PBH masses in the window (1). Not only
this, but the amplitude of the signal also turns out to lie roughly four orders of magnitude
above the LISA sensitivity curve, as we will show.

The possibility that gravitational waves can be induced at second order in perturba-
tions was, to the best of our knowledge, first suggested in [79], although the idea did not
gain traction until it started to be considered as a possible way to probe the existence of
PBHs. The reason for this is that the amplitude of these induced gravitational waves is
typically suppressed with respect to the first-order contribution, and they therefore only
become relevant when there is a large peak in the scalar power spectrum, as is the case in
the aforementioned inflationary models of PBH production. These gravitational waves are
induced not only during inflation, but also afterwards, once the perturbations re-enter the
horizon, and therefore contain information about both the mechanism that produced them
and the subsequent cosmological history.

If we want to use gravitational waves as an observable to probe the existence of PBHs, it
is necessary to carefully examine the calculation of the signal in order to determine whether
the results can be trusted. It has been pointed out recently that the usual calculation of the
stochastic background of gravitational waves induced at second order from scalar fluctuations
is not entirely solid, since the second-order tensor piece of the metric is not a gauge-invariant
variable [84-89]. This gauge dependence then propagates to the observable quantity of
interest: the energy density of gravitational waves. It has been recently claimed [86, 90] that
despite the above remarks, the usual calculation of the energy density of gravitational waves
is valid beyond leading order in perturbations, and this quantity is approximately gauge-
invariant as long as it is measured late in the radiation era, since the scalars that source the
second-order tensor modes decay quickly with time in this case, so that the latter propagate
linearly and effectively become first-order quantities [86]. However, the energy density of
gravitational waves should be a gauge-invariant quantity which is well-defined at all times,
independently of when it is measured. The determination of the correct expression for this
quantity beyond leading order in perturbations remains an open problem, one that we shall

explore in more detail in this thesis.
Overview of the thesis

In this thesis we consider two different implementations of the inflection-point mechanism of
PBH formation. The first consists on making the (arguably) simplest possible choice for the
potential of the inflaton, namely, a quartic polynomial, together with a non-minimal coupling
to the Ricci scalar [2, 68]. If the coefficients in the polynomial are chosen appropriately, this
leads to the presence of an inflection point in the potential. As we will see, in this model the
main issue is that the tilt of the power spectrum at CMB scales is in mild tension with the

experimentally measured values if we require that enough PBHs with masses in the window
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(1) are produced to account for all the dark matter. We will show that this issue can be
resolved by either considering very simple, well-motivated extensions of the cosmological
ACDM model (such as the addition of neutrino masses), or by adding higher-dimensional
operators (the presence of which is to be expected anyway) to the potential. The second
possibility we consider is more elaborate and is aimed at alleviating the aforementioned
downsides of inflection-point models of PBH production. The key aspects in this second setup
are an inflationary potential which naturally features the existence of several local minima,
and an early matter-dominated (eMD) epoch right after inflation (which can be obtained, for
instance, from perturbative reheating), during which the likeliness of gravitational collapse
is augmented [50, 91, 92]. We find that these two ingredients can also lead to the formation
of a sizable fraction of PBHs with masses in the range (1) [1].

The reason that an eMD era ameliorates some of the aforementioned tuning problems is
that, due to the absence of radiation pressure, it is easier for the matter cloud to collapse, so
the enhancement of the power spectrum required for the PBHs to form turns out to be orders
of magnitude smaller than in the standard radiation scenario, even after taking into account
the fact that the angular momentum and non-sphericity of the cloud inhibit collapse [92,
93]. Moreover, although the dependence of the PBH abundance on the power spectrum is
still exponential during the eMD era, its sensitivity to small changes in the amplitude of the
fluctuations that induce collapse turns out to be much milder than in the RD scenario. The
formation of PBHs during an eMD phase has been well-studied in the literature, see e.g. [91]
for early work and [92-94] for recent updates. As we will show, in order to take full advantage
of the eMD scenario (in the sense that a sizeable PBH abundance is obtained with a power
spectrum that is as close as possible to its value at CMB scales), the transition temperature
between the eMD and the RD eras must be of order < 10° GeV. Similar conclusions were
reached in previous works. Here, we expand with respect to estimates previously presented
in [70, 93].

So far we have focused exclusively on inflection-point models of PBH production. As we
mentioned earlier, however, there are other possibilities. In particular, black holes could be
generated from a transient dissipative phase during inflation, a mechanism that is funda-
mentally different from the inflection-point models discussed above. The effect of dissipation
on the dynamics of the background inflaton field can be described by introducing a friction
term o ['é in its equation of motion [95, 96]. One might conjecture that this term could slow
down the inflaton in the same way that an inflection point in the potential does, leading to
a large enhancement of the power spectrum. As we will show, this argument is not correct,
since, although the background dynamics of the inflaton are similar in both scenarios, the
equations of motion for the fluctuations are quite different. However, as we mentioned ear-
lier, the power spectrum can still be enhanced due to the presence of a stochastic source of
thermal noise for the fluctuations that originates from the interaction between the inflaton

and an underlying thermalized radiation bath. We assume this source to be active only for
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a short period in order to produce PBHs with adequate masses in the range (1). We model
our scenario using a phenomenological approach, assuming that the dissipative coefficient
I' has a localized peak and a well-motivated temperature dependence. We perform a full
numerical analysis of the dynamics by directly solving the stochastic differential equations
for the perturbations. We integrate the system for multiple realizations of the thermal noise,
thereby obtaining a histogram for Pgr (k) at each k, allowing us to determine its statistical
properties. The most interesting quantity is not necessarily the full probability distribution
for the power spectrum, however, but rather its expectation value, which is a determinis-
tic quantity. We show that this expectation value can be calculated by reformulating the
stochastic system of differential equations for the fluctuations as a single deterministic matrix
differential equation for their two-point functions.

In addition to the exploration of the specific models of PBH formation discussed above,
in this thesis we also reassess the computation of the primordial power spectrum, in the
presence of a USR phase, using the framework of stochastic inflation, both analytically and
numerically [3]. We find that (at linear order) the power spectrum computed using the
full machinery of stochastic inflation agrees with the result of standard perturbation theory,
and we confirm our results numerically using the aforementioned polynomial model. We
find that the choice of the coarse-graining scale is critical, since in the presence of a USR
phase perturbations take longer to classicalize, and so the standard choice made in slow-roll
inflation is no longer valid. We do not study higher-order correlators for the perturbations
in this thesis, but we remark that the fact that the power spectrum remains unchanged does
not necessarily imply that stochastic effects are irrelevant for the black hole abundance, since
large non-Gaussianities are still expected to modify their formation probability [73, 74, 97].

Since scenarios in which PBHs form during an eMD era have significant advantages, it is
worth asking whether the gravitational wave signal in this case changes with respect to the
usual radiation scenario. Specifically, we would like to know whether the resulting stochastic
background can be detected by future experiments, such as LISA and BBO/DECIGO. One
might conjecture that this is not the case, since, as discussed earlier, the enhancement of
the scalar power spectrum required for PBHs to be able to account for all dark matter
is much smaller in this scenario. However, we will show that due to the fact that scalar
fluctuations do not decay with time during a matter-dominated era, the gravitational wave
spectrum increases in amplitude as the transition temperature between the eMD and RD
eras decreases. This additional enhancement counters the relatively small amplitude of the
scalar power spectrum, rendering the stochastic gravitational wave background observable
by LISA. We also examine whether the resulting spectrum satisfies the bound on the present
abundance of gravitational waves (qw arising from measurements of the CMB [98] and
the abundance of light elements produced during Big Bang nucleosynthesis [99], and find
that this leads to a severe constraint in the eMD scenario, ruling out part of the available

parameter space. How much of the parameter space is ruled out depends on the transition
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temperature, but as we will see, for certain values of this quantity this bound can be even
stronger than the ones coming from Hawking radiation experiments.

The gauge dependence of the second-order tensor modes of the metric has been exten-
sively studied for both matter- and radiation-dominated Universes (see e.g. [84, 85, 89]). In
the eMD-to-RD transition scenario, however, the Universe goes through both phases, so it is
important to include the two in the computation. This calculation is presented here for the
first time, and we find that because the eMD era has a finite duration, the set of problematic
gauges coincides with the one in the pure RD case [85]. In particular, we examine the issue
by considering four different gauges (Newtonian, uniform curvature, uniform expansion and
comoving), and find that the results coincide at late times (that is, deep into the RD era) for
the first three gauges. We postulate that the issue of the gauge dependence stems from the
incorrect assumption that the corrections at subleading order in perturbations to the abun-
dance of gravitational waves Qgw can be obtained by simply substituting* 2};" — h" in

the usual formula (the derivation of which can be found in e.g.[100, 101]),

QGW(Ty k?) = é (%) <7Dh(7', kf)>w, (3)

hit
ij
conformal Hubble parameter, and the brackets denote an average over many wavelengths.

where P;, denotes the power spectrum of 7 denotes conformal time, H = aH the
Indeed, Qqw must be a gauge-invariant, observable quantity, and cannot be expressed in
terms of the gauge-dependent h;gT. In this thesis, we provide a heuristic derivation of the
full expression for this quantity, which is valid in any gauge and independent of the energy
content of the Universe, by using an argument based on symmetry properties and dimensional
analysis.

The thesis is structured as follows. In Chapter 1 we review the basic aspects of inflation
and primordial black hole formation in matter- and radiation-dominated eras. In Chapter 2
we implement the idea of black hole production through an inflection point in the potential
by using two different inflationary models, one based on a polynomial potential and another
one inspired by axion monodromy. In Chapter 3 we explore the effect that the quantum
diffusion of the inflaton field has on the power spectrum of comoving cuvature perturbations.
In Chapter 4 we discuss how black holes can form due to a transient dissipative phase during
inflation. Finally, in Chapter 5 we calculate the gravitational wave signals in each scenario,

and discuss their observational prospects.

TT to

4We use h};-T to denote the first-order, transverse, traceless tensor modes, and the bold symbol h;;

denote second-order modes.
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Introducciéon

El problema de la materia oscura

En la actualidad, existe una gran cantidad de evidencia que apunta al hecho de que el
contenido de materia del universo no se puede explicar por completo. La materia oscura
constituye alrededor del 85% de la cantidad de materia consistente con las observaciones,
mientras que la materia baridnica estandar representa el resto. La evidencia mas temprana
de materia oscura se produjo en la década de 1930 [5], cuando se usé el teorema virial para
estimar la dispersion de velocidades de las galaxias en el cimulo de Coma y se determiné
que la materia bariénica por si sola daria un resultado aproximadamente dos érdenes de
magnitud menor que el observado [6]. La idea de la materia oscura, sin embargo, no despegé
sino hasta la década de 1970, cuando se determiné que las curvas de rotacién de las galaxias se
aplanan a medida que aumenta la distancia al centro galactico [7], un hecho que no se puede
describir usando solo materia bariénica. Desde entonces, la cantidad de evidencia a favor de
alguna forma de materia que atin no se conoce y que no interactia electromagnéticamente
ha crecido enormemente y va desde la desviacion de la luz proveniente de fuentes distantes
cuando la materia oscura actiia como lente gravitacional [8] y la medicién de la densidad de
energia de la materia oscura utilizando los picos en el espectro angular de potencias de las
anisotropias del fondo césmico de microondas (CMB, por sus siglas en inglés) [9] hasta la
medicién de la tasa de expansién del universo utilizando supernovas de tipo Ia [10, 11].
Desde el punto de vista de la fisica de particulas han sido propuestos una serie de can-
didatos con una motivacion fisica sélida para explicar la materia oscura [12], aunque ninguno
de ellos ha sido detectado hasta ahora. Estos incluyen, por ejemplo, particulas masivas que
interactiian débilmente (WIMPs, por sus siglas en inglés), propuestas debido a la observacién
de que una particula con una tasa de autointeraccién caracteristica de la fuerza electrodébil
produciria la abundancia correcta de materia oscura observada hoy en dia, particulas que
surgen de extensiones supersimétricas al Modelo Estandar, neutrinos estériles que interac-
tuarian con el resto del Modelo Estandar solo a través de la gravedad y axiones, propuestos
como una posible solucién al problema de CP fuerte de la cromodindmica cuantica. Del lado
de la astrofisica, objetos tipicamente mucho menos luminosos que estrellas también fueron
considerados durante un tiempo como candidatos viables a la materia oscura, tales como los
planetas, las enanas marrones, las estrellas de neutrones y los agujeros negros. Estos obje-
tos de halos compactos masivos (MACHOs, por sus siglas en inglés) fueron, en su mayoria,
descartados debido a observaciones de microlentes gravitacionales y la determinaciéon de la

cantidad de materia baridnica a partir de mediciones de la abundancia de elementos ligeros
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producidos durante la nucleosintesis del Big Bang [5].

Una alternativa viable que hasta ahora ha superado la prueba del tiempo es la posi-
bilidad de que la materia oscura esté compuesta por agujeros negros formados antes de la
nucleosintesis (y, por lo tanto, a través de mecanismos distintos al colapso estelar habitual)
y con masas que no pueden ser probadas por microlentes gravitacionales. Estos objetos se
conocen como agujeros negros primordiales (PBHs, por sus siglas en inglés). Dado que estos
agujeros negros no interactian electromagnéticamente, son candidatos viables como materia
oscura fria, donde el atributo frio se refiere a que, al ser objetos compactos con velocidades no
relativistas, un fluido de PBHs se comportaria como polvo sin presion. La posibilidad de que
los agujeros negros se hayan formado en el universo primitivo debido a la mayor densidad de
energia se introdujo por primera vez en [13-15], aunque la primera vez que fueron propuestos
como candidatos a la materia oscura fue en [16]. Suponiendo que la mayoria de la materia
oscura esté compuesta por PBHs, en esta tesis investigaremos diferentes aspectos sobre su
formacién y senales astrofisicas observables. El mecanismo mas estudiado de formacion de
PBHs se basa en el colapso gravitatorio provocado por grandes fluctuaciones de densidad en
el universo primitivo. Estas fluctuaciones de densidad podrian generarse durante un periodo

de expansién acelerada conocido como inflaciéon césmica.
Inflacion césmica

El descubrimiento del fondo césmico de microondas [17] fue uno de los hallazgos cientificos
mas importantes del siglo pasado y solidificé el modelo cosmolégico del Big Bang. Sin
embargo, también trajo consigo una serie de acertijos que atin hoy nos cuesta explicar. Podria
decirse que los més importantes de estos problemas son los problemas de horizonte y planitud.
El primero se refiere al hecho de que la temperatura del CMB es casi uniforme en todo el
universo visible, aunque las diferentes regiones de este parche observable eran causalmente
disconexas en el momento en que los fotones se desacoplaron del plasma primordial. El
segundo se refiere al hecho de que la curvatura espacial del universo, que es un parametro libre
de la teoria, debe de ser un niimero muy pequeno para ser consistente con las observaciones,
lo cual genera un problema de ajuste fino. Aunque uno siempre podria descartar estos
problemas apelando al ajuste fino de las condiciones iniciales, tener una explicaciéon dindmica
seria lo ideal. El paradigma inflacionario [18-20] tiene como objetivo ofrecer tal explicacion
y resolver ambos problemas simultaneamente postulando que el universo pasé por una fase
temprana de expansion acelerada.

Sin embargo, el atractivo de la inflacién césmica no estd limitado a la solucién de los
acertijos del CMB. Poco después del descubrimiento del CMB y motivados por la idea de
que la formacion de estructura en el universo debia de tener origen en pequenas fluctua-
ciones de densidad producidas en el universo temprano, los cosmologos comenzaron a buscar
anisotropias en la radiaciéon del CMB [21]. Las primeras mediciones de esta anisotropia

fueron realizadas por el satélite COBE [22], que encontré una distribucién de fluctuaciones
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de temperatura de orden §7/T ~ O(107°). Una distribucién con precisamente estas carac-
teristicas se puede obtener en el paradigma inflacionario, lo cual contribuyé al éxito de la
idea. En los modelos mas simples de inflacién puede ocurrir una fase de expansion aceler-
ada si la densidad de energia del universo estd dominada por un campo escalar que rueda
lentamente por su potencial. Las fluctuaciones cudnticas de este campo se traducen luego
en las anisotropias que observamos en el CMB y proporcionan las semillas para la formacion
de la estructura a gran escala en el universo. Se puede demostrar que estas perturbaciones
se congelan una vez que su nimero de onda asociado se vuelve comparable al parametro de
Hubble y, por lo tanto, son ciegas a la dinamica subhorizonte hasta que entran de nuevo en
el mismo, lo cual nos permite conectarlas facilmente con las observaciones del CMB.

En la actualidad, existen una gran cantidad de experimentos del CMB activos, tales
como Planck y BICEP, que han logrado o bien establecer fuertes limites sobre los observables
inflacionarios, o medirlos con alta precisiéon. La inclinacién del espectro de potencias escalar,
por ejemplo, ha sido determinada con una precisién relativa del 0.1% al momento de escribir
esta tesis [23]. Similarmente, existe una cota al nivel porcentual sobre el cociente tensor-
escalar v que mide la diferencia entre la amplitud del espectro de potencias escalar y la
del fondo primordial estocéstico de ondas gravitacionales [24]. Experimentos tales como los
telescopios terrestres CMB-S4 [25] y el satélite LiteBIRD [26] empezaran a operar durante
la préxima década, reforzando ain mas estas mediciones y posiblemente detectando otras
caracteristicas ain no vistas del CMB, como la huella dejada por las ondas gravitacionales

primordiales en la polarizacién del mismo en forma de modos B.
Agujeros negros primordiales

Los PBHs son candidatos intrigantes para explicar la materia oscura. Desde el punto de
vista tedrico, los modelos de formacién mas simples no requieren ninguna adiciéon al Mod-
elo Estandar de fisica de particulas ademéds de la inflacién. Por otro lado, al ser objetos
compactos, los mismos exhiben también una amplia variedad de senales astrofisicas [27]. Al
momento de escribir esta tesis, los PBHs pueden constituir toda la materia oscura siempre

que sus masas se encuentren en la ventana
1071 My < Mppy < 107 M. (4)

El limite superior de este rango de masas se debe a las observaciones de microlentes gravita-
cionales utilizando la cdmara HSC del Telescopio Subaru [28], mientras que el limite inferior
se debe al hecho de que los agujeros negros con masas muy pequenas se estarian evapo-
rando hoy (o se habrian evaporado ya si sus masas fueran lo suficientemente pequenas),
emitiendo radiacién de Hawking y conduciendo a la observacién de rayos v extragalacticos
[29, 30] y galdcticos [31, 32], siendo la cota mds fuerte ésta dltima, impuesta por el satélite
INTEGRAL. Existen también otros limites en el extremo inferior de este rango, como los

que surgen del estudio de la inyeccién de energia electromagnética en el CMB [33, 34], la
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inyeccién de rayos cosmicos de electrones y positrones en la galaxia debido a la radiacion de
Hawking, que seria observada por la sonda Voyager 1 [35] y la aniquilacién de los positrones
que contribuyen a la linea galactica de 511 keV [36-38]. En esta tesis estaremos interesados
solo en el rango de masas mostrado en (4), pero senalamos que los PBHs con masas mas
altas estan limitados por las observaciones de microlentes de EROS/MACHO [39] y OGLE
[40], por el efecto que tendria su acrecién en el CMB [41, 42] y por la no observacién del
fondo estocastico de ondas gravitacionales por el interferémetro LIGO [43].

Anteriormente existia un limite debido a observaciones de femtolentes gravitacionales
producidos por rafagas de rayos gamma [44] en el rango de masas (4), pero el mismo fue
disputado en [45], donde se argumenté que la mayoria de las rafagas de rayos gamma son de-
masiado grandes para ser utilizadas como lentes. En [45] también se consider6 la posibilidad
de utilizar un subconjunto de rafagas con tamanos apropiados, aunque un gran numero de
ellas tendria que ser detectado por experimentos futuros para hacer de esta una herramienta
de observacion viable. Otros limites previamente existentes en este rango de masas incluyen
la explosion de enanas blancas [46] debido a la fusién termonuclear causada por la friccion
generada por el transito de un agujero negro suficientemente masivo a través de la estrella
y la acrecién y posterior destruccién de una estrella de neutrones por agujeros negros [47].
Estos limites fueron discutidos en [48], donde se derivé la tasa de captura de agujeros negros
por estrellas de neutrones® y se realizaron simulaciones hidrodindmicas para estimar la tem-
peratura y la escala de tiempo del choque producido por un agujero negro que pasa a través
de una enana blanca. Estos resultados determinaron que las cotas eran menos efectivas de
lo que se pensaba anteriormente.

La relacion entre el paradigma inflacionario y la formaciéon de PBHs no deberia de sor-
prender al lector ahora. En los mecanismos de formacion de PBHs més simples y estudiados,
la inflacién proporciona las semillas para las grandes fluctuaciones de densidad que desenca-
denan el colapso gravitatorio de la materia en agujeros negros [50] en etapas posteriores. Las
fluctuaciones de densidad observadas en el CMB resultan ser demasiado pequenas para pro-
ducir una cantidad significativa de agujeros negros, por lo que para que los PBHs constituyan
una fraccion considerable de la materia oscura observada, el tamano de dichas fluctuaciones
debe de incrementar a escalas de distancia que son mucho mas pequenas que las observadas
por los experimentos del CMB. Este incremento de las fluctuaciones de densidad se puede
lograr en modelos de inflacién de un solo campo si el inflatén atraviesa una regién de su
potencial con un punto de inflexiéon aproximado, lo cual desencadena una fase de rodamiento
muy lento (USR, por sus siglas en inglés) [51] durante la cual aumenta el espectro primordial
Pr de perturbaciones de curvatura. Como veremos mas adelante, también se pueden pro-
ducir grandes fluctuaciones de densidad a partir de una fase disipativa transitoria durante
la inflacién debido a la interacciéon entre el inflatén y un bano subyacente de radiacion en

equilibrio térmico que a su vez conduce a una fuente de ruido estocastico en la ecuacién

®Véase también [49] para més trabajo en esta direccién.
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de movimiento para las fluctuaciones. El incremento del espectro de potencias también se
puede obtener en modelos hibridos de inflacién de dos campos, véase [52] para la primera
implementacién de esta idea. A lo largo de esta tesis nos ocuparemos tnicamente de los
mecanismos inflacionarios de formacion de PBHs, pero recalcamos que también se han prop-
uesto otras alternativas no inflacionarias, tales como el colapso de los defectos topoldgicos
[53-57], la colisién de burbujas de vacio [58, 59|, el colapso de bolas de Fermi [60], el au-
mento en la probabilidad de colapso gravitacional durante una transicién de fase debido a
un cambio en la ecuacién de estado del universo [61] y el colapso de una gran acumulacién
de particulas en una burbuja de vacio falso que se encoge [62].

Desviemos ahora nuestra atencion a los modelos antes mencionados de produccion de
PBHs con un punto de inflexién. La primera implementaciéon de este mecanismo fue presen-
tada en [63].° pero el interés en la idea permaneci6 en gran medida latente hasta la primera
deteccién de ondas gravitacionales por parte de LIGO [65]. Desde entonces, el campo ha
experimentado un interés renovado y ha surgido una gran cantidad de modelos propuestos.
Una de las primeras versiones modernas de la idea del punto de inflexién se encuentra en
[66], donde se propuso un potencial basado en el cociente de dos polinomios. Poco después
se exploré en [67, 68] la posibilidad de que el punto de inflexién en el potencial pudiera
tener un origen radiativo. En [68] se asumié que el inflatén tenfa un potencial polinémico
dominado por el término cuartico y el punto de inflexion surge entonces del ajuste preciso
de los coeficientes de las correcciones cudnticas logaritmicas. Ademads, para ajustar los datos
del CMB, [68] consider6 un acoplamiento no minimo completamente general entre el inflatén
y el escalar de Ricci, que aplana el potencial a valores grandes del campo. La posibilidad
de obtener el punto de inflexion ajustando cuidadosamente los coeficientes de un potencial
polinémico sin necesidad de recurrir a correcciones cuanticas también fue estudiada en [68].
Algunos ejemplos mas exoticos de modelos son aquellos motivados por la teoria de cuerdas
y la supergravedad, tales como los potenciales axiénicos [69], o los potenciales construidos
dentro del marco de modelos supersimétricos de atractores a [70].

Sin embargo, estos modelos no vienen sin desventajas. En general, el punto de inflexién
no es una caracteristica que surja naturalmente en estos potenciales, de modo que los mismos
deben de ser construidos especificamente con este proposito. Por otro lado, para lograr el in-
cremento del espectro primordial, generalmente se requiere un fuerte ajuste de los parametros
en el potencial. Existen dos razones para esto. La primera es que el tamano del espectro de
potencias es exponencialmente sensible a la disminucién en la velocidad del inflatén cuando
el mismo alcanza el punto de inflexién. Si los parametros no se ajustan con cuidado, el
inflatén o bien pasa sobre el minimo local que suele preceder al punto de inflexion a alta
velocidad (de modo que las fluctuaciones apenas incrementan y no se produce una cantidad

significativa de PBHs), o se atasca en dicho minimo local. Otro problema es que la velocidad

6Véase también [64], donde fue propuesto un potencial lineal con un cambio suave en la pendiente capaz
de generar un incremento en el espectro, aunque no con el propésito de producir PBHs.
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necesaria para producir una cantidad significativa de PBHs en un modelo dado a menudo
estd en conflicto con la velocidad necesaria para producir suficiente inflacién para resolver
los problemas de horizonte y planitud del CMB. La region en el espacio de parametros que
puede satisfacer todas estas restricciones suele ser muy estrecha. La segunda razéon para el
ajuste es que generalmente se supone que los PBHs se forman durante la era dominada por
la radiacién (RD, por sus siglas en inglés) que precede a la nucleosintesis del Big Bang, de
modo que la abundancia actual de PBHs depende exponencialmente del espectro de poten-
cias y las pequenas desviaciones del punto éptimo en en el que la fraccion de PBHs como
materia oscura es O(1), por lo tanto, dan como resultado abundancias 6rdenes de magni-
tud més pequenas que las de interés para el problema de la materia oscura. En esta tesis
veremos como algunos de estos problemas pueden aliviarse en el contexto de un potencial
inflacionario especifico inspirado en la monodromia axidénica.

Un efecto que no se tuvo en cuenta en los primeros modelos de produccién de PBHs
con un punto de inflexion es el de la difusion cuantica. En la inflaciéon de un solo campo,
generalmente asumimos que la parte homogénea del campo se comporta de manera clasica
y solo tratamos las perturbaciones de forma cudntica. En el escenario estandar, estas per-
turbaciones se vuelven constantes y clasicas una vez que cruzan el horizonte de Hubble,
determinando el espectro de potencias. Sin embargo, las fluctuaciones cuanticas podrian
reaccionar sobre la trayectoria clasica del inflaton, una posibilidad que no puede ser mane-
jada por la descripcién anterior. En cambio, este efecto debe entenderse en el marco de
la inflacién estocdstica [71], en el que las fluctuaciones de longitud de onda corta actian
como fuente para las de longitud de onda grande. Estas ultimas se comportan como vari-
ables aleatorias clasicas y su efecto puede describirse mediante un conjunto de ecuaciones
diferenciales estocdsticas. Se sabe que en el régimen de rodamiento lento este procedimiento
conduce a un Pg igual al obtenido utilizando la teoria de perturbaciones estandar a nivel
lineal (véase [72]), pero no esta claro si este resultado se cumple o no si el inflatén pasa
por una fase de USR (como en los modelos de punto de inflexién antes mencionados). En
presencia de una fase USR, se ha especulado que la reaccion de las perturbaciones podria
potencialmente modificar la altura del pico de Pg, la ubicacién del pico en si, o incluso hacer
mas ancha la funcién de masa de los PBHs [68]. Por lo tanto, estudiar el efecto de la difusién
cuantica es importante para la correcta determinacién de la abundancia de los PBHs y es un
tema que trataremos en esta tesis. Otra ventaja del formalismo de la inflacion estocastica es
que también permite el calculo de las correcciones no gaussianas a la funcion de distribucién
de probabilidad de las fluctuaciones de curvatura primordiales, que pueden tener un efecto
sobre la abundancia de los PBHs [73-76].

Ondas gravitacionales

El fondo estocéstico primordial de ondas gravitacionales, que esta potencialmente al alcance

de detectores que comenzardn a operar en el futuro cercano (tales como LISA [77]) y es
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comparable al CMB en las implicaciones que tendria para la cosmologia, se ha considerado
durante mucho tiempo como una poderosa herramienta para sondear la fisica del universo
primitivo. Hay muchas razones para esto, una de las cuales es el hecho de que las ondas grav-
itacionales pueden sondear procesos y escalas de energia inaccesibles por otros medios, tales
como transiciones de fase, defectos topoldgicos y el recalentamiento después de la inflacion.
Otra razon es que, usando las técnicas de la teoria de perturbaciones cosmoldgica, es posible
mostrar que, a primer orden en las perturbaciones, los modos tensoriales de la métrica (es
decir, las ondas gravitacionales) se desacoplan de otros grados de libertad y se propagan
libremente, afectados solo por la expansion del universo y transmitiendo informacion sobre
los procesos que las generaron [78].

El hecho de que la formacién de PBHs requiera de un espectro de potencias escalar rela-
tivamente grande conduce a un incremento en los modos tensoriales de segundo orden de la
métrica que surge como consecuencia de la presencia de términos cuadraticos en perturba-
ciones escalares de primer orden en las ecuaciones de Einstein [79-81] para las perturbaciones.
Ademas, si los PBHs constituyen toda la materia oscura, entonces deberia ser posible detec-
tar el fondo estocastico de ondas gravitacionales inducido si los mismos se forman durante
una era de radiacién y, en particular, si sus masas se encuentran dentro de la ventana (4),
entonces este fondo estocastico serfa observable” por el experimento LISA [77, 82, 83]. Esto
se debe al hecho de que, suponiendo una distribucién de masas monocromatica, la masa de
un PBH que se forma durante una era de radiacién debido al colapso inducido por grandes
fluctuaciones escalares esta relacionada con la frecuencia maxima del espectro de ondas grav-

itacionales correspondiente a través de la expresién [82, 83]

L 5)

Mppy ~ 7(3 x 107" M) ( o
pea

donde v es un factor de eficiencia O(1). A partir de esta ecuacién se puede ver que las
frecuencias que LISA puede sondear corresponden a masas de PBHs en la ventana (4). No
solo esto, sino que la amplitud de la senal también se encuentra aproximadamente cuatro
6rdenes de magnitud por encima de la curva de sensibilidad de LISA, como mostraremos
luego.

La posibilidad de que las ondas gravitacionales pudieran ser inducidas a segundo orden en
teorfa de perturbaciones fue, hasta donde sabemos, sugerida por primera vez en [79], aunque
la idea no gané fuerza sino hasta que comenzd a considerarse como una posible forma de
sondear la existencia de PBHs. La razén de esto es que la amplitud de estas ondas gravita-
cionales inducidas suele estar suprimida con respecto a la contribucién de primer orden, por
lo que solo cobran relevancia cuando existe un gran pico en el espectro de potencias escalar,

como es el caso de los modelos inflacionarios de produccién de PBHs antes mencionados.

7Sin embargo, actualmente no esté claro que una sefial producida por PBHs se pueda distinguir de otras
fuentes.
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Estas ondas gravitacionales se inducen no solo durante la inflacién, sino también después,
una vez que las perturbaciones vuelven a entrar en el horizonte, y por lo tanto contienen
informacion sobre el mecanismo que las produjo y la historia cosmolégica posterior.

Si queremos utilizar las ondas gravitacionales como un posible observable para sondear
la existencia de PBHs, es necesario examinar cuidadosamente el calculo de la senal para
determinar si se puede confiar en los resultados. Se ha senalado recientemente que el calculo
habitual del fondo estocastico de ondas gravitacionales inducidas a segundo orden a partir
de fluctuaciones escalares no es del todo sélido, ya que la perturbacién tensorial de segundo
orden de la métrica no es una variable invariante bajo cambios de coordenadas [84-89]. Esta
dependencia del sistema de coordenadas se propaga a la cantidad observable de interés: la
densidad de energia de las ondas gravitacionales. Recientemente se afirmé [86, 90] que, a
pesar de los comentarios anteriores, el calculo habitual de la densidad de energia de las ondas
gravitacionales es valido mas alla del orden dominante en las perturbaciones y esta cantidad
es aproximadamente invariante bajo cambios de coordenadas siempre que se mida tarde en
la era de radiacion, ya que los escalares que generan los modos tensoriales de segundo orden
decaen rapidamente con el tiempo en este caso, de modo que estos ultimos se propagan
linealmente y efectivamente se convierten en cantidades de primer orden [86]. Sin embargo,
la densidad de energia de las ondas gravitacionales debe de ser una cantidad invariante bajo
cambios de coordenadas que esté bien definida en todo momento, independientemente de
cuando se mida. La determinacion de la expresién correcta para esta cantidad mas alla del
orden dominante en las perturbaciones sigue siendo un problema abierto, que exploraremos

con més detalle en esta tesis.
Vision general de la tesis

En esta tesis consideramos dos implementaciones diferentes del mecanismo de produccion de
PBHs con un punto de inflexiéon. El primero consiste en hacer la eleccion méas simple posible
para el potencial del inflatén, esto es, un polinomio cuartico, junto con un acoplamiento no
minimo al escalar de Ricci [2, 68]. Si los coeficientes en el polinomio se eligen apropiadamente,
esto conduce a la presencia de un punto de inflexién en el potencial. Como veremos, en este
modelo el problema principal es que la inclinacién del espectro de potencias a escalas del
CMB se encuentra en tension con los valores medidos experimentalmente si requerimos que
se produzcan suficientes PBHs con masas en la ventana (4) para explicar toda la materia
oscura. Mostraremos que este problema se puede resolver considerando extensiones muy
simples y bien motivadas del modelo cosmolégico ACDM (como la adicién de las masas de
los neutrinos), o agregando operadores de mayor dimensién (cuya presencia es de esperar de
todos modos) al potencial. La segunda posibilidad que consideramos es mas complicada y
tiene como objetivo aliviar las desventajas antes mencionadas de los modelos de produccién
de PBHs con puntos de inflexiéon. Los aspectos clave en esta segunda configuracion son

un potencial inflacionario que naturalmente contiene varios minimos locales y una época

24



temprana dominada por materia no relativista (eMD, por sus siglas en inglés) justo después
de la inflacién (que se puede obtener, por ejemplo, del recalentamiento perturbativo), durante
la cual la probabilidad de colapso gravitatorio aumenta [50, 91, 92]. Encontramos que estos
dos ingredientes también pueden conducir a la formaciéon de una fraccion considerable de
PBH con masas en el rango (4) [1].

La razén por la que una era de eMD alivia algunos de los problemas de ajuste fino antes
mencionados es que, debido a la ausencia de presion de radiacién, es mas facil que una nube
de materia colapse, por lo que el incremento del espectro de potencias requerido para que
se formen los PBHs resulta ser 6rdenes de magnitud mas pequeno que en el escenario de
radiacion estandar, incluso después de tener en cuenta el hecho de que el momento angular
y la no esfericidad de la nube suprimen el colapso [92, 93]. Ademads, aunque la dependencia
de la abundancia de los PBHs del espectro de potencias sigue siendo exponencial durante
la era de eMD, su sensibilidad a pequenos cambios en la amplitud de las fluctuaciones que
inducen el colapso resulta ser mucho mas leve que en el escenario de RD. La formacién de
PBHs durante una fase de eMD ha sido ampliamente estudiada en la literatura, véase, por
ejemplo, [91] (uno de los primeros trabajos), o [92-94] para actualizaciones recientes. Como
mostraremos, para aprovechar al maximo el escenario de eMD (en el sentido de que se pueda
conseguir una abundancia considerable de PBHs con un espectro de potencias lo més cercano
posible a su valor a escalas del CMB), la temperatura de transicién entre las eras de eMD
y RD debe ser de orden < 105 GeV. En trabajos anteriores se ha llegado a conclusiones
similares; en esta tesis mejoramos las estimaciones presentadas en [70, 93].

Hasta ahora nos hemos centrado exclusivamente en los modelos de producciéon de PBHs
con un punto de inflexién. Sin embargo, como mencionamos anteriormente, existen otras
posibilidades. En particular, los agujeros negros podrian generarse durante una fase disipa-
tiva transitoria durante la inflacién, un mecanismo que es fundamentalmente diferente de
los modelos de punto de inflexion discutidos anteriormente. El efecto de la disipacion en la
dindmica del inflatén se puede describir introduciendo un término de friccién < I'¢p en su
ecuacién de movimiento [95, 96]. Uno podria conjeturar que este término podria ralentizar al
inflaton de la misma manera que lo hace un punto de inflexién en el potencial, conllevando a
su vez un incremento del espectro. Como mostraremos, este argumento no es correcto, ya que,
aunque la dinamica del inflatén es similar en ambos escenarios, las ecuaciones de movimiento
de las fluctuaciones son bastante diferentes. Sin embargo, como mencionamos anteriormente,
el espectro de potencias puede incrementar debido a la presencia de una fuente estocastica
de ruido térmico para las fluctuaciones cuyo origen yace en la interaccion entre el inflaton y
un bano de radiacion en equilibrio térmico subyacente. Asumimos que esta fuente esta activa
solo por un periodo corto para producir PBHs con masas adecuadas en el rango (4). Mode-
lamos nuestro escenario utilizando un enfoque fenomenolégico, suponiendo que el coeficiente
disipativo I' tiene un pico localizado y una dependencia de la temperatura con una moti-

vacion teodrica sélida. Realizamos un andlisis numérico completo de la dinamica resolviendo
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directamente las ecuaciones diferenciales estocasticas para las perturbaciones. Integramos el
sistema para multiples realizaciones del ruido térmico, obteniendo asi un histograma para
Pr(k) en cada k, permitiéndonos determinar sus propiedades estadisticas. Sin embargo,
la cantidad mas interesante no es necesariamente la distribucién de probabilidad completa
para el espectro de potencias, sino su valor esperado, que es una cantidad determinista.
Mostramos que este valor esperado se puede calcular reformulando el sistema estocéstico de
ecuaciones diferenciales para las fluctuaciones como una tinica ecuaciéon diferencial matricial
determinista para sus funciones de correlacién a dos puntos.

Ademas de la exploracién de los modelos especificos de formacién de PBHs discutidos
anteriormente, en esta tesis también reevaluamos el célculo del espectro de potencias pri-
mordial, en presencia de una fase de USR, usando el marco de la inflacién estocastica, tanto
analitica como numéricamente [3]. Encontramos que (a orden lineal) el espectro de poten-
cias calculado usando la maquinaria del formalismo de inflacién estocastica concuerda con el
resultado obtenido utilizando la teoria de perturbaciones estandar, y confirmamos nuestros
resultados numéricamente usando el modelo polinémico antes mencionado. Encontramos que
la eleccion de la escala que separa a las fluctuaciones clasicas de las cuanticas es fundamental,
ya que en presencia de una fase de USR, las perturbaciones tardan més en clasicalizarse vy,
por lo tanto, la eleccion estandar realizada en el escenario inflacionario de rodamiento lento
usual ya no es valida. No estudiamos correladores de orden superior para las perturbaciones
en esta tesis, pero senalamos que el hecho de que el espectro de potencias no cambie a orden
lineal no implica necesariamente que los efectos estocasticos sean irrelevantes para la abun-
dancia de agujeros negros, ya que se espera que las no-gausianidades modifiquen también su
probabilidad de formacién [73, 74, 97].

Dado que los escenarios en los que se forman PBHs durante una era de eMD tienen
ventajas significativas, vale la pena preguntarse si la senal de ondas gravitacionales en este
caso cambia con respecto al escenario de radiaciéon habitual. Especificamente, nos gustaria
saber si el fondo estocastico resultante puede detectarse mediante experimentos futuros, como
LISA y BBO/DECIGO. Uno podria conjeturar que este no es el caso, ya que, como se discutié
anteriormente, el incremento del espectro de potencias escalar requerido para que los PBHs
puedan dar cuenta de toda la materia oscura es mucho menor en este escenario. Sin embargo,
mostraremos que debido al hecho de que las fluctuaciones escalares no decaen con el tiempo
durante una era de eMD, el espectro de ondas gravitacionales aumenta en amplitud a medida
que disminuye la temperatura de transicion entre las eras de eMD y RD. Este incremento
adicional contrarresta la amplitud relativamente pequena del espectro de potencias escalar,
lo que hace que el fondo estocastico de ondas gravitacionales sea observable por LISA.
También examinamos si el espectro resultante satisface los limites sobre la abundancia actual
de ondas gravitacionales Qgw que surgen de las mediciones del CMB [98] y la abundancia de
elementos ligeros producidos durante la nucleosintesis del Big Bang. [99] y encontramos que

esto restringe el escenario de eMD eliminando parte del espacio de parametros disponible. La
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porcién del espacio de parametros que se descarta depende de la temperatura de transicién,
pero como veremos, para ciertos valores de esta cantidad, este limite puede ser incluso mas
fuerte que los que provienen de los experimentos de radiaciéon de Hawking.

La dependencia de los modos tensoriales de segundo orden de la métrica del sistema de
coordenadas se ha estudiado ampliamente tanto para universos dominados por materia no
relativista como por radiacién (véase, por ejemplo, [84, 85, 89]). Sin embargo, en el escenario
de transicién de eMD a RD el universo pasa por ambas fases, por lo que es importante incluir
las dos en el calculo. Este cdlculo se presenta aqui por primera vez y encontramos que, debido
al hecho de que la época de eMD tiene una duracién finita, el conjunto de sistemas de
coordenadas probleméticos coincide con el del caso de RD [85]. En particular, examinamos
el problema considerando cuatro sistemas de coordenadas diferentes (newtoniano, curvatura
uniforme, expansién uniforme y comovimiento), y encontramos que los resultados coinciden
en a tiempos tardios (es decir, al final de la era de RD) para los primeros tres. Postulamos
que el problema de la dependencia de coordenadas se deriva de la suposicién incorrecta
de que las correcciones a orden subdominante en perturbaciones a la abundancia de ondas
gravitacionales Qaw pueden obtenerse simplemente sustituyendo® hj;" — $h;" en la férmula

habitual (cuya derivacién puede ser encontrada en [100, 101], por ejemplo),

o) = & (%) Puc kv, ©)

TT
ij
parametro de Hubble conforme y los corchetes denotan un promedio sobre muchas longitudes

donde P}, denota el espectro de potencias de h;;", 7 denota el tiempo conforme, H = aH el
de onda. De hecho, Qgw debe ser una cantidad observable invariante bajo transformaciones
de coordenadas, de modo que no puede expresarse en términos de h;FjT solamente. En esta
tesis proporcionamos una derivacién heuristica de la expresion completa para esta cantidad,
valida en cualquier sistema de coordenadas e independiente del contenido energético del
universo, usando un argumento basado en propiedades de simetria y andlisis dimensional.
La tesis se estructura de la siguiente manera. En el Capitulo 1 revisamos los aspectos
basicos de la inflacién y la formacién de agujeros negros primordiales en eras dominadas
por materia no relativista y radiacién. En el Capitulo 2 implementamos la idea de pro-
ducir agujeros negros a través de un punto de inflexion en el potencial usando dos modelos
inflacionarios diferentes, uno basado en un potencial polinémico y otro inspirado en la mon-
odromia axiénica. En el Capitulo 3 exploramos el efecto que tiene la difusion cuantica del
inflaton sobre el espectro de potencias de perturbaciones de curvatura. En el Capitulo 4
discutimos céomo se pueden formar agujeros negros debido a una fase disipativa transitoria
durante la inflacién. Finalmente, en el Capitulo 5 calculamos las senales de ondas gravita-

cionales en cada escenario y discutimos las posibilidades de observarlas en el futuro.

8Usamos h};»T para denotar los modos tensoriales de primer orden, transversales y sin traza, y el simbolo
en negrita h};-T para denotar modos de segundo orden.

27



CHAPTER

1

Black holes from cold inflation

In this introductory chapter we review the basic facts about inflation, reheating and the
formation of primordial black holes. In Section 1.1 we briefly review how inflation provides
a solution to the horizon and flatness problems of the cosmic microwave background and
establish the conventions and notation we will use throughout the rest of the thesis. In
Section 1.2 we compute the mass and abundance of these black holes depending on whether
they form during a radiation or early matter-dominated era, and we determine the size of
the fluctuations necessary for these primordial black holes to be able to account for the
entirety of the observed dark matter. In Section 1.3 we show how an early period of matter
domination can be obtained via perturbative reheating, and determine the number of e-
folds of inflation necessary to solve the horizon and flatness problems. Finally, in Section
1.4 we solve the equation of motion for the comoving curvature perturbation analytically
(by making a suitable set of assumptions), and review the mechanism by which the power

spectrum is enhanced in the presence of an inflection point in the inflationary potential.

1.1 B Cold inflation

In this section we briefly review the basic facts about inflation. An extensive review can
be found in [102]. We begin by assuming that the Universe is dominated by a perfect fluid
with equation of state p = wp and that spacetime is described by the Friedmann-Lemaitre-
Robertson-Walker metric, which is given in conformal time dr = adt and in spherical coor-
dinates by

2 2 2 dr? 2 192
ds” =a —dr +m+7‘d@ . (7)

We refer to the constant k. as the spatial curvature of the Universe. This is a number that
must be determined experimentally, and is not fixed by any fundamental principles. The
scale factor a(7) is a function of time that describes how the size of a spatial patch changes

with the expansion of the Universe. The evolution of a is determined by the Friedmann

equations
P ke
H? = - =
3M2 (8)
1
H+H*=———(p+3p), (9)
6M2
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which can be obtained from Einstein’s equations and where H = a/a is the Hubble param-
eter. Throughout this thesis we use dots to denote derivatives with respect to cosmic time
(- = d/dt) and primes to denote derivatives with respect to conformal time (' = d/dr). The
first of these equations can be recast as

p ke

Q—1=Q, with Q ik
The quantity €2, is constrained to be Q; < 1 by CMB experiments (see e.g. [23, 103]). This
is a puzzling fact, since, as we will see momentarily, the quantity (aH)™!, known as the
comoving Hubble radius, increases in time for conventional matter sources (e.g.dust and
radiation), so in order to satisfy the constraint we must have k. < 1. This is known as
the flatness problem. From now on we set k. = 0, which makes the Friedmann equations
invariant under a rescaling of a and therefore allows us to normalize the scale factor to unity
today, ag = 1.

The particle horizon is the maximum distance a photon can travel from the Big Bang at

t = 0 to some later time ¢ (and therefore determines the size of the observable Universe),

bodt 1 1
Ar:AT:/O el oca—Hocaq, q:§(1+3w). (11)
The fact that (aH)™" o a? can be shown by solving the Friedmann equations. As mentioned
earlier, the scale factor a describes the evolution of the size of a spatial patch. A patch with
size R,(19) = Ry today will have size R,(7) = a(7) R, at some other time 7. We see from the
above equation, however, that the particle horizon does not grow linearly with a, but rather
as Ar oc a?. Since the particle horizon represents the size of a causally connected patch, we
see that for conventional matter sources (e.g.radiation with w = 1/3 or dust with w = 0), a
spatial patch that is causally connected today must have been disconnected at some point
in the past. Nevertheless, measurements show that the CMB temperature is nearly uniform
across the entire visible Universe (on sufficiently large scales). The question of how this
equilibrium was achieved if the patch was causally disconnected at some point is known as
the horizon problem.

The key observation now is that if the Universe had gone through a phase in which
(aH)™! decreases, then at some point the spatial patch corresponding to the observable
Universe would have been larger than the particle horizon (provided this phase was long
enough), solving the horizon problem. Similarly, the quantity ; o (aH)™! is driven to a
small value, solving the flatness problem. We refer to such a phase as inflation. From eq. (11)
we see that such a period requires w < —1/3. The simplest way in which this condition can
be satisfied is if the energy budget of the Universe is dominated by a scalar field slowly

rolling down a potential. To see this, let us consider the corresponding Lagrangian for such
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a field assuming it is minimally coupled to gravity

L= JMIR+ S(0,0 ~ V(o). (12)

The pressure and energy density of the field are, assuming that the field is homogeneous,

p= 5 ¥+ V(). (13)
p=30 V(o) (14

Thus, if the kinetic energy is negligible compared to the potential, we have w = p/p ~ —1 <
—1/3, and therefore a period of inflation takes place. To quantify how negligible the kinetic

energy is with respect to the potential, it is convenient to define

€= —— n= ——;. (15)

These are known as the slow-roll parameters. It can be shown from Friedmann’s equations
that inflation takes place when € < 1. The regime in which € < 1 and |n| < 1 is known as
slow-roll inflation. This inflationary period only lasts a finite amount of time, since eventually
the field reaches the minimum of the potential and the potential and kinetic energy become
comparable, leading to € > 1 and ending inflation. The field then proceeds to oscillate around
the minimum of the potential, decaying into other fields and populating the Universe with
radiation. This process is known as reheating.”

One of the core features of inflation is that it allows us to understand the CMB anisotropies.
For this we need to make use of cosmological perturbation theory, reviewed in detail with our
conventions in Appendix A. The field is expanded into a homogeneous background piece ¢(t)
and a space-dependent perturbation d¢(t, ). Similarly, we can expand the metric around

the homogeneous FLRW background as'’
d52 = —a2 (1 -+ 2@) dT2 —+ QGQainl'idT + a2 |: (1 — 2¢) (5”- + 2318JE} dl‘ldl'j (16)

If we work in Newtonian gauge (B = F = 0) and in the absence of anisotropic stress, we can

use one of Einstein’s equations to set ¢ = 1. The energy density, pressure, and momentum

9This is not the only way in which inflation can end, however. Another possibility is that the inflation
gradually transfers its energy to a thermal bath of radiation throughout its evolution. Eventually, the
radiation energy density begins to dominate and inflation ends. This scenario is known as warm inflation,
and will be studied in Chapter 4.

0Vector perturbations are not typically produced in single-field inflation (and in any case decay quickly
with the expansion of the Universe), so we ignore them. We also neglect tensor perturbations for the time
being, these will be treated in detail in Chapter 5.
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perturbations for the Lagrangian (12) are, respectively,

5p = ¢3¢ — ¢ + V00, (17)
5p = ¢6p — ™ — V09, (18)
5q = —ddo, (19)

and the remaining Einstein’s equations are then, in Fourier space,

. k2 1 .. i
BH (W + Hipw) + =t = —5 (9060 — 3+ Vadon, ). (20)
i+ Hiy = 2000, 1)
b+ AH Y+ H + 3H )y = ]\142 (8001 — Gun — Vaoon,). (22)

The connection to CMB observables is most easily made by making use of the following

gauge-invariant variable, known as the comoving curvature perturbation,
Ri = —2— 36y + (23)
—RKp = ——— Q0 k-
p+p

By combining Einstein’s equations (20-22), we can find a second-order differential equation

for this quantity
2

Ry + (3 — 277)HRk + 5731g = 0. (24)
This is known as the Mukhanov-Sasaki equation, and will be studied in detail in Section 1.4.

This equation is usually solved by imposing the so-called Bunch-Davies initial conditions,

efzkr

Rk =——m—,
T oMyavke

(25)
which can be obtained by asking that the state that minimizes the expectation value of the
Hamiltonian in the far past coincides with the Minkowski vacuum [102]. The main quantity
of interest for us will be the power spectrum of R, defined via

kS
Pr(k) = 5 3[Rl (26)

k<aH

The power spectrum of R can be related to the temperature and density fluctuations observed
in the CMB, so its behaviour on small scales 10~*Mpc™" < k < 0.5Mpc™! is well-known.
On these scales, the power spectrum is well described by the following nearly scale-invariant

function,

Pr(k) = 4, (ﬁ) (27)



where k, is some arbitrary reference scale, usually taken to be k, = 0.05 Mpc™'. The
amplitude and spectral index have been determined to be A, ~ 107 and n, ~ 0.965 at this
scale [23, 103]. As we will show in Section 1.4, a spectrum with these characteristics can be
obtained within the framework of slow-roll inflation if the potential is chosen appropriately.
This is one of the great successes of the inflationary paradigm. As we will see momentarily,

the power spectrum is also the quantity that determines whether black holes can form.

1.2 B Primordial black holes

As discussed in the previous section, inflation provides the seeds for the density fluctuations
we observe today. Had these fluctuations been large enough at a particular scale, they could
have induced gravitational collapse of the matter in the surrounding region, leading to the
formation of a black hole [50]. The masses of the resulting black holes, as we will show,
would then be determined by the scale at which these fluctuations are large. In this section
we review the calculation of the mass and abundance of these black holes in radiation and
matter-dominated eras. A schematic representation of the evolution of the scale factor across
the various phases of the cosmological history in the scenario we consider is shown in Fig. 1.
To be clear, we consider PBH formation only during an eMD era, and not during the late
MD era that follows Big Bang Nucleosynthesis.

The mass and abundance of the PBHs depend on the equation of state of the Universe
when the wavenumber of the fluctuations that induce collapse becomes comparable to the
Hubble radius after inflation. During RD the radiation pressure opposes the gravitational
collapse, whereas during MD any overdensity grows since the pressure is zero. We use
tm = 2/(3H,,) to denote the time at which the eMD era ends. For simplicity, we consider
that the Universe thermalizes instantaneously at ¢,, and becomes radiation dominated. Given
that in RD the Hubble expansion rate is H = 1/(2t) and the energy density during this
period is therefore p = 3M?/(4t*), we can define the temperature T, of the radiation bath
at thermalization through p = (7%/30)g,(T)T* as

MANY? /472 (T, -1/4
T,=|-—2 L() ; (28)
tm 90

where g, = 3, guo + (7/8) D ; g4y counts the effective number of degrees of freedom and the
sums over b and f run, respectively, over the baryonic and fermionic species whose masses are
below T at any given time. In the Standard Model, for temperatures above the electroweak
phase transition one has g, = 106.75.

An early phase of MD after inflation can occur during perturbative reheating if the
inflaton oscillates rapidly in a quadratic minimum [104]. In this case, we can identify the
temperature 7),, with the reheating temperature and we will often refer to it in this way. We

will elaborate more on the connection between T, and inflation in Section 1.3. However, it
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Figure 1: Schematic depiction of the evolution of the conformal Hubble factor H = aH in the
scenarios we consider. T, denotes the temperature at which the instantaneous transition between
the early matter era (eMD) and the radiation era (RD) occurs. Ty denotes the temperature at the
end of the RD era.

is worth noting that there are other possibilities to realize a phase of eMD (e.g. oscillations
of other heavy scalars) and our discussion until Section 1.3 does not depend on the origin of
this phase.

As mentioned above, PBHs form from the collapse of regions with large density fluctu-
ations when their spatial extension, characterized by some scale k, becomes comparable to
the size of a Hubble patch. The mass of the individual PBHs is mainly given by the mass
contained in this Hubble patch at the time of horizon re-entry for the scale k. This scale
cannot be defined unambiguously; see [105] for a recent discussion. A common approxima-
tion for peaked spectra identifies £ with the location of the peak of the primordial spectrum
in linear perturbation theory. We will use this approximation, which is sufficient for our
purposes. Then, the mass Mpgy of individual PBHs is

2

MPBH = 471"}/?1), (29)

where H is equal to 1/(2t) for RD after inflation and 2/(3t) for an eMD phase. The coefficient
~ quantifies the efficiency of the collapse. Numerical analyses in the case of RD indicate that
~ depends on the spectral shape of the density fluctuations and that the actual mass depends
mildly on the density threshold that triggers the formation of a PBH [106]. We will neglect
these dependencies and use v = 0.2 for RD (see [50, 106]), which is accurate enough for our

purposes. The actual efficiency of the collapse in MD is uncertain but may be expected to be
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higher than in RD due to the absence of radiation pressure. For concreteness, we take v = 1
for MD throughout this thesis, although we keep 7 unspecified in most of the expressions
below.

An overdensity of comoving scale k re-enters the Hubble horizon at time ¢, when the
condition k = a(ty)H (tx) = arHy is satisfied. If this occurs during an eMD phase which ends
at time t,,,, we can write: ay = (ag/am) (am/ao), where a,, = a(t,,) and qaq is the scale factor
today, which we normalize to one. Entropy conservation from t,, until today implies that
/a0 = (To/Ton) (Gus(T0)/gus(Ti))"?, where Ty is the current CMB temperature. During
the phase of eMD there is no thermal equilibrium, but the scaling a/a,, = (H,,/H})*? can
be used. Combining these results with the condition for horizon crossing and using that
3MZH}, = (7°/30)g.(Tm)T,, to eliminate H,,, we obtain

w2 Gss(To) T3 Ty,
a’k == _g ( m) T kgM2 9
9*5( m) P

- 30
where we are keeping the number of effective entropy (g.s) and temperature (g,) relativistic
degrees of freedom distinct and Tj is the temperature of radiation today. This expression

allows us to write the PBH mass of eq. (29) as

27'('3 TO 3 g*S(To)
M =v— | — ()T, for eMD. 31
peH = 45 ( k ) g*s(Tm)g ( ) e ( )

If the PBHs form during RD, the expression for their mass can be obtained following a

similar logic. In this case

R Q*S(T(J) 2 T02

and therefore

4 T0)2 (g*s(Tg)>2/3
M = — (T )M, for RD. 33
PBH 73\/1—0 ( kf s (Tk;) g ( k‘) V4 ( )

The PBH mass thus scales as k=2 if PBHs form during RD and as k=3 if they form during
eMD. In the latter case the PBH mass depends also on the duration of the eMD phase
through the reheating temperature T,,, see eq.(28). For the purpose of comparison, it is

useful to write both mass expressions in terms of some benchmark values for k, T},,, and the
mass of the Sun (M) [1],

2/3 1/6 14 —1\ 2
MPBH22.8><10‘16<1>(g*(Tk)) (106'75) (10 Mpc )M@ for RD, (34)

T,)\ /104 Mpc ™\’ / T
Mo = 2.4 x 10~ [ 9Tm — VM. for eMD. 35
PBH X Y (g*s(Tm> k 105 GeV © or e ( )
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The expressions above have been obtained by setting Ty = 2.7255 K [107], g.(To) = 2.00, and
9xs(Tp) = 3.91. These values for the entropy and temperature degrees of freedom correspond
to assuming that all three neutrinos are non-relativistic today, see [105].

We are interested in the current abundance of PBHs with respect to that of dark matter:

fopn = . (36)
PBH QODM

In the approximation of rapid collapse of the overdensity, fpgy can be written in terms of 3,
i.e. the ratio of the collapsing energy density to the total energy density at the time of the

collapse:

_ 1 ppeu(ty)

F= v p(tr)

(37)
Here pppy and p are the PBH and total energy densities, respectively.

In the case of PBHs formed during an eMD phase, by means of entropy conservation and
using p,, = (72g(T,)/30)TL, we obtain

Qg 9*<Tm)9*s(TO)T_m
QODM 9*(T0)9*s(Tm) Ty’

feen =8 (38)
where we have assumed that the transition between the different epochs depicted in Fig. 1
is instantaneous.

The analogous expression for RD is obtained from eq. (38) by simply setting 7,, = Ty,
where T}, is the temperature of the radiation at the time of formation. In this case we can
write T as a function of the Hubble rate and relate this to the PBH mass through eq. (29).
Then, the expressions for the PBH abundance as a function of the quantity g in the RD and

eMD cases are, respectively [1]

Jeen = (0%)3/2 (8.9 x510—16> (ng;D_M (5:;&%) (10]141?3]1\{4@)_1/2 (RD), (39)
feBH > <5_5 Xﬁ 10_15) ( gg;(é";))) (105Tgev> (eMD). (40)

The temperature dependence of the PBH abundance in the eMD case implies that a shorter

duration of this phase (i.e. a higher reheating temperature) implies a larger abundance, see
eq. (28). This is simply due to the fact that PBHs, being cold dark matter, dilute slower than
radiation as the Universe expands. Therefore, the longer the duration of the RD phase is (i.e.
the shorter the eMD phase is), the higher the abundance of PBHs. Notice that we could also
write fppy in the eMD case as a function of the PBH mass, using eq. (35). However, unlike in
the RD case of eq. (39) this introduces explicitly the wavenumber k, which makes the formula

more cumbersome. We often assume that the distribution of PBH masses at formation time
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is monochromatic, which is a good approximation for sufficiently peaked primordial spectra.
If this condition is not satisfied, the total PBH abundance can be obtained by integrating
ffPBH(MPBH)dlog(MPBH)-

So far we have obtained general expressions for the abundance as functions of the col-
lapsing energy density fraction [, but we have not discussed how this quantity is computed

in each case. In the RD case we use the approximation

52

In this expression & = dp/p is the density contrast in the total matter gauge (since this is the

B(k) ] do, for RD. (41)

quantity that can be extracted from numerical simulations [108, 109]), 4. is the estimate for
the ¢ threshold for gravitational collapse during RD and o?(k) is the variance of the density

contrast smoothed over a comoving distance scale ~ 1/k, given by

2 _4(1+w)2 dq ( q\* 2
) = s [ () Prlawa/m). (42)

where w = 1/3 for RD. In this expression Pg (k) is the dimensionless power spectrum of the
comoving curvature perturbation R and W (x) is a window function which we will take to be
Gaussian. The expression (41) is obtained by applying the Press-Schechter formalism [110]
and assuming that the primordial fluctuations leading to PBH formation are Gaussian. The
Gaussian approximation will be sufficient for our purposes in this thesis, but we will have
more to say on non-Gaussianities at the end of Section 3.3. The value of §. is known to
depend on the profile of the collapsing overdensities, but should be between 0.4 and 0.5, see
[111-113].

The physical interpretation of eq. (41) is transparent: only overdensities above the thresh-
old ¢, can collapse into a black hole. For PBHs formed during eMD, the situation is very
different, due to the absence of radiation pressure. In this case, eq. (42) still applies (now
with w = 0) but, for sufficiently large variances, the collapsing energy fraction has been
estimated to be'! [91, 92]

B(k) =~ 0.056 °(k), for eMD and o 2 0. (43)

This formula was derived in [92] by applying the so-called Zel’dovich approximation [114]
to model the nonlinear growth of density perturbations in the framework of Newtonian
cosmology. The perturbations are assumed to follow a Gaussian distribution, and deviations

from spherical symmetry are encoded in a deformation tensor whose entries are parameterized

HTnhomogeneities of the collapsing overdensity may further suppress PBH formation during eMD [94].
However, such extra suppression depends on certain assumptions on the final stages of the collapse, which
might be evaded in realistic setups; see the discussion in [94]. For these reasons, we neglect inhomogeneities
in our estimates and use eqs. (43) and (44) throughout this thesis.
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by using the Doroshkevich distribution [115]. The non-sphericity of the collapsing cloud
leads to a pancake collapse [114], so that the Schwarzschild criteria can no longer be used
to determine whether a black hole forms, and it must instead by replaced by the hoop
conjecture [116]. These ingredients lead to a complicated integral for the collapse probability
distribution that must be performed numerically. The above expression is the result of a
numerical fit to this integral and should therefore be regarded as a semi-analytical formula.
This expression for £, which accounts for the effect of asphericities in the collapsing region, is
valid only if o is larger than a certain value'? g,,, ~ 0.005 [93]. Below this value, the effect of
the angular momentum of the collapsing region becomes relevant, and the expression above
must be replaced by [93]
72\ 2/3

B(k) = 1.9 x 107" f,(qc)Z%*(k) exp [—0.147 (m) ] , for eMD, and 0 < Oung. (44)
This formula is obtained by applying the theory of angular momentum in structure formation
developed in [117] to PBH collapse. The Kerr bound, which relates the mass of a spinning
black hole to its angular momentum and determines the condition under which the black
hole singularity is hidden by an event horizon, is adopted as the formation criteria, and the
fluctuations are once again assumed to follow a Gaussian distribution. In the above formula,
T is an O(1) parameter'®[93] and f,(q.) is the fraction of mass with a level of quadrupolar

13 Following the estimates of [93] we

asphericity ¢ smaller than a threshold ¢. ~ 2.4(Z o)
will assume f,(¢.) = 1 in our numerical examples.
From egs. (41) and (44), it is clear that in order to obtain a sizeable abundance at a
specific mass, the power spectrum Pgr of curvature fluctuations produced during inflation
must be enhanced at the scales of interest (i.e. those unconstrained by current experiments).
The simplest way to model the peaked power spectrum resulting from the kind of models

we will consider is by using a Dirac delta,
Pr(k) = Askso(k — ks). (45)

The variance of the density contrast, given in eq. (42), can be computed directly in this case.

For a Gaussian window function, we obtain

(k) = Ag% (%)4@@ <—Z—§> . (46)

This can be plugged directly into egs. (39) and (40) to obtain the PBH abundance. The

12We remark that the numerical fits in eqs. (43,44) fail around .y, thereby making 3 discontinuous at
this value.

13The variance of the angular momentum (L?) and o are related through Z via 45t(L?)'/2 ~ 87Z(ar)® po,
where r is the initial comoving radius of the overdensity and p is the homogeneous energy density of the
eMD universe.
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Figure 2: Left panel: PBH abundance for the three examples shown in Table 1, together with
galactic y-ray constraint in [32] and HSC lensing [48, 118] constraints. Right panel: sensitivity
of frpeH to the transition temperature and the amplitude of the power spectrum in eq. (45) for the
central values in the RD and eMDo examples. The shaded regions depict an order of magnitude
change in the abundance, and it remains unchanged on the dashed lines.

result is depicted in the left panel of Fig.2 for three different parameter choices, shown in
Table 1.

’ Example H As ‘ ks ‘ T ‘

eMD; [ 0.00021 | 103°Mpc™! | 10°GeV

eMD, || 0.00046 | 102 "Mpc ™! | 10*GeV
RD 0.041 | 10" "Mpc ! 00

Table 1: Parameter choices for three examples that yield an abundance fppu of O(1), depicted in
Fig. 2. In RD we need Pr ~ 1072 to obtain fpeu ~ O(1), whereas in eMD we need Pr ~ 1074,

The previous equations also summarize a key difference between PBH formation in eMD
and RD. Whereas in RD the PBH abundance is exponentially sensitive to the primordial
power spectrum Pp, in the eMD case this dependence is a power-law for fluctuations larger
than oang. The reason for this difference lies in the threshold for gravitational collapse: in RD
this is given by d., while in eMD essentially any overdensity undergoes gravitational collapse,
due to the very small Jeans length of non-relativistic matter.'* Angular momentum effects

need to be taken into account in eMD if ¢ is small enough. In that case, the approximate

14The Jeans length determines the critical radius above which an overdensity collapses and is proportional
to the speed of sound of the fluctuations.
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Figure 3: Left panel: PBH abundances and masses (at the peak of the distribution), together with
the constraint of eq. (47), and the galactic vy-ray constraint in [32], with ks fized as in the eMD,
example of Table 1. Right panel: same as left panel, for the eMDo example of Table 1. The values
of Ty, and As corresponding to each example are shown with a star. The eMD example lies right
at the edge of the constraint in eq. (47), which we remark should be understood as an order of
magnitude estimate.

power-law behavior of (§ is lost, but its sensitivity to the primordial power spectrum is
still much milder than in RD. In the right panel of Fig. 2 we compare the sensitivity of £ to
changes in Pr. The PBH fraction changes much more dramatically with Pr for PBHs formed
during RD than in eMD. This translates into a higher level of tuning in the parameters of
the inflationary potential if PBHs with fpgy ~ 1 form during RD.

Egs. (41) and (43) should be supplemented with an additional constraint which arises from
requiring that the collapsing fluctuation reaches the non-linear regime during the eMD era.
This requirement significantly limits the available parameter space, which we show in Fig. 3.
Using that the linear density contrast grows as the scale factor during matter domination,
one finds that only fluctuations larger than oy ~ (H,,/H})?/? reach non-linearity before the
end of the eMD epoch. Smaller fluctuations take longer to reach the non-linear regime and
thus do not complete the collapse during eMD. This constraint can be conveniently expressed
as follows [92]

T.)\ [ 106.75 \** /T, 2 /10"Mpc 1\
> 1.9 % 107t (9 m . A7
TR X (106.75 Iea(To) 105GeV k (47)
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When the rotation of the collapsing fluctuation plays a role (i.e. for o < 0ang) a different
constraint arises. This can be understood as follows: during the linear evolution of an
overdensity, its angular momentum grows; in particular, the longer the duration of the linear
evolution, the stronger will be the effect of angular momentum on the gravitational collapse.
Therefore, a different lower bound on ¢ arises from requiring that the growth of angular
momentum does not prevent PBH formation. The resulting constraint is o 2 5H,,/(2Z Hy,)

—we refer the reader to [93] for its derivation— and can be rewritten as

O—>10—5 l g*(Tm> 3/2 106.75 Tm 3 1014MpC_1 3 (48)
~ 7 106.75 Gus(T) 105GV . .

We remark, however, that these bounds (especially the latter) should be understood as an

order of magnitude estimate and not a hard cutoff. The precise determination of the effect
of angular momentum on the collapse of PBHs requires further study, in particular from
the point of view of numerical simulations. In what follows we restrict our attention to the
constraint in eq. (47), which is slightly stronger than the one above for the parameters we
are interested in.

The advantage of considering an eMD phase for PBH formation is reflected in Fig. 3,
where we plot the PBH masses according to (35) as well as the abundance fpgy obtained
by combining eqs. (40) and (44), which is the appropriate expression for § in the region

15 We also show the observational bounds on PBH

of parameter space where o < Oapng.
masses from Hawking evaporation [32] as well as the constraint (47). In the viable region of
parameter space, the minimal amplitude of the primordial power spectrum which is needed
to obtain fpgy = 1 is P = 107" (for reheating temperatures T;, < 10° GeV). This is five
orders of magnitude above the value at CMB scales and two orders of magnitude smaller than
the benchmark value Pr = 1072 required in RD. We remark that the reason that the most
interesting range of reheating temperatures is T, < 10° GeV is that for higher reheating
temperatures the constraint of eq. (47) comes into effect and the collapse occurs at least
partially during RD, so that the probability that a black hole will form becomes strongly
suppressed. The slightly weaker constraint of eq. (48) also kicks in around the same region,
so the probability is further suppressed by the high angular momentum of the collapsing
matter cloud. Black hole formation is still possible for higher reheating temperatures, but
then the amplitude of the power spectrum required to obtain fpgy ~ 1 would be higher than
the Pr = 10~ value quoted above and shown in Fig. 3. Only for reheating temperatures of

order T}, < 10° GeV can we take full advantage of the eMD era. In addition, we remark that

15The analysis of [93] suggests that the value oane ~ 0.005 should be taken as an order of magnitude
estimate, rather than as a sharp threshold. In particular, effects of order higher than second in angular
momentum may lower this value of oang and extend the validity of (43). This would lead to slightly smaller
values of Pr being required for fppy smaller than one, which are more advantageous for PBH formation,
but the constraint (47) would then disfavor a larger region of parameter space, leading to slightly lower
reheating temperatures.
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eqgs. (34, 35), make clear the fact that the most interesting scales for the formation of PBHs
of interest for the dark matter problem are around k ~ 10" Mpc™!, since only for these
scales do we obtain masses in the unconstrained window (1). As can be seen from the eMD,
and eMD, examples of Table 1 and Fig. 3, the only effect of varying this scale is that the
reheating temperature 7, required to take full advantage of the eMD era changes slightly.

1.3 B Perturbative reheating

In the previous section we found that intermediate reheating temperatures T}, < 10° GeV
are required to take full advantage of an eMD phase and produce PBHs with masses in the
unconstrained window (1) and fppu ~ 1 (see Fig. 3 and the relevant discussion). While we did
not specify the origin of the eMD phase, reheating provides a straightforward option. In this
section we briefly describe how an early period of matter domination can be obtained from
perturbative reheating (or, more generally, from having a scalar field oscillate around the
minimum of a quadratic potential [104]). We consider the Lagrangian for a minimally coupled

scalar in eq. (12). A potential is generically quadratic if expanded around its minimum,!®

V ~ —m?e?. (49)
The field ¢ obeys the equation of motion
¢+ 3Hp+Vy=0. (50)
During this oscillating phase the field trajectory can be parameterized as [119]
o(t) = ®(t) sin(mt), (51)

where the envelope function ®(¢) encodes the information about the redshift and decay of
the inflaton. By averaging the energy density (13) and pressure (14) of the field over one

oscillation, we obtain

(6) = (6 + 5m() = Zma(1)’ (52)
(p) = (6% — gm(6?) = (53)

where we have assumed that the timescale over which ®(t) varies is much smaller than the
period of one oscillation. We therefore find that a field oscillating in a quadratic potential

indeed behaves as presureless dust. If the main contribution to the energy budget of the

6There are of course exceptions to this (for instance, if the potential is a monomial ¢* with k # 2, or if
there is some symmetry preventing the appearance of a quadratic term), but generically this is the leading
term in a series expansion around the minimum.
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Universe during this period of reheating is due to ¢, the Universe is effectively matter-
dominated.

A perturbative description of reheating such as the one presented above is not always
appropriate due to the occurrence of preheating [119]. This is the process by which explosive
particle production takes place as a consequence of parametric resonance driven by the
inflaton oscillations. The occurrence of preheating typically quenches the existence of a
prolonged phase of eMD [120]. Therefore, it is worth stating the conditions under which
preheating is prevented. We illustrate this by considering a coupling of the form pugy?
between the inflaton ¢ and another scalar field x. The envelope function ®(¢) in eq. (51)
is given by ®(t) = M,/(v/3mmt), with mt ~ n/2r, where n is the number of accumulated
oscillations at time ¢ [119]. By studying the growth of x fluctuations, efficient preheating

can be shown to occur as long as both of the following conditions are fulfilled [119]:
p S 320(t), and 4ud(t) 2 vmiH. (54)

Violating one of these two conditions is enough to ensure that preheating does not happen.
The first of these inequalities will be satisfied initially (for small n) provided that p < M,.
However, the second condition can be violated if y is sufficiently small, preventing preheating
from occurring at this stage. Once n is large enough, both conditions are violated and thus
preheating never occurs.

Let us therefore impose that preheating does not occur and derive the value of p such
that T,, < 10° GeV can be achieved. For the reheating channel under consideration, the
perturbative decay rate of ¢ into y is given by I' = p?/(87m). In the absence of preheating,
perturbative reheating proceeds until H ~ I', when the energy density stored in the inflaton
is approximately 3M?I'?. Equating this to the energy density of the radiation bath (under

our assumption of instantaneous transition between eMD and RD), we get

20, (T)\ 4 . " 101 GeV

Therefore, T,,, ~ O(10°) GeV is achieved if u ~ 1070, for typical values of the inflaton
mass in high scale models, m ~ 10*® GeV. It is straightforward to check that for such small
values of u the second of the conditions (54) is violated, which shows that the estimate (55)
is consistent with the assumption of inefficient preheating.

It remains to be seen whether such small values of u are feasible in concrete scenarios of
inflation and reheating. Interestingly, in inflationary models inspired by string compactifi-
cations, such as the one we will consider in Section 2.3, the inflaton can be a modulus and
thus couple only gravitationally to light degrees of freedom. In this case, the decay rate I is
Planck-suppressed, its typical form for decay into a scalar pair being T' ~ m?/ (487rM3) (see
e.g. [121]). For m ~ 5 x 107°M, this translates into p ~ 107''M,. For these values of
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i, preheating is again avoided. However, reaching T, < 10% GeV still requires an extra
suppression of the decay rate. Model building possibilities in this direction can be found e.g.
in [121], in the framework of the large volume scenario [122; 123] of moduli stabilization.
Let us relate the reheating temperature to the number of e-folds (dN = Hdt) between
the time at which the largest observable scales left the horizon and the end of inflation. The
number of e-folds elapsed from the moment a scale k satisfies £k = aH during inflation until
its end is'”
Q) k 1 Pend

1 1 pr 1 Pk
N(k) = 63.55 + ~ log =~ — 1 o 1 Zlog Pk
(%) Fylos gy ~loe = qplos T E o glog e+ 1108 iegevy

56)

where Hy = 100h kms~!Mpc~! and p; is the energy density of the universe at k = aH
during inflation. The subscripts ¢,q and ,, refer to the end of inflation and the end of the
period of eMD. The quantity Q° is the current radiation density. We can relate p,, to T,
simply through

71.2

P = %9*(Tm)Té' (57)

Given a model of inflation, we can determine p; and p.,q and then use the last two equations
to find out the required reheating temperature 7,, for a specific value of N (k). For instance,
if we assume 10H, g ~ Hy ~ 103GeV, so that 102pe.q ~ pr ~ (10GeV)?, we get

k 1 T
N(E) ~49 —log [ ——— ) + Zlog [ ——m— 58
(%) o8 (0.05 Mpc1> T3 Og(105 Ge\/)’ (58)

where we have used the values of the cosmological parameters in [23, 103]. If the reheating
temperature is T}, ~ 10° GeV, inflation lasts approximately 50 e-folds after fluctuations of
wavenumbers comparable to the Planck fiducial scale (k, = 0.05 Mpc™') exit the horizon.
As can be seen from eqgs. (34, 35), the most interesting scales for PBH formation (regardless

of whether they form during an eMD or RD era) are around k ~ 10** Mpc™*

, in the sense
that it is only for these scales that we obtain masses in the unconstrained range (1) of
interest for dark matter. According to eq. (58), these fluctuations should exit the horizon
during inflation approximately 15 e-folds before the end of inflation. Before moving on, let us
remark that the ~ 50 e-folds number quoted above refers only to the time elapsed between
the moment k, leaves the horizon and the end of inflation. The total duration of inflation is

unconstrained.

17A similar expression was first given in [124]. We have followed an analogous derivation and chosen to
write the numerical factors differently.
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1.4 B The curvature perturbation

We have seen that to produce a population of PBHs of interest for dark matter we need a
power spectrum of order!® Pr ~ 107 — 1072 (depending on whether the black holes form
during eMD or RD) at scales k ~ 10 Mpc™t. As we discussed in Section 1.1, however,
CMB observations have determined the power spectrum to have an amplitude Pz ~ 107
on large distance scales (k < 0.5 Mpc™'). This means that we need to introduce some
mechanism to enhance the power spectrum on small scales. In this section we discuss how
this can be accomplished in single-field inflation by solving the Mukhanov-Sasaki equation
(24) analytically. Similar analytical models have also been studied elsewhere, e.g.in [126].
See also [109, 127, 128] for in-depth discussions of the dynamics leading to an enhancement
of the power spectrum.
The Mukhanov-Sasaki equation (24) for Ry is, in terms of the number of e-folds,

d*Ry, dRy, k>

W+(3—€—277)W+m72k:0. (59)
In the models we will consider, the condition € < 1 is always satisfied, so we can set € >~ 0
for simplicity. We see from eq. (15) that this implies H ~ 0, so that H can be considered
constant. The last simplifying assumption we make is to take n as a piecewise constant
function. In particular this should reproduce the correct spectrum in the slow-roll (SR)
regime, where n ~ 0. As we will see, in the models we will consider in Chapter 2, the slow-
roll regime holds initially, but then 7 reaches a large, positive value once the field encounters
the inflection point in the potential. The reason for this will be explained at the end of this
section. We refer to this period in which n > 1, which lasts a few e-folds at most, as an
ultra-slow-roll (USR) phase. Finally, once this period is over, n relaxes back to a negative
value, so that € starts growing and inflation eventually ends. The evolution of 1 we consider
is illustrated in the left panel of Fig. 4. The value of  on each phase is denoted by 7;. Since

H can be considered constant and a o< eV by definition, we have
aH = a,eV N H, (60)

where N, is an arbitrary reference time, which we choose as the time at which the SR phase
ends and the USR phase begins. We can set N, = 0 and normalize a, = 1. The solution to

80ne of the main assumption underlying these estimates is that the primordial perturbations follow
a Gaussian distribution. As we have mentioned already, non-Gaussianities could potentially alter these
numbers. However, we remark that, as pointed out in [125], due to the exponential sensitivity of the PBH
abundance on the power spectrum, the effect of non-Gaussianities can be countered by simply multiplying
the power spectrum by a factor of O(1). We therefore expect that these numbers are robust as an order of
magnitude estimate.
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Figure 4:  Left panel: simplified evolution of the slow-roll parameter n we consider in this section
(black, solid) compared to the typical evolution of 1 in numerical models of PBH production from
an inflection point (red, dashed). Right panel: examples of different spectra computed with eq. (67).
The reference scale ky has been chosen as the scale that crosses the horizon at the time at which
the USR phase begins. We set 1 =0, n3 = —1, and the duration of the USR phase as ANy = 2.5
for all examples in this panel.

eq. (59) in the i-th phase is then, in terms of Bessel functions of the first kind,

(4) 1 m

R =30\ e

67(37277")1\7/2 |:CY7;J(3_27H)/2 (ke*N/H) + ﬁi‘]—(3—2m)/2 (keiN/H)i| 3 (61)
where we have assumed that 71 = 0 so that € is constant in this phase, and we denote its
value by €;. If modes are assumed to be in the Bunch-Davies vacuum in the far past —see

eq. (25)— then the integration constants are, in the first phase,
ap = —1, Bl = —1. (62)

The constants a; and (; in the subsequent phases can be found by imposing continuity of
the solutions and their derivatives at the beginning of each phase.

An important fact is that, because a H grows exponentially during inflation, the last term
in eq. (59) is negligible at late times. At this stage one of the two solutions to the equation
becomes R ~ constant and the other one decays quickly in time, so that the perturbation
freezes once it crosses the horizon (a time defined by the condition k¥ = aH) and is therefore
unaffected by the subhorizon dynamics. This is the reason that, as we anticipated in Section
1.1, Ry is the preferred variable to make the connection between inflation and the CMB

observables. As we will see momentarily, in the presence of a USR phase this fact remains
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true, although perturbations no longer freeze shortly after crossing the horizon, but rather
after the USR phase ends (a fact that will have important consequences when we discuss
quantum diffusion in Chapter 3). The power spectrum of Ry, is obtained by evaluating the

curvature perturbation at some late time during the third phase, after it has frozen

The limit can be found by using the following identity

2—m
li " Jm - ’
y0” ) Fg(m+1)

where I'g denotes Euler’s Gamma function. Combining this with eq. (61), we have

lim R](f’) x lim 6—(3—27]3)N/2 |:Oé3(k7) (k:e_N/H) (3—2nm3)/2 +/63(k3) (k;e—N/H)_(3_27]3)/2i| (65)

N—oo N—oo

oc (k/H) ™7™ k), (66)

up to some overall normalization factor which does not depend on k and is not important

for our current purpose. Therefore,
Pr(k) o< |Ba(k) [ (k/H)™™. (67)

In particular, if n; = o = n3 = 0, then S5 = ¢ and the power spectrum is exactly scale
invariant, as we anticipated at the end of Section 1.1. The explicit analytical expression for
B3 is quite cumbersome and not particularly illuminating, so we do not write it explicitly.
Examples of spectra computed using eq. (67) for different parameter choices are shown in the
right panel of Fig. 4. In these examples the power spectrum is approximately scale-invariant
for small values of k, whereas for k ~ k, (where k, = H is the reference scale, chosen as the
scale that crosses the horizon at the time at which the USR phase begins) the spectrum is
enhanced by several orders of magnitude.

When the power spectrum is enhanced, there is often a dip (which we define as the
lowest point in the power spectrum) present before the peak. We will now show that there
is a simple way to estimate both the size of the peak and the position of the dip in the
power spectrum. To estimate the size of the peak notice that the solution to eq. (59) is, on

superhorizon scales k < aH where the last term can be neglected,

N N’
/ exp {_ / (3 — zn)dN"] N, (68)
Neross cross cross

where we have assumed that the solution becomes valid around the time of horizon crossing

dR
Rk — Rcross + W

Neross- In standard slow-roll inflation we have 7 = 0 and the second term in this expression
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Figure 5:  Size of the peak (colored contours) and position of the dip (dashed lines) in the power
spectrum, obtained by using the approximate expressions in eqs. (69) and (72), respectively, for the
benchmark values n1 = 0 and n3 = —1. The enhancement of seven (five) orders of magnitude
required to account for the observed dark matter abundance with primordial black holes if they form
during a radiation-dominated (early matter-dominated) era is denoted by the label RD (eMD).

is exponentially suppressed, so that only the first term, which is constant, contributes, and
Ry freezes outside the horizon as we saw earlier. If n > 3/2, the second term will grow
exponentially and quickly overcome the first one. This is the origin of the enhancement of the
power spectrum. This enhancement therefore occurs only after the mode has left the horizon
(on subhorizon scales, the solution in eq. (68) is not valid, and the mode simply oscillates in
the Bunch-Davies vacuum). For constant 7 the integral can be computed explicitly and the
size of the peak can be estimated via

2

2ng — 1 —1 e
1 — ¢~ 3—2m2)AN: 69
2L ) )

PR(kpeak) ~ 7—\)fpeak 2
PR<k < k*) N Rcross

~ ‘

where the prefactor comes from assuming that the Bunch-Davies solution (25) is still valid
at horizon crossing and using it to determine the ratio (dR/dN )cross/Reross it €q. (68). We
have also used the fact that the mode kpea that undergoes the greatest enhancement is the
one that crosses the horizon just as the USR phase begins. The reason for this is that if the
mode leaves the horizon before the first phase is over, it will be exponentially suppressed

due to the second term of eq. (68). Modes that leave after the second phase has begun will
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spend less time outside of the horizon, and the enhancement will therefore be smaller. This

means that the peak will always be located roughly at
kpeak =~ k*a (70)

where we remind the reader that we chose the reference scale k, as the one that crosses
the horizon as the second phase begins. The dip in the power spectrum occurs because as
the second term in eq. (68) grows and overcomes the first one, a partial cancellation occurs
between both. Thus, if the second term is never large enough (that is, whenever n < 3/2
or if the phase is too short), no dip will be present. Since the dip is always located before
the peak (which is roughly at k) its position kg, can be obtained by expanding eq. (67)
as a power series in k/k, around k£ = 0 and finding the value kg, at which the resulting

expression vanishes at leading order in k/k,. We have

Pr(k) 1" k? ;
—_— X |1 ———+O|(k/k)’||. 71
Paier) % |1 Ol )
The resulting expression is,'® for the benchmark parameters 7, = 0 and 13 = —1,
k2. (3—2n2) AN:
P~ f , (72)
kz Qdip + bdipe(?’*an)ANQ + Cdip€(172772)AN2

where we have defined the coefficients,

87]2 (7’]2 + 1) . 107]2 o 27}2 + 2
) dip — ) Cdip = .
34 4ny(m2 — 2) 3 —2n 21y — 1

Qgip = (73)
Eq.(72) is plotted in Fig. 5. For parameters in the shaded region of this figure the right-hand
side of eq. (72) becomes negative and thus there is no dip present in the spectrum.

As we have seen, a brief phase of n > 3/2 enhances the power spectrum. We mentioned
earlier that such a phase can be achieved if the inflaton reaches a relatively flat region in the
potential (in particular, it can happen if the potential has a near-inflection point). Let us
make the connection between these two statements. If the potential is flat, the last term in

the equation of motion (50) for the inflaton can be neglected, leading to
¢+3H¢ ~ 0. (74)
On the other hand, by combining the Friedmann equations (8) and (9) we can show that
¢2

H=———. (75)
2012

19 A similar expression was obtained in [126] for the particular case 7, = 3.
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This equation does not involve any approximations.

find M>H ~ 3H¢?, which in turn leads to

o> H 6 ¢
9~ OHE -
T w7 T Ha

~ —6He

By combining these two equations we

— =53 (T

where we have neglected the small €? term. We therefore find that if V; ~ 0, then n ~ 3,

leading to an enhancement of the power spectrum. This is often referred to as an ultra-slow-

roll phase. As we have seen, however, the spectrum will be enhanced whenever n > 3/2,

so throughout this thesis we use the term ultra-slow-roll to refer to this regime, even if

n # 3. This implies, in particular, that the potential does not need to be exactly flat for the

spectrum to be enhanced, i.e. an approximate inflection point suffices.
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CHAPTER

2

Inflationary potentials

In this chapter we will study two different implementations of the inflection point mechanism
of PBH production. The first model is studied in Section 2.1 and consists on making the
simplest possible choice for the inflaton potential; namely, a polynomial, together with a non-
minimal coupling to the Ricci scalar. We find that the main issue in this model is the mild
tension that arises between the predicted tilt of the power spectrum and the current CMB
measurements. We will show that this tension can be alleviated if simple extensions to the
base ACDM model are considered, such as the addition of neutrino masses. In Section 2.2, we
show that another way of ameliorating this tension is by adding higher-dimensional operators
to the potential, the presence of which cannot be avoided. In Section 2.3 we consider a
model inspired by axion monodromy inflation aimed at alleviating some of the fine-tuning
issues present in most models of PBH production from an inflection point by considering
a potential that naturally features several local minima, as well as the addition of an early

matter-dominated era after inflation during which gravitational collapse is enhanced.

2.1 W Polynomial potential

As we saw in Section 1.4, a brief period of ultra-slow-roll in which the slow-roll parame-
ter n reaches a large, positive value can enhance the power spectrum by several orders of
magnitude. Such a period can be achieved if the inflaton reaches a relatively flat region in
the potential, such as an inflection point. The first attempt to implement this mechanism
was put forward in [63], where a potential with a plateau able to generate a large peak in
the curvature power spectrum was considered. However, in subsequent years the idea re-
mained largely dormant until the first detection of gravitational waves by LIGO [65], which
revitalized interest in the field. Many proposals have been explored since then, from the pos-
sibility of obtaining the feature in the potential from quantum corrections [67, 68] to more
exotic models such as axion-like potentials [69], or potentials arising from supersymmetric
a-attractor models [70].

In this section we will be interested in the simplest inflationary model with this feature.
The model we study here was first proposed in [68], where a potential characterized by
a quartic polynomial was considered, together with a non-minimal coupling to the Ricci
scalar. The non-minimal coupling can be eliminated by performing a field redefinition, which
translates into the appearance of a polynomial dividing the potential. This model is very

similar to one of the first modern takes on the inflection-point idea, namely, the one in [66],
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where a potential based on the ratio of two polynomials was proposed. There are two crucial
differences between both models. The first one is the origin of the dividing polynomial in the
potential, which in [68] appears due to the field redefinition, whereas in [66] it was postulated
from the start. The second one is the fact that, due to the aforementioned redefinition, the
canonically normalized field that is identified with the inflaton is different in both models.
These differences have a relevant phenomenological consequence: the examples provided in
[66] lead to PBHs several orders of magnitude heavier, which are allowed only at the level
of fpeu < 0.1 due to the microlensing bounds from the EROS project [39]. Another related
work is [129], which differs from the one presented here in two respects: a running of the
quartic coupling of the inflaton above a mass threshold is introduced, and the power spectrum
is computed only in the slow-roll approximation. The radiative potential presented in [68]
also resembles the one studied here, although in that case the polynomial is assumed to be
dominated by the quartic term, and the inflection point arises from the tuning of logarithmic
quantum corrections, rather than from the coefficients of the polynomial. A flattening of the
potential at large field values is accomplished in that case also by considering a non-minimal
coupling to the Ricci scalar.

Following the discussion in [68], let us consider the Lagrangian for a scalar field non-

minimally coupled to gravity in the Jordan frame,
1 2 2 1 v
L= —é(Mp + &7 )R + S 0" 60" ) - V(). (77)

There is no symmetry that forbids the coupling £¢?R from appearing in the Lagrangian,
and thus its presence cannot be avoided.? We can get rid of this coupling by performing a

field-dependent conformal transformation of the metric,

2
v — (1 + %)gw (78)

The Lagrangian then becomes, in the so-called Einstein frame,

__Lip V(¢)
L=— MR+

(14 &2/ Mp)>

1[1 +&(1+68)p* /M (79)

(L1 £02/02) }9“”%% -

The new kinetic term of ¢ can be canonically normalized by means of the field redefinition

a1 E(L+ 6062 /0
o~ 1P/

(80)

20 A non-minimal coupling to gravity of the form ¢R which is linear in the field ¢ can be eliminated by a
field redefinition at the prize of redefining M, in the Jordan frame.
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The solution to this differential equation is

V6E(9/M,)
VI+E(1+68)(6/M,)>

h= )t 265 sinh™! [(¢/Mp)\/§(1 + 65‘)} — V6 tanh™

where we have used the boundary condition h(¢ = 0) = 0. The equation of motion for the

new, canonically normalized field is

2h  _dh dh \° dh \?| dlogU
W“’W__(ouv) +[3__(dN)] i (82)
where we denote by Ul¢(h)] = V[¢g(h)]/[1 + £¢(h)?/M2]? the potential of the canonically

normalized field h. Suppose that in eq. (77) we choose a generic polynomial potential for ¢,

V(g) = and" (83)

The corresponding physical potential in the Einstein frame is then [68]

, (84)
o(h)

Ulo(h) = ——% (a & + s’ + ¢ + W)
(1+€02/M22\72" 7 25

where a, = a,/ay. If we restrict ourselves to the case a,>5 = 0, this potential has the right
properties to provide a working inflationary model, since it has a minimum at ¢ = 0 where
inflation ends and it flattens, thanks to the presence of the non-minimal coupling, at large
field values. This fact remains approximately true if a,>5 # 0 as long as these coefficients
are sufficiently small. We will have more to say about this case in the next section.

We look for viable inflationary solutions in the special case in which the values of the
parameters a; and £ are such that an approximate stationary inflection point is present a few
e-folds before the end of inflation at the field value ¢ = ¢4. To this end it is convenient to
rewrite the above potential with a different set of parameters. A stationary inflection point
is defined by the two conditions U,(¢o) = Use(po) = 0. If we impose these conditions we
can eliminate the coefficients @, 3). Some trivial algebra then gives the following potential,

U<¢>=4!<1+2§2/M;>2{%§““2>[(“5 ) 2 inF ¢°’]

n>5

_ %(1 + ) [8 Zdngn(qbo,f)] + <3+§2 %0 ) [1+Z n®"” 4} } (85)

n>>5 n>5
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Figure 6: Shape of the potential in eq. (88) for ¢o = 1 and £ = 0.1 in the presence of an exact
stationary inflection point (ca = c3 = 0, solid black line) and for a slight deformation of it (0.02 <
co = c3 < 0.1, red lines with increasing tonality of red). The region shaded in light gray illustrates
the effect of changing & in the range & = 0.1£0.075 (while keeping co = c3 = 0), with larger values of
& corresponding to milder slopes of the potential. Increasing the value of £, therefore, has the effect
of reducing the classical velocity with which the inflaton field reaches the approximate stationary
inflection point. Too large values of & eventually trap the inflaton field in the local minimum.

where, without loss of generality, we have defined A = 24a4/(3 + &%¢5/M,)), and

3 01 5
Fl(do, &) = 5n(n —3)p0* + (6 —5n + n2)§]\04—5 — 5(n —4)(n —3) 2%, (86)
Gn(00, &) = (2 — n)n¢g_4 + (8 —6n+ n2)§2%. (87)

We have also introduced two small parameters c(y3) to replace a3y in such a way that the
potential in eq. (85) has an exact stationary inflection point when ¢ 3 = 0. If we restrict

this expression to the fourth-order case a,>5 = 0, we have

At
(1+ &2 /M2)?

(1+ cg)% +2(1 + ¢3) (3 + 5]@—32) z—é} . (88)

2%
M,

We remark that all we have done is replace the parameters a(34) in eq. (83) for the more
useful A and ¢z 3), but the potentials are completely equivalent. The shape of this potential
is shown in Fig. 6 for different values of the parameters.

Let us restrict our attention to the potential in eq. (88). Higher-dimensional operators

will be considered in the next section. In the left panel of Fig.7 we show the inflationary
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dynamics corresponding to the solution of eq. (82) for the following parameters
cy = 0.011, ¢3=0.0089, ¢9=M,, and a,>5=0, (89)

while the values of A and £ are tuned in order to obtain, respectively, the correct normaliza-
tion of the power spectrum A, at CMB scales and the maximum amount of PBH abundance
compatible with observations. We will present the result of a scan over different values of
C(2,3), with A and & tuned accordingly, later in this section, but the solution for the param-
eters in eq. (89) is representative of the entire parameter space. Typical values of A and &
for the solutions that we find are of order A ~ O(107?) and £ ~ 0(0.1). We remark that in
this section we only consider PBH formation during a radiation-dominated era. Formation
during an early matter-dominated era will be considered in the model of Section 2.3.

The blue line in Fig.7 represents the physical potential U[¢p(h)] as a function of the
canonically normalized field h. Inflation starts at large field values and ends at the absolute
minimum of the potential, at h = 0. Before the end of inflation, the potential features
the presence of an approximate stationary inflection point with a local minimum and a
subsequent local maximum. The solid red line represents the inflaton velocity dh/dN as a
function of the canonically normalized field h. From the time at which the reference scale
k, = 0.05Mpc™', where we fit the CMB observables, exits the horizon until the end of
inflation we count AN =~ 51.4 e-folds. This is enough to solve the horizon and flatness
problems, as discussed in Section 1.3.2! When the inflaton draws near the approximate
stationary inflection point its velocity suddenly decreases to nearly zero, so that it almost
stops, but has just enough inertia to overcome the barrier. As discussed in the previous
section, this part of the dynamics is known as an ultra-slow-roll (USR) phase [51], and
corresponds to the vertical region shaded in pink, which lasts for approximately AN ~ 3.08
e-folds (we define it as the phase in which n > 3/2, following the discussion in Section 1.4).
The power spectrum corresponding to this solution and calculated by solving the Mukhanov-
Sasaki equation (24) numerically is shown in the right panel of Fig. 7.

In order to make contact with CMB observables, at scales 10~ *Mpc™* < k < 0.5Mpc™?,

~Y

we fit our power spectrum with the parametric function
E 0 k k
log Pr(k) = log As + (ns — 14 %log T + 5 log® — + .. ) log o (90)

with a = dn,/dlogk, ¥ = d?>n,/dlog k*. At the pivot scale k, = 0.05Mpc™ ", we find??

log(10'°A,) ~ 3.06, ns =~ 0.9491, a~—1073, Y~ 2x 1074 (91)

2'Whether or not the horizon and flatness problems are solved really depends on the elapsed number of
e-folds between the time at which the largest observable scale k ~ 10~3Mpc ™' crosses the horizon and the
end of inflation, but the difference between both numbers is of a few e-folds at most, so in practice using
either is okay, given the uncertainty on e.g.the duration of reheating.

2We always refer to CMB parameters (such as ng) at the pivot scale k, = 0.05Mpc ™.
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Figure 7: Left panel: inflaton velocity (red line, units given on the left-side y-axis) as a function of
the (canonically normalized) inflaton field value (bottom x-axis). Physical potential (blue line, units
given on the right-side y-axis) as a function of the (canonically normalized) inflaton field value.
Right panel: power spectrum of comoving curvature perturbations as a function of the comoving
scale k obtained by solving numerically the Mukhanov-Sasaki equation (24).

For the tensor-to-scalar ratio, we find, by means of the slow-roll approximation, r ~ 0.03.
All these values but the spectral index, n,, are in good agreement with observations.?® The
fit of the spectral index ng results in a 3¢ tension with the latest Planck constraints if one
takes the analysis obtained assuming the 6-parameter base ACDM model or the extension

in which the running of the spectral index is added as an additional free parameter®* [23],

ACDM : n, = 0.9649 & 0.0042, (92)
dn
ACDM . ng=0.9641 4+ 0.0044.
C + Tlog n 0.96 0.00 (93)

A scan over the parameters of the potential®® seems to suggest that values of n, slightly
smaller than the one expected on the basis of egs. (92, 93) is a general result, and not just a
vice of the specific numerical solution analyzed in this section. More in detail, we find that
increasing the value of ng in order to reduce the tension with egs. (92, 93) results in a shift of

the peak of the PBH mass distribution towards smaller values of Mppy. Even though we find

Z3We remark that including the BICEP and Keck Array data tightens the bound on r quoted in [23, 103]
from r < 0.11 at k, = 0.05Mpc™ ' to r < 0.035, see [24, 130]. Our polynomial model still satisfies this
stronger constraint.

24The addition of BAO data increases the best fit value of n, in both cases just at the level of 0.2%, see
[23].

25 A less intensive scan was already performed for [68], with the same qualitative result, which we now
confirm.
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Figure 8: Left panel: fraction of the dark matter in the form of PBHs as a function of the
PBH masses. The values of ng corresponding to solutions whose mass distribution is peaked at
each particular mass are shown as dashed vertical lines. Solutions with acceptable values for the
cosmological parameters Ag, v, a, ¥, AN and satisfying the Hawking evaporation constraint populate
the white region. The extra-galactic y-ray constraints in [29, 30] are shown in dashed red, and the
bound of [32] in solid red. Right panel: fractional abundance of PBHs with respect to the dark matter
abundance as a function of the PBH mass for the parameter values discussed in the text, with and
without higher-dimensional operators (HDOs), assuming the PBHs form during an RD era. The
solution in green satisfies the extra-galactic vy-ray constraints in [29, 30], but there is a small overlap
if the stronger bound of [32] is considered. This overlap can be eliminated by considering slightly
lower O(1) abundances or by shifting the peak of the distribution to higher masses at the price of
having lower values of ns (see left panel).

that in these cases it is still possible to obtain a peak in the power spectrum of order ~ 1072,
the Hawking evaporation constraints kick in and very rapidly forbids sizable abundances of
PBHs. On the contrary, moving the peak of the PBH mass distribution towards larger values
of Mpgy implies a decrease of the spectral index below ng ~ 0.94 — 0.95, thus exacerbating
the tension with CMB observables.

The above facts are illustrated in the left panel of Fig.8, where we show the result of
a scan over the parameter space of the model. All solutions found are characterized by
acceptable values for the CMB observables A;, r, «, ¥ in eq. (90) and by the condition that
the time elapsed from the moment that the pivot scale leaves the horizon until the end of
inflation is AN > 50 e-folds. The plot confirms that values of the spectral index ny, > 0.95
are compatible with a fraction of dark matter in the form of PBHs smaller than 10~ while
a sizeable fraction can be obtained only if ng ~ 0.948 or smaller.

In light of the above discussion, it is important to interpret the actual relevance of

o6



the spectral index tension. The value of n; quoted in eq. (92) refers to the 6-parameter
base ACDM model while the one in eq. (93) to the extension in which also the running of
the spectral index is added as a free parameter. We can however consider other popular
extensions of the 6-parameter base ACDM model [103]. Indeed, there are valid motivations
to believe that the base ACDM model does not capture all the relevant physics throughout
the evolution of the Universe. For instance, in the base ACDM model the neutrinos are
massless, and although this is a reasonable first-order approximation, neutrino oscillations
indicate that neutrinos have a small but non-zero mass. It is, therefore, more than legitimate
to extend the base ACDM model by including the sum over the active neutrino masses, > m,,.
Another plausible extension includes the effective number of relativistic degrees of freedom,
Neg. Quoting from the official Planck 2018 release [103]:

ACDM + Ny : n, = 0.9589 =+ 0.0084, (94)
ACDM + Neg + > _m, : n, = 0.9587 = 0.0086, (95)
dn
ACDM + Nug + -5+ . = 0.950 + 0.011, (96)
dlogk

and in all these motivated extensions the tension with respect to the value ng ~ 0.95 is
significantly reduced. It is indeed known that including a marginalization over the total
neutrino mass or the number of relativistic degrees of freedom could induce a shift towards
lower values in the determination of n,%% [132]. On a more speculative ground, the increasing
statistical significance of the so-called “Hubble tension” (the discrepancy between the values
of the present day Hubble expansion rate Hy derived from the local distance ladder and the
CMB, see [133]) further motivates the need of some new physics beyond the base ACDM
model. Following this line of reasoning, in [134] a global analysis of current cosmological
data in a cosmological scenario that is significantly more extended than the one provided
by the base ACDM model was considered. They included as free parameters o, Nog, Xm,,
and the equation of state of dark energy, finding a preferred value of the spectral index of
order ngy ~ 0.95. In light of these results, we argue that values of the spectral index of
order n, ~ 0.94 — 0.95 favored by our analysis (assuming the majority of dark matter to
be comprised of PBHs) could consistently fit in the context of a cosmological model that
extends the standard base ACDM one.

Before closing this section, let us mention how the different uncertainties in the calculation
of the mass and abundance of PBHs could affect the results presented here. In this section, we
have assumed that the mass of the PBHs is proportional to the mass contained in one Hubble
volume at horizon crossing. Numerical simulations, in combination with the application of
peaks theory, suggest that the mass of the PBHs depends on the shape of the perturbation

from which it is formed [135]. Moreover it is related to the mass in a Hubble volume at a

26See also [131], where the cosmological parameters were derived in the context of a model with a strongly
self-interacting massive neutrino, resulting in lower values of ng.
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time slightly different from the horizon crossing time. The effect of these issues is encoded
in the efficiency factor 7 in eq. (34). Unfortunately, at present the calculation of this factor
carries O(1) uncertainties that do not allow to determine precisely the relation between the
mass Mpgy and the scale k£ at which the enhancement of the power spectrum occurs. This
is important because, as shown in Fig. 8, shifting the mass by a factor = 3 would push
solutions with n, = 0.95 away from the Hawking evaporation constraints. In this way it
would be possible to explain all the dark matter in terms of PBHs with these solutions.
These uncertainties therefore prevent a reliable determination of the fate of the models with
low ng.

Another issue is the threshold §. in eq. (41), the value of which is also uncertain [111-113]
and seems to depend on the shape of the power spectrum [135] (see, however, [136], where
a universal threshold is proposed). The exact value of this quantity only determines the
size of the PBH abundance and is therefore unlikely to affect the results of this section,
which rely only on the relation between the mass of the PBHs and the comoving scale at
which the peak in the spectrum is located. A similar remark can be made about the effect
of non-Gaussianities. We have derived our results by using the Gaussian approximation in
eq. (41). However, as we have mentioned already, the value of the power spectrum required
to obtain fpgy ~ O(1) could be altered in the presence of the non-Gaussian corrections to
this equation, which would appear as additional factors inside the integrand. Nonetheless,
as explained in [125], since this equation is exponentially sensitive to the amplitude of the
power spectrum, the effect of non-Gaussianities can be countered by simply changing the
power spectrum by an O(1) factor. Such a change can be easily accomplished in the exam-
ples we have discussed in this section by slightly changing the value of the £ parameter in
the potential, which has no bearing on ng. In other words, the n, problem is essentially inde-
pendent of the non-Gaussian corrections to the PBH abundance, since the issue in question
is the position of the PBH mass distribution, which is controlled by eq. (34), an expression

that is independent of the £ function in eq. (41).

2.2 B Higher-dimensional operators

In this section we consider a simple, and arguably natural, way of circumventing the ng ten-
sion. Instead of restricting ourselves to the case a,>5 = 0, let us consider higher-dimensional
operators (HDOs) in the potential. The HDOs considered in this section can be generated in
the context of a toy ultraviolet completion to the theory discussed in Appendix B. We shall
argue that a natural organization of the series of HDOs leads to good inflationary solutions
with a value of the spectral index in perfect agreement with Planck data. In fact, a single
five-dimensional operator with a naturally small coefficient and negligible higher-order terms

is sufficient.
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In models of large-field inflation one should generically take into consideration HDOs in
the inflaton potential. It is then natural to question whether these corrections might spoil
solutions that lead to a considerable abundance of PBHs at the renormalizable level, either
by lowering the abundance, or by changing the power spectrum parameters at CMB scales.
A precise characterization of the HDOs is of course possible only if one knows the ultraviolet
completion of gravity. Nevertheless, it is still possible to gain an interesting insight from a

minimal set of assumptions. To validate our construction, we shall follow two simple rules:
i) The HDOs must be subdominant compared to the leading renormalizable terms.

it) The HDOs must be organized in the form of a “convergent” series. The meaning of

this will be immediately clear.

Let us explain our rationale in more detail. If we rewrite eq. (84) as follows

Qy ~ 2 | ~ 3 4 ~ n—4
= 1
U(o) L+ €?/0) A" + azd” + ¢ ( + n§>5 an® )] (97)
the conditions i) and 1) translate into the order relation
<AV < < asd < 1, (98)

meaning that, at each order n > 5 in the expansion, the coefficient a,, has to be small enough
compared to the previous one to compensate the additional power of ¢, which can easily be
O(10) at CMB scales. The description in terms of the effective operators breaks down at
large field values where eq. (98) ceases to be valid. Driven by a pure phenomenological
approach, one can, for instance, fix the coefficient a5 to a very small number such that
the condition as¢ < 1 is satisfied all along the inflationary trajectory while setting the
remaining coefficients a,>¢ to zero. It can indeed be checked that, if we take for simplicity
the same values for ¢ 3) and ¢ chosen in eq. (89), the presence of a dimension-five HDO
with coefficient a5 ~ O(1073) (together with a,>¢ = 0) is enough to give acceptable solutions
with ng >~ 0.960 and the correct mass and abundance of PBHs. However, it is better to follow
some organization principle that may help elucidate the physical interpretation of eq. (98).
Broadly speaking, the ultraviolet theory that generates the HDOs in eq. (97) will be
described, at least, by a mass scale M and a dimensionless coupling g. Let us discuss how

these fundamental quantities enter in our construction. We rewrite each HDO as

On - an¢n = ¢

where, for each operator, we introduce a suppression scale A, (which is not necessarily
equal to M,). The scale A,, defines the strength of the effective interaction O,,, and it is

given by the ratio between a mass scale and a certain power of couplings. A simple but
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pertinent example is that of the electroweak scale v. Its inverse squared, the Fermi constant
Gy = 1/v?, defines the strength of the dimension-six four-fermion operator in the Fermi
theory, and can be defined by means of the ratio between the W mass and the weak gauge
coupling. As anticipated, we make the simplified assumption that the ultraviolet completion
that is responsible for the generation of the effective operators in eq. (99) is characterized
by a single coupling g and a single mass scale M. In such a case, by means of dimensional

analysis [137], we expect in the weak coupling limit the scaling

n—2
1 _ gn74 g g2

i VA A§—4:92(M)”_4Emv (100)

where A = M/g. We refer the reader to Appendix B for a detailed derivation of the scaling

in eq. (100). The mass scale M can be considered as the mass associated to new degrees of
freedom populating the ultraviolet theory, while g characterizes their self-coupling as well as
their coupling with ¢. Consequently, if we compare, in the spirit of eq. (97), the HDO O,
with the renormalizable term ay¢?, we can write (keeping only track of powers of M and g,

and neglecting O(1) proportionality coefficients)

4 _ 4 9’ 9 n n—4

Qg

From dimensional analysis, we know that the coefficient a4 has the dimension of a coupling
squared. This implies that the ratio g?/a4 is a genuine dimensionless number (see Appendix
B for details). The hierarchy among the coefficients a,, for n > 5 can be obtained if A > ¢.

More precisely, the conditions in eq. (98) translate into

1 Cfag 11 }
— < ming ——, — ¢, 102
A {92 ¢in ¢in ( )

where ¢y, corresponds to the field value at the time at which the largest observable comoving
scale k ~ 1073Mpc ! crosses the horizon (since we need to trust our theoretical description
at least up to such field values). Clearly, as we already mentioned, for sufficiently large
values of ¢ the hierarchy in eq. (98) will break down. This is just a manifestation of the old
problem of initial conditions in large-field inflation. We stress that this problem is by no
means unique to our model, but completely generic for large field inflation, and we do not
aim to solve it here. We simply assume that the slow-roll approximation is valid at ¢ = ¢y,.
One further condition needs to be satisfied. As it is clear from the previous discussion, we
expect new states associated to the ultraviolet completion of our effective theory to lie at
the mass scale M. We have to check, therefore, that the energy density during inflation is
not high enough to excite these states (which could alter our effective inflationary potential).
This means that the relation H < M = gA must hold.
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Bearing in mind these conceptual limitations, let us investigate some numerical conse-
quences of the potential of eq. (97). If we set for simplicity g? = a4, the HDOs are controlled

by one single dimensionful free parameter, the inverse scale 1/A, and we have

Qy

(1+&¢?/ M)

n—4
U(p) = axd® + az¢® + ¢ (1 +> Cn%ﬂ , (103)

n>5
where the coefficients ¢, are O(1) dimensionless numbers whose exact values cannot be
computed with dimensional analysis alone. Qualitatively, the effect of the HDOs is shown in
the left panel of Fig. 9 where we consider for illustration A™" = 107*M*, £ = 0.3, ¢ = M,
and c(p,3 = 0, together with ¢, = 1 for n # 2,3 (dashed red line). The solid black line is
obtained by setting ¢, = 0 for all n. At small field values, the stationary inflection point
is not affected by the presence of the HDOs since it is controlled by the quartic and cubic
coefficients. At large field values, on the contrary, the presence of the HDOs introduces a
small deviation with respect to the renormalizable case (solid versus dashed line), and alters
the first and second derivatives of the potential, thus changing the slow-roll parameters at
the CMB pivot scale k,.

We will now consider two benchmark examples of solutions. In the first example, we
assume ¢, = 1 for n # (2,3). For each value of A~! we consider inflationary solutions
which give rise to fpguy =~ 1 and consistently fit CMB observables at large scales. In order
to facilitate the comparison with the renormalizable case, in Fig.9 we show solutions with
fixed number of e-folds AN ~ 51 from the time at which the pivot scale k, crosses the
horizon until the end of inflation. The values of c(y3) and ¢ are the same used in eq. (89)
for the renormalizable case while A and £ are tuned, for each value of A, in such a way to
obtain, respectively, the correct normalization of the power spectrum at CMB scales and
the condition fpgy ~ 1 on the abundance of PBHs. Furthermore, it is important to remark
that all solutions shown in the right panel of Fig.9 have, by construction, the position of
the peak of the power spectrum, kpeay, fixed at the value kpear ~ 1.5 x 10* Mpc™!. This
choice gives an abundance of PBHs peaked at Mppy ~ 5 x 10'7 g, which is compatible with
the possibility of having 100% of dark matter in the form of PBHs. Moreover, it eliminates
all those solutions, like the ones in the left panel of Fig. 8, in which larger values of n, are
obtained at the expense of a larger kpe.x (and larger AN). We consider HDOs up to n = 8,
and check that our results remain stable if further higher-order terms are added. In the
right panel of Fig.9 we show, for each one of these solutions, the corresponding value of ng.
If A=! is too small, the impact of the HDOs is negligible and it is possible to have 100%
of dark matter in the form of PBHs only for values of the spectral index that are 3 o away
from the central value of Planck, as discussed earlier and shown in the left panel of Fig. 8.
However, by increasing the value of A~! without clashing against eq. (98) (region shaded in
gray), the small correction introduced at large ¢ gives values of the spectral index that are

in perfect agreement with the current observational bounds. This is shown by the red solid
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Figure 9: Left panel. Corrections to the potential in eq. (97) due to the presence of HDOs. Right
panel. Inflationary solutions that give 100% of dark matter in the form of PBHs in the plane
(1/A,ns) where A = M/g defines the suppression scale that controls the impact of HDOs (with
large values of A that correspond to more and more suppressed HDOs). All remaining cosmological
observables respect their corresponding CMB constraints. We show solutions with fixed number of
e-folds AN ~ 51. We show two representative cases. The first case corresponds to the solid red
line, and represents the impact of the HDOs in eq. (103) with g> = a4 and ¢, = 1. The second case
corresponds to the dashed red line, and represents the impact of the HDOs in eq. (103) with g% = a4
and ¢, = (—1)""1. The blue star marks the solution whose PBH abundance is plotted in the right
panel of Fig. 8 (blue region with dashed boundary).

line in Fig.9.

Let us now consider specifically the solution marked by the blue star which has ng ~ 0.96
and A~' ~ 2 x 107*M'. As specified before, we include in our analysis HDOs up to n = 8
but for A" ~ 2 x 1072 M " it is possible to see that the first two with n = (5,6) dominate
over the remaining ones. The corresponding population of PBHs is shown in the right panel
of Fig.8 (blue region with dashed boundary). We find that having 100% of dark matter
in the form of PBHs is in excellent agreement with CMB observations (though as already
mentioned, the tensor to scalar ratio r = 0.03 is fairly close to the bound obtained by adding
the BICEP and Keck Array data to the Planck analysis [24, 130]). The solution also satisfies
the strongest Hawking evaporation constraints imposed by the INTEGRAL satellite [31, 32].
The value of ay is fixed by the amplitude of the power spectrum at CMB scales, and we find
as ~ 1071%. Since we assumed ¢? = a4, we have g ~ 107°. From our discussion, it follows
that for the mass scale M = gA we have M ~ 1072M,. The condition H < M is therefore
verified, since H ~ \/as/§ ~ 107°M,,. The same conclusion holds true for all solutions in

the right panel of Fig. 9.
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In the second example that we consider we take ¢, = (—1)"*'. This choice can be
justified, for instance, in the context of toy ultraviolet completions such as the one discussed
in Appendix B. We perform the same analysis discussed before, and our result is shown by
the red dashed line in Fig.9. Also in this case the series of HDOs can fix the ng tension. For
large values of A, the impact of HDOs is negligible, as in the case with ¢, = 1. Larger values
of A=!, in comparison to the case ¢, = 1, are needed in order to obtain the same n,. The
reason is that in the case ¢, = (—1)""! the alternating signs cause a partial cancellation of
the HDOs.

To better understand how the presence of HDOs solves the n, tension and gives an
abundance of PBHs in the right mass window, it is instructive to emphasize three points.
The first is that the modification of the potential induced by HDOs increases the value of
the slow-roll parameter 1 towards less negative values. This O(1) change in 7 is enough to
modify, at the percent level, the value of ng, from ng ~ 0.948 to ny, ~ 0.970. The second is
that the presence of HDOs makes the power spectrum considerably more flat at large scales,
going from ng ~ 0.948 to n, ~ 0.970. As a consequence, the dip of the power spectrum
shifts towards larger values of k. The shift in the position of the dip of Pr(k), for an ultra-
slow-roll phase of the same duration, would also shift the position of the peak of Pgr(k)
towards larger k, producing PBHs with unacceptably small mass. Finally, note that without
including HDOs, we do not have the freedom to change the potential at large field values.
Consequently, the simplest way to get a larger n, is to fit CMB observables at larger field
values. If we assume the renormalizable potential to be dominated by the quartic term, it is
indeed possible to obtain, by means of the slow-roll approximation, the qualitative scaling
ns = 1 —16/[(1 + 6)¢&\p] + O(1/dd\s). However, increasing ¢cyp increases, in turn,
the value of AN and shifts the peak of the power spectrum towards smaller scales. This
qualitative behavior characterizes all solutions in Fig. 8 which produce a sizable abundance
of PBHs. Although we do not have a rock-solid mathematical proof, our numerical scan
suggests that this is a generic feature of the fourth-order polynomial model. These simple
points make clear that the ng tension can be solved with HDOs while obtaining PBHs as the
totality of dark matter in perfect agreement with observational constraints.

It is worth noting now that the perturbative unitarity breaking scale for the potential of
eq. (85) is Ay = M, /¢ [138, 139]. New dynamics must arise at a scale lower or equal than
Ay in order to restore unitarity. The values of £ ~ O(0.1) that we find in our solutions push
Ay above M,,. It is thus tantalizing that M ~ 1072M, < Ay, as we can speculate with the
possibility that the new states arising at the mass scale M (and the corresponding HDOs)
may harbinger a UV completion ensuring unitarity beyond Ay.

The numerical analysis carried out in this section shows that small corrections to the
inflaton potential generated by HDOs —whose presence, in particular in the context of large-
field models of inflation, has no reason to be neglected— have the capability to fix the n,

tension pointed out earlier. Before concluding, it is worth mentioning some possible ex-
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tensions of our analysis. First, the condition ¢?> = a4, that we imposed for simplicity, has
no fundamental reason to be true, and relaxing it would open an additional direction in
the parameter space (g, A) that would be interesting to explore. Second, one can in princi-
ple add HDOs that include field derivatives; for instance an effective operator of this kind
with canonical mass-dimension d would have the general form OF = (1/A% 40" ¢" with
d = nyg + ng. These operators can arise, for instance, in the context of the toy UV theory
discussed in Appendix B. Although we expect these operators to be slow-roll suppressed at
large field values, where HDOs are most relevant, it would be interesting to include them in

the analysis.

2.3 B Monodromy-inspired potential

In this section we move away from the simple polynomial model we studied earlier to present a
more elaborate scenario aimed at alleviating some of the downsides of inflection-point models
of PBH production; specifically, the fact that the inflection point often has to be introduced
in the potential in an ad hoc manner, and the fact that PBH formation in a radiation-
dominated (RD) era leads to a severe fine-tuning of the parameters in the model. Our setup
is characterized by a string-inspired inflationary potential which naturally features several
local minima, and an early matter dominated (eMD) epoch after inflation.

Our scenario is inspired by axion monodromy inflation (AMI) [140, 141]. In this frame-
work, the inflaton is a pseudo-scalar field with a discrete shift symmetry which is broken by
a non-periodic potential term. The inflaton potential features axionic oscillations, superim-
posed on a monodromic term. When the amplitude of these modulations is large enough,
near-inflection points and local minima appear in the inflationary trajectory. AMI can arise
from string compactifications, where the inflaton field is generically accompanied by other
heavy scalar fields, called moduli. As the inflaton travels 2 M, distances during inflation, the
heavy moduli tend to shift from their VEVs and backreact on the inflationary trajectory,
leading to a flattening of the inflaton potential [142, 143] at large field values. The non-
periodic part of the potential is generally quadratic for ¢ < M, and behaves as a monomial
for ¢ 2 M,. In certain realizations of AMI, which will be of particular interest for us, the
amplitude of the axionic potential oscillations is suppressed at large field values [144]. There-
fore, AMI can provide inflationary potentials which exhibit two distinct regions (see Fig. 10):
the first one, close to the global minimum, can feature the critical points that are desired
for PBH formation; the second region, at large field values, does not display oscillations and
is instead ideal to realize large field inflation. This setup can naturally accommodate a long
eMD epoch after the end of inflation, before the inflaton decays completely and reheats the
Universe. The minima of the potential for small field values is approximately quadratic and
can support small oscillations of the inflaton. As per the discussion in Section 1.3, if these

oscillations dominate the energy budget of the Universe, the latter enters into a phase of eMD
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after inflation. Besides, in the framework of moduli stabilization in string compactifications
[122, 123], the inflaton is often identified with a modulus field, meaning that it couples only
gravitationally to the visible and hidden sectors. Therefore, reheating occurs at a slow pace
via Planck-suppressed operators and the eMD phase can have a prolonged duration. AMI

potentials typically feature the following functional form

2 172 2\ P
V(¢) = Vinon + Veos = m21]: {(1 + %) - 1} + A(¢)* cos (? + 5) . (104)
Let us first focus on Vi,,. This term features three parameters: two energy scales,
F and m, and an exponent p, which may be either positive or negative. For ¢ < F,
this part of the potential is well approximated by a parabola. For ¢ > F', the potential
either grows as ¢* (if p > 0), or saturates to a plateau (if p < 0). In most constructions
p < 1, meaning that the parabola tends to flatten at large field values. Typically, these
flattening effects kick in at ¢ ~ F' < M, possibly fitting nicely with general arguments
against the validity of single-field EFT descriptions of large field inflation, such as the weak
gravity conjecture [145] (see [146, 147] for applications to axion inflation, and [148-150] for
related conjectures). Observationally, this feature is essential for the viability of (104) as an
inflationary potential. Indeed, power-like potentials with p > 1 are strongly constrained by
CMB data, since they predict a large amplitude of primordial B-modes [23]. Models with
= 1/3,1/2 [143] are still marginally compatible with CMB data. Here we will focus on
p < 1, while allowing also for concrete values of p (such as 1/6) beyond the ones that have
been obtained so far in concrete stringy setups. An explicit realization of AMI with p < 0
—a possibility that we will consider— has been provided in [151].
Let us now discuss the second part of the potential (104), V... This contains the distinc-
tive axionic oscillations, superimposed on Vi,o,. Crucially, their amplitude A($)* depends

on the inflaton value. We follow [143] and parameterize this dependence as follows
PA
At = e (37, (105

with ¢, 2 M, and p, either positive or negative. Putting (104) and (105) together, we can

write [1]
1 F2 2\ P (6 \PA
V(p) = m2f2{2_pﬁ {(1 + %) - 1} + ke () cos <? + 5) } + Vo, (106)
where we have added a constant V[, which ensures V' = 0 at the reheating minimum. The

implications of V., then depend on p,, p and the rescaled amplitude of the oscillations

k = Aj/(m?f?). Let us consider the impact of x and neglect the exponential prefactor for
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now. Close to ¢ = 0 we can approximate eq. (106) by

V((b) ~ m2f2 {%% + K cos (? + 5>:| . (107)

It is then straightforward to see that the potential (107) exhibits local minima for k > 1,
whereas for £ < 1 the oscillating part of the potential only gives rise to small bumps in the
axion potential. We are interested in local minima which appear close to the bottom of the
inflationary potential (i.e. for ¢ /M, < 10) and we will thus consider £ > 1.

Let us now return to the full potential. Depending on the sign of p, the amplitude of the
oscillations is exponentially suppressed or enhanced at large field values. The value of pj
is determined by the source of the non-perturbative effects that induce V.,s and by moduli
stabilization. See [144] for examples with both py > 0 and py < 0. We are interested in
pa > 0 since then oscillations are absent at ¢ > ¢, and the flatness of the potential allows to
fit the CMB without tuning, while still featuring local minima at smaller field values. This
particular behavior of the inflationary potential is also somewhat similar to what has been
used in the relaxion mechanism [152]. Finally, let us discuss the parameter ¢, which should
be included on general grounds, since Vi, and V. have a priori no reason to be aligned.
Furthermore, the choice 6 = 0 leads to the presence of two degenerate minima at the bottom
of the potential, which may lead to stable domain walls during the reheating phase, when
the field can oscillate along the full potential. For these reasons, in what follows we take
o~ 1.

The potential in eq. (106) is shown in Fig. 10 for different parameter choices. The figure
illustrates the key feature of our inflationary potentials: beyond ¢ ~ 2M,,, the potential is
essentially indistinguishable from a standard monomial with power controlled by p, while at
small field values the periodic axionic oscillations lead to a rich structure of local minima,
the depth of which is controlled by . This parameter can be changed without affecting the
inflationary potential at large field values. Inflation along our potential proceeds as follows.
First, for large field values (¢ > M,,), the inflaton slowly rolls down the potential. This phase
is the one responsible for the small CMB temperature anisotropies. Then, an ultra-slow-roll
phase can be achieved as the inflaton traverses one of the local minima at ¢ ~ M,. In this
regime, as we have seen, super-horizon curvature fluctuations are exponentially enhanced,
leading to PBH formation upon horizon re-entry. Interestingly, in this scenario the two
phases are decoupled from one another.

Due to the presence of local minima, the inflaton does not necessarily end up in the
global minimum of the potential. In fact, in the regime x > 1 the field typically gets
classically stuck in one of the local minima closest to the global minimum. Let us estimate
the tunneling rate to the global minimum from one of the nearest neighbouring local minima.

St

This is proportional to e™*, where the tunneling action S; can be easily estimated in the
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Figure 10: Shape of the potential in eq. (106) for Vo =0, F = M), f =0.1M,, px =2, ¢pp = M,
and § = —1. The solid black line corresponds to p = 1/6 and k = 8. The region shaded in
light gray illustrates the effect of changing p in the range —1/2 < p < 1/3, with larger values of
p corresponding to steeper potentials at large field values. The effect of varying k in the range
8 < k < 35 is shown as red lines with increasing brightness.

thin-wall approximation [153] as follows:

(108)
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Here we have approximated the tension of the bubble wall as o ~ Agzﬁ\/A_é, with A¢ ~ f
the distance in field space between minima and AV the difference in height between the
minima. For p = 1, the amplitude of the temperature anisotropies in the CMB implies
m ~ 107%M,. For |p| < 1, the CMB normalization depends also on F and larger values
of m are allowed. Typical values of f in string compactifications are 1072M,, < f < M,
Therefore, for k ~ O(10) (as it will be in our examples) S; is very large and tunneling to
the global minimum is an extremely suppressed process, regardless of the prefactor. The
constant Vj is chosen in such a way that the minimum where the inflaton stops has V;, = 0.
After inflation ends, the inflaton then oscillates around an approximately quadratic minimum
and gives rise to the desired epoch of eMD. The Universe may then have a neighbouring AdS
vacuum (the global minimum of the full potential in eq. (106), if the inflaton gets stuck in a

preceding local minimum). As we have shown, this does not pose any cosmological threat
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to the stability of the Universe.

Let us remark now that a potential (also inspired by AMI) with multiple approximate
inflection points was considered in [69] in the context of PBH formation (during radiation
domination). It differs from ours in several respects that are worth mentioning. The most
important difference is that the potential of [69] features oscillations also at large field values.
This implies that the CMB is fit in this case by tuning very finely the parameters of two
trigonometric functions, in such a way that the CMB scales coincide with a sufficiently flat
region of the potential for large field values. The axion decay constant in the case of [69] takes
larger values: f 2 0.6 M,. In our case the CMB observables are essentially independent
of the axion decay constant, which means f takes somewhat smaller values: f 2 0.2M,,.
Another difference is that the examples of [69] do not display multiple minima, but rather a
successions of approximate plateaus. In that case inflation ends at the absolute minimum of
the potential. Instead, we consider the possibility of several local minima where the inflaton
may get stuck. Finally, [69] focused on PBH formation during RD, while we take into account
the possibility of a long eMD epoch, which allows for a significant tuning reduction in the
inflationary parameters.

We now proceed to solve the Mukhanov-Sasaki equation (24) numerically to find the
power spectrum Pgr and the PBH abundance for concrete examples that satisfy the most
recent Planck constraints [23, 103]. The potential in eq. (106) can feature many local minima
whose depth grows as the inflaton travels from larger to smaller values. During its trajectory
the inflaton passes through several of these minima, and the enhancement of the primordial
spectrum becomes most pronounced when it goes through the next-to-last minimum, before
stopping definitively; since it is in this region that it slows down the most. The depth of the
minima is controlled by the parameter k, as we mentioned earlier. Any large enough value of
k ensures the existence of minima which may lead to abundant PBH formation. The actual
value of the abundance is determined by the speed of the inflaton as it climbs out of the
next-to-last minimum before reheating. This speed is, in turn, fixed by the precise value of
k. In our examples, we adjust the parameter s to obtain fpgy ~ O(1), and find x ~ O(10).
The smaller amplitude of Pg required to account for all the dark matter with PBHs formed
in eMD tends to reduce the number of e-folds that the inflaton field spends traversing the
local minimum responsible for PBH formation with respect to the case of RD. Therefore,
imposing fppg ~ O(1) with masses in the window (1), some examples of potentials that are
ruled out for PBH formation during RD due to an excess of inflation —see [124] and eq. (56)—
may become viable changing x appropriately if the PBHs form during an eMD phase. The
same can be expected to occur for other models with an approximate inflection point.

Let us now discuss the effects of the rest of the parameters of the potential. We start with
F and ¢,, which control the location in field space at which the flattening effects kick. We
take them to be of order M,. The parameter f < M, governs the width of the local minima.

We can distinguish between different scenarios depending on its value. For values of f close
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Figure 11:  Primordial spectra for Examples 1 (left) and 2 (right). The dotted and dashed lines
correspond to the parameters choices in Table 2 labeled RD and eMD, respectively. The solid lines
(not included on the table) are shown for ease of comparison and correspond to setting T = 1,
together with k = 8.253 for Example 1, and k = 14.984 for Example 2.

to M, the inflaton encounters at most one local minimum before inflation ends. In this limit
the model is essentially an implementation of the standard mechanism of PBH production
from a quasi-inflection point. We will not consider this situation here, but we remark that it
is a possibility capable of producing an interesting population of PBHs for the dark matter
problem, if Kk ~ O(1). In the opposite limit, for f < 1, the inflaton may roll all the way
down to the global minimum and oscillate in a region of the potential which can encompass
several local minima. This case is not relevant for PBH formation and we will not consider
it either.?” We thus focus on intermediate values of f for which the inflaton still travels
over several minima before inflation ends. We find that if f < 0.1M, and Pr ~ O(107%) is
imposed at its maximum, the field generically does not spend enough time (typically at most
~ 5 e-folds) on the local minimum previous to the end of inflation. In this case inflation does
not last long enough to solve the horizon problem. We focus on f = 0.2M,, in our examples.

We will consider two concrete choices for the parameter p, one with p > 0 and the other
one with p < 0. In particular, we find that the largest positive value of p which is compatible
with the latest Planck data and at the same time leads to a significant amount of light PBHs
is smaller than p = 1/3, which is the smallest positive exponent for which an explicit string
construction currently exists [143]. We choose p = 1/6 to produce our first example and
p = —1/2 for our second example. We focus on the case in which the inflaton gets stuck in

the local minimum closest to the global minimum, which corresponds to rather large values

ZTHowever, it may present interesting consequences for reheating [154].
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of k. The scenario with the inflaton rolling all the way down to the global minimum can also
be easily realized for both p > 0 and p < 0, by taking smaller values of x. In both cases, we

set V' =0 at the minimum of the potential where the field ends its trajectory.

f 0 | pa O P F m-10% | V, - 101! k (eMD/RD)
e Example 1 | 0.2M, -1 | 1 | 1.15M, | 1/6 | 0.75M,, | 3M, | —5.1M, | 8254/8.254538
Example 2 | 0.2M, | -1 | 1 | 1.15M,, | -1/2 | 1.85M,, | 2M, 2.0]\41;1 14.986/14.986471

¢* Ng T (0% AN(QMD/RD) fPBH (eMD/RD) MPBH
e Example 1 | 6.85M, | 0.970 | 0.068 | -0.009 51/57 0.9/0.4 1071 M,
Example 2 | 6.040, | 0.970 | 0.036 | 0.02 52/56 0.2/0.6 10715 M,

Table 2: Parameters and predictions for the two examples we consider. The parameters give the
correct normalization of the spectra at k, = 0.05 Mpc™!, corresponding to ¢ = ¢.. The CMB
parameters are given at this scale, and AN denotes the number of e-folds from ¢4 to the end of
inflation. The values of k are given with the precision needed to attain the corresponding fppu in
each case. We have set T,, = 10*GeV and T = 3.1 for Example 1, and T,, = 2 - 10° GeV and
I = 4.4 for Example 2.

We show the resulting curvature power spectra in Fig. 11 for p = 1/6 and p = —1/2.
The parameters of these two examples are given in Table 2. Additionally, for each one of
these values of p, we obtain two different power spectra by considering two choices of k. The
spectra shown with continuous lines in Fig. 11 lead to fppy ~ O(0.1—1) if the collapse occurs
during the eMD epoch with reheating temperature 7}, < 10° GeV. For these examples, we
use the expression for J which takes angular momentum into account, (44) with f,(g.) = 1.
We have chosen Z = 3.1 for Example 1, and Z = 4.4 for Example 2. In contrast, the spectra
in dashed lines lead to a large fppy if they form during RD, and require further tuning of
k. The predictions for the inflationary observables and the PBH masses and fractions in our
examples are also reported in Table 2.2®6 'We remark that although the examples presented
in Table 2 satisfy the most recent Planck constraints, they do not satisfy the bound on r
obtained if the BICEP and Keck Array data are included in the analysis [24, 130], which
was published after [1] and is r < 0.035 (although Example 2 is within ~ 1o of this value).
It might be possible to find examples that satisfy this stronger constraint if larger negative
values of p are considered. We also point out that our examples satisfy the strongest Hawking
evaporation constraints imposed by the INTEGRAL satellite [31, 32].

Since the suppression of the PBH formation probability away from the peak of the spec-

28The abundance in the case of RD has been computed using eq. (41), which assumes Gaussian fluctuations.
However, due to the large change in the inflaton velocity in the region of the potential responsible for
PBH formation, large non-Gaussianities may be produced. The impact of non-Gaussianities on the PBH
abundance is not entirely understood yet but, as shown in [125], it is possible to compensate for their effect
by slightly changing the size of the power spectrum, or, alternatively, the threshold J. in eq. (41) for the case
of PBH formation during RD, so taking them into account will not significantly alter our results. The effect
of non-Gaussianities on PBH formation during an MD era in models of inflation with an inflection point
remains to be studied.
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Figure 12: Distribution of PBH masses for Examples 1 (left) and 2 (right). The largest masses
shown in each panel correspond to the last modes that undergo collapse during the eMD era. The red
region corresponds to the bound in [32]. We have also included for comparison the curves obtained
by setting T = 1, with k = 8.253 for Example 1, and k = 14.984 for Example 2.

trum is much milder in eMD than in RD, the mass distribution functions (depicted in Fig. 12)
decay much more quickly in the latter case. This means that the extragalactic y-ray bounds
coming from PBH evaporation become more difficult to evade (for a given k value at the
peak of the spectrum) if the PBHs form during an eMD era. This is a generic aspect of the
eMD scenario for light PBHs. We find that the the bounds can be evaded in our examples,
provided that the parameter Z in eq. (44) is around Z ~ 3. For Z = 1 only a very narrow
primordial power spectrum can take full advantage of the eMD phase without clashing with
the evaporation bounds. The largest masses shown in Fig. 12 correspond to the last modes
that undergo collapse during the eMD era. The shape of the distribution for larger masses
depends (unless one assumes pure RD right after inflation) on the details of the transition
between eMD and RD, but we expect a rapid decay of the abundance due to the fact that
the collapse occurs at least partially during the RD stage.

From these examples, we are able to extract the amount of tuning on the parameter s
which is required in order to obtain fpgy ~ 1 in our setup. We focus on this parameter
because it is the one that controls the depth of the minima in the potential and therefore
the enhancement of the spectrum, as illustrated in the examples of Table 2. We quantify
the tuning [155] by calculating |Ar/k
example with fppy ~ 1 and the closest x which invalidates the example, with the rest of the

, where Ak is the difference in k between a successful

parameters kept fixed. In other words, Ax is given by the minimal precision with which &
needs to be specified to obtain fpgy ~ 1. In the eMD case, we find that x has to be chosen
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with a relative precision (tuning) of order 1072 % for p = 1/6 and 6 - 1072 % for p = —1/2.
For RD, we instead find that the required tuning is increased to order 1075 % for p = 1/6
and 6 - 107¢ % for p = —1/2. Thus, an eMD phase alleviates the tuning in the potential
parameters by three orders of magnitude. We expect this conclusion to remain valid for

other models, since they are mainly a consequence of the discussion in Section 1.2.
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CHAPTER

3

Quantum backreaction

In this chapter we reasses the calculation of the primordial power spectrum in the presence
of an ultra-slow-roll phase by using the stochastic inflation formalism. In Section 3.1 we
review the basic facts about the framework and describe the role of the coarse-graining
scale. In Section 3.2 we derive the classicalization condition for the curvature perturbation
in presence of a USR phase, using the occupation number density as a proxy. In Section
3.3 we use the analytical solution to the Mukhanov-Sasaki equation presented in Section 1.4
to find analytical expressions for the correlation functions of the noise terms that appear
in the background equations of motion for the inflaton and show that the power spectrum
in the stochastic inflation formalism coincides, at the linear level, with the result obtained
by means of standard perturbation theory. Finally, in Section 3.4 we confirm our results

numerically in the context of the polynomial model introduced in the previous chapter.

3.1 B Stochastic inflation

In the standard inflationary picture, the inflaton field is split into a homogeneous background
piece and a space-dependent perturbation. The background piece is treated classically, and
only the perturbation is treated quantum-mechanically. Soon after horizon crossing, the
Fourier modes of the perturbation are placed in highly squeezed states which undergo a
quantum-to-classical transition [156, 157], leading to the classical distribution of temperature
fluctuations that we observe in the CMB. In this formalism, the classical background field
follows a set of deterministic equations of motion and its evolution determines the behaviour
of the perturbations. This treatment, however, does not take into account the possibility
that perturbations might backreact on the classical inflaton trajectory, a shortcoming that
the framework of stochastic inflation aims to remedy.

In the stochastic inflation formalism [71], the inflaton field is instead split into a coarse-
grained, long-wavelength piece, and a short-wavelength perturbation. This splitting is per-
formed by choosing a suitable coarse-graining scale k,, which must be introduced into the for-
malism by hand. Motivated by the fact that during slow-roll perturbations classicalize soon
after horizon crossing, the most appropriate choice for this scale turns out to be k, = caH,
where the coarse-graining parameter ¢ can be set to ¢ < 1 in the slow-roll regime. Notice
that k, is a time-dependent function. The physical picture is then that short-wavelength
modes gradually leave the horizon as time passes and thus the coarse-grained part of the field

changes dynamically. After classicalizing, the short-wavelength perturbations behave as clas-
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sical stochastic variables which act as sources of stochastic noise for the coarse-grained fields,
which now follow non-deterministic, Langevin equations of motion. During slow-roll, this
procedure is known to yield a power spectrum of curvature perturbations in agreement with
the usual perturbation theory approach at the linear level (see e.g.[72]). However, whether
the same result holds in the presence of an ultra-slow-roll phase is a delicate issue. As we
will show, since perturbations in this case take longer to classicalize after horizon crossing,
the choice of the coarse-graining scale is critical, and only for k, = caH with o ~ O(107°)
can the results of the formalism be trusted.

In [158] it was argued that in the presence of a USR phase, the probability distribution of
the fluctuations could be altered significantly, ultimately leading to different results for the
mass and abundance of primordial black holes formed in models of inflection-point inflation.
The issue was later studied in [159], which made use of a potential based on the ratio of
two polynomials first presented in [66] and concluded that in the presence of a USR phase
the power spectrum of curvature perturbations computed at the linear level is enhanced by
several orders of magnitude with respect to the usual perturbation theory result. These
results were later disputed in [160], where it was instead concluded that the formalism
leads to a power spectrum in agreement with the standard result at the linear level and at
leading order in the slow-roll expansion, claims that were confirmed in [161], where it was
concluded that the stochastic corrections to the power spectrum in the presence of a USR
phase are negligible even beyond leading order in the slow-roll parameters. The validity of
the formalism beyond slow-roll was also addressed in [162], which agreed with the conclusions
of [161]. The calculation of the power spectrum was performed in the article that this chapter
is based on [3], where we found that, as we shall see, the power spectrum computed in the
stochastic formalism and at the linear level agrees with the standard result as long as the
coarse-graining scale is appropriately chosen.

Let us remark that, although interesting on their own, these results are not the end
of the story. If one of the main motivation for studying the stochastic formalism beyond
slow-roll is to determine the correct way to calculate the mass and abundance of PBHs
formed in inflection-point models of inflation, then higher-order correlators should also be
considered. In fact, within the framework of stochastic inflation it is possible to calculate
the full probability distribution of the fluctuations. Analytical results in this direction can
be found in [73, 74, 97]. These articles were published shortly after [3] (or around the
same time), and all agree that the probability distribution for the primordial fluctuations,
although Gaussian at the peak, decays exponentially, a fact that is relevant for the correct
determination of the PBH mass distribution. These results were confirmed numerically in
[75, 76]. In this thesis we do not study higher-order correlators, but it is important to point
out their relevance for PBHs.

We now reassess the computation of the primordial power spectrum in the presence of

a USR phase using the framework of stochastic inflation, both analytically and numerically,
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following the discussion in [3]. To separate the long- and short-wavelength modes, we can

split the quantized inflaton field ¢f(t, x) in two different pieces,

~ ~ ~

o(t, ) = ¢o(t, x) + ¢Q<t? x), (109)

where
do(t, ) = / (;ZW,;W[kg(t) — k] [axor(t)e™* + hc ], (110)
dq(t, @) = / ng)SW[k: — ko (t)] [ardn(t)e™™ + h.c.] . (111)

Here, QASC (t, ) represents the coarse-grained part of the field containing the long-wavelength
modes, and qBQ(t,a:) contains the short-wavelength ones. In what follows, we will treat
the latter as a perturbation which acts as a source for the coarse-grained piece (;BC. The
quantities ag and its hermitian conjugate az represent creation and annihilation operators.
Whether a mode is short- or long-wavelength is determined by the window function W and
the cutoff scale k,. As we have anticipated already, in standard slow-roll, perturbations
can be shown to classicalize (as we will do in the next section) shortly after they cross the
horizon. Therefore, an appropriate choice for the cutoff scale in this case is k, = caH, with
o < 1 a constant parameter. The situation in the presence of a USR phase changes, however,
since perturbations take longer to classicalize after horizon crossing. In this case, the cutoff
scale can still be chosen as k, = caH, but the cutoff parameter must be 0 < 1. The exact
value this quantity must have to correctly capture the dynamics is model-dependent, but we
will estimate it to be ¢ ~ O(107°) in the next section for standard inflection point models.
We will have more to say on the role of this parameter at the end of this section. We choose

the window function to be the Heaviside step function,
Wik, (t) — k] = Olk,(t) — K]. (112)

Since the only role of the window function is to determine whether a mode has classicalized
or not, results should not depend strongly on its choice.?? The simple choice shown above
has the convenient consequence that the stochastic noise appearing in the equation of motion
for the coarse-grained field can be modelled as a Wiener process, as we will see momentarily.
It is important to stress that both fields gEc and qAﬁQ in eq. (109) have an intrinsic quantum

nature. Since the window function selects modes with k < k,, the spatial dependence in éc

29We remark, however, that it was noted in [163] that sharp cutoffs such as the one chosen here lead to
issues in the noise correlators at large spatial distances. Smooth window functions have been proposed in
[164-166]. As far as we are aware, the effect that varying the window function would have in the presence
of a USR phase has not been studied, and would be an interesting direction for future work.
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can be neglected on these scales compared to the temporal one, and we can define

~ ~ —

dc(t, ) >~ ¢c(t) = o). (113)

In other words, the coarse-grained field ngc can be considered homogeneous, at each time
t, over a length scale L,(t) = (caH)™'. Similar considerations apply to the conjugate

momentum 7 of the field, which can also be decomposed in long- and short-wavelength

pieces
7(t,x) = nc(t, ) + 7q(t, ), (114)

where
wo(t,x) = / (;ZW’;:?)W[k:(,(t) — k] [agmi(t)e™* + he], (115)
nq(t,x) = /(ZT’;W[I@ — ko (t)] [armr(t)e™® + hoc.], (116)

in analogy with egs. (109, 110, 111).

Let us determine the equation of motion for ¢ when QEQ is thought of as a perturbation. We
work using the spatially flat gauge 1» = E' = 0. Our convention for the metric perturbations
is given in eq. (16) (see also Appendix A for a review of perturbation theory). The equations

of motion of the full inflaton field G(¢, z) and its conjugate momentum # (¢, ) take the form

dé 1 1 .
d_j? = (L4 g)7 + = (VB) - (V9) (117)
‘fi—: = év (#VB) 4 aV?p + aV - (¢V) — a*(1 + )V, (o). (118)

If we now plug eq. (109) —together with an analogue decomposition for the conjugate momen-
tum 7(¢, x)— into egs. (117, 118), we find, linearizing in QASQ and 7q, the system of Langevin

equations (see Appendix C for a review of stochastic differential equations)

d_ p—

d—f — % + 6, (119)
dr _

d—: = —aPV(d) + &, (120)

where we have defined the so-called noise operators (since ag is an operator)

dSk dw i * —ix-

o [ Y ] o
d3k dW - *x _—ix-

€7T = — / Wﬁ |:a/k7rk€+ k + CLL'Tfke k:| 3 (122)
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where the Fourier modes ¢ (t) and 7 (t) defined in (110, 115) satisfy the Hamiltonian system

O = %(W@k‘i‘ﬂk)a (123)

T = _ngBk — ak*¢y, — a® | Vy(9) + ¢kv¢>¢(¢§)]- (124)

The time derivative of the window function is, in accordance with eq. (112),

aw d dk,(t)
—_—=— . 12
- = S0l — k(1) = —alk — K, (0] 72 (125)
In Fourier space, the metric perturbations obey
Hepp = ¢k ¢ (126)
2M2
K U [de, o (dO\" | dpdo
By combining these equations we obtain
- . k2 1 1d do
H — = 0. 12
ok +3 ¢k+a2¢k+{v¢¢(¢) M%ﬁdt{H(dt) }}@c 0 (128)

If we define uy = a¢y/M, and change variables to conformal time adr = dt (recall that

"= d/dr), we obtain the stochastic inflation analogue of the Mukhanov-Sasaki equation

P &/
uy, + (? - k:2) up =0, with 2= (129)

where the difference with respect to the standard perturbation theory result (24) once we
identify u; = 2Ry is that z is constructed using the coarse-grained field ¢(¢), and not the
classical background field ¢(¢). Similarly, the quantity ¢ (or ux) should be understood as
a Fourier mode of the short-wavelength perturbation in eq.(111) and not as the standard
quantity d¢y from perturbation theory.

Despite their intrinsic quantum nature, a classical interpretation can be assigned to ¢ and
& and &, in egs. (119,120). If we compute the equal-time commutator [£4(t, ), ms(t, 2')],
we find, in the limit k,|z — 2’| < 1

[o(t, @), & (t, )] o< o, (1), (1) — b, ()7, () ~ 0. (130)

Since the commutator vanishes, the variables £, and &, can be considered classical (this
implies that a similar interpretation can be assigned to ¢ and 7). However, at this stage we
cannot assign to them any specific numerical value since they are still defined in terms of

operators. This simply means that, from a classical point of view, they must be considered
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stochastic variables whose statistical properties are fully determined by computing their
correlation functions (that is, by identifying quantum expectation values with statistical
moments). It is straightforward to check that (0|&, (¢, 2)|0) = 0. We define the two-point

correlation matrix

Otait o) = < (Oleg(t, )6 (¢, /) 0) (0161 2)ex (¢, 2")10) ) s
<O|§7r(t7 m)&?(t » L )|O> <O|€7r(ta a")gTr(t ) L )|O>
with elements
dk? sin(ky|x — o’ ,
01, = 01¢r(t. 216 (¢ 2)10) = 55 5 o (a7, (07 s - ). (132

The two-point correlation functions are therefore nonzero only at ¢ = t/, a property that
defines the so-called white noise. This noise also happens to be Gaussian, since higher-order
correlators can be expressed in terms of the two-point functions due to Wick’s theorem.
These facts, which originate from our choice of window function in eq. (112) justify modelling
the noise in the Langevin equations (119, 120) as a Wiener process (see Appendix C for the
definition of a Wiener process and a review about stochastic differential equations). Other
choices of window functions lead to colored noise sources, for which the standard techniques
of stochastic differential equations involving Wiener processes cannot be applied. In the
following, we shall restrict our analysis to the simplest case of white noise, although we
remark that other choices are also acceptable (see e.g. [164-166]). As we mentioned already,
since the only role of this function is to distinguish classicalized modes from quantum modes,
the results should not depend heavily on this choice. We are interested in the effect of the
noise on length scales Az = | — ’| over which the coarse-grained field is homogeneous,
Ax < L,. This implies that we can evaluate eq. (132) at the same spatial point,  ~ x’.

Eq. (132) becomes

, , dlogk, k3 N
Oplt.ait @) = 0,15t~ 1), 00 =18 Ko g g0, (3
Pfgtka)

where Py, (t, k,) is the power spectrum of the fluctuations (¢, 7) evaluated for each time ¢
at the corresponding coarse-graining cutoff wavenumber k,.

Let us summarize the above results and highlight a few points. The equations of motion
(119,120) can be interpreted as Langevin equations for the classical stochastic variables ¢
and 7. The quantities {, and &, then behave as sources of stochastic noise, which we model
as Wiener processes due to the fact that their correlation functions, given by eq. (133), are
non-vanishing only at equal times. These equations of motion can be solved numerically by
discretizing the time variable and drawing (from a Gaussian distribution) a different value

for the noise sources at each time step. After repeating this procedure for a large number
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of realizations, the statistical properties of the system can be determined. This procedure,
however, is a very difficult numerical task, since the amplitude of the background noise, given
by eq. (133), is determined by the evolution of the fluctuations. The correct way to handle
the evolution would then be to solve for the background and perturbations simultaneously,
see e.g.[76]. An alternative approach is to expand the coarse-grained fields about their
classical counterparts at first order, ¢ = ¢ + 0, and T = 7y + 67, Where ¢ and 7y are
defined as the solution of the Langevin equations in the absence of the noise term. This can
be thought of as the first step of a recursive strategy [167, 168]. Following this approach,
the stochastic noise appears as a source for the classical stochastic variables d¢g and d7g.
At first glance, expanding the fields in this way might make it seem like we are just doing
standard perturbation theory. However, notice that the variables d¢g and 7 retain here
their statistical meaning precisely because of the presence of the noise terms in the equations
governing their evolution. It is, therefore, only by computing the corresponding statistical
moments that one can extract information about the distribution of the perturbations. This
is the approach that we shall take from now on.

Until now, we have formulated the problem using cosmic time ¢ as the time variable.
However, in stochastic inflation using different time variables can lead to different physical
results. This is for instance the case if one considers the number of e-folds N instead of the
cosmic time ¢. This is because changing variables from ¢ to NV involves H, which is a stochastic
variable, since it is a function of ¢. In [72], it was argued that the number of e-folds N is
the time variable which allows one to consistently connect stochastic inflation with results
from QFT on curved space-times (see also [169, 170]). This issue is not really relevant for us
since all of our results in this chapter will be derived using the analytical model presented
in Section 1.4, which assumes that H is constant. Nevertheless, formulating the stochastic
dynamics in terms of the number of e-folds can help elucidate the physical interpretation of
some of the final equations, in addition to being more convenient for numerical calculations.
For this reason, from now on we switch to the description in terms of the number of e-folds.

The Langevin equations then take the form

d¢

=T, (134)
dm 1 _
= B0 = 5 Vi(d) + &, (135)

where, compared with egs. (119, 120), we have rescaled the conjugate momentum as 7 /(a>H) —

7. This rescaling allows a more direct identification of 7 with the inflaton velocity. The noise
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operators are

d3k dW 2L *  —ix-

S = _/ (27)% AN [ak¢ke+ “+adie k] ’ (136)
d3k’ dW 1T * _—ix:

£ = — / @) dN [akﬂke+ kalrre k’] : (137)

where now ¢, and 7 are given by

%:ﬁ@k+ﬂk, (138)
d Tk 2 1 : .
d_7]T\l; =—(3—e)m — ZH By, — (aH>2¢k ~ PiVo(d) + ¢kv¢¢(¢)]- (139)

If we eliminate the metric perturbations by means of the Einstein field equations, we find

>y,
dN?

+ (3 — E)Z% + (a];I)Q +(3—¢) ‘?/)dé;;) M? —2¢(3+¢— 277)} o = 0. (140)

For the noise correlation function in eq. (133), we have

dlogk, k2
Or0N) = "IN 22

ke (N)gi, (N), (141)

where k, = k,(N).

From the discussion presented in this section, it is clear that a proper definition of the
coarse-graining cutoff wavenumber k, is necessary in order to have a correct interpretation
of the stochastic dynamics. In standard slow-roll inflationary models, the choice k, = caH
is well motivated. However, in the presence of a USR phase the horizon-crossing condition
o ~ 1 does not offer a correct description of the dynamics of the perturbations and, in
particular, it does not always describe appropriately the time after which the curvature
perturbation stays constant. To illustrate this, we consider the analytical model developed
in Section 1.4. In Fig. 13 we show, by using this model, that modes that leave the horizon
during the USR phase take much longer to freeze than modes that leave at early or late
times. In the next section we will show that, critically, the freezing condition is equivalent
to the classicalization condition. It is therefore important to re-think about the appropriate
definition of k, in models that feature a USR phase.

3.2 B Classicalization of the modes

In this section we present a detailed analysis of the quantum-to-classical transition of in-
flationary perturbations in the presence of a USR phase. We will argue that the definition

k, = caH can still be used in this case, provided that the cutoff parameter ¢ is chosen to
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Figure 13: Left panel: time at which the curvature perturbation freezes outside the horizon for
each k. For modes that leave the horizon at early times or after the USR phase ends, the freezing
occurs shortly after horizon crossing. Modes that leave the horizon during the USR phase take much
longer to freeze. Right panel: power spectrum Pgr corresponding to the dynamics in the left panel.
The reference scale ky is chosen as the one that crosses the horizon when the USR phase begins.
We have used the analytical model of Section 1.4 with parameters n1 = 0, no = 4, n3 = —1, and
ANy = 2.

be small enough to allow for the classicalization of the relevant modes to occur. To quantize
the system, let us begin by noting that the Mukhannov-Sasaki equation (129) in real space

can be derived from the following action for u(7, )

S= %/dfd?’a;Mg Ku’ - i/u)Q — (vu)Q] : (142)

z

Defining the conjugate momentum p = §S/du’, we obtain p = v’ — (2//z)u. Consequently,

the Hamiltonian is

1 2
H(T) = 5 / d*xM? {pQ + (Vu)? + 2;pu] : (143)
We promote u(7,x) and p(7,x) to quantum operators u(7, ) and p(7, x) with equal-time
commutation relations [i(7, x), p(7, )] = i0*>(x —'). In Fourier space, we find the following

Hamiltonian operator

1

ar) = [ Rk + Paoilo + 2 ie + amilo)| | o)
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with commutation relations [ig(7), pr (7)] = i0°(k + k) and [ig(7), pL, (7)] = i0°(k — K').
We study the evolution of the system in the Heisenberg picture. To this end, we introduce

the time-dependent ladder operators

an(r) = \/12_]{ [ak(f) +at k(r)} , (145)
() = =iy 5 [aalr) — au()] (146)

which have equal-time commutation relations [ag(7), al,(7)] = 6*(k — k'). These equations

follow from the usual form of the lowering operator

an(7) = 1 Zin(r) + ——p(), (147)

after noticing that

f —EQTT—iATT:Eﬁ T—iAT
ak(T)_\/; 1(7) \/Q—kpk() 5 U-k(T) mpfk( ), (148)

where the last step follows from the reality of u(7, ) and p(7, x).

The Hamiltonian is

2

H(T) = % / d%{k [ak(T)aL(T) +al k(T)a_k(T)] iz [aTk(T)aL(T) - ak(f)a_k(T)} } (149)

collection of harmonic oscillators interacting term (pair creation)

The first term in square brackets is the standard part describing a collection of free harmonic
oscillators. The second term in square brackets, which vanishes in flat space-time, is an
interacting term between the scalar field and the classical gravitational background. The
interaction is described by the product of two creation operators for the mode k and —k
and it represents the production of pairs of quanta with opposite momentum during the

cosmological expansion. In terms of the Hubble parameters, we find

2 aH slow-roll phase with e ~n < 1,
—=aH(l4+e—n) ~ (150)
“ aH(1 —n) ultra-slow-roll phase with € < 1.

During a standard phase of slow-roll evolution, the relative importance of the interacting term
is controlled by the relation between k£ and aH. For k < aH, that is, after the mode with
comoving wavenumber k leaves the horizon, the interacting term dominates and a copious
pair production enhances exponentially the number of quanta in the original Minkowski
vacuum that, consequently, undergoes a quantum-to-classical transition. This justifies the

standard definition k, = caH for the coarse-graining cutoff wavenumber in the standard
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slow-roll case. It also justifies our earlier statement that the classicalization condition is
equivalent to asking that the curvature perturbation freezes, since the latter occurs also
around £ ~ aH. When slow-roll is violated, however, the description of the quantum to
classical-transition is more involved. In particular, during an ultra-slow-roll phase 1 can
take large values, flipping the sign of the interacting term in eq. (150).

Let us calculate the occupation number density operator to determine the effect of the
interacting term in the Hamiltonian. The Heisenberg equations for the creation and annihi-

lation operators can be written in matrix form as

d (a(r)\ [—ik 2/z\ [ ax(7)
dr (d_k(T)) B (z’/z ik ) (J_k(r)) ' (151)

The off-diagonal terms are responsible for particle creation in curved space-time. To solve
this system, we use a Bogoliubov transformation. Starting from some given initial condition

at time 7., the ladder operators at time 7 can be written as:

ar(T) = yr(T)an(7,) + wi(7)al (1), (152)
al (1) = yi(r)al (1) + wi(r)aw(7.), (153)
with the condition |yx(7)|? — |wk(7)|> = 1 which follows from the fact that the commuta-

tion relations among ladder operators must be preserved if the evolution is unitary. From
eqs. (145, 146), we find

(), (154)
i () = pr(r)ar(ry) — pi(7)al 4 (1), (155)

where we have defined

() = = [ () + ()| (156)

petr) = /& () — i) (157)

It is easy to see that ug(7) and pg(7) satisfy the following equations

ul (1) + (k2 — %) ug(7) =0, (158)

Z/

z{u;(f) — ;uk(T)] — pi(1) =0, (159)

with ug(7) = 1/v2k and pg(7) = \/k/2. Here we have switched notation uy — u; and

pr — Dpr because the solutions to these equations depend only on k = |k| (similarly for
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Figure 14: Left panel: time at which the curvature perturbation freezes outside the horizon for
each k (solid red), together with the time at which the occupation number density reaches the value
ni = 10° dashed red). The cutoff k, = ocaH is also shown for o = 1075 (dashed black). Right
panel: evolution of the occupation number density for kpeax (dashed black) and kqip (solid black).
We have used the analytical model of Section 1.4 with parameters n1 = 0, no =4, n3 = —1, and
ANy = 2.

yr, and wy). Notice that from the condition |yx(7)[*> — |we(7)|*> = 1 we have, by means of
eqs. (156, 157), the condition

. dug(T) . duz(T)

i (r) = TS (n)| = 1. (160)

The strategy now is to solve egs. (158, 159) and reconstruct, by inverting eqs. (156, 157), the
evolution of the ladder operators in eqgs. (152,153). The initial conditions for wu, and py
follow trivially from eqgs. (152, 153). As far as the initial value 7, is concerned, we assume, as
customary in the context of inflation, that the system starts in the vacuum state |0) defined
by the condition ag(7,)|0) = 0.

The time-dependent occupation number n.(7) is defined, for each mode k, by the expec-

tation value in the original vacuum state of the time-dependent particle number operator

aj(m)ax(r),

(7) = (0lal(r)ax(7)[0)
— (0] [y ()l (7) + wi()a k(7] [pe(Pan(m) + wi(r)al 4 (7.)]10)
— [uwe() 25°(0), (161)
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where the 6%(0) has the usual interpretation of spatial volume and arises because we have
computed the total number of particles rather than the number density ng(7), which should
therefore be defined as ny(7) = |wi(7)]?. By following the aforementioned procedure and

using the Wronskian condition (160), the occupation number density can be written as

(162)

k 1 1
ng(T) = §\Uk(7)|2 + %|Pk(7)\2 5

In what follows we will consider the large occupation number condition ng(7) > 1 as a test

for classicality, in accordance with the discussion below eq. (150). By using

_ a9
- M,H

Uy

Ry, (163)

together with the analytical model of Section 1.4 —specifically, eq. (61), together with the
fact that € oc e 2"V~ we obtain, in the i-th region,

u (1) = av2eR}) (1), (164)
P (r) = m@%n? (7). (165)

The occupation number density is then

n,(;)(T) = kaQE(‘R,(f) (7')‘2 + % %R,&”(T)r) - % (166)
The time evolution of this quantity is shown in the right panel of Fig. 14 for two different
modes. In the left panel of this figure, we show the time at which curvature perturbations
freeze outside the horizon, together with the time at which the occupation number density
reaches a value n, > 1. Both curves have qualitatively the same shape, confirming the
statement that requiring the curvature perturbation to freeze outside the horizon is equivalent
to asking that the modes classicalize. As can be seen in the right panel, the exponential
growth of n; that signals the quantum-to-classical transition only occurs after the USR
phase has ended, especially for modes close to kg, for which ny decreases exponentially for
a few e-folds after the USR phase. This means that the cutoff k, = caH remains a good
choice in the presence of a USR phase, but we must be careful to select o appropriately. As
shown in the left panel of Fig. 14, only for ¢ < 107° do the modes actually have enough time

to classicalize.

3.3 B The noise matrix

Now that we have clarified the role of the cutoff choice on the quantum-to-classical transition,

we can move on to the calculation of the noise correlation matrix in eq. (141). To this end
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we can once again exploit the analytical model of Section 1.4. By combining Einstein’s

equations and using uy = a¢y/M,, we can show that

b = V2e MRy, (167)
T = V2eM, %Rk — (n+ )Ry (168)

Setting k, = caH and using € < 1, we find the following explicit expressions for the noise

correlators in terms of the number of e-folds [3],

i caH
o) = — Lo 2R (V)P (169)
@ ny _ (@aH)? ) 4 50 NG
00() = R RO (RO, —uRE). g
2
(i) _ (0aH)? 2i (4) N >10)
O (V) = "5 26M, | 7R (N)| - = miRi, (N) (171)

At lowest order in ¢ the noise correlation functions admit simple analytical expressions if

we use eq. (61). The results are shown in Table 3.

H oc—0 H Phase 1 \ Phase 2 \ Phase 3 H
Ogs(N) i H o=2m(N-N) 2 ¢=2ns(N=AN2=No)—2 N
@m(]\f) 0 _% - e—2m(N—N.) _% s o213 (N=AN2—N,)—272AN>
Orr(N) 0 % 77% e—2m2(N—=N,) fi 773 =213 (N=AN2—N,) =212 AN>

Table 3: Noise correlation functions in the limit o — 0 [3].

To solve the stochastic dynamics, we consider, as anticipated in Section 3.1, the expansion
of the coarse-grained field about its classical counterpart at first order, namely ¢ = ¢q +
dpsy and T = mq + Omg, where ¢ and 7. define the classical trajectory (that is, they
are obtained by solving the Langevin equations in the absence of the noise terms, so that
they are deterministic quantities and coincide with the background trajectory that would
be obtained in standard perturbation theory) and d¢g and oy are statistical variables. To
interpret d¢g and dmy, therefore, we have to compute their statistical moments. The latter,

in full generality, are defined by
6033T)s(N) = [ dodn (6 - 0a(N)" 7~ ma MI"P@ R N), (72

where P(®, N) is the phase-space probability density for the coarse-grained variables ¢ and
7 that solves the Fokker-Planck equation (see e.g.[171-173]. See also Appendix C for a
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review of the basic aspects of stochastic differential equations)

oP 0 1 0’P
N __;T%<ka)+§§l)ke—a<bka@/ (173)

where ® = (¢, 7)T. In eq. (173), D is the drift vector with components

- ¢
D (—(3 —ez) [T+ M5V¢(¢)/V(¢)]) ’ (174)

and D is the diffusion matrix

D=1 [65N) + 6] + 2 [L () + 69| + 2 [e%(N) ~eh()], (1)
where 0(; 2 3) are the Pauli matrices. The drift term in the Fokker-Planck equation describes
the deterministic part of the dynamics while the diffusion term gives the stochastic one. It
is important for what follows to remark that in eq. (174) ¢; indicates the Hubble parameter
evaluated on the coarse-grained field ¢, namely 2MZ2e; = (d¢/dN)? = 72,

By using the Fokker-Planck equation, it is possible to write the equations describing the
evolution of the statistical moments. Let us focus on the two-point statistical correlators

which are relevant for the computation of the power spectrum. We find

g [ (00es 0 2 0 (06%)s Dyg
W <6¢st57rst>8 - C¢ C7r 1 <5¢st57rst>s -+ D¢7r 5 (176)
<67Ts2t>5 0 20¢ QOW <57T52t>s D7r7r
where
3— ¢
C¢ = _MEW% [V¢¢(¢Cl)v<¢cl) - V(]E(qbcl)]a (177)
v¢(¢cl)

Cﬂ- = —3(1 - 601> + T (178)

V(ga)
where, to be crystal-clear with our notation, we indicate with ¢, the Hubble parameter €
evaluated on the classical trajectory, namely 2M?2eq = (d¢a/dN)?. Eq.(176) is of general
validity, and is obtained by expanding the components of the drift vector around the clas-
sical trajectory and using integration by parts in the Fokker-Planck equation (under the
assumption that, by definition, the phase-space probability density P decays fast enough at
infinity so that the boundary terms in the integration by parts vanish). Egs. (177,178) can
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be conveniently rewritten in terms of the slow-roll parameters (assuming again that ¢ < 1),

Co ===, (179)
C, = 3. (180)

We can once again exploit the analytical model of Section 1.4 to solve this system in each
phase by starting from some classical phase-space configuration at some reference initial
time. Let us focus on the behavior of the solutions in phase 3. By starting from a classical
phase-space configuration at the end of the USR phase Neyq = ANy + N, (since in phase 2

the noise decreases exponentially as per Table 3),

(562)

=0, <5¢st57Tst>é3)|Ncnd =0, <57Ts2t>{(33)

Nowg Ny = 0. (181)

and using the expressions for the noise at lowest order in ¢ in Table 3, we find

H2
(662)P = mg(rzstd—nzANz)( N — Nopq)e 2N (182)
HQ
<5¢st57st>é3) _ _773F€2(773Nend*7)2AN2)(N _ Nend)eansN’ (183)
T
H?
(57T§t>é3) = ngﬁ 2("73Nend*772AN2)(N — Ngng)e 2N, (184)
T

One can check that from a generic initial condition the solution will evolve exponentially fast
towards eqgs. (182,183, 184). The field diffuses in all three directions in phase-space but, cru-
cially, with very precise relations among the two-point statistical correlators. Before moving
on, it is also worth noting that the solution in the first phase is, starting the integration from
some arbitrary initial time Ny,
2y _ H? 1 _ 2\ (1) _
<5¢st>s - 4_7T2(N - NO)a <5¢st5775t>s =0, <57Tst>S = 0. (185)

This is of course nothing but the standard result in slow-roll inflation according to which
the inflaton field only diffuses along the 4, direction.

The power spectrum of comoving curvature perturbations is defined by the Fourier trans-
form of the two-point correlation function of R

d3k1 d3k2 iky-@1 ig-m22ﬂ-2
(R(x1)R(x2))s Z/W(%)Sek ik F%(k)ﬁ(kﬁ@). (186)

Since we are only interested in the result on length scales over which the coarse-grained field

is homogeneous, we can evaluate the correlators at the same spatial point. The integration
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over k will then be limited only to the long wavelength interval k € [0, k,]. We find

k
v dk
(RY)s = (R@)R(@))s = [ Palb) (187)
0
If we now change variable from k to the number of e-folds via k = aH, so that dk/k = dN,
and take derivatives on both sides, we find that we can write

_ i 2 _ 1 i 2 2
Pak) = 3R = gy | 7 002)s-+ 2nalfiods

, (188)

No

where the right-hand side must be evaluated at the time N, defined by the condition k = caH
and, as per the discussion in Section 3.2, the cutoff parameter ¢ must be small enough to
allow for classicalization of the modes to occur. A value of o < 107° is enough for typical

inflection-point models of PBH production, as shown in Fig. 14. If we use eq. (176) to rewrite
d{6¢%)/dN, we find

1 (3) (3) 2\(3)

Prk) = 3re D) +2((06uoma)$ +mios)$) | (189)
Let us calculate the power spectrum in eq. (189) analytically in the limit o — 0, in accordance
with the above prescription. In phase 3, as a consequence of egs. (182, 183), we find that

0 Pgt Oy ® and N3 {02 ® cancel out. Thus, plugging ©,4 from eq. (169) into D(g),
S st/S ol olo]

(caH)?
272

Pr(k) = RPOWNP . (190)

k=ks

where, since k = k, = cHe,

N A Rk
Ry, =3\ SHe (ﬁ) [a3(k)J(3—2n3)/2(0)+ﬁ3(k>J—(3—2n3)/2(‘7)] (191)

In the o — 0 limit, we therefore have, using eq. (64)

' B (O'H)3 1 . k 213 (3-2m5)/2 2—(3—27]3)/2 2
clrg% Pr(k) = 272 Mg SHey \ o H Bs(k)o I'g(ns —1/2)
o |Bs (k) (k/H)™, (192)

which coincides exactly with eq. (67). We conclude that the computation of the power spec-
trum obtained in the context of stochastic inflation matches precisely, even in the presence
of an ultra-slow-roll phase, the result obtained by means of the conventional perturbative
approach.

The above conclusion is in disagreement with the results of [159], where it was argued

that the term proportional to D) in eq. (189) reproduces the power spectrum obtained by
oto]
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solving the Mukhanov-Sasaki equation, and the terms in parentheses yield an additional
enhancement to the power spectrum at its peak. The first of these claims is in agreement
with the calculation in this section, as long as the cutoff parameter ¢ is small enough to
allow for the modes to classicalize. In the conventional perturbation theory approach, this
corresponds to the usual prescription according to which the power spectrum has to be
evaluated after the perturbation R freezes to the final constant value that it maintains
until its horizon re-entry after the end of inflation. On the other hand, we find that the
terms in parentheses in eq. (189) cancel out due to the precise relations among the two-point
functions in eqs. (182,183,184). One aspect that differentiates the calculation above from
that of [159] is that we have used the analytical solution to the Mukhanov-Sasaki equation
presented in Section 1.4, whereas a full numerical analysis based on the model of [66] was
performed in [159]. To remedy this difference, a numerical analysis based on the polynomial
model of Section 2.1 will be performed in the next section.

Before moving on, let us comment on the issue of non-Gaussianities. The above conclu-
sions might naively lead us to think that, since the stochastic inflation approach seems to
not have an effect on the power spectrum, the PBH abundance is similarly unaffected. This
is not correct, however. The reason is that what enters into the PBH abundance is not the
power spectrum per se, but the full probability distribution for the fluctuations, which must
be integrated over in order to find the probability of collapse 8 defined in Section 1.2. One of
the advantages of the stochastic approach is that it allows for the calculation of this proba-
bility distribution, which can be found by directly solving the Fokker-Planck equation (173).
This is the approach that has been pursued in [73, 174], resulting in probability distributions
that decay exponentially. Since the integration over the probability distribution is precisely
over this exponential tail, these references argue that quantum diffusion heavily impacts the
calculation of the PBH abundance. These results have been confirmed numerically in [76].
Although in this thesis we only focus on the calculation of the power spectrum, it would be
interesting to extend the analysis of [73] to the class of models discussed here, featuring an

epoch of slow-roll violation, using the analytical model in Section 1.4.

3.4 B Numerical analysis

In this section we will perform a numerical analysis in the context of the polynomial model
discussed in Section 2.1. We remind the reader that the physical, canonically normalized
field in this model is h, not ¢. To be clear about this fact, in this section we use the notation
hy instead of ¢,. In the following, we consider the solution which has the abundance shown
in green in Fig. 8.

In the left panel of Fig.15 (compare with the left panel of Fig.13.) we show for each
comoving wavenumber k£ the transition time (solid black line) after which the corresponding

mode freezes to its final constant value. We also show contours of k, = caH for different

90



9L
1015} v
107_
Ia 1013, g 105_
&
% & 103
11
10 1011
4 1071 ,
109 I I '1‘ I L L
25 50 1010 10't 10'2 10'% 10 10'® 106

k [Mpc™]

Figure 15:  Left panel: transition time (solid black line) for the comoving wavenumbers k on the
y-axis as function of the number of e-folds. This plot refers to the polynomial model discussed in
Section 2.1. Diagonal red dashed lines correspond to the condition k = k, = caH for different o.
Right panel: power spectrum obtained for the same model by solving numerically the Mukhanov-
Sasaki equation (solid black line). We also show the value of Dy /(2MZe) for different o (red dashed
lines). As discussed in the text, this quantity reproduces, in the limit of small o, the power spectrum
computed by means of the Mukhanov-Sasaki equation. Notice that th/(2M56) s a function of the
number of e-folds, but for fizred o the dependence on N can be translated into a k-dependence as
discussed in eq. (188).

values of o with ¢ = 1 corresponding to the horizon crossing condition. In the right panel of
the same figure we show the power spectrum obtained by solving numerically the Mukhanov-
Sasaki equation (solid black line). This plot should be compared with the right panel of
Fig. 13 and shows that, as anticipated, the analytical approximation captures all relevant
features of the numerical solution.

The elements of the diffusion matrix in eq. (175) are defined in terms of the noise corre-
lators in eq. (141) which take the form

(1—¢)

®fQ(N) = 271‘2

ko fre. (N)gi, (N), (193)

with fx, gx = hy, T and k = k, = caH (where now we no longer consider H as a constant, but
rather as a function of time that must be determined numerically by solving the background
equations). Part of the complexity of the numerical calculation is that the o parameter
must be kept finite. The fact that the relation & = caH must hold implies that if the
comoving wavenumber k is fixed, then to each N there will correspond a ¢ such that the

relation is verified. The outcome of this procedure is illustrated in Fig. 16, where we plot the
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Figure 16: Elements of the diffusion matriz D(N) in eq. (175) computed for the numerical model
discussed in Section 2.1. We fir k =5 x 10'° Mpc=! and show our results as function of N.

components of D(N) as a function of N for the representative value k = 5x 10! Mpc~!. This
choice corresponds to a mode which crosses the horizon at N ~ 28, before the beginning of
the USR phase. The value of ¢ corresponding to each N is shown on the top = axis. To make
the relationship between the top and bottom axes clearer, one can just draw a horizontal
line in the left panel of Fig. 15 at the specific value of k analyzed, and see at which N each
value of oaH is crossed. In the first phase (that is for N < 36, before the beginning of the
USR phase) we have a sizable value of 0. Consequently, the approximations given in Table 3
are not valid, since they are obtained in the o — 0 limit (and for constant H). On the other
hand, for k = 5 x 10 Mpc~?! the value of NV at which the USR phase begins corresponds to
a relatively small value of o, namely o ~ 107°. This value is so small that, from this point
on, our analytical approximations (valid in the ¢ — 0 limit) are now perfectly recovered
(see Table 3 and compare with the dotted lines in Fig.16). These results therefore fully
confirm the analytical calculation in the previous section. One of the main messages here
is that in the presence of a USR phase, the entries of the noise matrix cannot be taken as
Dy, = H?/4n? and Dy, = D., = 0. Rather, the noise decreases exponentially as per the
results of Table 3 and Fig. 16.

With the entries of the diffusion matrix in hand, we can now proceed to the calculation

of the power spectrum in eq. (189). As anticipated in the previous section, the first term
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in this equation can be calculated by evaluating the quantity Dy, / (2Mp26) at the time N,
defined by k& = oaH for each k. The value of Dy, can be read off immediately for any
given N (for k = 5 x 10'° Mpc™!) in Fig. 16. As discussed above, for sufficiently small o
(in particular, during phase 3), the matrix elements follow the evolution o e 2. Since
this is precisely the way in which e evolves as well, the ratio Dy, /e consequently settles to
a constant value independent of o, as it should. This fact can be better appreciated in the
right panel of Fig. 15, where we show the resulting value of Dy,/(2M€) for different choices
of 0. As expected, only for 0 < 107 do we obtain a power spectrum consistent with the
usual perturbation theory result, since it is only for these values of o that the modes are
given enough time to classicalize, as can be confirmed by inspecting the left panel of Fig. 15.
These numerical results confirm what we found analytically in eq. (192).

The terms in parentheses in eq. (189) can be found by solving numerically the system
in eq. (176). As for the choice of initial conditions, we start the integration from a clas-
sical phase space configuration, as we did in eq. (181), although we have checked that so-
lutions derived from different sets of initial conditions settle to the same value within a
few e-folds. As before, it is instructive to fix the value of k and consider the solutions as
functions of N (or, equivalently, o). We find that at late times (for sufficiently small o)
(6hgdms) and (Gh%) settle to their asymptotic functional forms oc Ne 2™ and the com-
bination (0hgdms) — (e — n)(0h2) vanishes asymptotically as in the analytical model. For
the mode under consideration (k = 5 x 10 Mpc™!) this requires ¢ < 107°, as for the
Dpn/(2M7€) term.

We therefore find that the numerical analysis of the model introduced in Section 2.1 con-
firms our analytical results. The curvature power spectrum computed in stochastic inflation
at the linear order in perturbations matches precisely the result obtained by solving the
Mukhanov-Sasaki equation using standard perturbation theory. This result is not surprising
per se, since it was already well-established in the context of slow-roll inflation, see e.g. [72].
The non-trivial point of our analysis is that we have extended its validity to the case in
which an USR phase is present, which is relevant for the formation of PBHs in inflection
point models. As a byproduct of our analysis, we have also clarified the role of the stochastic

noise and the issue of the quantum-to-classical transition in this scenario.
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CHAPTER

4

Black holes from warm inflation

In this chapter we consider the generation of a large power spectrum from a transient dis-
sipative phase during inflation using the warm inflation framework, in which the inflaton
gradually transfers its kinetic energy to lighter degrees of freedom throughout its evolution,
to describe the dynamics. In Section 4.1 we present the equations of motion for the back-
ground and fluctuations in the warm inflation formalism, as well as the phenomenological
parameterization for the dissipative coefficient we consider. In Section 4.2 we rewrite the
stochastic equations of motion for the fluctuation as a single, deterministic matrix differen-
tial equation for their two-point functions in order to determine the stochastic average of
the power spectrum. In Section 4.3 we perform a full numerical analysis by directly solving
the stochastic differential equations for the fluctuations for many realizations of the noise,
allowing us to determine the probability distribution for the power spectrum. Finally, in
Section 4.4 we simplify the equations by making a reasonable set of assumptions in order to
solve them analytically, and show that the solution reproduces the most important features

of the spectrum.

4.1 B Dissipation during inflation

In the standard inflationary scenario it is assumed that the coupling between the inflaton
and other fields is such that particles produced throughout inflation are quickly diluted by
the expansion. The interaction between both sectors only becomes relevant in the reheating
stage, during which the inflaton oscillates around the minimum of its potential, decaying
into these other fields and populating the Universe with radiation. This is not the only
possible way in which inflation can end, however. A gradual transfer of energy can also
occur between the inflaton and other fields as it rolls down its potential. If we assume that
these other fields comprise a bath of thermalized radiation, eventually their energy density
will overcome that of the inflaton and dominate the Universe, ending inflation without the
need for a separate stage of reheating. This scenario is known as warm inflation, and is
characterized by the presence of a local dissipation term of the form F¢§ in the equation of
motion for the inflaton. Although the presence of such a term due to particle production
had been considered since the early days of inflation, the warm inflation scenario as we know
it today was first proposed in [95, 96]. The first models of warm inflation were unsuccessful
due to the fact that it seemed difficult to keep temperature corrections to the potential

small enough for it to remain relatively flat while still having a large dissipative coefficient,

94



issues that were first pointed out in [175]. Models that were able to satisfy these constraints
required uncompelling ingredients such as non-standard interactions or a large number of
fields [176]. It was then realized that evading these issues would be possible if the inflaton did
not couple directly to the light fields that comprised the radiation bath, but rather through
heavy catalyst fields [177]. The quantum corrections induced by these heavy fields could
be cancelled in supersymmetric models while still inducing particle production, and they
therefore became a standard ingredient in later warm inflation models. The microphysics of
warm inflation in scenarios of this kind are discussed in Appendix D.

The formation of PBHs in warm inflation was studied in [178, 179], where dissipative co-
efficients that grow monotonically as inflation progresses were considered, leading to spectra
that are not peaked, but rather grow towards the end of inflation, producing black holes that
are too light to account for the dark matter of the Universe due to the Hawking radiation
bounds on the lower end of the mass range (1). The approach we shall take here is to remain
agnostic about the origin of the dissipative coefficient. We will model our scenario using a
phenomenological approach, assuming that the dissipation is due to a term oc I gb entering
into the equation of motion of the inflaton, and such that the dissipative coefficient I is a
peaked function of the inflaton field —so that we can obtain PBH masses in the unconstrained
range (1)— and proportional to the third power of the temperature of the radiation bath.
This is the main difference between the model in this thesis and the standard warm inflation
scenarios, where the dissipation is assumed to be active throughout the duration of inflation,
as opposed to only for a few e-folds.

Let us begin by assuming that during inflation the inflaton gradually transfers its energy

to a thermalized radiation bath with energy density p, and temperature 7" related by

7T2

Pr = %Q*TZL. (194)

At the background level, the energy transfer between both components (inflaton and radia-

tion) is modeled via

o+ (BH+T)p+V,=0, (195)
pr+4Hp, = T4, (196)

1.
pr+V + §¢2 = 3M H". (197)

These equations ensure that the total energy-momentum tensor is conserved. If friction
dominates the background dynamics, the initial conditions for these equations are irrelevant
due to the presence of an attractor, much like in the standard slow-roll scenario. This

attractor is characterized by the ratios

€p=———"—~1, € = ~ 1. (198)
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Figure 17:  Left panel: T, H and I' in units of M, and as functions of the number of e-folds N,
near the value N = Npcak at which the peak in the primordial curvature spectrum (shown in Fig. 20)
occurs. The analytical expression for I' as a function of the inflaton background field is given in
eq. (211). The parameters chosen for this benchmark example are given in eq. (212). Right panel:
slow-roll parameters € and 1, and the ratios €4 and €, defined in eq. (198).

These ratios, along with the slow-roll parameters (15) and the relevant background quantities,
are shown in Fig.17 for a benchmark example of the model we consider here. The figure
shows that the dissipative coefficient I' increases in value, reaching the so-called strongly
dissipative regime I' > H for a short phase that lasts roughly ~ 4 e-folds. As can be seen
in the figure, € remains smaller than 1 throughout this phase and the Hubble parameter
remains constant, so that inflation never stops.

Let us move on to the dynamics of the fluctuations. We work in Newtonian gauge and
denote by d¢ and 6p(") the perturbations of the inflaton field and the radiation energy density,

respectively. We also define
4
5q™) = gprdv(r), (199)

where dv(™ is the velocity perturbation of the radiation. Einstein’s equations are then (see

g [180])

H (g + Hipy) + %wk = _ﬁ {‘W) + ¢(6dk — Pr) + V¢5¢k} : (200)
1
Ur + Hipy = 2M1§ (6gy” — doon), (201)
U + 4H Yy, + (2H + 3H?)yy, = 2M2 {15 + G5k + py) — V¢5¢k} , (202)
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where the only difference with respect to the standard inflationary scenario in eqs. (20, 21,
20) is the presence of the perturbations of the radiation fluid. The curvature perturbation

(23) is now given by

H .
Ri = —— (8a — 06x) — . (203)
p+p (G, )
The total energy-momentum tensor 7" = T (‘;'; + T(’:, ')’ is conserved, since [181]
VI =Q VI =@, (204)

where the energy transfer vector Q" contains a stochastic piece, the form of which is deter-

mined by the fluctuation-dissipation theorem (see e.g. [182, 183]),

INA
Qu=-TuVu6V,6 41> 65,0 (205)

In this expression u” denotes the 4-velocity of the radiation fluid and & = dW,/dt, where
dW; is a Wiener increment?’ satisfying (&(x)&(x'))s = 63(x — x')d(t — t'). Here, as in
Chapter 3, the brackets (---)g denote a stochastic average over different realizations. The

linearized equation for §¢ is, in Fourier space [183],

. . L2 .
5¢k + (3H + F)(5¢k + (? -+ V¢¢ + ¢F¢> §¢k
¢T
4p,

2I'r

+I'r e

opy) — Ay + (2Vy + T)uy = & (206)

The equations for the radiations perturbations 6p(") and d¢(") are

¢*T
4p,

(7 T k2 T ]
op) + (4H — 7 )(mi) — =300 + T

. . [oT'T .
—4phy — (Lpddp — 206k )p = — ?ﬁb&, (207)
(7 r 4 1 r ]
56\") + 3Hsq\" + Ptk + 55,02’ +Tdbepy, = 0. (208)

Egs. (206)—(208), together with one of Einstein’s equations, for instance eq. (201), form
a complete set for the four variables 6¢, 6p™, 5¢™ and v. These equations can be further

simplified using the following combination of Einstein’s equations:
LT (1) | s ; ()
QMpg — ¢ | + 0p + dO¢y, + (Vs + 3HP)ody — 3HSgq,” = 0. (209)

Imposing this constraint allows to reduce the number of equations by one, so we can elimi-

30See Appendix C for the definition of a Wiener process and a brief review on stochastic differential
equations.
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nate, for instance, eq. (208). However, we find that not imposing this constraint can be more

stable numerically. We use the initial conditions

¢ —ikT

5" =0,  ap =0, =0, Opp=-——e

, (210)
where we have assumed Bunch-Davies initial conditions for d¢. As we will show later, the
choice of initial conditions is not very relevant, since the noise term leads to an attractor
behaviour for the evolution of the perturbations.

Our main goal is the description of a peak in the curvature power spectrum arising
from transient dissipation. The perturbation equations are driven by a source of noise with
amplitude ~ /T'T, and so they are significantly enhanced whenever I' is sufficiently large.
If the peak of the spectrum of the curvature perturbation is localized around an adequate
scale, the PBH mass function will be narrow enough so that their masses fit into the window
(1) of interest for dark matter. Therefore, we focus on modeling a dissipative coefficient
I’ that satisfies [' > H only for a few e-folds. Rather than building a full model of the
complete inflationary history we focus on the local description of the dynamics around the
relevant region. Although we remain agnostic about the details of the microphysics that
gives rise to such a peaked dissipative coefficient, in Appendix D we present a toy example
of a Lagrangian with the necessary features that could potentially serve as a basis for future
models.

We assume the following parameterization of the dissipative coefficient

T3

I, T) = m2 4 M2 tanh® [(¢ — ¢,)/A]’

(211)

where, as discussed in Appendix D, the T® dependence of I' arises naturally in a specific
low-temperature limit (in which the temperature is much smaller than the mass of the
light fields that comprise the radiation bath), which is common in warm inflation. The
temperature dependence of I' is not crucial for the stochastic noise to generate a peak in
the primordial power spectrum. A temperature-independent I' that is peaked as a function
of ¢ also produces a similar effect, but the parameterization (211) resembles more closely
the actual I' that may be expected from a concrete Lagrangian in which ¢ couples to other
fields.

For our benchmark example of Fig. 17 we choose the following set of parameters:
0. =8, ¢,=22M,  M=10"2M, m=14x10""M,  A=0.1M, (212)

We also consider the following inflaton potential

V(g) = 50" (213)
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Figure 18: Stochastic average of the power spectrum computed for the benchmark parameters of
eq. (212) by varying g« (left panel) and m in units of M, (right panel). The horizontal axis is
normalized at the scale k = kpeax at which the peak in the benchmark spectrum (with g, = 8 and
m = 1.4 x 107*M,) occurs.

with A = 2.5 x 107, Since our focus is on studying the phenomenology of the dynamics
generated by dissipation alone, we could choose any other potential compatible with slow-
roll inflation as long as it does not have any peculiar features at the scales we want to
analyze. In addition, the potential V'(¢) only needs to be valid a few e-folds before and after
the region where I' > H because we are only concerned with describing the appearance
of a large peak in the primordial power spectrum, which is a local feature. Nevertheless,
the value of X\ is chosen in such a way that we obtain the correct amplitude for the power
spectrum, A, ~ 2 x 107 [23]. Our choice of parameters leads to a Pr with a peak value
of O(107%), which we expect to yield PBHs with an abundance fpgy ~ O(1) if they form
during radiation domination, as per the discussion in Section 1.2.
For the initial conditions of the background variables we choose

O(N =0) =26M,, % - = —%Mg, pr(N =0) = 10*5M§, (214)
although the last two are essentially irrelevant due to the presence of the background attrac-
tor discussed in the previous section. This choice makes the background quantities converge
quickly to their attractor values. The time at which the localized growth in I' occurs (and
therefore the scale at which the peak in the power spectrum is located) can be controlled by
varying ¢,. Decreasing m or M makes the peak of Pg larger. In particular, since we choose
m < M, decreasing m makes Pgr increase without changing the value of I' far away from
the wavenumbers associated to ¢,, so that Pr retains its normalization at small distance

scales. Similarly, increasing A makes Pgr larger. Finally, decreasing g, makes the peak of Pr
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larger. To understand why this is the case, let us determine how the coefficient in front of
the thermal noise in the equation of motion for the perturbations (206, 207) scales with g,.
This can be done by isolating the temperature dependence of this quantity. Let us define
v(¢) via (¢, T) = v(¢)T>. Then, by assuming the system is in the attractor solution (198)

and using that I' > H at the peak, we find
1 v2 1 47
0 ] (215)

We therefore find that decreasing g, makes the amplitude of the stochastic noise increase,
thereby increasing the curvature power spectrum. The effect of varying m and g, on the

spectrum is shown in Fig. 18.

4.2 B The matrix formalism

Due to the presence of the stochastic thermal noise, the main quantity of interest for us is
the expectation value of the power spectrum at a given comoving scale, which we denote by
(Pr(k))s. The most straightforward way to compute this quantity (though not necessarily
the most economical) is to solve the stochastic equations (201,206, 207) for a large sample
of stochastic realizations, and then calculate their average. Alternatively, one can bypass
this procedure by noting that (Pr(k))s is a deterministic quantity, so that the system of
stochastic differential equations can then be rephrased as a single, deterministic, matrix
differential equation for the correlators of the scalar fluctuations, in analogy with eq. (176)
in the context of stochastic inflation.

Let us begin by noting that the equations of motion can be written, in Fourier space,
as a system of linear first-order complex stochastic differential equations. Throughout this
section we will work with the number of e-folds as time variable and we define the column

vector

o ds T
b= <¢k,5p,§), dﬁ’“,am) . (216)

The equations of motion (201, 206,207) can then be conveniently written as a system of four

first-order stochastic differential equations

dd
—+AP=B 21

where the matrix A and the column vector B are real and independent of ®. FExplicit
expressions will be given at the end of this section. We also assume that the constraint in
eq. (209) has been imposed to eliminate §¢(") from the system. In this equation, £y denotes

the Wiener increment from eqs. (206,207) written in terms of the number of e-folds®' and

31The rule for changing the time variable in the Wiener process is derived in Appendix C.
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satisfying, in Fourier space,
(En(k)Enr(K)s = (2m)*5(N — N')6*(k — k). (218)
We are interested in the curvature perturbation, which can be written as
R =C"0, (219)

where the vector C' is can be read off eq. (203). The corresponding power spectrum, averaged

over stochastic realizations, can be expressed in terms of the correlation function matrix
(PDT)g as

/{33

(Pr(k))s = ﬁCT@@%C : (220)

m k<aH
It makes no difference whether we work with the real and imaginary parts of ®, or with ®
and its complex conjugate ®*. We now choose the latter option. The probability density
P(®,®*, N) for the system to be in state {®, P*} at time N can be obtained by solving the

Fokker-Planck equation®?

0%P
09,007 |

oP

0
8_]\[ - (@@P) —|— Ak@

oy (YiP) + (BB i

0
[AM 90, (221)

The two-point statistical moments are defined as
Q = (ddh)g( / Hdcp / Hdcb* (®,d*, N) ddt. (222)

The equation of motion for @ can be found differentiating this equation and using the
Fokker-Planck equation.®® The resulting deterministic differential equation for the matrix
Q is
dQ
dN

By solving this deterministic differential equation we can bypass solving the full system of

=-AQ - QA" + BB". (223)

stochastic differential equations for the perturbations as long as we are only interested in the
stochastic average of the power spectrum, which is given by eq. (220).
Let us give explicit expressions for each one of the matrices used in these equations with

the number of e-folds as the time variable. The matrix of initial conditions Q; = Q(Nyy) is,

32The probability density P is a function of two variables (® and ®*) which do not obey independent
equations of motion (since the noises {x and &}, are correlated), so the fact that we can use the Fokker-
Planck equation in its canonical form is not obvious. A derivation is performed in Appendix C.

331t is also necessary to integrate by parts and use the fact that the probability distribution vanishes on
the integration boundaries.
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in accordance with eq. (210),

00 0 0

1 0 0 0 0
R : 224

0 0 —1+i(k/k) 1

where k; is the scale that crosses the horizon at some initial e-fold value N;,;. In practice, we
can start integrating at some time Nj,; such that k/k; ~ 100, and terminate the integration

a few e-folds after the strongly dissipative phase (in which I' > H) ends and the mode being

computed satisfies k < aH.
The matrix A is given by

fd) fp qub f¢
_ 9p + 41 fy 9o +4prfy 9ag + 4pr fas 9o +40r 1o (225)
hy +4(dg/dN)fy  h,+4(dp/dN)f, has+4(dd/dN)fay he +4(dp/dN)fys |
0 0 —1 0
where
2 1 [(do\? do 2 k2 do\?
=1 - — =TH —|2M? - ==
Jo=1% 50 612 <dN> A <dN) 342 [ P22 (dN) }
1 HT [ do\* k2
S — —4-T /) -
Jo GM2ZH?’ e "4p, (dN) 3022’
1 do k2 do
_ 29 =— (- +2rH
Joo = Gapz an Jag (3 * > AN’
Vs k? o do do
= =— H>~— 4V, ) —HTD
Jo= Gaze 90~ T3 H? (3 aN e *\dN )
V, T do TTr do
hy =2-2 4 ——— h, = —
VA T AN * = THp, dN’
I 1dH K2 Ve  Tydo
@ =3t T g I 7 @H? " H? ' HdN (226)
The vectors B and C' are
2
0 2M2k?[a® — AH?(42)° — 4p,
—/2I'TH/a3(4) c_ . 1 (227)
2FT/(@H)3 ) 3H2(d¢/dN)2+4p, H2 (j_](e) ’
0 Vo

It is worth stressing that since the stochastic source ends up dominating the evolution of
the perturbations, the choice of initial conditions is in fact not particularly relevant. This fact

will be made more clear in Section 4.4, but for now let us illustrate it through a numerical
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Figure 19: Left panel: time evolution of the averaged power spectrum of each perturbation as a
function of the number of e-folds. Right panel: effect of varying the initial conditions; see the
discussion below eq. (228). Necross denotes the time at which the scale k indicated in each panel
crosses the horizon (k= aH ).

example. Let us parameterize the deviation from the Bunch-Davies initial conditions by

multiplying the initial conditions matrix by a small number epp,

0 0 0 0
EBD 00 0 0
;= o0 228
Q= Stz |0 o 1+ (k/k)?  —1—i(k/k:) (228)
0 0 —1+i(k/k) 1

The effect of varying egp with respect to the case egp = 1 is shown in the right panel of
Fig. 19. Even for very large values of this parameter, egp ~ 10°, we find that within roughly
1 e-fold (and several e-folds before horizon crossing) the solutions converge to the same value.

As we mentioned earlier, we find that in some cases the system of differential equations is
numerically more stable if we do not impose the constraint of eq. (209). This gives rise to an
additional equation of motion (for the variable ¢{")). We have checked that the numerical
results using either set of equations are in agreement. The power spectrum obtained from
the solution to this matrix differential equation for the benchmark point (212) is shown as a
solid line in the left panel of Fig.20. The evolution of the perturbations for the mode kpeax

at which the power spectrum peaks is shown in Fig. 19.
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4.3 B Solving the stochastic equations

In principle, to determine the probability distribution for the stochastic variable ®, one
should solve the Fokker-Planck equation (221), which is a rather difficult task. An alter-
native consists in estimating numerically the probability distribution by using a frequentist

approach, i.e. by solving the system of Langevin equations (217)

1 )
d® + A®IN = —B(dW} + idW},) (229)
V2
over many different realizations, where dW5 = v2Re(&x)dN and dW}, = +/2Im(Ey)dN are
real-valued, independent Wiener processes.>* This is the approach that we adopt in this
section.

We impose the following initial conditions, in accordance with eqs. (210, 224)

1 NEJF 1 11 1 )T
(Nini) V2k;  a(Nini) V2k~ a(Nii) V2k/

The limits of integration are discussed below eq. (224). We solve the Langevin system with

O(Niy) = (0,0, - (230)

a fixed time-step Runge-Kutta method.>® The convergence of the solution was checked
by successively decreasing the time-step. We found that decreasing the time step below
AN = 10~* produces results for the averaged primordial spectrum that are indistinguishable
at the percent level.

The left panel of Fig.20 shows (as light blue dots) a collection of 2160 stochastic re-
alizations of the power spectrum for twenty different values of the wavenumber k. In the
same panel, the dark blue dots represent the arithmetic average of all the realizations for
each k. The continuous black curve, in turn, corresponds to the numerical solution of the
matrix equation (223). The right panel shows the relative difference between the frequentist
approach and the matrix formalism solution. The result is a stochastic average which agrees
with the matrix formalism results at the percent level.

The Langevin method provides for us not only the means to determine the first moment
of the probability distribution of the power spectrum, but with enough sampling we can also
determine the full distribution for Pr (k) at each value of k. The left panel of Fig. 21 shows the
normalized histogram for the 2160 realizations for log,, Pr (k) at k = 0.8 kpeax for illustration.
In this same panel we show as a vertical dashed blue line the corresponding expectation value
over realizations, and as the vertical red dashed line the mean computed using the matrix
formalism (presented in Section 4.2). The continuous black curve corresponds to a skew-

normal fit to the (logarithmic) data. A random variable z is skew-normal distributed if its

34The factor v/2 is necessary for the correlation functions of Re(¢x) and Im(¢y) to be properly normalized,
as discussed in Appendix C.

35We used Wolfram Mathematica and the ItoProcess command to simulate stochastic realizations with
the method “StochasticRungeKutta”.
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Figure 20: Left panel: stochastic average of the power spectrum for 20 different values of k (dark
blue dots). The number of realizations for each value of k is 2160 (represented as the small, light
blue dots). The solid black line represents the average of the power spectrum obtained via the
deterministic matriz differential equation derived in Section 4.2. Right panel: absolute value of the
relative difference between the stochastic average and the matriz average of the power spectrum.
The agreement for each k is at the percent level.

probability distribution function is given by

1 _e-w? alx — ,u)]
Paew-normal (T | i1, 0, ) = e 202 erfc | ————|, 231
o (& 1,0,0) = - (231)
where erfc(z) denotes the complementary error function and {y, o, a} are free parameters.
Therefore, we find that the PDF of Pr can be modelled as a skew-log-normal distribution.
Defining for each k the difference

Alog,y Pr = logo Pr — 10g,y(Pr)s (232)

we find that its probability distribution is very well approximated by a k-independent skew-
normal distribution. The right panel of Fig.21 shows the frequentist histogram for the
full set of realizations for eq. (232). Together with it we show the corresponding universal

skew-normal fit (shown in solid black), with parameters
{p,0,a} ={0.42,0.87, —4.15}. (233)

A similar histogram can be created separately for each k, and we find that the standard
deviations of the parameters {u, o, a} for each one of these histograms with respect to the

corresponding values for the universal fit shown above are of order {3%, 2%, 9%}.
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Figure 21:  Left panel: histogram of logiq Pr(k) for 2160 realizations for k = kpeax, together
with a skew-normal fit for the probability distribution function. Right panel: histogram of the k-
independent variable Alog,,Pr defined in eq. (232) using the full set of 20 x 2160 realizations,
together with a universal skew-normal fit for the probability distribution function.

The variance of the probability distribution function for the power spectrum is quite
large. From Fig.21 it is clear that, for a specific realization in a particular Hubble patch
the spectrum can reach a value roughly one order of magnitude away from the 1072 value
required to obtain fpgy ~ 1 if the PBHs form in RD, leading to either overproduction or
underproduction of PBHs (according to the Gaussian estimate of the abundance). This effect
can always be countered by adjusting any of the parameters in I' that control the overall size
of the average of the power spectrum, as discussed in Section 4.1, as well as the threshold for

the collapse (on which the abundance depends exponentially within the Gaussian estimate).

4.4 B Analytical approximation

To get a better understanding of the evolution of the perturbations and the shape of the
primordial spectrum, it is useful to simplify the equations of motion in such a way that they
can be solved analytically. Let us begin by noting that at late times, the only quantity that

contributes to the curvature perturbation is d¢,

Ho H
T p~—4§ . 234
p+p ¢ ¢ (b k<aH ( )

R ~
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The second observation we make is that, in the equation of motion for d¢ (206), we can

neglect several terms and still reproduce the most important features of the spectrum,

25 T\ déoy k2 Ty do 3 (do\ "
L ) Ly ~0. (2
Nz + <3+ H) aN " <a2H2 i dN>5¢k+ e (dN> Op =0 (239)

This approximation is obtained by discarding terms involving the potential (which are slow-
roll suppressed), the metric perturbation (which can be checked numerically to be a good
approximation), and assuming that ' o 7% and the background remains in the attractor at
all times, so that the attractor parameters defined in eq. (198) indeed satisfy €5 = ¢, = 1.
This last approximation is justified in the right panel of Fig. 17, where it can be seen that
the background quantities only leave the attractor for very brief periods. In addition, we
have found numerically that the stochasticity of the system is encoded in eq. (235) via the
5p™ term, and therefore the original noise term on the right hand side of eq.(206) can
be dropped. Let us explain this last approximation in more detail. If we have an explicit
expression for §p() as a function of time, then we can think of the dp™ term in eq. (206) as
a source term for §¢, on the same footing as the &y term. Numerically, we find that the 5p)
term dominates over the £y term, in the sense that one can set the latter to zero and still
correctly reproduce the key features of the spectrum: the location of the peak, and the size
of the spectrum; the latter within an order of magnitude of the full numerical result. We
remark that this does not mean that the noise £y is irrelevant. In fact, it is precisely the noise
in eq. (207) which determines 6p™, and thus in turn d¢. In other words, the enhancement of
the power spectrum of the comoving curvature perturbation is due to the source term §p")
(the value of which is set by the thermal noise) in the equation of motion for §¢.

The strategy we will follow now is to propose a phenomenological parameterization for
§p') as a function of time and use it to solve eq. (235). We will also assume that all back-
ground quantities can be approximated as piecewise-constant functions. The benchmark

values we take for each quantity are shown in Table 4, where we introduce the quantity

orr

X e

(236)

for later convenience.

These parameters have been chosen in such a way that we obtain a primordial spectrum
that closely resembles the one derived with the dissipation coefficient (211) for the parameters
in eq. (212). We assume the evolution proceeds in four different phases, which we label from
0 to 3. In phases 0 and 3 we have I'y; = 0 and I' < H, so that we are in the weak dissipative
regime. In phases 1 and 2 we have I' > H. During phase 1 we have I'y, > 0, and during
phase 2 we have I'y, < 0. The evolution of the relevant background quantities using this
parameterization is compared to their numerical counterpart, obtained using the parameters

in eq. (212), in Fig. (22). In addition, we parameterize the time evolution of the root mean
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H H Phase 0 \ Phase 1 \ Phase 2 \ Phase 3 H

SMY | 2x100 | 3x10° | 3x10° | 2x 107

I [M,)] 107 1073 1073 107
T, d 2 2
ﬁﬁ 0 3.4x10% | =3.4x 10 0

Table 4: Benchmark parameters for the analytical calculation of the power spectrum. We also take
phases 1 and 2 to end at Ny = 2.5 and Ny = 5, respectively (we measure the number of e-folds
from the end of phase 0, so that Ny = 0, and we normalize a(Ng) = 1, see Fig. 22), as well as
H=17x10"%.

square of 5p(") with the following phenomenological expression,
. 212 e 3N N < Ny,
(160 17)s = S0 ! (237)
15 e NeANH(H/E) N > Ny,

where the time Ny at which the transition occurs is located a couple of e-folds before the

horizon crossing time,

N; = log(k/H) — ANy, (238)

where ANy is an O(1), k-independent constant. We take ANy = 2.1 for definiteness. Despite
its simplicity (which of course cannot capture all the details of the full numerical solution),
this parameterization is enough to understand the most important features of the spectrum.
Since dp(") is a stochastic variable, it is not sufficient to parameterize its root mean square
value, but we also need to know its correlation function. To make progress, we will assume

that 6p(") behaves like a Wiener process,

o) = V(0P P)s € (239)
where the correlation function for €% is
(X (k)T (@)s = (2m)*0(N — N)6*(k + q). (240)
The homogeneous solution to eq. (235) can be written as

60" = e |66 T (ke N JH) + 66T, (ke /H)] (241)

where ¢4 are constants fixed by the initial conditions, J, is the Bessel function of the first

36This expression improves over a similar one proposed in [184].
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Figure 22:  The dissipative coefficient T', the quantity ¥ defined in eq. (236) and the function
|(Py/H)d¢/dN| as functions of the number of e-folds (and in units of Mpy) for the numerical
model with parameters given by eq. (212). The corresponding approzimations as piecewise-constant
functions from Table J are shown with dashed lines.

kind and

1 r Ly do
== - —yf2 -2
v 2(3—|—H), i vE— o (242)

This is a straightforward generalization of eq. (61) to the dissipative scenario. This solution

and its derivative can also be written in matrix form as

56\ > o (6@)
= : (243)
(j%5¢$’ 5

where the time-dependent matrix M is given by

— N Tu(zre™™) Ju(gie™) )
M= . 244
( i ) = vdu(e ™) i Tou(e™) —vdou(ge™) (244)

dN dN H

e

=

The constants p and v take different values in each one of the four phases. We denote
their values in the j-th phase by p; and v;. The constants d¢4 can be found by imposing
continuity of the solution and its derivative at the end of each phase. We denote these
constants by d¢4; in the j-th phase. We use N; to refer to the time at which each phase
ends. In particular, phase 0 begins at —oo and ends at Ny = 0, and phase 3 ends at N3 = oo.
To be as general as possible we keep our calculations generic for n + 1 phases, but we will

eventually set n = 3.
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Following the above procedure we can find the constants in the last phase

&b—i—n _ - -1 ) ] ) 6¢ 0
(5¢_n> o (jl_[lMJ (N]—1>M]—1(NJ—1)) (&b:)) : (245)

In this equation, terms with smaller j should be placed at the end of the product.®” The

total solution for d¢, including both the homogeneous and inhomogeneous solutions is

o, [N S GIN,N) s,
S = 5o + / S o e, (246)

where G is the Green’s function, which we will find below, and
=30(Ny — N)+20(N — Ny), (247)
k
S =6(N;—N)+ ,/Ee*ANf/Q@(N — Ny), (248)

where O is the Heaviside step function. The constants in the homogeneous solution are

obtained by imposing Bunch-Davies boundary conditions in the 0-th region,®

(5¢ 0 1 ™ 1
((sq;) =5\ () ' (249)

The expectation value of the power spectrum at late times is

A~

(Pso(k))s = 2];2 [2;;{?/?5] 0¢_n|? + ; /_OO ig\\;; ‘G(NJNO)?N)‘ AN, (250)

where I'g(1 — p,,) denotes Euler’'s Gamma function evaluated at (1 — p,,) and X was defined
in eq. (236).
The Green’s function G appearing in the integrand of eq. (250) is

G(N,N) =

69 (N)Se; () - 6¢<”< >¢>2><N> (251)
N V)5

5o (N)dp (N) — 507 (N)og (V)

where N < N and 6¢,(€1’2) are two linearly independent solutions to the homogeneous equa-
tion. The calculation of the Green’s function is simpler if instead of writing the homogeneous

solutions as linear combinations of .J, and J_,, we use J, and Y, (the Bessel function of the

37Since these are matrices, the order of the factors is relevant.

38We can do this because in this region we are in the weak dissipative regime I' < H and thus p ~ v ~ 3/2.

39Gee Appendix E for a detailed discussion on the assumptions required to arrive at this result from
eq. (246).
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Figure 23: Left panel: stochastic average of the power spectrum using the analytical approach. Right
panel: homogeneous (solid) and inhomogeneous (dashed) solutions —the two terms in eq. (246)— for
modes leaving the horizon at the start and the end of the strongly dissipative phase in which I' > H.
The inhomogeneous solution, which is independent of initial conditions, always dominates at late
times, indicating the presence of an attractor in the equation of motion for the perturbations. The
parameters chosen for both panels are shown in Table 4.

second kind, which is itself a linear combination of J, and J_,). We therefore write
60" = N |6 Ty (ke ™ JH) + 06, (ke ™ /H) (252)

which is completely equivalent to eq.(241). Since the Green’s function is independent of
the boundary conditions chosen for the two linearly independent solutions, we can follow a
slightly different procedure from before and arbitrarily choose some linearly independent set
of constants in the final region instead of the first. The constants in the previous regions can
then be found by matching the solutions and their derivatives at each boundary. We choose
(5(&5}%,5@5(_1,)1) = (0,1) and (5@532,5(;3(_2%) = (1,0) for the two solutions.

The reason for using Y}, instead of J_, and choosing the constants in the final region
instead of the first is that we obtain the following simple limits for the two independent

solutions at late times,

S0 (N = 00) = 60T (1) 2 <§) , (253)
562 (N — 00) = 0. (254)
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If N is in the i-th region, the denominator of the Green’s function becomes

0597 ) - 867 (N0 () = Ze e (56456 - 59280LY) . (259)

It is easy to show that this combination of constants is

1 A - 1
- = (00006%) — 392501 = et — (256)
Ci Cit1
Since in the final region we have ¢ H)Légb — 00 +)5q§ = —1, we obtain the following
expression for C;,
n—1
1 2(vj—vj+1)N;

Putting everything together, we find that the Green’s function at late times is, if N is in the
i-th region,
G(N = 50, ) = —D(p,)2 " (k/ H) ™ 56 (N)e V¢, (258)

-~

Br,

The integral in eq. (250) then reads

N s—1—2u;

Ip _2223202 / o ”S— 56?1, (kv/H) + 562, (k:v/H)] (259)

where we have also switched variables to v = e . These integrals can be found analytically
in terms of hypergeometric functions.

Now that we have all the necessary ingredients we can compute the power spectrum
analytically by using eqs. (250, 259) and fixing the parameters as in Table 4. To go from d¢
to R we use eq. (234) in the late time limit, where the ratio between the two is approximately
constant. The resulting power spectrum is shown in Fig. 23. The overall size of the peak of
the spectrum and the oscillations seen in Fig. 20 are present in the analytical solution. We
find that, as with the numerical solution, the peak in the spectrum occurs for modes that
leave the horizon around the end of the strongly dissipative phase. This is a consequence of
the enhancement being an integrated effect, due to eq. (259), as opposed to a local one.

Having an analytical solution allows us to understand why the initial conditions for the
perturbations are irrelevant. All of the information about initial conditions is contained in
the homogeneous solution (241) inside the integration constants d¢.. However, as shown in
the right panel of Fig. 23, this solution is completely negligible at late times. The spectrum is
completely dominated by the integral in eq. (259), which is independent of initial conditions.
This indicates the presence of an attractor in the equation of motion for the perturbations,
as anticipated earlier.

The analytical approximation developed in this section is not enough to reproduce with
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accuracy the full averaged primordial spectrum. For instance, the actual slope of the log
of the spectrum for k < kpeax is about twice the value that the analytical approximation
gives. However, it does allow us to understand its features qualitatively, and will be useful
in Chapter 5 to estimate the peak value of the gravitational wave signal induced at second

order in perturbation theory for this scenario.
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CHAPTER

5)

Gravitational wave signals

In this chapter we calculate the gravitational wave signals induced at second order in pertur-
bations for each one of the scenarios we have presented throughout the thesis. In Section 5.1
we calculate the solution to the equation of motion of the second-order tensor modes when
there is a transition between an early matter-dominated era and a radiation era. In Section
5.2, we examine the gauge-dependence of the result and determine the full gauge-invariant
expression for the energy density of gravitational waves through a heuristic argument based
on symmetry properties and dimensional analysis. In Section 5.3 we connect the solution for
the second-order tensor modes to the energy density of gravitational waves in the aforemen-
tioned transition scenario, and examine the bounds on the gravitational wave abundance
arising from CMB observations and the abundance of light elements produced during nucle-
osynthesis. Finally, in Section 5.4 we calculate the gravitational waves induced during and
after inflation for the dissipative scenario presented in Chapter 4.

5.1 B Induced gravitational waves

The detection of a stochastic background of gravitational waves of primordial origin would
have enormous implications for cosmology. At leading order in perturbations and in the
absence of anisotropic stress, gravitational waves decouple from other degrees of freedom
and propagate freely, carrying information about the mechanism that produced them and
the subsequent cosmological history, a fact that makes them a powerful observational tool.
Moreover, they can probe processes and energy scales that are difficult to test by other
means, such as phase transitions and topological defects in the early Universe [78]. If one
goes beyond the leading order description, the stochastic gravitational wave background also
becomes a viable tool to test the existence of PBHs. By expanding Einstein’s equations to
second order, it is possible to show that the tensor degrees of freedom of the metric are
sourced by terms quadratic in first-order scalar perturbations [79-81]. This implies that
the observable quantity of interest for detectors, the energy density of gravitational waves,
is proportional to the square of the power spectrum of curvature perturbations and thus, if
PBHs form via gravitational collapse induced by large density fluctuations, we should expect
the process to leave an imprint on the stochastic gravitational wave backgrond. Moreover,
since the mass of PBHs formed in a radiation-dominated era is related to the peak frequency
in the gravitational wave spectrum via eq. (2), if the peak of the mass distribution of PBHs

lies in the unconstrained window (1), then future gravitational wave experiments such as
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LISA and BBO/DECIGO could potentially detect the signal. Given the fact that, as we
have seen, PBH formation during an eMD has significant advantages, it is worth asking
whether these facts remain true also in this case.

Throughout this chapter we compute this signal for the different scenarios we have pre-
sented in the thesis. These gravitational waves are induced both during and after inflation.
In this section we focus on the post-inflationary contribution, which we compute by assum-
ing that a short early matter-dominated era takes place right after inflation. The case in
which the Universe enters directly into an radiation-dominated era can be recovered from
the results of this section by taking the duration of the eMD era to vanish, as we will see.
Thus, the model-independent results derived in this section apply not only for the polynomial
model of Section 2.1, where we considered only PBH formation during RD, but also to the
monodromy-inspired model of Section 2.3, for which one of the ingredients was the presence
of an eMD era. The calculation of the inflationary signal will be performed in Section 5.4
in the context of the warm inflation model presented in Chapter 4. Although gravitational
waves induced during an eMD era have been studied before [185], the novel part of this thesis
is that we do it in the context of PBH formation by using the results in [92, 93]. We find
that due to the fact that the scalar modes of the metric do not decay in time during an eMD
era, the signal can be enhanced to the point of violating the bounds on the abundance of
gravitational waves today imposed by CMB and BBN observations [98, 99], ruling out part
of the parameter space.

The calculation of this signal is not without difficulties, however. It has been pointed
out numerous times [84-88] that the transverse-traceless tensor part of the metric at second
order is a gauge-dependent variable, and therefore cannot be used to describe gauge-invariant
observables such as the energy density of gravitational waves. The issue was addressed in
[86, 90], where it was claimed that, despite the above remarks, the transverse-traceless
tensor piece of the metric can be used as long as the energy density of gravitational waves is
measured late into the radiation era, since in this case the scalars that source the gravitational
waves decay quickly in time so that the latter propagate in the same way as the first-
order tensor modes do. However, the energy density of gravitational waves should be a
gauge-independent quantity at any time, independently of when it is measured. A heuristic
derivation of the full expression for the energy density of gravitational waves valid beyond
leading order in perturbations will be provided in Section 5.2.

Let us focus, for the time being, on the calculation of the induced gravitational wave signal
in the eMD-to-RD transition scenario. We remind the reader that a schematic depiction of
the scenario we consider is shown in Fig.1. Throughout this section we will follow the
standard derivation, which can be found, e.g.in [81, 185-187]. The equation of motion for

second-order tensor modes obtained by expanding Einstein’s equations to second order in
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perturbations is, in position space and in the absence of anisotropic stress,

T T 2 TT _ Im
where primes denote derivatives with respect to conformal time (' = d/d7), H = a'/a denotes

the conformal Hubble factor, the bold symbol hTT denotes the second-order transverse,
traceless piece of the metric which satisfies 9'hj;" = d“h;" = 0 (see Appendix A for our
conventions for the metric perturbations), the source term s;; is given in Newtonian gauge*’
and in the absence of anisotropic stress by (see e.g. [189])

= 20,000 + 4p, D00 — ‘—lﬁ (W +w> (W +w> (261)

and T;; Im s the transverse, traceless projector

A3k
7;]' lmslm — / (27T) zk: -z <e+e+lm + einGle) §lm(k7)u (262)

where §;; denotes the Fourier transform of s;;. The polarization tensors in this expression

are

r

6;; = E(eiej — eiej), (263)
1 o

eixj = ﬁ(eiej + ee;), (264)

where e and € are two unit vectors satisfying k-e = k-é = e-e = 0, so that h;l;-T is transverse
and traceless. In eq. (261) we have also neglected the first-order vector perturbations, which
are not typically produced in single-field inflation (in particular, not in the models we consider
here), and the first-order tensor modes, which we assume are negligible in comparison to the
scalar part of the source.

In what follows we will work in momentum space, where

R (2) = /(;l:;’ ka<h+e++hx ) (265)

The equation of motion then becomes

hi' +2Hh; + k*h; = S3, (266)

40The full expression for the source, valid for all gauges, is shown in eq. (384). For explicit solutions in
other gauges, see e.g. [84-89]. See also [188] for solutions in general backgrounds.
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where the index s refers to each polarization and

Writing the Fourier transform of s;; explicitly, we find, assuming the background is dominated

by a perfect fluid with p = wp,

d? 16 1 1
St = [ e p) st + o (s ) (et i) |- 269

3+ 3w
where e*(k,p) = ej;(k)pip; and we have added the (post) subscript to emphasize the fact
that this is the post-inflationary expression for the source.*! This notation will be used from
now on to keep our expressions compact. We also remind the reader that the subindices in
the Fourier transforms of the perturbations denote the momenta at which they are evaluated.

The solution to eq. (266) is given by

hy(r) = / Fipont) (7, 7) S oty ()7 (269)

where Fipost) is the Green’s function for eq. (266) after inflation ends. Since, for the time
being, we are only interested in the post-inflationary contribution to the source, in this
equation we assume that the amount of gravitational waves induced until the end of inflation
is negligible, so we have imposed the initial condition hj(0) = 0 where, as is customary, we
have fixed the end of inflation at 7 = 0. The upper limit 7 denotes any posterior time, but
we will eventually take it to be today.

If we assume that the transition between the eMD and RD eras is instantaneous, the

Hubble factor is given by

- for 7 < 7,
-
H = 1 (270)

_— for7, <71
T — Tm/2 "=

where 7, is the time at which the transition between eMD and RD occurs. Similarly, the

scale factor is

2
a(Tm) (L) for 7 < 7,
T,
_ m 271
' () (=22 for 7, < )
a(Tm Tm/2 or Ty, < T.

The Green’s function can be found by computing the homogeneous solutions to eq. (266)
in both eras, imposing continuity of the solutions and their derivatives at 7, to determine

the integration constants, and plugging the result into the analogue of eq. (251). The result

41 As mentioned earlier, the inflationary contribution to the gravitational wave signal will be derived in
Section 5.4
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is

(272)

where

() = kr(af j1(kT) + a; ny (k7)) for 7 < 7, (273)

g = (kT — kT /2)[bF jo(kT — k70 /2) + b; no(kT — k700 /2)]  for 7, < 7.

Here, (a,b); are integration constants (not to be confused with the scale factor, which will
never have * superscripts) and j, and n,, are spherical Bessel functions of the first and second
kind, respectively. The Green’s function formula only requires both solutions to be linearly
independent, so we are free to choose the constants in one of the regions (this is analogous
to what we did in Section 4.4). The constants in the other region will then be determined
by matching the solutions at the boundary, requiring continuity of the functions and their
derivatives. We therefore choose b = 1, by = 0, and b5 = 0, b, = 1 in the second region,

and determine the a;° to be

1 kTt kT
al = RN [sin (%) <k2731 + cos(k;Tm)> + kT, cos (%)}, (274)
_ 1 9 9 kTm . (kT kT,
ay = ] [(1 — 2k Tm> coS (T) + 2kT,, sin (T) — cos ( 5 )}, (275)
1 kT, kT, 3k,
+ _ 92,2 _m i _m m
ay = ] {(1 2k Tm> cos( 5 ) + 2kT,, sm( 5 ) —|—cos< 5 )}, (276)
1 k k
a; = s [sin (%) (/E:QT,?1 — cos(kTm) — 1) + kT, COS (%)} (277)

To perform the integral in eq. (269), we need to relate the value of ¢y right after inflation
ends to the value of the curvature perturbation R, which, for the scales of interest, is frozen
outside the horizon at this time. The time evolution of 1, after the end of inflation is encoded
in the transfer function T, ,3’ (7), which can be obtained by solving the equation of motion for
Y. In the absence of anisotropic stress and in the superhorizon limit, we have the following
relation between the time-dependent 1), and the frozen curvature perturbation Ry, obtained
by straightforward manipulation of Einstein’s equations
343w,y

= T (DRO) (27)

Vi (7)

The transfer function is obtained by solving
1+ 3(1 + w)Ha, + wk*y, = 0. (279)

This equation is obtained, in the absence of anisotropic stress, by manipulating Einstein’s
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equations and assuming that dp = wdp [189, 190]. The result is, in each epoch,

at +ap(kr)™? for 7 < 7,
Tl;/}<7—): 3vV3 kT — k7, /2 kT — kTm/2
+ . m — m <
[ T K72 brii (—\/§ ) + byny (—\/§ ) for 1, <.

(280)
The coefficients can be fixed by imposing 7} (0) = 1 and 7,Y(0) = 0 and matching the

solutions and their derivatives at 7,,. The resulting constants are aj = 1, a; = 0, and

L1

b= 255 { — V3(k*r% — 36) cos (%) + 18kT,, sin (;”7’%)} (281)
by = ﬁ { — V3(k*r2 — 36) sin (;‘”7”%) — 18k, cos (%)} (282)

Plugging the source (268) into the solution (269) and using eq.(278), we obtain the

following expression, valid only in the Newtonian gauge,

ni(r) = g [ dose e IR (ORs O (rop. I = ), (28

where we have defined the dimensionless quantity

1ol 80 = [ KB ) [T e pha, (a5

T, D, pl) = o (post)\ T, T 5+3w<7_,) 7, D, p T,

with
k —srer? a7+ v (T 4+ 285
Q(Tvpa‘ _p|>: D k—p+ p _'_ﬁ p k—p—i_ﬁ k—p |- ( )
The integral in eq. (284) can be performed analytically. We write the result as
1 kT : KT,

I = ™) {cos (kT - %)Il + sin (kT - %)[2}, (286)

where we assume 7 > 7, (since we will eventually be interested in the gravitational wave
energy density today) and I; and I, are defined as
a(Tm)

[i = 2]{;— [IieMD + [iRD<T — OO):| . (287)
Tm

The four quantities I (6’11\/[21)) and [ (f}DQ) are complicated functions of k and 7,,, computed for the

first time in [185] and given in full detail with our conventions in Appendix F. In principle
IRP should be a function of 7, but since we are only interested in this quantity at late times
(because we want the abundance of gravitational waves today) and the transfer functions T,ﬁ’

decay quickly in time we can simply evaluate it in the 7 — oo limit to simplify calculations,
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as is standard in the literature, see e.g. [186]. In other words, because of the fast decrease of
T Z’ , it the integral in I quickly converges and therefore it makes no difference whether the

upper limit is set to today (which, strictly speaking, would be the correct choice) or infinity.

5.2 B Gauge dependence of the signal

In this section we will explicitly show that the transverse-traceless, second-order tensor mode
h};" is not a gauge-invariant variable. We will then provide a heuristic derivation of the full
gauge-invariant expression for Qqw beyond leading order in perturbations. A brief review
of the relevant aspects of perturbation theory can be found in Appendix A.

Under an infinitesimal coordinate transformation a# — &# = z#+&* with & = («, 699;3)
(we set the first-order vector piece f3; of the transformation to zero, since we are neglecting

vector modes), the transverse-traceless second-order tensor mode h,iTjT transforms as
hi" = BT =hIT 4 T S, (288)
with [189]

Y = 22H? + H')a?6;; + 2H(ad! + 0,ad" B)dy; + 4a(0;0;E — ' 8ij)
+ 8aH (00, E — d;) + 40k (0,0, E — 108:;)0% B + 4(0:0k E — 0:4)0%0;3
+ 4(0pO; E — 103;)0;0% B + 2(9; BO;a + 0; Bdiar) + 8H ;0,3
— 20,0000 + 20,0;80%0; B + 20:0;0; 8’ + 20;0;0, 30" B + 20;0,,30"0; 3
+ 0;8'0;0 + 0,8 0;ax, (289)

where the transformation goes from one arbitrary gauge to another and the perturbations F,
B and 1 are defined in the starting gauge. The perturbations E and B, defined in Appendix
A, are the scalar spatial-spatial and spatial-temporal components of the metric perturbation,

which are set to zero in the Newtonian gauge. In momentum space, we have

m dgk ik-x
;! Ezmz/—(%)?,e"’ (E;ejjJrE,je;), (290)

where

s d3p s
Xp=— / (%)361'3'("’)1?1’17]'{4%01@10 + 8Hay [E’“*p + @HD]—F

p-(k—p)B, [4Ek—p + Qﬁk—p} — 8pfBr—p + 20‘pak—p}a (291)

with 0 = E' — B being the so-called shear potential, and where we have used the fact that

e;;(k)0” = e;j;(k)k' = 0. Thus, since the solution to the equation of motion is given (in the
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Newtonian gauge) by eq. (283), then under a gauge transformation (a, §79;3) we have

ni() = 3 [ e e PR R [1(rp k= pl) + Tl e =) (292

where

Is(x,y,2) = — % <§: 1 23)2 {Ta(xy) [Ta(xz) + 2Tg(xz)} — ATy (xy)Ts(x2)

H(x)

+ 40 () [TE(xz) + Tﬂ(ajz)] +y2Ts(xy) [2TE<Q;Z) + Tg(xz)] } (293)
By combining this equation with eq. (265) we can obtain the solution for h};-T in position
space in any arbitrary gauge. The transfer functions 7" in this equation are defined in an
analogous way to (278), with additional powers of k included appropriately in each function
in such a way that they are rendered dimensionless [85, 89]. For instance, for Ty,

_ 343wl

= = T(MRA(0) (294)

a(r)

We also use the notation Ty(xy) = T,/(7), and analogously for the rest of the transfer
functions. In the above equation we have also defined the convenient set of dimensionless
variables

p _ |k —pl

r = kT, y:E, z 2

In Appendix G, we use the above formula to calculate the induced tensor modes h;S-T in three

(295)

illustrative gauges (uniform curvature, uniform expansion and comoving), and find that the
results in the first two gauges coincide with the Newtonian calculation of the previous section
only at late times (that is, deep into the RD era).

As shown in eq. (288) and exemplified by the calculations in Appendix G, h;ST is not a
gauge-invariant variable, and thus it cannot describe any physical observables. This gauge
dependence has been noted numerous times in the literature [84-88]. To determine the
correct, physically relevant gauge-invariant variable we first need to specify which observable
we want to compute. In our case, the observable is the energy density of gravitational waves.

The energy density of gravitational waves, which can be obtained by coarse-graining

Einstein’s equations, depends on the tensor power spectrum [100, 101],

1/ kN’

Qaw(m, k) =~ | o5 | (Pul7,k)w, (296)
6 \'H

where the brackets (- - - )w denote a spacetime average, which in Fourier space can be thought

of as an average over many wavelengths, and P; denotes the power spectrum of the first-

order transverse, traceless tensor modes h;ET The reason for this average is that gravitational

waves can only be defined when there is a clear separation of scales between the rate of vari-
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ation of the background and that of the perturbations, and taking the average allows us
to extract the long-wavelength part of the energy density of the gravitational waves that
acts as a source for the background metric, see [100, 101]. This expression is only valid at
leading order in perturbations, since it has been derived by neglecting cubic and higher-order
terms in Einstein’s equations for the perturbations (see e.g. [100, 101, 191, 192]). In previous
studies on induced gravitational waves (e.g.[86, 90]), their energy density has been com-
puted beyond leading order in perturbations by simply replacing Aj;" — Lh" in the above
expression (assuming that the contribution from the first order tensor modes is negligible).
This replacement is not justified, since one would also need to include in the calculation
other terms arising from the coarse-graining of Einstein’s equations at fourth order in per-
i
pieces quadratic in first order scalars that would cancel the gauge-dependence. The fact

turbations which would contain, in addition to a piece involving the power spectrum of h

that these terms are not included leads to a gauge-dependent answer for (2qw because h;S-T
is gauge-dependent, which is a manifestation of the fact that the physical degrees of free-
dom corresponding to gravitational waves are completely contained in the tensor modes only
at leading order in perturbations, whereas at subleading orders they are spread across the
tensor and scalar modes.*?

The energy density of gravitational waves should be a gauge-invariant observable and thus
it should be possible to derive an expression for it by appropriately coarse-graining Einstein’s
equations. This, however, is easier said than done, since many subtleties and difficulties arise
when one attempts to derive the full expression for Qqw from first principles.*® Instead of
following this path, we will provide a heuristic derivation of the full expression for this
quantity by using an argument based on symmetry properties and dimensional analysis.

The energy density of gravitational waves is obtained by splitting the metric into a long-

wavelength background and a short-wavelength perturbation

Ju = g,uu + h,uu; (297)

where the background metric varies over a typical length scale L, and the perturbation over
a typical scale A such that L > A. This perturbation can be identified with the one that

arises in standard cosmological perturbation theory as long as we restrict our attention to

42We remark that the first-order vector and tensor modes, which we have assumed are negligible, also
contribute.

43The derivation of eq. (296) has been performed in a way that is not manifestly gauge-invariant [100, 101,
191, 192], so the gauge-invariance of the result at higher orders is not guaranteed. This is due to the fact
that defining a unique, covariant averaging procedure in a generic manifold is a non-trivial problem, and it
is unclear whether the existing definitions [191-196] in the context of backreaction are equivalent to each
other. In addition, eq. (296) is usually derived in vacuum (so scalar perturbations are usually neglected),
whereas we assume that the Universe is filled with a perfect fluid. We also expect scalar perturbations to
yield additional backreaction terms if included in the calculation (see e.g.[193]), and it is not clear that a
clean separation of the scalar and tensor contributions to the backreaction stress-energy tensor is generically
possible.
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modes with H < k.** We are interested in finding an effective equation of motion for the
background metric that includes the effect of the short-wavelength perturbations. In order
to extract the long-wavelength part of the equations, these must be coarse-grained by taking
a spacetime average. By expanding Einstein’s equations in powers of h,, and coarse-graining
them, we find

(G — KTw)w

GIW - “Tuv + (G (h) — T, (h))w + <Gw<h2) - ”Tw(hQ»W +oe

GW — KT/W — KT;ESW)
0,

(298)

where k =1 /Z\/[pz, hatted quantities depend only on the long-wavelength background g,, and
the brackets (---)w denotes the aforementioned spacetime average. In Fourier space, the
brackets can be thought of as an average over several wavelengths, as we mentioned earlier
(hence the W subscript) [100, 101, 191, 192]. The average of (G, (h) — kT},,(h))w is then

assumed to vanish, since the quantity inside is linear in h,,, which is a short-wavelength

2
quantity. By expanding the Einstein tensor G, (h?) and manipulating the resulting expres-
sion [100, 101], one can then show that at leading (quadratic) order in perturbations, the

stress-energy tensor of gravitational waves is given by

1 . .
kTS = Z(VMhOyﬁwLa%W, (299)
which leads to the expression for the energy density in eq.(296). In this expression @u
denotes the covariant derivative with respect to the background metric. The cubic order
term vanishes for the same reason that the linear term does, and the next-to-leading order
term, which is the one we are interested in, turns out to be fourth-order in perturbations.
A natural extension of eq. (296) beyond leading order in perturbations is (assuming that
the first order tensor modes vanish, hj;" = 0, so that there are no terms mixing h;;" and
BIT)
1] 9
Q) = o7 (37 ) (Polr, ) (300
k)=— = T
GWL\ 7, 24 \ H o\’ W,

for some gauge-invariant second-order variable ©;; of the form
Oy = hy" + Ty O, (301)

where 0;; is quadratic in first-order scalars. In what follows we will assume that after the
coarse-graining the energy density of gravitational waves has this form, examine the possible

terms that could appear in 6,;, and argue that they vanish in the Newtonian gauge.

R

44Gee also [193], where short-wavelength perturbations are shown to act as a source for the long-wavelength
ones.
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We assume that p = wp and the matter stress-energy tensor is of the form
kT = (1 4+ w)kpu,uy, + WEPG - (302)

If we work in the Newtonian gauge, this implies that the only perturbations available for 0;;

are ¢, k0p and dv. The most general 6;; is then given by

0ij = Cppi°0:0p0;0p + Cop0i0V0;00 + €D pO;IV + Cyp0i1 00V + oy O;0 D + iy OO,
(303)
where the coefficients c,, depend only on background quantities. We can also have two
derivatives acting on a single perturbation, or, in addition to the two spatial derivatives
with free indices 0;0;, time derivatives and contracted spatial derivatives 0;0) acting on the
perturbations. These terms will have equal or greater dimensions than the ones above and
will therefore be irrelevant in what follows.
Via dimensional analysis, we can check that most of the terms in eq. (303) are forbidden.

Since the projector 7 is dimensionless, so is §;;, and thus we must have

[copl = =6, [co] =0, [ep] =3, [ego]l =1, [cp] =—4, [egp]=-2.  (304)

The quantity in eq. (300) comes from averaging the fourth-order piece of Einstein’s equations

(since we assume that the first-order tensor modes are negligible),
RTIY) = (Gl (") = KT (W) (305)

For eq. (300) to hold, the fourth-order piece of Einstein’s equations must contain a term of
the form
G (hY) — kT, (k") D 0,0,;0,0". (306)

The only dimensionful background quantities that can appear in Einstein’s equations once
we have assumed that the matter stress-energy is that of eq. (302) are H and its derivatives
(and the background energy density p, which can be related to ‘H through the background
equations), and it is easy to check that they always appear in the numerator. Thus, every
coefficient c¢,, with negative dimensions is forbidden and must therefore vanish. The only
coefficient that could in principle be nonzero is c¢,,, but if the square of the c,, term were
present (we consider the square because the term in eq. (306) is quadratic in ©), it would
necessarily come from perturbing the matter stress-energy tensor of eq. (302), as no factors of
ov arise from perturbing the Einstein tensor. However, it is easy to see from this expression
that there is no way to obtain four copies of dv by perturbing the stress-energy tensor, show-
ing that ¢,, must also vanish. As anticipated below eq. (303), the coefficients of terms with

additional derivatives will have even lower negative dimensions, so they are also forbidden.
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The above argument shows that in the Newtonian gauge® ©;; = h;FjT. In principle, in
a generic gauge there are many possible candidates for ©;;, but we will now show that it
can in fact be uniquely determined. It is easy to check that the following combination is
gauge-invariant,
— im
Xij = hi;" + T " Xims (307)

where, in momentum space, we have

m dSk ik-x
Tijl Xim = / (27T)3€ k <X’]:re:; + X?eé), (308)
with*6
s Ep .
X; = Weijpipj [2p (k= p)E,Ey—p — 8E,p—p + 20pak_p} . (309)

It can also be seen directly from the above expression that in the Newtonian gauge X;; = hiTjT.
Thus, X;; — ©;; = 0 in the Newtonian gauge. But since both X;; and ©,; are gauge-
invariant, their difference must be gauge-invariant as well, and since the difference vanishes
in the Newtonian gauge, it must vanish in every gauge.*” We have therefore shown that, as
long as our initial assumption holds —namely, that the energy density of gravitational waves
beyond leading order in perturbations can be obtained by averaging the power spectrum of
a gauge-invariant variable of the form shown in eq. (301)— this energy density must be given

by eq. (300), where, in momentum space —compare with eq. (292)—

01r) = 15 | e e DR R, [1(rp k= pl) + ok =p)]. (310)

with
t NENEES T T AT T, (xy)T, 311
o= 2 (3552) {Taton [1:Tsto) - 1Tue2)] + Tl Lol ), (310

where we have traded the perturbations in eq. (309) for their transfer functions, see eq. (294).
This is a heuristic argument because we have not shown that eq. (300) actually arises from
averaging Einstein’s equations. As stated earlier, proving this would require more machinery
(in particular, a careful study of backreaction beyond leading order in perturbations using a
formalism such as the one presented in [193], which is beyond the scope of this thesis).

It has been argued in earlier works [86, 90] that calculating Qqw by replacing h;»l;-T — %h};»T

in eq. (296) is justified, as long as we are only interested in the value of Qgw today, because

45Had we written 6;; in the most general form, without choosing any specific gauge, we would have simply
found that some terms involving £ and B are not forbidden by dimensional analysis alone. Since these terms
vanish in the Newtonian gauge, we arrive at the same conclusion.

46This quantity is obtained simply by guessing which terms must be added to eq. (291) to cancel the gauge
transformation. An alternative way to derive it is presented in Appendix A.

4TIn other words, if we suppose there exists a gauge invariant Y;; such that Y;; — X;; # 0, then since this
difference is gauge-invariant, it must hold in particular in the Newtonian gauge. Thus, Y; # hJ;" in this
gauge and therefore Y;; # ©,;, proving that Y;; cannot be the quantity that enters in eq. (300).
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scalar modes decay quickly during the RD era and therefore second-order tensor modes
propagate linearly at late times. In other words, because at late times the source in eq. (260)
vanishes, the induced second-order tensor modes obey the same equation of motion as the
first-order piece, implying, according to [86, 90], that they effectively become first-order
quantities and therefore can be treated as such for the purpose of calculating the gravitational
wave energy density at late times. The advantage of our calculation with respect to these
arguments is that it is completely independent of the matter content of the Universe, and
therefore of the time at which Qgw is evaluated. Our explicitly gauge-invariant expression

for Qqw is valid at all times, provided our initial assumption holds.

5.3 B Energy density bounds

In this section we will estimate the abundance of gravitational waves in the eMD — RD
transition scenario by using the monochromatic power spectrum of eq. (45), which will allow
us to easily perform the integral in eq. (283). If gravitational waves stop being generated
at some late time 7 near the end of the RD era and their energy density evolves as that of
radiation afterwards, we can relate the abundance of GWs at 7 to their abundance today by

using entropy conservation and eq. (296) [186],

4/3 2
BT () (4 i, o

where we have switched to temperature as the time variable and replaced hj;" — $h\" in
eq. (296), assuming that h;-FjT is computed in the Newtonian gauge, as per the discussion in
the previous section. To compute the power spectrum, we begin by noting that the two-point

function for hj" is, after some manipulation [185, 186],

1 [ d’p e'(k,p)e’(k,p)
hihs)q = 64176 (k —/ : :
(hikigla = G4m0+ )33 | Gonya il — P

Pr(p)Pr(|k—p|) (7, p, |k—pl), (313)

where, on the left-hand side, we have taken the quantum expectation value, see Appendix E.
The next step consists on switching to spherical coordinates, performing one of the angular
integrals, and switching to the variables x = k7, y = p/k, and z = |k — p|/k defined in the

previous section. The result is the following net change in the integrand

"(k p)es(k p) T oo 1+y 43/2 _ (1 + y2 _ 22)2 2
dtp & b, —57‘%/ d / dz . 314
/ P p’lk — pl? 2 0 Y [1—y] dyz (314)

The power spectrum is defined by
LS — 353 TS 27T2
(hphy)q = (2m)°0°(k + q)0 75 Pr(T, k). (315)
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Figure 24: Integral kernel JgMD(xm, y,z) in the Newtonian gauge for the two limits of integration
in eq. (316) and three different values of xy, (and in the limit x,, — 0, corresponding to the case
in which the Universe never goes through the eMD phase). For x,, < 1 the kernel is virtually
indistinguishable from the x,, — 0 result, so that the eMD era only has a noticeable effect in the
spectrum for modes satisfying T, = 1.

Thus, we have the following formula for the dimensionless power spectrum,

00 14y 42 — (1 2 ,2\272
Puri) = [Ty [ s [ T2 by Prhe) (e 2). (316)
0 [1—y| Yz

The function I is given by eq. (286). We show the full expression in Appendix F. The result
for the case in which the Universe never goes through an eMD phase, which is also given in
Appendix F, can be obtained by taking the limit z,, — 0 in [I.

To obtain Qgw, we need to square I in eq. (286) and average the result by using

(o 3 (o 5)), -0

We find

2a(7)([*)w = 4a(;m>2 [(IMP + I7P)? 4 (IMP 4 I5P)7). (317)

[(IMP 4 IFP)? 4 (IMP 4 1507, (318)
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Figure 25: Left panel: induced abundance Qaw (1o, k) for the three examples of Table 1, together
with the LISA sensitivity curve [77]. We remind the reader that the two eMD examples have different
associated transition temperatures Tp,, shown in the plot on top of the corresponding curves. We
remark that the sharp peaks in this figure (and the dip in the RD curve) are a consequence of
using the Dirac delta spectrum in eq. (45). These features do not show up for smooth spectra, as
exemplified in the next section. Right panel: dependence of the integrated abundance defined by
eq.(327) on ks for three different transition temperatures T,,, normalized by A%. Growth in each
case begins roughly after x,,(ks) = 1.

so that the final result can be written as [185]

ronto) =S () e [T

- Pr(ky)Pr(k2) Jun (Tm: ¥, 2), (319)

2

where we have defined the shorthand
e 2 € 2
T (@m, Y, 2) = I (@, v, 2) 1P (@, v, 2)] 4 [ (2, v, 2) + 1P (2, y, 2)] 7, (320)

which is plotted in Fig.24. If the Universe never goes through an eMD phase, the result is

obtained in a straightforward manner by taking the limit x,, — 0,

T (@m = 0.y, 2) = [IP%P(y, 2)]” + [I5"(y, )], (321)

e

with IP*P as defined in Appendix F.
For the Dirac delta spectrum of eq. (45), the integral in eq. (319) can be performed ana-
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Figure 26: Awailable parameter space with ks fixed as in the two eMD examples of Table 1 after
taking the constraint of eq. (328) into account (compare with Fig. 3), as well as the constraint in
eq. (47). The eMDy example is ruled out by this bound. Although the solid and dashed black lines
are affected by uncertainties in the formulas for the PBH mass and abundance, the numbers quoted
should be correct as an order of magnitude estimate as per the discussion at the end of Section 2.1.

lytically, and the result is

Q. (To) gu(T) [ gus(To)\"* K2 [ k2 2 ks ks
Qaw(Ty. k) = A2 2 — (42 — J> s — =2 ) O(2ks — k
aw(To, k) = A5 == 0.(To) \gu(@) ) 12"k owp | Tmo 750 70 | ©2ks = k),
(322)

where the © at the end denotes the Heaviside step function. To evaluate this quantity we can

use the fact that (taking 7" as some late time in the RD era before the top quark decouples
from the primordial plasma, so that gravitational waves at the scales relevant here have
already been induced)

9es(T)\ 2 £ 106.75\ /2 107GeV k (323)
Ty = — .
106.75 9.(T)) T, 104Mpe ™t
The quantity Qaw(7o, k) is plotted in Fig.25. The left panel of this figure depicts the
resulting Qaw (70, k) for the three examples of Table 1. Interestingly, all of the examples

yield spectra with very different amplitudes despite all of them having the same abundance
(see Fig.2). The reason for this is that the height of the induced tensor spectrum depends
on the ratio between T, and k because of eq. (323). As shown in Fig.24, for z,,, < 1 the
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integral kernel is virtually indistinguishable from the x,, — 0 case in which the Universe
does not go through an eMD phase. For x,, 2 1, however, the kernel grows very quickly, due
to the fact that the transfer function T,;/’ is constant during eMD —see eq. (280)— and thus
the corresponding modes are enhanced.

For collapse to occur during the eMD era, the relevant modes must obviously re-enter

the horizon before the phase ends. That is, collapse during eMD can only happen for modes

with & > k,,, where
b T (0T ) gus(@) VP (324)
"3 M, 10 Gss(Trn) "

It is illustrative to compare the condition z,, 2 1 to this condition. If we take g,s(7},) =

9x(T,) = 106.75, then the two conditions are, respectively,

T
k> 102Mpc™* (m) : (kernel enhancement) (325)
e

k> 4.3 x 10*Mpc™* ( (horizon re-entry during eMD) (326)

1O5Ge\/> ’
so we see that all of the enhanced modes re-enter the horizon during the eMD phase. We
therefore find that if PBHs form during RD, the presence of an eMD era does not affect the
induced GW spectrum at the peak of the distribution, as we would expect.

The net contribution of GWs to the energy budget of the Universe is obtained by inte-
grating

Qe (Th) = / Qe (T, k) log(F). (327)

There exists a bound on this quantity arising from both CMB experiments [98, 99] and from
the abundance of light elements produced during Big-Bang Nucleosynthesis®® [99]. In our

figures we show only the latter bound,
Qawh? < 1.8 x 107, (328)

but we remark that the CMB bounds can be slightly stronger, by an O(1) factor, depending
on the choice of initial conditions [98]. Since the enhancement of the tensor spectrum is so
large for PBHs formed in the eMD phase, it is important to check whether this bound is
satisfied. Indeed, we find that it severely limits the available region of parameter space. The
result is plotted in Fig. 26 for the two eMD examples of Table 1 (compare with Fig. 3). The
eMD, example is ruled out by this new constraint. For PBHs formed during the eMD era,
this bound turns out to be stronger than the one coming from galactic y-ray constraints

[31, 32] at relatively low transition temperatures T, < 1055 GeV, as shown in Fig.27. We

Y

48We remark that this bound only depends on the assumption that gravitational waves behave as radiation
at the time of BBN (or photon decoupling for the CMB), which is indeed the case in our scenario, as can be
explicitly checked from eq. (319) [185].
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Figure 27: Awailable parameter space for Ty, = 10>7 GeV (left panel) and T,, = 10° GeV (right
panel), together with the bound in eq. (47). For transition temperatures Ty, < 10°5 GeV, the con-
straint of eq. (328) is stronger than the bound arising from galactic v-ray constraints [32]. The
contour lines represent the PBH abundance and masses at the peak of the distribution, which should
be correct as an order of magnitude estimate as per the discussion at the end of Section 2.1.

remark that the reason it is not possible to represent both eMD examples in the same figure
is that the bounds depend on the position of the peak in the power spectrum for each
one —the parameter ks in eq. (45)— which takes different values in each example (see Table
1 and Fig.3). Finally, we remark that the formula in eq.(319) is of general validity for
any scalar power spectra. As an example, we show the induced gravitational wave signals
for the polynomial model of Section 2.1 with and without higher-dimensional operators in
Fig.28. The examples coincide with the ones shown in Fig.8. The signals in this case are
much smoother than for the Dirac delta spectrum, although the order of magnitude of the
amplitude is the same, as we anticipated in the caption of Fig. 25.

Although we have focused our discussion on the LISA and BBO/DECIGO detectors,
there are many more proposed experiments that can probe the gravitational wave signals
induced by PBHs. On the right panel of Fig.28 we show the sensitivity curves for LISA
[77], BBO/DECIGO [197], Magis-space and Magis-100 [198], the Einstein Telescope [199]
and advanced LIGO [200]. The first four of these experiments, in particular, could probe
the range of PBH masses of interest for dark matter (1). Other proposed experiments not
shown in the figure with sensitivities in the same range are AION [201] and AEDGE [202].

The advanced LIGO and Einstein Telescope experiments cannot probe the masses in (1),
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Figure 28: Left panel: gravitational waves induced in the polynomial model of Section 2.1, with
and without higher-dimensional operators, if the black holes form during a RD era, together with
the LISA and BBO/DECIGO sensitivity curves. Right panel: projected sensitivities of future grav-
itational wave experiments as a function of the PBH masses if they form during a RD era. The
dashed line represents the approximate expected size of the gravitational wave signal in this case
(see left panel).

but would still be able to detect the gravitational wave signal induced by a population of
sufficiently light black holes. PBHs with these masses can evade the evaporation bounds
arising from extra-galactic y-rays [29, 30], but are still constrained by the abundance of light
elements produced during nucleosynthesis [203]. In the left panel of Fig. 29 we show a solution
of the polynomial model in Section 2.1 that leads to an abundance of order fppy ~ 10~* of
light PBHs. On the right panel of the same figure we show the induced gravitational wave
signal, which falls above the design sensitivity curve of the advanced LIGO experiment.

To close this section, let us point out that although gravitational waves induced during
an eMD era have been studied before [185], the novel part of our analysis is in doing so in the
context of PBH formation, and including the bound in eq. (328) to determine the available

region of parameter space.

5.4 B Gravitational waves in warm inflation

In this section we compute the gravitational waves induced in the warm inflation scenario of
Chapter 4. The calculation is slightly different to the one presented in the previous sections

because both the tensor and scalar power spectra are now stochastic quantities. We also
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Figure 29: Left panel: fraction of the Universe’s mass in PBHs (41) at their formation time as
a function of the PBH mass if the PBHs form during a RD era, together with the BBN bounds
in [203]. Right panel: fraction of the energy density in gravitational waves relative to the critical
energy density of the Universe as a function of the frequency. The PBH abundance shown in these
plots is obtained using the polynomial model of Section 2.1.

compute, in this case, the gravitational waves induced during inflation, which are suppressed
in the inflection-point models.

Let us begin by noting that the source term in eq. (266) can be written, during inflation,
in terms of the total momentum perturbation® dq (where by total we mean including both

the scalar and radiation components) using eq. (201)

g5 I’p AM* (¢ (r) /

h(pre) = / (%)38@(’4)2%193’ {8¢p@/}k—p+ 0+ 1) (&zp - ;5%) (&zkp— ;&bk—p)}, (329)
where the (pre) subscript denotes the fact that this is the source term during inflation. We
now make the simplifying assumption that the terms in this expression involving ¥ and §¢("
can be neglected. This assumption is motivated by the analytical model of Section 4.4 and
will be justified at the end of this section. Thus,

4 2 d3

The value of ¢ at the end of inflation (7 = 0), which will be the initial condition for the

post-inflationary source, is, on superhorizon scales and assuming the Universe enters an RD

49The momentum perturbations dg; are additive, so the total momentum perturbation can be defined as
the sum of the individual components, ¢ = ", dg;.
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era after inflation ends,

Ue(0) = 2Ry (0) = — ?)a(ffp) 56 (0), (331)

where we have used egs. (234, 278). The post-inflationary source can then be written as

4 H2¢/2
9a2(p+p)?|,

d*p
(2m)3

where the function @) was defined in eq. (285).

The Green’s functions for eq. (266) during inflation is

e’ (k,p)0¢,(0)001—p(0)Q(p, [k — pl, 7), (332)

Sz(post) =

1
Be(7,7) = ~ [k(T — Y cos(kr — kr') — (1 + k2r7') sin(kr — kT')] . (333)
T
where we have used H = —1/7 during inflation. The solution is therefore
hi (T) = TI?(T)hZ(O) + / FpOSt (7—7 T/)Slf:(post) (T/>d7—/7 (334>
0
g ()

where T} is the (linear) transfer function of h§ in the radiation era,

in(kT)
i = S 335
k‘ kT ? ( )
and o
h;(0) :/ Fore(0,7) S pre)( Ydr'. (336)

The lower integration limit 7, is some early time at which we assume hj(7,) = 0 (that is,
no gravitational waves have been induced at this time).
The expectation value of the tensor power spectrum late in the radiation era contains

three terms,
(Pr(k,7))s = (Pore(k, 7))s + 2(Pumix(k, 7))s + (Ppost (k, 7))s- (337)

These three terms will in turn lead to three different contributions to the gravitational wave
energy density. The first term corresponds to the gravitational waves induced during the
inflationary epoch, and the third term corresponds to the gravitational waves induced during
the subsequent radiation-dominated era. The middle term mixes both contributions and its
value typically lies between the other two.

To perform the rest of the calculation we will use the analytical results of Section 4.4.

The reason for this is that to calculate the tensor power spectrum we need to take the
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quantum expectation value in addition to the stochastic one (in order to make the tensor
power spectrum a deterministic quantity, as we did with Pg), and, as discussed in Appendix
E, when eq. (246) is used to split d¢ into the homogeneous and inhomogeneous solutions to
its equation of motion, finding the double expectation value is straightforward, since only
the homogeneous solution is quantized, and only the inhomogeneous piece is stochastic. This
splitting can be done only because the equation of motion for d¢ has been decoupled from
the rest (up to the source term 6p("), since the full system of differential equations cannot
be solved by Green’s function methods. This approach should give a reasonable estimate of
the full numerical result. The first term in eq. (337) is defined by

2
32T

T (r)* (i (0)h;(0)) = (2m)° =5

(Ppre(k, 7))s6"6% (k + p). (338)
The quantum expectation value is already included inside Py on the right-hand side —
see eq. (444) for the analogous scalar definition— so we only write the stochastic average.
The two-point function on the left-hand side can be computed quantizing the inflaton field

perturbation. The result is, using eqs. (334, 336),

i S o 16 0 ¢/2 , , 0 ¢/2 ; ,
(R (0)R;,(0)) = @/ o1 Fre 0 / i 7|, B0 7"
& 43l . ) ) )
[ e ) [ e 0 D60 (o iy (). (359

The four-point function of d¢ appearing in this equation can be computed using eq. (246),
together with Wick’s theorem. This calculation is done in Appendix E. The resulting ex-
pression can be plugged back into the above equation and, using one of the Dirac deltas to
perform the integral over I, we find

I

1287‘-4 3 r s /i !’
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p

0 ¢/2
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7-/ Th (p+p)

IEIT
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(340)

where we have defined®!

H / 11
3 min(7/,7") 9(12
2

Qiola.7,7") = o (5¢§h)<7’)*5¢§h’<r”) + / Gl G ) o 09} (%)|2d%>.

2 oo

50 As discussed in Appendix E, the brackets without subscripts denote a double expectation value, quantum
and stochastic.
?1G(7,7') denotes the Green’s function defined in eq. (251) evaluated at 7 = —e~V /H.

135



This quantity has the following properties

Q&b(qa T, T) = <7D5¢(Qa 7_)>Sv Q5¢<Qa 7_/7 7—”) = Q§¢(Q7 7-”7 T/)' (342)

It is useful to make the integrand in eq. (340) manifestly real and symmetric under 7/ <> 7”.
To do so, we take eq. (339), rename the dummy variables 7" <+ 7" and sum the result with
eq. (339) itself. After using the second identity in eq. (342), we find

0 ¢/2
kFoe (0, 7")kdr’ / e

(hi.(0)h;(0)) = / 2+ p)

12874
M,

0*(k + p) /° ¢
kO ), a*(p+p)

/ Bqe(k, q)e(k, q)Re {Qéd,(q, Q5[ — ql, 7, T“)}

kFore (0, 7")kdr"-
Boog
@k —qf*

(343)

We can now perform the same steps we did below eq. (313) to obtain, for the first term in
eq. (337),

N ) 4 0 ¢/2 0 ¢/2
Porelk, 7))s =T, (T —/ ———| kF,..(0,7 de'/ | kF.,(0, 7" kdr"-
< p( ))S k()Mé Tha2(p+p)7-/ P( ) Tha2(p+p>7-// p( )
oo 1+y 42 — (1 2 .2\272
: / dy / dz [ Y= 4“/ ) } Re[gw(/{y,#,T")Qw(/{z,f'ﬁ")]. (344)
0 11—yl Y=
To compute the term 2(Puix(k, 7))s, we use
h r s 327T2 TS £3
Ty (1) (hy,(0)gy(7)) = (27)° =5 (Puix(k, 7))s6"0" (k + p), (345)

k?)

where gx(7) is defined in eq. (334), and similarly for the P,os term. Following a completely

analogous procedure to the one we just applied to compute (Ppe(k, T))s, we obtain

(P (k, 7))s = TP (7) 4 _H¢” /0 _" kFe(0, 7' kd //T kFypost (7, 7" ) kd 7"
mix (%, T - T re\YU, T T ost\ T, T T
TR oM2a2(p+p)2 )y ), 2o+ )|, T 0o "
00 14y 42 — (1 2 .2y272
/ dy/ dz [ Y (1+y ) ] Re|:Q5¢(k‘y,T/,0)Q5¢(l€2,7”,0):| Q(ky, kz,7"). (346)
0 [1-y| dyz

Similarly,

A T T o0 1+y
(Ppost(k, T))s = 8_1/ k Epost (T, T/)kidT// kFpost (T, T")k’dT”/ dy/ dz-
0 0 0 [1-yl

. [4y2 S )] (Pr(ky)s(Pr(k2)s Qky. kz,7)Q(ky, kz. 7). (347)

dyz

where we have used eqs. (331,342) to relate Qs to Pgr. This completes the calculation of
the tensor power spectrum late into the radiation era.
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To find the energy density (312) we use

<Tk}:l(7—)2>w = 2(/€T)2’ (348)
KT () o (7, 7))y = i <;> cos(kr), (349)
E? { Foost (T, T') Fpost (7, 77) )w = 72/;// [cos(kn") cos(kt") + sin(k7") sin(lm’”)]. (350)

The H? factor in the denominator of Qgw will cancel out the 1/72 in these averages, yielding a
finite result in the limit 7 — oco. The stochastic average of the energy density of gravitational

waves today is therefore

Qo (k)5 = 22T 9:(T) (9*5”0))4/3 [T +| i {4?/2 —(L+y’— ZQ)kay, k)

24 g, (To) \ gxs(T) dyz
(351)
where the dimensionless integration kernel K (ky, kz) is
K(ky, kz) = Kpe(ky, k2z) + Knix(ky, k2) + Kpost(ky, k2), (352)
with
Koo = — /0 | k(0,7 kar /0 | B0, ks
pre M;l - az(p+p) . pre\Y, . CL2(,0+p) o pre\Y,
-Re {Qw(ky, 7', 7") Qs (kz, 7', T”)} , (353)
4 H2¢/2 0 ¢/2
Koix = Is(y, 2 / ——————| kFue(0, 7" kdr'"-
( )9M3a2(/)+p)2 oJm @(p+p)| " 0:7)
-Re {Q&b(ky, 7',0) Qs (kz, T, 0)} : (354)
1
Kpost = 5 (Pr(ky))s(Pr(k2))s T (tm = 0,9, 2), (355)
where Jrp was defined in eq. (321) and
I(y,2) = / (k7") cos(kT")Q(ky, kz, ") kdr'. (356)
0

This integral can also be performed analytically, see [186].
For completeness, we also present here the expression for the tensor power spectrum

valid in the standard cold inflation case; that is, in the absence of the second term in the
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parentheses of eq. (341). In this case the spectrum can be written as the square of a sum,

Pk, 7) = /000 y/|11+yy z {4342 —(+y - 22)2] 27772(@)7973(’?2)
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kare(O,T/)S(/{y,k’Zﬂ'/)kT/—|—§/ kFoost (T, 7)Q(ky, kz, 7" )k7'| |, (357)
/ 0

T

where

Riy(T) Ri=(7)
Riy(0) Ri=(0)°

We now proceed to estimate each one of the terms in eq. (352). Let us focus first on the

S(ky, kz,T)

(358)

Ko term. This contribution depends on the lower integration limit 7, (and as noted in [204]
is formally divergent in the limit 7, = —oo due to the behaviour of scalar perturbations in
the Bunch-Davies vacuum). We deal with this problem by integrating from a finite value
of 7, that we identify with the time at which the strongly dissipative phase begins. The
assumption here is that the contribution from the source prior to this time is neglegible.
This assumption is reasonable since up to that time inflation proceeds as in the standard
slow roll scenario (up to the presence of a weak dissipative term that does not alter the
dynamics significantly), and we do not expect the corresponding gravitational wave signal
to be peaked at any particular scale or exhibit any special features, in contrast to the piece
arising due to the strongly dissipative phase. In addition, we notice that the inflationary
contribution to the energy density of gravitational waves diverges in the y = oo limit. In
principle, this divergence should be renormalized away by properly computing the induced
gravitational wave signal using the in-in formalism. However, we just impose a cut-off which
renders the result finite. We have verified that our results do not depend on the cutoffs
unless unreasonably large values are chosen. Only the K,k and K. kernels suffer from this
issue, and the post-inflationary contribution is finite. We reiterate that the results of this
section should be regarded as an accurate order of magnitude estimate of the overall size of
the signal.

We can choose the time cutoff around the time at which the dissipative coefficient I" begins
to increase. In terms of the analytical calculation of Section 4.4, this corresponds to the
beginning of phase 1. For the momentum cutoff we can choose keuor ~ O(10 — 100) X Kpeak-
The four-dimensional integral in (€2,,.)s is quite difficult to perform. However, K. is heavily
peaked around a specific time, so the strategy we adopt is to approximate the time integrals
by evaluating the integrand at this time and multiplying it by an appropriately chosen
integration area.

To determine the point in parameter space at which the integrand is peaked, we use that
the integrand is symmetric under 7 <> 7" and y <> z, so the set of maxima of the function
must be symmetric under this transformation. If the function has a unique global maximum

in some region (we do not prove that this is the case, but we have checked it numerically),

138



loglo[Kpro(Nmaxa kpcak : Z//H> kpoak : Z/H) |y=z]

10 10-6 |
-7 1
-9 10-81 1
~11 :
’—13 10_10' 1
i -15 o J LISA
i 2 an-12) 1
§ 4 7_1’; % 10 <QI)(;.\‘1>S
= | - |
3 --21 < 101 :
6:- 923 <Q]>1'<~>S J
i —95 10-16_ :
3 27 .
i —-99 107181 I
4 ., I PR R N I I
-4 -3 -2 -1 0 1 107! 100 10!
10g10<y) k / kp(:ak

Figure 30: Left panel: mazimum value of the integration kernel in eq. (362) on the surface y = z
for the parameters in Table 4. Right panel: gravitational wave signals induced during and after
inflation compared with the LISA sensitivity curve [77].

then it follows that this maximum must be located along the surface with 7/ = 7”7 and y = z.

On this surface,

1 12
K ¢

2
~ 2
pre — 2Mg a2 (p T p) (kATmax) [kare<07 Tmax)] P5¢(ky7 Tmax)PzS(b(kZ) Tmax)7 (359)

Tmax

where Ty, 1S the value of 7 at which the local maximum occurs, and A7y, is the integra-
tion area, which must be appropriately chosen as a small square around 7, requiring, for
instance, that the integrand does not decrease by more than an order of magnitude or so, in
such a way that the approximation holds. The integration area is, in terms of the number
of e-folds,

k
kAT = ﬁ(e_N‘1 — e M), (360)
where AN = N, — N, is the range over which the integrand is large, which spans a couple
of e-folds at most. Let us write N, = Npax — ANmax and Ny = Npax + ANpax, with

ANpax ~ O(1); and where Ny, is the time in e-folds corresponding to Tyax. Then

EATpax = 2%—%»« sinh(ANpax)- (361)
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The function we need to maximize is therefore®?

2> ¢ sinh?(A Npax)
MEHZ a2 (p _|_ p) 62Nmax

Tmax

Koo = [0, )| P (k. o) P (52, ). (362)
The quantity in eq. (362) is shown in the left panel of Fig.30 for the parameters in Table
4. The discontinuity around N = 5 e-folds is due to the fact that, as mentioned in Section
4.4, we take the background parameters as piecewise-constant functions for this calculation.
Specifically, we take ¢"?/a?(p + p) = 1 in phases 0 and 3, and ¢"*/a®(p + p) = 0.02 in phases
1 and 2. In this figure we also take ANn., = 2, which is clearly enough to account for the
region in which the integrand is large. Changing this number by a factor of O(1) does not
change our results.

To obtain the induced gravitational wave signal, we find the time 7 at which K. is
peaked for each k£ and perform the momentum integrals numerically. The time-dependent
power spectrum Py, (k, 7) is calculated using the analytical formalism of Section 4.4, as we
anticipated earlier. Specifically, it can be found by keeping the full expression for the Green’s
function in eq. (251) instead of taking the N — oo limit. The resulting signal is shown in the
right panel of Fig. 30. We find that the energy density of gravitational waves induced during
inflation is much smaller than that of the gravitational waves induced during the radiation

era. We do not show in this figure the mixed term from eq. (352), but we find that it is well

approximated by (Quix)s ~ \/ (Qpost)s(Qpre)s, and is therefore also suppressed with respect
to the post-inflationary contribution.

We stress that approximating the integrand by its peak value is what allows us to neglect
the subdominant terms involving ¢ and d¢™ in eq. (329). Let us show that this is a good
approximation by estimating the relative contribution of each term in this equation during
the inflationary epoch. Since the integrand in eq.(329) is symmetric under p <> k — p,
for the purpose of finding out which terms contribute the most at the point at which this
integrand reaches its largest value, we can simply evaluate it at |p| = |k — p| as we did for
Kpre. We can then define

4 4 ¢/2

Saw (N, k) = 8(Py(N,k)) + (Psyn (N, E)) + (Pso(N,k)),  (363)

— (p+ p) M2 a*(p + p) M2
P ~~ - ~ -~ s
Séq("") 554)

where we have ignored the mixed terms in eq. (329), since they are always subdominant. This
quantity is shown in Fig.31 for two different modes, both of which become super-Hubble

near the end of the strongly dissipative phase. The figure illustrates that the time integral of

2The value Npax at which K. peaks is really a function of y, as can be seen in the left panel of Fig. 30.
However, since the largest contribution to the integral comes from the region around ky = kpeak, to make
the calculation numerically less demanding we can simply take Np.x as the value at which the integrand,
evaluated at ky = Kpeak, is peaked, and use the same value Nyax for all y. We have explicitly checked that
the peak of the signal remains unchanged if the y-dependence of Ny, ax is taken into account.
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Figure 31: The different components entering into the quantity Sgw defined in eq. (363) are shown
as a function of time for two different values of k. We use the numerical results of Section 4.2.

the scalar source of noise is dominated by the d¢ term. Since the other contributions are at
most of the same order and will therefore not change the size of the peak in the gravitational
wave signal, we can neglect them.

Let us briefly summarize the results of this section. We have made three different ap-
proximations in this calculation. The first is that we approximated the time integrals as
their peak value times an appropriately chosen area. The second is that we have neglected
the contribution of the radiation and metric terms to the gravitational wave source during
the inflationary epoch, and we have checked explicitly that the contribution of these terms
is indeed subdominant. These two approximations are very good and should not change
the order of magnitude of the result. If the time integrals are performed numerically and
the metric and radiation perturbations are included in the source term, we expect that the
size of the signal will change at most by a factor of O(1). The final approximation is more
delicate, and has to do with the fact that the integrals diverge in the far past (and for large
momenta) due to the behaviour of scalar modes in the Bunch-Davies vacuum. We have
assumed that this effect can be taken into account correctly by imposing reasonable cutoffs
in the integrals. We expect this to be the case because, up to the cutoff scale, the evolution
of all quantities proceeds as in standard slow-roll (warm) inflation, so we do not expect the
corresponding gravitational wave signal arising from the renormalization of the divergence to
be peaked at any particular scale or possess any other features. We have checked that indeed
our results are independent of the cutoffs unless unreasonably large choices are made. The
uncertainty due to this approximation is difficult to quantify, but we remark that due to the

aforementioned argument, our results should be correct as an order of magnitude estimate.
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Conclusions

Primordial black holes are intriguing astrophysical objects. As we have seen, their formation
does not require extensions to the Standard Model other than inflation, so they are relatively
economical dark matter candidates. They also exhibit many astrophysical signatures and,
in particular, in the formation mechanisms we have examined here they would generate a
large signal in the stochastic background of gravitational waves that could be observed in
future experiments. In this thesis we have studied several aspects related to the formation
and observable signatures of these black holes. We have presented three specific scenarios in
which a large population of black holes that could account for the entirety of the observed
dark matter can be generated from single-field inflation. Two of these scenarios rely on
the presence of an approximate inflection point in the inflationary potential, which in turn
generates large primordial fluctuations on scales much smaller than the ones probed by CMB
experiments. In the third scenario, large primordial fluctuations are obtained instead from a
transient dissipative phase during inflation in which a source of thermal noise enhances the
perturbations. Regions where the density fluctuations are large enough collapse into PBHs
when these perturbations become sub-horizon during the radiation epoch.

The first of the models we have presented is characterized by a quartic polynomial infla-
tionary potential, together with a non-minimal coupling between the inflaton and gravity.
If the parameters of the potential are chosen appropriately, this model can generate a large
population of PBHs in the window (1) able to to account for the entirety of dark matter.
If we restrict the analysis to the renormalizable case, we find that the predicted tilt of the
power spectrum on CMB scales is in a 30 tension with the latest Planck analysis for the
base ACDM model once we require fppg ~ O(1). This tension can be alleviated either by
considering simple, well-motivated extensions to the base ACDM model, such as the ad-
dition of neutrino masses, or by considering higher-dimensional operators in the potential,
whose presence is expected in the context of suitable UV completions of the theory. In the
former case, the spectral index turns out to be smaller than the one reported by Planck, and
compatible with our numerical examples, whereas in the latter case the higher-dimensional
operators change the potential at large field values, allowing for a better fit of the spectrum
at CMB scales.

The second model we have studied is aimed at ameliorating some of the issues present
in inflection-point models of PBH formation; in particular, the fact that the presence of the

inflection point is usually engineered for the sole purpose of PBH production, and that the
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abundance of the PBHs that are generated during the radiation era is exponentially sensitive
to the amplitude of the primordial fluctuations at those scales, so that, in order to account
for a large fraction of the dark matter, the parameter in the potential that controls the
shape of the inflection point must be carefully adjusted. The scenario we present, based on
a monodromy-inspired inflationary potential with oscillations superimposed on a term that
behaves as a monomial at large field values, together with a phase of early matter domination
after inflation, alleviates these issues. In our potential, the existence of the inflection points
does not arise from carefully crafting the parameters, but it is instead a rather generic
property that emerges whenever the axionic oscillations have a relatively large amplitude.
The second ingredient of our scenario can also be easily realized: preheating can be avoided
and a long epoch of matter domination after inflation can take place due to perturbative
reheating, since the minimum of the potential is approximately quadratic. During this period
the likeliness of gravitational collapse is augmented due to the absence of radiation pressure,
so that the size of the fluctuations required for PBHs to be able to account for the entirety
of dark matter is reduced with respect to the usual radiation scenario. Moreover, the PBH
abundance is much less sensitive to small changes in the size of the power spectrum, leading
to a reduction in the tuning of the parameters in the potential. The agreement with CMB
constraints (except for the tensor-to-scalar ratio r) turns out to be excellent in this model.
We have also shown in a model-independent way that PBH formation during an eMD era is
most efficient for reheating temperatures of order < 10° GeV.

We have shown that a large enhancement of the power spectrum can also be obtained
from a transient dissipative phase during inflation. This mechanism is quite different from
the other models we present, since the enhancement is not due to a sharp decrease of the
inflaton velocity, but rather due to a stochastic source of thermal noise in the equation
of motion for the fluctuation that arises from the interaction between the inflaton and an
underlying thermalized radiation bath. We have solved the stochastic differential equations
for the fluctuations numerically to find the probability distribution of the power spectrum,
which turns out to be well-approximated by a skew-normal distribution. Since the quantity of
interest is not necessarily the full probability distribution, but its expectation value, we have
developed a way to calculate the latter by reducing the full system of stochastic differential
equations for the fluctuations to a single, deterministic matrix differential equation for their
statistical moments, which is computationally much less demanding to solve. We have also
shown that it is possible to simplify the system of equations in such a way that it can
be solved analytically. This procedure allowed us to understand qualitatively the most
important features of the spectrum.

In addition to the concrete models we have presented, we have also analyzed the role of
quantum diffusion during inflation in scenarios featuring an ultra-slow-roll phase, which is
particularly relevant for the inflection-point models of PBH production discussed above. The

backreaction of quantum fluctuations on the inflationary dynamics is described in the context
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of stochastic inflation. In this approach the long-wavelength perturbations of the inflaton are
sourced by the short-wavelength ones, which become semi-classical after crossing a suitably-
chosen coarse-graining scale. After this stage, the latter behave as a classical source of
stochastic noise. We have analyzed the role of the quantum-to-classical transition in this
case by using the occupation number density as a test for classicalization, and determined
that the choice of the coarse-graining scale is critical: spurious results are obtained for the
power spectrum if the modes are not given enough time to classicalize. If the coarse-graining
scale is chosen appropriately, the resulting power spectrum coincides, at the linear level,
with the result obtained using the standard methods of perturbation theory. This outcome
was already known in the case of slow-roll inflation (see e.g. [72]) and we have shown that it
holds also in presence of an USR phase. The classicalization of the modes is also shown to
be equivalent to the condition that the modes freeze outside the Hubble horizon, much like
in the standard slow-roll scenario, so that classicalization only occurs after the USR phase
has ended. We have solved the stochastic equations by expanding at first order the coarse-
grained inflaton field and its conjugate momentum around their classical trajectories and
treating their perturbations as classical random variables. The evolution of the perturbations
is then governed by a noise correlation matrix which, in standard slow-roll, is constant
in time and vanishes in the field velocity direction of phase space. We find instead that
during the USR phase its entries decrease exponentially in all of the phase space directions.
The intuitive reason for this is that, as explained before, in this case classicalization is
delayed and the inflow of modes sourcing the coarse-grained part of the field stops. We have
computed the power spectrum of curvature perturbations using an analytical model that,
despite its simplicity, is remarkably powerful and allows us to understand qualitatively the
most important features of the spectrum. We have confirmed our results by repeating the
analysis in a fully numerical manner making use of the polynomial model presented earlier.

The final part of the thesis was focused on the calculation of the stochastic gravitational
wave signals induced at second order in perturbation theory for all of the scenarios we describe
here. In particular, we have discussed the gauge-dependence of the signal, which has already
been noted several times in the literature for matter- and radiation-dominated universes.
We have shown that this gauge-dependence extends to the case in which the Universe goes
through an early matter-radiation transition after inflation. The abundance of gravitational
waves (2qw beyond leading order in perturbations has been obtained in previous studies by
simply taking the leading-order expression, which depends on the power spectrum P, of hiTjT,
and making the substitution 2;" — $h" (where the bold symbol hj;" denotes the second-
order transverse, traceless tensor modes). We have used a heuristic argument to compute
the full expression for Qgw, valid in any gauge and independent of the energy content of the
Universe. Our approach shows that the previous substitution yields the correct result only
if h};" is computed in the Newtonian gauge.

We have examined the tensor spectrum induced by large scalar perturbations in the
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scenario in which primordial black holes form during an early matter-dominated era and find
that PBH formation during such a phase is fairly constrained. This is due to the fact that
the scalar perturbations that source the tensor modes do not decay during an early matter-
dominated era, thereby increasing the gravitational wave signal up to the point that the
bounds on Qgw arising from Big Bang nucleosynthesis and CMB experiments are violated.
However, not all the parameter space is ruled out, and points in the remaining available
region can be probed by the LISA experiment. We have also computed the gravitational
wave signal induced in the warm inflation scenario both during inflation and during the
subsequent radiation-dominated era by taking into account the stochastic nature of the
fluctuations. We find that the result is dominated by the post-inflationary contribution,
which has a size comparable to that of the inflection-point models discussed earlier and is
therefore also observable by LISA. To estimate the inflationary contribution, we have used
our analytical model and introduced a reasonable cutoff (which in any case does not strongly
affect the results) in the time integrals. We have also written an explicit expression for the
term that mixes both contributions, and find that it is also subdominant.

There are several possible directions in which our results could be extended. The formulas
for the mass and abundance of PBHs formed during an eMD era rely on the results of [92,
93], which are purely analytical and involve many approximations. Although we expect the
calculations in Section 1.2 to hold as order of magnitude estimates, more work is needed in
terms of numerical simulations in order to precisely determine the effect of non-sphericity and
angular momentum on PBH formation during an eMD era. In the stochastic inflation chapter
we focused purely on the calculation of the power spectrum, but we remark that it would be
interesting to extend the analysis, using our analytical model, to higher order correlators,
in order to determine the non-Gaussian corrections. One possible way of accomplishing this
would be to follow the approach adopted in [73] in the context of slow-roll inflation, which
consists on computing the full probability distribution function of the comoving curvature
perturbation using the stochastic N formalism. In our warm inflation scenario we used a
phenomenological parameterization to model the transfer of energy from the inflaton to the
radiation background. Peaked dissipative coefficients such as the one we have proposed are,
however, not common in standard warm inflation scenarios, and although we have provided
a possible route to describe the microphysical origin of this dissipation by starting from a
particular Lagrangian (in Appendix D), more work is needed to find concrete, well-motivated
models. Finally, our argument to derive the full expression for the gravitational wave energy
density is purely heuristic, and it would be interesting to attempt to formalize it by properly
defining a covariant coarse-graining procedure and deriving the expression for the energy
density of gravitational waves from first principles. We hope that all of these directions can

be explored in future work.
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Conclusiones

Los agujeros negros primordiales son objetos astrofisicos intrigantes. Como hemos vito,
su formacién no requiere de extensiones al Modelo Estandar ademas de la inflacion, asi
que son candidatos a la materia oscura cuyo costo es relativamente bajo. Exhiben ademas
una serie de senales astrofisicas y, en particular, en los mecanismos de formacién que hemos
examinado en esta tesis se generaria una senal en el fondo estocéstico de ondas gravitacionales
que podria ser observada en experimentos futuros. En esta tesis hemos estudiado distintos
aspectos relacionados con la formacion y senales observables de estos agujeros negros. Hemos
presentado tres escenarios especificos en los que una gran poblacién de agujeros negros capaz
de explicar toda la materia oscura observada puede ser generada a partir de modelos de
inflacién con un solo campo. Dos de estos escenarios dependen de la presencia de un punto de
inflexion aproximado en el potencial inflacionario, que a su vez genera grandes fluctuaciones
de energia primordiales a escalas mucho mas pequenas que las observadas por experimentos
del fondo césmico de microondas. En el tercer escenario, las fluctuaciones primordiales son
obtenidas de una fase disipativa de corta duraciéon durante la inflacién en la cual una fuente
de ruido térmico hace crecer las perturbaciones. Las regiones en las que las fluctuaciones
de densidad son lo suficientemente grandes colapsan en PBHs cuando estas perturbaciones
cruzan de nuevo el horizonte durante la época de radiacion.

El primero de los modelos que hemos presentado esta caracterizado por un potencial infla-
cionario que consiste en un polinomio de cuarto orden, asi como un acoplamiento no minimo
entre el inflatén y la gravedad. Si los parametros del potencial son elegidos apropiadamente,
este modelo puede generar una poblacion de PBHs en la ventana (1) capaz de explicar la
totalidad de la materia oscura. Si restringimos nuestro andlisis al caso renormalizable, en-
contramos que la inclinacion del espectro de potencias a escalas del CMB se encuentra en
una tension de 30 con los tltimos andlisis de Planck para el modelo base ACDM si requeri-
mos fppy ~ O(1). Esta tensién puede ser aliviada considerando extensiones simples y bien
motivadas al modelo base ACDM, tales como la adicién de las masas de los neutrinos, o bien
considerando operadores de dimensiones altas en el potencial, cuya presencia se espera en
el contexto de extensiones ultravioleta de la teoria. En el primer caso, el indice espectral
resulta ser mas pequeno que el reportado por Planck y compatible con nuestros ejemplos
numéricos, mientras que en el segundo caso los operadores cambian el potencial a valores
grandes del campo, permitiendo un mejor ajuste del espectro a escalas del CMB.

El segundo modelo que hemos estudiado intenta mejorar algunos de los problemas pre-

146



sentes en los modelos de formacién de PBHs con puntos de inflexion; en particular, el hecho
de que el punto de inflexion usualmente esté presente con el tinico propésito de producir agu-
jeros negros y el que la abundancia de los PBHs generados durante la era de radiacién sea
exponencialmente sensible a la amplitud de las fluctuaciones primordiales a esas escalas de
manera que, para poder explicar una porcion significativa de la materia oscura, el parametro
del potencial que controla la forma del punto de inflexién debe de ser ajustado cuidadosa-
mente. El escenario que presentamos, basado en un potencial inspirado por la monodromia
axiénica con oscilaciones superpuestas sobre un término que se comporta como un monomio
a valores grandes del campo, junto con una fase temprana en la cual el universo estaria
dominado por materia no relativista, alivia estos problemas. En nuestro potencial, la exis-
tencia del punto de inflexion no surge de ajustar los parametros cuidadosamente, sino que
es una propiedad genérica que emerge cuando las oscilaciones axiénicas tienen una ampli-
tud relativamente grande. El segundo ingrediente de nuestro escenario puede ser realizado
facilmente también: el precalentamiento puede ser evitado y una época larga dominada por
materia no relativista puede tener lugar debido al recalentamiento perturbativo, ya que el
minimo del potencial es aproximadamente cuadratico. Durante este periodo, la probabilidad
del colapso gravitacional aumenta debido a la ausencia de la presion de radiacién, de manera
que el tamano de las fluctuaciones requerido para explicar toda la materia oscura con PBHs
se ve reducido con respecto al escenario usual de radiacién. Més atn, la abundancia de los
PBHs es mucho menos sensible a pequenos cambios en el tamano del espectro de potencias,
lo cual conlleva una reduccion en el ajuste de los parametros del potencial. El ajuste de
los parametros del CMB resulta ser excelente en este modelo (exceptuando el cociente entre
escalares y tensores 7). Hemos mostrado también de una forma independiente de modelos
que la formacién de PBHs durante una época dominada por materia no relativista resulta
ser més eficiente para temperaturas de recalentamiento de orden < 10° GeV.

Hemos mostrado que un incremento del espectro de potencias puede ser obtenido también
de una fase disipativa de corta duracién durante la inflaciéon. Este mecanismo es muy distinto
de los otros modelos que presentamos, ya que el incremento no se debe a un decrecimiento
stibito en la velocidad del inflaton, sino a una fuente estocastica de ruido térmico en la
ecuacién de movimiento para las fluctuaciones que surge de la interaccién entre el inflatén
y un bano de radiacion en equilibrio térmico. Hemos resuelto las ecuaciones diferenciales
estocésticas para las fluctuaciones numéricamente para encontrar la distribucion de proba-
bilidad del espectro, que resulta ser correctamente aproximada por una distribuciéon normal
sesgada. Ya que la cantidad de interés no es necesariamente la distribucién de probabil-
idad total del espectro, sino el valor esperado del mismo, hemos desarrollado un método
para calcular esta cantidad reduciendo el sistema completo de ecuaciones diferenciales es-
tocasticas a una tnica ecuacién matricial determinista para sus momentos estadisticos, la
cual es computacionalmente mucho mas facil de resolver. Hemos mostrado ademas que es

posible simplificar el sistema de ecuaciones de manera que pueda ser resuelto analiticamente.
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Este proceso nos permitié entender cualitativamente las propiedades mas importantes del
espectro.

Ademas de los modelos concretos que hemos presentado, hemos analizado también el
rol de la difusion cuantica durante la inflaciéon en escenarios que presentan una fase de
rodamiento muy lento, lo cual es particularmente relevante para los modelos de formacion
de PBHs con puntos de inflexion discutidos antes. La reaccién de las fluctuaciones cuénticas
sobre la dindamica inflacionaria es descrita en el contexto de la inflacion estocéstica. En este
enfoque las perturbaciones del inflaciéon con longitudes de onda cortas actian como fuente
para las de longitudes de onda grandes y se vuelven semiclasicas después de cruzar una escala
elegida apropiadamente. Después de este punto, se comportan como una fuente clasica de
ruido estocédstico. Hemos analizado el rol de la transicion del régimen cuantico al clasico
en este caso utilizando el nimero de ocupacion como una prueba de clasicalizacién y hemos
determinado que la eleccién de la escala que separa a la parte clasica del campo de la cuantica
es crucial: se obtienen resultados incorrectos para el espectro de potencias si no se le da a
los modos suficiente tiempo para volverse clasicos. Si la escala se elige apropiadamente, el
espectro coincide, a nivel lineal, con el resultado obtenido utilizando los métodos estandar
de la teoria de perturbaciones. Este resultado era conocido ya en el caso inflacionario usual
(véase por ejemplo [72]) y hemos demostrado que resulta ser cierto también en presencia de
una fase de rodamiento muy lento. El tiempo de clasicalizacién de los modos resulta ser
equivalente al tiempo que tardan los modos en congelarse fuera del horizonte de Hubble, tal
como en el caso inflacionario usual, de modo que la clasicalizacién solo ocurre una vez que
ha concluido la fase de rodamiento muy lento. Hemos resuelto las ecuaciones estocasticas
expandiendo a primer orden el inflatén y su momento conjugado alrededor de sus trayectorias
clasicas y tratando las perturbaciones como variables estocasticas clasicas. La evolucién de
las perturbaciones estd gobernada por una matriz de correlacién que, en el caso inflacionario
usual, es constante en el tiempo y se anula solo en la direccién de la velocidad en el espacio de
fase. En contraste, encontramos que durante una fase de rodamiento muy lento sus entradas
decrecen exponencialmente en todas las direcciones. La razon intuitiva de este hecho es
que, como hemos explicado antes, en este caso la clasicalizacién tarda més y la entrada de
modos que actian como fuente para la parte clasica del campo se detiene. Hemos calculado
el espectro de potencias utilizando un modelo analitico que, a pesar de su simplicidad, es
bastante poderoso y nos permite entender cualitativamente las propiedades mas importantes
del espectro. Hemos confirmado nuestros resultados repitiendo el analisis numéricamente
utilizando el modelo polinémico antes mencionado.

La ultima parte de la tesis estuvo enfocada en el calculo del fondo estocastico de ondas
gravitacionales inducido a segundo orden en teoria de perturbaciones para todos los esce-
narios que describimos aqui. En particular, hemos discutido la dependencia de la senal del
sistema de coordenadas, que ha sido descrita ya numerosas veces en la literatura para univer-

sos dominados por radiaciéon y materia no relativista. Hemos mostrado que esta dependencia
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se extiende al caso en que el universo pasa a través de una fase temprana dominada por ma-
teria no relativista después de la inflacién. La abundancia de las ondas gravitacionales Qqw
a ordenes subdominantes en perturbaciones ha sido obtenida en estudios previos tomando la
expresion a orden dominante, que depende del espectro de potencias P, de hiTjT y haciendo
la sustitucion h;ij — %h;ij (donde el simbolo h;l;»T denota los modos tensoriales transversos
y sin traza de segundo orden). Hemos utilizado un argumento heuristico para calcular la
expresion completa para Qgw, valida en cualquier sistema de coordenadas e independiente
del contenido energético del universo. Nuestro enfoque muestra que la sustitucion antes
mencionada produce el resultado correcto solo si la cantidad h;-FjT es calculada en el sistema
de coordenadas de Newton.

Hemos examinado el espectro de potencias tensorial inducido por perturbaciones escalares
grandes en el escenario en que los agujeros negros primordiales se forman durante una época
temprana dominada por materia no relativista y encontramos que la formacion de PBHs
durante esta fase estda bastante constrenida. Esto se debe al hecho de que las perturba-
ciones escalares que actian como fuente para las tensoriales no decaen durante esta fase,
incrementando la senal de ondas gravitacionales hasta el punto en que se violan los limites
sobre (gw que surgen de experimentos de la nucleosintesis del Big Bang y el CMB. Sin
embargo, no todo el espacio de parametros es eliminado y los puntos que quedan disponibles
pueden ser probados por el experimento LISA. Hemos también calculado la senal de ondas
gravitacionales inducida en el escenario de inflacion caliente tanto durante la inflacién como
durante la era de radiacién subsiguiente, tomando en cuenta la naturaleza estocastica de
las fluctuaciones. Encontramos que el resultado esta dominado por la contribuciéon post-
inflacionaria, que tiene un tamano comparable al de los modelos con puntos de inflexién
antes discutidos y es por lo tanto observable también por el experimento LISA. Para estimar
la contribucién inflacionaria utilizamos nuestro modelo analitico e introducimos una escala
de corte razonable (que en todo caso no afecta fuertemente los resultados) en las integrales
temporales. Hemos escrito también expresiones explicitas para el término que mezcla ambas
contribuciones y encontramos que es también subdominante.

Existen una serie de direcciones posibles en las cuales se pueden extender los resultados
presentados aqui. Las formulas para la masa y abundancia de los PBHs formados durante
una época temprana dominada por materia no relativista estan basadas en los resultados
de [92, 93], que son totalmente analiticos e involucran una serie de aproximaciones. Los
calculos de la Seccion 1.2 son validos como estimaciones de 6rdenes de magnitud, pero es
necesario mas trabajo en términos de simulaciones numéricas para determinar de forma
precisa el efecto de la no-esfericidad y el momento angular sobre la formacién de PBHs du-
rante una fase temprana dominada por materia no relativista. En el capitulo de inflacién
estocastica nos enfocamos unicamente en el célculo del espectro de potencias, pero seria
interesante también extender el analisis, utilizando nuestro modelo analitico, a correladores

de orden mayor para determinar las correcciones no gaussianas. Una posible manera de
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lograr esto seria seguir el enfoque adoptado en [73] en el contexto del régimen de rodamiento
lento, que consiste en calcular la distribucion de probabilidades de las perturbaciones uti-
lizando el formalismo dN estocédstico. En nuestro escenario de inflacién caliente utilizamos
una parametrizacién fenomenolégica para modelar la transferencia de energia del inflatén al
fondo de radiaciéon. Sin embargo, los coeficientes disipativos localizados como el presentado
aqui no son comunes en escenarios estandar de inflacién caliente y aunque hemos desarrol-
lado una posible ruta para describir el origen microfisico de esta disipacién empezando de
un Lagrangiano particular (en el Apéndice D), se necesita més trabajo para encontrar mod-
elos concretos y bien motivados. Finalmente, nuestro argumento para derivar la expresion
completa para la densidad de energia de las ondas gravitacionales es puramente heuristico
y seria interesante intentar formalizarlo definiendo apropiadamente un procedimiento para
promediar las ecuaciones de Einstein y derivar asi la expresién para la densidad de energia
de las ondas gravitacionales a partir de principios fundamentales. Esperamos que todas estas

direcciones puedan ser exploradas en trabajos futuros.
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Appendices

A B Cosmological perturbation theory

In this appendix we review the aspects of cosmological perturbation theory most relevant for
the thesis. A review of second-order perturbation theory can be found in [189]. The starting

point for perturbation theory is the assumption that the metric can be split as

1
G = Qv + ehW + §€2h;w W (364)

for some small parameter €, where g,, is some fixed background metric and we use bold
symbols for second-order quantities. Indices are raised and lowered with g,,, and covariant
derivatives taken with respect to it as well. This decomposition is not unique, but any
frame in which the metric can be written in this form is related to this one by infinitesimal
diffeomorphisms, or gauge transformations. These gauge transformations are generated by

some vector v,

1
vt = et + 5625” +o- (365)

A generic tensor then transforms as

TH1 b —y THL i — LvH1pn
Uy vy

‘Um, ViVUm )

(366)

Vm

where L, is the Lie derivative with respect to v, and the exponential map is defined by
1
e =1+ Lo+ o€ (L4 Le) +--- (367)

Throughout this thesis we assume the following form for the scalar-vector-tensor decom-

position of the metric,
) 1 o
ds® = —a* (14 2¢p) d7° + 2a*0;Bdx'dr + a® | (1 — 24) &;; + 20,0, E + ihiTjT dz'ds’. (368)

Each one of these quantities can be expanded in powers of €. Their corresponding equations
of motion can be found by expanding Einstein’s equations in powers of € and equating
coefficients. The quantity h;ST denotes the transverse, traceless second order piece of the
metric, which satisfies 0’h;;" = 6“h;;" = 0. Throughout this thesis we assume that the
first-order vectors and tensor modes vanish, E;, = B, = h;ST = (. Second-order vectors are

nonzero, but they are irrelevant to our discussion and thus we do not write them.
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Our conventions for the stress-energy perturbations are

817, = —bp, (369)
1
8T = 0pd;. (371)

If we denote the components of the vector that generates the gauge transformation by £ =

(o, 0"0;3), these quantities transform as

dp—0p=2dp+pa, (372)
dp — 0p = op + pa, (373)
dq — 6¢ = dq — a(p + p)a. (374)

By using egs. (366) and (16) we find the following transformation laws for first-order scalars,

o —=>p=p+Ha+d, (375)
Y = 1p = — Ha, (376)
E—E=F+5§, (377)
B—B=B—a+/, (378)

The gauge-transformation law for the second-order tensor mode is given in eq. (289).
The evolution of first-order scalars can be found from the linearized Einstein equations.

In momentum space and conformal time, these are

5
3H () + Hew) + K (0 + Hoy) = —a>—2% (379)
202
5
Y H(20 4 0h) + (M2 +2H) oy = a® ok (380)
20
l 5Qk
Uy, + Hor = _a_zMg’ (381)
o+ 2Hox + 1 — o =0, (382)

where we have neglected anisotropic stress and defined the shear potential 0 = E/ — B. In
what follows we also assume dp = wdp. Thus, we have five equations for seven variables, two
of which can be set to zero by fixing the gauge, and so the system is completely determined.
The other equation of motion we are concerned with is the one for the second-order tensor

modes, which in position space and in the absence of anisotropic stress is given by

R+ 2HREY — VPRET = AT ™ s, (383)
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where T;; Im is the transverse-traceless projector defined in eq. (262) and the source term s;;

is, in a generic gauge [85, 89]
Sij = Z?ﬂajw -+ (91906]@ — (90/ + ¢I — V20') 81'8]'0' + <(3ig0'3j0 + @-gp’@m) + 2 <Q0 + 'QD) aﬂaﬂﬂ
4 P @Z)/ ¢/ 2 " / 2
———0i| = 0| =— — 2V*FE0,0; 2 2 — VY |0;0;E
3p+p (’HJF@)J(/HMO) W+ (d} e 2/}) ’
— 0,0, E'0,0"E' + 0,0,0,E0;0*0'E + 2 (ajakwaia’fE + al-akwja’fE) + 20/ 0,0; E
ey, (aiij' + @j¢8iEl> - (aiw'ajE' + ajw'aiE') - (aiij” + @@D@E”)
+ 8,0,0,0" <E +OHE — VQE) — 9i0400,0%0. (384)
Let us review the procedure presented in [189] to construct gauge-invariant quantities
by starting from an arbitrary gauge and adding a term to cancel the gauge transforma-

tion. The change of the second-order, transverse, traceless tensor mode h;g-T under a gauge

transformation is
TT ZTT TT | gimy

where 3;; is given in eq. (289) and depends on the parameters o and § of the coordinate
transformation as well as the perturbations in the starting gauge, and where the projection
tensor T;; Im_defined in momentum space in eq. (262), extracts the transverse, traceless piece

of 3;;, and can be written in position space as

1 1
Ty ™S = S + §(V*2akaez’ff — ¥F)65; + §V*QV*2aiajakagzM

1
- §V—2aiajzkk — V72(8;0"Zi, + 0" 9,5,). (386)

A gauge-invariant quantity X;; can then be easily obtained by simply adding the transfor-

mation to h};T (computed in the arbitrary starting gauge) [189],
Xij = b + T S (387)

Suppose we start from a generic gauge and perform a transformation to the Newtonian
gauge, so that £ — E = 0 and B — B = 0. This fixes the transformation parameters o
and [ as

a=B—-F, g=—-F (388)

according to eqgs. (377,378). We reiterate that these are the perturbations in the starting

gauge. By substituting o and 8 into eq. (289) and writing the resulting expression in mo-
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mentum space, we obtain

] ’p
¥ = / 2mpc 12(Ey_,, — Bi—p)pini E, + (k — p)iBr—pp; E, + (k — p); Bi—pni E,
— 2(k — p)iBr—pp; By — 8¢x_ppipj Ep — 4piprEp(k — p)i(k — D)k Ek—yp

— 2pipipkEp(k — p)pEx—p + 6i5(- - - )] (389)

where the ellipses stand for all terms proportional to d;;, and X is the Fourier mode defined
in eq. (290). The terms proportional to k; and d;; vanish upon contracting with e;;. Thus,

after cleaning up,
S d3p S
X = (27T_)3 €;;PiDj 2p - (k= p)E,Ey—p — 8y E, + 2050, ], (390)

which coincides precisely with the quantity defined in eq.(309). There is nothing special
about the Newtonian gauge in this procedure. Other gauge invariant quantities can be
obtained by performing a transformation to a different gauge, which will not necessarily
be equal to X;;. However, the uniqueness argument in Section 5.2 guarantees that Xj; is
the only one of these gauge-invariant quantities that can enter into the calculation of the

gravitational wave energy density. See the corresponding discussion for details.

B W Power counting and effective theories

In this appendix we review the basics of power counting as a method to organize HDOs. In
order to keep track of the appropriate powers of the couplings in the terms of a Lagrangian, it
is useful to restore h. An equivalent way to account for the presence of A is to introduce units
of energy E and length L, so that [A] = EL (and natural units are recovered if E =L7!). A
Lagrangian density then has dimension [£] = EL™3 as we would expect, which implies that
a canonically normalized scalar field has [¢] = EY/2L='/2. A coupling constant g (a gauge
coupling, for instance) has dimensions [g] = E~'/2L~"/2, and the quartic scalar coupling in a
term such as A\¢* has dimensions [\] = E7'L™!, so that [¢%] = [\]. Any scale, such as M, or
the scale A introduced in eq. (100), has dimensions [A] = EY2L~1/2 Instead of using E and
L, it is convenient to switch to units of mass M = L~ and coupling C = E~Y/2L"/2, 5o that
[£] = M*C72, [¢p] = MC™! and [h] = C72. Thus, for the operator in eq. (99) we have

n—4
M'C? = [0,] = LH M"C™", (391)

where the first equality comes from the fact that this is a term in the Lagrangian. This
implies

An = MC ™53, (392)
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Tree-level operators have dimensions

gn—2 Cn
05 = | L] = {mele) (303)
so that we can use g to keep tracks of the powers of coupling C. As per our earlier comment,
loop operators satisfy [01°°P] = hg?[OU°], and we expect O1°°P < O in a weakly coupled
theory (that is, when g <« 1). We can therefore restrict our attention to operators with
tree-level scaling in eq. (100).

It is illustrative to use an explicit toy example to clarify the discussion. Consider the

following two-field Lagrangian

L= %(0@)(@%) —V(®,¢), V(P,0)= %M2<I>2 + %9M¢> P* + %g]\/[gb?@, (394)
where we have used powers of ¢ and M to keep track of C and M, as discussed above. The
coefficients c(12) are genuine dimensionless numbers that cannot be fixed by dimensional
arguments alone. If we assume that the ® field is heavy (that is, M > g¢), then it can be
integrated out, producing a Lagrangian that only depends on ¢ and where the effect of ®
is included in HDOs. This can be understood by solving the equation of motion for ® and

plugging the result back into the Lagrangian. Said solution can be formally written as

O M O Mo)?
®EOM2|:#_( —I—]\0414g ¢>+( +§\i[% ?) +...:|(—%C29M¢2)- (395)

The effective Lagrangian therefore contains, restricting our attention to the last term in

eq. (394) for concreteness,

2 2
6 99 o 1 (O+cgMo) (04 c1gMe) 2
;Ceff—ngQb |:W_ M + WE + ... Qb
= é Zpt — 0162 g qz§5 e 9—4(;56 + - - - + operators with derivatives
1 1 M P
00 1 n— 4 2
= ; (=1 jl & ]an 79" + operators with derivatives, (396)

so that the tree-level operators without derivatives have the following scaling

(1) G g

4 Mn4

0,55 = ¢ : (397)
where the extra —1 factor comes from the sign of the potential in eq. (394). Notice that this
example motivates the choice ¢,, = (—1)" that we made in one of the examples of Section 2.2.
We see that a quartic coupling ¢* is generated by the UV theory, despite not being present

in the original Lagrangian, justifying the equality ¢g> = a4 that we assumed for simplicity
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in our analysis of Section 2.2. We also find that integrating out ® generates HDOs with
derivatives, which should in general be included. The reason for neglecting them in our
analysis of Section 2.2 is that, in the slow-roll regime, where the effect of HDOs is relevant,
these operators can be neglected (since the velocity of the field and higher-order derivatives
are small). The USR phase occurs instead at small field values, where HDOs are suppressed.
Finally, this explicit construction shows that the expansion in terms of effective operators
is valid as long as M > g¢. This is precisely the condition that led to eq. (102) where we
introduced the scale A = M/g.

To close this appendix, let us remark that although we generically expect the scaling in
eq. (393) to hold based on dimensional analysis, important differences can arise in the series
of HDOs depending on the symmetry properties of the UV theory. For instance, if the heavy
field ® is even under some Z, symmetry, the only renormalizable terms involving ® that can

appear in the potential are

1
V(@,6) = M0 + %quScDQ n %92(;52(1)2 + %492@4. (398)

In this case, only loop-suppressed operators are generated. One can then perform an analysis
similar to the one presented in Section 2.2, where the most relevant difference is that the

condition g* = a4 would now be replaced by hg* = a4, which implies g ~ O(1072).

C B Stochastic differential equations

In this appendix we review the basic facts about stochastic differential equations, including
the definition of a Wiener process and the derivation of the Fokker-Planck equation. Part of
the discussion follows the presentation in [205].

A stochastic differential equation (SDE) driven by a Gaussian noise source for a single

time-dependent variable y(¢) can be written in differential form as
dy = f(y,t)dt + g(y,t)dW,, (399)

where the differentials should be thought of as small increments. The increment dW; is

randomly drawn from a Gaussian distribution at each time step dt,

]_ 2 2
P(dW,) = ——=e Wi /27" 400
N (400)
The dW; increments at every time step are independent from each other. The quantity
dW, is known as a Wiener increment, and is often written alternatively as dW, = &dt.
Throughout this appendix we focus only on stochastic differential equations of the form
(399). The different solutions to eq. (399) obtained via some finite sequence of increments

dW, are referred to as realizations.
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An important fact is that the only way for the distribution in eq. (400) to be well-defined
is if 02 = dt. Let us illustrate this with a heuristic argument. If we consider the equation
dy = dW,, a particular realization can be obtained by summing each random increment,
Yy = ZZV dW,;y. The variance of y, denoted by V (y), is simply the sum of the variance of
each increment dWj ;) in the sum, since they are assumed to be independent. Suppose o is

equal to some power of dt,
o = dt". (401)

If T'= Ndt denotes the range of time over which we solve the equation, the variance of y is

N n
T
= § V(dWys)) = No* = Ndt" = N (N) = N (402)

In the continuum limit N — oo, this vanishes for n > 1, and diverges if n < 1. Thus, the
only value that makes sense is n = 1.

Let us return to the original equation (399) and compute the expectation value of dW}?,
(dW?) = (dW?) — (dW})? = V(dW,) = dL, (403)

where the expectation values (---) are taken with respect to the distribution in eq. (400).

By using eq. (400) we can also show that the variance of the sum of the thQ(z.) is

N N T2
2 _ 2 _
1% ( Z th(i)) = Z 2dt* = 2. (404)

Since this quantity vanishes as N — oo, we see that the sum of all the thQ(i) in the continuum

limit is not actually random, but deterministic, and must therefore be equal to its mean,

wafz waf = T<th2>: . (405)
) awe= ([ awe) = [ = |

Thus, we find that dIW? = dt, a result known as Ito’s rule. We can use this result to change

the time variable in a stochastic differential equation via

dt
W, = || . (406)

Ito’s rule also leads to a very important lemma. Consider the Taylor expansion to second

order of any function z(y,t) of the stochastic variable y and time t,

82 (’32 10%2

We would like to write eq. (399) in terms of z instead of y. Using eq. (399) itself to substitute
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dy and dy? into eq. (407) and keeping only terms linear in dt and dW; so that the equation
retains the same form of (399), we find, keeping in mind that dW? = dt,

2 52
dz = <82 + faz + 5%) dt+ggZth (408)
The third term inside the parentheses is the result of this being a stochastic differential
equation. This equation, valid for any z(y,t), is known as Ito’s lemma, and is the stochastic
equivalent of the chain rule. This is the main difference between manipulating regular
differential equations and stochastic ones.

The main quantity of interest when solving a stochastic differential equation is the prob-
ability distribution P(y,t) for the stochastic variable to take the value y at time t. This
distribution can be found via the Fokker-Planck equation, which we now derive. Let us take
the expectation value of both sides of eq. (408) with respect to the probability distribution
P(y,t), assuming that z is not explicitly time-dependent,

) (), - (555 o

:/z{—%(fp)—i—%a—( P)] dy, (409)

where we use (- - )g to denote the expectation value with respect to P(y,t). Here we have
used the fact that (dW;)s = 0 in the first step and integrated by parts in the last step
assuming that the probability distribution vanishes at the boundaries. On the other hand,
the time derivative of the mean of z is also given by

d<dzt>s B %/ZQJ)P(W)C@:/ (y >§t (y,t)dy. (410)

Since this must be true for any z(y), we can equate both expressions to find the Fokker-Planck

equation for the probability density,

O Pt = =10 0P )] + 22 [P0 0P, (1)
ot~ 7 dy ’ ’ 2 0y? ’ ’
This is a deterministic equation and thus can be solved by standard PDE methods.

Let us assume that the stochastic variable y depends not only on the time ¢ but also
on the spatial coordinates . As mentioned earlier, Wiener processes are often written as
dW, = &dt. The quantity & can be thought of as a distribution, with correlation function
given by

(E(@)ev(@))s = ot — 1')o°(x — ). (412)
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The noise correlators in Fourier space are then
CEREK)s = [ do [ Palgl@i@scee ¥ = rpse - 08, (@13

where we have defined the shorthand 63 = §%(k + k’). Following a similar procedure for the

other entries, the entire correlation matrix can be computed

< (Zil,{;))) (@(kz’) St*/(k:’)) >s = (2m)° @ gz> S(t —1'). (414)

+

For the real and imaginary parts of the noise Re(¢;) = &/ and Im(&;) = &/, we find

EE)N (i i 1, (B0 o
<<£§(k)> (ét/(k) £tf(k))> = 5(2m) ( 0 63—5i> s(t—1). (415)

S

In computing these entries it is necessary to use the parity of the d-function, §*(k) = §*(—k).
We therefore find that the real and imaginary parts of the noise are uncorrelated, but & and
& are not.

Throughout the rest of this appendix we will focus on a specific multivariate version of

eq. (399) which is close to the type of equations we deal with in Chapter 4. Let us consider®

Z—f +AD = %a{t, (416)
where the stochastic time-dependent variable ®(¢) is an n-dimensional column complex vec-
tor, A is an n X n real matrix, o is an n X m complex matrix, and &; is an m-dimensional
column complex noise vector whose real and imaginary parts have correlation functions
given by the multivariate analogue of eq. (415). We have absorbed the overall 1/2 factor
from eq. (415) into the definition of &, leading to the 1/4/2 factor in eq. (416). We want to
find the probability distribution P(®, ®*, t), where ®* obeys the equation of motion

dd* 1
Ad* = —o&. 41

The noise vectors &; and & are not independent as per eq. (414). In order to use a generalized

multivariate version of the Fokker-Planck equation (411) for the probability distribution
P(®,d*,t), we need to rewrite eq. (416) in terms of uncorrelated noise sources. To this end,
it is convenient to define the vectors ¥ = (®T, ®")T and x, = (¢F,€)T. The equation of

3Stochastic equations of this form are useful at linear order in perturbation theory and in Fourier space,
where spatial derivatives are effectively decoupled. In particular, the system in egs. (206 — 208) is of this
form.
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motion for W is then
— +a¥ =—=%¥x,, (418)

a:<A 0), 2:(” 0). (419)
0 A 0 o

This notation might make a and 32 look like they have the same shapes, but a is a 2n x 2n

where

matrix, whereas ¥ is a 2n x 2m matrix (the 0 matrices inside have different shapes). The
final step is to write this equation with correlated noises x. (hence the subscript ¢) in terms

of the uncorrelated noises x, = (£, &T)T. We have

dv 1
— UV=—-3M 42

L .
M, = (1 Z,) — IM, = <" i ) . (421)
—1 g —10

Since the noise sources in eq. (420) are uncorrelated, eq. (411) can be generalized directly,

with

P 0 1 2P
— = U,P) + M, MTET 422
ot % {OLM@‘P (WeP)+ 5 [f V2 Lﬁ%@‘l’e}’ (422)
with
) T T 0 200"
SM.MTsT— (7 T 7 T )= . 423
XX <0' —io ict —ioT 200t 0 (423)

The sums in eq. (422) can be expanded in terms of ® and ®* instead of ¥. We find

or Kl 9 o O°P

The equation of motion for the two-point statistical moments Q = (®®')g, defined via

(®PT)g( / Hdcp / Hdcb* (D, d*, N) O (425)

can be found by acting on this equation with a time derivative and using the Fokker-Planck
equation (424). Tt is also necessary to integrate by parts and assume that the probability
distribution vanishes at the boundaries. The result is

% = -AQ - QA" + o0 (426)
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D M Microphysics of the dissipative coefficient

In this appendix we discuss a particular microphysical realization of a localized dissipative
coefficient I' during inflation. The purpose of the present discussion, however, is not to
propose a definitive model but simply to show that obtaining a peaked dissipative coefficient
that satisfies all the necessary constraints is, in principle, possible. Specifically, we introduce
a Lagrangian which reproduces the form of the dissipative coefficient (211), assuming that
the fields that couple to the inflaton are part of a thermalized bath. In order to keep the
field content to a minimum we will consider a scenario where, besides the inflaton ¢, only
two more degrees of freedom participate of the dynamics. The first one, denoted by ¢ and
assumed to be a scalar, corresponds to the light radiation field in equilibrium. The second
one, also a scalar and denoted by Y, corresponds to a heavy catalyst field. The large effective
mass of x arises via its coupling to the slowly rolling inflaton field. Through the coupling
of the (unstable) x with o, the inflaton energy density can be efficiently dissipated into
radiation. Indirect decay scenarios like this one are among the preferred mechanisms for
realistic warm inflation models [177, 206, 207]. One of the advantages of introducing such
heavy catalyst fields is to prevent the inflaton potential from receiving strong temperature
corrections [207, 208].5
Let us consider the following Lagrangian
w

_ ;% bSO+ 2000 — SN — Sgexe® ~Ulg) £ (420)
Here, ¢ denotes the inflaton, which we assume to have a non-canonical kinetic term. In
this frame, the inflaton ¢ and the mediator y interact via a four-legged contact term with
coupling g,. The term with coupling g, connects the three fields. After expanding the
inflaton around its classical background value, this term induces the decay of x into o. The
dots correspond to other interactions which should be present for the light sector o to be
thermalized. If this sector is indeed in equilibrium, the presence of the ¢ — y — ¢ channel
modifies the equation of motion of the inflaton. The canonically normalized inflaton ¢ is

related to ¢ via

1
R (425)
dp /T (p)
and the equation of motion for ¢ becomes
¢+ (3H +T)¢ + Vy(¢) = 0, (429)

where V(¢) = Ulp(¢)]. We neglect the temperature dependence of the potential in accor-

%4In addition, in a simpler construction in which the inflaton directly couples to the radiation field o,
the dissipation rate is determined by the strength of the inflaton self-coupling. This effectively suppresses
the value of I', due to the requirement of the normalization of such self-coupling by the amplitude of the
primordial curvature power spectrum [177].
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dance with our earlier comment. The dissipative coefficient I' encodes the production of
o quanta. The appearance of a local dissipative term relies on the assumption that the
microphysical processes which determine I' operate at time-scales much smaller than those
characteristic of the macroscopic slow-roll of the inflaton and the expansion of the Universe
(the so-called adiabatic Markovian approximation [177, 209]). Additionally, we assume that
the typical interaction time-scale between the constituents of the thermal bath is much
shorter than the time-scales associated to the variation of the background quantities. In this

approximation, the dissipative coefficient is given by [210-212]

1) =2 (052) [ oen(e ) + 1)) (430)

where p = (w, p), n,(w) = 1/(e*/T — 1) is the Bose-Einstein distribution, and

_ dwpl'y
Px = (w? — w§)2 + 4w§Fi

(431)

is the spectral density of the catalyst field. In this expression wf, = |p|* + mi is the on-shell
frequency, with m, = g, denoting the effective mass of x in accordance with (427), and
I'y is the decay width of x. Our expression for I' originates from the g, interaction term
in (427). In principle, the g, term would also contribute to the dissipation rate, but this
contribution turns out to be loop-suppressed [212]. The aforementioned adiabatic Markovian

approximation translates into the three conditions

NS

Iy > H (thermalization), ry > %, (adiabaticity), T> H. (432)
These conditions also ensure that thermal equilibrium is maintained between the light o and
the heavy x throughout the strongly dissipative phase (I' > H).

To evaluate the dissipative coefficient I' we need the decay width I',, which should be
calculated using non-zero temperature QFT. A general expression can be found in e.g. [212].
For simplicity, we will restrict our discussion to the so-called low-temperature limit in what
follows, which corresponds to assuming that 7" < m,,. We remark however that in principle
none of our assumptions forbid a peaked dissipative coefficient at higher temperatures. The

decay rate for the process x — oo can then be written as

gop?

8w, (p) (433)

1—‘X (O), p) =
in a frame of reference that is boosted with respect to the x rest frame. In terms of this rate,

the adiabaticity condition corresponds to I', > |¢>/ ¢|. The low-temperature limit further

suppresses the already small temperature corrections to the potential. Let us introduce the
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Figure 32: Left panel: time evolution of the background quantities T', H and ' for the dissipative
coefficient in eq. (439) using the parameters in (440). Right panel: constraints from eq. (432),
together with the low-temperature limit T" < m,,, for the same parameters as the left panel. The
reference time Nyet is chosen as the time at which T /m,, reaches its maximum value.

dimensionless quantities

T r©
azg, Em, A= —, ’)/XEL7 (434)
T My My My
where F;O) =TI'\(m,,0) is the decay rate in the x rest frame. The dissipative rate is then
8gy ( de\* [* [ By ! 1
= —"2(p-"1 d d X 1].
e <@d¢) /o 7 Lo O‘[(aw — -1 +4%2j ( = 1) ( -1 )
(435)

In the low-temperature limit A < 1, we can discard the o and ~, pieces in the denominator
of the term in brackets, which is equivalent to approximating the spectral function as p, ~
4T /m? [212]. The dissipative rate then simplifies to

8qg 0 2 200> F(O) 2
) () () - M ) o
N dqﬁ 1+ ef/A —1 mSm3 d¢
where we have used the fact that the (3 integral can be well-approximated by 5\3/2 for

AL L
All of the expressions we have presented so far are independent of the particular shape of

J () in the kinetic term of ¢ in (427). Successful warm inflation can be obtained by setting
J () = 1, with a dissipative coefficient ' o« T /2. To recover the phenomenological peaked
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dissipative coefficient we presented in Section 4.1, however, let us consider

I (p) = s [1 + (437)

AM?p
A? ’

m(p +m)?

where m, M and A are arbitrary dimensionful parameters. The corresponding solution to

eq. (428) can then be written as

_(1=f(9) _ M? +m? 12
#9) = m<Tf(¢)>’ fle)= {M2 + m?2 coth® [(¢ — ¢.)/A] } ’ (438)

where ¢, is a free parameter, which we assume is necessary to fix V(¢ = 0) = 0. By plugging

this transformation into eq. (436), we find

_ { (m? + M)T }
 AndgiA? | m2 + M2 tanh® [(¢ — ¢.)/A] |

(439)

Assuming that m < M, we recover eq.(211). In the left panel of Fig.32 we show the
time evolution of the dissipative rate I', the Hubble parameter and the temperature for the

dissipative rate in eq. (439) with parameters
A=01M,  M=M, m=005M, g =008,  g,=0.28 (440)

together with A = 4.6 x 107** and ¢, = 10. The right panel of the same figure shows
the conditions in eq.(432), as well as the low-temperature limit 7/m, < 1. All of the
constraints are satisfied and our setup is therefore self-consistent. We remark that if we
want the potential V(¢) = Ulp(¢)] to be able to support slow roll inflation, the shape of
U(p) must be quite unconventional, due to the complicated field redefinition in eq. (438).
As we mentioned earlier, however, the purpose of the present discussion is only to show that
obtaining a dissipative coefficient that satisfies all the necessary constraints is possible in
principle. We hope the discussion in this appendix encourages further efforts to search for

well-motivated models that could produce peaked dissipative coefficients.

E B Stochastic and quantum expectation values

As shown in Section 4.4, the solution to the simplified equation of motion for d¢ (235) is of

the form
N

S (N) = 0" (N) + / Sk(N, N)é g (k)dN, (441)

where £y is a Wiener process satisfying (414) and Sj is a function of time, the form of

which is not relevant in what follows. We can quantize the field by writing the homogeneous
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solution in terms of creation and annihilation operators
00" = 90}y + 30)""al.. (442)

Since we do not quantize the noise, we make the second term in eq. (441) proportional to
the identity operator. The quantum expectation value is defined via (---)q = (0] ---]0), so

we have
A~ A /\(h ~ N N A ~ A ~
603d)a = 66560+ [ [ SN,V ey (@dNaN.  (143)
The power spectrum is defined via

S 22
(56n86,)q = (27)° <5 Pas(R)5*(k + q). (444)
We can show from eq. (442) that
(061706 )q = (2m)% 66y [20° (k + q), (445)

and since 6(}55:) is the solution to the homogeneous equation of motion for d¢, which does not
involve the stochastic noise, this is a deterministic quantity. Note, however, that the second
term in eq. (443) is still stochastic, as it should be, since every realization of the system leads
to a different power spectrum. To obtain a deterministic quantity we can take the stochastic
expectation value (---)g, computed by averaging over many realizations. We denote the
double expectation value by brackets without subindices, (---) = ((---)q)s. Thus,

(06100 = (2m)%605" 2% (k + q) + / / Sk(N, N)S,(N, N) (&5 (k)é5(q))sdNdN
= (2n)%0°(k + q) (yéa;;’”ﬁ + / ) / 3 S(N, N)S,(N, N)§(N — N)MN)
= (27)*5(k + q) (yéqa,ﬁh)y? - / ) Si(N, N)QdN) (446)

By combining this with eq. (444), we find

k3 h N . .
(Psli)s = g (18671 + [ Sl 02 ). (447)
This formula holds as long as we assume that the noise term is not quantized and the
stochastic and quantum expectation values are independent from each other.

The four-point function for d¢ can be found in a similar manner. Since these results
bear direct relation to the calculation of Section 5.4, we present them in conformal time. If

we assume that 5gz5,(€h) is Gaussian with respect to the quantum expectation value, and &, is
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Gaussian with respect to the stochastic one, then the following identities follow from Wick’s

theorem

(50750, (700" (3 (7)) = (2m)°6, (83,0 + 08,1
0 (7)o" ()00 ()" 0y" (7)), (448)
(&r(@)&r (k= Q)& (D)&rm(p — 1) = (2m)°87 ) 0rrr g
(620 + 03,50 ), (449)
(&(@)30" (7)o W3S (7)) = (2m)05} 4,0 4187 0 (T)50650(77),  (450)
where we have introduced the shorthand notation 63(k) = & for readability, and we have

once again assumed that the quantum and stochastic expectation values are independent

from each other. The four-point function is given by the sum of four terms,

(564(7)0o ()0 (1)) = (Z L A
where
ELY) = (88,04 8340 ) 3000 ()00 ()0, (') 001, (), (452)
mln( / //)
F) = (0304 0311 ) 0000 (7060 () / S o7 F)Si_y(7', 7)d7, (453)
(3) 3 3 * " min(r’,") I A N ~
Fsg = <5q+z +5q+p—l>5¢k 7 sy q( ) S (7", 7)S, (7', T)dT, (454)
W _ (5 5 min(r') i) ) .
i) = (0004 630m0) / o7, $)S, (7", ) d7 / Sk o7 F)Si_o (7", 7)dF.

(455)

We have ignored some contact interaction terms that are not proportional to §%(k+p). The

upper limit of the integrals arises because, if a < ¢ < b, then

/ab / F(r)6(r — 7')drdr’ = / / F(r)6(r — 7')drdr’ + /Cb / J ()0l = drdr = / i
0

(456)
since a < 7 < ¢ but ¢ < 7/ < b, so that the regions in the second double integral after the

first equality do not overlap, making it impossible to satisfy the constraint 7 = 7/ imposed

by the ¢ function and forcing the integral to vanish. An analogous result holds for a < b < c.
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F M Analytical gravitational wave integrals

The analytical results for the quantities in (287) are, with x = k7, y = p/k and z = |p—k|/k
[185]

MDD — ;faﬂyzmaﬂmm{aj [(3 — 2?)sinz — 3z cos x} +a; [(1'2 —3) cosx — 3zsin :U} } :m,
(457)
IRD = y3z33x4{ [F" cosy ~ +F Tcosy t + Ft cosytT + Fttcosytt
+ G TsinygT T + G Tsing T+ G singTT + G siny++]
oty 5 =3 [ Ciy )+ HCilly )+ HE G + Gl
I Si(y™) + I FSi(y ) + I Si(y ) + Ij*Si(y++)] } :ﬁ, (458)
where we have defined _
Yyt = (1 + 7 ) x. (459)
The functions H* and I7* are defined by
= (65 65 i, = B Lo by )57 + (65 207 s + By b7, )BT, (460)
1~ = = (bbb, + V7 b7 g )7+ (507 lsa, = 0F |0l )BF, (461)
H* = (0|05 s = 07 b7l )07 = (65 LT g + by 07 22, ) (462)
H; ™ = = (0 a0y, + VUl )b+ (BB lm, = 0y U7 o, )BF s (463)
154 = = (67 e 6F s = 07l 67 s )7 4 (55 b7 s + 6F U7 o )07 (464)
e (I P P L O O P N | A € )
17 = = (6l b by = b7l b7 by )07 = (0F 2 U e+ 0F g b7 0, )07, (466)
P (PP O O Ll P N O O L €
The functions F** are, in terms of H:* and I+,
Frt =1 {182 [V3(z +y) - 1] + 2* [VB(z +9) - 3][(= = »)* - 3] }
_Ht {54 34 [3 + 22yt 4 6yz — 2V3(z + )] } , (468)
Ft—— — It { )+1]+:c3[\/§(z—y)+3[(z+y)2—3]}
H {54 322[3 + 2% + o/ 6yz+2\/§(z—y)]}, (469)

Pt = — 1+{18x 3z +9) +1] +2*[V3(z +) + 3] [z - 1)* - 3] }
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—H T {54—3x2[3+z2+y2+6yz+2\/§(z+y)]}, (470)
F= =1 {182 [V3(z — y) — 1] + 2 [V3(z — y) - 3] [(= + v)* — 8]}

—H {54—3962 3422+ 3% — 6yz + 2V3(y — z)]}. (471)

Similarly, for G** we have

G = = {1se[Va(s +y) — 1] + * [VB(z +y) - 8] [z — )* - 3] }
—I++{54 302 [3 4 22 + 1 +6yz—2\/—z+y)} (472)
Gt =H" {18x[\/§(z—y)+1]+x3[\/§(z— y)+3][(z+y)* — }}
I {54—3:c2[3+z2+y — 6yz + 2V3(z y)]} (473)
G t=H" {18x[\/§(z +y)+ 1] +23[VB(z +y) +3][(z — ) - ]}
—[+{54 3023 4 22 + 1 +6yz+2f(z+y)}} (474)
G = =B {180[V3(z — y) - 1] + 2*[V3(z - y) - 3][(= + 9)* - 3] }
I {54 — 322[3 4 2%+ y® — Gyz + 2V3(y — 2)] } . (475)

The case in which the Universe never goes through an eMD phase, which we denote as pRD

(for pure RD) can be recovered by taking the x,, — 0 limit. The result is

PRP = M{élyzb; —bin(y? + 2 - 3)0(1- 2 b ) -1

Z y?2 V3
+b[(y2—|—22—3)[log (1— %) + log (1—1—%)

— log (1—1—%;;) — log (‘1— y\j;’)}} (476)

In deriving these results we have used the identities lim,_,o[Ci(ax)— Ci(bz)] = log(a) —log(b),

lim, o Si(z) = 0, lim, 4 Si(z) = £7/2, and lim,_,; Ci(z) = 0.

G M Induced gravitational waves in different gauges

In this appendix we calculate the induced second-order tensor modes in different gauges
using eq. (292) in the eMD-to-RD transition scenario® schematically represented in Fig. 1.
Since we calculated the second-order tensor modes in the Newtonian gauge in Section 5.1,
we can set Ty, = T, and Ty = Tp = T, = 0 in eq. (293). Thus, the only transfer function

we need to compute is T, —which is given by eq. (280)- and we simply need to determine

The calculation of I's; in MD and RD eras was performed in [84, 89] and [85], respectively. The calculation
for an eMD — RD transition is presented here for the first time.
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T, and T3 in terms of Ty from the gauge conditions. Since the transfer function in this
scenario is piecewise-defined, so is Iy;. Even though the Hubble factor and transfer functions
in eq. (293) are continuous by construction, w is not (we assume the eMD — RD transition is
instantaneous), and thus there is a discontinuity at the transition between both eras coming
from this numerical prefactor.

We will perform the calculation in three illustrative gauges: the comoving gauge, the
uniform curvature gauge, and the uniform expansion gauge. The spatial part 3 of the gauge
transformation vanishes in all three cases if we start from the Newtonian gauge solution

computed in Section 5.1, so we find the following compact expression for I,

2 (3+3w

Iy = ——
> yz \ O+ 3w

2
) T (o) Tal2). (477)
Comoving gauge

This gauge is defined by E = §§ = 0. The gauge transformation in this case is § = 0 and

2 Y+ HY 2k

- _ T(r) = ——=
T T3 3w 2 ) =3 3070

[T, () + HTy(x)]. (478)

The resulting Iy, is, for x < x,,,

2
IeMD - _ = 2‘ 4
bl 2595 (479)

For x > x,,, on the other hand, we have

{sin [ (:U — x—m) {12b;|yr,my(:cm —22) + V3bE|ya,, (—42%y? + dzzy® — 22y + 24)}

(480)

The constants b% are given in egs. (281,282). The behaviour of Iy, depicted in Fig. 33, is
problematic in this gauge; during the eMD era it grows as z?, whereas in the RD era it
oscillates as x — oco. The resulting h;g-T is therefore completely different from the solution
in the Newtonian gauge at late times. We remark that this difference propagates also to the

calculation of Qaw, which diverges at late times in this gauge, see e.g. [84]. W
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Figure 33: Integral kernel Ix, for a gauge transformation from the Newtonian to the comoving

gauge for two different values of xp,, setting y = z = 1. The result oscillates as © — 0o, and thus
the power spectrum of h;S.T diverges at late times in this gauge.

Uniform curvature gauge

This gauge is defined by E = 1; = (. The gauge transformation in this case is f = 0 and

k
a= %, To(z) = ﬁTw(x). (481)
The resulting Iy, is, for z < x,,,
9
IMP = — — g2, 482
b3l 50513 (482)
For x > x,, we obtain
JRD — 96 {cos R (m—x—m> [6b7| + V36 |y, y (22 — )
> Y3232y, — 22) V3 9 T yzm T |yzm m

sin | (o= 22| [VBbrlymanton — 20) + 687, ] }

{cos [% (x — %nﬂ [61)}|z;¢m + \/§b¥|zxmz(2‘r - $m)}

z x
—sin |— [z — == V/3b, o, 2(T — 2) + 6bF zxm} } 483
= (o= )| [Vt — 20) + (48)
The result for Iy, in this gauge is depicted in Fig. 34. During the eMD era the solution still
grows as z2, but with a different prefactor to the one in eq. (479). During the RD era, on

2

the other hand, Iy; decays as = when x — oo. Thus, as we pointed out earlier, this means

that the result in this gauge coincides with the Newtonian one at late times. W
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Figure 34: Integral kernels Is, for gauge transformations from the Newtonian gauge to the uniform
curvature gauge (left panel) and the uniform expansion gauge (right panel), for two different values
of T, and setting y = z = 1. In both cases the result decays faster than x=' and thus the solution
coincides with the Newtonian one only at late times.

Uniform expansion gauge
This gauge is defined by F = 3(’H¢ + 9 )+ k?G = 0. The gauge transformation in this case
is =0 and

o WHHY T(x) = 6 k
M2 —H + k23 9+ 9w+ 2(k2/H2) H

3 [Th() + HT, ()] (484)

The resulting I, in the eMD era is

648 x?
ST 2,2 2.2)" (485)
25 (18 + 22y?)(18 + x222)
After the transition (z > x,,), we obtain
IR 1152
= Y323 (z — 22)* (422y? — dxx,y? + 22,y2 + 24) (42222 — dawy, 22 + 22,22 + 24)
{sm [ - Tm ] 12b 2 lyen Y (@m — 22) + V3bE|ya,, (—42%y® + dawny® — 22y° + 24)}

+ cos [ (a: — a;)} [\/7) lyon (42°y° — dazy® + 22 y* — 24) + 12b% | o, y(Tm — 2x)] }

{sm [ JI - — ] 1267 |2e, 2(2m — 22) 4+ V3bE e, (—42°2” + dww,,2® — 22 2% + 24)}
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v xm):| [\/gb;|zmm (4:1)2,22 - 4a:xmz2 + m?nz2 - 24) + 121); zrmz(-%'m — 2:5')} }

+ cos [\%( :

(486)

Once again, the results in this gauge are completely different from the previous ones. In

1

this case, Ix, decays faster than 7 as x — oo, and so the solution coincides with the one

obtained in the Newtonian gauge only at late times. The result is depicted in Fig.34. B
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