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submitted by MEHMET KEMAL GÜMÜŞ in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Physics Department, Middle East
Technical University by,

Prof. Dr. Halil Kalıpçılar
Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. Seçkin Kürkçüoğlu
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ABSTRACT

EXTENSIONS OF THE CLASSICAL DOUBLE COPY

Gümüş, Mehmet Kemal

Ph.D., Department of Physics

Supervisor: Prof. Dr. Altuğ Özpineci

Co-Supervisor: Dr. Gökhan Alkaç

January 2024, 116 pages

The classical double copy is a map between certain exact solutions of general rela-

tivity and Maxwell’s theory with two different formulations: the Kerr-Schild double

copy (KSDC) and the Weyl double copy (WDC). This thesis extends both versions

in various directions. In three spacetime dimensions, matter fields should be coupled

to gravity to match the vacuum solution of Maxwell’s theory, i.e., the Coulomb so-

lution. In addition to presenting a novel matter coupling with improved behaviour at

infinity, some generalizations that admit the study of the regularity of the solutions

on both sides are also considered. Also, a formulation of the KSDC with a general

background metric in generic D-dimensions is given. For the WDC, a regularization

scheme that makes it compatible with the much more general results in the KSDC is

proposed.

Keywords: Classical Double Copy, Kerr-Schild Double Copy, Weyl Double Copy
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ÖZ

KLASİK ÇİFT KOPYANIN GENİŞLETİLMESİ

Gümüş, Mehmet Kemal

Doktora, Fizik Bölümü

Tez Yöneticisi: Prof. Dr. Altuğ Özpineci

Ortak Tez Yöneticisi: Dr. Gökhan Alkaç

Ocak 2024 , 116 sayfa

Klasik çift kopya, genel göreliliğin belirli tam çözümleri ile Maxwell teorisi arasında

Kerr-Schild çift kopya (KSÇK) ve Weyl çift kopya (WÇK) şeklinde iki farklı formü-

lasyonu olan bir ilişkilendirmedir. Bu tez her iki versiyonun da çeşitli yönlerde ge-

nişletilmesini içermektedir. Bu kapsamda üç uzay-zaman boyutunda maddesel alan-

ların, Maxwell teorisinin vakum çözümüne, yani Coulomb çözümüne uyacak şekilde

yerçekimiyle etkileştirilmesi gerektiği gösterilmiştir. Sonsuzdaki davranışı iyileştiril-

miş yeni bir madde konfigürasyonu sunmanın yanı sıra, her iki taraftaki çözümlerin

düzenliliğinin (regularization) incelenmesini sağlayan bazı genellemeler de ele alın-

mıştır. Ayrıca, D boyutlu genel bir artalan metriği için KSÇK’nin geneleştirilmiş bir

formülasyonu sunulmuştur. WÇK için de sonuçlarını KSÇK’deki genel sonuçlarla

uyumlu hale getiren bir regülarizasyon şeması önerilmiştir.

Anahtar Kelimeler: Klasik Çift Kopya, Kerr-Schild Çift Kopyası, Weyl Çift Kopyası
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"I claded in the four elements as a niqab.

I emerged from a point and got purified.

Seen by those who see with the eyes of their soul,

A vista I am, in the depth of a vista."

Bektashi Nefes by Gencî, 19th century

"All science would be superfluous if the outward appearance and the essence of things directly

coincided." Karl Marx, 19th century

To all those seeking the truth in all times and all geographies...
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CHAPTER 1

INTRODUCTION

The idea of the double copy, also named BCJ double copy after its discoverers Bern,

Carrasco and Johansson, emerged as a relation between the scattering amplitudes in

gauge and gravity theories [1]. A gluon amplitude in the gauge theory is expressed as

a sum of cubic graphs which schematically takes the form

AGluon =
∑
i

nici
di

, (1.1)

where ci, ni and di represent the color factors, the kinematic factors and the propaga-

tors of each graph respectively. This sum can be written in different ways by making

use of generalized gauge transformations, i.e., gauge transformations and field redef-

initions. When it is expressed in the so-called color-dual gauge, where the kinematic

factors obey the same algebra as the color factors, the graviton amplitude in the grav-

ity theory can be obtained by replacing the color factors ci by another set of kinematic

operators ñi as follows

AGraviton =
∑
i

niñi
di

. (1.2)

The new kinematic factors ñi should be also in the color-dual gauge but, in general,

they may be taken from a different gauge theory. Therefore, one obtains a gravity =

(Yang-Mills)2-type relationship where the gravity theory is called the “double copy"

of the two Yang-Mills (YM) theories, while each YM theory is referred to as a “single

copy" of the gravity theory.

Since it enables the “squaring” of the Yang-Mills (YM) ones to yield gravitational

amplitudes, the double copy has evolved into a crucial tool in the study of scattering

amplitudes [2, 3]. From semi-classical tree-level amplitudes, perturbative classical

solutions can also be produced [4–41]. Although the nonlinearity of the Yang-Mills

1



and Einstein equations makes it appear impossible to establish a map between ex-

act classical solutions, it is possible to obtain a linear structure for some classes of

spacetimes on the gravity side and then map them to the linearized solutions of YM

theory, or solutions of Maxwell’s theory. Two different but related procedures can

be used to achieve the classical double copy, a non-perturbative realization of the

double copy idea. The Ricci tensor with mixed indices is linear in the perturbation

for spacetimes admitting Kerr-Schild (KS) coordinates, which is useful in the KS

double copy [42, 43]. As an alternative, one can work with the Weyl spinor, which

is the spinor representation of the Weyl tensor. Similar to the KS construction, one

can identify a spinor basis that linearizes the Weyl spinor for certain algebraically

special spacetimes and relate it to a field strength spinor corresponding to a solu-

tion of Maxwell’s equations [44]. There is a growing body of literature on the topic

that offers numerous examples and generalizations [45–70] (see [71–73] for reviews).

Thanks to the results from Twistor theory. [74–76], we now have a pretty good un-

derstanding of its roots and boundaries.

Having a new theoretical tool to investigate the relation between two seemingly dif-

ferent theories, it is important to consider situations where it might break, which not

only enables one to understand the limitations if there are any but also opens doors

for extensions of the idea to more general cases. In this thesis, following this logic

in various cases, some extensions of the classical double copy will be presented. Our

focus will be the following shortages and limitations of the original constructions:

1. In the original formulation of the KSDC [42], the Newtonian potential seems

to play an important role. While it is possible to obtain black hole solutions

with similar physical properties to higher-dimensional examples, it is also well-

known that GR in 3D has no well-defined Newtonian limit. Therefore, it is

crucial to understand the validity of the KSDC in 3D.

2. Also in the original construction [42], the spacetimes under consideration are

written in the KS coordinates with a flat background metric. However; for many

solutions of GR with physical importance, this is not possible or the choice of

the background spacetime is not unique. Most significantly, this is the case

for th AdS and the Lifshitz black holes, our main probes to study strongly

2



coupled gauge theories through holography [77–80]. In order to understand

whether there exists any relation between our main tools to relate gauge and

gravity theories, the double copy and the holography, this should be overcome

by finding a formulation of the KSDC with an arbitrary background metric.

3. In the Weyl Souble Copy (WDC), while it was shown to be valid for asymp-

totically flat vacuum spacetimes [62], a proposal to deal with sources was later

made by considering solutions of Einstein-Maxwell theory [40]. An implicit as-

sumption in the Sourced WDC (SWDC) is that the contribution of each term in

the metric function to the Weyl spinor is non-zero, this is not the case for some

AdS and Lifshitz black hole solutions. Therefore, it is not certain whether the

KSDC and the WDC are consistent when more general spacetimes are consid-

ered. Especially, the status of holographically relevant spacetimes should be

understood.

The outline of the thesis is as follows: After a review of some background material

in Chapter 2, we work with KSDC in 3D in Chapters 3,4,5. In these chapters, we

will discuss the validity of the KSDC in 3D for rotating solutions, the effect of the

cosmological constant, alternatives for the matter couplings to ensure the validity

of the construction and their possible generalizations. In Chapter 6, we will give a

formulation of the KSDC with a generic, curved background metric. The solutions

to the issues related to the SWDC and its relation to the KSDC will be presented in

Chapter 7. We will end the thesis with a summary and discussions in Chapter 8.

3
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CHAPTER 2

BACKGROUND MATERIAL

In this chapter, we present some background material that might be useful to under-

stand the discussion in the rest of the thesis. For the first two sections we closely

follow the references [81] and [82].

2.1 Degree of Freedom Counting and the Newtonian Limit in Three-dimensional

Gravity

General relativity is based on the well-known Einstein-Hilbert action for d dimen-

sional spacetime

SEH =

∫
ddx

√
−g
[
1

κ2
(R− 2Λ) + Lmatter

]
. (2.1)

Here, g = det(gµν), R is the scalar curvature, Λ is the cosmological constant, and

Lmatter represents the Lagrangian for the matter fields. Varying the action with re-

spect to the metric gives the Einstein equations

Gµν + gµνΛ =
1

κ2
Tµν , (2.2)

where Gµν = Rµν − 1
2
gµνR is the Einstein tensor and Rµν is the Ricci tensor. The

stress-energy tensor Tµν is given by

Tµν = − 2√
−g

δ(
√
−gLmatter)
δgµν

. (2.3)

The Riemann curvature tensor Rµνσρ contains the all information about how the

spacetime is curved and it can be written in terms of trace and traceless parts as

5



follows

Rµνσρ = Wµνσρ+(gµνRσρ − gµρRνσ − gνσRµρ + gνρRµσ)

−1

2
R (gµσgνρ − gµρgνσ) . (2.4)

The traceless part of the Riemann tensor is represented by the Weyl tensor Wµνσρ.

For d = 3, the Weyl tensor equals to zero and the Riemann tensor has only trace part.

Taking the trace of Einstein’s equations in d = 3, we get

R = −κ2T, (2.5)

from which the trace-reversed Einstein’s equations follows as

Rµν =
κ2

2
(Tµν − Tgµν) . (2.6)

Using (2.5) and (2.6) in the decomposition of the Riemann tensor in (2.4), one finds

Rµνσρ =
κ2

2
(gµνTσρ − gµρTνσ − gνσTµρ + gνρTµσ)

−κ
2

2
T (gµσgνρ − gµρgνσ) . (2.7)

This means that the Riemann tensor, namely the curvature of the spacetime, is lo-

caly determined by the matter distribution. Additionally, for empty spacetime, where

Tµν = 0, the spacetime is locally flat:

Rµνσρ = 0 . (2.8)

Therefore, we can say that three-dimensional gravity can exist only in the presence of

matter in spacetime. The vacuum solutions of the Einstein equations are flat in three

spacetime dimensions.

We can also get this result in an algebraic way. In d spacetime dimensions, the Rie-

mann tensor has

NR =
1

12
d2(d2 − 1) (2.9)

independent components. For d = 4, NR = 20, and for d = 3, NR = 6

We also know that the Einstein tensor is a symmetric tensor and it has

NE =
1

2
d(d+ 1) (2.10)

6



independent components. This means thatNE = 10 for d = 4, andNE = 6 for d = 3.

Considering this, we can easily see that in d ≥ 4 the Riemann tensor contains more

information than the Einstein tensor. However, for d = 3, both the Riemann and the

Einstein tensors contains the same amount of information. At the perturbative level,

it is easy to show that this is because the gravitation is over-constrained in d = 3. We

can write the metric as flat metric ηµν and the perturbative part hµν :

gµν ≈ ηµν + hµν . (2.11)

hµν has 1
2
d(d+1) independent components. However, the physical degrees of freedom

of the graviton can be obtained from the transverse and traceless parts of its spatial

components hij . In d-dimensional spacetime these both amount to (d − 1) seperate

constraints. These constraints cannot completely determine the 1
2
d(d−1) independent

components of hij for d ≥ 4. On the other hand, for d = 3, 2(d − 1) = 4 seperate

constraints exist for the 1
2
d(d − 1) = 3 independent components of hij . This means

that the graviton does not propagate in d = 3.

2.1.1 Newtonian Limit of 2+1 dimensional gravity

Let us continue the discussion by taking the Newtonian limit of pure gravity in d

dimensions. Hereby, we will prove that the Newtonian potential decouples from any

point sources in three dimensional spacetime.

We will start by considering the weak fields. Namely, fields live in a spacetime whose

metric is quasi-stationary in a specific coordinate system (∂0gµν ≈ 0), and weakly

deviates from flat space gµν = ηµν+hµν with |hµν | ≪ 1. We will consider a stationary

weak source i.e. a stress-energy tensor has only one non-zero component T00 = −ρ
and it is small enough.

Now we can examine the non-relativistic trajectories, i.e. geodesics xµ(τ) for which

|ẋi(τ)| ≪ 1, in this coordinate system by neglecting all terms beyond linear order in

ρ and hµν . These reduce the spatial geodesic equation to

d2x

dt2
=

1

2
∇⃗h00 ≡ −∇Φ , (2.12)
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where we can identify

Φ ≡ −1

2
h00 = −1

2
(1 + g00), (2.13)

as the Newtonian potential. Furthermore, in d dimensions, the 00-component of the

trace reversed Einstein equations reads

∇⃗2Φ =
κ2

2

d− 3

d− 2
ρ . (2.14)

At this point, we should note that the Newtonian and Poisson equations are gauge

dependent in the Newtonian limit

If we specialise the equations for the case of the point mass M which is sitting at the

origin, the Newtonian gravitational field g⃗ = −∇⃗Φ, at a distance r from the orign

becomes

g⃗ = −κ
2

2

[
(d− 3)Γ

(
d+1
2

)
(d− 1)(d− 2)π(d−1)/2

]
M

rd−2
r̂ . (2.15)

This equation tells us that the Newton’s constant for the d dimensional spacetime Gd

is

Gd =
κ2

2

[
(d− 3)Γ

(
d+1
2

)
(d− 1)(d− 2)π(d−1)/2

]
. (2.16)

Finally, by considering the last equation, we can easily read that for d = 4, the

Newton’s constant Gd=4 = 1
16π
κ2. In contrast to d ≥ 4 case, for d = 3, Gd=3 = 0.

Therefore, we can conclude the discussion by noting that, in d = 3, the Newtonian

gravitational field g⃗ vanishes identically at any distance in the presence of a point

mass M at the origin. The Newtonian potential Φ is no longer coupled via Poisson

equation to the matter distribution ρ and this means that the trajectories are straight

lines in the Newtonian limit.

2.2 Some Important Solutions in 3D Gravity

2.2.1 Conical Defects

In three dimensions, at the points where the particles are located, there arises conical

defects (or conical singularities) characterized by the deficit angle θdef ≤ 2π. This

8



parameter produces an upper bound for the mass of the particle. We can show this by

studying point particle solution in three dimensional general relativity.

A general three dimensional black hole solution can be written in polar coordinates

as

ds2 = −A2(r)dt2 +B2(r)dr2 + r2dϕ2 . (2.17)

Here, 0 ≤ r <∞ and 0 ≤ ϕ < 2π.

In order to determine theA(r) andB(r) for vacuum case, the gravity equations should

be taken as Rµν = 0, and these lead to

A(r) = A0, B(r) = B0 . (2.18)

Here, A0 and B0 are constants. Now, let us make some coordinate redefinitions as

τ ≡ A0t, ρ ≡ B0r, and ϕ ≡ B0θ . (2.19)

In these coordinates the line element becomes

ds2 = −dτ 2 + dρ2 + ρ2dθ2 . (2.20)

According to (2.19) we can write that 0 ≤ ρ < ∞ and 0 ≤ θ <
2π

B0

. We know that

when the angular coordinate ϕ has period 2π, the new angular coordinate θ has
2π

B0

.

In other words, the solution is singular in the interval of
2π

B0

≤ θ < 2π. This angular

interval 2π
(
1− 1

B0

)
can be defined as defict angle θdef .

The solution in (2.20) can be embeded as a cone into the 1+3 dimensional Minkowski

spacetime in cylindrical coordinates

ds2 = −dt2 + dz2 + dr2 + r2dθ2 (2.21)

with a cone equation

z2 = (1−B2
0)r

2 . (2.22)

On the other hand, we can define a energy distribution for a point particle at origin as

ρ =M δ(2)(r⃗) . (2.23)

For this source, the solution of gravity equations gives

B0 =

[
1− M

2π

]1/2

. (2.24)
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Thus, the deficit angle for point particle solution can be written as

θdef = 2π

[
1−

(
1− M

2π

)1/2
]
, (2.25)

and the angle parameter is valid at the interval

0 ≤ θ < 2π

√
1− M

2π
. (2.26)

We can easily see that there is an upper bound for mass parameter since,
M

2π
can be

at most one in (2.26).

At this point, we should note that there is no parallelism with Schwarzschild solution

in d ≥ 4. We have Gtt ∼M δ(d−1)(r⃗). However, the remaining diagonal components

are also proportinonal to δ-function.

2.2.2 AdS3 spacetime

One of the most important solutions in 3D gravity is the AdS3 spacetime. Let us

first show how we can obtain it by starting from a four dimensional flat space with

SO(2, 2) symmetry

dS2
(4) = −dT 2 − dU2 + dX2 + dY 2 . (2.27)

In this space, we can define a hypersurface which carries the rotational symmetries of

the ambient spacetime as

−T 2 − U2 +X2 + Y 2 = ℓ2 . (2.28)

By using the following reparametrizations

T = ℓ coshρ cost , X = ℓ sinhρ cosθ ,

U = ℓ coshρ sint , Y = ℓ sinhρ sinθ , (2.29)

the line element in (2.27) can be written as

ds2 = ℓ2
[
−cosh2ρ dt2 + dρ2 + sinh2ρ dθ2

]
. (2.30)

This metric is the induced metric on the surface in (2.28). It is the metric of AdS3

spacetime in global coordinates. Here the coordinate ρ is defined on the 0 ≤ ρ < ∞
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and the θ is periodic with 2π. In (2.30) we can do another parametrization as

r = sinhρ , (2.31)

and we obtain AdS3 metric in static coordinates as

ds2 = ℓ2
[
−(1 + r2) dt2 +

1

1 + r2
dr2 + r2 dθ2

]
. (2.32)

Another useful coordinate system for the AdS3 spacetime is the Poincaré coordinates

where the line element is given by

ds2 = −r
2

ℓ2
dt2 +

ℓ2

r2
dr2 + r2dθ2 . (2.33)

For the AdS3 spacetime, the Ricci tensor satisfies

Rµν = 2Λgµν with Λ = − 1

ℓ2
. (2.34)

When we introduce a cosmological constant in the Einstein-Hilbert action as

SEH =
1

κ2

∫
d3x

√
−g [R− 2Λ] , (2.35)

the Einstein’s equations and its trace-reversed version becomes

Gµν + Λgµν = 0 ,

Rµν = 2Λgµν , (2.36)

from which we see that the AdS3 spacetime is a solution of 3D GR with a negative

cosmological constant Λ = − 1
ℓ2
< 0.

2.2.3 Bañados-Teitelboim-Zanelli Black Hole

Due to the lack of a well-defined Newtonian limit and propagating degrees of free-

dom, it was thought for a very long time that one cannot have black hole solutions in

d = 3. However, Banados-Teitelboim and Zanelli (BTZ) showed that one can obtain

a black hole solution with the addition of a negative cosmological constant [83].

The line element of the BTZ black hole can be written as

ds2 = −f(r) dt2 + dr2

f(r)
+ r2 (dθ − Ω(r)dt)2 , (2.37)
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where

f(r) =
r2

ℓ2
−M +

J

4r2
and Ω(r) = − J

2r2
, |J | ≤Mℓ , M > 0 . (2.38)

Here, the parameters M and J are the mass and the angular momentum respectively.

There are two horizons located at

r2± =
Mℓ2

2

1±

[
1−

(
1− J

Mℓ

)2
]1/2
 , (2.39)

and if rotation parameter is set to zero (J = 0), there is only one horizon

rh =

√
M

2
ℓ , (2.40)

completely analogous to the higher-dimensional black holes.

An important fact about the BTZ black hole is that it is locally isomorphic to the

AdS3 spacetime and the difference is in the global topology. To understand this, let

us study the embedding of the static BTZ black hole (J = 0). We again consider the

line element in (2.27) and hypersurface in (2.28). Let us do a reparametrization for

coordinates in (2.28) similar to (2.29)

T =

√
r2

M
− ℓ2 sinh

(√
M

ℓ
t

)
, X =

√
r2

M
− ℓ2 cosh

(√
M

ℓ
t

)
U =

r√
M

cosh
(√

Mϕ
)
, Y =

r√
M

sinh
(√

Mϕ
)
, (2.41)

with which the induced metric becomes

ds2 = −f(r)dt2 + dr2

f(r)
+ r2dϕ2 , f(r) =

r2

ℓ2
−M . (2.42)

This is just the metric of the static BTZ black hole. For this identification to be

globally valid, we need to identify ϕ with ϕ+ 2π, namely ϕ has a period with 2π.

The topology of this solution is sensitive to the mass parameter M . When we try to

remove it (M = 1), we need to rescale the coordinates t and r, then this will change

the period of the coordinate ϕ. This shows that BTZ and AdS3 are topologically

distinct.
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2.3 Maximally Symmetric Spacetimes and the Deviation Tensor

AdS3 spacetime is just an example of a maximally symmetric spacetime, which is a

spacetime of constant curvature that possesses the maximum number of symmetries

(same as the Minkowski spacetime). In this section, we review some important prop-

erties of maximally symmetric spacetimes by following [84], which will lead us to

the definition of the deviation tensor that, as shown in Chapter 6, plays a major role

in the formulation of the KSDC with a general background metric. For a maximally

symmetric spacetime, the Riemann tensor is given by1

R̄µανβ =
ϵ

L2
(ḡµν ḡαβ − ḡµβ ḡνα) (2.43)

where ϵ = +1, 0,−1 correspond to de Sitter (dS), Minkowski and Anti-de Sitter

(AdS) spacetimes and L is the dS/AdS radius when ϵ ̸= 0. Taking the trace yield the

Ricci tensor and the Ricci scalar as

R̄µν = ϵ
d− 1

L2
ḡµν , (2.44)

R̄ = ϵ
d(d− 1)

L2
. (2.45)

Using (2.44), one can show that the spacetime is a solution of vacuum Einstein equa-

tions if the cosmological constant is chosen as

Λ = ϵ
(d− 1)(d− 2)

2L2
(2.46)

and, therefore, the Ricci tensor becomes

R̄µν =
2Λ

d− 2
ḡµν . (2.47)

This motivates us to define the deviation tensor which characterizes the deviation

from a maximally symmetric spacetime as

∆µν = R̄µν −
2Λ

d− 2
ḡµν , (2.48)

which vanishes for maximally symmetric spacetimes provided that the cosmological

constant is given by (2.46). When the background is Minkowski spacetime, one has

R̄µν = 0 and,

∆(Minkowski)µν = − 2Λ

d− 2
ḡµν . (2.49)

1 We use barred quantities since, in this work, we consider the possibility of a background metric being that
of a maximally symmetric spacetime.
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2.4 Spinor formalism and the Petrov classification in d = 4

Here, by following the appendix of [85], we review spinor formalism for a 4D curved

spacetime endowed with the metric gµν . In our notation, spacetime indices are given

by {µ, ν, . . . }, frame indices by {a, b, . . . }, while the spinor indices are {A,B, . . . }

and their conjugates {A′, B′, . . . }.

2.4.1 Tetrads and Spinor Basis

We introduce a complex null tetrad {l, n,m, m̄} which is used to construct the metric

g
(0)
µν and satisfies

g(0)µν = −2 l(µnν) + 2m(µm̄ν) (2.50)

where

lµlµ = nµnµ = mµmµ = m̄µm̄µ = 0 (2.51)

lµnµ = −1 = −mµm̄µ .

and, l and n are real null vectors and m is typically complex with m̄ as its conjugate.

The vierbein can be used as, for example, la = e(0),aµl
µ, to obtain the frame tetrad

that corresponds to the tetrad vectors. Specifically, we use the tetrad set

la =
1√
2
(1,−1, 0, 0) na =

1√
2
(1, 1, 0, 0)

ma =
1√
2
(0, 0, i, 1) m̄a =

1√
2
(0, 0,−i, 1) , (2.52)

which generates Minkowski space by representing (2.50) as ηab = −2 l(anb)+2m(am̄b)

and, all frame indices are raised by ηab.

We can use the Pauli four-vectors for the shift between tensors and spinors and they

are given by

σaAA′ =
1√
2
(1, σ⃗)AA′ . (2.53)

where the σi’s are well known SU(2) generators

σ1 =

0 1

1 0

 , σ2 =

 0 i

−i 0

 , σ3 =

1 0

0 −1

 . (2.54)
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The Pauli four-vectors obey the following normalization rules

σaAA′σBB
′

a = δBAδ
B′

A′ , σaAA′σAA
′

b = δab . (2.55)

Then, any spacetime or frame vector has a spinor counterpart as

Va −→ VAA′ = Vaσ
a
AA′ = Vµe

(0),µ
aσ

a
AA′ . (2.56)

Next, we can define a spinor basis {oA, ιA} and its conjugate basis {ōA′ , ῑA′}, whose

indices are raised and lowered by the two-dimensional Levi-Civita symbol

ϵAB =

 0 1

−1 0

 = −ϵAB , (2.57)

and its conjugate ϵA′B′ . The frame tetrad and the basis spinors are related by

oAōA′ = laσ
a
AA′ , ιAῑA′ = naσ

a
AA′ ,

oAῑA′ = m̄aσ
a
AA′ , ιAōA′ = maσ

a
AA′ . (2.58)

The spinor basis satisfies

ϵABoAoB =0 = ϵABιAιB,

ϵABoAιB = −1 = −ϵABιAoB. (2.59)

We can determine the (normalized) spinor basis vectors by using (2.59) and the tetrads

which we chose as in (2.52) as follows

oA =
1√
2
(1, 1) , ιA =

1√
2
(1,−1) . (2.60)

Next, we introduce the Infeld-van der Waerden symbols

σabAB = σ
[a
AA′ σ̄

b]A′CϵCB , (2.61)

which, along with the spacetime vierbeins, allow us to obtain the spinorial counter-

parts of any even ranked tensors. For example, defining

σµνAB = e(0),µ a e
(0),ν

b σ
ab
AB, (2.62)

the Weyl spinor and spinor field strength spinor read

ΨABCD =
1

4
Wµναβσ

µν
ABσ

αβ
CD , (2.63)
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fAB =
1

2
Fµνσ

µν
AB , (2.64)

where Wµναβ is the Weyl tensor and Fµν is the standard field strength tensor. Both

ΨABCD and fAB are completely symmetric in their indices.

2.4.2 Field Strength Spinor

The spinor field strength in the Weyl double copy resides in "an appropriate flat limit"

of the entire spacetime metric, which we associate with the Minkowski vierbeins

g
(0)
µν = e

(0),a
µ e

(0),b
ν ηab. Then the frame field strength Fab in relation to the spacetime

field strength can be defined as

Fµν = e(0),aµ e(0),bν Fab . (2.65)

Importantly, Fab lives on Minkowski space while Fµν lives on a different form of

flat space described by g(0)µν . The spinor field strength associated with the frame field

strength Fab is analogous to (2.64).

fAB =
1

2
Fabσ

ab
AB . (2.66)

We should note that for each of the type D metrics, fAB is in the form of σ3 as

fAB = Z

1 0

0 −1


AB

(2.67)

where Z is a general complex function. The nonzero components of Fab are related

to the real and imaginary parts of Z respectively as

F01 = −1

2
Re(Z) , F23 = −1

2
Im(Z) . (2.68)

Finally, we can construct Fµν by using flat space vierbeins as

Fµν = Fabe
(0),a

µe
(0),b

ν

= −1

2

(
Re(Z) e(0),a[µe

(0),b
ν] + Im(Z) e(0),a[µe

(0),b
ν]

)
, (2.69)

We can note that, from (2.69), if Z has an imaginary component, then Fµν has a

magnetic field component when vierbeins are diagonal (as would be the case if gµν is

the metric in spherical polar or oblate spheroidal coordinates).
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2.4.3 Weyl Spinor

The Weyl spinor ΨABCD may be expanded using the spinor basis {oA, ιA} as

ΨABCD =Ψ0 ι(AιBιCιD) − 4Ψ1 o(AιBιCιD) + 6Ψ2 o(AoBιCιD)

− 4Ψ3 o(AoBoCιD) +Ψ4 o(AoBoCoD) , (2.70)

where parentheses represent symmeterization, with the convention k(AB) =
1
2
(kAB + kBA).

The components ΨI ∈ C are Weyl scalars are related to the Petrov classification of

the spacetime and, they are defined by using null tetrads as

Ψ0 = Wµναβ n
µmνnαmβ ,

Ψ1 = Wµναβ n
µlνnαmβ ,

Ψ2 = Wµναβ n
µmνm̄αlβ , (2.71)

Ψ3 = Wµναβ n
µlνm̄αlβ ,

Ψ4 = Wµναβ m̄
µlνm̄αlβ .

For any Petrov type D spacetime, one can always choose an appropriate coordinate

system such that Ψ2 ̸= 0 while all other ΨI’s are equal to zero, and the Weyl spinor

can be written as

ΨABCD = 6Ψ2 o(AoBιCιD). (2.72)

2.4.4 Petrov Classification of Field Strength and Weyl Spinors

Now we can briefly introduce the spinor classification of field strength Fµν and Weyl

Wµνσρ tensors by following the discussion in relevant parts in [86, 87]. We can start

the discusson by considering field strength tensor.

Let ξA be an arbitary spinor with components ξ0 and ξ1. We can expand the field

strength spinor by using these spinor basis as a quadratic polinomial in ξ0 and ξ1

fABξ
AξB =f00ξ

0ξ0 + 2f01ξ
0ξ1 + f11ξ

1ξ1 , (2.73)

If we define a complex number

ζ =
ξ0

ξ1
, (2.74)

17



we can write equation (2.73) as

fAB = (ξ1)2
[
f00ζ

2 + 2f01ζ + f11
]
. (2.75)

whose factorization reads

fAB =(ξ1)2(α0ζ + α1)(β0ζ + β1)

=(αAξ
A)(βBξ

B) . (2.76)

Thus we can write the field strength spinor as

fAB = α(AβB) . (2.77)

This equation is called canonical decomposition of fAB and the spinors αA, βB are

principal spinors of the field strength spinor. Each of these spinors determines a

principal null direction. By using these principal spinors we classify the field strength

spinor as described in Table 2.1.

Table 2.1: Classification of the field stength spinor

Type Partition fAB fAB satisfies

I {11} α(AβB) fABξ
AξB = 0

N {2} α(AαB) fABξ
A = 0

O {-} 0 fAB = 0

Here we should note that, in fact, the "partition" column shows the two possible coin-

cidences for the principal null directions. The last row is included for completeness.

Now, we can turn our attention to the Weyl spinor, for which we can follow a similar

procedure. Again, the Weyl tensor can be decomposed as

ΨABCDξ
AξBξCξD =Ψ0000ξ

0ξ0ξ0ξ0 + 4Ψ1000ξ
1ξ0ξ0ξ0 + 6Ψ1100ξ

1ξ1ξ0ξ0

+ 4Ψ0111ξ
0ξ1ξ1ξ1 +Ψ1111ξ

1ξ1ξ1ξ1 . (2.78)

and if the definition of ζ in (2.74) is used, one can write equation (2.78) as

ΨABCD = (ξ1)4
[
Ψ0000ζ

4 + 4Ψ1000ζ
3 + 6Ψ1100ζ

2 + 4Ψ0111ζ +Ψ1111

]
. (2.79)
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Its factorization gives

ΨABCD =(ξ1)4(α0ζ + α1)(β0ζ + β1)(γ0ζ + γ1)(δ0ζ + δ1)

=(αAξ
A)(βBξ

B)(γGξ
G)(δDξ

D) (2.80)

Thus, we get

ΨABCD = α(AβBγCδD). (2.81)

Analogous to the field strength spinor fAB, the ΨABCD shown in (2.81) is canonical

decomposition of Weyl spinor and the spinors αA, βB, γC and δD are principal spinors

that determine the principal null directions. In Table 2.2 the classification scheme can

be found.

Table 2.2: Classification of the Weyl Spinor

Petrov Type Partition ΨABCD ΨABCD satisfies

I {1111} α(AβBγCδD) ΨABCDξ
AξBξCξD = 0

II {211} α(AαBγCδD) ΨABCDξ
AξBξC = 0

D {22} α(AαBβCβD) ΨABCDξ
AξBξC = 0

III {31} α(AαBαCβD) ΨABCDξ
AξB = 0

N {4} α(AαBαCαD) ΨABCDξ
A = 0

O {-} 0 ΨABCD = 0

The symbols D and N in the "Petrov type" column means degenerate (or double) and

null types respectively. All types except I are algebraically special while type I is

algebraically general.

We can end our discussion by choosing ξ0 and ξ1 as o and ι respectively by using the

arbitrariness of ξA. In this case the equation (2.81) turns into the equation (2.70)

ΨABCD =Ψ0 ι(AιBιCιD) − 4Ψ1 o(AιBιCιD) + 6Ψ2 o(AoBιCιD)

− 4Ψ3 o(AoBoCιD) +Ψ4 o(AoBoCoD) . (2.82)

In the same way the field strength spinor reads

fAB = f0 o(AoB) + 2f1 o(AιB) + f2 ι(AιB). (2.83)
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Using Table 2.2, for D type metrics, we can easily say that the only non-zero coeffi-

cient in (2.70) is Ψ2. In this case we can write

ΨABCD = 6Ψ2 o(AoBιCιD). (2.84)

At this point, if we consider the (2.77) and (2.67), for D type metrics, we can expect

a relation of the following form

ΨABCD = 6Ψ2 o(AoBιCιD) ∼
1

S
Z1Z2o(AιBoCιD)

=
1

S
Z1o(AoB)Z2ι(CιD) =

1

S
f
(1)
(ABf

(2)
CD). (2.85)

Here, the functions Z1 and Z2 can be corresponded to f0 and f2, in (2.83), respec-

tively. They are related to each other as Z1 = −Z2 = Z, and S is the linear combi-

nation of the real and imaginary parts of Z. Eventually, the last simple but inspiring

equation (2.85) is the essence of the Weyl double copy.
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CHAPTER 3

THE KERR-SCHILD DOUBLE COPY IN THREE DIMENSIONS

3.1 Kerr-Schild Double Copy with a Flat Background Metric and the Coulomb

Solution

The main idea of the Kerr-Schild double copy is to consider stationary metrics of the

Kerr-Schild (KS) form

gµν = ηµν + κhµν , ∂0gµν = 0 (3.1)

where the deviation hµν from the background Minkowski space ηµν is constructed

from a scalar ϕ and a vector kµ as

hµν = ϕ kµkν . (3.2)

Here, the vector kµ is null and geodesic with respect to both the background metric

ηµν and the full metric gµν . When the metric is in the KS form (see [98] for a review),

the Ricci tensor with mixed indices becomes linear in the deviation hµν and the trace-

reversed Einstein equations take the form

Rµ
ν =

κ

2
(∂α∂µhνα + ∂α∂νh

µ
α − ∂α∂αh

µ
ν) .

=
κ2

2

[
T µν −

1

d− 2
δµνT

]
, (3.3)

where κ2 = 8πG. Choosing k0 = −1, the µ0 components of the Ricci tensor with

mixed indices become

∂ν [∂
µ (ϕkν)− ∂ν (ϕkµ)] = κ

[
T µ0 − 1

d− 2
δµ0T

]
. (3.4)

It is easy to see that if one makes the following identifications [42]

Aµ ≡ ϕ kµ, g ≡ κ

2
, (3.5)

21



(3.4) becomes the Abelian Yang-Mills equations

∂νF
νµ = gJµ, (3.6)

where Fµν = 2∂[µAν] is the field strength, g is the gauge coupling and the source is

given by1

Jµ = 2

[
T µ0 − 1

d− 2
δµ0T

]
. (3.7)

The time component of (3.6) is

−∂2ϕ = −∇⃗2ϕ = gJ0. (3.8)

Due to the linearization of the Ricci tensor for the metrics of the KS form, one obtains

the linearized equations of YM theory and biadjoint scalar theory, namely, Maxwell’s

equations (3.6) and Poisson’s equation (3.8). While the gauge field Aµ is called the

single copy of the KS graviton hµν , the scalar field ϕ is interpreted as the zeroth copy

of the gauge field Aµ.

While the construction was also extended to metrics with multi KS forms [45], time

dependence [49] and backgrounds more general than Minkowski [47], the only known

way to study metrics with no KS form is to employ perturbation theory [4–9, 11, 26,

33, 188, 189]. Other developments in the classical double copy include the relation

between the sources in the gravity and the gauge theory sides [190], and nonperturba-

tive [50,141–143] and global [140] aspects. However, the restrictive nature of the KS

double copy seems to be an obstacle to a better understanding. In [67], the authors

used 3D physics as a testing ground for the classical double copy since, at first sight,

it is not obvious how it works. General relativity in 3D has no propogating degrees of

freedom and therefore the first question that needs to be answered is how the degree

of freedom of the photon, which is one in 3D, is matched in the gravity side. The

second question is related to the nature of Newtonian and Coulomb potentials in 3D.

An application of Gauss’ law to a point particle of charge Q and mass M suggests a

logarithmic form for both as follows∮
E · dA ∝ Q, E ∝ 1

r
, ϕ ∝ log r, (3.9)∮

g · dA ∝M, g ∝ 1

r
, Φ ∝ log r. (3.10)

1 See [47] for a covariant version of the KS double copy where no particular time coordinate is chosen.
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Whereas, in 3D, the Coulomb potential given in (3.9) is a consequence of Maxwell’s

equations, general relativity has no Newtonian limit giving rise to (3.10). In taking the

Newtonian limit, one considers a weak deviation from the flat space (gµν = ηµν+hµν

with |hµν | ≪ 1) and a stationary weak source (T 0
0 = −ρ, T i0 = 0 = T ij ) and the

geodesic equation reduces to
d2x

dt2
=

1

2
∇⃗h00. (3.11)

Using
d2x

dt2
= g⃗ = −∇⃗Φ, (3.12)

one finds the Newtonian potential as

Φ = −1

2
h00 . (3.13)

However, when d = 3, the 00 component of Einstein equations becomes

∇⃗2Φ = 0, (3.14)

resulting in a trivial Newtonian potential Φ = 0. If the double copy construction is

possible, this problem should be automatically solved since using the 00 component

of the KS graviton h00 = κϕ in (3.13) yields a nontrivial Newtonian potential as

Φ = −κ
2
ϕ. (3.15)

When one starts from the Coulomb solution and achieves a double copy, the logarith-

mic form of the Coulomb potential is naturally moved into the metric and one obtains

a nontrivial solution.

It turns out that, in 3D, the construction possesses a unique feature with no higher-

dimensional counterpart. Although one starts with a vacuum solution in the gauge

theory side, one obtains a nonvacuum gravity solution with a nontrivial energy-momentum

tensor. In [67], the source was interpreted as a dilaton, which also seems to solve the

degree of freedom problem. It is also in agreement with the fact that the double copy

of the pure YM theory is gravity coupled to a two-form field and a dilaton, and the

absence of the two-form field can be explained by the symmetric nature of the KS

ansatz (3.1).

This chapter aims to study the construction of [67] and further examine the nature of

the source by considering a stationary solution, which is a natural generalization of the
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static solution. Additionally, we introduce a cosmological constant, find solutions in

the KS form and present the corresponding gauge theory single copies. The outline of

this chapter is as follows: In Sec. 3.2, we review the main findings of [67] and give an

alternative way to obtain the static solution. In Sec. 3.3, we find the stationary version

of the solution and show that it is sourced by not a dilaton but a spacelike perfect fluid.

Then, we give its gauge theory single copy and discuss some properties of the solution

briefly. We end this section by discussing the addition of the cosmological constant.

In Sec. 3.4, we conclude with comments on the validity of the classical double copy

based on our results.

3.2 Static Solution

Our starting point is a point charge in 3D Maxwell’s theory. In polar coordinates

(t, r, θ), the flat space metric takes the form

ηµνdx
µdxν = −dt2 + dr2 + r2dθ2, (3.16)

and the current vector is given by

Jµ∂µ = gQδ(2)(r⃗)∂t (3.17)

where Q is the charge of the particle. The Coulomb solution is obtained as

Aµ = ϕkµ, kµdx
µ = −dt, ϕ = −gQ

2π
log r, (3.18)

due to the relation ∇⃗2 log r = 2πδ(2)(r⃗) in two spatial dimensions. In order to obtain

a metric in the KS form, we first write the solution in a gauge where the vector kµ is

null as follows

Aµ = ϕkµ, −kµdxµ = dt+ dr, ϕ = −gQ
2π

log r. (3.19)

Identifying the charge with the black hole mass parameter, Q→M , the double copy

is given by the metric

ds2 = ηµνdx
µdxν + κϕ (kµdx

µ)2 ,

= −(1 + 2GM log r)dt2 + (1− 2GM log r)dr2 − 4GM log r dtdr + r2dθ2.

(3.20)
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Note that the vector kµ is null with respect to both metrics ηµν and gµν . The Ricci

tensor of the metric (3.20) reads

Rµν =


0 0 0

0 0 0

0 0 −2GM

 . (3.21)

The θθ component of the Ricci tensor is nonzero everywhere and the same should be

true for the energy-momentum tensor Tµν , implying a nonlocal source. The approach

of [67] is to consider the coupling of gravity to a free scalar field as

S =

∫
d3x

√
−g
[ ϵ1
κ2
R− ϵ2

2
(∂φ)2

]
, (3.22)

where ϵi = ±1 (i = 1, 2) control the sign of the kinetic terms and take a negative value

for a ghost graviton or a dilaton. The trace-reversed field equations which follow from

the action (3.22) are

Rµν =
ϵ

2
∂µφ∂νφ, (3.23)

where ϵ = ϵ1ϵ2. The metric in (3.20) is a solution if ϵ = −1 and the gradient of the

field is

∂µφ =

√
M

2π
(0, 0, 1), (3.24)

which implies that the dilaton is linear in the azimuthal angle. The matter field equa-

tion is also satisfied as

□φ ≡ ∇µ∇µφ = 0. (3.25)

The analysis of [67] proceeds by taking ϵ1 = +1 and ϵ2 = −1, i.e., the dilaton should

be a ghost to support the metric given in (3.20). It was also shown that, in a proper

generalized gauge, the part of the Lagrangian which is quadratic in the fields can be

put in a form where the graviton and the dilaton kinetic terms have nonghost signs,

exhibiting a parallelism with the double copy construction in scattering amplitudes.

The existence of the scalar hair was attributed to two facts: the scalar field is a ghost

and it does not respect the symmetries of the spacetime, i.e., ∂µφ ̸= 0. However, the

same solution can be obtained by taking ϵ1 = −1 and ϵ2 = +1, and therefore, the

former does not play a role here (see the Appendix A.for a discussion of the no-hair

theorem for free scalar fields).

This choice of the signs has the advantage that the dilaton is not a ghost any more

and the “wrong" sign for the graviton kinetic term has no physical importance since
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it does not propagate any dynamical degree of freedom. This is, indeed, an approach

which is employed to preserve the unitarity of modified gravity theories such as topo-

logically massive gravity [88, 89] and new massive gravity [90]. In this case, the

quadratic part of the Lagrangian contains no dynamical ghost, and therefore there

is no need for performing a generalized gauge transformation. Hence, one might

speculate that it might have also interesting consequences for the double copy in 3D

scattering amplitudes, which, we believe, deserves further study.

Motivated by this possibility of obtaining the solution with different sign choices, one

might also ask whether there is any other freedom in the construction of the solution,

which is answered in [67] to a certain extent. It was shown that, while it is not

possible to see the source as a timelike fluid (perfect or viscous), the solution can also

be obtained by coupling to a spacelike perfect fluid, whose energy-momentum tensor

reads

Tµν = (ρ+ P )uµuν + Pgµν , u2 = +1, (3.26)

where uµ is the velocity of the fluid. The Einstein equations in this case become

Rµν =
κ2

2
[(ρ+ P )uµuν − (ρ+ 3P ) gµν ] . (3.27)

Comparing this with (3.23) and removing the metric term in (3.27) by choosing ρ =

−3P gives

Rµν = −κ2P uµuν . (3.28)

Therefore, it yields the same solution if the pressure is chosen to be the norm of the

gradient of the field φ as

P =
1

2
(∂φ)2 =

M

4πr2
= −1

3
ρ (3.29)

and the fluid velocity is given by

uµ = (0, 0, r) . (3.30)

This alternative reflects the correspondence between scalar fields and perfect flu-

ids [91–93]. However, as we will show in the next section by studying a stationary

solution in the KS form, the correspondence does not always hold and one is forced

to choose the spacelike fluid interpretation.
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3.3 Stationary Solution

In this section, we will put different interpretations of the source on a test by studying

a more nontrivial solution. To introduce rotation, we write the flat metric in spheroidal

coordinates (t, r, θ) as

ηµνdx
µdxν = −dt2 +

r2

r2 + a2
dr2 + (r2 + a2)dθ2, (3.31)

where a will be the rotation parameter. The null vector kµ is parametrized as

−kµdxµ = dt+
r2

r2 + a2
dr + adθ. (3.32)

For a metric in KS form with ϕ = ϕ(r), the metric becomes

ds2 = ηµνdx
µdxν + κϕ (kµdx

µ)2 ,

= −(1− κϕ(r))dt2 +
r2 [a2 + r2(1 + κϕ(r))]

(a2 + r2)2
dr2 +

[
a2(1 + κϕ(r)) + r2

]
dθ2

+
2κar2ϕ(r)

a2 + r2
drdθ +

2κr2ϕ(r)

a2 + r2
drdt+ 2κaϕ(r) dtdθ, (3.33)

and the independent components of the Ricci tensor read

R00 = κ
(a2 − r2 + κr2ϕ(r))ϕ′(r) + r (−a2 − r2 + κr2ϕ(r))ϕ′′(r)

2r3
,

R11 = κ
r (a2 + r2 + κr2ϕ(r)) (ϕ′(r) + rϕ′′(r))

2 (a2 + r2)2
,

R22 = κ
(a4 + 3r2a2 + κr2ϕ(r)a2 + 2r4)ϕ′(r)− a2r (a2 + r2 − κr2ϕ(r))ϕ′′(r)

2r3
,

R01 = κ2
rϕ(r) (ϕ′(r) + rϕ′′(r))

2 (a2 + r2)
,

R02 = κ
a ((a2 + r2 + κr2ϕ(r))ϕ′(r) + r (−a2 − r2 + κr2ϕ(r))ϕ′′(r))

2r3
,

R12 = κ2
arϕ(r) (ϕ′(r) + rϕ′′(r))

2 (a2 + r2)
, (3.34)

where primes denote the derivative with respect to r. The trace-reversed Einstein

equations when the source is the dilaton (3.23) or the spacelike fluid (3.28) are of the

form Rµν ∝ VµVν , where Vµ is a three-vector and one can use this to constrain the

function ϕ(r). From, for example, (R01)
2 = R00R11, it is easy to see that the only

consistent solution takes the form ϕ(r) ∝ log r and the proportionality constant is

determined by requiring one to get the static solution as a→ 0, which yields

ϕ(r) = −κM
4π

log r. (3.35)
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Using this in (3.23) with again ϵ = −1, one sees that the gradient of the scalar φ

should be given by

∂µφ =

√
M

2π

(
a

r2
, 0,

a2 + r2

r2

)
. (3.36)

When the rotation is turned on, a ̸= 0, this introduces an r dependence in the t and

θ components, which conflicts with the fact that the r component is zero, hence no

r dependence. Therefore, unlike the case for the static metric, there is no consistent

solution for the function φ.

However, one can still use the spacelike fluid as the source and the metric with the

scalar ϕ given in (3.35), is a solution of Einstein equations (3.28) when

P =
1

2
(∂φ)2 =

M

4πr2
= −1

3
ρ, uµ =

(
a

r
, 0,

a2 + r2

r

)
. (3.37)

Therefore, the stationary solution cannot be sourced by a dilaton and the spacelike

fluid becomes compulsory to obtain a stationary solution in the KS form.

The gauge theory single copy can easily be obtained as

Aµdx
µ = ϕkµdx

µ =
gQ

2π
log r

(
dt+

r2

r2 + a2
dr + adθ

)
, (3.38)

which is a solution of Maxwell’s equations (3.6) with the current vector

Jµ = ρvµ, ρ =
Qa2

πr4
, vµ =

(
1, 0,−1

a

)
, (3.39)

which describes a rotating nonlocal charge distribution with angular velocity ω = − 1
a

with respect to the origin. Checking the nonzero components of the field strength

tensor,

Frt =
gQ

2πr
, Frθ =

agQ

2πr
, (3.40)

one sees that the magnetic field is created due to the rotation in the gravity side.

In order to see some main properties of the metric (3.33) with the scalar ϕ given in

(3.35), it is useful to write it down in Boyer-Lindquist coordinates, which is achieved

by the transformations [94]

dθ 7→ dΘ + h1dr,

dt 7→ dT + h2dr, (3.41)
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where

h1 = − κar2ϕ(r)

(a2 + r2) (a2 − κr2ϕ(r) + r2)
,

h2 =
κr2ϕ(r)

a2 − κr2ϕ(r) + r2
. (3.42)

In these coordinates, the metric is given by

ds2 =− (1− κϕ(r))dT 2 +
r2dr2

a2 − κr2ϕ(r) + r2
+
(
r2 + a2(1 + κϕ(r))

)
dΘ2

+ 2κaϕ(r) dΘdT (3.43)

When the explicit form of the scalar ϕ(r) given in (3.35) is used, it becomes

ds2 =− (1 + 2GM log r)dT 2 +
r2dr2

a2 + r2 (1 + 2GM log r)

+
(
r2 + a2(1− 2GM log r)

)
dΘ2 − 4aGM log r dΘdT. (3.44)

From the curvature invariants

RµνRµν =
4G2M2

r4
,

RµνσρRµνσρ = 4RµνRµν −R2 =
12G2M2

r4
, (3.45)

one sees that the metric has a real singularity at r = 0. For appropriately chosen pa-

rameters, it has an event horizon enclosed by an ergocircle, which might be thought

of a 3D analog of the Kerr black hole sourced by a spacelike fluid. The metric asymp-

totically takes the form

ds2
∣∣
r→∞ = −2GM log r dT 2 +

dr2

2GM log r
+ r2dΘ2, (3.46)

and therefore, it is not asymptotically flat. However, it is asymptotically locally flat2

as can be seen by the vanishing of the curvature invariants (3.45) as r → ∞.

When a cosmological constant is introduced, the trace-reversed Einstein equations

become

Rµν − 2Λgµν = −κ2P uµuν . (3.47)

This time, the metric given in (3.33) is a solution when

ϕ(r) = −κM
4π

log r +
Λ

κ
r2, (3.48)

2 To our knowledge, the black hole solution discovered in [95] is the only other known solution of this type
in 3D.
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with the fluid properties given in (3.37). The gauge theory single copy is given by

Aµdx
µ = ϕkµdx

µ =

(
gQ

2π
log r − Λ

2g
r2
)(

dt+
r2

r2 + a2
dr + adθ

)
, (3.49)

and the nonzero components of the field strength tensor read

Frt =
gQ

2πr
− Λr

g
, Frθ = a

(
gQ

2πr
− Λr

g

)
, (3.50)

with the magnetic field again created by the rotation. Maxwell’s equations are now

given by

∂νF
νµ = g

(
Jµ(Λ=0) + J̄µ

)
, (3.51)

where the first current vector Jµ(Λ=0) describes the source in the absence of the cosmo-

logical constant and is given by (3.39). The second current vector describes a constant

charge density filling all space as follows

J̄µ = ρ0v̄
µ, ρ0 =

2Λ

g2
, v̄µ = (1, 0, 0) , (3.52)

which is the expected effect of adding a cosmological constant in the gravity side.

When written in Boyer-Lindsquit coordinates using (3.43), the metric becomes

ds2 =− (1 + 2GM log r − Λr2)dT 2 +
r2

a2 + r2 (1 + 2GM log r − Λr2)
dr2

+
(
r2 + a2(1− 2GM log r + Λr2)

)
dΘ2 + 2a(−2GM log r + Λr2) dΘdT.

(3.53)

From the curvature invariants

RµνRµν =
4G2M2

r4
− 8GΛM

r2
+ 12Λ2,

RµνσρRµνσρ = 4RµνRµν −R2 =
12G2M2

r4
− 8GΛM

r2
+ 12Λ2, (3.54)

the singularity at r = 0 is again apparent and an event horizon enclosed by an ergo-

circle can be identified by a certain choice of the parameters. Taking Λ = − 1
ℓ2

, the

asymptotic form of the metric is

ds2
∣∣
r→∞ = −

(r
ℓ

)2
dT 2 +

(
ℓ

r

)2

dr2 + r2dΘ2, (3.55)

which is the anti-de Sitter (AdS) spacetime with radius ℓ. Therefore, the metric given

in (3.53) serves as an interesting alternative to the well-known BTZ black hole [83],

which is, of course, more physical since it is a solution of the cosmological Einstein

theory with no matter field like our spacelike fluid.
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3.4 Summary

In this chapter, we revisited the static solution constructed in [67]. Being able to

obtain the static solution with different sign choices for the kinetic terms of the gravi-

ton and the dilaton, yielding a quadratic Lagrangian with no propagating ghost field,

we claim that the study of scattering amplitudes in 3D might offer an interesting in-

sight into the double copy because the change of sign of the graviton kinetic term is

problematic in higher dimensions.

Turning our attention to a stationary version of the solution in the KS form, we

showed that it cannot be sourced by a free scalar field and the source should be a

spacelike fluid. Even in this form, it presents itself as an interesting example of the

classical double copy where the gauge theory source is a nonlocal rotating charge

distribution. By introducing a cosmological constant, we obtained a rotating, asymp-

totically AdS solution whose single copy gauge field describes an electric field and a

magnetic field, which is proportional to the rotation parameter in the gravity side, and

the effect of the cosmological constant shows itself in the gauge theory as a constant

charge distribution filling all space. Based on the expectation from the scattering am-

plitudes that the double copy should be given by gravity coupled to a dilaton, obtain-

ing a stationary solution sourced by a dilaton or understanding why it is not possible

remains an open problem, whose solution might give a better understanding of the

classical double copy.
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CHAPTER 4

THE KERR-SCHILD DOUBLE COPY OF COULOMB SOLUTIONS IN

THREE DIMENSIONS

As we have seen in the previous chapter, due to the lack of degrees of freedom and a

Newtonian limit in 3D GR, it is not obvious, at first sight, how the procedure works.1

For the Coulomb solution, which is the simplest nontrivial solution in the gauge the-

ory side, the gauge boson degrees of freedom is mapped to the graviton and the KS

scalar characterizing the spacetime metric is directly linked to the Newtonian poten-

tial as given in (4.13). However, without matter coupling, this cannot be realized

since the Newtonian potential vanishes identically. When the problem was tackled

by coupling a free scalar field, a hairy black hole with the desired properties can be

obtained if the scalar is a ghost, which is equivalent to coupling a spacelike fluid [67].

In order to support the black hole solution, the scalar should be linear in the azimuthal

angle, and therefore, does not vanish at infinity as suggested by the no-hair theorem.

In the linearized theory, the ghost sign can be removed by a certain generalized gauge

transformation; however, it is still somewhat unsatisfactory to not have a reasonable

behavior of the matter field at infinity. When investigated further in [68], it was pro-

posed to take the Einstein-Hilbert term with a ghost sign, which does not introduce a

dynamical ghost in the theory and removes the need for a generalized gauge transfor-

mation to get rid of the ghost in the linearized theory.

In this chapter, we aim to present an alternative for the matter coupling with a better

behavior at infinity, which, as we will see, also provides a beautiful connection to a

well-known solution of 3D black hole physics. In Sec. 4.1, we will make a review

1 See [96, 97] for the study of 3D amplitudes where a degree of freedom is introduced in the gravity side by
adding a Chern-Simons term in the action. As a result, one obtains the amplitudes in topologically massive gravity
as the double copy of the amplitudes of topologically massive electrodynamics.
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of the construction of [67] by emphasizing the points that will be relevant to our later

discussion. In Sec. 4.2, considering the on-shell duality of a scalar and a gauge vector

together with the KS ansatz for the metric, we will find that the same type of solution

can be obtained in Einstein-Maxwell theory. In Sec. 4.3, we will obtain the most

general static solution of the KS form by introducing a cosmological constant. When

the cosmological constant is zero, we will show that a charged black hole solution

with the correct Newtonian limit, which also gives rise to the Coulomb solution as its

single copy, can be obtained when a ghost sign is used in the action. The electric field

corresponding to the gauge field in the gravity side vanishes at infinity, and there-

fore, provides the promised improvement. For a negative cosmological constant, the

charged Bañados-Teitelboim-Zanelli black hole [83] follows from the most general

solution without taking any ghost sign in the action. We end this section by studying

the gauge theory single copy of the solution. Finally, we present our conclusions in

Sec. 4.4.

4.1 The Coulomb Solution from the Free Scalar

4.1.1 Solution with the correct Newtonian potential

In [67], the Coulomb solution was obtained as the single copy of the static black hole

solution of GR coupled to a free scalar with the following action:

S =

∫
d3x

√
−g
[
ζ1
κ2
R− ζ2

2
(∂φ)2

]
, κ2 = 8πG, (4.1)

where ζi = ±1 (i = 1, 2) control the sign of the kinetic terms and take a negative

value for a ghost graviton or a dilaton [68]. The field equations which follow from

the action (4.1) are

Rµν = ζ
κ2

2
∂µφ∂νφ, (4.2)

∂µ(
√
−g gµν∂νφ) = 0, (4.3)

where ζ = ζ1ζ2. Let us consider the following static KS metric around the Minkowski

space

gµν = ηµν + ϕ(r) kµkν , (4.4)
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where the vector kµ is null and geodesic with respect to both the background metric

ηµν and the full metric gµν (see chap. 32 of [98] for a detailed discussion of important

properties). Writing the background line element in polar coordinates

ηµνdx
µdxν = −dt2 + dr2 + r2dθ2, (4.5)

the vector kµ can be written as follows

−kµdxµ = dt+ dr, (4.6)

and the line element in the KS coordinates becomes

ds2 = ηµνdx
µdxν + ϕ(r)(kµdx

µ)2

= − [1− ϕ(r)] dt2 + [1 + ϕ(r)] dr2 + 2ϕ(r)dtdr + r2dθ2. (4.7)

If one assumes2

∂µφ = (0, 0, c), c = constant, (4.8)

the equation for the scalar field (4.3) is satisfied independent of the KS scalar ϕ as

follows:

∂µ(
√
−g gµν∂νφ) = ∂µ(

√
−η ηµν∂νφ) = 0, (4.9)

where we have used det g = det η, gθθ = ηθθ and gtθ = grθ = 0.

With this in hand, one can now check the gravity equations (4.2). The independent

nonzero components of the Ricci tensor read

Rtt =
[ϕ(r)− 1] [r ϕ′′(r) + ϕ′(r)]

2r
,

Rtr =
ϕ(r) [r ϕ′′(r) + ϕ′(r)]

2r
,

Rrr =
[ϕ(r) + 1] [r ϕ′′(r) + ϕ′(r)]

2r
,

Rθθ = r ϕ′(r), (4.10)

and the only nonzero component of the right-hand-side of the equations is

(RHS)θθ = 4πζGc2. (4.11)

2 In [67], the authors directly use the KS scalar yielding the correct Newtonian potential and conclude that the
solution should be sourced by a free scalar. Here, we give the derivation in a way that will be useful in our later
discussion.

35



From the θθ component, one finds the solution for the KS scalar as

ϕ = b+ 4πζGc2 log(r), b = constant, (4.12)

which also satisfies the remaining components. The constant c and the parameter ζ

can be fixed by considering the Newtonian limit. The Newtonian potential is given

by

Φ = −1

2
(1 + g00) = −ϕ

2
, (4.13)

and in order to mimic the Newtonian gravity

g⃗ = −∇⃗Φ = −GM
r
r̂, (4.14)

the KS scalar should be in the following form:

ϕ = −2GM log(r) + constant. (4.15)

Therefore, we need to fix the parameters as follows:

c =

√
M

2π
, ζ = −1, (4.16)

with which, the KS scalar becomes

ϕ = −2GM log(r) + b. (4.17)

Since ζ = −1, one should choose the “wrong sign” for one of the kinetic terms in

the action (4.1). While the scalar was chosen to be a ghost in [67], introducing the

Einstein-Hilbert (EH) term with the negative sign has the advantage that it does not

propagate any physical degree of freedom [68].

In order to fix the integration constant b, we write the metric (4.4) in the Boyer-

Lindsquit (BL) coordinates by the following coordinate transformation:

dt→ dt+
ϕ(r)

1− ϕ(r)
dr, (4.18)

which leads to the line element

ds2 = −f(r)dt2 + dr2

f(r)
+ r2dθ2, f(r) = 1− ϕ(r), (4.19)

for a generic KS scalar. In our case, the metric function becomes

f(r) = 1− b+ 2GM log(r). (4.20)
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In order to recover the Minkowski spacetime when the black hole mass vanishes

(M = 0), one should take b = 0. Therefore, the KS scalar and the metric function are

given by

ϕ(r) = −2GM log(r), (4.21)

f(r) = 1 + 2GM log(r). (4.22)

We refer the reader to [67] for an analysis of the motion of massive particles where

the authors show that stable orbits exist for a certain range of parameters. In Sec. 4.3,

we will show that it is true for the solution of Einstein-Maxwell theory.

4.1.2 Gauge theory single copy

The gauge theory single copy for a generic matter coupling can be obtained by con-

sidering the trace-reversed gravity equations

Rµ
ν =

κ2

2
[T µν − δµνT ] , T = T µµ, (4.23)

where Tµν is the energy-momentum tensor. For a KS metric (4.4), the Ricci tensor

with mixed indices reads

Rµ
ν =

1

2
[∂α∂µ(ϕ kνkα) + ∂α∂ν(ϕ k

µkα)− ∂α∂α(ϕ k
µkν)] , (4.24)

which is linear in the perturbation. If k0 = +1 and one identifies Aµ = ϕ kµ, the µ0

component can be written as

Rµ
0 =

1

2
∂νF

νµ, (4.25)

where Fµν = 2∂[µAν] is the field strength tensor of the gauge field Aµ. Therefore,

the µ0 component of the gravity equations can be mapped to Maxwell’s equations as

follows:

∂νF
νµ = gJµ, (4.26)

where the source is given by

Jµ = 2 [T µ0 − δµ0T ] , (4.27)

and the gauge coupling is obtained by κ2

2
→ g [42].
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Application of this procedure to our solution gives the single copy gauge field as3

Aµdx
µ = ϕkµdx

µ = Q log r (dt+ dr), (4.28)

where we have made the replacement 2GM → Q. This is just the Coulomb solution

in a gauge where AµAµ = 0, and the source is

Jµ∂µ = Qδ2(r⃗) ∂t, (4.29)

which corresponds to a charged particle in the flat spacetime.

Although we achieved the Coulomb solution as the single copy, the construction has

the undesired feature that the scalar field in the gravity side is linear in the azimuthal

angle. This is not unexpected due to the existence of the scalar hair (see Appendix A.

for a detailed discussion of no-hair theorem for free scalar fields). One way to obtain a

matter configuration which is well behaved at infinity is to consider the coupling of a

gauge vector since it will yield a global charge, i.e., the electric charge, and therefore,

produces no hair. In d ≥ 4, this is just the Reissner-Nordström black hole solution

of Einstein-Maxwell theory, whose metric can be also written in the KS form around

Minkowski background.

4.2 Scalar-Vector Duality and Its Consequences

In this section, we will present the duality between a free scalar and a gauge vector

in three dimensions by following Sec. 7.8 of [99], and then, discuss its consequences

for the classical double copy. In d-dimensions, the number of on-shell degrees of

freedom of a p-form gauge field is C(d − 2, p) = (d−2)!
p!(d−p−2)!

. Due to the identity

C(d−2, p) = C(d−2, d−p−2), a p-form and a (d−p−2)-form in d-dimensions have

the same number of degrees of freedom. In d = 3, this implies that a scalar (p = 0)

and a vector gauge field (p = 1) have the same number of degrees of freedom, which

is one. Indeed, one can also show that the free field equations are equivalent and the

solutions are in one-to-one correspondence. In order to see that, let us consider the

3 We write the solution with a different normalization than [67, 68] to simplify the solution of Einstein-
Maxwell theory that we will give in Sec. 4.3. The Maxwell action is taken as (4.35) and we formulate the
scalar-vector duality in Appendix B.accordingly.
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following flat space action

S =

∫
d3x

√
−η
[
1

8π
fµνf

µν +
1

2
√
2π
ϵµνρfµν∂ρφ

]
, (4.30)

where ϵµνρ = 1√
−ηε

µνρ is the Levi-Civita tensor and we take the Minkowski spacetime

in polar coordinates (4.5) for later convenience. The equation for φ gives

ϵµνρ∂µfνρ = 0, (4.31)

which implies fµν = 2∂[µaν], i.e., fµν is the field strength tensor of a gauge field aµ.

Checking the equation for fµν gives how it is related to the scalar φ as follows:

fµν = −
√
2π ϵµνρ∂

ρφ =⇒ ∂µφ =
1

2
√
2π

ϵµνρf
νρ. (4.32)

Inserting the expression for fµν into the action (4.30) yields the action for a free scalar

Sscalar =

∫
d3x

√
−η

[
1

2
(∂φ)2

]
, (4.33)

with the field equation

∂µ(
√
−η ηµν∂νφ) = 0. (4.34)

In the same way, one can also eliminate φ from the action (4.30) by using the expres-

sion in (4.32), which yields the action for a free gauge field

Svector =

∫
d3x

√
−η

[
− 1

8π
fµνf

µν

]
, (4.35)

where the field equation is given by

∂ν(
√
−η ηναηµβfαβ) = 0. (4.36)

We are now in a position to discuss the implications of the duality. As we have seen

in (4.9), the scalar field configuration given in (4.8) is a solution when the spacetime

is curved and endowed with the metric (4.4), or equivalently, flat and endowed with

the Minkowski metric in polar coordinates (4.5). Our analysis shows that the actions

for the free scalar (4.33) and the free vector (4.35) are equivalent and the solutions to

free field equations (4.33,4.35) are in one-to-one correspondence where the relation

between the solutions is given in (4.32). For the solution of the scalar field given

in (4.8), this implies that, for the corresponding vector solution, the only nonzero

component of the field strength tensor is

ftr ∝
1

r
, (4.37)
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which is the electric part. Introducing the electric charge as the proportionality con-

stant, the gauge field and the field strength tensor can be written as

aµdx
µ = q log(r)dt,

1

2
fµν dx

µ ∧ dxν =
q

r
dr ∧ dt. (4.38)

Similar to the scalar case, this field configuration is also a solution when the spacetime

is curved and endowed with the metric (4.4) as follows:

∂ν(
√
−η ηναηµβfαβ) = ∂ν(

√
−g gναgµβfαβ) = 0. (4.39)

As emphasized in [99], although the equivalence is true for the simplest kinetic ac-

tions, it is not guaranteed to hold in a more general setup. We have proven that the

scalar solution in curved spacetime with a KS metric implies that the electric field

configuration (4.38) is also a solution in such a spacetime. However, one should keep

in mind that this statement is independent of the KS scalar ϕ(r). Therefore, when

coupled to gravity, the matter equations will definitely be satisfied if the metric can

be put in the KS form (4.4); however, the KS scalars in these two cases might differ.

Indeed, one immediately sees that the static black hole solution obtained by coupling

the vector field to gravity should be a charged black hole solution. In the next section,

we will study the black hole solution with this new matter coupling.

4.3 Einstein-Maxwell Theory in Three Dimensions

4.3.1 The most general static solution of Kerr-Schild form

Motivated by the results of the previous section, we consider Einstein-Maxwell theory

with a cosmological constant described by the following action:

S =

∫
d3x

√
−g
[
ζ1
κ2

(R− 2Λ)− ζ2
8π
fµνf

µν

]
, κ2 = 8πG, (4.40)

where, similar to the scalar case, ζi = ±1 (i = 1, 2) control the sign of the kinetic

terms and take a negative value for a ghost graviton or a vector. The field equations

arising from the action (4.40) are given by

Rµν − 2Λgµν = ζ
κ2

8π

(
2f α

µ fνα − gµνfαβf
αβ
)
, (4.41)

∂ν(
√
−g f νµ) = 0, (4.42)
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where ζ = ζ1ζ2. As discussed in the previous section, for a static metric in the KS

form (4.4), the solution for the vector field is given in (4.38). With this at hand,

one can solve the gravitational field equations (4.41). Introducing the cosmological

constant modifies the left-hand side as follows:

(LHS)tt =
[ϕ(r)− 1] [r ϕ′′(r) + ϕ′(r)− 4Λr]

2r
,

(LHS)tr =
ϕ(r) [r ϕ′′(r) + ϕ′(r)− 4Λr]

2r
,

(LHS)rr =
[ϕ(r) + 1] [r ϕ′′(r) + ϕ′(r)− 4Λr]

2r
,

(LHS)θθ = r ϕ′(r)− 2Λr2, (4.43)

and the only nonzero component of the right-hand-side of the equations is

(RHS)θθ = 2ζGq2. (4.44)

From the θθ component, the KS scalar can be solved as

ϕ(r) = C + Λr2 + 2ζGq2 log(r), C = constant (4.45)

which also solves the other components of the field equations. In order to give a

physical meaning to the integration constant C, we again write the metric in the BL

coordinates (4.19) via the transformation (4.18), which leads to the following metric

function:

f(r) = 1− C − Λr2 − 2ζGq2 log(r). (4.46)

Having found the most general solution, we are now ready to investigate physically

interesting possibilities.

4.3.2 Solutions with the correct Newtonian potential (Λ = 0)

In order to obtain solutions with the correct Newtonian potential, we take Λ = 0 since

only the logarithmic term is needed. In the Newtonian limit, the gravitational field in

terms of the KS scalar can be obtained from Eqs. (4.13)-(4.14), which yields

g⃗ =
1

2
∇⃗ϕ. (4.47)

For the KS scalar given in (4.45) with Λ = 0, we obtain

g⃗ =
ζGq2

r
r̂, (4.48)
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which shows that in order to preserve the attractive nature of the gravitational force,

one should have ζ = −1, i.e., either the EH term or the vector kinetic term in the

action (4.40) should carry a ghost sign (see the Appendix B.for more details).

Note that our solution should be a charged black hole and the gravitational attraction

is provided by the electric charge. Therefore, the integration constant should be a

function of the mass of the black hole C = C(M). In order to fix the constant, we

again need to check the metric function in the BL coordinates given in (4.46) and

demand that the metric reduces to the Minkowski metric [f(r) = 1] when the mass

and the charge are set to zero (M → 0, q → 0). This constraint can be satisfied by

taking the mass term with different signs as follows:

f±(r) = 1± 8GM + 2Gq2 log(r), (4.49)

where for both choices f(r) has a single zero, and therefore, admits one event horizon.

Although we have already ensured the correct Newtonian limit, it is interesting to

have a closer look at the properties of the metric as done in [67] for the scalar case.

For this purpose, we check the geodesic motion of a timelike particle described by

the equation

1

2
E2 =

1

2

(
dr

dt

)2

+ V ±
eff , V ±

eff =
1

2

(
L2

r2
+ 1

)
f±(r), (4.50)

where E and L are the energy and the angular momentum of the particle which are

defined through the timelike and the angular Killing vectors ξµ(t,θ) as follows:

E = −gµν ξµ(t)u
ν , L = gµν ξ

µ
(θ)u

ν , (4.51)

where uµ is the velocity the particle. The Newtonian limit of the effective potential

V ±
eff can be obtained by neglecting the L2G terms as follows4:

V ±
N =

1

2
± 4GM +

L2

2r2
+Gq2 log(r). (4.52)

The metric function obtained by coupling a free scalar (4.22) and the ones we ob-

tained by coupling a gauge vector (4.49) have the same functional form [f(r) =

A + B log(r), A,B: constant]. Therefore, all the physically important properties of

the solution that is discussed in [67] are also valid for our solutions. They can be

summarized as follows:
4 For a general analysis, one should write the logarithmic term in both Veff and VN by introducing a length

scale as log( r
r0
). We set r0 = 1 for simplicity.
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1. The Newtonian potential VN has an infinite barrier at short distances and matches

with the effective potential Veff at long distances.

2. A timelike particle cannot escape to infinity due to the logarithmic divergence

of the potential as r → ∞.

3. The effective potential Veff develops a local maximum (V max
eff ) and a local min-

imum (V min
eff ) when the angular momentum of the particle L is larger than a

certain value (Lmin). A timelike particle moves along a stable orbit provided

that V min
eff ≤ E < V max

eff . On the other hand, the Newtonian potential VN always

admit stable orbits.

4. When E = V min
eff and L > Lmin, timelike geodesics form circular orbits, i.e.,

one has dr
dt

= 0 in (4.50).

5. Since the central potential is not that of an inverse-square central force [V (r) =

−k
r
, k: constant] or a radial harmonic oscillator [V (r) = 1

2
kr2, k: constant],

Bertrand’s theorem assures that there will be precession for orbits with E >

V min
eff .

In Fig. 4.1, we show that properties 1-4 hold for the metric functions f±(r) given in

(4.49) by tuning the parameters such that Lmin = 1. Having shown that the qualitative

properties of the metric is the same, we refer the reader to [67] where the authors

present timelike geodesics, and also, show that more precession is observed in the

relativistic orbits when compared to the Newtonian orbits.

The KS scalars corresponding to the metric functions (4.49) are given by

ϕ±(r) = ∓8GM − 2Gq2 log(r), (4.53)

and lead to the following single copy gauge field:

Aµdx
µ = ϕkµdx

µ = (±8GM + 2Gq2 log r) (dt+ dr). (4.54)

The constant factor does not play a role and this is just the Coulomb solution (4.28)

with the identification 2Gq2 → Q, i.e., the electric charge in the gravity side q yields

a positively charged point particle in the gauge theory. This is a remarkable difference
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Figure 4.1: First row shows the effective potential V −
eff and the Newtonian potential

V −
N for the metric function f−(r) with GM = 1

16
and Gq2 = 1

4
. The second row

shows the effective potential V +
eff and the Newtonian potential V +

N for the metric func-

tion f+(r) withGM = 1
16

andGq2 = 3
4
. For both cases, timelike geodesics are stable

orbits when L > Lmin = 1.

compared to the higher dimensional cases.5 In dimensions higher than three (d ≥ 4),

the static solution of the Einstein-Maxwell theory, the Reissner-Nordström black hole,

has the following KS scalar:

ϕ(r) =
2GM

rd−3
− Gq2

r2(d−3)
, (4.55)

where M and q are the mass and the electric charge of the black hole respectively.

The gauge field in the gravity side and the corresponding field strength tensor are

given by

aµdx
µ = − q

r(d−3)
dt, (4.56)

1

2
fµν dx

µ ∧ dxν = (d− 3)
q

rd−2
dr ∧ dt. (4.57)

The gauge theory source for the solution is as follows:

Jµ = ρ δµ0, ρ = 2GMδd−1(r⃗)− 2(d− 3)2Gq2

r2(d−2)
, (4.58)

where we see that the mass M of the black hole shows itself as the charge of a point

particle and the electric charge q results in a nonlocalized charge distribution which

vanishes as r → ∞. Obtaining the Coulomb solution in d = 3 is a very peculiar

property, which is possible thanks to the fact that the existence of the electric charge in
5 Various aspects of the charged black holes solutions in the context of the KS double copy are discussed

in [47] and the source terms for d = 4 are given in [48] .
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the gravity side changes the KS scalar (4.53) such that the modification has the same

functional form [log(r)] with the Coulomb solution in d = 3. In higher dimensions,

as can be seen in (4.55), the mass term carries the functional form of the Coulomb

solution given in (4.56), and therefore, yields a point charge in the gauge theory. The

modification due to the electric charge has a different functional form and produces a

nonlocalized charge density as described in (4.58).

4.3.3 The charged Bañados-Teitelboim-Zanelli (BTZ) black hole (Λ < 0)

We have shown that the Coulomb solution can be obtained as a gauge theory single

copy by considering Einstein-Maxwell theory where either the EH term or the vector

kinetic term carries a ghost sign. One can introduce the cosmological constant Λ

such that solutions with the correct Newtonian potential are recovered when Λ = 0.

Instead, we will study the charged BTZ black hole whose metric function reads [83]

f(r) = −8GM +
r2

ℓ2
− 2Gq2 log(r). (4.59)

Comparing this with the most general solution (4.46) gives that the parameters should

be chosen as follows:

C = 1 + 8GM, Λ = − 1

ℓ2
, ζ = 1, (4.60)

where the last one equation shows that no ghost field is needed to obtain the solution.

Gravitational field equations with the cosmological constant (4.41) can be mapped

to Maxwell’s equations by again checking the µ0 component of the trace-reversed

equations and using (4.25), which yield

∂νF
νµ = g

[
Jµ(Λ=0) + J̄µ

]
. (4.61)

Here, Jµ(Λ=0) is the source in the absence of the cosmological constant, whose general

form is given in (4.27). J̄µ represents the effect of the cosmological constant on the

source and takes the following form:

J̄µ = ρcv̄
µ, ρc =

4Λ

g
, v̄µ = (1, 0, 0) , (4.62)

which is a constant charge density filling all space. The KS scalar corresponding to

the metric function (4.59) is

ϕ(r) = 1 + 8GM + Λr2 + 2Gq2 log(r), (4.63)
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with the single copy gauge field

Aµdx
µ = ϕkµdx

µ = −
[
1 + 8GM + Λr2 + 2Gq2 log(r)

]
(dt+ dr). (4.64)

The field strength tensor reads

1

2
Fµν dx

µ ∧ dxν =

[
Q

r
− Λr

]
dr ∧ dt, (4.65)

where we have made the replacement −2Gq2 → Q. We see that the gauge theory

single copy of the charged BTZ black hole is the Coulomb solution (Q < 0) modified

by a term which describes an electric field linearly increasing with the radial coordi-

nate r (since Λ < 0) and the source is a point charge located in a medium of constant

charge density as follows:

Jµ∂µ =

[
Qδ2(r⃗) +

4Λ

g

]
∂t. (4.66)

It is important to note that this is the usual behavior of the Schwarzschild-AdS black

hole in higher dimensions when written around a flat background metric [48].

As we see, the Coulomb solution (Q < 0) modified by the cosmological constant

can be obtained from the well-known charged BTZ black hole without any need for

introducing a ghost. From (4.47), one can calculate the gravitational field in the

Newtonian limit as

g⃗ =

[
Λr

2
+
Gq2

r

]
r̂, (4.67)

which shows that a negative cosmological constant (Λ < 0) is needed for an attractive

force, which is possible when r >
√

2Gq
−Λ

. The geodesics of the charged BTZ black

hole exhibit a very rich structure and the details can be found in [100].

4.4 Conclusions

In this chapter, we have studied the KS double copy of the Coulomb solution in 3D,

which is an important consistency check for the classical double copy due to the lack

of degrees of freedom and a Newtonian limit in GR. The double copy solution should

have the correct Newtonian limit, and in 3D, this can only be achieved by matter

coupling. In [67], the solution was constructed by coupling to a scalar but has some

undesired features. It is a hairy black hole which requires that either the EH term
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or the scalar kinetic term carry a ghost sign, and the scalar field does not vanish at

infinity. Making use of the on-shell duality of a free scalar and a gauge vector, we

have shown that a solution with the correct Newtonian limit can also be obtained as a

solution of Einstein-Maxwell theory such that the single copy is again the Coulomb

solution. While at least one ghost sign is still needed, the electric field in the gravity

side vanishes at infinity, which is an improvement compared to the scalar case.

When a negative cosmological constant is introduced, the charged BTZ black hole is

a solution without any need for a ghost field, and we have shown that the single copy

gauge field is the Coulomb solution (Q < 0) modified by a term describing an electric

field whose magnitude linearly increases with the distance to the point charge. The

source is a point particle sitting in a medium of constant charge density, which is the

usual effect of the cosmological constant. At the expense of this modification, this

remarkably establishes a connection to the well-known black hole solutions in 3D

gravity, which, we believe, shows the potential of 3D KS double copy to have many

other interesting features.
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CHAPTER 5

GENERALIZED BLACK HOLES IN THREE DIMENSIONS

As we have seen in the Chapters 3 and 4, the double copy of the Coulomb solution

in three dimensions is a non-vacuum solution that can be obtained through different

matter couplings. It is the static black hole solution of Einstein-Maxwell theory or

general relativity minimally coupled to a free scalar field (with one ghost sign in the

action in both cases). In this chapter, we consider generalizations of these matter cou-

plings by paying particular attention to the regularity of the static black solution on

the gravity side and the corresponding single copy electric field in the gauge theory.

We show that i) Einstein-Born-Infeld theory yields a singular double copy, which ad-

mits stable orbits for certain choices of parameters, with a regular single copy electric

field. ii) Black hole solutions constructed by [101] by coupling to the scalar field

exemplify mostly regular double copies with regular single copy electric fields and

also admit stable orbits. Additionally, we use these solutions to investigate the con-

nection between horizons on the gravity side and electric fields on the gauge theory

side, which was previously observed in four dimensions.

The outline of this chapter is as follows: In Section 5.1, we review the basics of the KS

double copy for a static spacetime and discuss the regularity of the solutions. After an

investigation of Einstein-Born-Infeld theory as a generalization of Einstein-Maxwell

theory in Section 5.2, we move on to generalizations of the scalar coupling in Section

5.3. We end this chapter with conclusions and discussions in Section 5.4.
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5.1 Basics of the 3D Kerr-Schild Double Copy and Regularity of the Solutions

For a spacetime admitting KS coordinates, it is possible to write down the components

of metric tensor in the following form [102]

gµν = ηµν + ϕkµkν , (5.1)

where ϕ is a scalar field and the vector kµ is null and geodesic with respect to the full

metric gµν and the flat background metric ηµν (see chap. 32 of [98] for a summary

of important properties). In these coordinates, the Ricci tensor with mixed indices

becomes linear in the perturbation as follows

Rµ
ν =

1

2
[∂α∂µ(ϕkνkα) + ∂α∂ν(ϕk

µkα)− ∂α∂α(ϕk
µkν)] . (5.2)

If one writes down the background line element in polar coordinates

ηµνdx
µdxν = −dt2 + dr2 + r2dθ2 , (5.3)

and parametrizes the null vector as

−kµdxµ = dt+ dr , (5.4)

the µ0-components become

Rµ
0 =

1

2
∂νF

νµ , Fµν = 2∂[µAν] , Aµ ≡ ϕkµ. (5.5)

With minimal matter coupling, the trace-reversed gravitational field equations are

given by

Rµ
ν =

κ2

2
(T µν − δµνT ) , κ2 = 8πG , (5.6)

where Tµν is the energy-momentum tensor and T is its trace. Checking the µ0-

components, one obtains the Maxwell equations

∂νF
νµ = gJµ, (5.7)

where the source is given by

Jµ = 4 (T µ0 − δµ0T ) , (5.8)

and the gauge coupling is obtained by the identification1 κ2 → 4g. Therefore, for

each solution of the gravitational field equations that admit KS coordinates (5.1), the

double copy, one can obtain a single copy solution of Maxwell’s equations.
1 We choose our conventions such that when G = 1, which is used in our numerical calculations, one has

∂νF
νµ = 2πJµ.

50



Unlike higher dimensions, in order to obtain the Coulomb’s solution as the single

copy, one needs matter coupling in 3D. One possibility is Einstein-Maxwell theory

described by the action

S =

∫
d3x

√
−g
[
1

κ2
R +

1

8π
fµνf

µν

]
, (5.9)

where fµν = 2∂[µaν]. As shown in [69], one needs to introduce the Maxwell term

with a ghost sign in order to obtain the correct Newtonian limit [ϕ = c log(r) , c >

0]2. Taking ϕ = ϕ(r), aµdxµ = at(r)dt, one obtains the following static solution

ϕ(r) = −8GM − 2Gq2 log(r) , aµdx
µ = −q log(r)dt , (5.10)

where q is the charge andM is the mass parameter of the black hole. The correspond-

ing single copy solution is

Aµdx
µ = ϕ(r)kµdx

µ = (8GM + 2Gq2 log(r))dt , (5.11)

which is just the Coulomb’s solution with the identification 2Gq2 → −Q where Q is

the charge of the point particle in Maxwell’s theory.

Alternatively, one can consider the coupling to a free scalar as

S =

∫
d3x

√
−g
[
1

κ2
R +

1

2
(∂φ)2

]
, (5.12)

with again a ghost sign for the matter term. Taking ϕ = ϕ(r), a static black hole

solution is obtained provided that φ = p θ (p: constant). The solution is given by

ϕ(r) = −2GM log(r) , φ =

√
M

2π
θ . (5.13)

The single copy gauge field

Aµdx
µ = 2GM log(r)dt, (5.14)

is again the Coulomb’s solution this time with the identification 2GM → −Q.

The line element for the metric given in KS coordinates (5.1)

ds2 = ηµνdx
µdxν + ϕ(r)(kµdx

µ)2

= − [1− ϕ(r)] dt2 + [1 + ϕ(r)] dr2 + 2ϕ(r)dtdr + r2dθ2, (5.15)

2 One can also take the Einstein - Hilbert term with a ghost sign but throughout this paper, we will use the
matter terms with a ghost sign.
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can be written in the Boyer-Lindsquit (BL) coordinates by the following coordinate

transformation

dt→ dt+
ϕ(r)

1− ϕ(r)
dr, (5.16)

as follows

ds2 = −h(r)dt2 + 1

h(r)
dr2 + r2dθ2 , h(r) = 1− ϕ(r) . (5.17)

In BL coordinates, the existence of stable orbits can be easily studied. For timelike

particles, the geodesic motion is governed by the equation

1

2
E2 =

1

2

(
dr

dt

)2

+ Veff , (5.18)

where the effective potential is given by

Veff =
1

2

(
L2

r2
+ 1

)
h(r) . (5.19)

The energy and the angular momentum of the particle are expressed in terms of the

timelike and angular Killing vectors ξ(t,θ) as

E = −gµνξµ(t)u
ν , L = gµνξ

µ
(θ)u

ν , (5.20)

where uµ is the velocity of the particle. The Newtonian potential VNewton can be ob-

tained by neglecting GL2 terms in the effective potential Veff. The stable orbits were

shown to exist in [69] for the vector coupling and in [67] for the scalar coupling.

When the single copy is the Coulomb’s solution, both the double copy and the single

copy have a singularity at r = 0. In 3D, there are only three independent curvature

invariants that can be constructed from contractions of the metric and the Riemann

tensor [103–105]. For a general static solution with the line element (5.15), they are

given by

R =
ϕ′

r
+ ϕ′′, (5.21)

Rµ
νR

ν
µ =

(
ϕ′

r

)2

+
1

2
R2, (5.22)

Rµ
νR

ν
ρR

ρ
µ =

(
ϕ′

r

)3

+
1

4
R3, (5.23)

and the electric field corresponding to single copy is

E(r) ≡ Frt = −ϕ′(r) = h′(r). (5.24)
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We see that if
ϕ′

r
and ϕ′′ are regular, then the double copy solution is regular and it can

be checked by looking at the curvature scalar R alone. However; it is not guaranteed

by the regularity of the single copy electric field. For example, if one takes the scalar

potential corresponding to a point charge in Born-Infeld electromagnetism

ϕ(r) = −Q log

r +
√
r2 +

Q2

b2

2

 , (5.25)

and studies a generalized static solution by assuming that the KS ansatz (5.1) gets no

correction, as suggested by [66], the curvature scalar and the single copy electric field

read

R(r) = − Q3

r

(
r2 +

Q2

r2

)3/2

E(r) =
Q√

r2 +
Q2

b2

. (5.26)

Around r = 0, one has

R(r) = − b
r
+

3b3r

2Q2
− 15b5r3

8Q4
+O(r5) ,

E(r) = b− b3r2

2Q2
+

3b5r4

8Q4
+O(r5) . (5.27)

This is a simple example where we explicitly see that one might have regular single

copy electric fields despite having a singularity on the gravity side. If we start from a

general KS scalar ϕ(r) that is regular at r = 0 as follows

ϕ(r) = a0 + a1r + a2r
2 +O(r3), (5.28)

where ai’s (i = 0, 1, 2) are arbitrary constants, we obtain

R(r) =
a1
r

+ 4a2 + 9a3r +O(r2), (5.29)

E(r) = a1 + 2a2r +O(r2). (5.30)

Therefore; the necessary and sufficient condition for the regularity of both single and

double copy solutions is a1 = 0, which is the vanishing of the single copy electric
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field at the origin3, i.e., E(r = 0) = 0. In the next sections, by considering more

generalized matter couplings, we will provide examples of different possibilities, in

the usual context of KS double copy without making any assumptions such as made

in [66].

5.2 Einstein-Born-Infeld Theory

One of the simplest and most natural generalizations of Einstein-Maxwell theory is

Einstein-Born-Infeld theory described by the action

S =

∫
d3x

√
−g
[
ζ1
κ2
R + ζ2LBI(f)

]
, κ2 = 8πG , (5.31)

where we have introduced ζi = ±1 (i = 1, 2) to control the sign of the kinetic terms

(−1: ghost, +1: not ghost) and the Lagrangian of the Born-Infeld electrodynamics is

given by [106]

LBI(f) =
b2

2π

(
1−

√
1 +

f 2

2b2

)
, fµν = 2∂[µaν], (5.32)

which reduces to that of Maxwell theory as b → ∞. Assuming a static line element

of the KS form (5.15) and aµdxµ = at(r)dt, the matter equations

∂µ

 √
−gfµν√
1 +

f 2

2b2

 = 0 , (5.33)

where f 2 = fµνf
µν , are solved by the following scalar potential and the correspond-

ing independent nonzero component of the field strength tensor

at(r) = −q log
[
r + ψ(r)

2

]
, frt =

q

ψ(r)
, (5.34)

where

ψ(r) =

√
r2 +

q2

b2
. (5.35)

With the energy-momentum tensor

Tµν =
1

2π

f α
µ fνα√
1 +

f 2

2b2

+ gµνLBI(f), (5.36)

3 In 4D, one also need to have a0 = 0, which can be achieved by changing a different integration constant in
obtaining the solution. However; this chances the asymptotic behaviour of the metric (see [66] for details).
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the trace-reversed Einstein equations read

Rµν − 2Λgµν = ζ
κ2

4π

2f α
µ fvα − gµνf

2√
1 +

f 2

2b2

+ 2 gµνLBI(f)

 , (5.37)

where ζ = ζ1ζ2. The independent components of the left-hand side of the equations

are

(LHS)tt =
[ϕ(r)− 1] [rϕ′′(r) + ϕ′(r)− 4Λr]

2r
,

(LHS)tr =
ϕ(r) [rϕ′′(r) + ϕ′(r)− 4Λr]

2r
,

(LHS)rr =
[ϕ(r) + 1] [rϕ′′(r) + ϕ′(r)− 4Λr]

2r
,

(LHS)θθ = rϕ′(r)− 2Λr2 , (5.38)

with the following components at the right-hand side

(RHS)tt =
2b2ζG [ϕ(r)− 1] [r − ψ(r)]2

rψ(r)
,

(RHS)tr = −2b2ζGϕ(r) [r − ψ(r)]2

rψ(r)
,

(RHS)rr =
2b2ζG [1 + ϕ(r)] [r − ψ(r)]2

rψ(r)
,

(RHS)θθ = −4b2ζGr [r − ψ(r)] . (5.39)

Similar to the Einstein-Maxwell case, the θθ-component is the easiest one to solve

and it yields

ϕ(r) = −8GM + ζGq2 + 2ζGb2
[
r2 − rψ(r)− q2

b2
log

(
r + ψ(r)

2

)]
, (5.40)

which also solves the other components4. Note that we have chosen the integration

constant such that the expansion around b→ ∞

ϕ(r) = −8GM + 2ζGq2 log(r) +
ζGq4

4b2r2
+O

[
1

b3

]
, (5.41)

4 The static solution for a nonzero cosmological constant and no ghost sign in the action was given in [107,
108].
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gives the result for ζ = −1 in the EM case (5.10) at the leading order. The gravita-

tional field in the Newtonian limit is given by

g⃗ =
1

2
∇⃗ϕ = −1

2
∇⃗h,

=

2ζG

[
q2 + b2r

(
r −

√
r2 − q2

b2

)]
ψ(r)

r̂, (5.42)

which is attractive everywhere when ζ = −1. Therefore, we again need to choose

one ghost sign in the action. For ζ = −1, the Ricci scalar and the electric field

corresponding to the single copy Aµ = ϕkµ are given by

R(r) = −4G [q2 + 2b2r (r − ψ(r))]

rψ(r)
,

E(r) =
4G [q2 + b2r (r − ψ(r))]

ψ(r)
. (5.43)

Checking their behavior as r → 0,

R(r) = −4Gbq

r
+ 8Gb2 − 6Gb3r

q
+O(r3),

E(r) = 4Gbq − 4Gb2r +
2Gb3r2

q
+O(r3), (5.44)

one sees that, while the single copy electric field is regular around the origin, we have

a singularity on the gravity side.

For particle orbits, one can ensure to preserve the following main properties of the

static solution of Einstein-Maxwell theory by choosing an appropriate set of parame-

ters: i) The Newtonian potential VNewton possesses an infinite barrier at short distances

and become equal to the effective potential Veff at large distances. ii) Timelike parti-

cles are forbidden to reach the infinity due to the logaritmic behaviour of the potential

as r → ∞. iii) There is a critical value Lc of the angular momentum of the particle

such that, when L > Lc, the effective potential Veff develops a local minimum and

a local maximum, making stable orbits possible. We refer the reader to Figure 5.1

for an explicit demonstration of these properties and the regularity of the solutions,

together with the charge density in the gauge theory.

Before proceeding further, we would like to note that, similar to the Einstein-Maxwell

theory, one can again make use of the duality of scalars and gauge vectors to realize a
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Figure 5.1: Details of the static solution of Einstein-Born-Infeld theory for (G =

1,M = 1, q = 0.525, b = 10).

solution with the same physical properties. The matter part of the Lagrangian is given

by

Lscalar(φ) = − b2

2π

(
1−

√
1 +

2π

b2
(∂φ)2

)
, (5.45)

which reduces to the free scalar Lagrangian as b→ ∞ and the scalar field should read

φ =

√
M

2π
θ, M = q2, (5.46)

in order to obtain the same solution with that of Einstien-Born-Infeld theory up to an

integration constant.

5.3 Generalization of the Scalar Coupling

In this section, we will study a generalization of the scalar coupling which not only

allows different possibilities regarding the regularity of the single and double copies,

but also demonstrates a simple relation between horizons on the gravity side and the

corresponding electric field in Maxwell’s theory, which is based on the following

observation [65]: Since the single copy electric field is equal to the derivative of the

metric function in BL coordinates (E(r) = h′(r)), it becomes zero at a maximum,

a minimum or a saddle point. Since the horizons are located at the zeros of the
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metric function (h(ri) = 0), there should exist at least one point between two adjacent

horizons where the electric field is zero, corresponding to a minimum or maximum.

The theory that we will consider is described by the action [101]

S =

∫
d3x

√
−g
[
1

κ2
(R− 2Λ)−Q

]
, (5.47)

where the matter term is given by

Q =
∑
n=1

αnℓ
2(n−1)(∂φ)2n

−
∑
m=0

βmℓ
2(m+1)(∂φ)2m

[
(3 + 2m)Rµν∂µφ∂νφ−R(∂φ)2

]
. (5.48)

Here, αn and βm are arbitrary dimensionless constants. The trace-reversed Einstein

equations are in the following form

Rµν =
κ2

2
Θµν , Θµν =

1

Γ(φ)

[
T̃µν +

4Λ

κ2
gµν

]
. (5.49)

We give the expressions for Γ(φ), T̃µν and the field equation for the scalar field in

Appendix C.since they are quite cumbersome and do not play a direct role in our

discussion. Applying the usual prescription, we again obtain Maxwell’s equations

with a source defined in terms of the Θ-tensor as follows

∂νF
νµ = gJµ, Jµ = 4Θµ

0. (5.50)

This theory admits a family of black holes and horizonless spacetimes whose line

elements in BL coordinates are in the form (5.17). (see [101] for the most general

form of the solution). For our purposes, it is enough to take non-zero values for

(α1, α2, α3, β0, β1) and set all the other constants to zero. In this case, for φ = p θ

(p:constant), all the field equations are solved if the metric function is given by

h(r) =
(1 + 8GM)r4 − Λr6 − 8πGα1p

2r4 log(r) + 4πGα2ℓ
2p4 + 2πGα3ℓ

4p6r2

8πGβ0ℓ2p2r2 + 24πGβ1ℓ4p4 + r4
,

(5.51)

where we have chosen the integration constant such that such that we recover the free

scalar case when p =

√
M

2π
, α1 = −1

2
, α2 = α3 = β1 = β2 = Λ = 0. The curvature

scalar and the single copy electric field can be easily calculated from equations (5.21)

and (5.24) respectively. Their expansions around r = 0 are given by

R(r) =
α3β0 − 6α2β1

6β2
1ℓ

2
+

[c1 + c2 log(r)] r
2

216πGβ3
1ℓ

4p4
+O(r3)

E(r) = −r (α3β0 − 6α2β1)

18β2
1ℓ

2
+O

(
r3
)
, (5.52)
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where c1 = c1(G,M, p, α2, α3, β0, β1) and c2 = c2(G, p, α1, β1) are constants. From

the expansions, we see that one can obtain non-singular single and double copies by

taking β1 ̸= 0. When β0 = β1 = 0, the expansions around r = 0 become

R(r) = −24πGα3ℓ
4p6

r6
− 8πGα2ℓ

2p4

r4
+

8πGα1p
2

r2
+ 6Λ +O(r3),

E(r) = −8πGα3ℓ
4p6

r5
− 8πGα2ℓ

2p4

r3
− 8πGα1p

2

r
− 2Λr +O(r3). (5.53)

The expression for the electric field shows that one has a point charge at the origin

with Q = −8πGα1p
2.

We present four cases by using different set of parameters, which are given in Table

5.1:

• Case I: Taking a nonzero value for β1, we obtain regular single and double

copies. This is a horizonless geometry and the electric field E(r) becomes

zero at two points, which are maximum and minimum of the metric function

h(r).

• Case II: Again taking β1 ̸= 0 guarantees the regularity of the single and double

copies. There is one event horizon and the electric field E(r) is zero only at the

origin, where the minimum of the metric function h(r) occurs. Stable orbits

exist when L > Lcr.

• Case III: β1 ̸= 0 yields regular single and double copies. We have two event

horizons and the electic field becomes zero at two points: A local maximum

(r = 0) and a global minimum located between two horizons.

• Case IV: β1 = 0 gives single and double copies which are singular at the origin.

There are three event horizons and the electric field is zero at the following

points: a local maximum between the first and the second horizons, and a local

miminum between the second and the third horizons.

All the details can be seen in Figures 5.2, 5.3, 5.4 and 5.5. Although, stable orbits

exist for all values of the angular momentum L, in cases I, III and IV; there is a

critical value Lcr, beyond which, there arises a second region where a particle in a

stable orbit can be present. We do not show them explicitly since it is sufficient to
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Figure 5.2: Details of Case I presented in Section 5.3 for parameters given in Table

5.1.
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Figure 5.5: Details of Case IV presented in Section 5.3 for parameters given in Table

5.1. Note that in addition to the nonlocal charge distribution shown in the figure, one

has a point charge with Q = 2 at the origin.
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Table 5.1: Choice of parameters for different solutions of the scalar theory. We always

take p =
√

M
2π

, α1 = −1
2
, as in the free scalar case, and G = 1, which leads to

∂νF
νµ = 2πJµ.

G M p ℓ Λ α1 α2 α3 β0 β1

Case I
1

1

4

√
M

2π
1 0 −1

2
−10 30 1 1

(No Horizon)

Case II
1

1

4

√
M

2π
1 0 −1

2
1 −5 1 1

(Single Horizon)

Case III
1

1

4

√
M

2π
1 0 −1

2
−100 100 1 1

(Two Horizons)

Case IV
1 1

√
M

2π
1 −3 −1

2
10 −5 0 0

(Three Horizons)

show the existence of one such region for our purposes. As we have shown at the

end of Section 5.1 on general grounds, the necessary and sufficient condition for the

regularity of the solutions on both gravity and gauge theory sides is the vanishing

of the electric field at the origin, which is realized in Cases II and III and can be

explicitly seen in Figures 5.3,5.4.

5.4 Summary and Discussions

In this paper, we have studied generalizations of the matter couplings in 3D admitting

a static black hole solution which gives rise to the Coulomb’s solution as its single

copy. For these matter couplings, Einstein-Maxwell theory or GR minimally coupled

to a free scalar field, both the double copy and the single copy solution has a singular-

ity at the origin. As a generalization of the former, we studied Einstein-Born-Infeld

theory and showed that although the static black hole solution, which admits stable

particle orbits, is singular, the single copy electric field is regular at the origin. For

the latter, we have intestigated a theory recently discovered in [101], which forms an
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extremely useful theoretical laboratory since the most general solution offers differ-

ent possibilities regarding the regularity of the black hole solution and the number of

event horizons. We have given examples where both the double and single copy are

regular. Morover, starting from a horizonless geometry, we have considered space-

times with increasing number of event horizons and exhibited the relation between the

event horizons on the gravity side and the corresponding electric field in Maxwell’s

theory.

All these examples show that many physically important properties of the KS double

copy can also be realized in 3D with the most notable exception that, in the simplest

case where the single copy is the Coulomb solution, the double copy is a non-vacuum

solution which can be obtained by taking the Einstein-Hilbert term or the matter term

with a ghost sign in the action. In the generalizations that we have considered in this

paper, we introduced the couplings such that one recovers the Coulomb case in an

appropriate limit. However; a wide range of different possibilities exist without this

requirement.

As a final note, we would like to mention that there exists a different interpretation of

the single copy in the case of a non-minimal coupling on the gravity side. Writing the

gravitational field equations (5.49) by introducing an effective Newton constant as

Rµν =
κ2eff

2
Θ′
µν , κ2eff =

κ2

Γ(φ)
, (5.54)

where

Θ′
µν = T̃µν +

4Λ

κ2
, (5.55)

one can obtain solutions to Maxwell’s equations with an effective gauge coupling

∂νF
νµ = geffJ

µ, Jµ = 4Θ′µ
0, (5.56)

with the identification κ2eff → 4geff. In this picture, the cosmological constant plays

its usual role in the case of a minimal matter coupling and produces a constant charge

density filling all space. However; a dynamical mechanism for the evolution of the

gauge coupling seems to be missing on the gauge theory side. This might be an

interesting direction for future study.
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CHAPTER 6

THE KERR-SCHILD DOUBLE COPY IN CURVED SPACETIMES

In the pioneering work on the KS double copy [42], the analyses was performed by

considering solutions of general relativity which can be written in the Kerr-Schild

form with the flat background metric. The fact that the Ricci tensor with mixed in-

dices becomes linear in the perturbation for such solutions provides a natural way to

map them to solutions of Maxwell’s theory defined on the flat spacetime. A natu-

ral extension is to consider spacetimes with non-flat background metrics, which was

first studied in [45]. Later, a more systematic analysis was given in [46] and it was

shown that there exist two different ways to realize the double copy structure when

the background metric is curved, called Type-A and Type-B double copies. In the

Type-A double copy, one maps both the background and the perturbation by using

the flat metric as the base. Alternatively, in the Type-B double copy, only the per-

turbation is mapped by taking the base metric as that of the background spacetime,

yielding solutions of Maxwell’s theory defined on the curved background. A wide

range of examples with constant curvature background was presented in [47] where

the authors showed the crucial role played by the Killing vectors in the construction.

For the stationary solutions, the contraction of the gravity equations with the time-

like Killing vector was used, which is essentially checking the µ0-components of the

trace-reversed equations as done previously. More non-trivial evidence was obtained

from the wave solutions where the contraction with the null Killing vector yielded a

reasonable single copy.

The linearity of the Ricci tensor in the perturbation, which is the crucial property that

makes the whole construction work, holds in the case of a generic curved background

spacetime. Motivated by this, in Section 6.1, we will give a general formulation of
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the KS double copy without any simplifying assumption about the background metric.

With the assumption that some redundant terms vanish, one obtains Maxwell’s equa-

tion defined on the curved background where the source term gets a contribution from

the curvature of the background, which vanishes for a constant curvature spacetime,

in addition to the energy-momentum tensor in the gravity side. In order to see the im-

plications, we will study different solutions of general relativity with a cosmological

constant. In Section 6.2, solutions with a maximally symmetric background will be

examined. When the background is chosen to be of constant curvature, there is no

effect on the source. However, choosing a flat background leads to a constant charge

density filling all space. While it has been observed before, our formalism explicitly

demonstrates that this is due to the deviation of the background from a constant cur-

vature spacetime. In Section 6.3, in order to exhibit the effect of a curved background,

we will consider the Lifshitz black hole with two different matter couplings.

6.1 General Formulation

In this section, we give a general formulation of the KS double copy in curved space-

time. For that, we will consider classical solutions of cosmological general relativity

minimally coupled to matter, which is described by the action

S =
1

16πGd

∫
ddx

√
−g [R− 2Λ + Lm] , (6.1)

where Gd is the d−dimensional Newton’s constant, Λ is the cosmological constant

and Lm is the matter part of the Lagrangian density. The field equations arising from

the action (6.1) are

Gµν + Λ gµν = Tµν . (6.2)

For the KS double copy, one needs the trace-reversed equations with mixed indices

Rµ
ν −

2Λ

d− 2
δµν = T̃ µν , (6.3)

where the matter contribution is given by

T̃ µν = T µν −
1

d− 2
δµν T. (6.4)

For a metric in the KS form,

gµν = ḡµν + ϕ kµkν , (6.5)
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where the vector kµ is null and geodesic with respect to both the background and the

full metric as

ḡµνkµkν = gµνkµkν = 0, kν∇̄νk
µ = kν∇νk

µ = 0, (6.6)

the Ricci tensor with mixed indices becomes linear in the perturbation as follows [98]

Rµ
ν = R̄µ

ν − ϕ kµkαR̄αν +
1

2

[
∇̄α∇̄µ (ϕ kαkν) + ∇̄α∇̄ν (ϕ k

µkα)− ∇̄2 (ϕ kµkν)
]
.

(6.7)

Since the aim is to obtain Maxwell’s equations in the background spacetime, we

rewrite the Ricci tensor in the KS coordinates (6.7) by using the gauge fieldAµ ≡ ϕ kµ

as

Rµ
ν = R̄µ

ν −
1

2

[
∇̄αF

αµkν + Eµ
ν

]
, (6.8)

where Fµν = 2 ∇̄[µAν] is the field strength tensor and

Eµ
ν = Xµ

ν + Y µ
ν − R̄µ

αβνA
αkβ + R̄ανA

αkµ, (6.9)

with Xµ
ν and Y µ

ν given by

Xµ
ν = −∇̄ν

[
Aµ
(
∇̄αk

α +
kα∇̄αϕ

ϕ

)]
, (6.10)

Y µ
ν = Fαµ∇̄αkν − ∇̄α

(
Aα∇̄µkν − Aµ∇̄αkν

)
. (6.11)

Using this form of the Ricci tensor (6.8) in the trace-reversed equations (6.3) gives,

∆µ
ν −

1

2

[
∇̄αF

αµkν + Eµ
ν

]
= T̃ µν , (6.12)

where we introduce the deviation tensor

∆µ
ν = R̄µ

ν −
2Λ

d− 2
δµν , (6.13)

which vanishes for a constant curvature spacetime if the cosmological constant Λ is

appropriately chosen, and therefore, characterizes the deviation of the background

spacetime from a spacetime with constant curvature (see Sec. 2.3 for more explana-

tion).

In order to solve for the field strenght term, we consider the contraction of this equa-

tion (6.12) with a Killing vector V ν of both the background and the full metric, i.e.,

∇(µVν) = ∇̄(µVν) = 0, (6.14)
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which gives the single copy equation as

∇̄νF
νµ + Eµ = Jµ, (6.15)

where the extra part is

Eµ =
1

V · k
Eµ

ν V
ν , (6.16)

and the gauge theory source is given by

Jµ = 2
[
∆µ − T̃ µ

]
, (6.17)

with

∆µ =
1

V · k
∆µ

νV
ν , T̃ µ =

1

V · k
T̃ µνV

ν , (6.18)

which are the contributions from the background spacetime and the matter part of the

Lagrangian respectively.

Contracting the single copy equation (6.15) with the Killing vector V µ, one obtains

the zeroth copy equation as

∇̄2ϕ+ Z + E = j, (6.19)

where

Z =
V · Z
V · k

, E =
V · E
V · k

, j =
V · J
V · k

, (6.20)

with vectors Eµ and Jµ given in (6.16 - 6.17) and,

Zµ = ∇̄αk
µ ∇̄αϕ+ ∇̄α

[
2ϕ∇̄[αkµ] − kα∇̄µϕ

]
. (6.21)

For any solution of the gravitational field equations (6.2) that can be written in the

KS form (6.5), the gauge field Aµ = ϕ kµ solves the single copy equation (6.15) and

the scalar ϕ solves the zeroth copy equation (6.19). In this paper, we will study black

hole solutions in the KS form by using the time-like Killing vector1 V µ = δµ0. For

the examples that we will consider in this paper, one has

V · k = 1, Eµ = Eµ
0 = 0, E = E0 = 0, ∆µ = ∆µ

0, T̃ µ = T̃ µ0,

(6.22)
1 In [47], it was shown that the wave-type solutions with maximally symmetric background metrics can be

studied by choosing a null Killing vector.
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and the single copy and the zeroth copy equations becomes Maxwell’s and Poisson’s

equations

∇̄νF
νµ = Jµ,

∇̄2ϕ+ Z = j, (6.23)

where the source terms are given by

Jµ = 2
[
∆µ − T̃ µ

]
, j = J0 = ḡ0µJ

µ, (6.24)

and

Z = Z0 = ḡ0µZ
µ, (6.25)

with Zµ given in (6.21). The Z-term in Poisson’s equation vanishes when the back-

ground metric is flat and takes a different form depending on the background space-

time.

The principal result of our analysis is that the deviation of the background metric from

a constant curvature spacetime, which is characterized by the deviation tensor defined

in (6.13), affects nontrivially the gauge theory source as described in (6.17) for an

arbitrary Killing vector and in (6.28) for the time-like Killing vector. Previously,

this has been observed as a constant charge distribution filling all space when the

background is taken to be flat. In Section 6.3, we will show that this remains to be true

when the background is the Lifshitz spacetime. Therefore, we write the contribution

from the background spacetime as

∆µ =
1

2
ρc δ

µ
0, (6.26)

where ρc is the constant charge density. The matter contribution can also be written

in the following form

T̃ µ = −1

2
ρmv

µ, (6.27)

where ρm is the charge density due to the matter in the gravitational theory and vµ is

the velocity of the charge distribution. These lead to the following form of the gauge

theory source

Jµ = ρc δ
µ
0 + ρmv

µ, (6.28)
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which we will use throughout this paper2. In the next section, we will review some

previously studied examples through our general formalism.

6.2 Maximally Symmetric Background Spacetime

In this section, we focus on solutions of theories described by the action (6.1) with the

corresponding field equations (6.2) which can be written in the KS form (6.5) around

a maximally symmetric background spacetime. For a non-zero cosmological constant

(Λ ̸= 0), the background spacetime can be chosen to be Minkowski or AdS space-

times. In the former case, the gauge theory copy is defined on Minkowski spacetime

and the deviation tensor defined in (6.13) takes the form

∆µ
ν(Minkowski) = − 2Λ

d− 2
δµν , (6.29)

since R̄µ
ν = 0, and the constant charge density in the gauge theory source for a

timelike Killing vector (6.28) is determined by the cosmological constant as

ρc = − 4Λ

d− 2
. (6.30)

Since the modification to the Poisson’s equation given in (6.25) vanishes when the

background is Minkowski spacetime, the single copy and the zeroth copy equations

become

∇̄νF
νµ = Jµ,

∇̄2ϕ = j, (6.31)

where the general form of the sources is given by

Jµ = ρc δ
µ
0 + ρmv

µ, j = −(ρc + ρm). (6.32)

Here, ρm is the charge density due to the matter fields and the velocity vector vµ

can be read from (6.27). For static solutions, one has a static charge distribution, and

therefore, vµ = δµ0. For stationary solutions, one obtains a rotating charge distribution

and the velocity vector takes a form accordingly.
2 As discussed in [47], for black hole solutions, one has localized sources describing a point charge at the

origin. Since our main aim is to study the effect of the background spacetime, we will only give the non-localized
part of the gauge theory source.
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In the latter case, the gauge theory copy is Maxwell’s theory on AdS spacetime and

the deviation tensor vanishes

∆µ
ν(AdS) = 0, (6.33)

which implies that there is no constant charge density in the gauge theory source

(ρc = 0). The Poisson’s equation is modified due to the curvature of the background

as described in (6.23). In what follows, we will give examples in d = 4, for which

the equations take the following form

∇̄νF
νµ = Jµ,

∇̄2ϕ− 1

6
R̄ ϕ = j, (6.34)

and the sources are fixed by only the matter contribution as

Jµ = ρmv
µ, j = −ρm. (6.35)

In the remainder of this section, we will elaborate on this, by applying our formalism

to some examples that were investigated previously in the literature, with a special

focus on the sources, and make a comparison between Minkowski and AdS back-

grounds whenever possible.

6.2.1 AdS4 Spacetime around Minkowski Background

As the simplest example, we consider the AdS4 spacetime [45], which is a solution

when d = 4, Lm = 0 in (6.1). It can be written in the KS form (6.5) around the

Minkowski metric

ḡµνdx
µdxν = −dt2 + dr2 + r2

(
dθ2 + sin2 θ dϕ2

)
, (6.36)

where the null vector and the scalar function are given by

kµdx
µ = dt+ dr, ϕ(r) =

Λr2

3
. (6.37)

As a result, the gauge field takes the form

Aµdx
µ =

Λr2

3
(dt+ dx) , (6.38)

and the only non-zero component of the field strength tensor is

Frt =
2Λr

3
. (6.39)
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The effect of the cosmological constant on the sources shows itself as a constant

charge density as follows

ρc = −2Λ. (6.40)

6.2.2 Bañados-Teitelboim-Zanelli (BTZ) Black Hole

An interesting example in three dimensions is the BTZ black hole [47], which is a

solution when d = 3 and Lm = 0 in (6.1) for Λ < 0 [83]. This black hole solution

can be obtained by identifyting points of AdS3 spacetime by a discrete subgroup of

SO(2,2) [109] and its gauge theory copy possesses the same characteristics with AdSd

spacetime with d ≥ 4. Its KS form [110] is given around the Minkowski spacetime

in spheroidal coordinates

ḡµνdx
µdxν = −dt2 +

r2

r2 + a2
dr2 + (r2 + a2)dθ2, (6.41)

where a is the rotation parameter. The null vector kµ is parametrized as

kµdx
µ = dt+

r2

r2 + a2
dr + adθ, (6.42)

and the scalar is given by

ϕ(r) = 1 + 8GM + Λr2. (6.43)

The corresponding gauge field is given by

Aµdx
µ =

(
1 + 8GM + Λr2

) [
dt+

r2

r2 + a2
dr + adθ

]
. (6.44)

Due to the rotation, there is also a magnetic field and the independent components of

the field strenght tensor are

Frt = 2Λr, Frθ = aFrt = 2Λar. (6.45)

The constant charge density corresponding to the BTZ black hole reads

ρc = −4Λ. (6.46)

Here, we content ourselves with showing that the constant charge density term ap-

pears due to the general property of the deviation tensor (6.29) and refer the reader

to [67] for a more detailed discussion.
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6.2.3 Schwarzschild-AdS4 Black Hole

Our next example is the Schwarzschild-AdS4 Black Hole which is a solution with

d = 4 and Lm = 0 in (6.1). In [47], it was studied around AdS4 spacetime whose

metric in global static coordinates reads

ḡµνdx
µdxν = −

[
1− Λr2

3

]
dt2+

[
1− Λr2

3

]−1

dr2+r2
(
dθ2 + sin2 θ dϕ2

)
, (6.47)

and the null vector and the scalar are given by

kµdx
µ = dt+

[
1− Λr2

3

]−1

dr, ϕ(r) =
2M

r
. (6.48)

The gauge field

Aµdx
µ =

2M

r

[
dt+

[
1− Λr2

3

]−1

dr

]
, (6.49)

has the field strenght tensor with the following non-zero component

Frt = −2M

r2
. (6.50)

We obtain vacuum solutions of (6.34) since the background is chosen to be of constant-

curvature, which implies ρc = 0 and there is no contribution from the matter fields

(ρm = 0).

The solution can also be written around the Minkowski spacetime

ḡµνdx
µdxν = −dt2 + dr2 + r2

(
dθ2 + sin2 θ dϕ2

)
, (6.51)

with the null vector and the scalar defined as

kµdx
µ = dt+ dr, ϕ(r) =

2M

r
+

Λr2

3
. (6.52)

The gauge field now becomes

Aµdx
µ =

[
2M

r
+

Λr2

3

]
(dt+ dr) , (6.53)

with the field strenght tensor

Frt = −2M

r2
+

2Λr

3
. (6.54)

This time, in the gauge theory source, the only contribution comes from the cosmo-

logical constant as

ρc = −2Λ. (6.55)
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6.2.4 Reissner-Nordström-AdS4 Black Hole

In order to see the effect of the matter coupling, we now consider Reissner-Nordström-

AdS4 black hole. The matter part of the action is

Lm = −1

4
fµνf

µν , (6.56)

with contribution to the trace-reversed equations

T̃µν =
1

2
fµαf

α
ν − 1

8
gµνfαβf

αβ. (6.57)

When the metric is written in the KS form around AdS4 spacetime (6.47) with the

null vector given in (6.48), the scalar function reads [47]

ϕ(r) =
2M

r
− Q2

4r2
, (6.58)

whereM andQ are the mass and the charge of the black hole respectively. The gauge

field becomes

Aµ =

[
2M

r
− Q2

4r2

][
dt+

[
1− Λr2

3

]−1

dr

]
, (6.59)

which leads to the field strength tensor

Frt = −2M

r2
+
Q2

2r3
. (6.60)

While the constant curvature background implies no constant charge density (ρc = 0),

the matter field produces the following static charge density

ρm =
Q2

2r4
, vµ = δµ0. (6.61)

One should note that our formalism gives the modification to the Poisson’s equation

and the source as

Z = Λ
Q2 − 4Mr2

3r2
, (6.62)

j =
Q2 (Λr2 − 3)

6r2
, (6.63)

and one obtains the standard form given in (6.34-6.35) only after simplifications.

When written around the Minkowski spacetime (6.51) with the null vector (6.52), the

scalar function is given by

ϕ(r) =
2M

r
− Q2

4r2
+

Λr2

3
, (6.64)
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and the gauge field is

Aµ =

[
2M

r
− Q2

4r2
+

Λr2

3

]
(dt+ dr) , (6.65)

with the field strength tensor

Frt = −2M

r2
+
Q2

2r3
+

2Λr

3
. (6.66)

In addition to the static charge density ρm due to the matter part of the Lagrangian,

the constant charge density is produced by the non-zero deviation of the Minkowski

background (6.29), which are given by

ρc = −2Λ, ρm =
Q2

2r4
. (6.67)

6.3 Lifshitz Black Holes

So far, we studied metrics that can be written in the KS form around a maximally

symmetric background and presented the differences that arise due to the deviation if

the Minkowski spacetime from a constant-curvature spacetime, which are a constant

charge density in the source and correspondingly, electric and magnetic (if the black

hole rotates) fields that linearly increase with the radial coordinate r. As an example

of a solution with a curved background, in this section, we will consider the Lifshitz

black hole in d-dimensions, whose metric reads

ds2 = L2

[
−r2zh(r)dt2 + dr2

r2h(r)
+ r2

d−2∑
i=1

dx2i

]
, (6.68)

where the function h(r) has a single zero at a finite value of r and, h(r → ∞) = 1.

Asymptotically, the metric takes the form

ds2
∣∣
r→∞ = L2

[
−r2zdt2 + dr2

r2
+ r2

d−2∑
i=1

dx2i

]
, (6.69)

which is the Lifshitz spacetime. In this form, it is apparent that it describes an asymp-

totically Lifshitz black hole with a planar horizon. With the following coordinate

transformation3,

dt→ dt+ α dr, α =
h(r)− 1

h(r)
r−(z+1), (6.70)

3 We were informed that the KS form of the Lifshitz black hole was first obtained through this transformation
in [111].
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one can write the metric in the KS form where the background is the Lifshitz space-

time with the metric

ḡµνdx
µdxν = L2

[
−r2zdt2 + dr2

r2
+ r2

d−2∑
i=1

dx2i

]
, (6.71)

The null vector and the scalar are given by

kµdx
µ = dt+

1

rz+1
dr, ϕ(r) = L2 [1− h(r)] r2z. (6.72)

Note that, for z = 1, the background metric becomes the AdS spacetime in Poincare

coordinates. For z > 1, the background metric is not maximally symmetric and

the deviation tensor will give a non-trivial contribution. The Ricci tensor for the

background metric reads

R̄µ
ν = diag

[
−z (z + d− 2)

L2
,−z

2 + d− 2

L2
,−z + d− 2

L2
,−z + d− 2

L2

]
, (6.73)

which reduces to that of AdS spacetime (2.47) when z = 1. The relevant part is still

a constant given by

R̄µ
0 = −z (z + d− 2)

L2
δµ0, (6.74)

which leads to the following background contribution to the gauge theory source

∆µ(Lifshitz) = −
[
z (z + d− 2)

L2
+

2Λ

d− 2

]
δµ0, (6.75)

and, as a result, the following constant charge density

ρc = −2

[
z (z + d− 2)

L2
+

2Λ

d− 2

]
. (6.76)

After this general discussion, we will study two different realizations of the Lifshitz

black hole with different matter couplings.

6.3.1 Lifshitz Black Hole from a Massless Scalar and a Gauge Field

The first solution that we consider is obtained by the following coupling of a massless

scalar to a gauge field [112]

Lm =
1

2
∂µφ∂

µφ− 1

4
eλφfµνf

µν , (6.77)

whose contribution to the trace-reversed equations is

T̃µν =
1

2
∂µφ∂νφ+

1

2
eλφfµαf

α
ν − 1

4(d− 2)
gµνe

λφfαβf
αβ. (6.78)
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The equations for the matter fields are

∂µ
(√

−geλφfµν
)
= 0, (6.79)

∂µ
(√

−g∂µφ
)
− λ

4

√
−geλφfµνfµν = 0. (6.80)

The Lifshitz black hole is a solution in this theory with the following metric function

[113]

h(r) = 1− rz+d−2
+

rz+d−2
, z ≥ 1, (6.81)

provided that the matter fields and the cosmological constant are given by

frt = q e−λφrz−d+1, eλφ = rλ
√

2(z−1)(d−2),

λ2 =
2(d− 2)

z − 1
, q2 = 2L2(z − 1)(z + d− 2),

Λ = −(z + d− 3)(z + d− 2)

2L2
. (6.82)

For z = 1, the matter fields vanish and one obtains the Schwarzschild-AdS black

hole with a planar horizon. By using the coordinate transformation (6.70), the metric

can be put in the KS form around the Lifshitz background (6.71) with the null vector

and the scalar given in (6.72). The explicit form of the scalar for the metric function

(6.81) reads

ϕ(r) =
L2rz+d−2

+

rd−z−2
, (6.83)

The corresponding gauge field is

Aµdx
µ =

L2rz+d−2
+

rd−z−2

[
dt+

1

rz+1
dr

]
, (6.84)

and with the following non-zero component of the field strength tensor

Frt = −(d− z + 2)L2rz+d−2
+

rd−z+1
. (6.85)

Since the matter configuration (6.82) does not change under the coordinate transfor-

mation, it can be directly used in the rest of the calculations. It turns out that the

contribution from the deviation tensor and the energy-momentum tensor to the gauge

theory source are equal to each other and given by

∆µ = T̃ µ = −(d− 3) (z − 1) (z + d− 2)

(d− 2)L2
, (6.86)

and therefore, the single copy is

∇̄νF
νµ = 0. (6.87)
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Although we started from a non-vacuum solution, the gauge field given in (6.84) is

vacuum solution of the gauge theory. The modification to the Poisson’s equation can

again be written in terms of the background Ricci scalar and the KS scalar as

Z =
z(z − d+ 2)

z2 + (d− 2)z + 1
2
(d− 1)(d− 2)

R̄ ϕ, (6.88)

which leads to the following zeroth copy

∇̄2ϕ+
z(z − d+ 2)

z2 + (d− 2)z + 1
2
(d− 1)(d− 2)

R̄ ϕ = 0. (6.89)

6.3.2 Lifshitz Black Hole from a Massive Vector and a Gauge Field

The second solution that we consider is a charged Lifshitz black hole obtained through

the following matter coupling [114]

Lm = −1

4
fµνf

µν − 1

2
m2aµa

µ − 1

4
FµνFµν , (6.90)

where aµ is a massive vector field with the field strength fµν = 2 ∂[µaν] and Fµν is the

field strength of the gauge field. The matter field equations are

∂µ
(√

−gfµν
)

= m2
√
−g aν (6.91)

∂µ
(√

−gFµν
)

= 0, (6.92)

and the contribution to the trace-revesed equations is given by

T̃µν =
1

2
fµαf

α
ν − 1

4(d− 2)
gµνfαβf

αβ +
1

2
m2aµaν

+
1

2
FµαF α

ν − 1

4(d− 2)
gµνFαβFαβ. (6.93)

The charged Lifshitz black hole is a solution with the metric function

h(r) = 1− q2

2(d− 2)2rz
, (6.94)

for the matter configuration

at = L

√
2(z − 1)

z
h(r)rz, Frt = qLrz−d−1. (6.95)

The mass of the vector field, the cosmological constant and the Lifshitz exponent

should also be fixed as follows

m =

√
(d− 2)z

L2
, Λ = −(d− 3)z + (d− 2)2 + z2

2L2
, z = 2 (d− 2) .

(6.96)
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The metric can be put in the KS form through the coordinate transformation (6.70)

around the Lifshitz background (6.71) with the null vector and the scalar given in

(6.72). The explicit form of the scalar for the metric function (6.81) reads

ϕ(r) =
L2q2rz

2 (d− 2)2
. (6.97)

The single copy gauge field and the non-zero component of the field strength tensor

are

Aµdx
µ =

L2q2rz

2 (d− 2)2

[
dt+

1

rz+1
dr

]
, (6.98)

Frt =
zL2q2rz−1

2 (d− 2)2
. (6.99)

This time, the coordinate transformation (6.70) affects the matter configuration (6.95)

non-trivially, yielding an additional radial component of the massive vector as follows

ar = α at. (6.100)

The contribution from the deviation tensor and the energy-momentum tensor to the

gauge theory source are this time given by

∆µ = −
(z − 1)

[
(d− 3) z + (d− 2)2

]
(d− 2)L2

δµ0, (6.101)

T̃ µ = ∆µ +
q2

2L2rz
δµ0, (6.102)

Similar to the previous example, the constant charge density contribution from the

deviation tensor (6.101) again disappears, however, this time the contribution from

the energy-momentum tensor (6.102) has an additional term, which leads to a non-

vacuum solution. The single copy is

∇̄νF
νµ = Jµ, Jµ = − q2

L2rz
δµ0. (6.103)

The modification to Poisson’s equation in this case can be written as

Z =
z2

z2 + (d− 2)z + 1
2
(d− 1)(d− 2)

R̄ ϕ, (6.104)

which yields

∇̄2ϕ+
z2

z2 + (d− 2)z + 1
2
(d− 1)(d− 2)

R̄ ϕ = j, j = q2rz. (6.105)
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6.4 Summary and Discussions

In this chapter, extending the construction of [47], we gave a formulation of the clas-

sical double copy with a generic, curved background spacetime. Apart from obtaining

solutions of Maxwell’s theory defined on curved backgrounds, our formulation makes

the effect of the background spacetime on the gauge theory source much more trans-

parent through the deviation tensor that we defined in (6.13). For an arbitrary Killing

vector of the background and the full metric, the result is given in (6.17-6.18). Choos-

ing a flat background for a solution with a non-zero cosmological constant yields a

constant charge density filling all space in the gauge theory due to the general prop-

erty presented in (6.29). The effect disappears when the background is chosen to be

a constant curvature spacetime, which can be explained due to the vanishing of the

deviation tensor for a suitably chosen cosmological constant (6.33). Furthermore, we

studied two different realizations of the Lifsthiz black hole, whose background is not

maximally symmetric. While the contribution to the gauge theory source again turns

out to be a constant as described in (6.75-6.76), it is removed by the matter fields in

the gravity side, yielding a vacuum solution in one case.
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CHAPTER 7

REGULARIZED WEYL DOUBLE COPY

An alternative version of classical double copy is the Weyl double copy (WDC)

[39, 44], relying on some previous results on Petrov type D and N spacetimes ad-

mitting a Killing spinor [115–117], according to which a particular relation between

the completely symmetric Weyl spinor ΨABCD corresponding to a type D or N vac-

uum solution of 4d Einstein’s equations (with Λ = 0) and the symmetric field strenght

spinor fAB corresponding to a solution of Maxwell’s equation defined on the curved

spacetime characterized by the Weyl spinor ΨABCD. Furthermore, one can also ob-

tain a scalar field that satisfies the Poisson’s equation on the same curved background

spacetime. When the curved spacetime metric is given in the KS coordinates, the

scalar and gauge fields have the identical equations when defined on the flat back-

ground spacetime. As a result, a spinorial version of the double copy is obtained.

It is possible to derive this version of the double copy from twistor theory [74] and

develop a deeper understanding. For example, when the momentum space origins of

the double copy are considered, it is already quite surprising to have a local relation

in position space. Using twistor techniques for type D spacetimes, this was shown to

be a consequence of the very special properties in the momentum space, which could

be possible only for algebraically special spacetimes [118].

In a recent letter [40], although not covered in the original theorems which inspired

the construction of the WDC, it was shown that, sources in the gravity side might be

handled term-by-term by considering a sum of scalar-gauge theories and the sourced

WDC (SWDC) takes the following form

ΨABCD =
N∑
i=1

1

S(i)

f
(i)
(ABf

(i)
CD). (7.1)

Here, the i = 1 term represents the scalar-gauge theories corresponding to the vac-
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uum solution ∇̄νF
νµ
(i=1) = 0 and other terms satisfy a sourced Maxwell‘s equation

∇̄νF
νµ
(i>1) = Jµ(i>1). In other words, for each term in the metric addition to the vacuum

part, one can find a sourced Maxwell’s equation with a source proportional to the one

described by the KSDC procedure. The complex scalar S satisfies the Poisson’s equa-

tion and, in general, a linear combination of its real and imaginary parts corresponds

to the zeroth copy ϕ in KSDC. So far, this procedure has been implemented to the

Kerr-Newman black hole solution, the charged C-metric, and the most general type D

solution of Einstein-Maxwell theory [85]. This proposal can be tested in a non-trivial

way by solving gauge field equations term-by-term according to the KS formulation

and one can also demonstrate that one loses the connection to the KSDC if a single

product of spinor fields are used.

For type D metrics, in a suitable spinor basis {oA, ιB}, the Weyl spinor is given by

ΨABCD = 6o(AoBιCιD)

∑
iΨ

(i)
2 , where the only non-zero Weyl scalar is Ψ(i)

2 which

is obtained for the part of the metric function corresponding to the i-th source 1. In

this chapter, since many properties of the single copy solution take a simple form

we will deal with only static black hole solutions. In our formalism, the single copy

field strength spinor reads fAB = Z o(AιB) where Z is real and directly related to the

radial single copy electric field e = Frt for these static solutions. On the other hand,

the generally complex field S has only real part, and therefore, can be identified with

the zeroth copy ϕ. As a result, this relatively simple structure suffices to check the

following consistency condition

Ψ
(i)
2 ∝

Z2
(i)

ϕ(i)

, (7.2)

term-by-term for the consistency of the proposal of [40] for the SWDC with the

KSDC.

When this procedure is applied to a metric of the following form with a flat back-

ground metric

ds2 = −h(r)dt2 + dr2

h(r)
+ r2dΩ2 (7.3)

h(r) = 1 +
∑
n

an
rn

(7.4)

ds̄2 = −dt2 + dr2 + r2dΩ2, (7.5)

1 For a detailed explanation, see the Section 2.4
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where dΩ2 = dθ2 + sin2 θdϕ2 as first done in [40], one finds

ϕ = −
∑
n

an
rn
, e =

∑
n

nan
rn+1

∝ Z, (7.6)

Ψ2 =
∑
n

(n+ 1)(n+ 2)an
12 rn+2

. (7.7)

We see that the consistency condition (7.2) is satisfied for asymptotically flat solutions

(n > 0). One has a1 = −2M , a2 = Q2

4
for the Reissner-Nordström (RN) solution of

Einstein-Maxwell theory, where M and Q are black hole’s mass and electric charge

respectively, and the scalar-gauge theory equations are satisfied term-by-term exactly

as described by the SWDC in (7.1).

7.1 Some Problems in Weyl Double Copy

We are now in a position to discuss some problems regarding the proposal for the

SWDC. We would like to emphasize that we do not claim that there is a pathology in

the procedure as given in [40]; however, there are issues that needs to be resolved for

matching the SWDC with more general results in the KS side of the double copy.

First of all, since the Weyl tensor Wµνρσ transforms homogeneously under a confor-

mal transformation of the metric (g̃µν = eψgµν , W̃µνρσ = eψWµνρσ), the Weyl tensor

and the Weyl spinor vanishes for conformally flat spacetimes. Therefore, when one

applies the same prescription for the SWDC to a term in the metric function which is

conformally flat when considered alone, the procedure seems to break down since

the corresponding contribution to the Weyl spinor vanishes and obviously cannot

match a a non-zero relevant contribution in the KSDC. Such a phenomenon cannot

be observed when working with asymptotically flat spacetimes since it corresponds

to n = −1,−2 in (7.4) for which the contribution to the Weyl scalar Ψ2 vanishes

as can be seen in (7.7). Hence, the resolution of this issue is crucial for the correct

formulation of SWDC for type D solutions that are not asymptotically flat.

A related problem appears for the RN-AdS4 black hole solution of EM theory with

a negative cosmological constant described by the Lagrangian L =
∑

i Li with

L(i=1) = R, L(i=2) = −1
4
FµνFµν , and L(i=3) = −2Λ. The metric function in (7.4)
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reads

h(r) = 1− 2M

r
+
Q2

4r2
− Λr2

3
. (7.8)

According to [85], the single copy solution should be defined in a “suitable flat space

limit", which is the AdS4 spacetime in the global static coordinates with the line

element

ds̄2 = −
[
1− Λr2

3

]
dt2 +

[
1− Λr2

3

]−1

dr2 + r2dΩ2. (7.9)

This is a natural choice that we obtain when the mass M and the charge Q are set to

zero. Applying the machinery of the SWDC, we find

ϕ =
2M

r
− Q2

4r2
, e = −2M

r2
+
Q2

2r3
∝ Z, (7.10)

Ψ
(i=1)
2 = −M

r3
, Ψ

(i=2)
2 =

Q2

r4
, Ψ

(i=3)
2 = 0, (7.11)

where the single copy properties (7.10) were first given in [47]. We see that although

the contribution from the conformally flat part of the metric that arises due to the

cosmological constant vanishes, the consistency condition (7.2) is still satisfied since

the cosmological constant has no effect on the properties of the single copy solution

(7.10) defined on the AdS4 spacetime.

On the other hand, the same solution can be put into the KS form with a flat back-

ground metric given in (7.5). This time, the single copy properties get a contribution

from the cosmological costant as follows [48]

ϕ =
2M

r
− Q2

4r2
+

Λr2

3
, e = −2M

r2
+
Q2

2r3
+

2Λr

3
∝ Z, (7.12)

while the Weyl spinor takes the same form characterized by the Weyl scalars given in

(7.11). The consistency condition (7.2) is obviously not satisfied by the contribution

to the metric function from the cosmological constant, which is just the n = −2 term

in (7.4). For a complete equivalence of the KSDC and the SWDC, one would expect

to cover both single copies in the SWDC.

One final problem is that some solutions to matter coupled GR do not have a vacuum

part, i.e., when the matter coupling is turned off there remains no solution that both

carries the symmetries of the ansatz that is used to derive the solutions and satisfies

the field equations at the same time. It is desirable to understand whether, and if yes

how, the SWDC can be realized in such cases
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7.2 Resolution by Regularization

For the resolution of the first two problems, we are inspired by a simple observa-

tion for the RN-AdS4 black holes: Although the standard procedure fails when the

background metric is taken to be flat, the radial dependence of the Weyl scalar is still

correct (Ψ(i=3)
2 ∝ constant apart from the (n + 2) factor which produces zero) such

that the consistency condition (7.2) is satisfied with ϕ(i=3) ∝ r2 and e(i=3) ∝ r. Mo-

tivated by this, we propose a three-step regularization procedure for the SWDC such

that it will still work when one has a conformally flat part in the metric function that

has a non-trivial effect on the single copy solution: Let us say the conformally flat

part is of the form an∗
rn∗ such that for n = n∗, the contribution to the Weyl scalar Ψ∗

2

vanishes. To cure this, one should proceed as follows:

1. Take the problematic term as an∗
rn

, i.e., use an arbitrary exponent n instead of

n∗.

2. Let an∗ →
an∗
n−n∗

and calculate Ψ∗
2 using this coefficient.

3. Set n = n∗ at the end.

This way, the (n− n∗) term in the Weyl scalar Ψ∗
2 is removed in a controlled manner

and a non-zero contribution is obtained. For a metric of the form (7.3), the consistency

condition (7.2) is automatically satisfied and the problematic term in the RN-AdS4

black hole with a flat background metric corresponds to n∗ = −2. Although we are

not aware of a solution of matter coupled GR with an n∗ = −1 term, such a problem

would be easily solved.

One might rightfully argue that this form of the metric (gttgrr = −1) is too simple to

check the validity of the regularized Weyl double copy (RWDC). Therefore, we put

it to the test with a set of examples that requires the most general formulation of the

KSDC summarized at the beginning, i.e., the Lifshitz black holes. As a by-product,

they will show us how the third problem must be handled.
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7.3 Lifshitz black holes

In order to study a scenario as general as possible, we will consider the following

ansatz for Lifshitz black holes with different horizon topologies

ds2 = L2

[
−r2zh(r)dt2 + dr2

r2h(r)
+ r2dΣ2

k

]
, (7.13)

where k = +1, 0,−1 correspond to S2, E2 and H2 respectively, and z is the dynam-

ical exponent. When z ̸= 1, one has an anisotropic scaling of the time coordinate

in the boundary field theory and these solutions can be used to probe the proper-

ties of finite temperature non-relativistic systems holographically when k = 0 [80]

(z = 1 corresponds to the relativistic case). When written in the KS coordinates, the

background spacetime is the Lifsthiz spacetime whose line element can be found by

setting h(r) = 1 in (7.13). For a generic metric function as in (7.4), one has

ϕ = −L2
∑
n

an
rn−2z

, e = L2
∑
n

(n− 2z)an
rn−2z+1

∝ rz−1Z, (7.14)

Ψ2 = − k

6L2r2
+
z(z − 1)

6L2
+
∑
n

(n− z)(n− 2z + 2) an
12L2rn

. (7.15)

First of all, since the Lifshitz black holes cannot be obtained as vacuum solutions, all

the non-zero an’s here can only be generated by matter coupling. Therefore; there

is no analogue of the mass term in the RN-AdS4 black hole and no vacuum part of

the metric. As a result; in the Weyl scalar Ψ2 in (7.15), there is a term which is

independent of an’s and has no direct meaning regarding the properties of the single

copy. Note that it vanishes for z = 1 and k = 0, which corresponds to the AdS4

spacetime in Poincaré coordinates that is a vacuum solution. Other than this term,

the consistency condition (7.2) is satisfied with the data given above provided that a

regularization is employed for n∗ = z and n∗ = 2z − 2. In Table 7.1, we provide

various examples.

86



Table 7.1: Matter couplings, metric functions, k and z for three different Lifshitz

black hole solutions considered in the text. φ is a scalar field. Fµν = 2∂[µaν] and Gµν
are two-form fields. Hµντ = ∂[µBντ ] is a three-form field.

I Lm = 1
2∂µφ∂

µφ− 1
4e

λφFµνFµν h(r) = 1−
( r+

r

)z+2
k = 0, z > 1

II Lm = − 1
4FµνFµν − 1

2m
2aµa

µ − 1
4GµνGµν h(r) = 1− q2

8rz k = 0, z > 1

III Lm = − 1
4FµνFµν − 1

12HµντHµντ − CϵµναβBµνFαβ h(r) = 1 + k
2r2 k ̸= 0, z = 2

The Examples in the Table 7.1 are from [112,114,119] respectively. Example I is the

double copy of the vacuum solution of Maxwell’s equations on the Lifshitz spacetime,

which is the only known example in the KSDS where a non-vacuum gravity solution

is mapped to a vacuum gauge theory solution in d > 3 (3D KSDC is a completely

different story [67–70]). In Example II, one has a sourced single copy solution and a

regularization with n∗ = z is required for the agreement of the KSDC and the SWDC.

In both of these examples, the event horizon is planar and the KS single copies were

obtained in [48]. Example III is a demostration of the equivalence of two formulations

of the classical double copy for a naked singularity where constant t and r surfaces

are S2, and a black hole with H2 horizon. Again, a regularization with n∗ = z = 2 is

required 2.

7.4 Conclusions and Outlook

In this chapter, by introducing a regularization procedure in the SWDC, we have

shown how it can be made consistent with the KSDC when a certain part of the metric

function in static black hole solutions is conformally flat but still affects the single

copy properties nontrivially. Intriguingly, this turns out to be much more than curing

a mathematical difficulty in the formulation. Handling this issue is directly related to
2For detailed examination of matter Lagrangian, see the Appendix D.
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the AdS and the Lifshitz black holes which form the basis of probing the properties of

strongly coupled gauge theories at finite temperature holographically, [77–80] which

is just another development that we owe to string theory. Since both the double copy

and the AdS/CFT correspondence (together with its non-relativistic generalization)

originate from string theory, we have a strong expectation that achieving consistency

of different formulations of the classical double copy will be an important first step

to understand whether the double copy ideas and holography is related in some way.

While the gauge theory in the double copy lives in the same number of dimensions as

the gravity theory, the gauge theory dual in holography is defined on the conformal

boundary, which has one less dimension. Although one cannot point out a relation

for now, the success of the WDC in capturing the asymptotic structure of spacetimes

[120, 121] together with our regularization procedure might be helpful in this regard.

We would like to note that, in all the examples considered here, the constant an∗ is

proportional to either the cosmological constant Λ or the Newton’s constant G which

is hidden in the event horizon radius r+. This makes one to think that our regular-

ization procedure might have a field theoretical origin, which, we believe, deserves

further study.

In our analysis, we have reached another important finding: When a solution does

not have a vacuum part, then, at the left-hand-side of the SWDC formula (7.1), the

leading term loses its meaning in the interpretation of the single copy. The Lifshitz

black holes are the first kind of such examples but we expect the same behaviour in

different type of solutions.

Despite the success of the RWDC that we have presented here, we would like to men-

tion that the study of some solutions of N = 0 supergravity, the effective field theory

emerging in the low energy limit of closed string theory, by using twistor methods has

recently led to a double copy formula different than the one considered here [122].

For a better understanding, more general and also different type of examples includ-

ing rotating black holes and wave solutions should be studied.
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CHAPTER 8

CONCLUSION

In this thesis, we have focused on extensions of the classical double copy both in the

Kerr-Schild and the spinorial Weyl formulations.

Chapter 2 presents essential background material crucial for understanding the the-

sis. It covers topics such as degree of freedom counting and Newtonian potential in

3D gravity, important solutions in 3D gravity, maximally symmetric spacetimes, and

the deviation tensor that is employed in the most general formulation in the KSDC.

Additionally, it explores spinor formalism and Petrov classification in d = 4.

In chapter 3, we explain why the KSDC in 3D seems to be problematic and study

the proposal given in [67] for the KSDC of the Coulomb solution where the authors

claim that one can employ a ghost free scalar or a spacelike fluid. We show that one

can get rid of the ghost sign of the scalar by taking the EH term with a wrong sign,

which is not problematic since there are no propagating degrees of freedom. We also

consider a rotating generalization of the solution which is naturally implied by the KS

coordinates and show that it cannot be sourced by a free scalar field and the use of a

spacelike fluild becomes compulsory. The effect of the cosmological constant is also

discussed.

Chapter 4 provides an alternative matter coupling for the double copy of the Coulomb

solution in 3D with the help of the on-shell duality of p-forms. Instead of a scalar field,

which does not vanish at infinity when it sources the correct gravitational solution, one

can employ a gauge field with a ghost sign which can again be moved to the EH term.

In this case, the gauge field takes the usual Coulomb form and a better behaviour at

infinity is achieved. This matter coupling has an additional advantage that when a
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cosmological constant is introduced it provides a natural connection to the charged

BTZ black hole.

After obtaining the two possible matter couplings that give rise to the double copy of

the Coulomb solution in 3D, we study certain generalizations of them with the aim

of understanding the regularity structure of the solutions in both sides of the double

copy in chapter 5. While for the vector coupling we study the well-known Born-Infeld

generalization, we use the scalar-tensor theory discovered in [101] that admits regular

black hole solutions for the generalization of the free scalar. We use these scenarios

to investigate the connection between horizons on the gravity side and electric fields

on the gauge theory side, which was previously observed in four dimensions.

Chapter 6 is devoted to the most general formulation of the KSDC where no simplify-

ing assumption about the background metric is made. We show that the gauge theory

source is affected by a curvature term that characterizes the deviation of the back-

ground spacetime from a constant curvature spacetime. We demonstrate this effect

explicitly by studying gravitational solutions with non-zero cosmological constant.

We show that, when the background is flat, the constant charge density filling all

space in the gauge theory that has been observed in previous works is a consequence

of this curvature term. As an example of a solution with a curved background, we

study the Lifshitz black hole with two different matter couplings. The curvature of the

background, i.e., the Lifshitz spacetime, again yields a constant charge density; how-

ever, unlike the previous examples, it is canceled by the contribution from the matter

fields. For one of the matter couplings, there remains no additional non-localized

source term, providing an example for a non-vacuum gravity solution corresponding

to a vacuum gauge theory solution in arbitrary dimensions.

In chapter 7, we propose a regularization procedure in the sourced Weyl double copy,

the spinorial version of the classical double copy, such that it matches much more

general results in the Kerr-Schild version. In the regularized Weyl double copy, the

AdS and the Lifshitz black holes, which form the basis of the study of strongly cou-

pled gauge theories at finite temperature through the AdS/CFT correspondence and its

non-relativistic generalization, become treatable. We speculate that this might prove

useful for finding out a relation between the classical double copy and holograpy.
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We would like to note that all the results presented in chapters 3,4,5,6,7 are based

on [48, 68–70, 123].

In summary, the extension of the original formulation of the KSDC in [42] was ex-

tended to three-spacetime dimensions through different matter couplings, and also to

spacetimes with a curved background metric. Additionally, an extension of the WDC

that is applicable to the holographically viable spacetimes that is compatible with the

most general formulation of the KSDC was given.

The most natural next step for all this progress is to look for a connection between

holography and the classical double copy. Considering the fact that the precursor of

the AdS/CFT correspondence is the result of Brown and Hanneaux [124] the asymp-

totic symmetry algebra of 3D GR with a negative cosmological constant is two copies

of Virasoro algebra corresponding to symmetries of the 2d conformal field theories,

an understanding of the asymptotic data in the context of Classical double copy should

be very useful. Studies along this direction in 4D can be found in [125, 126] and the

results presented in these works, when supplemented with the regularization proce-

dure described in Chapter 7, are expected to help in establishing such a connection.

In order to benefit the full power of the Brown-Hanneaux result, the spinorial version

of the Classical double copy in 3D, the Cotton double copy, and its application to the

asymptotic structure of 3D spacetimes is needed.

The current view in the literature is that the Cotton double copy is applicable to only

type N spacetimes, excluding the black hole solutions which are of type D. However;

this is due to the fact that the Cotton tensor, and therefore the Cotton spinor vanishes

for AdS3 spacetime or any spacetime which is locally isomorphic to AdS3 such as

the BTZ black hole. Therefore, an important problem for the future research is to

look for a similar regularization procedure in the Cotton double copy. Another ap-

proach to search for a connection to the holography would be a formulation of the

Classical double copy at the action level. Since the current formulations are based the

considerations of the solutions to gravitational field equations at a particular gauge,

a covariant formulation has the potential to yield many interesting results apart from

relating the double copy to holography.
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APPENDICES

A. No-Hair Theorem for Free Scalar Fields

As we have seen in Sec. 3.2, the scalar hair can be obtained by a different choice

of the scalar kinetic term than [67]. Here, we show explicitly why this is possible

by reviewing the formulation of the no-hair theorem for free scalar fields [127–129] .

Any static metric can be written as

ds2 = −N2dt2 + hijdx
idxj, (A.1)

where N = N(xi) and hij = hij(x
i). Then, assuming no time dependence, the

equation for the free scalar field (3.25) becomes

□φ(xi) =
1√
−g

∂µ
(√

−g gµν∂νφ
)
. (A.2)

With the help of relations

√
−g = N

√
h,

1√
h
∂i

(√
hhij∂jφ

)
= DiDiφ, (A.3)

where Di is the covariant derivative with respect to the spatial metric hij , it can be

written as

□φ(xi) =
1

N
DiNDiφ+DiDiφ . (A.4)

Multiplying by Nφ and integrating over the spatial region Σ between the event hori-

zon and infinity yields

0 =

∫
Σ

d2x
√
h
[
φDiNDiφ+NφDiDiφ

]
, (A.5)
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which, after integrating the first term by parts, becomes

0 =

∮
∂Σ

dSiNφDiφ−
∫
Σ

d2x
√
hNDiφDiφ. (A.6)

The surface integral consists of integrations over the event horizon ∂Σh and the spatial

infinity ∂Σinf as∮
∂Σ

dSiNφDiφ =

∫
∂Σh

dSiNφDiφ+

∫
∂Σinf

dSiNφDiφ. (A.7)

The first term is zero since the functionN , by definition, vanishes at the event horizon

while the second term is zero provided that the field φ or its derivative Diφ vanishes

at infinity. With this assumption, (A.6) becomes

0 =

∫
Σ

d2x
√
hNDiφDiφ. (A.8)

Since the integrand is positive definite, one must have Diφ = 0 and therefore φ =

constant throughout the entire region Σ. In the usual formulation of the no-hair the-

orem, one takes φ = 0 at the spatial infinity ∂Σinf, which is a reasonable assumption

for physical fields. This implies that the constant should be set to zero, and hence

φ = 0 , i.e., no scalar can be present in the region Σ.

For our analysis, two things are important: First, in the formulation of the no-hair

theorem, there is no reference to the sign of the kinetic term of the scalar field in the

action since we directly start from its field equation. Therefore, whether it is a ghost

or not does not play a role. Second, it becomes possible to obtain a scalar hair because

we do not demand Diφ = 0 at infinity. Indeed, one has Diφ = constant for the static

solution.

110



B. Scalar-Vector Duality as Described in Chapter 4

Note that in our formulation of the scalar-vector duality in Sec. 4.2, we have shown

that free field equations in flat spacetime are equivalent and a scalar field which is

linear in the azimutal angle (φ = c θ, c = constant) implies the Coulomb solution for

the gauge vector. This can be generalized to curved spacetime as long as the metric is

in the KS form (4.4). However; our analysis is limited to the matter equations and the

gravity equations have to be checked independently. The action (4.30) that we use to

establish the duality leads to a free scalar action with a ghost sign (4.33) and a free

Maxwell action with a nonghost sign (4.35), which is enough to show the equivalence

of the matter equations. When coupling to the gravitation is considered, in order to

obtain a black hole solution with the same physical properties, one needs to have a

ghost scalar and a ghost vector (we assume ζ1 = 1, i.e., the EH term has the “right

sign,” for simplicity).

Indeed, as shown in [101] recently, the duality can also be formulated such that the

gravitational action with the correct sign for the matter coupling is obtained directly.

The authors consider theories described by Lagrangians of the form L(gµν , Rµν , ∂µφ)

and study solutions in the following form

ds2 = −f(r)dt2 + dr2

f(r)
+ r2dθ2, φ = c θ, c = constant, (B.1)

which includes the solution that we studied in Sec. 4.1 with the metric written in the

BL coordinates. It is possible to find theories such that the scalar equations is auto-

matically satisfied, the equation for the metric function gets a nontrivial modification

and can be solved analytically. They also show that the same solution can be obtained

from a dual Lagrangian of the form Ldual(g
µν , Rµν , fµν). When the matter fields are

related as1

fµν = −
√
2π ϵµνρ

∂L
∂(∂ρφ)

(B.2)

the dual Lagrangian is given by

Ldual = L − 1

2
√
2π
ϵµνρfµν∂ρφ, (B.3)

1 We use a different normalization than [101] to obtain the vector kinetic term with coefficient 1
8π

, as we have
used throughout the text.
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where the original Lagrangian L should also be written in terms of fµν by using the

relation (B.2). In [101], nonminimal matter couplings are used and regular, electri-

cally charged black hole solutions in three dimensions are obtained. In this work, we

only have the kinetic terms, which are the simplest possible matter couplings. Starting

from the Lagrangian

L =
1

κ2
R +

1

2
(∂φ)2 , (B.4)

leads to the following dual Lagrangian

Ldual =
1

κ2
R +

1

8π
fµνf

µν . (B.5)

Both Lagrangians L and Ldual support the solution with the correct Newtonian poten-

tial as long as the electric charge q and the constant c are related as

c =
q√
2π
, (B.6)

which is a consequence of (B.2). Using the relation between the mass parameter M

in the scalar case with the constant c (4.16), this implies

M = q2, (B.7)

which shows the relation between the coefficient of the logarithmic terms in the metric

functions (4.22) and (4.49).
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C. Details of the Field Equations of the Scalar Theory in Chapter 5

The field equations of scalar fields φ in (5.48) gives the following energy-momentum

tensor and field equations where

Γ(φ) = 1− κ2

2

∑
m=0

βmℓ
2(m+1)(∂φ)2(m+1) (C.1)

T̃µν = T̃ (1)
µν + T̃ (2)

µν + T̃ (3)
µν . (C.2)

The T̃ (1)
µν , T̃ (3)

µν and T̃ (3)
µν can be given as

T̃ (1)
µν =

∑
n=1

αn(∂φ)
2(n−1)ℓ2(n−1)

(
n∂µφ∂νφ− gµν(n− 1)(∂φ)2

)
T̃ (2)
µν =

∑
m=0

βmℓ
2(m+1)(∂φ)2(m−1)

[
2(3 + 2m)Rα(µ∂ν)φ∂

αφ(∂φ)2

+m(3 + 2m)∂µφ∂νφR
αβ∂αφ∂βφ− (m+ 1)(∂φ)2

×
(
∂µφ∂νφR + gµνR

αβ∂αφ∂βφ− gµνR(∂φ)
2
)]
,

T̃ (3)
µν =∇α∇(µEν)α −

1

2
□Eµν −

1

2
gµν□E, (C.3)

with

Eµν =
∑
m=0

βmℓ
2(m+1)(∂φ)2m

[
(3 + 2m)∂µφ∂νφ− gµν(∂φ)

2
]
. (C.4)

The equation for the scalar field reads

0 = 2∇µ

∑
n=1

{
nαnℓ

2n−1(∂φ)2(n−1)∂µφ
}
− 2∇µ

∑
m=0

{
βmℓ

2(m+1)(∂φ)2(m−1)

×
[
m(3 + 2m)∂µφRαβ∂αφ∂βφ+ (3 + 2m)(∂φ)2Rµα∂αφ− (m+ 1)R(∂φ)2∂µφ

]}
.

(C.5)
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D. Some Details of Example III Considered in Chapter 7

In chapter 7, we introduce a matter Lagrangian for the Lifshitz topological black hole

in the table 7.1 as [119]

Lm = −1

4
FµνFµν − 1

12
HµντHµντ − CϵµναβBµνFαβ . (D.1)

We can derive the energy-momentum tensor and the field equations of the matter

fields by taking variation of the matter Lagrangian Lm with respect to the metric and

matter fields respectively. The energy-momentum tensor reads

Tµν =
1

2

(
FµτF τ

ν −
1

4
gµνF2

)
+

1

4

(
HµστHν

στ − 1

6
gµνH2

)
, (D.2)

whose trace-reversed form can be obtained as

T̃µν = Tµν −
1

2
Tgµν

=
1

2

(
FµτF τ

ν −
1

4
gµνF2

)
+

1

4

(
HµστHν

στ − 1

2
gµνH2

)
. (D.3)

The field equations for the matter fields are found as

∇νFµν = −C
6
ϵµναβHναβ , (D.4)

∇τHµντ =
C

2
ϵµναβFαβ . (D.5)

For the solutions that we consider z = 2, and the constant C and the cosmological

constant Λ should be fixed as

(Cℓ)2 = 4, Λ = − 5

ℓ2
. (D.6)

The metric function is given by

h(r) = 1 +
k

2r2
, (k ̸= 0). (D.7)

When the constants t and r surfaces are parametrized as

dΩ2
k =

dθ
2 + sin2 θdϕ2, k = +1,

dθ2 + sinh2 θdϕ2, k = −1,
(D.8)

the matter configuration is as follows

Frt = −2ℓr, Hrθφ = 2ℓ2r

sinθ, k = 1

sinhθ, k = −1
(D.9)
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