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ABSTRACT

EXTENSIONS OF THE CLASSICAL DOUBLE COPY

Gilimiis, Mehmet Kemal
Ph.D., Department of Physics

Supervisor: Prof. Dr. Altug Ozpineci
Co-Supervisor: Dr. Gokhan Alkag

January 2024, [TT6| pages

The classical double copy is a map between certain exact solutions of general rela-
tivity and Maxwell’s theory with two different formulations: the Kerr-Schild double
copy (KSDC) and the Weyl double copy (WDC). This thesis extends both versions
in various directions. In three spacetime dimensions, matter fields should be coupled
to gravity to match the vacuum solution of Maxwell’s theory, i.e., the Coulomb so-
lution. In addition to presenting a novel matter coupling with improved behaviour at
infinity, some generalizations that admit the study of the regularity of the solutions
on both sides are also considered. Also, a formulation of the KSDC with a general
background metric in generic D-dimensions is given. For the WDC, a regularization
scheme that makes it compatible with the much more general results in the KSDC is

proposed.

Keywords: Classical Double Copy, Kerr-Schild Double Copy, Weyl Double Copy
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KLASIK CIFT KOPYANIN GENISLETILMESI

Giimiis, Mehmet Kemal

Doktora, Fizik Bolimii

Tez Yoneticisi: Prof. Dr. Altug Ozpineci
Ortak Tez Yoneticisi: Dr. Gokhan Alkag

Ocak 2024 ,[116]sayfa

Klasik cift kopya, genel goreliligin belirli tam ¢coziimleri ile Maxwell teorisi arasinda
Kerr-Schild ¢ift kopya (KSCK) ve Weyl ¢ift kopya (WCK) seklinde iki farkli formii-
lasyonu olan bir iligkilendirmedir. Bu tez her iki versiyonun da ¢esitli yonlerde ge-
nigletilmesini icermektedir. Bu kapsamda ii¢ uzay-zaman boyutunda maddesel alan-
larin, Maxwell teorisinin vakum ¢oziimiine, yani Coulomb ¢oziimiine uyacak sekilde
yercekimiyle etkilestirilmesi gerektigi gosterilmistir. Sonsuzdaki davranis iyilestiril-
mis yeni bir madde konfigiirasyonu sunmanin yan sira, her iki taraftaki ¢oziimlerin
diizenliliginin (regularization) incelenmesini saglayan bazi genellemeler de ele alin-
migtir. Ayrica, D boyutlu genel bir artalan metrigi icin KSCK’nin genelestirilmis bir
formiilasyonu sunulmugtur. WCK icin de sonuglarmi KSCK’deki genel sonuclarla

uyumlu hale getiren bir regiilarizasyon semasi onerilmistir.

Anahtar Kelimeler: Klasik Cift Kopya, Kerr-Schild Cift Kopyasi, Weyl Cift Kopyasi
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"I claded in the four elements as a nigab.
I emerged from a point and got purified.
Seen by those who see with the eyes of their soul,

A vista I am, in the depth of a vista."

Bektashi Nefes by Genci, 19th century

"All science would be superfluous if the outward appearance and the essence of things directly

coincided." Karl Marx, 19th century

To all those seeking the truth in all times and all geographies...
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CHAPTER 1

INTRODUCTION

The idea of the double copy, also named BCJ double copy after its discoverers Bern,
Carrasco and Johansson, emerged as a relation between the scattering amplitudes in
gauge and gravity theories [1]]. A gluon amplitude in the gauge theory is expressed as
a sum of cubic graphs which schematically takes the form

nic;

d; ’

(1.1

Acluon =

i
where ¢;, n; and d; represent the color factors, the kinematic factors and the propaga-
tors of each graph respectively. This sum can be written in different ways by making
use of generalized gauge transformations, i.e., gauge transformations and field redef-
initions. When it is expressed in the so-called color-dual gauge, where the kinematic
factors obey the same algebra as the color factors, the graviton amplitude in the grav-
ity theory can be obtained by replacing the color factors ¢; by another set of kinematic

operators 7; as follows
nin;

d;

AGraViton = (1 2)

The new kinematic factors n; should be also in the color-dual gauge but, in general,
they may be taken from a different gauge theory. Therefore, one obtains a gravity =
(Yang-Mills)?-type relationship where the gravity theory is called the “double copy"
of the two Yang-Mills (YM) theories, while each YM theory is referred to as a “single
copy" of the gravity theory.

Since it enables the “squaring” of the Yang-Mills (YM) ones to yield gravitational
amplitudes, the double copy has evolved into a crucial tool in the study of scattering
amplitudes [2,3]. From semi-classical tree-level amplitudes, perturbative classical

solutions can also be produced [4-41]]. Although the nonlinearity of the Yang-Mills

1



and Einstein equations makes it appear impossible to establish a map between ex-
act classical solutions, it is possible to obtain a linear structure for some classes of
spacetimes on the gravity side and then map them to the linearized solutions of YM
theory, or solutions of Maxwell’s theory. Two different but related procedures can
be used to achieve the classical double copy, a non-perturbative realization of the
double copy idea. The Ricci tensor with mixed indices is linear in the perturbation
for spacetimes admitting Kerr-Schild (KS) coordinates, which is useful in the KS
double copy [42,/43]]. As an alternative, one can work with the Weyl spinor, which
is the spinor representation of the Weyl tensor. Similar to the KS construction, one
can identify a spinor basis that linearizes the Weyl spinor for certain algebraically
special spacetimes and relate it to a field strength spinor corresponding to a solu-
tion of Maxwell’s equations [44]. There is a growing body of literature on the topic
that offers numerous examples and generalizations [45-70] (see [[71H73]] for reviews).
Thanks to the results from Twistor theory. [74-76], we now have a pretty good un-

derstanding of its roots and boundaries.

Having a new theoretical tool to investigate the relation between two seemingly dif-
ferent theories, it is important to consider situations where it might break, which not
only enables one to understand the limitations if there are any but also opens doors
for extensions of the idea to more general cases. In this thesis, following this logic
in various cases, some extensions of the classical double copy will be presented. Our

focus will be the following shortages and limitations of the original constructions:

1. In the original formulation of the KSDC [42], the Newtonian potential seems
to play an important role. While it is possible to obtain black hole solutions
with similar physical properties to higher-dimensional examples, it is also well-
known that GR in 3D has no well-defined Newtonian limit. Therefore, it is

crucial to understand the validity of the KSDC in 3D.

2. Also in the original construction [42], the spacetimes under consideration are
written in the KS coordinates with a flat background metric. However; for many
solutions of GR with physical importance, this is not possible or the choice of
the background spacetime is not unique. Most significantly, this is the case

for th AdS and the Lifshitz black holes, our main probes to study strongly

2



coupled gauge theories through holography [77-80]. In order to understand
whether there exists any relation between our main tools to relate gauge and
gravity theories, the double copy and the holography, this should be overcome
by finding a formulation of the KSDC with an arbitrary background metric.

3. In the Weyl Souble Copy (WDC), while it was shown to be valid for asymp-
totically flat vacuum spacetimes [[62], a proposal to deal with sources was later
made by considering solutions of Einstein-Maxwell theory [40]]. Animplicit as-
sumption in the Sourced WDC (SWDC) is that the contribution of each term in
the metric function to the Weyl spinor is non-zero, this is not the case for some
AdS and Lifshitz black hole solutions. Therefore, it is not certain whether the
KSDC and the WDC are consistent when more general spacetimes are consid-
ered. Especially, the status of holographically relevant spacetimes should be

understood.

The outline of the thesis is as follows: After a review of some background material
in Chapter 2, we work with KSDC in 3D in Chapters 3,4,5. In these chapters, we
will discuss the validity of the KSDC in 3D for rotating solutions, the effect of the
cosmological constant, alternatives for the matter couplings to ensure the validity
of the construction and their possible generalizations. In Chapter 6, we will give a
formulation of the KSDC with a generic, curved background metric. The solutions
to the issues related to the SWDC and its relation to the KSDC will be presented in

Chapter 7. We will end the thesis with a summary and discussions in Chapter 8.






CHAPTER 2

BACKGROUND MATERIAL

In this chapter, we present some background material that might be useful to under-
stand the discussion in the rest of the thesis. For the first two sections we closely

follow the references [81]] and [82].

2.1 Degree of Freedom Counting and the Newtonian Limit in Three-dimensional

Gravity

General relativity is based on the well-known Einstein-Hilbert action for d dimen-

sional spacetime
1
SEH = /ddZE\/ —g [E (R - 2A) + Lmatter . (21)

Here, g = det(g,,), R is the scalar curvature, A is the cosmological constant, and
L atter represents the Lagrangian for the matter fields. Varying the action with re-

spect to the metric gives the Einstein equations

1
GMV + g,ul/A — /-/,;_T

o turo

(2.2)

where G, = R, — % g, IR 1s the Einstein tensor and R, is the Ricci tensor. The

stress-energy tensor 7, is given by

Tuy — 2 5(\/ _gcmatter) . (23)
Vi o

The Riemann curvature tensor I?,,,, contains the all information about how the

spacetime is curved and it can be written in terms of trace and traceless parts as

5



follows

Ruvop = Wiwopt (G Rop — GupBve — GuoRyp + GupFRyo)

1

_ER (g,uagup - g,upgucr) . (24)

The traceless part of the Riemann tensor is represented by the Weyl tensor W,,,,,.
For d = 3, the Weyl tensor equals to zero and the Riemann tensor has only trace part.

Taking the trace of Einstein’s equations in d = 3, we get
R = —kT, (2.5)

from which the trace-reversed Einstein’s equations follows as
2

Ry = % (T = Tgy) (2.6)
Using (2.5) and (2.6) in the decomposition of the Riemann tensor in (2.4)), one finds
/{2
Ryvop D) (9w Top = upTvo = GvoLyp + GupT o)
/432
=5 T (9uoGvp = GupGue) - (2.7)

This means that the Riemann tensor, namely the curvature of the spacetime, is lo-
caly determined by the matter distribution. Additionally, for empty spacetime, where

T,, = 0, the spacetime is locally flat:
Ruvep =0. (2.8)
Therefore, we can say that three-dimensional gravity can exist only in the presence of

matter in spacetime. The vacuum solutions of the Einstein equations are flat in three

spacetime dimensions.

We can also get this result in an algebraic way. In d spacetime dimensions, the Rie-

mann tensor has

1
Np = —d*(d*> — 1 2.
R 12d(d ) (2.9)

independent components. For d = 4, Np = 20, and ford = 3, Np = 6

We also know that the Einstein tensor is a symmetric tensor and it has

Ng = %d(d +1) (2.10)

6



independent components. This means that Ny = 10 ford = 4, and Ny = 6 ford = 3.
Considering this, we can easily see that in d > 4 the Riemann tensor contains more
information than the Einstein tensor. However, for d = 3, both the Riemann and the
Einstein tensors contains the same amount of information. At the perturbative level,
it is easy to show that this is because the gravitation is over-constrained in d = 3. We

can write the metric as flat metric 7),,, and the perturbative part /1, :

Guv = NMuw + h,uu . (211)

h,., has %d (d+1) independent components. However, the physical degrees of freedom
of the graviton can be obtained from the transverse and traceless parts of its spatial
components h;;. In d-dimensional spacetime these both amount to (d — 1) seperate
constraints. These constraints cannot completely determine the %d (d—1) independent
components of h;; for d > 4. On the other hand, for d = 3, 2(d — 1) = 4 seperate
constraints exist for the %d(d — 1) = 3 independent components of h;;. This means

that the graviton does not propagate in d = 3.

2.1.1 Newtonian Limit of 2+1 dimensional gravity

Let us continue the discussion by taking the Newtonian limit of pure gravity in d
dimensions. Hereby, we will prove that the Newtonian potential decouples from any

point sources in three dimensional spacetime.

We will start by considering the weak fields. Namely, fields live in a spacetime whose
metric is quasi-stationary in a specific coordinate system (9yg,,, ~ 0), and weakly
deviates from flat space g, = 7, +h,,, With |h,,,| < 1. We will consider a stationary
weak source i.e. a stress-energy tensor has only one non-zero component 7py = —p

and it is small enough.

Now we can examine the non-relativistic trajectories, i.e. geodesics z*(7) for which
|#*(T)| < 1, in this coordinate system by neglecting all terms beyond linear order in
p and h,,. These reduce the spatial geodesic equation to

d?r 1



where we can identify

1 1

= —§hoo = —5(1 + 9oo), (2.13)

as the Newtonian potential. Furthermore, in d dimensions, the 00-component of the

trace reversed Einstein equations reads

2
b= —— 9. 2.14

v 2d—2 ( )

At this point, we should note that the Newtonian and Poisson equations are gauge

dependent in the Newtonian limit

If we specialise the equations for the case of the point mass M which is sitting at the

origin, the Newtonian gravitational field § = —V®, at a distance r from the orign
becomes
2 d—3)I (&L M
j=-" [@=3r (%) P (2.15)
2 | (d—1)(d—2)xld=1/2 | pd=2

This equation tells us that the Newton’s constant for the d dimensional spacetime G

is

2 d—3)I (4L
Gy=" (@3 () . (2.16)
2 | (d—1)(d—2)rld-1/2
Finally, by considering the last equation, we can easily read that for d = 4, the
Newton’s constant G4y = 16#”/@2. In contrast to d > 4 case, for d = 3, Gy4—3 = 0.

Therefore, we can conclude the discussion by noting that, in d = 3, the Newtonian
gravitational field g vanishes identically at any distance in the presence of a point
mass M at the origin. The Newtonian potential ® is no longer coupled via Poisson
equation to the matter distribution p and this means that the trajectories are straight

lines in the Newtonian limit.

2.2 Some Important Solutions in 3D Gravity

2.2.1 Conical Defects

In three dimensions, at the points where the particles are located, there arises conical

defects (or conical singularities) characterized by the deficit angle 0.y < 27. This

8



parameter produces an upper bound for the mass of the particle. We can show this by

studying point particle solution in three dimensional general relativity.

A general three dimensional black hole solution can be written in polar coordinates
as

ds? = —A*(r)dt* + B*(r)dr? + r*d¢*. (2.17)

Here, 0 <r < occand 0 < ¢ < 27.

In order to determine the A(r) and B(r) for vacuum case, the gravity equations should

be taken as R, = 0, and these lead to
A(r)=A4Ay, B(r)=B,y. (2.18)
Here, Ay and By are constants. Now, let us make some coordinate redefinitions as
T=Apt, p=Byr,and ¢ = Byf. (2.19)
In these coordinates the line element becomes
ds® = —dr* + dp* + p*dh*. (2.20)

2
According to (2.19) we can write that 0 < p < coand 0 < 0 < gﬂ We know that
0

2
when the angular coordinate ¢ has period 27, the new angular coordinate ¢ has il
0

2
In other words, the solution is singular in the interval of Eﬁ < # < 2m. This angular
0

1
interval 27 <1 - §> can be defined as defict angle 0.
0

The solution in (2.20)) can be embeded as a cone into the 1+ 3 dimensional Minkowski

spacetime in cylindrical coordinates
ds® = —dt? + d2% + dr? + r2d6? (2.21)
with a cone equation
22 =(1-B2)r*. (2.22)
On the other hand, we can define a energy distribution for a point particle at origin as
p= M5 (7). (2.23)

For this source, the solution of gravity equations gives

M1
By = {1 - %} . (2.24)



Thus, the deficit angle for point particle solution can be written as

M\
Gdef =27 [1 - (1 - %) ] s (225)

and the angle parameter is valid at the interval

0§9<2m/1—%. (2.26)
2T

We can easily see that there is an upper bound for mass parameter since, 7 can be
s
at most one in (2.26).

At this point, we should note that there is no parallelism with Schwarzschild solution
in d > 4. We have Gy, ~ M §(4~1) (7). However, the remaining diagonal components

are also proportinonal to J-function.

2.2.2 AdS; spacetime

One of the most important solutions in 3D gravity is the AdS3 spacetime. Let us
first show how we can obtain it by starting from a four dimensional flat space with

SO(2,2) symmetry
Sty = —dT? — dU? + dX* 4 dY”. (2.27)

In this space, we can define a hypersurface which carries the rotational symmetries of

the ambient spacetime as
—T? U+ X?4+Y? =", (2.28)
By using the following reparametrizations

T = ¢ coshpcost X = [sinhpcosf ,
U = lcoshpsint , Y = /sinhpsind , (2.29)

the line element in (2.27) can be written as
ds® = (% [—cosh®pdt® + dp® + sinh’p d6?] . (2.30)

This metric is the induced metric on the surface in (2.28). It is the metric of AdSs

spacetime in global coordinates. Here the coordinate p is defined on the 0 < p < oo
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and the 6 is periodic with 27. In (2.30) we can do another parametrization as
r = sinhp, (2.31)

and we obtain AdSs; metric in static coordinates as
1

T dr? +r?d6*| . (2.32)

ds* = |—(1+r?)dt* +

Another useful coordinate system for the AdS; spacetime is the Poincaré coordinates

where the line element is given by

7,,2

2
ds* = — 7 dt* + £—2er +r2d6?. (2.33)
r

For the AdS3 spacetime, the Ricci tensor satisfies

) 1
R, =2Ag,, with A= a2 (2.34)

When we introduce a cosmological constant in the Einstein-Hilbert action as

Spr = % / d*z/—g[R — 2A], (2.35)
the Einstein’s equations and its trace-reversed version becomes
G + Mg =0,
R, = 2Ag,, , (2.36)

from which we see that the AdS; spacetime is a solution of 3D GR with a negative

cosmological constant A = —L,iz < 0.

2.2.3 Banados-Teitelboim-Zanelli Black Hole

Due to the lack of a well-defined Newtonian limit and propagating degrees of free-
dom, it was thought for a very long time that one cannot have black hole solutions in
d = 3. However, Banados-Teitelboim and Zanelli (BTZ) showed that one can obtain

a black hole solution with the addition of a negative cosmological constant [83].

The line element of the BTZ black hole can be written as

ds® = —f(r)dtz—i-}i(—f)erz

11

(d6 — Q(r)dt)* | (2.37)



r? J J
f(r)_ﬁ_M—i_zL_r? and Q(r)——2—702,

|J| < Ml, M >0. (2.38)
Here, the parameters M and J are the mass and the angular momentum respectively.

There are two horizons located at

1/2

2
- (1 _ Mi€> ] 7 (2.39)

and if rotation parameter is set to zero (J = 0), there is only one horizon

=)o (2.40)

completely analogous to the higher-dimensional black holes.

M3
2

1+

2 _
ry =

An important fact about the BTZ black hole is that it is locally isomorphic to the
AdS; spacetime and the difference is in the global topology. To understand this, let
us study the embedding of the static BTZ black hole (J = 0). We again consider the
line element in and hypersurface in (2.28)). Let us do a reparametrization for

coordinates in (2.28]) similar to (2.29)

[z VM P2 VM
— P2 A _ _p2 I
T A7 12 smh( 7 t) , X i 12 cosh( / t>

U= \/Lﬂcosh (m@ Y = ——sinh (m@ , 2.41)

with which the induced metric becomes

2 2

At = )+ SR S =ML @4

=7

This is just the metric of the static BTZ black hole. For this identification to be

globally valid, we need to identify ¢ with ¢ + 27, namely ¢ has a period with 27.

The topology of this solution is sensitive to the mass parameter //. When we try to
remove it (M = 1), we need to rescale the coordinates ¢ and r, then this will change
the period of the coordinate ¢. This shows that BTZ and AdS; are topologically

distinct.
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2.3 Maximally Symmetric Spacetimes and the Deviation Tensor

AdSj3 spacetime is just an example of a maximally symmetric spacetime, which is a
spacetime of constant curvature that possesses the maximum number of symmetries
(same as the Minkowski spacetime). In this section, we review some important prop-
erties of maximally symmetric spacetimes by following [84], which will lead us to
the definition of the deviation tensor that, as shown in Chapter[6] plays a major role
in the formulation of the KSDC with a general background metric. For a maximally
symmetric spacetime, the Riemann tensor is given by[]

_ € o
R;wa/ﬁ = ﬁ (gul/goaﬁ - guﬁgl/a) (243)

where ¢ = +1,0, —1 correspond to de Sitter (dS), Minkowski and Anti-de Sitter
(AdS) spacetimes and L is the dS/AdS radius when € # 0. Taking the trace yield the

Ricci tensor and the Ricci scalar as

_ d—1

Ruy = € 7 guy 5 (244)
_ dd—1
R = ¢ —( 72 ) . (2.45)

Using (2.44), one can show that the spacetime is a solution of vacuum Einstein equa-

tions if the cosmological constant is chosen as

(d—1)(d—-2)
A=e—-—"—— - 2.46
Y (246)
and, therefore, the Ricci tensor becomes
_ 2A
R#V = m 9uv- (247)

This motivates us to define the deviation tensor which characterizes the deviation
from a maximally symmetric spacetime as

2A

A,uz/ - Rm/ - m guw (248)

which vanishes for maximally symmetric spacetimes provided that the cosmological

constant is given by (2.46). When the background is Minkowski spacetime, one has

R,, = 0 and,

2A
—— G- 2.4
—t (2.49)

1 'We use barred quantities since, in this work, we consider the possibility of a background metric being that
of a maximally symmetric spacetime.

A(Minkowski),,, =
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2.4 Spinor formalism and the Petrov classification in d = 4

Here, by following the appendix of [85]], we review spinor formalism for a 4D curved
spacetime endowed with the metric g,,,. In our notation, spacetime indices are given
by {u, v, ...}, frame indices by {a,b, ...}, while the spinor indices are {A, B, ...}
and their conjugates {A’, B', ... }.

2.4.1 Tetrads and Spinor Basis

We introduce a complex null tetrad {/, n, m, m} which is used to construct the metric

g,(ff,) and satisfies

g = =2l + 2mim,) (2.50)
where
"1, = n*n, = mtm, = mhm, =0 (2.51)
Fn, = -1 =—-mtm,, .

and, [ and n are real null vectors and m is typically complex with m as its conjugate.
The vierbein can be used as, for example, [* = e(®,[#, to obtain the frame tetrad
that corresponds to the tetrad vectors. Specifically, we use the tetrad set
1 1
[*=—(1,-1,0,0) n®=—(1,1,0,0)

V2 V2
o_ 1 : a1 .
m _ﬁ(o,o,z,n m _\/5(0,0, i, 1), (2.52)

which generates Minkowski space by representing (2.50) as 7,y = —2 (a7 +2m o170

and, all frame indices are raised by n®.

We can use the Pauli four-vectors for the shift between tensors and spinors and they

are given by
1

o = —(1,)an - 2.53
AA \/§< )aa (2.53)

where the o;’s are well known SU(2) generators

o1 = s 09 = ] s 03 = . (254)



The Pauli four-vectors obey the following normalization rules
0% o8B =588 oot =60 (2.55)
Then, any spacetime or frame vector has a spinor counterpart as

Vi, — Vaar = Vool u = Ve D% 0%, . (2.56)

Next, we can define a spinor basis {04, 14} and its conjugate basis {04/, 24 }, whose

indices are raised and lowered by the two-dimensional Levi-Civita symbol

0 1
B = = —€an, (2.57)
-1 0

and its conjugate ¢'”’. The frame tetrad and the basis spinors are related by

0404 = ZQJZA/, Lalar = TLGUZA/ ,

oalar = maO'ZA/, LAOAr = maaffm/ . (2.58)

The spinor basis satisfies

EAB A

oq0 =0 =c¢ BLALB,

Poyug=—-1= —eABLAoB. (2.59)

We can determine the (normalized) spinor basis vectors by using (2.59) and the tetrads
which we chose as in (2.52)) as follows

1 1
0o = E(l,l), LA:E(l,—l). (260)

Next, we introduce the Infeld-van der Waerden symbols

ab [a  _blA'C

OB = O 00 €CB , (2.61)

which, along with the spacetime vierbeins, allow us to obtain the spinorial counter-

parts of any even ranked tensors. For example, defining
ol =m0 gab (2.62)
the Weyl spinor and spinor field strength spinor read

1 v _o
Vapcp = ZW/,LVO(,BO-ZBO-CﬁDa (263)
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1

fAB = iﬂwaina (264)

where W, is the Weyl tensor and F),, is the standard field strength tensor. Both

U spep and fap are completely symmetric in their indices.

2.4.2 Field Strength Spinor

The spinor field strength in the Weyl double copy resides in "an appropriate flat limit"
of the entire spacetime metric, which we associate with the Minkowski vierbeins
g,(f,),) = eg)) ’aef,o)’bnab. Then the frame field strength F; in relation to the spacetime

field strength can be defined as

Fu = e e Fy,. (2.65)

Importantly, F,; lives on Minkowski space while F),, lives on a different form of
flat space described by g,(fl),). The spinor field strength associated with the frame field
strength F, is analogous to (2.64).

1
fap = 5Eﬂ,ajgbB. (2.66)

We should note that for each of the type D metrics, f4p is in the form of o3 as

1 0
fap =12 (2.67)
0 -1
AB
where Z is a general complex function. The nonzero components of F,;, are related

to the real and imaginary parts of Z respectively as
1 1
F01 = —§R€(Z) s F23 = —§Im(Z) . (268)
Finally, we can construct F},, by using flat space vierbeins as

Fuu — abe(O),aue(O),bV

1
= =5 (Re(2) ety + Im(2) e @0y) . (269)

We can note that, from (2.69), if Z has an imaginary component, then F), has a
magnetic field component when vierbeins are diagonal (as would be the case if g, is

the metric in spherical polar or oblate spheroidal coordinates).

16



2.4.3 Weyl Spinor

The Weyl spinor ¥ 45 p may be expanded using the spinor basis {04, 4} as

Vapep = VYo tatptotpy — 4 Wi otpietpy + 6 Wa040BLcLp)

— 4 V3 040B0ctp) + W4i040B0c0D) , (2.70)

where parentheses represent symmeterization, with the convention k(4 gy = % (kap + kpa).

The components W; € C are Weyl scalars are related to the Petrov classification of

the spacetime and, they are defined by using null tetrads as

Vo = Wag nt*m?n%m”

Uy = Wiag n“l”n“mﬁ,

Uy = Wopas nm"m1” (2.71)
U3 = Wpas n*1"m*1°

Uy = Wpasm'l'm®l° .

For any Petrov type D spacetime, one can always choose an appropriate coordinate
system such that W, # 0 while all other W;’s are equal to zero, and the Weyl spinor
can be written as

quBCD = 6\112 O(AOBLcl,D). (2.72)

2.4.4 Petrov Classification of Field Strength and Weyl Spinors

Now we can briefly introduce the spinor classification of field strength F,,, and Weyl
W wep tensors by following the discussion in relevant parts in |86, 87]]. We can start

the discusson by considering field strength tensor.

Let £4 be an arbitary spinor with components £° and £!. We can expand the field

strength spinor by using these spinor basis as a quadratic polinomial in £° and ¢!

FaB€2EP =f00€°€% + 2f01€%" + fru'et, (2.73)
If we define a complex number .
¢= 2—1 274)

17



we can write equation as
fas = (€ [foo¢® + 2f01¢ + fu] - (2.75)

whose factorization reads

fas =(&")* (¢ 4 1) (B¢ + Br)
= (&™) (BBE") . (2.76)

Thus we can write the field strength spinor as
fap = Py - (2.77)

This equation is called canonical decomposition of f4p and the spinors a4, S5 are
principal spinors of the field strength spinor. Each of these spinors determines a
principal null direction. By using these principal spinors we classify the field strength

spinor as described in Table [2.1]

Table 2.1: Classification of the field stength spinor

Type | Partition far fap satisfies
I {11} | awPp) | fas€*eP =0
N {2} | auapy | fa€*=0
O {-} 0 fap =0

Here we should note that, in fact, the "partition" column shows the two possible coin-

cidences for the principal null directions. The last row is included for completeness.

Now, we can turn our attention to the Weyl spinor, for which we can follow a similar

procedure. Again, the Weyl tensor can be decomposed as

W apepEEPECEP =Wi000€ 06 €0 + AW 1000 €06°E0 + 6W110€ 1€ E0E°
+ 40 261N + Wy Eetetet (2.78)

and if the definition of ¢ in (2.74) is used, one can write equation (2.78) as

Uagen = (€ [WooooC* + 4W1000¢” + 6P 1100¢% + 4W0111¢ + U] . (2.79)
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Its factorization gives

Uapep =€) (a0l + a1)(BoC + 1) (10¢ + 71) (80C + 61)
=(aa&™)(BeE") (v6€9) (6pEP) (2.80)

Thus, we get

VaBcp = aaBBYcOD). (2.81)
Analogous to the field strength spinor f4p, the ¥ 4pcp shown in is canonical
decomposition of Weyl spinor and the spinors a4, g, 7¢ and dp are principal spinors

that determine the principal null directions. In Table [2.2]the classification scheme can

be found.

Table 2.2: Classification of the Weyl Spinor

Petrov Type | Partition VY aBcD W 4sgcp satisfies
I {1111} | auBsYcdp) | YapepEtEPECeP =0
i} {211} | aapycdp) | VapopEEPeC =0
D {22} aapBeBpy | VapepEtEBEC =0
I {31} | aaasachp) U apepEtEP =0
N {4} Q(AQBOCAD) Uapcp€t =0
) {-} 0 Vapep =0

The symbols D and N in the "Petrov type" column means degenerate (or double) and
null types respectively. All types except I are algebraically special while type I is

algebraically general.

We can end our discussion by choosing £% and £! as o and ¢ respectively by using the

arbitrariness of £, In this case the equation (2.81) turns into the equation (2.70)

Vapep = VYo tatptotpy — 4 Wi otpietpy + 6 Wa040pLcLp)

— 4 V3 040B0ctp) + W4040B0c0D) . (2.82)
In the same way the field strength spinor reads

JaB = fooa0B) + 2f10aLB) + f2t(alp). (2.83)
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Using Table 2.2] for D type metrics, we can easily say that the only non-zero coeffi-
cient in (2.70) is W5. In this case we can write

\I[ABCD =6 \I/g O(AOBLCLD). (284)

At this point, if we consider the (2.77) and (2.67), for D type metrics, we can expect

a relation of the following form

Vapcp = 6 V3 040BL0Lp) ~ 521Z20(ALBOCLD)

1
= §Z10(AOB)Z2L CLD = f AB CD (285)

Here, the functions Z; and Z; can be corresponded to fy and fo, in (2.83)), respec-
tively. They are related to each other as Z; = —Z; = Z, and S is the linear combi-
nation of the real and imaginary parts of Z. Eventually, the last simple but inspiring

equation (2.83) is the essence of the Weyl double copy.
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CHAPTER 3

THE KERR-SCHILD DOUBLE COPY IN THREE DIMENSIONS

3.1 Kerr-Schild Double Copy with a Flat Background Metric and the Coulomb

Solution

The main idea of the Kerr-Schild double copy is to consider stationary metrics of the
Kerr-Schild (KS) form
Guv = N + K huua a()g;u/ =0 (31)

where the deviation A, from the background Minkowski space 7, is constructed

from a scalar ¢ and a vector k,, as
hyw = ¢ kuk,. (3.2)

Here, the vector £, is null and geodesic with respect to both the background metric
7w and the full metric g,,,. When the metric is in the KS form (see [98] for a review),
the Ricci tensor with mixed indices becomes linear in the deviation %, and the trace-

reversed Einstein equations take the form

R'uu = g <aaauhua + aaazzh“a - aaaahul/) .

K2 1
= — |TH, — ——*, T, 33
2 { d—2 } (3-3)
where xk? = 87G. Choosing k° = —1, the 0 components of the Ricci tensor with

mixed indices become
1

0,104 (0") ~ 0 (9] = | T - 1

(56‘T] ) (3.4)
It is easy to see that if one makes the following identifications [42]

A, = dky, g

Do | =

(3.5)
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(3.4) becomes the Abelian Yang-Mills equations
8, F"" — gJ". (3.6)

where F),, = 20),A,, is the field strength, g is the gauge coupling and the source is

given byﬂ
1

J“:Q[Tg‘—d_Q

55@} | (3.7)

The time component of (3.6) is
— 0% = —V%p = ¢gJ°. (3.8)

Due to the linearization of the Ricci tensor for the metrics of the KS form, one obtains
the linearized equations of YM theory and biadjoint scalar theory, namely, Maxwell’s
equations and Poisson’s equation (3.8)). While the gauge field A, is called the
single copy of the KS graviton /,,,, the scalar field ¢ is interpreted as the zeroth copy
of the gauge field A,,.

While the construction was also extended to metrics with multi KS forms [45]], time
dependence [49]] and backgrounds more general than Minkowski [47], the only known
way to study metrics with no KS form is to employ perturbation theory [4-9,/11,26,
33,/188,/189]]. Other developments in the classical double copy include the relation
between the sources in the gravity and the gauge theory sides [[190]], and nonperturba-
tive [50,141-143]] and global [[140] aspects. However, the restrictive nature of the KS
double copy seems to be an obstacle to a better understanding. In [67], the authors
used 3D physics as a testing ground for the classical double copy since, at first sight,
it is not obvious how it works. General relativity in 3D has no propogating degrees of
freedom and therefore the first question that needs to be answered is how the degree
of freedom of the photon, which is one in 3D, is matched in the gravity side. The
second question is related to the nature of Newtonian and Coulomb potentials in 3D.
An application of Gauss’ law to a point particle of charge () and mass M suggests a

logarithmic form for both as follows

1

%E -dA x Q, Eox —, ¢ x logr, 3.9)
r
1

%g-dAocM, goc;, P x logr. (3.10)

1 See [47] for a covariant version of the KS double copy where no particular time coordinate is chosen.
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Whereas, in 3D, the Coulomb potential given in (3.9) is a consequence of Maxwell’s
equations, general relativity has no Newtonian limit giving rise to (3.10). In taking the
Newtonian limit, one considers a weak deviation from the flat space (g, = 7., + hu
with |h,,,| < 1) and a stationary weak source (Ty = —p, Tj = 0 = T) and the

geodesic equation reduces to

(fo = %ﬁhoo. (3.11)
Using g .
1 = g=—-Vo, (3.12)
one finds the Newtonian potential as
¢ = —%hoo. (3.13)

However, when d = 3, the 00 component of Einstein equations becomes
V20 =0, (3.14)

resulting in a trivial Newtonian potential ® = 0. If the double copy construction is
possible, this problem should be automatically solved since using the 00 component

of the KS graviton hgy = k¢ in (3.13)) yields a nontrivial Newtonian potential as
o = —g¢. (3.15)

When one starts from the Coulomb solution and achieves a double copy, the logarith-
mic form of the Coulomb potential is naturally moved into the metric and one obtains

a nontrivial solution.

It turns out that, in 3D, the construction possesses a unique feature with no higher-
dimensional counterpart. Although one starts with a vacuum solution in the gauge
theory side, one obtains a nonvacuum gravity solution with a nontrivial energy-momentum
tensor. In [67], the source was interpreted as a dilaton, which also seems to solve the
degree of freedom problem. It is also in agreement with the fact that the double copy
of the pure YM theory is gravity coupled to a two-form field and a dilaton, and the

absence of the two-form field can be explained by the symmetric nature of the KS

ansatz (3.1J).

This chapter aims to study the construction of [67] and further examine the nature of

the source by considering a stationary solution, which is a natural generalization of the
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static solution. Additionally, we introduce a cosmological constant, find solutions in
the KS form and present the corresponding gauge theory single copies. The outline of
this chapter is as follows: In Sec. [3.2] we review the main findings of [67] and give an
alternative way to obtain the static solution. In Sec. [3.3] we find the stationary version
of the solution and show that it is sourced by not a dilaton but a spacelike perfect fluid.
Then, we give its gauge theory single copy and discuss some properties of the solution
briefly. We end this section by discussing the addition of the cosmological constant.
In Sec. [3.4] we conclude with comments on the validity of the classical double copy

based on our results.

3.2 Static Solution

Our starting point is a point charge in 3D Maxwell’s theory. In polar coordinates

(t,r,0), the flat space metric takes the form
Nwdatdz” = —dt® + dr? + r2dé?, (3.16)
and the current vector is given by
J"'9, = gQ(7), (3.17)

where () is the charge of the particle. The Coulomb solution is obtained as

A, =ok,,  kydat=—dt, ¢= —% logr, (3.18)

due to the relation V2 log r = 270 (7) in two spatial dimensions. In order to obtain
a metric in the KS form, we first write the solution in a gauge where the vector £, is

null as follows

A, = ok, —k,da" = dt +dr, o= —g log r. (3.19)

Identifying the charge with the black hole mass parameter, () — M, the double copy
is given by the metric
ds? =, do'da” + k ¢ (k,da")?
= —(1+2GMlogr)dt* + (1 — 2GM logr)dr?* — 4GM logr dtdr + r*d6?>.
(3.20)
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Note that the vector k, is null with respect to both metrics 7,, and g,,. The Ricci

tensor of the metric (3.20) reads

00 0
R,=]00 0 . (3.21)
00 —2GM

The 06 component of the Ricci tensor is nonzero everywhere and the same should be
true for the energy-momentum tensor 7, implying a nonlocal source. The approach
of [67] is to consider the coupling of gravity to a free scalar field as
S = /d3:c\/_—g [%R— %2 99)?] (3.22)
K
where ¢; = £1 (¢ = 1, 2) control the sign of the kinetic terms and take a negative value

for a ghost graviton or a dilaton. The trace-reversed field equations which follow from

the action (3.22)) are

€

R;w == 2(9#9081/%0, (323)
where € = €1€5. The metric in (3.20) is a solution if € = —1 and the gradient of the

field is

| M
O = g(o, 0,1), (3.24)

which implies that the dilaton is linear in the azimuthal angle. The matter field equa-
tion is also satisfied as

Oy =V, V¥ = 0. (3.25)

The analysis of [67]] proceeds by taking €; = 41 and e, = —1, i.e., the dilaton should
be a ghost to support the metric given in (3.20). It was also shown that, in a proper
generalized gauge, the part of the Lagrangian which is quadratic in the fields can be
put in a form where the graviton and the dilaton kinetic terms have nonghost signs,
exhibiting a parallelism with the double copy construction in scattering amplitudes.
The existence of the scalar hair was attributed to two facts: the scalar field is a ghost
and it does not respect the symmetries of the spacetime, i.e., J,¢ # 0. However, the
same solution can be obtained by taking ¢, = —1 and ¢; = +1, and therefore, the
former does not play a role here (see the Appendix [Afor a discussion of the no-hair

theorem for free scalar fields).

This choice of the signs has the advantage that the dilaton is not a ghost any more

and the “wrong" sign for the graviton kinetic term has no physical importance since
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it does not propagate any dynamical degree of freedom. This is, indeed, an approach
which is employed to preserve the unitarity of modified gravity theories such as topo-
logically massive gravity [[88,89] and new massive gravity [90]. In this case, the
quadratic part of the Lagrangian contains no dynamical ghost, and therefore there
is no need for performing a generalized gauge transformation. Hence, one might
speculate that it might have also interesting consequences for the double copy in 3D

scattering amplitudes, which, we believe, deserves further study.

Motivated by this possibility of obtaining the solution with different sign choices, one
might also ask whether there is any other freedom in the construction of the solution,
which is answered in [67]] to a certain extent. It was shown that, while it is not
possible to see the source as a timelike fluid (perfect or viscous), the solution can also
be obtained by coupling to a spacelike perfect fluid, whose energy-momentum tensor

reads

Ty = (p+ P)uyuy + Py, u? =41, (3.26)
where u* is the velocity of the fluid. The Einstein equations in this case become
(2
Ry, = ) [(p+P) u,u, — (p+3P) guV] . (3.27)

Comparing this with (3.23)) and removing the metric term in (3.27)) by choosing p =
—3P gives
R, = —Kk*Pu,u,. (3.28)

Therefore, it yields the same solution if the pressure is chosen to be the norm of the

gradient of the field ¢ as
1 M 1
P = —(0p)? = =—- 3.29
5(00)" =13 3P (3.29)
and the fluid velocity is given by
u, = (0,0,r). (3.30)

This alternative reflects the correspondence between scalar fields and perfect flu-
ids [91H93]]. However, as we will show in the next section by studying a stationary
solution in the KS form, the correspondence does not always hold and one is forced

to choose the spacelike fluid interpretation.
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3.3 Stationary Solution

In this section, we will put different interpretations of the source on a test by studying
a more nontrivial solution. To introduce rotation, we write the flat metric in spheroidal

coordinates (¢,r,6) as

7”2

2+

N datde’ = —dt?* + dr? + (r* + a*)d6?, (3.31)

r2 + a?
where a will be the rotation parameter. The null vector £, is parametrized as

2

—k,dzt = dt + A—(lzdr + ade. (3.32)

For a metric in KS form with ¢ = ¢(r), the metric becomes

ds* = ndetde” + k¢ (kda")?

r?la? +r*(1 + rg(r))]

= —(1—ro(r))dt* + dr? + [a*(1 + wo(r)) + 77 d6?

(@ + 27
2kar’d(r) 26120(r)
+—a2 T drdf + o drdt 4 2ka¢(r) dtdd, (3.33)

and the independent components of the Ricci tensor read
(6 =12 4 K120(r) /(1) + 7 (= = 1% + 16 (r)) (1)

Roo = K 973 )
Rl (a® + 1% 4 kr2p(r)) (¢'(r) + 1" (1))
11 2 (a2 + 7"2)2 )
R — (a* + 3r2a® + kr?p(r)a® + 2rt) ¢/ (r) — a®r (a® + r* — kr?¢(r)) ¢"(r)
22 = K 973 )
o(r) (¢'(r) +ro”
Ry = /{27“ (r)é (a(27’)+ T;") (T)),
R O ((a® + 12+ kr2o(r) &' (r) + 7 (—=a® — r* + kr?¢(r)) ¢"(r))
02 — 27’3 9
s _ 20O () 4 (1) .

2(a% +1?)
where primes denote the derivative with respect to r. The trace-reversed Einstein
equations when the source is the dilaton (3.23) or the spacelike fluid (3.28) are of the
form R, o V,V,, where V,, is a three-vector and one can use this to constrain the
function ¢(r). From, for example, (Ro;)? = RooR11, it is easy to see that the only
consistent solution takes the form ¢(r) o logr and the proportionality constant is

determined by requiring one to get the static solution as a — 0, which yields

P(r) = —% log . (3.35)

27



Using this in (3.23)) with again ¢ = —1, one sees that the gradient of the scalar ¢

M [ a a® + r?
O =1/ — (7“_2’0’ —2> . (3.36)

27 T

should be given by

When the rotation is turned on, a # 0, this introduces an r dependence in the ¢ and
6 components, which conflicts with the fact that the » component is zero, hence no
r dependence. Therefore, unlike the case for the static metric, there is no consistent

solution for the function .

However, one can still use the spacelike fluid as the source and the metric with the

scalar ¢ given in (3.395), is a solution of Einstein equations (3.28)) when

1 M 1 a  a®+r?
P = 5(0@)2 = = =3P Uy = (_7()’ ) .

— 3.37
472 3 ( )

Therefore, the stationary solution cannot be sourced by a dilaton and the spacelike

fluid becomes compulsory to obtain a stationary solution in the KS form.

The gauge theory single copy can easily be obtained as
2

A, dat = ok, dat = 92_62 log r (dt + ﬁdr + ad@) , (3.38)

T a?

which is a solution of Maxwell’s equations with the current vector

2 1
J" :pv#’ p= Q_a47 ot = (1707__) ) (339)
r a
which describes a rotating nonlocal charge distribution with angular velocity w = —i

with respect to the origin. Checking the nonzero components of the field strength

tensor,
_9Q a0

p— 9 p—
oy’ " omr’

(3.40)

rt

one sees that the magnetic field is created due to the rotation in the gravity side.

In order to see some main properties of the metric (3.33)) with the scalar ¢ given in
(3.35)), it is useful to write it down in Boyer-Lindquist coordinates, which is achieved
by the transformations [94]

df — de + hldT,
dt v AT + hodr, (3.41)
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where

b - kar?¢(r)
S @) (@ = () 1)
hy = 00 (3.42)

a? — kr2¢(r) +r?’
In these coordinates, the metric is given by

r2dr?
a? — kr2g(r) +r?

+ 2ka¢p(r) dOdT (3.43)

ds* = — (1 — ke(r))dT? +

+ (r* + a*(1 + k¢(r))) dO?

When the explicit form of the scalar ¢(r) given in (3.35)) is used, it becomes

ds? = — (1 + 2G M logr)dT? + ridr”
B & a?+r?(1+4+2GMlogr)
+ (r? + a*(1 = 2GM logr)) d©? — 4aGM log r dOdT. (3.44)

From the curvature invariants

, 4G? M?
R‘u‘ R“V — 7/‘4 b)
o , 12G? M?
R"™PR oy = 4R R, — R* = — (3.45)

one sees that the metric has a real singularity at » = 0. For appropriately chosen pa-
rameters, it has an event horizon enclosed by an ergocircle, which might be thought
of a 3D analog of the Kerr black hole sourced by a spacelike fluid. The metric asymp-
totically takes the form

dr?

_ 24e? 4
2GMlogr+T % (3.46)

dsQ‘ = —2G'M logrdT? +

r—00

and therefore, it is not asymptotically flat. However, it is asymptotically locally ﬂatﬂ

as can be seen by the vanishing of the curvature invariants (3.45]) as » — oo.

When a cosmological constant is introduced, the trace-reversed Einstein equations
become

R, —2Ag,, = —K*Puyu,. (3.47)

This time, the metric given in (3.33)) is a solution when

M A
o(r) = —’1—7T log 4 Er{ (3.48)

2 To our knowledge, the black hole solution discovered in [93] is the only other known solution of this type
in 3D.
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with the fluid properties given in (3.37). The gauge theory single copy is given by

A 2
99 1oer — 2, > (dt gl t adQ) (3.49)

Aydat = ok, dat = (2 7

and the nonzero components of the field strength tensor read

A
F, - 99 _Ar FT9:a<ﬂ——T>, (3.50)
2mr g

with the magnetic field again created by the rotation. Maxwell’s equations are now
given by
O,F" — g <J(“A:0) + jﬂ) , (3.51)

where the first current vector ./ 5\:0) describes the source in the absence of the cosmo-
logical constant and is given by (3.39). The second current vector describes a constant
charge density filling all space as follows

2A

?7

which is the expected effect of adding a cosmological constant in the gravity side.

JE = pot*,  po = = (1,0,0), (3.52)

When written in Boyer-Lindsquit coordinates using (3.43)), the metric becomes

7,2

ds® = — (1 +2GM logr — Ar?)dT? dr?
5 (1+ 08T ™) +a?—l—r?(l—i—QGMlogr—Aﬂ) "

+ (r* 4 a*(1 — 2GM log r + Ar?)) dO” + 2a(—2G M log r + Ar*) dOdT.

(3.53)
From the curvature invariants
A4G2M?* 8GAM
R'"R,, = —— — —5— + 12A%,
T T
12G?’M?  8GAM
R"™° Ry = ARM Ry, — R? = ———— — ——— + 12/, (3.54)
T T

the singularity at » = 0 is again apparent and an event horizon enclosed by an ergo-

circle can be identified by a certain choice of the parameters. Taking A = 42 , the
asymptotic form of the metric is
7\ 2 >
ds?| _ (—) ar? + () ar? + 1202, (3.55)
7—00 € r

which is the anti-de Sitter (AdS) spacetime with radius ¢. Therefore, the metric given
in (3.53) serves as an interesting alternative to the well-known BTZ black hole [83]],
which is, of course, more physical since it is a solution of the cosmological Einstein

theory with no matter field like our spacelike fluid.
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3.4 Summary

In this chapter, we revisited the static solution constructed in [67]. Being able to
obtain the static solution with different sign choices for the kinetic terms of the gravi-
ton and the dilaton, yielding a quadratic Lagrangian with no propagating ghost field,
we claim that the study of scattering amplitudes in 3D might offer an interesting in-
sight into the double copy because the change of sign of the graviton kinetic term is

problematic in higher dimensions.

Turning our attention to a stationary version of the solution in the KS form, we
showed that it cannot be sourced by a free scalar field and the source should be a
spacelike fluid. Even in this form, it presents itself as an interesting example of the
classical double copy where the gauge theory source is a nonlocal rotating charge
distribution. By introducing a cosmological constant, we obtained a rotating, asymp-
totically AdS solution whose single copy gauge field describes an electric field and a
magnetic field, which is proportional to the rotation parameter in the gravity side, and
the effect of the cosmological constant shows itself in the gauge theory as a constant
charge distribution filling all space. Based on the expectation from the scattering am-
plitudes that the double copy should be given by gravity coupled to a dilaton, obtain-
ing a stationary solution sourced by a dilaton or understanding why it is not possible
remains an open problem, whose solution might give a better understanding of the

classical double copy.
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CHAPTER 4

THE KERR-SCHILD DOUBLE COPY OF COULOMB SOLUTIONS IN
THREE DIMENSIONS

As we have seen in the previous chapter, due to the lack of degrees of freedom and a
Newtonian limit in 3D GR, it is not obvious, at first sight, how the procedure worksE]
For the Coulomb solution, which is the simplest nontrivial solution in the gauge the-
ory side, the gauge boson degrees of freedom is mapped to the graviton and the KS
scalar characterizing the spacetime metric is directly linked to the Newtonian poten-
tial as given in (4.13). However, without matter coupling, this cannot be realized
since the Newtonian potential vanishes identically. When the problem was tackled
by coupling a free scalar field, a hairy black hole with the desired properties can be
obtained if the scalar is a ghost, which is equivalent to coupling a spacelike fluid [67].
In order to support the black hole solution, the scalar should be linear in the azimuthal
angle, and therefore, does not vanish at infinity as suggested by the no-hair theorem.
In the linearized theory, the ghost sign can be removed by a certain generalized gauge
transformation; however, it is still somewhat unsatisfactory to not have a reasonable
behavior of the matter field at infinity. When investigated further in [|68]], it was pro-
posed to take the Einstein-Hilbert term with a ghost sign, which does not introduce a
dynamical ghost in the theory and removes the need for a generalized gauge transfor-

mation to get rid of the ghost in the linearized theory.

In this chapter, we aim to present an alternative for the matter coupling with a better
behavior at infinity, which, as we will see, also provides a beautiful connection to a

well-known solution of 3D black hole physics. In Sec. 4.1, we will make a review

1 See [96197] for the study of 3D amplitudes where a degree of freedom is introduced in the gravity side by
adding a Chern-Simons term in the action. As a result, one obtains the amplitudes in topologically massive gravity
as the double copy of the amplitudes of topologically massive electrodynamics.
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of the construction of [67]] by emphasizing the points that will be relevant to our later
discussion. In Sec. {.2] considering the on-shell duality of a scalar and a gauge vector
together with the KS ansatz for the metric, we will find that the same type of solution
can be obtained in Einstein-Maxwell theory. In Sec. [4.3] we will obtain the most
general static solution of the KS form by introducing a cosmological constant. When
the cosmological constant is zero, we will show that a charged black hole solution
with the correct Newtonian limit, which also gives rise to the Coulomb solution as its
single copy, can be obtained when a ghost sign is used in the action. The electric field
corresponding to the gauge field in the gravity side vanishes at infinity, and there-
fore, provides the promised improvement. For a negative cosmological constant, the
charged Bafiados-Teitelboim-Zanelli black hole [83]] follows from the most general
solution without taking any ghost sign in the action. We end this section by studying

the gauge theory single copy of the solution. Finally, we present our conclusions in

Sec. 4.4

4.1 The Coulomb Solution from the Free Scalar

4.1.1 Solution with the correct Newtonian potential

In [67], the Coulomb solution was obtained as the single copy of the static black hole

solution of GR coupled to a free scalar with the following action:

/dgm\/_ {ClR— %( ©) ] : K = 871G, 4.1)

where (; = £1 (¢ = 1,2) control the sign of the kinetic terms and take a negative

value for a ghost graviton or a dilaton [68]. The field equations which follow from
the action (4.1) are

=& %08”907 (4.2)

0u(V=9 9" 0up) =0, (4.3)

where ¢ = (;1(,. Let us consider the following static KS metric around the Minkowski

space

Guv = Nuv + ¢(T> kukzl ) (44)
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where the vector £, is null and geodesic with respect to both the background metric
1 and the full metric g, (see chap. 32 of [98]] for a detailed discussion of important

properties). Writing the background line element in polar coordinates
Nwdatdz” = —dt?* + dr? + r2d6?, 4.5)
the vector £, can be written as follows
—k,dx" = dt +dr, (4.6)
and the line element in the KS coordinates becomes

ds® = n,datda” + ¢(r)(k,da’)?
= —[1—¢(r)]dt* + [1 + ¢(r)] dr® + 2¢(r)dtdr + r*do>. 4.7
If one assumes
dup = (0,0,¢), ¢ = constant, (4.8)

the equation for the scalar field (4.3)) is satisfied independent of the KS scalar ¢ as

follows:
0u(vV=99"0vp) = (/=11 0yp) = 0, (4.9)

where we have used det g = detn, g% = 7% and g% = g"% = 0.

With this in hand, one can now check the gravity equations (4.2)). The independent

nonzero components of the Ricci tensor read

[o(r) = 1] [r ¢"(r) + ¢'(r)]

Ry = o )

R, = A0+ 0]

R, = BO U0 490

Rgg =1 ¢'(r), (4.10)

and the only nonzero component of the right-hand-side of the equations is

(RHS)y, = 47(G . (4.11)

2 In [67], the authors directly use the KS scalar yielding the correct Newtonian potential and conclude that the
solution should be sourced by a free scalar. Here, we give the derivation in a way that will be useful in our later
discussion.
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From the /6 component, one finds the solution for the KS scalar as
¢ = b+ 4G log(r), b = constant, (4.12)

which also satisfies the remaining components. The constant ¢ and the parameter ¢
can be fixed by considering the Newtonian limit. The Newtonian potential is given

by

1 ¢
o =——(1 =—= 4.13
2( + goo) 5’ (4.13)
and in order to mimic the Newtonian gravity
= GM
g=—-Vob=— T, (4.14)
r

the KS scalar should be in the following form:
¢ = —2G M log(r) + constant. (4.15)

Therefore, we need to fix the parameters as follows:

c=1/— ¢ =—1, (4.16)
with which, the KS scalar becomes
¢ = —2GM log(r) + b. (4.17)

Since ( = —1, one should choose the “wrong sign” for one of the kinetic terms in
the action (@.1). While the scalar was chosen to be a ghost in [67]], introducing the
Einstein-Hilbert (EH) term with the negative sign has the advantage that it does not
propagate any physical degree of freedom [68].

In order to fix the integration constant b, we write the metric (4.4) in the Boyer-

Lindsquit (BL) coordinates by the following coordinate transformation:

¢(r)

dt — dt + ———dr, (4.18)
1 —¢(r)
which leads to the line element
2 2 dr? 2 112
ds® = —f(r)dt —i—m—i—r do-, f(r)y=1—¢(r), 4.19)
r

for a generic KS scalar. In our case, the metric function becomes
f(r)y=1—=b+42GM log(r). (4.20)
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In order to recover the Minkowski spacetime when the black hole mass vanishes
(M = 0), one should take b = 0. Therefore, the KS scalar and the metric function are

given by
o(r) = —2G M log(r), 4.21)

f(r) =1+2GM log(r). (4.22)

We refer the reader to [67] for an analysis of the motion of massive particles where
the authors show that stable orbits exist for a certain range of parameters. In Sec. [4.3]

we will show that it is true for the solution of Einstein-Maxwell theory.

4.1.2 Gauge theory single copy

The gauge theory single copy for a generic matter coupling can be obtained by con-

sidering the trace-reversed gravity equations

v

K
Ry = - [T = 8,T). T=T", (4.23)

where 7}, is the energy-momentum tensor. For a KS metric (4.4), the Ricci tensor

with mixed indices reads
1
R, = S[0°0" (S huka) + 0°0,(0 K'ke) — 00,0 h1)], 424)

which is linear in the perturbation. If £ = +1 and one identifies A, = ¢ k,,, the 1.0

component can be written as

1
Ry = S0,F™", (4.25)

where F),, = 20, A, is the field strength tensor of the gauge field A,. Therefore,
the 1.0 component of the gravity equations can be mapped to Maxwell’s equations as
follows:

o, F"" = gJ", (4.26)
where the source is given by
JH=2[T" —0'\T], (4.27)
and the gauge coupling is obtained by %2 — g [42].
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Application of this procedure to our solution gives the single copy gauge field a
A, dat = ¢k, dz* = Qlogr (dt + dr), (4.28)

where we have made the replacement 2GM — (). This is just the Coulomb solution

in a gauge where A, A* = 0, and the source is
J'9, = Q 6*(7) 04, (4.29)
which corresponds to a charged particle in the flat spacetime.

Although we achieved the Coulomb solution as the single copy, the construction has
the undesired feature that the scalar field in the gravity side is linear in the azimuthal
angle. This is not unexpected due to the existence of the scalar hair (see Appendix [A.
for a detailed discussion of no-hair theorem for free scalar fields). One way to obtain a
matter configuration which is well behaved at infinity is to consider the coupling of a
gauge vector since it will yield a global charge, i.e., the electric charge, and therefore,
produces no hair. In d > 4, this is just the Reissner-Nordstrom black hole solution
of Einstein-Maxwell theory, whose metric can be also written in the KS form around

Minkowski background.

4.2 Scalar-Vector Duality and Its Consequences

In this section, we will present the duality between a free scalar and a gauge vector
in three dimensions by following Sec. 7.8 of [99], and then, discuss its consequences

for the classical double copy. In d-dimensions, the number of on-shell degrees of

(d—2)!
pl(d—p—2)!"

C(d—-2,p) = C(d—2,d—p—2), ap-form and a (d—p—2)-form in d-dimensions have

freedom of a p-form gauge field is C(d — 2,p) = Due to the identity
the same number of degrees of freedom. In d = 3, this implies that a scalar (p = 0)
and a vector gauge field (p = 1) have the same number of degrees of freedom, which
is one. Indeed, one can also show that the free field equations are equivalent and the

solutions are in one-to-one correspondence. In order to see that, let us consider the

3 We write the solution with a different normalization than [67,|68]] to simplify the solution of Einstein-
Maxwell theory that we will give in Sec. £.3] The Maxwell action is taken as (#.33) and we formulate the
scalar-vector duality in Appendix IBccordingly.
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following flat space action

§— / P/ %f,wfﬂw

1
P fL0pl, 4.30
Nor JuwOpp (4.30)
where /P = \/%75‘””’ is the Levi-Civita tensor and we take the Minkowski spacetime

in polar coordinates (4.5)) for later convenience. The equation for ¢ gives
"0, fup, =0, (4.31)

which implies f,, = 20|,a,), i.e., f,, is the field strength tensor of a gauge field a,,.
Checking the equation for f,,, gives how it is related to the scalar ¢ as follows:

1
2V2r

Inserting the expression for f,, into the action {.30)) yields the action for a free scalar

Sscalar = /dgm\/—_ﬂ |:% (8()0)2:| ) (433)

fuw = —V2m€,,000 = O = Ewpf”. (4.32)

with the field equation
Ou(v/—nn'0,p) = 0. (4.34)

In the same way, one can also eliminate ¢ from the action (4.30) by using the expres-

sion in (4.32)), which yields the action for a free gauge field

1
Svector = /dgx\/__n |:_8_7Tfp1/f'uy:| ) (435)

where the field equation is given by

A, (V=" fag) = 0. (4.36)

We are now in a position to discuss the implications of the duality. As we have seen
in (4.9), the scalar field configuration given in is a solution when the spacetime
is curved and endowed with the metric (4.4), or equivalently, flat and endowed with
the Minkowski metric in polar coordinates (4.5)). Our analysis shows that the actions
for the free scalar (4.33)) and the free vector (4.35]) are equivalent and the solutions to
free field equations (4.33]4.35) are in one-to-one correspondence where the relation
between the solutions is given in (4.32). For the solution of the scalar field given
in (4.8)), this implies that, for the corresponding vector solution, the only nonzero
component of the field strength tensor is
1
for o<, (4.37)
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which is the electric part. Introducing the electric charge as the proportionality con-

stant, the gauge field and the field strength tensor can be written as
a,dzt = qlog(r)dt,
1
5 Juw da A da” = Lar A at. (4.38)
r

Similar to the scalar case, this field configuration is also a solution when the spacetime

is curved and endowed with the metric (4.4) as follows:

O, (V=00 fap) = 0, (V=9 9" g"° fup) = 0. (4.39)

As emphasized in [99], although the equivalence is true for the simplest kinetic ac-
tions, it is not guaranteed to hold in a more general setup. We have proven that the
scalar solution in curved spacetime with a KS metric implies that the electric field
configuration (4.38)) is also a solution in such a spacetime. However, one should keep
in mind that this statement is independent of the KS scalar ¢(r). Therefore, when
coupled to gravity, the matter equations will definitely be satisfied if the metric can
be put in the KS form (4.4)); however, the KS scalars in these two cases might differ.
Indeed, one immediately sees that the static black hole solution obtained by coupling
the vector field to gravity should be a charged black hole solution. In the next section,

we will study the black hole solution with this new matter coupling.

4.3 Einstein-Maxwell Theory in Three Dimensions

4.3.1 The most general static solution of Kerr-Schild form

Motivated by the results of the previous section, we consider Einstein-Maxwell theory

with a cosmological constant described by the following action:

S = / d’zyv/—g {% (R—2A) - G2 fuf™ 1, k= 8nG, (4.40)

8
where, similar to the scalar case, (; = +1 (¢ = 1, 2) control the sign of the kinetic
terms and take a negative value for a ghost graviton or a vector. The field equations

arising from the action (4.40)) are given by
2
K
R/u/ - 2Ag;w - Cg (2fuafl/a - g;u/faﬂfaﬁ) s (441)

A (V=g ™) =0, (4.42)
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where ( = (1(. As discussed in the previous section, for a static metric in the KS
form (4.4), the solution for the vector field is given in (4.38). With this at hand,
one can solve the gravitational field equations (4.41)). Introducing the cosmological

constant modifies the left-hand side as follows:

[o(r) = 1] [r ¢"(r) + ¢'(r) — 4Ar]

(LHS),, = . |
(LHS), — ¢(r) [r ¢"(r) 2+T ¢'(r) — 4Ar] |

sy — P UL qb”(;z +¢/(r) - 4Ar]

(LHS)gg = 7 ¢/ (1) — 2772, .

and the only nonzero component of the right-hand-side of the equations is
(RHS)yp = 2¢Gq>. (4.44)
From the 06 component, the KS scalar can be solved as
o(r) = C + Ar? + 2¢Gq* log(r), C' = constant (4.45)

which also solves the other components of the field equations. In order to give a
physical meaning to the integration constant C', we again write the metric in the BL
coordinates via the transformation (4.18)), which leads to the following metric
function:

fry=1-C — Ar* — 2¢Gq*log(r). (4.46)

Having found the most general solution, we are now ready to investigate physically

interesting possibilities.

4.3.2 Solutions with the correct Newtonian potential (A = 0)

In order to obtain solutions with the correct Newtonian potential, we take A = 0 since
only the logarithmic term is needed. In the Newtonian limit, the gravitational field in

terms of the KS scalar can be obtained from Eqs. (@.13)-(4.14), which yields

1o
j=5Vo. (4.47)
For the KS scalar given in (4.45) with A = 0, we obtain
G 2
g=" 9 (4.48)
,
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which shows that in order to preserve the attractive nature of the gravitational force,
one should have ( = —1, i.e., either the EH term or the vector kinetic term in the

action (4.40) should carry a ghost sign (see the Appendix [Rfor more details).

Note that our solution should be a charged black hole and the gravitational attraction
is provided by the electric charge. Therefore, the integration constant should be a
function of the mass of the black hole C' = C'(M). In order to fix the constant, we
again need to check the metric function in the BL coordinates given in (4.46) and
demand that the metric reduces to the Minkowski metric [f(r) = 1] when the mass
and the charge are set to zero (M — 0, ¢ — 0). This constraint can be satisfied by

taking the mass term with different signs as follows:
fE(r) =14+ 8GM + 2Gq* log(r), (4.49)

where for both choices f(r) has a single zero, and therefore, admits one event horizon.

Although we have already ensured the correct Newtonian limit, it is interesting to
have a closer look at the properties of the metric as done in [67] for the scalar case.
For this purpose, we check the geodesic motion of a timelike particle described by
the equation

%EQ = % (%)2 +VE VE= % (f—j + 1) fE(r), (4.50)
where E and L are the energy and the angular momentum of the particle which are

defined through the timelike and the angular Killing vectors & 5 g) aS follows:

v

E = —Yuv gé)u ) L= Guv gélg)ulﬂ 4.51)

where u* is the velocity the particle. The Newtonian limit of the effective potential

V;ff can be obtained by neglecting the LG terms as followf]:

Vi = % +4GM + ZL—; + Gq*log(r). (4.52)
The metric function obtained by coupling a free scalar (4.22)) and the ones we ob-
tained by coupling a gauge vector (4.49) have the same functional form [f(r) =
A + Blog(r), A, B: constant]. Therefore, all the physically important properties of
the solution that is discussed in [67] are also valid for our solutions. They can be

summarized as follows:

4 For a general analysis, one should write the logarithmic term in both Vi and Vi by introducing a length
scale as log(-). We set 7o = 1 for simplicity.
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1. The Newtonian potential Vy has an infinite barrier at short distances and matches

with the effective potential V¢ at long distances.

2. A timelike particle cannot escape to infinity due to the logarithmic divergence

of the potential as r — oo.

max

3. The effective potential Vi develops a local maximum (V) and a local min-

imum (V/%") when the angular momentum of the particle L is larger than a
certain value (L,,;,). A timelike particle moves along a stable orbit provided
that V" < E < V% On the other hand, the Newtonian potential Vy always

(&

admit stable orbits.

4. When E = e‘t’%in and L > L, timelike geodesics form circular orbits, i.e.,
dr __ :
one has §7 = 0 in (£.50).

5. Since the central potential is not that of an inverse-square central force [V (r) =

—%, k: constant] or a radial harmonic oscillator [V (r) = %k'rQ, k: constant],

Bertrand’s theorem assures that there will be precession for orbits with £/ >

min

eff -
In Fig. we show that properties 1-4 hold for the metric functions f*(r) given in
(4.49) by tuning the parameters such that L;, = 1. Having shown that the qualitative
properties of the metric is the same, we refer the reader to [67] where the authors
present timelike geodesics, and also, show that more precession is observed in the

relativistic orbits when compared to the Newtonian orbits.

The KS scalars corresponding to the metric functions (4.49) are given by
¢*(r) = F8GM — 2Gq* log(r), (4.53)
and lead to the following single copy gauge field:
Ay dat = ¢k, da* = (£8GM + 2Gq* logr) (dt + dr). (4.54)

The constant factor does not play a role and this is just the Coulomb solution (4.28))
with the identification 2G¢*> — Q, i.e., the electric charge in the gravity side ¢ yields

a positively charged point particle in the gauge theory. This is a remarkable difference
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Figure 4.1: First row shows the effective potential V_;; and the Newtonian potential
Vi for the metric function f~(r) with GM = - and G¢* = 1. The second row
shows the effective potential V.| and the Newtonian potential V" for the metric func-
tion f*(r) with GM = 1z and G¢* = 2. For both cases, timelike geodesics are stable

orbits when L > L, = 1.

compared to the higher dimensional casesE] In dimensions higher than three (d > 4),
the static solution of the Einstein-Maxwell theory, the Reissner-Nordstrom black hole,

has the following KS scalar:

2GM  G¢?

¢(T) = rd—3 - r2(d—3)° (455)

where M and ¢ are the mass and the electric charge of the black hole respectively.

The gauge field in the gravity side and the corresponding field strength tensor are

given by
a,da = ——L_dt (4.56)
“ p(d=3)"" '
1 y q

The gauge theory source for the solution is as follows:

2(d — 3)*Gq?

r2d-2)

Jh = pdh, p=2G M (F) — (4.58)

where we see that the mass M of the black hole shows itself as the charge of a point
particle and the electric charge ¢ results in a nonlocalized charge distribution which
vanishes as 7 — oo. Obtaining the Coulomb solution in d = 3 is a very peculiar

property, which is possible thanks to the fact that the existence of the electric charge in

5 Various aspects of the charged black holes solutions in the context of the KS double copy are discussed
in [47]] and the source terms for d = 4 are given in [48] .
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the gravity side changes the KS scalar (4.53)) such that the modification has the same
functional form [log(r)] with the Coulomb solution in d = 3. In higher dimensions,
as can be seen in (4.55)), the mass term carries the functional form of the Coulomb
solution given in (4.56)), and therefore, yields a point charge in the gauge theory. The
modification due to the electric charge has a different functional form and produces a

nonlocalized charge density as described in (4.58).

4.3.3 The charged Banados-Teitelboim-Zanelli (BTZ) black hole (A < 0)

We have shown that the Coulomb solution can be obtained as a gauge theory single
copy by considering Einstein-Maxwell theory where either the EH term or the vector
kinetic term carries a ghost sign. One can introduce the cosmological constant A
such that solutions with the correct Newtonian potential are recovered when A = 0.

Instead, we will study the charged BTZ black hole whose metric function reads [|83]]
2

F(r) = —8GM + 2—2 — 2G¢* log(r). (4.59)

Comparing this with the most general solution (4.46) gives that the parameters should
be chosen as follows:

1

0%’

where the last one equation shows that no ghost field is needed to obtain the solution.

C=1+8GM, A= ¢ =1, (4.60)

Gravitational field equations with the cosmological constant (#.41)) can be mapped
to Maxwell’s equations by again checking the ;0 component of the trace-reversed

equations and using (4.25)), which yield
O F" =g Iy + T (4.61)

Here, J(“A:O) is the source in the absence of the cosmological constant, whose general
form is given in (#.27). J* represents the effect of the cosmological constant on the
source and takes the following form:

_4A
=5
which is a constant charge density filling all space. The KS scalar corresponding to

JH = pevt, Pe ot = (17 0, O) ) (4.62)

the metric function @#.59) is

(r) =1+ 8GM + Ar® + 2Gq* log(r), (4.63)
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with the single copy gauge field
A, dat = gk dat = — [1+8GM + Ar® +2G¢’ log(r)] (dt +dr).  (4.64)
The field strength tensor reads

1
3 F,,da" ANda” = {g — Ar} dr A dt, (4.65)

where we have made the replacement —2G¢? — (). We see that the gauge theory
single copy of the charged BTZ black hole is the Coulomb solution () < 0) modified
by a term which describes an electric field linearly increasing with the radial coordi-
nate r (since A < 0) and the source is a point charge located in a medium of constant
charge density as follows:

%1 0. (4.66)

JHO, = {Q 62 (7) +
g
It is important to note that this is the usual behavior of the Schwarzschild-AdS black

hole in higher dimensions when written around a flat background metric [48]].

As we see, the Coulomb solution () < 0) modified by the cosmological constant
can be obtained from the well-known charged BTZ black hole without any need for
introducing a ghost. From (4.47), one can calculate the gravitational field in the

Newtonian limit as

2 T

which shows that a negative cosmological constant (A < 0) is needed for an attractive

A G
g:{ r+—q%

(4.67)

force, which is possible when r > {—Cj\q. The geodesics of the charged BTZ black

hole exhibit a very rich structure and the details can be found in [100].

4.4 Conclusions

In this chapter, we have studied the KS double copy of the Coulomb solution in 3D,
which is an important consistency check for the classical double copy due to the lack
of degrees of freedom and a Newtonian limit in GR. The double copy solution should
have the correct Newtonian limit, and in 3D, this can only be achieved by matter
coupling. In [67], the solution was constructed by coupling to a scalar but has some

undesired features. It is a hairy black hole which requires that either the EH term
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or the scalar kinetic term carry a ghost sign, and the scalar field does not vanish at
infinity. Making use of the on-shell duality of a free scalar and a gauge vector, we
have shown that a solution with the correct Newtonian limit can also be obtained as a
solution of Einstein-Maxwell theory such that the single copy is again the Coulomb
solution. While at least one ghost sign is still needed, the electric field in the gravity

side vanishes at infinity, which is an improvement compared to the scalar case.

When a negative cosmological constant is introduced, the charged BTZ black hole is
a solution without any need for a ghost field, and we have shown that the single copy
gauge field is the Coulomb solution () < 0) modified by a term describing an electric
field whose magnitude linearly increases with the distance to the point charge. The
source is a point particle sitting in a medium of constant charge density, which is the
usual effect of the cosmological constant. At the expense of this modification, this
remarkably establishes a connection to the well-known black hole solutions in 3D
gravity, which, we believe, shows the potential of 3D KS double copy to have many

other interesting features.
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CHAPTER 5

GENERALIZED BLACK HOLES IN THREE DIMENSIONS

As we have seen in the Chapters [3] and 4] the double copy of the Coulomb solution
in three dimensions is a non-vacuum solution that can be obtained through different
matter couplings. It is the static black hole solution of Einstein-Maxwell theory or
general relativity minimally coupled to a free scalar field (with one ghost sign in the
action in both cases). In this chapter, we consider generalizations of these matter cou-
plings by paying particular attention to the regularity of the static black solution on
the gravity side and the corresponding single copy electric field in the gauge theory.
We show that 1) Einstein-Born-Infeld theory yields a singular double copy, which ad-
mits stable orbits for certain choices of parameters, with a regular single copy electric
field. ii) Black hole solutions constructed by [101]] by coupling to the scalar field
exemplify mostly regular double copies with regular single copy electric fields and
also admit stable orbits. Additionally, we use these solutions to investigate the con-
nection between horizons on the gravity side and electric fields on the gauge theory

side, which was previously observed in four dimensions.

The outline of this chapter is as follows: In Section[5.1] we review the basics of the KS
double copy for a static spacetime and discuss the regularity of the solutions. After an
investigation of Einstein-Born-Infeld theory as a generalization of Einstein-Maxwell
theory in Section[5.2] we move on to generalizations of the scalar coupling in Section

We end this chapter with conclusions and discussions in Section
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5.1 Basics of the 3D Kerr-Schild Double Copy and Regularity of the Solutions

For a spacetime admitting KS coordinates, it is possible to write down the components

of metric tensor in the following form [102]]

Guv = N + gbkuku ) (51)

where ¢ is a scalar field and the vector £, is null and geodesic with respect to the full
metric g,,, and the flat background metric 7, (see chap. 32 of [98]] for a summary
of important properties). In these coordinates, the Ricci tensor with mixed indices

becomes linear in the perturbation as follows
R, = S 000" (0h o) + 0°0,(0k"h) — 0°0u(0hR,)] (52)
If one writes down the background line element in polar coordinates
Nudatdr” = —dt? 4+ dr? 4 r2de?, (5.3)

and parametrizes the null vector as

—k,da" = dt +dr, (5.4)
the ©10-components become
Rl = %@FW, F,.,=20,A,, A,= ok, (5.5
With minimal matter coupling, the trace-reversed gravitational field equations are
given by
RF = %2 (T" — 6" T) , K = 871G, (5.6)

where T}, is the energy-momentum tensor and 7' is its trace. Checking the p0-

components, one obtains the Maxwell equations
O, F"* = gJ*, (5.7
where the source is given by
JH=4(T — 0" T) , (5.8)

and the gauge coupling is obtained by the identiﬁcatio k? — 4¢g. Therefore, for
each solution of the gravitational field equations that admit KS coordinates (5.1)), the

double copy, one can obtain a single copy solution of Maxwell’s equations.

1 'We choose our conventions such that when G = 1, which is used in our numerical calculations, one has
o, F"H =27 J¥.
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Unlike higher dimensions, in order to obtain the Coulomb’s solution as the single
copy, one needs matter coupling in 3D. One possibility is Einstein-Maxwell theory

described by the action
1 1
S = /d3:c\/—g [—2R+ —fwfﬂ”} : (5.9)
K 8T

where f,, = 20),a,). As shown in [69]], one needs to introduce the Maxwell term
with a ghost sign in order to obtain the correct Newtonian limit [¢ = ¢ log(r),c >

0] Taking ¢ = ¢(r), a,dz* = a,(r)dt, one obtains the following static solution
o(r) = —8GM — 2Gq*log(r), a,da* = —qlog(r)dt, (5.10)

where ¢ is the charge and M is the mass parameter of the black hole. The correspond-

ing single copy solution is
Audat = ¢(r)k,da" = (8GM + 2Gq* log(r))dt (5.11)

which is just the Coulomb’s solution with the identification 2G¢*> — —(Q where (Q is

the charge of the point particle in Maxwell’s theory.

Alternatively, one can consider the coupling to a free scalar as
. 1 1
S = /ddx\/—g [—2R+ 5(030)2} : (5.12)
K

with again a ghost sign for the matter term. Taking ¢ = ¢(r), a static black hole

solution is obtained provided that ¢ = p @ (p: constant). The solution is given by

o(r) = —2GMlog(r), = %6. (5.13)

The single copy gauge field
A, dx" = 2GM log(r)dt, (5.14)
is again the Coulomb’s solution this time with the identification 2GM — —Q).

The line element for the metric given in KS coordinates (5.1)

ds* = n,,da"dz” + ¢(r)(k,dz")?
= —[1—¢(r)]dt* + [1 + ¢(r)] dr® + 2¢(r)dtdr + r*d6?, (5.15)

2 One can also take the Einstein - Hilbert term with a ghost sign but throughout this paper, we will use the
matter terms with a ghost sign.
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can be written in the Boyer-Lindsquit (BL) coordinates by the following coordinate

transformation
¢(r)
dt — dt + —/———dr, (5.16)
1 —o(r)
as follows
1
ds® = —h(r)dt* + ——dr? + 72d60*, h(r) =1—é(r). (5.17)

h(r)
In BL coordinates, the existence of stable orbits can be easily studied. For timelike

particles, the geodesic motion is governed by the equation

1., 1/dr\’
&= — Vet 5.18
25 5 (dt) + Vet ( )
where the effective potential is given by
1/ L?
Veir = 3 (r_2 + 1> h(r) . (5.19)

The energy and the angular momentum of the particle are expressed in terms of the

timelike and angular Killing vectors { gy as

&= _guugﬁ)uy ) L= guugé)uy ) (5.20)

where u,, is the velocity of the particle. The Newtonian potential Viewion Can be ob-
tained by neglecting GL? terms in the effective potential V. The stable orbits were

shown to exist in [69] for the vector coupling and in [[67] for the scalar coupling.

When the single copy is the Coulomb’s solution, both the double copy and the single
copy have a singularity at » = 0. In 3D, there are only three independent curvature
invariants that can be constructed from contractions of the metric and the Riemann

tensor [[103H105]]. For a general static solution with the line element (5.135)), they are

given by

Y

R—?+¢, (5.21)
#\* 1

R@R;:(—) + -R?, (5.22)
T 2

AN
v _ 3
R@RPR@__(;> + 7R (5.23)

and the electric field corresponding to single copy is

E(r)=F,y=—¢'(r) = N(r). (5.24)



/
We see that if — and ¢” are regular, then the double copy solution is regular and it can
r

be checked by looking at the curvature scalar R alone. However; it is not guaranteed
by the regularity of the single copy electric field. For example, if one takes the scalar

potential corresponding to a point charge in Born-Infeld electromagnetism

2
VAR —Q
bQ

(5.25)

o(r) = —Qlog 5 )

and studies a generalized static solution by assuming that the KS ansatz (5.1)) gets no

correction, as suggested by [[66]], the curvature scalar and the single copy electric field

read
3
Ry = -——L
r (7”2 + ﬁ)
7“2 + b—2

Around r = 0, one has

_b 3 156%°
ro 20Q? 8Q*
b3r2  3b5rt
Elr)=b— —
(r)y="> 2Q2+8Q4

This is a simple example where we explicitly see that one might have regular single

R(r) = +0(r7),

+O(r°). (5.27)

copy electric fields despite having a singularity on the gravity side. If we start from a

general KS scalar ¢(r) that is regular at r = 0 as follows
o(r) = ap + arr + agr®* + O(r?), (5.28)
where a;’s (¢ = 0, 1, 2) are arbitrary constants, we obtain

R(r) = % + dag + 9agr + O(r?), (5.29)

E(r) = ay + 2ayr + O(r?). (5.30)

Therefore; the necessary and sufficient condition for the regularity of both single and

double copy solutions is a; = 0, which is the vanishing of the single copy electric
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field at the origi i.e., E(r = 0) = 0. In the next sections, by considering more
generalized matter couplings, we will provide examples of different possibilities, in
the usual context of KS double copy without making any assumptions such as made

in [66].

5.2 Einstein-Born-Infeld Theory

One of the simplest and most natural generalizations of Einstein-Maxwell theory is

Einstein-Born-Infeld theory described by the action

S = /d3x\/—_g {%R + ggﬁBI(f)] . K =8nG, (5.31)

where we have introduced (; = +1 (i = 1, 2) to control the sign of the kinetic terms
(—1: ghost, +1: not ghost) and the Lagrangian of the Born-Infeld electrodynamics is
given by [100]

b? 12

‘CBI(f) = % (]_ - 1+ @) s fwj = 28[uau]7 (532)

which reduces to that of Maxwell theory as b — oo. Assuming a static line element

of the KS form (5.15) and a,dz" = a,(r)d¢, the matter equations

g fuv
d, ifz =0, (5.33)
1 i
T o
where f? = f,, f*, are solved by the following scalar potential and the correspond-

ing independent nonzero component of the field strength tensor

r+y(r) q
= —qlog | ——= "= —, 5.34
) = —qrog |0 g (5.34)
where
7
w(r)=\/r?+ =R (5.35)
With the energy-momentum tensor
L [ fva
T, = %u—fz + g Lai(f), (5.36)
1+
2b2

3 In 4D, one also need to have ag = 0, which can be achieved by changing a different integration constant in
obtaining the solution. However; this chances the asymptotic behaviour of the metric (see [66] for details).
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the trace-reversed Einstein equations read

Ii2 QfMafva - g;wf2
47 f?
1 <
TR

where ( = (1(>. The independent components of the left-hand side of the equations

+2g9uLai(f) |, (5.37)

are

(LHS), = [¢(r) — 1] [r¢"(r) + ¢/(r) — 4Ar]

2r '
(LHS);, = o(r) [ré" (r) ;‘TW(T) — 4/\7’]7
(LHS),, = [o(r) + 1] [7"¢”(72“?)n +¢'(r) — 4Ar]’
(LHS)gg = 7¢/ (1) — 21, (5.38)

with the following components at the right-hand side

202G [(r) — 1 [r — ()]

]
(RHS),, = 50 ,
_ 220G [r = ()]
(RHS),, = e :
_2CG 1+ ()] [r — ¢ (r)]”
(RHS)T‘T - T’Qb(’r) 9
(RHS)gg = —4b*CGr [r — (r)]. (5.39)

Similar to the Einstein-Maxwell case, the #6-component is the easiest one to solve

and it yields

(1) = —8GM + (Gq® + 2(GV* |r* — rip(r) — Z—zlog (%w(r))} . (5.40)

which also solves the other componentﬂ Note that we have chosen the integration

constant such that the expansion around b — 0o

(Gq*

B(r) = —8GM + 2¢Gq*log(r) + T

+0 [%] , (5.41)

4 The static solution for a nonzero cosmological constant and no ghost sign in the action was given in [107]
108].
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gives the result for ( = —1 in the EM case (5.10) at the leading order. The gravita-

tional field in the Newtonian limit is given by

]_ —
§g==-V¢=—-—=Vh
g=5V¢=—5Vh,
P
20G |+ V*r | r— r2—b—2
= 7, (5.42)
(r)
which is attractive everywhere when ( = —1. Therefore, we again need to choose
one ghost sign in the action. For ( = —1, the Ricci scalar and the electric field
corresponding to the single copy A, = ¢k, are given by
4G [q? + 2b° —
R(r) = — [q° + 2b%r (r d’(”)])
rip(r)
AG[¢* + 0% (r — (1))
E(r)= (5.43)
") o)
Checking their behavior as r — 0,
4Gb 6G?
R(r) = —— 2 4 3a1? - ==L + 0(%),
r
2Gb3r?
E(r) = 4Gbq — 4GVr + = + O(%), (5.44)

q

one sees that, while the single copy electric field is regular around the origin, we have

a singularity on the gravity side.

For particle orbits, one can ensure to preserve the following main properties of the
static solution of Einstein-Maxwell theory by choosing an appropriate set of parame-
ters: 1) The Newtonian potential Viewion pOssesses an infinite barrier at short distances
and become equal to the effective potential V¢ at large distances. i1) Timelike parti-
cles are forbidden to reach the infinity due to the logaritmic behaviour of the potential
as r — oo. 1i1) There is a critical value L. of the angular momentum of the particle
such that, when L > L., the effective potential V. develops a local minimum and
a local maximum, making stable orbits possible. We refer the reader to Figure [5.1]
for an explicit demonstration of these properties and the regularity of the solutions,

together with the charge density in the gauge theory.

Before proceeding further, we would like to note that, similar to the Einstein-Maxwell

theory, one can again make use of the duality of scalars and gauge vectors to realize a
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Figure 5.1: Details of the static solution of Einstein-Born-Infeld theory for (G =
I,M =1,q=0.525,b = 10).

solution with the same physical properties. The matter part of the Lagrangian is given
by

b? 2
Escalar(@) = (1 —4/1+ b_j(a@)Q) ) (5.45)

or

which reduces to the free scalar Lagrangian as b — oo and the scalar field should read

0= ge, M = ¢, (5.46)

in order to obtain the same solution with that of Einstien-Born-Infeld theory up to an

integration constant.

5.3 Generalization of the Scalar Coupling

In this section, we will study a generalization of the scalar coupling which not only
allows different possibilities regarding the regularity of the single and double copies,
but also demonstrates a simple relation between horizons on the gravity side and the
corresponding electric field in Maxwell’s theory, which is based on the following
observation [65]]: Since the single copy electric field is equal to the derivative of the
metric function in BL coordinates (£(r) = h'(r)), it becomes zero at a maximum,

a minimum or a saddle point. Since the horizons are located at the zeros of the
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metric function (h(r;) = 0), there should exist at least one point between two adjacent
horizons where the electric field is zero, corresponding to a minimum or maximum.

The theory that we will consider is described by the action [[101]
1
S = /d?’x\/_—g {E(R —2A) — Q} , (5.47)
where the matter term is given by

Q _ Zan€2(n—l) (ago)2n
n=1

=3 Bl (D)™ [(3 4 2m) R 0,00, — R(9p)?] . (5.48)

m=0

Here, o, and (3, are arbitrary dimensionless constants. The trace-reversed Einstein

equations are in the following form

K2 1 | 4\
R/W = ?@#V’ @,uu = W {T#y + ?guy] . (549)

We give the expressions for I'(y), TW and the field equation for the scalar field in
Appendix [Csince they are quite cumbersome and do not play a direct role in our
discussion. Applying the usual prescription, we again obtain Maxwell’s equations

with a source defined in terms of the ©-tensor as follows
o, F"" = gJ*, JH = 4@“0. (5.50)

This theory admits a family of black holes and horizonless spacetimes whose line
elements in BL coordinates are in the form (5.17). (see [101] for the most general
form of the solution). For our purposes, it is enough to take non-zero values for
(o, g, g, Bo, 51) and set all the other constants to zero. In this case, for ¢ = p6

(p:constant), all the field equations are solved if the metric function is given by
h(r) = (1+8GM)r*t — Ar® — 8nGayp?r* log(r) + 4rGanl?p* + 27 Gasl*pSr?
87 G Bol2p2r2 + 247G B 1A p* + 4 ,
(5.51)

where we have chosen the integration constant such that such that we recover the free

| M 1
scalar case when p = 70 ap = —5 g = ag = 81 = B = A = 0. The curvature
T

scalar and the single copy electric field can be easily calculated from equations (5.21])

and (5.24) respectively. Their expansions around r = 0 are given by

_ asfy — 6asfy  [c1 4 czlog(r)] r’

3
B =—"¢men sierapip O
6
B(r) = -~ (O‘?’f% 7 Saal )o@, (552)
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where ¢; = ¢1(G, M, p, an, as, By, 1) and ca = ¢o( G, p, a1, f1) are constants. From
the expansions, we see that one can obtain non-singular single and double copies by

taking 57 # 0. When 3y = ; = 0, the expansions around = () become
24nGaslp®  8rGasl?p*  S8wGoyp?

— 3
R(r) = e Gt A+ 007,
4,,6 2,4 2
E(r) = _Sﬂijg r_ 8”Gf;€ r_ SWGTO“p —20r+ O(%).  (5.53)

The expression for the electric field shows that one has a point charge at the origin

with Q = —87Gap?.

We present four cases by using different set of parameters, which are given in Table

5.1

e Case I: Taking a nonzero value for ;, we obtain regular single and double
copies. This is a horizonless geometry and the electric field F(r) becomes
zero at two points, which are maximum and minimum of the metric function

h(r).

e Case II: Again taking 3; # 0 guarantees the regularity of the single and double
copies. There is one event horizon and the electric field F(r) is zero only at the
origin, where the minimum of the metric function A(r) occurs. Stable orbits

exist when L > L.

e CaseIIl: B; # 0 yields regular single and double copies. We have two event
horizons and the electic field becomes zero at two points: A local maximum

(r = 0) and a global minimum located between two horizons.

e Case IV: 5; = 0 gives single and double copies which are singular at the origin.
There are three event horizons and the electric field is zero at the following
points: a local maximum between the first and the second horizons, and a local

miminum between the second and the third horizons.

All the details can be seen in Figures [5.2] [5.3] [5.4] and [5.5] Although, stable orbits
exist for all values of the angular momentum L, in cases I, III and IV; there is a
critical value L., beyond which, there arises a second region where a particle in a

stable orbit can be present. We do not show them explicitly since it is sufficient to
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Figure 5.2: Details of Case I presented in Section for parameters given in Table
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Figure 5.5: Details of Case IV presented in Section |5.3|for parameters given in Table
[5.1] Note that in addition to the nonlocal charge distribution shown in the figure, one

has a point charge with () = 2 at the origin.
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Table 5.1: Choice of parameters for different solutions of the scalar theory. We always

take p = @/%, ap = —%, as in the free scalar case, and G = 1, which leads to
o, F"" =21 J*~.
G| M p 1A o 5] ag | o | O
Case I 1 1
1| - % 110 |—<] —10 | 30 | 1] 1
(No Horizon) 4 2 2
Case II 1 1
1] - % 1710 | —< 1 5|11
(Single Horizon) 4 27 2
Case III 1 M 1
1| = — |1/ 0 | —=|—100100| 1|1
(Two Horizons) 4 27 2
Case IV 1
_ 1] 1 % 11 -3 —= 10 51010
(Three Horizons) 2m 2

show the existence of one such region for our purposes. As we have shown at the
end of Section [5.1]on general grounds, the necessary and sufficient condition for the
regularity of the solutions on both gravity and gauge theory sides is the vanishing

of the electric field at the origin, which is realized in Cases II and III and can be

explicitly seen in Figures[5.3|[5.4]

5.4 Summary and Discussions

In this paper, we have studied generalizations of the matter couplings in 3D admitting
a static black hole solution which gives rise to the Coulomb’s solution as its single
copy. For these matter couplings, Einstein-Maxwell theory or GR minimally coupled
to a free scalar field, both the double copy and the single copy solution has a singular-
ity at the origin. As a generalization of the former, we studied Einstein-Born-Infeld
theory and showed that although the static black hole solution, which admits stable
particle orbits, is singular, the single copy electric field is regular at the origin. For

the latter, we have intestigated a theory recently discovered in [101]], which forms an
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extremely useful theoretical laboratory since the most general solution offers differ-
ent possibilities regarding the regularity of the black hole solution and the number of
event horizons. We have given examples where both the double and single copy are
regular. Morover, starting from a horizonless geometry, we have considered space-
times with increasing number of event horizons and exhibited the relation between the
event horizons on the gravity side and the corresponding electric field in Maxwell’s

theory.

All these examples show that many physically important properties of the KS double
copy can also be realized in 3D with the most notable exception that, in the simplest
case where the single copy is the Coulomb solution, the double copy is a non-vacuum
solution which can be obtained by taking the Einstein-Hilbert term or the matter term
with a ghost sign in the action. In the generalizations that we have considered in this
paper, we introduced the couplings such that one recovers the Coulomb case in an
appropriate limit. However; a wide range of different possibilities exist without this

requirement.

As a final note, we would like to mention that there exists a different interpretation of
the single copy in the case of a non-minimal coupling on the gravity side. Writing the

gravitational field equations (5.49) by introducing an effective Newton constant as

K2 K2
R, = g/ 2 = 5.54
(2 2 2 Retf F(QO) ) ( )
where
~ 4A
O = T + 5, (5.55)

one can obtain solutions to Maxwell’s equations with an effective gauge coupling
O, F"" = g J*, Jt = 40", (5.56)

with the identification k2; — 4gegr. In this picture, the cosmological constant plays
its usual role in the case of a minimal matter coupling and produces a constant charge
density filling all space. However; a dynamical mechanism for the evolution of the
gauge coupling seems to be missing on the gauge theory side. This might be an

interesting direction for future study.
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CHAPTER 6

THE KERR-SCHILD DOUBLE COPY IN CURVED SPACETIMES

In the pioneering work on the KS double copy [42], the analyses was performed by
considering solutions of general relativity which can be written in the Kerr-Schild
form with the flat background metric. The fact that the Ricci tensor with mixed in-
dices becomes linear in the perturbation for such solutions provides a natural way to
map them to solutions of Maxwell’s theory defined on the flat spacetime. A natu-
ral extension is to consider spacetimes with non-flat background metrics, which was
first studied in [45]. Later, a more systematic analysis was given in [46] and it was
shown that there exist two different ways to realize the double copy structure when
the background metric is curved, called Type-A and Type-B double copies. In the
Type-A double copy, one maps both the background and the perturbation by using
the flat metric as the base. Alternatively, in the Type-B double copy, only the per-
turbation is mapped by taking the base metric as that of the background spacetime,
yielding solutions of Maxwell’s theory defined on the curved background. A wide
range of examples with constant curvature background was presented in [47] where
the authors showed the crucial role played by the Killing vectors in the construction.
For the stationary solutions, the contraction of the gravity equations with the time-
like Killing vector was used, which is essentially checking the ;.0-components of the
trace-reversed equations as done previously. More non-trivial evidence was obtained
from the wave solutions where the contraction with the null Killing vector yielded a

reasonable single copy.

The linearity of the Ricci tensor in the perturbation, which is the crucial property that
makes the whole construction work, holds in the case of a generic curved background

spacetime. Motivated by this, in Section [6.1] we will give a general formulation of
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the KS double copy without any simplifying assumption about the background metric.
With the assumption that some redundant terms vanish, one obtains Maxwell’s equa-
tion defined on the curved background where the source term gets a contribution from
the curvature of the background, which vanishes for a constant curvature spacetime,
in addition to the energy-momentum tensor in the gravity side. In order to see the im-
plications, we will study different solutions of general relativity with a cosmological
constant. In Section solutions with a maximally symmetric background will be
examined. When the background is chosen to be of constant curvature, there is no
effect on the source. However, choosing a flat background leads to a constant charge
density filling all space. While it has been observed before, our formalism explicitly
demonstrates that this is due to the deviation of the background from a constant cur-
vature spacetime. In Section[6.3] in order to exhibit the effect of a curved background,

we will consider the Lifshitz black hole with two different matter couplings.

6.1 General Formulation

In this section, we give a general formulation of the KS double copy in curved space-
time. For that, we will consider classical solutions of cosmological general relativity

minimally coupled to matter, which is described by the action

_ 1 d
= 167er/€1$‘/ g[R—2A+L,)], 6.1)

where G is the d—dimensional Newton’s constant, A is the cosmological constant

and L,, is the matter part of the Lagrangian density. The field equations arising from

the action (6.1)) are

G +ANguw =T, (6.2)
For the KS double copy, one needs the trace-reversed equations with mixed indices
2A ~
R: — ot =TH 6.3
v d _ 2 14 v ( )

where the matter contribution is given by

1
d—2

" =T" — 5" T. (6.4)

For a metric in the KS form,
I = G + ¢ k/.tkljv (6.5)
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where the vector £, is null and geodesic with respect to both the background and the

full metric as
" kuk, = "'k, k, =0, 'V, kM = E'V, k" = 0, (6.6)
the Ricci tensor with mixed indices becomes linear in the perturbation as follows [98]]

R* = R* — ¢ kMk® Ry, + % [VOVH (koky) + VOV, (0 k'ky) — V2 (0 k'K,)] .
(6.7)

Since the aim is to obtain Maxwell’s equations in the background spacetime, we

rewrite the Ricci tensor in the KS coordinates by using the gauge field A, = ¢ k,,

as

RY = Rt — % V. %, + BY] 6.8)

14

where F),, = 2V, A, is the field strength tensor and
El = X!+ Y} — R, A°K’ + R, Ak", (6.9)
with X* and Y} given by
Xt =-V, [Aﬂ (vaka + kaZ“¢>] : (6.10)

Y} = F"V,k, — Vq (A*VFk, — A"V, . (6.11)

Using this form of the Ricci tensor (6.8)) in the trace-reversed equations (6.3) gives,
1. -
A* — 3 [VoF*%k, + EL] =T, (6.12)
where we introduce the deviation tensor

_ 2A
Al = RE — o 6.13
v v d_2 v ( )

which vanishes for a constant curvature spacetime if the cosmological constant A is
appropriately chosen, and therefore, characterizes the deviation of the background
spacetime from a spacetime with constant curvature (see Sec. [2.3|for more explana-

tion).

In order to solve for the field strenght term, we consider the contraction of this equa-

tion (6.12) with a Killing vector V¥ of both the background and the full metric, i.e.,
ViV = VW) =0, (6.14)
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which gives the single copy equation as
V,F" + BF = J", (6.15)

where the extra part is

1
Et=_——F! VY 6.16
T LV (6.16)

and the gauge theory source is given by
=2 |ar -7, 6.17)

with
1 ~ 1 ~
At = —— AR VY T = ——THVY" 6.18
V.-k v ’ V.k v ) ( )
which are the contributions from the background spacetime and the matter part of the

Lagrangian respectively.

Contracting the single copy equation (6.135) with the Killing vector V#, one obtains

the zeroth copy equation as

Vip+Z+E =], (6.19)
where
V.Z V.E V.J
z_ ' Z _ = 2
VoK E=v RV (6.20)

with vectors £* and J* given in (6.16]-[6.17) and,

7" = Vo k" Vo + Vo [20VIkH — k*VF ] . (6.21)

For any solution of the gravitational field equations (6.2)) that can be written in the
KS form (6.5), the gauge field A, = ¢ k,, solves the single copy equation (6.13)) and
the scalar ¢ solves the zeroth copy equation (6.19). In this paper, we will study black
hole solutions in the KS form by using the time-like Killing Vectmﬂ Vi = 4. For

the examples that we will consider in this paper, one has

V.k=1  E*=E‘=0 E=E"=0, A*=AY,  TF=T"
(6.22)

1 In [47], it was shown that the wave-type solutions with maximally symmetric background metrics can be
studied by choosing a null Killing vector.
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and the single copy and the zeroth copy equations becomes Maxwell’s and Poisson’s

equations

V,F = M
Vip+2Z = j, (6.23)

where the source terms are given by
S| A T = Ty = g, (6.24)

and

Z = Zy = goul", (6.25)

with Z* given in (6.21)). The Z-term in Poisson’s equation vanishes when the back-
ground metric is flat and takes a different form depending on the background space-

time.

The principal result of our analysis is that the deviation of the background metric from
a constant curvature spacetime, which is characterized by the deviation tensor defined
in (6.13), affects nontrivially the gauge theory source as described in for an
arbitrary Killing vector and in (6.28) for the time-like Killing vector. Previously,
this has been observed as a constant charge distribution filling all space when the
background is taken to be flat. In Section[6.3] we will show that this remains to be true
when the background is the Lifshitz spacetime. Therefore, we write the contribution
from the background spacetime as

1
A = Zp. o, (6.26)

where p. is the constant charge density. The matter contribution can also be written
in the following form
~ 1

T = —§pmv“, (6.27)

where p,, is the charge density due to the matter in the gravitational theory and v* is
the velocity of the charge distribution. These lead to the following form of the gauge

theory source

J" = pe oty + pmvt, (6.28)
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which we will use throughout this pape In the next section, we will review some

previously studied examples through our general formalism.

6.2 Maximally Symmetric Background Spacetime

In this section, we focus on solutions of theories described by the action (6.1]) with the
corresponding field equations (6.2)) which can be written in the KS form (6.5]) around
a maximally symmetric background spacetime. For a non-zero cosmological constant
(A # 0), the background spacetime can be chosen to be Minkowski or AdS space-
times. In the former case, the gauge theory copy is defined on Minkowski spacetime

and the deviation tensor defined in (6.13)) takes the form

2A
A* (Minkowski) = —7 25‘2, (6.29)
since R* = 0, and the constant charge density in the gauge theory source for a
timelike Killing vector (6.28)) is determined by the cosmological constant as
4\
. = ———. 6.30
P 1_9 (6.30)

Since the modification to the Poisson’s equation given in (6.25) vanishes when the
background is Minkowski spacetime, the single copy and the zeroth copy equations

become

V,F™H = Jr
Vi = 7, (6.31)

where the general form of the sources is given by
J' = pe 0y + pmvt, J=—(pe+ pm)- (6.32)

Here, p,, is the charge density due to the matter fields and the velocity vector v*
can be read from (6.27). For static solutions, one has a static charge distribution, and
therefore, v* = ¢';. For stationary solutions, one obtains a rotating charge distribution

and the velocity vector takes a form accordingly.

2 As discussed in [47]], for black hole solutions, one has localized sources describing a point charge at the
origin. Since our main aim is to study the effect of the background spacetime, we will only give the non-localized
part of the gauge theory source.
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In the latter case, the gauge theory copy is Maxwell’s theory on AdS spacetime and
the deviation tensor vanishes

A" (AdS) =0, (6.33)
which implies that there is no constant charge density in the gauge theory source
(p. = 0). The Poisson’s equation is modified due to the curvature of the background
as described in (6.23)). In what follows, we will give examples in d = 4, for which

the equations take the following form

V,F't = J,
Vi — %m = (6.34)
and the sources are fixed by only the matter contribution as
JH = pof, J = —PpPm- (6.35)

In the remainder of this section, we will elaborate on this, by applying our formalism
to some examples that were investigated previously in the literature, with a special
focus on the sources, and make a comparison between Minkowski and AdS back-

grounds whenever possible.

6.2.1 AdS, Spacetime around Minkowski Background

As the simplest example, we consider the AdS, spacetime [45]], which is a solution
when d = 4, £, = 0 in (6.I). It can be written in the KS form (6.5) around the

Minkowski metric
Guwdztds” = —dt* + dr? + r* (d6* + sin® 6 d¢?) (6.36)

where the null vector and the scalar function are given by

k,dx" = dt 4 dr, o(r) = ATTQ (6.37)
As a result, the gauge field takes the form
A dxt = A?TZ (dt + dz), (6.38)
and the only non-zero component of the field strength tensor is
P, = QAT’” (6.39)
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The effect of the cosmological constant on the sources shows itself as a constant
charge density as follows

pe = —2A. (6.40)

6.2.2 Banados-Teitelboim-Zanelli (BTZ) Black Hole

An interesting example in three dimensions is the BTZ black hole [47]], which is a
solution when d = 3 and £,, = 0 in for A < 0 [83]]. This black hole solution
can be obtained by identifyting points of AdS; spacetime by a discrete subgroup of
SO(2,2) [109] and its gauge theory copy possesses the same characteristics with AdS,
spacetime with d > 4. Its KS form [[110] is given around the Minkowski spacetime

in spheroidal coordinates

2
g datdr” = —dt* +

Sdr? 4 (r* 4 a®)d0?, (6.41)

r“ 4+ a

where a is the rotation parameter. The null vector £, is parametrized as

2

k,dat = dt + " a ———dr + add, (6.42)
and the scalar is given by
o(r) =1+8GM + Ar”. (6.43)
The corresponding gauge field is given by
2

Audat = (1+8GM + Ar?) |dt g adr +add (6.44)

Due to the rotation, there is also a magnetic field and the independent components of

the field strenght tensor are
F.. = 2Ar, F.o=aF,; = 2Aar. (6.45)
The constant charge density corresponding to the BTZ black hole reads
pe = —4A. (6.46)

Here, we content ourselves with showing that the constant charge density term ap-
pears due to the general property of the deviation tensor (6.29) and refer the reader

to [67] for a more detailed discussion.
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6.2.3 Schwarzschild-AdS, Black Hole

Our next example is the Schwarzschild-AdS, Black Hole which is a solution with
d =4 and L,, = 0in (6.1I). In [47], it was studied around AdS, spacetime whose
metric in global static coordinates reads

_ v Ar? 2 Ar?]7 2, .2 2 .2 2
Ggudatds” = — 1—? dt“+ |1 — =3 dre+r (d@ + sin“ 0 d¢ ), (6.47)

and the null vector and the scalar are given by
A2
k,dxt = dt + [1 — T} dr, o(r) = —. (6.48)
The gauge field

r

271
Ader =M [dt + ll . ATT} dr] , (6.49)

has the field strenght tensor with the following non-zero component

oM
F,=_22 (6.50)

r2
We obtain vacuum solutions of (6.34) since the background is chosen to be of constant-

curvature, which implies p. = 0 and there is no contribution from the matter fields

(pm = 0).
The solution can also be written around the Minkowski spacetime
Gudrtde” = —dt® + dr? + r* (d6? 4 sin® 6 d¢?) (6.51)

with the null vector and the scalar defined as

kydat = dt + dr, o(r) = ¥ + A?TQ (6.52)
The gauge field now becomes
A, dat = {¥ + %2} (dt + dr), (6.53)
with the field strenght tensor
.= —% + 2—AT (6.54)
r 3

This time, in the gauge theory source, the only contribution comes from the cosmo-
logical constant as

pe = —2A. (6.55)
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6.2.4 Reissner-Nordstrom-AdS, Black Hole

In order to see the effect of the matter coupling, we now consider Reissner-Nordstrom-

AdS, black hole. The matter part of the action is

1
Em = _Zf,ul/f/“/v (656)

with contribution to the trace-reversed equations

2 1 a 1 a
T = éfuafy — ggwjfagf B, (6.57)

When the metric is written in the KS form around AdS, spacetime with the
null vector given in (6.48)), the scalar function reads [47]

oM Q?

r 4r2?’

o(r) (6.58)

where M and () are the mass and the charge of the black hole respectively. The gauge

field becomes

oM Q? A2t
A, =|———= 1—— i
" [ " 4702} dt + { 3 } dr|, (6.59)
which leads to the field strength tensor
oM Q?
Fo=—-——+—. .

While the constant curvature background implies no constant charge density (p. = 0),
the matter field produces the following static charge density

Qz

Pm = 2_7’47 vt = 5’6 (661)

One should note that our formalism gives the modification to the Poisson’s equation

and the source as

QP —AMy?
z = 2 (6.62)
) 2(Ar? =3
j = %7 (6.63)
r

and one obtains the standard form given in (6.34}6.35)) only after simplifications.

When written around the Minkowski spacetime (6.51)) with the null vector (6.52]), the
scalar function is given by

oM Q  Ar?
or) = — - % + Tr (6.64)
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and the gauge field is
A= |——-—=+—F| dt+dr), (6.65)

with the field strength tensor

2M Q* 2Ar
F. = =y + 0= 5,3 + 5 (6.66)

In addition to the static charge density p,, due to the matter part of the Lagrangian,
the constant charge density is produced by the non-zero deviation of the Minkowski
background (6.29), which are given by

Q2

27

Pc = _2A7 Pm = (6.67)

6.3 Lifshitz Black Holes

So far, we studied metrics that can be written in the KS form around a maximally
symmetric background and presented the differences that arise due to the deviation if
the Minkowski spacetime from a constant-curvature spacetime, which are a constant
charge density in the source and correspondingly, electric and magnetic (if the black
hole rotates) fields that linearly increase with the radial coordinate r. As an example
of a solution with a curved background, in this section, we will consider the Lifshitz

black hole in d-dimensions, whose metric reads

ds® = L*

dr? 2
22 2 2 2
—r“*h(r)dt* + 2R () +r ;1 dxi] , (6.68)

where the function h(r) has a single zero at a finite value of r and, h(r — oc0) = 1.

Asymptotically, the metric takes the form

ds?| | =1L? [ i+ 4, de ] : (6.69)

which is the Lifshitz spacetime. In this form, it is apparent that it describes an asymp-
totically Lifshitz black hole with a planar horizon. With the following coordinate

transformation’}

-1
dt — dt + adr, a= & rm (&), (6.70)
h(r)

3 We were informed that the KS form of the Lifshitz black hole was first obtained through this transformation
in [TTT].
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one can write the metric in the KS form where the background is the Lifshitz space-

time with the metric
dr? 2
Gudatdz” = L2 | —r¥de® + 5+ r?y daf| 6.71)
i=1

The null vector and the scalar are given by

1

e dr, P(r) = L* [1 — h(r)] r*. (6.72)

kydz = dt +

Note that, for z = 1, the background metric becomes the AdS spacetime in Poincare
coordinates. For z > 1, the background metric is not maximally symmetric and
the deviation tensor will give a non-trivial contribution. The Ricci tensor for the
background metric reads

z(z+d—-2) 22+d-2 z+4+d—-2 z+d-2
I N

which reduces to that of AdS spacetime when z = 1. The relevant part is still

R" = diag | —

(6.73)

a constant given by

_ z(z4+d—2)
which leads to the following background contribution to the gauge theory source
e 2(z+d—2) 2A
A*(Lifshitz) = — o 6.75
(Lifshitz) [ 72 —l—d_z} 0> (6.75)

and, as a result, the following constant charge density

B z(z+d—2) 2A
pc——Q[ e +d—2}'

After this general discussion, we will study two different realizations of the Lifshitz

(6.76)
black hole with different matter couplings.

6.3.1 Lifshitz Black Hole from a Massless Scalar and a Gauge Field

The first solution that we consider is obtained by the following coupling of a massless
scalar to a gauge field [112]

1 1
'Cm = EaMQOaMQO - ZGA@fw/fuya (677)

whose contribution to the trace-reversed equations is

1 1

~ 1 o o
T = 5000000 567 e = qrg gy me fan f™ - (678)

2

76



The equations for the matter fields are

Ay (V=g ) =0, (6.79)
A
M (\/—ga“go) — Z\/—ge)‘“”fm,f“” =0. (6.80)

The Lifshitz black hole is a solution in this theory with the following metric function

[113]]
z+d—2

hr)=1- " 2>, (6.81)
rETa—

provided that the matter fields and the cosmological constant are given by

fro = qere it X = P22,
2(d — 2
)\2 — ( 1)’ q2:2L2<Z_1)<Z+d—2)7
Z —
d— d—2
A = (=t 3)(z + ) 6.52)

212
For z = 1, the matter fields vanish and one obtains the Schwarzschild-AdS black
hole with a planar horizon. By using the coordinate transformation (6.70), the metric
can be put in the KS form around the Lifshitz background with the null vector
and the scalar given in (6.72). The explicit form of the scalar for the metric function

(6.81) reads

L2TZ+d_2
o) = — (6.83)
The corresponding gauge field is
L2 z2+d—2 1
Ayt = = [dt + m01r] , (6.84)

and with the following non-zero component of the field strength tensor

(d—2z+ 2)L2Ti+d_2
rd—z—i—l :

F=— (6.85)

Since the matter configuration (6.82)) does not change under the coordinate transfor-
mation, it can be directly used in the rest of the calculations. It turns out that the
contribution from the deviation tensor and the energy-momentum tensor to the gauge
theory source are equal to each other and given by

d—3)(z—1)(z+d—2)

~ (
AN_Z/J_

(6.86)
and therefore, the single copy is

V,F" = 0. (6.87)
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Although we started from a non-vacuum solution, the gauge field given in (6.84)) is
vacuum solution of the gauge theory. The modification to the Poisson’s equation can
again be written in terms of the background Ricci scalar and the KS scalar as
2(z —d+2) _
Z = R, 6.88
224+ (d—2)z+ 3(d—1)(d—2) ¢ (6:88)
which leads to the following zeroth copy
2(z—d+2) _
R¢=0. 6.89
224 (d—2)z+ 3(d—1)(d —2) ¢ (6:89)

V3¢ +

6.3.2 Lifshitz Black Hole from a Massive Vector and a Gauge Field

The second solution that we consider is a charged Lifshitz black hole obtained through

the following matter coupling [|114]

1 1 1
L, = -7 Ju f1 — §m2aua“ — Z—lf#m“, (6.90)

where a,, is a massive vector field with the field strength f,, = 2 8[May} and F,, is the

field strength of the gauge field. The matter field equations are

O (V=g/") = m’/=ga’ (6.91)
o (V=gF"™) = 0, (6.92)

and the contribution to the trace-revesed equations is given by

-1, L. 1 w1
T;w = §fuafy - mguufaﬁf g + §m2a;¢au
T Y G FapFP. (6.93)
271 4(d—2)7"

The charged Lifshitz black hole is a solution with the metric function

q2

M) = 1= s

(6.94)

for the matter configuration

2(z—1)

ar =L h(r)rZ, Foy = qLr*% 1, (6.95)

The mass of the vector field, the cosmological constant and the Lifshitz exponent
should also be fixed as follows

m = M A:_(d—S)z+(d_2)2+22

L2 212 ’

z2=2(d-2).
(6.96)
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The metric can be put in the KS form through the coordinate transformation (6.70)
around the Lifshitz background with the null vector and the scalar given in
(6.72)). The explicit form of the scalar for the metric function (6.8T]) reads

L2 2.2
P(r) = 5 7 (6.97)

(d—2)"

The single copy gauge field and the non-zero component of the field strength tensor

are
L2 2,.2
Adat = ﬁ {dt+ TZHdr] , (6.98)
L2 2,.2—1
F, = 47 (6.99)

2(d—2)*
This time, the coordinate transformation (6.70)) affects the matter configuration (6.95])

non-trivially, yielding an additional radial component of the massive vector as follows
ar = Qay. (6.100)

The contribution from the deviation tensor and the energy-momentum tensor to the

gauge theory source are this time given by

o E=D[d=3)z+(@-2°],
AP = — 0212 o, (6.101)

2

T — NJFQLQ%«Z(%’ (6.102)

Similar to the previous example, the constant charge density contribution from the
deviation tensor (6.101)) again disappears, however, this time the contribution from
the energy-momentum tensor has an additional term, which leads to a non-
vacuum solution. The single copy is

2

Y, E = g, = =l (6.103)

The modification to Poisson’s equation in this case can be written as

22 —

which yields
22 5 2

22+(d—2)z—|—%(d—1)(d_2)R¢:j’ J=qr>. (6.105)

V2o +
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6.4 Summary and Discussions

In this chapter, extending the construction of [47]], we gave a formulation of the clas-
sical double copy with a generic, curved background spacetime. Apart from obtaining
solutions of Maxwell’s theory defined on curved backgrounds, our formulation makes
the effect of the background spacetime on the gauge theory source much more trans-
parent through the deviation tensor that we defined in (6.13). For an arbitrary Killing
vector of the background and the full metric, the result is given in (6.17H6.18]). Choos-
ing a flat background for a solution with a non-zero cosmological constant yields a
constant charge density filling all space in the gauge theory due to the general prop-
erty presented in (6.29). The effect disappears when the background is chosen to be
a constant curvature spacetime, which can be explained due to the vanishing of the
deviation tensor for a suitably chosen cosmological constant (6.33)). Furthermore, we
studied two different realizations of the Lifsthiz black hole, whose background is not
maximally symmetric. While the contribution to the gauge theory source again turns
out to be a constant as described in (6.75H6.76)), it is removed by the matter fields in

the gravity side, yielding a vacuum solution in one case.
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CHAPTER 7

REGULARIZED WEYL DOUBLE COPY

An alternative version of classical double copy is the Weyl double copy (WDC)
[39,44], relying on some previous results on Petrov type D and N spacetimes ad-
mitting a Killing spinor [115-5117]], according to which a particular relation between
the completely symmetric Weyl spinor ¥ 4pcp corresponding to a type D or N vac-
uum solution of 4d Einstein’s equations (with A = 0) and the symmetric field strenght
spinor fap corresponding to a solution of Maxwell’s equation defined on the curved
spacetime characterized by the Weyl spinor ¥ 4pcp. Furthermore, one can also ob-
tain a scalar field that satisfies the Poisson’s equation on the same curved background
spacetime. When the curved spacetime metric is given in the KS coordinates, the
scalar and gauge fields have the identical equations when defined on the flat back-
ground spacetime. As a result, a spinorial version of the double copy is obtained.
It is possible to derive this version of the double copy from twistor theory [74] and
develop a deeper understanding. For example, when the momentum space origins of
the double copy are considered, it is already quite surprising to have a local relation
in position space. Using twistor techniques for type D spacetimes, this was shown to
be a consequence of the very special properties in the momentum space, which could

be possible only for algebraically special spacetimes [[118]].

In a recent letter [40], although not covered in the original theorems which inspired
the construction of the WDC, it was shown that, sources in the gravity side might be
handled term-by-term by considering a sum of scalar-gauge theories and the sourced

WDC (SWDC) takes the following form

N
Vapcp = E
i=1

Here, the 7+ = 1 term represents the scalar-gauge theories corresponding to the vac-

L6y 46
S(-)f<AB hy- (7.1)
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uum solution V, I (Zi ) = 0 and other terms satisfy a sourced Maxwell‘s equation
VZ,F(Z’;I) = J(’;>1). In other words, for each term in the metric addition to the vacuum
part, one can find a sourced Maxwell’s equation with a source proportional to the one
described by the KSDC procedure. The complex scalar S satisfies the Poisson’s equa-
tion and, in general, a linear combination of its real and imaginary parts corresponds
to the zeroth copy ¢ in KSDC. So far, this procedure has been implemented to the
Kerr-Newman black hole solution, the charged C-metric, and the most general type D
solution of Einstein-Maxwell theory [85]]. This proposal can be tested in a non-trivial
way by solving gauge field equations term-by-term according to the KS formulation

and one can also demonstrate that one loses the connection to the KSDC if a single

product of spinor fields are used.

For type D metrics, in a suitable spinor basis {04, t5}, the Weyl spinor is given by

), where the only non-zero Weyl scalar is 11!5” which

U pep = 60oa0Bletpy Y, ol
is obtained for the part of the metric function corresponding to the i-th source Iﬂ In
this chapter, since many properties of the single copy solution take a simple form
we will deal with only static black hole solutions. In our formalism, the single copy
field strength spinor reads fap = Z o(atp) where Z is real and directly related to the
radial single copy electric field e = F;; for these static solutions. On the other hand,
the generally complex field S has only real part, and therefore, can be identified with
the zeroth copy ¢. As a result, this relatively simple structure suffices to check the

following consistency condition

72
vy o -, (7.2)
P6)
term-by-term for the consistency of the proposal of [40] for the SWDC with the

KSDC.

When this procedure is applied to a metric of the following form with a flat back-

ground metric

dr?
2 _ 2 2 QQ 7.
ds h(r)dt* + ) +rd (7.3)
a
h(r)=1 — 7.4
=1+ (7.4
ds? = —dt? + dr? + r2dQ?, (7.5)

1 For a detailed explanation, see the Section
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where dQ? = d6? + sin? Ad¢? as first done in [40], one finds

Ay na.,

== -0 ezzrw x Z, (7.6)
n+1)(n+2)a,

Ty=> ( 12>(Tn+2 Jan, (7.7)

n

We see that the consistency condition is satisfied for asymptotically flat solutions
(n > 0). One has a; = —2M, ay = %2 for the Reissner-Nordstrom (RN) solution of
Einstein-Maxwell theory, where M and () are black hole’s mass and electric charge
respectively, and the scalar-gauge theory equations are satisfied term-by-term exactly
as described by the SWDC in ([7.1).

7.1 Some Problems in Weyl Double Copy

We are now in a position to discuss some problems regarding the proposal for the
SWDC. We would like to emphasize that we do not claim that there is a pathology in
the procedure as given in [40]; however, there are issues that needs to be resolved for

matching the SWDC with more general results in the KS side of the double copy.

First of all, since the Weyl tensor W, ., transforms homogeneously under a confor-
mal transformation of the metric (., = €% g, Wiwpo = €* Wi pe), the Weyl tensor
and the Weyl spinor vanishes for conformally flat spacetimes. Therefore, when one
applies the same prescription for the SWDC to a term in the metric function which is
conformally flat when considered alone, the procedure seems to break down since
the corresponding contribution to the Weyl spinor vanishes and obviously cannot
match a a non-zero relevant contribution in the KSDC. Such a phenomenon cannot
be observed when working with asymptotically flat spacetimes since it corresponds
ton = —1,-21in for which the contribution to the Weyl scalar Wy vanishes
as can be seen in (7.7). Hence, the resolution of this issue is crucial for the correct

formulation of SWDC for type D solutions that are not asymptotically flat.

A related problem appears for the RN-AdS, black hole solution of EM theory with
a negative cosmological constant described by the Lagrangian £ = ). L; with

Lz = R, L=y = —Z—ll}"w]-"“”, and L(;—3y = —2A. The metric function in ([7.4)
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reads

h(ry=1-—""4"* " (7.8)

According to [[85]], the single copy solution should be defined in a “suitable flat space
limit", which is the AdS, spacetime in the global static coordinates with the line
element

Ar

2 g 2 A2 2 2 102

This is a natural choice that we obtain when the mass M and the charge () are set to

zero. Applying the machinery of the SWDC, we find

oM Q? 2M  Q?
i M i 2 i=
‘Ifé = r37 qjg = ?4 3 qj; == 0, (7.11)

where the single copy properties were first given in [47]. We see that although
the contribution from the conformally flat part of the metric that arises due to the
cosmological constant vanishes, the consistency condition ([7.2)) is still satisfied since
the cosmological constant has no effect on the properties of the single copy solution
defined on the AdS, spacetime.

On the other hand, the same solution can be put into the KS form with a flat back-
ground metric given in ((7.5). This time, the single copy properties get a contribution

from the cosmological costant as follows [48]

2M 2 A2 2M 2 9Ar
¢ = - Q + ) €= - Q +
r 42 3 72 273 3

x Z, (7.12)
while the Weyl spinor takes the same form characterized by the Weyl scalars given in
(7.11)). The consistency condition (7.2)) is obviously not satisfied by the contribution
to the metric function from the cosmological constant, which is just the n = —2 term
in (7.4). For a complete equivalence of the KSDC and the SWDC, one would expect

to cover both single copies in the SWDC.

One final problem is that some solutions to matter coupled GR do not have a vacuum
part, i.e., when the matter coupling is turned off there remains no solution that both
carries the symmetries of the ansatz that is used to derive the solutions and satisfies
the field equations at the same time. It is desirable to understand whether, and if yes

how, the SWDC can be realized in such cases
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7.2 Resolution by Regularization

For the resolution of the first two problems, we are inspired by a simple observa-
tion for the RN-AdS, black holes: Although the standard procedure fails when the
background metric is taken to be flat, the radial dependence of the Weyl scalar is still

correct (\Ifgi:?’)

o constant apart from the (n + 2) factor which produces zero) such
that the consistency condition (7.2)) is satisfied with P(i=3) X r? and €(i=3) < 1. Mo-
tivated by this, we propose a three-step regularization procedure for the SWDC such
that it will still work when one has a conformally flat part in the metric function that

has a non-trivial effect on the single copy solution: Let us say the conformally flat

An

part is of the form such that for n = n,, the contribution to the Weyl scalar U3

Nk

vanishes. To cure this, one should proceed as follows:

QAn
/r-"l

1. Take the problematic term as

, 1.e., use an arbitrary exponent n instead of

Ny

2. Leta,, — n“%ﬂ and calculate W3 using this coefficient.

3. Set n = n, at the end.

This way, the (n — n.,) term in the Weyl scalar W} is removed in a controlled manner
and a non-zero contribution is obtained. For a metric of the form (7.3)), the consistency
condition is automatically satisfied and the problematic term in the RN-AdS,
black hole with a flat background metric corresponds to n, = —2. Although we are
not aware of a solution of matter coupled GR with an n, = —1 term, such a problem

would be easily solved.

One might rightfully argue that this form of the metric (g4 g, = —1) is too simple to
check the validity of the regularized Weyl double copy (RWDC). Therefore, we put
it to the test with a set of examples that requires the most general formulation of the
KSDC summarized at the beginning, i.e., the Lifshitz black holes. As a by-product,
they will show us how the third problem must be handled.
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7.3 Lifshitz black holes

In order to study a scenario as general as possible, we will consider the following

ansatz for Lifshitz black holes with different horizon topologies

ds? = L? | —r®h(r)dt* + —er
r2h(r)

+r2d¥2 |, (7.13)
where k = 41,0, —1 correspond to S?, E2 and H? respectively, and z is the dynam-
ical exponent. When z # 1, one has an anisotropic scaling of the time coordinate
in the boundary field theory and these solutions can be used to probe the proper-
ties of finite temperature non-relativistic systems holographically when £ = 0 [80]
(z = 1 corresponds to the relativistic case). When written in the KS coordinates, the
background spacetime is the Lifsthiz spacetime whose line element can be found by

setting A(r) = 1 in (7.13). For a generic metric function as in (7.4), one has

_ 2 2: Cn 72 Z (n — 22)a, 21
¢ =L rn_QZ’ e=1L m xXr Z, (714)
k z(z—1) (n—2z)(n—2z+2)ay,
U, = — . 7.15
2= gt e T 1207 (7.15)

First of all, since the Lifshitz black holes cannot be obtained as vacuum solutions, all
the non-zero a,,’s here can only be generated by matter coupling. Therefore; there
is no analogue of the mass term in the RN-AdS, black hole and no vacuum part of
the metric. As a result; in the Weyl scalar U5 in (7.15), there is a term which is
independent of a,,’s and has no direct meaning regarding the properties of the single
copy. Note that it vanishes for z = 1 and £ = 0, which corresponds to the AdS,
spacetime in Poincaré coordinates that is a vacuum solution. Other than this term,
the consistency condition (7.2)) is satisfied with the data given above provided that a
regularization is employed for n, = 2z and n, = 2z — 2. In Table we provide

various examples.
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Table 7.1: Matter couplings, metric functions, k£ and z for three different Lifshitz
black hole solutions considered in the text. ¢ is a scalar field. F,, = 20,a,) and G,

are two-form fields. H,, . = 0}, B, is a three-form field.

I Ly = 10,00Mp — L e F,, Frv hry=1- (=" k=0,2>1

1 L, = —3Fu,F — tmPauah — $G,G" h(r)=1- & k=0z>1

M| Loy = —2F 0 F" — SHu H — CeP BB, Fop|  h(r) =1+ | k#£0,2=2

The Examples in the Table[/.1]are from [[112,]114,]119] respectively. Example I is the
double copy of the vacuum solution of Maxwell’s equations on the Lifshitz spacetime,
which is the only known example in the KSDS where a non-vacuum gravity solution
is mapped to a vacuum gauge theory solution in d > 3 (3D KSDC is a completely
different story [67-70]). In Example II, one has a sourced single copy solution and a
regularization with n, = z is required for the agreement of the KSDC and the SWDC.
In both of these examples, the event horizon is planar and the KS single copies were
obtained in [48]. Example III is a demostration of the equivalence of two formulations
of the classical double copy for a naked singularity where constant ¢ and r surfaces

are S?, and a black hole with H? horizon. Again, a regularization with n, = z = 2 is

required

7.4 Conclusions and Outlook

In this chapter, by introducing a regularization procedure in the SWDC, we have
shown how it can be made consistent with the KSDC when a certain part of the metric
function in static black hole solutions is conformally flat but still affects the single
copy properties nontrivially. Intriguingly, this turns out to be much more than curing

a mathematical difficulty in the formulation. Handling this issue is directly related to

2For detailed examination of matter Lagrangian, see the Appendix ID
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the AdS and the Lifshitz black holes which form the basis of probing the properties of
strongly coupled gauge theories at finite temperature holographically, [77-80] which
is just another development that we owe to string theory. Since both the double copy
and the AdS/CFT correspondence (together with its non-relativistic generalization)
originate from string theory, we have a strong expectation that achieving consistency
of different formulations of the classical double copy will be an important first step
to understand whether the double copy ideas and holography is related in some way.
While the gauge theory in the double copy lives in the same number of dimensions as
the gravity theory, the gauge theory dual in holography is defined on the conformal
boundary, which has one less dimension. Although one cannot point out a relation
for now, the success of the WDC in capturing the asymptotic structure of spacetimes

[120,/121] together with our regularization procedure might be helpful in this regard.

We would like to note that, in all the examples considered here, the constant a,,, is
proportional to either the cosmological constant A or the Newton’s constant G which
is hidden in the event horizon radius 7. This makes one to think that our regular-
ization procedure might have a field theoretical origin, which, we believe, deserves

further study.

In our analysis, we have reached another important finding: When a solution does
not have a vacuum part, then, at the left-hand-side of the SWDC formula (7.1)), the
leading term loses its meaning in the interpretation of the single copy. The Lifshitz
black holes are the first kind of such examples but we expect the same behaviour in

different type of solutions.

Despite the success of the RWDC that we have presented here, we would like to men-
tion that the study of some solutions of A/ = 0 supergravity, the effective field theory
emerging in the low energy limit of closed string theory, by using twistor methods has
recently led to a double copy formula different than the one considered here [[122].
For a better understanding, more general and also different type of examples includ-

ing rotating black holes and wave solutions should be studied.
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CHAPTER 8

CONCLUSION

In this thesis, we have focused on extensions of the classical double copy both in the

Kerr-Schild and the spinorial Weyl formulations.

Chapter 2 presents essential background material crucial for understanding the the-
sis. It covers topics such as degree of freedom counting and Newtonian potential in
3D gravity, important solutions in 3D gravity, maximally symmetric spacetimes, and
the deviation tensor that is employed in the most general formulation in the KSDC.

Additionally, it explores spinor formalism and Petrov classification in d = 4.

In chapter 3, we explain why the KSDC in 3D seems to be problematic and study
the proposal given in [67] for the KSDC of the Coulomb solution where the authors
claim that one can employ a ghost free scalar or a spacelike fluid. We show that one
can get rid of the ghost sign of the scalar by taking the EH term with a wrong sign,
which is not problematic since there are no propagating degrees of freedom. We also
consider a rotating generalization of the solution which is naturally implied by the KS
coordinates and show that it cannot be sourced by a free scalar field and the use of a
spacelike fluild becomes compulsory. The effect of the cosmological constant is also

discussed.

Chapter 4 provides an alternative matter coupling for the double copy of the Coulomb
solution in 3D with the help of the on-shell duality of p-forms. Instead of a scalar field,
which does not vanish at infinity when it sources the correct gravitational solution, one
can employ a gauge field with a ghost sign which can again be moved to the EH term.
In this case, the gauge field takes the usual Coulomb form and a better behaviour at

infinity is achieved. This matter coupling has an additional advantage that when a
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cosmological constant is introduced it provides a natural connection to the charged

BTZ black hole.

After obtaining the two possible matter couplings that give rise to the double copy of
the Coulomb solution in 3D, we study certain generalizations of them with the aim
of understanding the regularity structure of the solutions in both sides of the double
copy in chapter 5. While for the vector coupling we study the well-known Born-Infeld
generalization, we use the scalar-tensor theory discovered in [101]] that admits regular
black hole solutions for the generalization of the free scalar. We use these scenarios
to investigate the connection between horizons on the gravity side and electric fields

on the gauge theory side, which was previously observed in four dimensions.

Chapter 6 is devoted to the most general formulation of the KSDC where no simplify-
ing assumption about the background metric is made. We show that the gauge theory
source is affected by a curvature term that characterizes the deviation of the back-
ground spacetime from a constant curvature spacetime. We demonstrate this effect
explicitly by studying gravitational solutions with non-zero cosmological constant.
We show that, when the background is flat, the constant charge density filling all
space in the gauge theory that has been observed in previous works is a consequence
of this curvature term. As an example of a solution with a curved background, we
study the Lifshitz black hole with two different matter couplings. The curvature of the
background, i.e., the Lifshitz spacetime, again yields a constant charge density; how-
ever, unlike the previous examples, it is canceled by the contribution from the matter
fields. For one of the matter couplings, there remains no additional non-localized
source term, providing an example for a non-vacuum gravity solution corresponding

to a vacuum gauge theory solution in arbitrary dimensions.

In chapter 7, we propose a regularization procedure in the sourced Weyl double copy,
the spinorial version of the classical double copy, such that it matches much more
general results in the Kerr-Schild version. In the regularized Weyl double copy, the
AdS and the Lifshitz black holes, which form the basis of the study of strongly cou-
pled gauge theories at finite temperature through the AdS/CFT correspondence and its
non-relativistic generalization, become treatable. We speculate that this might prove

useful for finding out a relation between the classical double copy and holograpy.
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We would like to note that all the results presented in chapters 3,4,5,6,7 are based
on [48,|68-70./123]].

In summary, the extension of the original formulation of the KSDC in [42] was ex-
tended to three-spacetime dimensions through different matter couplings, and also to
spacetimes with a curved background metric. Additionally, an extension of the WDC
that is applicable to the holographically viable spacetimes that is compatible with the

most general formulation of the KSDC was given.

The most natural next step for all this progress is to look for a connection between
holography and the classical double copy. Considering the fact that the precursor of
the AdS/CFT correspondence is the result of Brown and Hanneaux [|124] the asymp-
totic symmetry algebra of 3D GR with a negative cosmological constant is two copies
of Virasoro algebra corresponding to symmetries of the 2d conformal field theories,
an understanding of the asymptotic data in the context of Classical double copy should
be very useful. Studies along this direction in 4D can be found in [[125,/126]] and the
results presented in these works, when supplemented with the regularization proce-
dure described in Chapter [/} are expected to help in establishing such a connection.
In order to benefit the full power of the Brown-Hanneaux result, the spinorial version
of the Classical double copy in 3D, the Cotton double copy, and its application to the

asymptotic structure of 3D spacetimes is needed.

The current view in the literature is that the Cotton double copy is applicable to only
type N spacetimes, excluding the black hole solutions which are of type D. However;
this is due to the fact that the Cotton tensor, and therefore the Cotton spinor vanishes
for AdS3 spacetime or any spacetime which is locally isomorphic to AdS3 such as
the BTZ black hole. Therefore, an important problem for the future research is to
look for a similar regularization procedure in the Cotton double copy. Another ap-
proach to search for a connection to the holography would be a formulation of the
Classical double copy at the action level. Since the current formulations are based the
considerations of the solutions to gravitational field equations at a particular gauge,
a covariant formulation has the potential to yield many interesting results apart from

relating the double copy to holography.
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APPENDICES

A. No-Hair Theorem for Free Scalar Fields

As we have seen in Sec. the scalar hair can be obtained by a different choice
of the scalar kinetic term than [67]]. Here, we show explicitly why this is possible
by reviewing the formulation of the no-hair theorem for free scalar fields [127-129] .

Any static metric can be written as
ds? = —N?dt* + hy;dz'da?, (A.1)

where N = N(z') and h;; = h;j(z"). Then, assuming no time dependence, the

equation for the free scalar field (3.25) becomes

, 1
p(x') = —=0, (V—9 9" 0,¢) . (A.2)
With the help of relations
V=g = NVh,
1 g .
— i19.0) = DD,
70 (\/ﬁh ajgp) DDy, (A3)

where D; is the covariant derivative with respect to the spatial metric h;;, it can be

written as

. 1 . )
Co(x') = NDZNDZ'QO +D'D;p. (A.4)

Multiplying by N and integrating over the spatial region Y. between the event hori-

zon and infinity yields
0= / d*xvVh [¢D'NDyp + NoD'Dyyp] (A.5)
¥
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which, after integrating the first term by parts, becomes

0= 7{ dS; NoDip — / d?zvh NDjpDlep. (A.6)
) b
The surface integral consists of integrations over the event horizon 9%y, and the spatial
infinity 0%, as
f{ dS; NoDip = / dS; NoD'p + / dS; NoDiop. (A.7)
oy aEh 8Zinf

The first term is zero since the function NV, by definition, vanishes at the event horizon
while the second term is zero provided that the field ¢ or its derivative D;¢ vanishes

at infinity. With this assumption, (A.6) becomes
0= / d2zvVh ND; oDl (A.8)
2

Since the integrand is positive definite, one must have D;p = 0 and therefore ¢ =
constant throughout the entire region .. In the usual formulation of the no-hair the-
orem, one takes ¢ = 0 at the spatial infinity 0%;,¢, which is a reasonable assumption
for physical fields. This implies that the constant should be set to zero, and hence

¢ =0, 1i.e., no scalar can be present in the region ..

For our analysis, two things are important: First, in the formulation of the no-hair
theorem, there is no reference to the sign of the kinetic term of the scalar field in the
action since we directly start from its field equation. Therefore, whether it is a ghost
or not does not play a role. Second, it becomes possible to obtain a scalar hair because
we do not demand D, = 0 at infinity. Indeed, one has D,y = constant for the static

solution.
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B. Scalar-Vector Duality as Described in Chapter 4]

Note that in our formulation of the scalar-vector duality in Sec. 4.2} we have shown
that free field equations in flat spacetime are equivalent and a scalar field which is
linear in the azimutal angle (¢ = c#, ¢ = constant) implies the Coulomb solution for
the gauge vector. This can be generalized to curved spacetime as long as the metric is
in the KS form (4.4)). However; our analysis is limited to the matter equations and the
gravity equations have to be checked independently. The action (4.30) that we use to
establish the duality leads to a free scalar action with a ghost sign (#.33)) and a free
Maxwell action with a nonghost sign (4.35)), which is enough to show the equivalence
of the matter equations. When coupling to the gravitation is considered, in order to
obtain a black hole solution with the same physical properties, one needs to have a
ghost scalar and a ghost vector (we assume (; = 1, i.e., the EH term has the “right

sign,” for simplicity).

Indeed, as shown in [101] recently, the duality can also be formulated such that the
gravitational action with the correct sign for the matter coupling is obtained directly.
The authors consider theories described by Lagrangians of the form £(¢g"", R,,.,, 0,,¢)
and study solutions in the following form

dr?

f(r)

which includes the solution that we studied in Sec. [4.1] with the metric written in the

ds? = —f(r)dt2 + + r2d6?, w=ch, ¢ = constant, (B.1)

BL coordinates. It is possible to find theories such that the scalar equations is auto-
matically satisfied, the equation for the metric function gets a nontrivial modification
and can be solved analytically. They also show that the same solution can be obtained
from a dual Lagrangian of the form Layu(g"", Ry, fu). When the matter fields are
related ad']

oL
fuw = —V2me,,———— (B.2)
122 M Pa(ap(p)
the dual Lagrangian is given by
»Cdual =L - (B3)

——c"P £,,0,0,
o JuwOpp

1 We use a different normalization than [101]] to obtain the vector kinetic term with coefficient %, as we have
used throughout the text.
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where the original Lagrangian £ should also be written in terms of f,, by using the
relation (B.2)). In [I01]], nonminimal matter couplings are used and regular, electri-
cally charged black hole solutions in three dimensions are obtained. In this work, we
only have the kinetic terms, which are the simplest possible matter couplings. Starting
from the Lagrangian

J % (9¢)” (B.4)

K2

leads to the following dual Lagrangian
1 1 »
Lawal = pR + gfuuf . (B.5)
Both Lagrangians £ and L4y, support the solution with the correct Newtonian poten-

tial as long as the electric charge ¢ and the constant c are related as

e=—L (B.6)

Var’
which is a consequence of (B.2). Using the relation between the mass parameter M

in the scalar case with the constant ¢ (.16), this implies
M = ¢, (B.7)

which shows the relation between the coefficient of the logarithmic terms in the metric

functions (4.22]) and (4.49)).
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C. Details of the Field Equations of the Scalar Theory in Chapter 5|

The field equations of scalar fields ¢ in (5.48) gives the following energy-momentum

tensor and field equations where

2
m=0
' _ (1 (2 (3
T =T3) + T2 + T, (C.2)

The T,E,lj) Tﬁ) and T,E?,i) can be given as

T3 = an(0p)*" VD (08,00, — gu(n — 1)(0p)?)

n=1

T =D Bl (00" [2(3 + 2m) Ra(u0y) 90" 0(0p)?

m=0

+m(3 + 2m) 8,00, 0 R 0000 — (m + 1)(dy)?

X (auﬂpauSDR + g,uuRaBaOAD&B%O - guyR(ago)2)] )

~ o 1 1
T2 = V*V(uEua = 50Bu — 59D, (C.3)
with
E,. = Z B2 (9p)?m [(3 +2m)0, 0, — g,w(ago)ﬂ ) (C.4)

m=0

The equation for the scalar field reads

0=2V, > {na,t® 1 (0p)*" Nore} — 2V, Y " { B2 ()

n=1 m=0
x [m(3 4 2m)0" R 000050 + (3 + 2m) (Dp)*R*Dup — (m + 1) R(Dp)* 0] } .
(C.5)
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D. Some Details of Example III Considered in Chapter [7|

In chapter|[7] we introduce a matter Lagrangian for the Lifshitz topological black hole
in the table[7.1]as [119]

1 1
Lo = = FuwF" = S5 H"T = C" P By Fop ©-1)

We can derive the energy-momentum tensor and the field equations of the matter
fields by taking variation of the matter Lagrangian £,,, with respect to the metric and

matter fields respectively. The energy-momentum tensor reads

1 1 1 1
THV = 5 (J—"”TJT“T,/ — Zgu,,]ﬂ) + Z (,HMUTHVUT - égwaZ) s (DZ)
whose trace-reversed form can be obtained as
~ 1
Ty =T — §Tgm,
1 1 1 1
= 5 (.F,LLTFI/ - Zg,uy-/—'Q) + Z (HMJTHZ/UT - 59#1/7'[2) : (D3)
The field equations for the matter fields are found as
C
V' Fo = —Ee,“,ag?-[mﬁ : (D.4)
T C a3
\Y% H,uzn— = Ee,uz/aﬁf . (DS)

For the solutions that we consider z = 2, and the constant ' and the cosmological

constant A should be fixed as

(C0)? =4, A= —7 (D.6)
The metric function is given by
k
h(r)=1+ 5,2 (k #0). (D.7)

When the constants ¢ and r surfaces are parametrized as

do? + sin? 0dg?, k= +1,

dQi = (D.8)
d6? + sinh? 0d¢?, k= —1,
the matter configuration is as follows
sind, k=1
Fro=—=20r,  Hupp =20r (D.9)
sinhf, k= -1

114



CURRICULUM VITAE

PERSONAL INFORMATION

Surname, Name: Giimiis, Mehmet Kemal

EDUCATION
Degree Institution Year of Graduation
M.S. Hacettepe University, Physics Engineering 2015
B.S. Hacettepe University, Physics Engineering 2011

High School Ankara Yahya Kemal Beyath FLI High School 2005

PROFESSIONAL EXPERIENCE

Year Place Enrollment

2012 - 2020 Hacettepe University Research assistant

PUBLICATIONS

1. M. K. Gumus and G. Alkac, “More on the classical double copy in three space-
time dimensions,” Phys. Rev. D 102, no.2, 024074 (2020)

2. G. Alkac, M. K. Gumus and M. Tek, “The Kerr-Schild Double Copy in Lifshitz
Spacetime,” JHEP 05, 214 (2021)

115



3. G. Alkac, M. K. Gumus and M. A. Olpak, “Kerr-Schild double copy of the
Coulomb solution in three dimensions,” Phys. Rev. D 104 (2021) no.4, 044034

4. G. Alkac, M. K. Gumus and M. A. Olpak, “Generalized black holes in 3D
Kerr-Schild double copy,” Phys. Rev. D 106, no.2, 026013 (2022)

116



	ABSTRACT
	ÖZ
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	Introduction
	Background Material
	Degree of Freedom Counting and the Newtonian Limit in Three-dimensional Gravity
	Newtonian Limit of 2+1 dimensional gravity

	Some Important Solutions in 3D Gravity
	Conical Defects
	AdS3 spacetime
	Bañados-Teitelboim-Zanelli Black Hole

	Maximally Symmetric Spacetimes and the Deviation Tensor
	Spinor formalism and the Petrov classification in d=4
	Tetrads and Spinor Basis
	Field Strength Spinor
	Weyl Spinor
	Petrov Classification of Field Strength and Weyl Spinors


	The Kerr-Schild Double Copy in Three Dimensions
	Kerr-Schild Double Copy with a Flat Background Metric and the Coulomb Solution
	Static Solution
	Stationary Solution
	Summary

	The Kerr-Schild Double Copy of Coulomb Solutions in Three Dimensions
	The Coulomb Solution from the Free Scalar
	Solution with the correct Newtonian potential
	Gauge theory single copy

	Scalar-Vector Duality and Its Consequences
	Einstein-Maxwell Theory in Three Dimensions
	The most general static solution of Kerr-Schild form
	Solutions with the correct Newtonian potential (L=0)
	The charged Bañados-Teitelboim-Zanelli (BTZ) black hole (L<0)

	Conclusions

	Generalized Black Holes in Three Dimensions 
	Basics of the 3D Kerr-Schild Double Copy and Regularity of the Solutions
	Einstein-Born-Infeld Theory
	Generalization of the Scalar Coupling
	Summary and Discussions

	The Kerr-Schild Double Copy in Curved Spacetimes
	General Formulation
	Maximally Symmetric Background Spacetime
	AdS4 Spacetime around Minkowski Background
	Bañados-Teitelboim-Zanelli (BTZ) Black Hole
	Schwarzschild-AdS4 Black Hole
	Reissner-Nordström-AdS4 Black Hole

	Lifshitz Black Holes
	Lifshitz Black Hole from a Massless Scalar and a Gauge Field
	Lifshitz Black Hole from a Massive Vector and a Gauge Field

	Summary and Discussions

	Regularized Weyl Double Copy 
	Some Problems in Weyl Double Copy
	Resolution by Regularization
	Lifshitz black holes
	Conclusions and Outlook

	Conclusion
	REFERENCES
	 APPENDICES
	No-Hair Theorem for Free Scalar Fields
	Scalar-Vector Duality as Described in Chapter 4
	Details of the Field Equations of the Scalar Theory in Chapter 5
	Some Details of Example III Considered in Chapter 7

	CURRICULUM VITAE

