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Prefacio

El objetivo fundamental de la fisica de interacciones fuertes es la comprension de la es-
tructura de los hadrones y sus interacciones. El establecimiento de QCD como la teoria
fundamental de las interacciones fuertes constituydé un paso decisivo en esta direccion.
Dicha teoria puede ser aplicada directamente a la descripcién de procesos en la region de
altas energias con la ayuda de métodos perturbativos. La situacién es distinta a energias
bajas e intermedias, donde nuestra incapacidad para resolver QCD en el régimen no pertur-
bativo impide que podamos derivar las propiedades de los hadrones a partir de principios
basicos. A bajas energias, la teoria quiral de perturbaciones proporciona un marco teérico
que permite un estudio sistemdtico de las consecuencias de algunas de las simetrias de
QCD. Esta linea de trabajo ha sido bastante exitosa en el sector de los bosones de Gold-
stone (m, K, n). En presencia de bariones aparecen complicaciones adicionales a causa
de que la masa de los mismos es comparable con la escala de rotura de la simetria quiral
y de la presencia de la resonancias bariénicas como son la A(1232) y la N*(1440). La
contribucion de los estados exitados del nucleén a los procesos de baja energia puede ser
integrada y sustituida por contratérminos finitos, pero este procedimiento es cuestionable,
especialmente en el caso de la A que se encuentra tan solo 300 MeV por encima del nucleén
y que se acopla fuertemente al sistema 7/N. La situacién es incluso mas complicada cuando
se tienen dos o mas bariones.

A energias intermedias, las resonancias baridnicas son los auténticos protagonistas de la
dindmica que gobierna las reacciones inelasticas que ocurren en nucleones y nicleos. Dichas
reacciones son un instrumento ideal para profundizar en las propiedades de los estados ex-
citados barionicos. La riqueza del espectro de bariones constituye una clara muestra de
la complejidad de las interacciones fuertes a estas energias. El modelo de quarks permite
clasificar de modo sistematico estos estados a partir de los quarks constituyentes. También
permite predecir de modo bastante acertado muchas de sus propiedades como son sus masas
y modos de desintegracion, pero el vinculo de los quarks constituyentes con los quarks y
gluones de QCD ha de ser esclarecido.

En este contexto las reacciones de produccion de dos piones constituyen una eleccién
atractiva para el trabajo tanto tedrico como experimental. La reaccién (m,77) en nucleo-
nes y nucleos ha sido ampliamente estudiada. La motivaciéon fundamental para ello esta
relacionada con el interés por extraer informacion acerca de la interaccion pion-pion de un
modo independiente de modelos. A pesar de que esto no ha sido conseguido de un modo
satisfactorio, las reacciones (7, 77) han probado ser una herramienta importante para el
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estudio de ciertos aspectos de la dinamica de las resonancias, como son la determinacion de
la constante de acoplamiento del vértice TAA o el estudio de los modos de descomposiciéon
de la resonancia N*(1440). Por otra parte, datos recientes obtenidos empleando diferentes
blancos nucleares parecen indicar la modificacién de los pares de piones de isoespin nulo en
su propagacion en el medio nuclear. La fotoproduccion de pares de piones también ha sido
extensamente estudiada. Un andlisis reciente de la misma ha conseguido la descripcién
de las amplitudes N*(1520) — A7 y su comparacién con diferentes calculos basados en
modelos de quarks. Estos estudios han sido extendidos a la regién de ¢ # 0 empleando
electrones. Esta cuestion es objeto de investigacién experimental en TJNAF como parte
del programa de electroexcitacién de resonancias.

La primera parte de esta tesis esta dedicada al estudio de la produccién de dos piones
en la dispersion ineldstica de nucleones. Este proceso comparte muchos de los atractivos de
las otras reacciones de produccion de dos piones pero con un nuevo y crucial ingrediente:
la interaccion nucleén-nucleén. En este caso, al igual que en la produccién de piones o
mesones mas pesados, hay grandes transferencias de momento involucradas, lo cudl implica
que se accede a la parte de corto alcance de la interaccion nucleén-nucleon.

En el primer capitulo hemos desarrollado el primer modelo microscopico de la reaccion
NN — NNrm, pensado para describir la misma en un amplio rango de energias que
va desde el umbral hasta energias cinéticas del proton incidente de unos 1.4 GeV (o sea
800 MeV por encima del umbral) y para todos los canales de isoespin posibles. Los resul-
tados que obtenemos para las secciones eficaces totales y diferenciales son comparados con
los datos experimentales disponibles. La informacién experimental sobre esta reaccion cre-
cera considerablemente en el futuro préximo como resultado de las mediciones realizadas
y previstas en el detector WASA de Uppsala. Para construir nuestro modelo nos hemos
basado en un modelo previo de la reaccién 7N — 7w N. Una caracteristica relevante de
la misma es la importancia de la resonancia N*(1440) y su canal de desintegracién en
N(rm)L=0 .. Algo similar se obtiene en nuestro caso, solo que aqui tenemos que consi-
derar la transicion NN — NN* acerca de la cual tenemos un conocimiento limitado, que
procede de un reciente analisis de la reaccién (a, o).

Un anadlisis realista de los resultados experimentales de produccion de mesones en co-
lisiones nucledén-nucleén cerca del umbral y que estan siendo obtenidos en diferentes la-
boratorios es impensable si no se tiene correctamente en cuenta la interaccion de estado
final entre los nucleones. En muchos trabajos se ha asumido que dichos efectos se pueden
tener en cuenta a base de agregar un factor que multiplica a la amplitud calculada en la
aproximacién de Born con ondas planas (esquema de Watson-Migdal). Sin embargo este
procedimiento ha sido criticado sobre la base de que con el mismo se obtiene la dependencia
correcta en energia de la seccion eficdz, pero no necesariamente su tamano adecuado. En
el capitulo 2 hemos estudiado los efectos de la interaccién de estado final en el caso de la
produccién de dos piones. Hemos considerado el canal pp — ppr™n~ cerca del umbral, de
modo que podemos asumir que la amplitud de produccion esta dominada por la excitacion
isoescalar de la resonancia Roper, seguida de su desintegracién en N(7m)5=0 . Otras
de las ventajas que ofrece este caso particular es que la parte fuerte de la interaccion de
estado final esta dominada por el estado !Sy. Para obtener la funcién de onda de dicho



estado hemos resuelto la equaciéon de Shrodinger empleando un potencial separable. En
nuestros calculos hemos empleado la aproximaciéon de Born de ondas distorsionadas que
comparamos con la aproximacion de Watson-Migdal.

En el capitulo 3 nos ocupamos del canal np — dnm, que recibié una atencién especial
en los anos 70 en coneccién con el llamado efecto ABC. La anomalia ABC es un aumento
en el espectro de masas invariantes cerca de los extremos del espectro. Fue observado
por primera vez por Abashian, Booth y Crowe en un experimento llevado a cabo para la
reaccion pd — 3HeX con haces de protones de energias entre los 624 y los 743 MeV. Es-
tructuras similares se encontraron en np — dX y dd — *HeX. Inicialmente se pensé que
se trataba de una nueva particula, pero experimentos posteriores mostraron que la masa
y anchura correspondiente a los picos variaba con las condiciones cinematicas. Mas aun,
hay evidencias de que el efecto ABC desaparece a bajas energias, lo que sugiere que los
mecanismos involucrados tienen una fuerte dependencia en energias y angulos. Nosotros
mostramos que la estructura que muestran los espectros de la reaccion np — dnm a bajas
energias puede ser explicada como consecuencia de la interferencia de dos mecanismos que
involucran la excitacién de la resonancia Roper. A mas altas energias nuestros calculos,
aunque no describen los detalles de los espectros, muestran la aparicion de los picos del
efecto ABC. La presente descripcion revela la importancia de la resonancia Roper para la
fenomenologia de esta reaccion y esta llamada a tener repercusiones en los andlisis de otras
reacciones como dd — *Herm y pd — 3Herm que estdn siendo estudiadas cerca del umbral
en varios laboratorios.

Como hemos mencionado anteriormente, los estados excitados del nucleén pueden ser
estudiados a partir de la interaccién fuerte, con haces de nucleones y piones, de la in-
teraccion electromagnética, con fotones y electrones y también a partir de la interaccién
débil, con haces de electrones y neutrinos. La segunda parte de la presente memoria estd
dedicada a la fisica de la transiciéon N — A inducida por reacciones débiles de cambio de
carga. El estudio de la A presenta claras ventajas al estar claramente aislada del resto de
resonancias que aparecen a mas altas energias, asi como por el hecho de que el canal 7N
de desintegracion es claramente dominante, lo cual facilita su identificacién.

La mayor parte de la informaciéon de que disponemos acerca de los factores de forma
débiles de la transicion N — A provienen del analisis de los experimentos llevados a cabo en
los laboratorios de Argonne, Brookhaven y CERN con haces de neutrinos cuya distribucion
de energias no es bien conocida, y empleando detectores de camaras de burbujas. Con el
advenimiento de una nueva generacion de aceleradores de electrones con energias del orden
de los pocos GeV que permiten alcanzar altas luminosidades, es posible realizar experi-
mentos en la regién de las resonancias con buena estadistica. En el capitulo 4 estudiamos
las reacciones e p — A%y, y ep — A*Hi,, para explorar la posibilidad de emplearlas
para obtener informacion acerca de los factores de forma débiles que pueda ser contrastada,
con las predicciones tedricas existentes.

Habida cuenta de que los factores de forma vectoriales estan relacionados con los elec-
tromagnéticos, que pueden ser obtenidos a partir de los experimentos de fotoproduccion y
electroproduccién, los experimentos con corrientes débiles permitirian obtener informacién
acerca de los factores de forma axiales para la transicion N — A. Entre ellos, el domi-
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nante es C:'(¢?). La determinacién de su valor a ¢ = 0 es importante porque el valor de
CZ(0) que se obtiene utilizando la hipdtesis de la conservacién parcial de la corriente axial
(PCAC) es un 30 % mayor que el estimado en la mayoria de los modelos de quarks. Algo
similar ocurre en el sector electromagnético donde las amplitudes de transiciéon dipolar
magnética y electrica, M, y Ej, respectivamente, que se obtienen en los experimentos
de fotoproduccién y electroproduccién de la A son un 30 % mayores que las que predicen
los calculos tedricos. Dicha discrepancia podria ser una manifestacion de la violacion de
la simetria SU(6). En el capitulo 5 estudiamos la reaccién vd — p~AT+n para extraer
C2(0) de los datos a bajos ¢® obtenido en el BNL, prestando especial atencién a los efectos
de la estructura del deuterén y de la anchura de la resonancia A.



Preface

The ultimate goal of strong interaction physics is to explain the structure and interaction
of hadrons. The major progress in this direction came with the establishment of QCD as
the fundamental theory of the strong interaction. It can be applied directly to the de-
scription of the high energy domain using perturbative methods. The situation is different
at low and intermediate energies, where our inability to solve the dynamics of QCD in
the non-perturbative regime prevents us from deriving the properties of hadrons from first
principles. At low energies, Chiral Perturbation Theory provides a theoretical framework
that allows a systematic study of the consequences of some of the QCD symmetries. It has
proven to be very successful in the sector of Goldstone bosons (m, K, n). In presence of
baryons, additional complications arise due to the large baryon mass, which is comparable
to the chiral symmetry breaking scale, and the presence of low lying resonances such as the
A(1232) and the N*(1440). The contribution of nucleon excited states can be integrated
out and replaced by finite counterterms, but this procedure is questionable, specially in
the case of the A, which lies only 300 MeV above the nucleon and couples very strongly
to the 7N system. The situation is even more involved for processes with two or more
baryons.

At intermediate energies, baryonic resonances become an essential ingredient of the
underlying dynamics governing many inelastic reactions that take place in both nucleons
and nuclei. These reactions are the major instrument to deepen our insight into the prop-
erties of the baryonic excited states. The richness of the baryonic spectrum is a clear
expression of the complexity of hadronic interactions at these energies. The quark model
provides a systematic classification of these states in terms of constituent quarks, and quite
successfully predicts many of their properties such as masses and decay modes, but the
relationship between these constituent quarks and the fundamental quarks and gluons of
QCD must be clarified.

In this context, double-pion production reactions appear as an attractive choice for
experimental and theoretical work. The (7, 77) reaction in nucleons and nuclei has been
widely studied; the main motivation for studying this reaction was related to the hope to
extract model independent information about the 77 interaction. Although this feature
has not been fully achieved, (m,77) has revealed as a useful tool to investigate certain
aspects of resonance dynamics like the determination of the 7TAA coupling constant or the
study of N*(1440) decay modes. On the other side, recent data taken with nuclear targets
seem to imply an in-medium modification of correlated isospin zero pion pairs. Double-pion
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photoproduction has also been extensively studied. A recent theoretical analysis of this
reaction brought along a description of the N*(1520) — Am amplitudes, which could be
contrasted with different quark model calculations. These studies have been extended to
the ¢® # 0 by considering electron probes; this a subject of current experimental research
at TJNAF as a part of the program on electroexcitation of resonances.

The first part of this thesis is devoted to the study of two-pion production in nucleon-
nucleon scattering. This process shares many attractive issues with the other double pion
production reactions since one would again expect the low lying resonances A and Roper
to play an important role, but there is a new crucial ingredient: the nucleon-nucleon in-
teraction. In this case, as in the production of pions or heavier mesons, large momentum
transfers are involved, which implies that the short range part of the NN interaction is
acceded.

In the first chapter we develop a microscopic model for the NN — NN7m reaction
based on the present phenomenological knowledge of 7N and NN interactions in the elas-
tic and inelastic energy domains. Our results for total and differential cross sections are
compared with the scarce experimental data available. This information will get consider-
ably enlarged in the near future due to the measurements close to threshold performed and
planned at the WASA detector in Uppsala. Yet, any reasonable description of the near
threshold data cannot avoid dealing with nucleon-nucleon final state interactions. A proper
treatment of this effect would complicate considerably the model from the technical point
of view. In Chapter 2 we analyze this problem for the pp — ppr ™7~ channel using a sim-
plified version of the model and within the Distorted Wave Born Approximation. We also
compare with a simple and controversial approach to account for final state interactions
often used in the recent literature on meson production in NN collisions. In Chapter 3, we
focus our attention on the np — dnm channel. It has deserved a great deal of attention in
the past, in connection with the ABC effect, an enhancement in the 77 missing mass close
to the edges of the spectra. Our description reveals the importance of the Roper resonance
in order to understand the low energy phenomenology of this reaction. It is also bound to
have repercussions in the analysis of related reactions such as dd — arm and pd — >Hen,
which are the subject of experimental research at different facilities.

As we have mentioned, the nucleon excitation spectrum can be probed using strong
interactions, with pion and nucleon beams, electromagnetic interactions i.e. with photon
and electron beams, and also weak interactions with electrons or neutrino beams. The
electroexcitation of resonances represents an important part of the present experimental
program at TJNAF. The second part of this thesis is dedicated to the physics of N — A
transitions induced by charge changing weak reactions. The A is chosen because the fact
that it is well separated from the rest of resonances and decays into pion and nucleon
facilitates its experimental study.

The bulk of the existing information on weak N — A form factors comes from the anal-
ysis of experiments performed with wide band neutrino beams, whose energy distributions
are poorly known, and bubble chamber detectors. In Chapter 4 we consider the inverse re-
actions e p — A%, and e*p — AT, in the energy range of Mainz and TIJNAF electron
accelerators in order to explore the feasibility of studying them experimentally and distin-



guish between the different model predictions for the form factors. Finally, in Chapter 5
we undertake the determination of the most relevant axial vector N — A form factor C
at ¢> = 0 from the available data taken at BNL neutrino experiment and contrast it with
the different determinations of this magnitude available in the literature.
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Part 1

Two-pion production in
nucleon-nucleon collisions






Chapter 1

The NN — NN#m reaction

1.1 Introduction

Pion production in nucleon-nucleon (NN) collisions is one of the sources of information on
the NN interaction, and about nucleon resonance properties. Particularly, the double pion
production channel might be especially enlightening in view of the interesting information
obtained from the study of analogous reactions with two pions in the final state, such as
m™N — mrN and YN — mwN. On the other side, the study of double pion production
in the collisions of nucleons and light nuclei has become an active field of experimental
research: the pN — NNnmm and pd — 3Hen ™7~ reactions close to threshold are being
investigated at the CELSIUS storage ring in Uppsala [1, 2], while for the later one, inter-
esting results have already been obtained for an incident proton energy of 546 MeV by the
MOMO collaboration at COSY [3].

We have developed the first microscopic model for the NN — N Nrr reaction [4]; it is
meant to work at a wide range of energies, from threshold up a kinetic energy of 1.4 GeV
for the incoming proton (i.e. 800 MeV above threshold) and for all isospin channels. A
direct comparison of our theoretical results with the measured total cross sections and
invariant-mass distributions will certainly provide useful information about the mecha-
nisms governing this process. Our model can also provide relevant information towards a
better understanding of the so called ABC effect; this will be discussed in detail in Chap-
ter 3. There are also repercussions for the reaction pp — ppn®, since a possibly relevant
mechanism for it can be obtained from pp — ppr°7® when one of the 7% is emitted and
the other is absorbed [5].

In order to build the model, we have closely followed the guidelines of a previous model
for the 7N — 7w N reaction [6]. A prominent feature of this reaction at threshold is the
importance of the N* (1440) and its decay channel into N(n7)5=0 . This gives us a
hint that Roper excitation might also play an important role in the NN — NN77 reac-
tion close to threshold. However, contrary to the case of N* excitation from 7N and yN
interactions, which is well known, now we have to deal with the practically unexplored

NN — NN* transition.
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In Ref. [7], double-pion production in pp collisions was studied following a different
approach based on the One Pion Exchange model, and including two mechanisms: one
with both pions produced from the same baryon line and another with a single pion pro-
duced in each baryon line. The ingredients needed there, TN — 77N and 7N — 7N
amplitudes, were taken from experimental cross sections, making several assumptions on
how to extrapolate them off shell and summing incoherently the contribution of the two
mechanisms. The model was used at higher energies (7, ~ 2 —3 GeV) that those explored
here. Even if phenomenologically one would be considering in Ref. [7] the terms discussed
here with explicit models, it would only account for the 7 exchange in the terms with N*
excitation followed by the N* — N(7m)L=0  or N* — A decays, while we will show that
an isoscalar exchange is the dominant piece in the NN — NN* transition at low energies.
It will also be demonstrated that the indirect effect of the short range repulsive NN force
weakens the m exchange contribution. Thus, the experience gathered through the years on
the NN interaction and the pion nucleon and nuclear interaction, together with the recent
findings on isoscalar Roper excitation, makes possible to achieve the detailed model of the
present work, clarifying and improving the ideas contained in Ref. [7].

1.2 Isospin analysis

There are eight possible pion pair production reactions, which can occur in the collision of
protons with nucleons. They are

pp — ppmw (1.1)
pp — pnuta® (1.2)
pp — ppmw (1.3)
pp — nnmiw’ (1.4)
pn — pnwiw (1.5)
pn — ppm @ (1.6)
pn — pna’a® (1.7)
pn — nnrt a0 (1.8)

In Ref. [8] a systematic isospin analysis of meson pair production in nucleon-nucleon
collisions is performed. The amplitudes of these reactions can be decomposed into isospin
amplitudes corresponding to the isospin states of the system, classified by the total isospin
and the isospin of nucleon and pion pairs (77) (NN) or pion-nucleon pairs (7 N) (7N). In
Ref. [8], the (m7) (INVNN) representation is used. Total cross sections for the different chan-
nels can be then expressed in terms of these transition isospin matrix elements Apprrpnn.
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Denoting as ® the relative phase between the matrix elements Ao, and A;o; (there is no
interference between other amplitudes), one gets

1 1 1 /1
U(pp7T+7T7) = 3 |~'4111|2 + = |~’4101|2 + 55 |-’4121|2 + 180 | A101] | A121] cos @ (1.9)

8 6 120
o(pnrtn®) = |A121| + 5 |A111| + - |A110| (1.10)
1
U(ppﬂ—oﬂo) = |A101| + |A121| 130 | A101| | A121] cos @ (1.11)
+.+ 3 2
O'(?"L?"L?T ™ ) = 2—0|A121| (112)
olpnttr) = |A110| + |A011| + |A000| + |A101| + |A121|
o | Ao | [ iz | cos @ (1.13)
—/ — oS :
T30 ol A2
o(ppr~7%) = |A121| + |A111| + |A011| (1.14)
o(pnm®r?) = |A000| + |A1o1| + |A121|
1
+ 130 |A101| |A121| cos @ (1-15)
+.0 3
a(nmr 7T) = %|A121| —|— |A111| —|— |A011| . (1'16)

After taking into account the obvious result o(nnm7°) = o(ppr~7°), one can see that the
remaining seven equations are not independent. They lead to the the following identity

20(pprtn) — o(pnatr®) — do(pprP7°) + 20 (nnat )

+ 20(pnrtn) — 20(ppr 7°) — do(pnr’n®) = 0. (1.17)

In other words, the eight possible reactions lead to six independent total cross sections.
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1.3 Experimental status

In the past, there has been little experimental work devoted to the study of double pion
production in nucleon-nucleon collisions at intermediate energies (we restrict ourselves to
kinetic energies of the incoming nucleon in the Laboratory frame (LA) 7, < 1.4 GeV ). In
spite of this, we have at our disposal 37 data points of total cross sections for different chan-
nels and a few invariant mass and angular distributions, all taken from four experimental
papers, which we comment briefly below.

D. C. Brunt, M. J. Clayton and B. A. Westwood [9] extracted the total cross sec-
tions for the reactions (1.1), (1.5) and (1.6) at incident proton momenta 1.825 GeV/c
(T, = 1.11 GeV) and 2.11 GeV/c (T, = 1.37 GeV) from an experiment with a proton
beam and a 80 cm bubble chamber filled with deuterium. The total cross sections on
free nucleons are obtained after the application of corrections due to the structure of the
deuteron target, namely, double scattering. Because of the Fermi momentum of the nu-
cleons inside the deuteron, they represent an average over a center-of-mass (CM) energy
distribution with full width 90 MeV, centered on the nominal value obtained from the
beam momentum. The paper also provides some angular and invariant mass distributions
for the reactions (1.1) and (1.5) at the highest energy, excluding the events with spec-
tator momentum bigger than 150 MeV/c for neutrons and 200 MeV /c for protons. The
contamination from double scattering was estimated to vary between 15 and 40 %.

In Ref. [10], the authors undertook the task of providing data on elastic and all the
inelastic proton-proton cross sections in the region between the single pion production
threshold and 7, ~ 1 GeV, which was misrepresented in the literature. Their work is
based on the exposure of the KEK 1 m liquid hydrogen bubble chamber to proton beams
with 11 momenta in the range 0.9 — 2.0 GeV/c (0.36-1.25 GeV). Double pion production
total cross sections were measured for reactions (1.1), (1.2), (1.3) and (1.4) at 6, 5, 4 and
3 different momenta respectively. The events corresponding to the first of these reactions
were identified by four-prong events and the others by two-prong ones. If an event whose
secondary tracks appeared to be proton and 7", and its missing mass was greater than
the sum of neutron and 7% masses, then it was identified as reaction (1.2). If both tracks
appeared to be positive pions, and the missing mass was greater than twice the neutron
mass, the event was identified as (1.4). If both tracks appeared to be protons and the
missing mass was greater than twice the 7° mass, it was identified as reaction (1.3). These
events could be contaminated by three pion production reactions at 7, > 934 MeV, but
this contamination is expected to be negligible since no ppr*7~7° event was found in the
experiment.

The work of L. G. Dakhno et al. [8], which was mentioned above in connection to the
isospin classification, is devoted to the measurement of total cross sections for the pion
pair production reactions (1.1), (1.5) and (1.6), as well as pd — pdr*7~ at five energies
between 0.7 and 1.0 GeV. The experiment was performed in a 35 cm bubble chamber filled
with deuterium and exposed to a proton beam. All three and four-prong events with one
negative track were recorded. These events could be initiated by the following reactions:
pd — pppr—, — pdrtr—, — ppnrtn and — pppr 7w°. The three-prong events corre-
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sponded to the cases when one of the protons had a momentum less than 80 MeV/c and,
therefore, was not visible in the bubble chamber. In the framework of the impulse approxi-
mation, when one of the nucleons is assumed to be a spectator, the events of pd — ppnr 7™
represent the sum of reactions (1.1)and (1.5). For the separation of this processes, the nu-
cleon with the least momentum in the Laboratory system was always assumed to be the
spectator, as it was done in Ref. [9]. Corrections arising from the deuteron structure were
estimated to be of the order of 5 % and, hence, neglected. The authors also claimed that
the Fermi motion of the nucleons in the deuteron would lead to an unimportant shift of
the incoming energy values, although such shift has been later estimated to be of the order
of 30 MeV [11].

The paper of A. Abdivaliev and collaborators [12] analyses the data for the reactions
np — dntw~ and np — npr 7™, obtained by irradiation of a 1 m hydrogen bubble cham-
ber with a neutron beam of momenta 1.73 and 2.23 GeV/c (7,, = 1.03 and 1.48 GeV). The
momentum spread of the beam did not exceed 3 % and the angular spread was around
0.3 mrad. For the later reaction, pion pairs effective mass, pion 3-momentum and angular
distributions are shown. These observables can be compared with our model at least for
the lowest of the two energies.

Two pion production in proton-proton collisions at CELSIUS

Nowadays, double pion production in pp collisions is being studied at the CELSIUS storage
ring using a hydrogen target and the WASA /PROMICE detector [1]. All possible reaction
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Figure 1.1: The WASA/PROMICE detector at CELSIUS, TSL, Uppsala.
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channels except (1.4) have been measured simultaneously at five energies between 650 and
775 MeV. The detector is well suited to measure meson production reactions at threshold.
The charged particles are detected in the forward part of the detector (FD), which is a
segmented plastic scintillation calorimeter covering the angular range 4° — 21°. Since this
setup does not contain a magnetic field, the delayed pulses from the decays 7t — uty,
and p* — etr.r, have been used for 7 /7~ identification, with an efficiency of about
60 % [1, 13]. Neutral pions can be identified through their decay into two photons that
are detected in coincidence in the Central Electromagnetic Calorimeter (CEC). The data
is currently under analysis and total cross sections will be obtained. Provided that the
kinematics of every event is fully reconstructed, the study of various distributions will be
possible if the statistics is good enough.

1.4 The cross section

Let us consider the process N(p1) N(p2) — N(ps) N(ps) 7(ps) m(ps) with p; = (E;, ps),
(1 = 1—4) the four-momenta of the particles. The differential cross section can be written
as [14]

11 dp;
H pZ|M|5 (p3 +pa+ps +ps — 1 —D2), (1.18)

do = =
7T 5 84E1E2vm 11

where M is the nucleon mass and

Fy Byt = [(pip2)® — M*]'? =2 2MT + 72)"? (M +T); (1.19)

S| M|? stands for the amplitude squared, summed and averaged over the final and initial
polarization states respectively. T is the kinetic energy of the incoming nucleon in LA.
Finally, S is the symmetry factor

S=]]#! (1.20)

for k; identical particles of species [ in the final state. In our case, S can be 1, 2 or 4
depending on the isospin channel.

From the previous expression, all possible distributions can be obtained. Here I will
derive explicitly a formula for the total cross section. Choosing the center-of-mass frame
and integrating over ps one obtains

- L1 1 M* y
o = ==
S 2% (2m)8 (2MT + T2)"* (M +T)

(1.21)

dps dp. d S
/Mé(QEO_E3—E4—E5_EB)Z|M|2’

EsEyEsEg
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where E5 = [mQ + (p3+ps+ p6)2] 12 with m, the pion mass; Ej is the energy of each
of the initial nucleons in CM. In order to integrate out the remaining d-function, let us
perform the rotation pf = Rp6, where R is chosen in such a way that the vector R(pg +
p4) is directed along the z direction, which is identified with the direction of the incoming
beam in LA. Then,

dps ~ 2 _ dpg ~ 25 -1
/E5E6 503 M| _/E5E6 5(2F0 — By — Fy— By — Fo) S IMP(R™pE) (1.22)

with

- A 57 1/2
E5 = m72r—|— (p3+p4+7271pg> :|

1/2

= -m72r + (7%(133 +Pps) + Pg>2]

1/2
= [E§ + (p3 + P1)* + +2[p3 + pa [Ps| cos b5 ] . (1.23)

In these variables, the integration over cosf§ can be easily performed leading, after some
algebraic manipulation, to our final expression for the total cross section

11 1 M*
T = =—— dE;dQsd B dQudEgdpl
o(T) S 2% (2m)8 (2MT + T2)"/? (M+T)/ 3R Ra R0 Rty X
(1.24)
P3| |p4l on N 2 1 5-1
—2 =" 0O (1 — |cosb M|" (R p& )
|p3 +p4| ( ‘ 6‘) Z| | ( p6) cos 0F =cos 03
where
2Fy — E3; — E, — E¢)?> — E? — 2
cosﬁg:( 0 3 4 6) s — (P3 + P4 (1.25)

2 |p3 + pa |Ps]
The step function ©(z) guarantees that cosf is always between -1 and 1. The rotation

R ! is not unique; a possible choice for it is

cosfcosep —singp sinfcosp
R 1= cosfsing cosy sinfsing (1.26)
—sinf 0 cosf

with
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COSHZM sinf) =1 — cos?0

|P3 + P4l
(1.27)
cosp= PP o (Ps P
sin @ |p3 + p4| sin 0 |p3 + pa|

The eight-dimensional integral of Eq. (1.24) can be most efficiently evaluated using
the Monte Carlo method. Another advantage of the Monte Carlo integration is that all
needed differential cross section can be obtained at the same time; further details about
the integration procedure can be found in Appendix A.

1.5 The model

The complete set of Feynman diagrams of the present model is shown in Fig. 1.2. It
includes the contribution from the effective pion-nucleon Lagrangian at its lowest order, as
well as the explicit excitation of N*(1440) and A(1232) resonances. Below, I describe in
detail all the ingredients needed for our calculation.

1.5.1 Low energy effective Lagrangian

The amplitudes (1), (2) and (3) of Fig. 1.2 can be derived from the low energy effective field
theory for strong interactions, with the inclusion of baryons [15, 16, 17]. Here we restrict
ourselves to the non-strange sector. To leading order O(g) in an expansion in external
momenta and meson (quark) masses, the effective SU(2) Lagrangian is the following

£L=L2+cl) (1.28)

2 : : : 1 : : .
where £ describes m — 7 interactions and LST ])V the interactions of one nucleon with one
or more pions

f2

£ 7 (0,UT0"U + x(U + UTY) (1.29)
LY = U(in"D, — M + %Av”%uu)\lf. (1.30)

Here, U is a 2 x 2 unitary matrix that gives a convenient parameterization of the pion
field

U(®) = u(®)? = eap {z\/ﬁ@/f} (1.31)

1 1.0 +
d(z) = ﬁrqb: ( \/gir —%WO ) , (1.32)
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where 7; are the Pauli matrices; the symbol () denotes flavor trace. For the matrix Yy,
responsible for the explicit chiral symmetry breaking, in the case of isospin symmetry
(m,, = mgq = m), one finds

0 m? 0
om0 )< ( ), s

™

where By is related to the quark condensate

By f* = (0l gq10) . (1.34)

The proton and neutron fields are combined in an isospinor ¥

\1;:< i) : (1.35)

and the covariant derivative of the nucleon field in the absence of external sources is given
by

1
DV =0 V+T,¥, T,= 3 (w'O,u + udu’) ,  w, =iw'o,Uul. (1.36)

Finally, in the quiral limit (i.e. m — 0), f can be identified with the pion decay constant,
which is determined experimentally from the charged pion weak decay 7™ — p + v, [18]

fr=f(1+O(m)) =924 MeV . (1.37)

In the same limit, M is the nucleon mass and g, the axial-vector strength measured in low
energy neutron (3 decay (g4 ~ 1.26). It is related to the pion nucleon coupling (frnn/mx)
by the Goldberger-Treiman relation [19]

NNT _ 94

my  2f;

By expandlng the matrix U in powers of ® and keeping the terms with up to four pion
fields in £% and up to three in ) ~~ we obtain the following set of Lagrangians

(1.38)

Loer = fg 0,69)" ~ $(0,8)" + T’ (1.39)
Lnne = f;van ‘I”Y 758 otV (1-40)
o 6}2 INNS G (D, b7 B — (S7)(OuBBY | (1.41)

Lvvee =~ V"7 (6:0,0)¥ (1.42)
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Historically, different forms of the Lagrangians (1.39)-(1.41) have been used in the lit-
erature [15, 20]. It can be shown that they all emerge from the Lagrangians (1.29, 1.30)
by choosing different representations for the pion field U(®). Although it has been shown
explicitly for specific cases that these sets produce the same physical amplitudes for specific
processes like (m,27) [20] or Double Charge Exchange A(w*, 77)B [21], this equivalence
is a consequence of a theorem, which states that experimental observables do not depend
on the representation [22]. It was also common to include in the Lagrangians a parameter
€ to describe the pattern of chiral symmetry breaking [23, 20, 24]; now we know that only
¢ = 0 is consistent with QCD [25].

Let us now d1scuss whether we should include terms appearing at next order in the ¢
expansion, i.e. £7r % [16]. The terms of the dimension two effective relativistic pion-nucleon
Lagrangian relevant to our calculation are [26]

/ II

2 = - e
LST])V = U {y,)+ zﬁllﬂyu D, V{(utu") — 8M2\If DMDV U (uu”)
_ 1.
+esWu,ut v + 2041\110,“, [ut, u” W, (1.43)
with
e = ulyul +uxu. (1.44)

This Lagrangian will contrlbute to the m IV elastic scattering and thus, to the NN77 vertex.
In fact, expanding LW N> one gets

2 c " PRGN
Lyver = —2ge ¥V FiggUn, 0, V@9 0) — g 0.0, V0“9 '9)
ey 7 V(9 0)" T — 15 qulo—u,,r(aﬂcpxa%p) (1.45)

In Ref. [27] the couplings ¢; (¢, = ¢, + ¢}]) are determined from a best fit to different
m N observables. Then, it is shown that they can be understood from resonance exchange.
Assuming that ¢, is saturated completely by scalar meson exchange, the values for c,, ¢,
and ¢, can be explained as a combination of A, p, Roper (R) and scalar meson exchange:

o o

A R
C, R oc, t G
1.4
~ A R S ( 6)
Cs R ¢ + ¢ + ¢
G R o+t

Our model is intended to describe the data over a wide range of energies. For this reason,
we include the resonances A, N*(1440) explicitly ( we neglect the contribution of the p )
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and, therefore, do not include the ¢; parameters related to these resonances, in order to
avoid double counting. At this stage, we are left with ¢; and ¢;. If we take the values
$ =—0.93 GeV™!, ¢f = —1.40 GeV™! from the estimations of Ref. [27], we see that their
contribution to the isoscalar s-wave m /N scattering length is

2

A () = —% (1 + %)_1 T}L—g (—2¢5 + ¢) = 0.024 fm, (1.47)
which is around five times smaller than the isovector scattering length
I (1 + %)_1 T 0113 fm (1.48)
8 M f2
arising from the Lagrangian of Eq. (1.42) ( and in good agreement with the experimental
value al,) = 0.129 £ 0.003 fm [28] ). Since, as will be shown, the contribution of the dia-

gram (3) of Fig. 1.2, calculated with Ly yyr, is very small, it makes sense to neglect the
amplitude coming from the even smaller isoscalar N N7 vertex. The conclusion of this
discussion is that we will drop the terms of order O(¢?) from the calculation.

Our next step is to make a non-relativistic approximation. For this purpose, we use
the results of Appendix 6(b) of Ref. [29]. The Dirac tensor matrix elements are given as

u(p', s"\Tu(p, s) = XZ,M(p',p)XS, (1.49)

where u and y are four-component and two-component spinors respectively, while I" stands
for a particular combination of Dirac matrices; M (p', p) has values according to Table A6.1
of Ref. [29]. Neglecting terms proportional to |p|/M, |p'|/M, one obtains

Ul | s
M | (1,0)](0,0)

and hence, the Lagrangians (1.40)-(1.42) can be rewritten as

- fNN7r

Lnnz = e T/J}LvaiaibeT/)Na (1-50)
1 fane

LN N =—6—ﬁf§g i oi[(0:0T) B — (dT)(0,0)|1hw , (1.51)

Lovner z—fﬁzp}vr(qsxao@w (1.52)

With these Lagrangians, L., of Eq. (1.39) and the pion propagator, given by the
standard expression for meson fields

Dr(q) = S (1.53)

2 2
q- —mg
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we calculate the amplitudes corresponding to diagrams (1)-(3) of Fig. 1.2. Since the ver-
tices are off-shell one should introduce form factors. For those vertices involving pions and
nucleons, we take the widely used monopole form

AL —my

assuming the same A = 1.2 GeV, consistent with the Bonn model [30]. In the case of the
7 scattering vertex we have neglected the form factor based on the fact that its monopole
cutoff has been estimated to be larger than 2 GeV [31], at least in the context of a dynam-
ical One Boson Exchange (OBE) model of the 77 interaction[32]. Detailed expressions for
the obtained amplitudes in the pp — ppr™w~ channel are presented in Egs. (C.2), (C.3)
of Appendix C. We will see that, in spite of the fact that these amplitudes do not vanish at
threshold, their contribution to the total cross section is very small, even at low energies,
in most channels.

1.5.2 Delta resonance terms

The A(1232) is the most important resonance observed in the 7N interacting system,
driven by the strong p-wave attraction. In the spirit of the intermediate energy A-isobar
model [33, 34], we consider the A(1232) as a separate baryon. It is present in diagrams
(8)-(15) of Fig. 1.2, mostly coupled to mN. The relativistic effective Lagrangian for this
coupling is given by [35, 36]

*

ﬁANﬂ' - Tj; \PZTT [guu - Z’YM%/] au(,b\le + h.c. , (155)

™

where WX is the Rarita-Schwinger field for a spin 3/2 particle and z is a parameter that
characterizes the off-shell behavior of U/{. The value of z has been extensively studied [36]
but is irrelevant for our purposes since the leading order non-relativistic AN7 Lagrangian
does not contain it and can be written as
Lans = Lyl Sl (@) T h 1.56
ANT md}A 1 (0id) TN + hec., (1.56)
with @/}TA(N) being two-component spinor fields; ST (TT) are the spin (isospin) 1/2 — 3/2
transition operators, defined such that their matrix elements simply become Clebsh-Gordan
coefficients

(35| ST [5s) = (35 1A |35") (1.57)
and follow the closure sum

2 )
Zsi |35) (35 SJT =3 ij — 3 €igk Ok (1.58)
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Analogous relations hold for TT. The coupling constant f* can extracted from the partial
decay width A — N 7, which is taken to be 'y, = 120 MeV (the Breit-Wigner full width is
from 115 to 125 MeV and the branching ratio to N is larger than 99% ). These resonance
properties correspond to the estimates made by the Particle Data Group [18], based on
earlier partial wave analyses of 7NV total, elastic, charge exchange, inelastic (TN — N7,
7N — Nn) and pion photoproduction (see for instance [37, 38, 39] and references therein);
this will also be the case with the Roper resonance. From Eq. (1.56) one obtains the
following expression for the partial decay width

1 (f*\*M
Ca(W) = — — |Qem|* OW — M —my) . 1.59
s = - (L) laenbe me) (1.59)
The step function © denotes the fact that the width is zero for invariant masses below the
N threshold; W is the A invariant mass and q¢m, the pion momentum in the rest frame
of the resonance

VW2 —m2 — M2)2 — 4m2 M>
2W '
Setting W = Ma = 1232 MeV (on-shell A) and using the above mentioned value of I'(M4)
one gets f* & 2.13. It is interesting to notice that this value is in remarkable agreement
with the SU(4) quark model relation f* = 3/v/2fynx, which gives f* = 2.12.
Apart from the pion, the p meson is also present in the T=1 exchange channel of the
nucleon-nucleon interaction. Taking into account that the p has spin one, the phenomeno-

logical Lagrangian for the AN p coupling can be written in the same fashion as the one for
ANT

|dem| = (1.60)

Lan, = \/ijl—v,bgeijksg (0;p,) Ty + h.c., (1.61)

where we simply introduce a scaling factor defined as

\/@:<M>/<JM). (1.62)

m, My

The static SU(2) xSU(2) quark model gives the ratio fan,/fyvn, = f*/fnnr, which implies
that C, = 2 [34]. We take C, = 3.94, which is consistent with the Bonn model [30]. This
value is, however, tied to the use of a monopole form factor like the one of Eq. (1.54) with
m, instead of m, and A, = 1.4 GeV, which effectively reduces the strength of the coupling
at ¢> = 0. The interplay between 7 and p exchange will be discussed in detail in Sec. 1.5.4.

Diagram (9) of Fig. 1.2 requires the inclusion of a new Lagrangian for the AA7 vertex

fa

m—lﬁTASAi(a@)TM/)A : (1.63)

£AATr =

For the coupling we adopt the quark model value of fa = 4/5fny, [40]; this number is
similar to those provided by other theoretical estimations [24]. However, one should bear
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in mind that experimental analysis performed for the (7, 77) reaction obtain best fit val-
ues for this coupling of about 3 times smaller [24, 41]. SA(Ta) is the spin (isospin) 3/2
operator. Using the Wigner-Eckart theorem one obtains

1
35" San]2s) = ———= (2s1)|25") (2 ||SAll 2 1.64
(315 85) = s (10139 (2150113 (16)

—W (211Sall 2) = \/g (g + 1) = @ (1.65)

When summing over polarizations of the intermediate A states, it is useful to implement
the following closure relationship [6, 42]

with

. 1 2 1
D Sil3s) (35 Sayl3s) (25| SE = gicisk = g0iTk + S0m0j — <00 (1.66)

We shall also need the A propagator; it can be written as

1
/PP — Ma + LiTA(p)

with p = (po, p) the momentum of the resonance and I's(p), its total width, which can be
taken to be approximately equal to the partial A — N7 given in Eq. (1.59). A derivation
of this formula is given in Appendix B. Finally, we shall implement form factors of the
type of Eq. (1.54) for AN7, ANp off-shell vertices. The cut-off masses A, by their inverse,
are related to the range over which the vertices extend. Therefore, it makes sense to use
the value of A; = 1.2 GeV for both NN7 and AN7 as well as for other vertices where an
off-shell pion is absorbed by a baryon. For the p, as we have already mentioned, we take
A, = 1.4 GeV [30] and replace m, by m,.

Da(p) (1.67)

1.5.3 Roper resonance terms

The N*(1440) plays a crucial role in our model. It is heavier than the A and couples to
the 7N system with a weak strength compared to the A. For this reason it is not relevant
for most applications in pion nuclear and hadronic physics. In fact, its contribution to
diagrams like (10)-(15) of Fig. 1.2 but with N*(1440) in the intermediate states is negligi-
ble. Its relevance arises mainly from the decay channel N*(1440) — N (wm)L=0  which
is small T'nrr(s)/Tiot = 5 — 10% at the resonance peak [18] but will give a non-vanishing
important contribution to double pion production reactions at threshold. This has been
found to be the case for the 7N — mm N reaction [6, 43]. As we shall see, the situation
here is similar but more involved since one has to deal with the NN — NN* transition, for

which a recent experiment [44] has brought some novel information. Let us now discuss the
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phenomenological Lagrangians that are relevant for our purposes. For the N* N7 vertex
we have

LN = —mi\I!N*fy“fyg,aﬂqﬁT\IfN + h.c., (1.68)
which is obviously very similar to the N N7 Lagrangian of Eq. (1.40). Its non-relativistic
reduction is then

£N*N7r = mil/);rv*Uiaiqul/)N + h.c.. (169)

The coupling constant can be obtained from the partial decay width

~ 2
T n (W) = % (%) % Qe O — M —my) | (1.70)

where |qem| is given by Eq. (1.60). Unfortunately, the experimental uncertainties of the
Roper width are not small. Taking I';,;(M*) = 350 MeV and a branching ratio for the
N* — N7 equal to 65% and W equal to the N* mass M* one gets f = 0.477. As for the
A, p meson exchange in the T=1 channel should be considered. The Lagrangian is

LN*Np = \/C’pmiz/)}v*eijkai(ajpk)ﬂ/w + h.C., (171)

where the same scaling factor C), as in the case of the A is assumed.

The diagram (8) of Fig. 1.2 requires to take also into account the N*Arx vertex. Due
to the relatively large N* — A7 branching ratio (20 — 30 % [18]) one expect its contribu-
tion to be important, especially in the kinematic region where the Roper is on-shell. The
Lagrangian for this vertex reads

o IN*Axm

Laan = WiSH(B:)T - + hec.. (1.72)

In order to be accurate in the evaluation of the N* — Arm decay width we should take into
account the width of the A resonance. The fact that the A width is not small compared
to the mass difference between the Roper and the Delta makes this correction advisable
[45]. The width is then expressed as

Dap(W) = - (9nan e dpp74|DA(WA)|2FA(WA) (1.73)
32 mg 0 \/p2—|—m72r ’

with
Wi =W?—=2W(y/p?+m2)+m2, (1.74)
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and

1/2
W2 — M2 —2Mm, \>
Pmax = [( oW m ) _m?r] ; (175)

Dp and T'p are given by Egs. (1.67) and (1.59) respectively. Using a branching ratio
of 25% one obtains gy«ar = 2.07. The signs of both f and gy+«ar correspond to those
provided in earlier analyses of the (7, 7m) reactions [37, 46, 47, 6].

The structure of the Lagrangian for the N*(1440) — N(7r7r)T 0 e decay has been

S—wave

studied in Ref. [48]. To order O(¢?) it contains at least two terms

*

c
M* 2 (
The second term is not unique (for a different choice see Ref. [43]), but all inequivalent
forms lead to the same expressions in the non-relativistic limit. Expanding up to the sec-
ond order in pion fields, and making use of the definitions of Eqgs. (1.36) and (1.44) we
find

Ly Nar = U Uy — 0,0,V n Julu" Uy + h.c. (1.76)

LN“Nar = f2 1/)N by — TﬂN (T0o®)(TOod)bn + h.c. (1.77)

fz
where we have neglected terms of order O(vp?/M*?). In this case, the free parameters c
and ¢} can not be both obtained from the partial decay width. They can just be constrained
to an ellipse [48]. In fact

Pnepr = [O‘(CTV + 5(03)2 + ’YCTC;] ) (1.78)
with
a= rmy [,_ dwydwy(M* + M — wy — wy) = 0.497 x 1072 GeV3
B= & [, dwrdwy(M* + M — w — wy)wiw; = 3.66 x 1073 GeV? (1.79)
v= 2wm? [,_ dwydwy(M* + M — w; — wy)wiw, = 2.69 x 107° GeV?,
where
_wiwy — M*(wi +wy) +m2 + (M*2 — M?)/2 o 3 (1.80)
V(Wi —m2)(w§ —m2) ’ 16m3fr '

The fact that (o —v*/4) > 0 implies that Eq. (1.78) describes an ellipse. Therefore, ¢}
and ¢ can be parametrized in the following way
VI Ar (acosd cost + bsin d sin t)

(1.81)
VI Ar (—asind cost + bcosdsint) |

N* ’—‘*

with
1 (a+B)x/(a—B)P2+~?
b2(a?)

, 0= % arctan < > (1.82)

Y
0 -«
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and ¢ € [0,27]. Assuming a 7.5 % branching ratio for the N*(1440) — N (7m)L=0  decay
width, one finds the rather elongated ellipse plotted in Fig. 1.3 (a). In order to further
constrain the parameters, we use the model of Ref. [6] for the reaction 7~p — 77~ n. The
cross section shows a strong sensitivity to the values of ¢}, ¢ and spans about two orders
of magnitude when the values of these parameters are varied along the ellipse, as shown in
Fig. 1.3. The best agreement with the experiment is obtained with the traditional value
of ¢ = 0, which corresponds to ¢; = —7.27 GeV~! ( point 5 in Fig. 1.3 (a)). However, the
experimental errors are compatible with the use of ¢! = —12.7 GeV™!, ¢ = 1.98 GeV~!
(point 4) and intermediate values in the ellipse. Throughout this work, these two sets of
c* parameters will be used. It can be also noticed that the region in the vicinity of point
9 also produces reasonable results but, as argued in Ref. [48], in analogy to the equivalent
¢12 nucleon couplings (see Eq. (1.45)), one would expect ¢f < 0 and ¢ > 0. For this
reason we do not use point 9 in our calculations.
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Figure 1.3: Set of allowed values of ¢* and ¢ for a fixed width, and 77p — 77~ n total
cross sections as a function of the pion kinetic energy in LA (7)), plotted for different
choices of the ¢* parameters. The data include all total cross sections values, measured at
T, < 500 MeV published before May 1993 [49].

A best fit to the different 7N — 77N channels is done in Ref. [43]. Although the data
would roughly be compatible with the use of ¢; = 0, they obtain a best fit with other set of
parameters. However, this work contains some small differences with respect to the model
of Ref. [6], like the relativistic treatment, the use of an N* width assuming phase space
for 7N decay only, and the neglect of the isoscalar 7/N amplitude and intermediate AA
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states ( which are included in Ref. [6] ). These are small differences, but they have some
influence in the ¢ and ¢ parameters. For the sake of consistency with our input, we take
the values of ¢} and ¢} from our own analysis.

Finally, the expression for the N* propagator that we are going to use is derived in
Appendix B

1

VPP = M+ il (p)
where we take I'* = 'y, + [Cay, given by Eqgs. (1.70), (1.73), which properly accounts for
approximately 90 % of the total Roper width at the resonance peak. With these ingredi-
ents, and the off-shell from factors, one can produce the 7" = 1 amplitudes of diagrams
(4)-(8) of Fig. 1.2. Furthermore, in the case of diagrams (4),(5), (8),(9), as well as (12)-(15),
it is crucial to take into account the effect of short range correlations; this issue is studied
in detail below. On the other side, while isospin conservation forbids a T=0 exchange for
NN — NA and NN — AA transitions, it is not the case with the NN — NN* one; Such
T=0 exchange potential is discussed in Subsection 1.5.5.

Dy« (p) (1.83)

1.5.4 Isovector one boson exchange potential and short range
correlations

Let us consider the T=1 potential for the nucleon-nucleon interaction

v = (22) vy(asiodtriry (181
with
Vii(q) = Vi(@)@id; + Vr(q)(0i5 — Gid;) - (1.85)

The longitudinal and transversal pieces correspond to pion and rho exchanges respectively

Vile) = Vala) = a’Dr(@)FZ(a) . Vr(a) = V,(a) = a’Dy(a) F}(a)C, (1.86)
where F. , are the monopole type form factors introduced earlier; D,(q) is the p propagator

Dy,(q) = % (1.87)

=50 >
where the imaginary part is not shown because it vanishes at ¢> < 0, which is the case
here. Although the situation might be different if initial or final state interactions were
taken into account, this imaginary part would give a negligible contribution in the range of
energies considered here. The pion propagator D, (q) is given in Eq. (1.53). In the case of
transition potentials such as NN — AN, NN — AA or NN — N*N, the spin and isospin
operators in Eq. (1.84) as well as the coupling constants should be modified accordingly,
but V;; remains the same. This assumption is by no means trivial but is supported, at least
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in the case of A isobars, by the experimental evidence of quenching in the Gamow-Teller
and magnetic multipole transitions (see Ref. [34] and references therein).

However, this interaction potential is still incomplete; an adequate treatment of the
short range correlations generated by the strong repulsion of nuclear forces at short dis-
tances is required. In order to illustrate the importance of these correlations, let us notice
that the longitudinal part of the potential can be written as a sum of scalar and tensor
pieces, by means of the separation

= 1 1 .
4iq; = g&'j + gsz'ja Sij = 3qiq; — 045 - (1.88)

Then, for the scalar part, in the static limit (g5 < g?) and dropping the form factors for
the sake of simplicity one gets

1
V@) = —5 5 b (1.89)

d .
() _ q (s) —iqr
Vi (r) = /—(27)3]21.]. (q)e ™

S [5(r) - %6%”] 5 (1.90)

The 6(r) is incorrect from the physical point of view since it is a consequence of taking
point-like particles. Nuclear correlations forbid the nucleons to be close to each other. At
such small distances, the OBE model is no longer appropriate and should be corrected.
This fact motivated the introduction of the term

Vi (a) = ¢' i (1.91)

known as Lorentz-Lorenz correction [50]. In coordinate space

Therefore, if ¢’ = 1/3, the correction exactly cancels the singularity. Phenomenological
determinations of this magnitude lead to the value ¢'(¢ = 0) ~ 0.6 [51]. The static quark
model supports the idea of a universal ¢’ value, but there are indications that its value
could be smaller in the case of NN — NA and NN — AA processes, and closer to the
classical value [52].

For large values of |q|, the assumption of a constant ¢’ should be improved. A more
realistic way to account for the short-range corrections is to consider a correlated potential
in coordinate space

V(r) = [Va(r) + V,(r)] Q(r), (1.93)
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where the correlation function €2(r) is such that Q(0) = 0 and Q(r) ~ 1 for |r| > r., with
r. being the correlation length, which should be of the order of the repulsive part of NN
interaction. A good analytic approximation for the correlation function is

Qr) =1 — jo(qer) (1.94)

with ¢, = r_ 1. In momentum space we have

2
Q(k) = /er(r)eikf = (27)*0(k) — 27; §(qe — |kI). (1.95)
4.
Hence,
Vi = [ av,mame
dk
= /WVU(Q&Q_ k)Q(k)
1
= W@ - o [dVsa+a) fal = (1.96)
substituting V;; from Eq. (1.85) one gets
Vii(q) = Vi(@)qig; + Vi(q) (65 — Gidy) (1.97)

where

1
Vilg) = Vilg) - <q2:fo LTt @:@)

) L1 (1.98)
Vo) = Vo)~ (30— T+ T
with Z,, defined as
1
To = | @alVile.a+2) = Vr(w, a+a)](qa)", (1.99)
and .
Ir = yym dQ.Vr(q0,q+a)(q +a)?. (1.100)
The following approximations
A2 —m? A2 —m? .
Fw(p)(q + a) (p) (p) ~ (p) (p) — Fw(p) (q) (1101)

N @@ +@+2a A2 -G +a g
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1 1 i
Dy n(q+a)= R~ = D.»(q) (1.102)
& G — o — @ —2qa—m2, ¢ —qd —q—m, v

allow us to solve the integrals (1.99) and (1.100) analytically. After some straightforward
manipulation one obtains

(@) = Vilg) +gr(q)
Vila) = Vi(q) + g92(q)

(q) = —(q2 + %QE)F%DW - %qzﬁp ZDpCp

9r(0) = =30 F*Dr — (@ + 302)F,°D,C, -

Setting the correlation length to be approximately equal to the inverse of the omega meson
mass i.e. g. = 780 MeV a ¢'(0) = 0.6 [53] is obtained.

Once the T=1 spin-isospin effective interaction is given, the amplitudes for mechanisms
(9), (12)-(15) as well as the T=1 part of (4), (5) and (8) of Fig. 1.2 can be calculated.

Explicit expressions for these amplitudes in the case of the pp — pprt7~ channel are
presented in Appendix C.

(1.103)

1.5.5 Isoscalar excitation of the Roper resonance

Diagrams (4), (5) and (8) of Fig. 1.2 require, apart from the effective T=1 interaction
studied above, to take into account the T=0 channel for the transition NN — NN*. The
strength of the isoscalar excitation of the Roper resonance has been extracted in Ref. [54],
where a theoretical analysis of the (a,a') reaction on proton target was performed. This
reaction is particularly useful to obtain new information about the properties of the Roper
resonance because the fact that the a particle has isospin zero causes a reduction of mech-
anisms that can contribute. In particular, the fact that A excitation in the target is
forbidden by isospin conservation, makes possible to assess the Roper excitation in the
target. The model of Ref. [54] included the following processes:

e A excitation in the projectile
e N* excitation in the target
e N* excitation in the projectile

e Double A excitation

but it was found that the first two are clearly dominant. The experiment [44] could, there-
fore, be interpreted in base of the mechanisms shown in Fig. 1.4 and used to extract the
unknown strength of the NN — NN* isoscalar transition.

Since the *He beam has T = 0 the N* excitation in the («,a’) reaction requires the
exchange of an isoscalar object. In meson exchange pictures it could be o or w exchange.
However, the experiment has not enough information to provide the separate strength of
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o T o N*

(@) (b)

Figure 1.4: Dominant mechanisms in the analysis of («, o) performed in Ref. [54]; (a) A
excitation in the projectile, (b) Roper excitation in the target.

both ingredients. For this reason, the transition amplitude was parameterized in terms of

an effective “o”, which couples to NN as the o meson of the Bonn model [30]

LNNe = INNeVPY g ny /4T = 5.69 (1.104)
and couples to NN* )
LN = gN*NoN-0Y + h.c. (1.105)

with an unknown strength provided by a best fit to the data. Using a form factor of the
monopole type with A, = 1.7 GeV, a value of ¢g3.y,/47 = 1.33 was obtained. Fig. 1.5
is taken from Ref. [54] and illustrates how this model compares to the data of Ref. [44].
The fact that the interference between the leading mechanisms is important allowed to
determine the relative sign between gyn, and gy<n,. Choosing the same sign for both
couplings leads to a destructive interference; a constructive one would produce a cross
section in large disagreement with the data.

The "0” exchange described above is a useful and intuitive parameterization of the
effective interaction in the T=0 channel. It is an essential ingredient of our model. In par-
ticular, its contribution to diagram (4) of Fig. 1.2 will be the dominant one at threshold.

1.6 Results and discussion

1.6.1 Total cross sections

Let us first look at the reaction pp — ppr™m . The total cross section as a function of
the kinetic energy of the incoming particle in LA is shown in Fig. 1.6. We have separated
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Figure 1.5: Double differential cross section for the (o, ') reaction on proton target as
obtained in Ref. [54]; w stands for the « particle energy transfer.

the contribution of several blocks of diagrams in the figure. They have been calculated
using ¢ = —7.27 GeV™1 and ¢ = 0 (point 5 in the ellipse of Fig. 1.3, but the total
contribution is given for both points 4 and 5 ( solid lines ) in order to give an idea of the
theoretical uncertainties. Although the sum of amplitudes is done coherently, there is in
fact little interference in the total cross section. The short-dashed curve corresponds to
chiral terms: diagrams (1)-(3) of Fig. 1.2. As we can see, this contribution is negligible
in this channel. The dash-dotted curve corresponds to the diagrams (9)-(15) involving
only A excitations. We see that this contribution is much larger than the former one.
At low energies it gives a negligible contribution to the cross section but it rises steeply
as a function of the energy and becomes dominant at large energies. In Fig. 1.7 (a), the
relative importance of the different double-A mechanisms for this channel is given. It is
clearly seen that the AA excitation mechanism of diagrams (12)-(15), especially diagram
(12), are the most important above 7, = 1 GeV. The cross section corresponding to the
excitation of successive A’s, diagram (9), is the one that decreases slower with energy and
becomes bigger than the others as one approaches threshold. In Fig. 1.6, the long-dashed
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curve stands for diagram (8) exciting N* and A consecutively. We can see that this term
is more relevant than the set of A terms at low energies. Finally, we show in the long-short
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pp-—>ppm 7 /:
4 Dakhno et al. (1983) ////
= Shimizu et al. (1982) P Z{: _
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Figure 1.6: Total cross section for reaction (1.1) channel as a function of the incoming
proton kinetic energy in the laboratory frame. Solid line, total (the labels 4 and 5 corre-
spond to the choice of points 4 and 5 in the ellipse of parameters ¢} and ¢} given in Fig. 1.3
); long-short-dashed line, N* — N(7m)L=0 . long-dashed line, N* — Am; dash-dotted
line, A excitation mechanisms; short-dashed line, non-resonant terms from diagrams (1)-
(3). All partial contributions are calculated with ¢f = —7.27 GeV ™1, ¢ = 0 (point 5).

Experimental data are taken from Refs. [8, 9, 10].

dashed line the contribution of the set of diagrams involving one N* excitation followed
by a two-pion decay in s-wave: diagrams (4)-(7). We can see in the figure that this gives
by far the largest contribution at low energies. The sum of all contributions is given by
the solid lines. These lines, corresponding to the two acceptable sets of ¢}, ¢ parameters,
differ by about a factor two at low energies and about 30 % at 7, ~ 1 GeV. This sets the
level of the theoretical uncertainties in this reaction. Another reading of these results is
that the pp — ppr™m~ reaction is a more sensitive tool to assess the N* — N (rm)L=0
couplings than the 7N — 7N reaction, and could be used to put stronger constrains on
them. In any case, these results have to be seen with the perspective that by omitting the
N* terms the disagreement at energies below 7, = 900 MeV is larger than two orders of
magnitude.

In order to show the relevance of the findings of the isoscalar excitation of the Roper
resonance, we show in Fig. 1.7 (b) the contribution of the N* terms ( diagrams (4) and
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(5). Tt is clear that the T=1 amplitude is strongly damped by the effect of the short range
repulsion, leading to a one order of magnitude smaller cross section. In view of this, the
T=0 part becomes the dominant contribution, about one order of magnitude bigger than
the one obtained with the correlated m + p exchange. It is, therefore, the most important
ingredient of our model, at least in the channels where pion pairs can be in an isospin zero

state.
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Figure 1.7: Contribution of different mechanisms to the total cross section for channel 1.1.
In (a) the long-dash-dotted line stands for diagrams (12)-(15) of Fig. 1.2; the short-dash-
dotted line, for diagram (9) and the long-short-dashed on, for (10) and (11). In (b), the
contribution of the N* — N(zm)5=0  mechanisms (solid line) is split into correlated 7 +

p exchange (short-dashed line) and effective o exchange (long-dashed line); the dotted line
represents the T=1 amplitude without correlations.

In Fig. 1.8 we show the results for the pn — pnm ™7~ channel, with the same meaning
as in Fig. 1.6 and similar results, although with a larger discrepancy than in the previous
case.

In Fig. 1.9 we show the results for the pp — pnnt7° reaction. This channel is inter-
esting because the mechanism of N* excitation and subsequent decay into N(mm)L=0
shown in diagrams (4) and (5) of Fig. 1.2, which was dominant in the case of the channels
considered above, does not contribute now. Diagrams (6) and (7) still contribute, but
they are very small because they involve one N* N7 p-wave coupling, which vanishes at
threshold and also because T=0 exchange is not allowed. Indeed, the 7" 7% system can
only be in 7" = 1,2 but not in 7" = 0. Hence, the mechanism that was dominant in the

previous cases is not present here. In spite of that, the agreement with the data is of the
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Figure 1.8: Same as Fig. 1.6 for reaction (1.5).
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same quality as the one found before for the pp — ppr*7~ reaction. Now the dominant
terms are those exciting A’s.

In Fig. 1.10 we show results for the pn — ppr~7° reaction. The features are qual-
itatively similar to those of the previous channel but the discrepancies are considerably
bigger. We note that the strength of diagram (8) is now comparatively bigger with respect
to A excitation terms than in the previous case.

0

T T T T T T T T T

- 0
pn—>ppmnm T
4 Dakhno et al. (1983)

100 = @ Bruntetal. (1969)

o (ub)

.

1400

Figure 1.10: Same as Fig. 1.6 for reaction (1.6).

In Fig. 1.11 the results for the pp — nnw 7" reaction are shown. Here, at high ener-
gies, A terms are still dominant, but below 1 GeV chiral terms dominate the amplitudes.
This is the only case where these terms are relatively important.

In Fig. 1.12 we show cross sections for the pp — ppr°7® channel. This is again a channel
where the diagrams (4) and (5) are dominant at low energies, like in the case of reactions
(1.1) and (1.5). Chiral terms are not drawn since they are below the scale of the figure.
In this case we overestimate the experimental results by about a factor 2-3 although the
quality of the data is not as good as in former cases.

With these results we exhaust the experimental data on total cross sections and the
isospin independent channels. We have also calculated the pn — pnm®7? cross section with
our model in order to perform a consistency check using Eq. (1.17).

The model presented here contains only tree level diagrams. Unitarity is not strictly
fulfilled. Actually, imposing unitarity with four particles in the final state is less than
trivial, as evidenced by the enormous difficulties in the case of three body final state [55].
However, one should bare in mind that as far as we have dominance of a resonant term,
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the important aspects of unitarity are included if the proper resonance width is used in
the resonance propagator, as we do. Partial unitarization can be accomplished by the
introduction of loops, as done for instance in the 7N — w7 N reaction for the chiral terms
in Ref. [48]. However, we saw that this sector plays a minor role in the present reaction in
view of the dominant contribution of resonant terms. Unitarization schemes, as the one of
Olsson [56], have proved to be successful in the two body final state when a resonant term
is dominant and there is a small background. One multiplies the resonant term by a phase
€', with ¢ small in principle, and demands that the resulting amplitude satisfies Watson’s
theorem, with the global phase of the amplitude in a particular channel equal to the one
of the final state. The angles ¢ needed in the problem of YN — wN are of the order of 10°
[57]. In order to have a feeling for what could be the effect of imposing unitarity in our
model, we took the pp — pprTm~ channel and multiplied the dominant N* term by €.
We see that for values of ¢ up to 20° the cross section changes at the level of 1 %. Rough
as the procedure appears to be, it gives hints that unitarity is not a thing to worry much
about in the energy domain studied here.

1.6.2 Differential cross sections

Here, we confront model calculations with the experimental invariant mass, momentum and
angular distributions of Refs. [9, 12]. Unfortunately these data do not include a normaliza-
tion and one can, therefore, compare only the shape, but never the strength. The fact that
the data of Ref. [9] come from deuterium also makes the analysis far not straightforward.

In Fig. 1.13, invariant mass plots for the pp — ppr*n~ reaction channel at 7, =
1370 MeV are presented, together with the equivalent experimental plots of ngppr T~ (ng
denotes a neutron, which is assumed to be spectator). The M (pr™) and M (pr~) spectra
show the presence of the A(1232), which can be interpreted as a sign of the dominance
of the double-A mechanism, as predicted by the model at this energy (see Fig. 1.1). On
the other side, the N* mechanisms are important because they provide the strength at low
invariant masses. The M (pr*7~) shows, however, a discrepancy between data and model
predictions; the data have a peak around 1.35 GeV while the model favors higher invariant
masses. From this distribution one can clearly notice an inconsistency in the experimental
data, which exhibit events at values of M (pr*7~) below its threshold of 1.2 GeV.

Next, we show in Fig. 1.14 how the model predictions compare to several angular distri-
butions for the same reaction and energy considered above. The results agree well with the
experiment except for the distribution of angles between pions in CM, where the model
shows an enhancement of back to back emission of pions that is not confirmed experi-
mentally. We also compare the angular distributions of protons in the CM system with
the data of Brunt et al. at two different energies 7, = 1113 and 1370 MeV (Fig. 1.15).
Unfortunately, the data at the lower energy should be looked with special care since the
small number of events precluded any selection of spectator momentum. Notice that the
double-A mechanisms gives a rather flat histogram; it is appreciably smaller than the other
two dominant mechanisms at 7, = 1113 MeV and becomes the largest at 7, = 1370 MeV.
At both energies the tendency of theory and experiment is to favor the emission of protons
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Figure 1.13: Invariant mass plots for the reaction pp — pprtn~ at T, = 1370 MeV.
The different curves represent the three dominant contributions at this energy: double-A
mechanisms (long-dash-dotted line), N* — A (long-dashed line) and N* — N(7m)L=0
(short-dash-dotted line). The solid line stands for the total contribution. The theoretical
curves are normalized to the data (dotted line), which correspond to the ngppr 7~ events

with spectator momentum less than 150 MeV from Ref. [9].

in forward and backward directions. In Fig. 1.16, a similar observable is given for the re-
action pn — pnw 7™, now with proton and neutron angular distributions combined in the
same plots. Here, the features are basically the same as in the previous case. A possible
interpretation of the results of Figs. 1.15 and 1.16 might be that the double-A amplitude
should be slightly larger with respect to the others at around 1 GeV.

In the following two figures, various invariant mass plots corresponding to the pn —
pnmtw~ channel are presented. In Fig. 1.17, the presence of the Delta resonance is clear
in both theoretical and experimental distributions; it is specially prominent in the case
of M(pr™) and M(pr~) as expected from the Clebsh-Gordan coefficients. On the other
side, Fig. 1.18 shows a discrepancy between our model and the data; both M (pr*7~) and
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Figure 1.14: Histograms of angles between particles in the ppr™7n~ CM system at T, =
1370 MeV. The line styles have the same meanings as in Fig. 1.13.

M (nmt7~) theoretical distributions peak at higher invariant masses than the experiment
of Brunt et al. [9]. This is basically the same effect observed in Fig. 1.13 although the
data are somewhat contradictory since they do not exhibit the same thresholds in spite of
coming from the same measurements. The reason of such contradiction might be related
with the ambiguity of the definition of the spectator nucleon.

Finally, let us compare our model with the spectra measured by Abdivaliev and collab-
orators [12]. In Fig. 1.19, M (7", 7~ ) invariant mass spectrum as well as combined 7+, 7~
momentum and angular distributions in the pnm™7~ CM system at T,, = 1029 MeV are
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Figure 1.16: Combined plot of proton and neutron angles in the pnr™7~ CM system. (a):
T, = 1113 MeV, the experimental plot includes all p;npr ™7~ events; (b): T, = 1370 MeV
and spectator momentum <200 MeV [9]. The line styles represent the same as in Fig. 1.13.
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presented. At this energy, the model predicts that the N*(1440) mechanisms are the largest
ones. Our predictions for 3-momenta and angular distribution of pions are in good agree-
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Figure 1.17: Invariant mass plots for the reaction pn — pnr*n~ at T, = 1370 MeV. The
experimental distributions are taken from Brunt et al. [9] and correspond to pgpnmm™
events with spectator momentum <200 MeV. The line styles have the same meanings as

in Fig. 1.13.
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Figure 1.18: Continuation of Fig. 1.17.

ment with the experiment. In the case of the M (7™, 7)) spectrum, however, we obtain a
maximum at M (7%, 77) ~ 380 — 400 MeV while the experiment exhibits it maximum at
lower masses. It is interesting to notice that the N* — N(n7)L=%  mechanism shows the
same trend as the experiment. The peak at higher (7, 77) masses seems to be a result of
a constructive interference between the dominant mechanisms. Such constructive interfer-
ence, as will be shown, allows us to explain the data for the np — dr7 at a lower energy.

This discrepancy is probably an indication of the importance of relativistic corrections.

1.7 Summary

We have constructed a microscopic model for the NN — 77NN reaction consisting of
the terms emerging from chiral Lagrangians with nucleons and pions, plus terms involv-
ing the excitation of A and N*(1440) resonances. Recent experimental findings about
isoscalar N* excitation in the («, /) reaction on proton target are used here, leading to
the conclusion that in the channels where the two pions can be in a 7' = 0 state (77~
and 7°7%), the NN — NN* transition, driven by the isoscalar “o” exchange followed by
the N* — N(7wm)§=0,,. decay largely dominates the cross section at low energies. As the
energy increases, the N* — Ax decay channel takes also a share of the cross section and
so does the excitation of a A in each of the nucleons, which becomes dominant at energies
T, > 1300 MeV; this conclusion is evidently supported by the available 7V invariant mass

plots. Other terms are found to play a minor role. In those reaction channels, where the
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Figure 1.19: Theoretical histograms of the np — nprt7~ reaction at T,, = 1029 MeV
compared to the experimental ones of Abdivaliev et al. [12]; (a): M (7™, 7~) invariant
mass, (b) 7* momentum distributions in CM, (c): angular distributions for 7% in CM.
The line styles represent the same as in Fig. 1.13.
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pions cannot have T=0 the successive excitation of two A on the same nucleon, the A
excitation on each nucleon, the N* excitation followed by Anw decay and even the chiral
terms (at low energies) share the strength of the reaction, and one obtains a qualitative
agreement with experiment.

Further comparison of our calculation with the data from CELSIUS that are going to
be available in the near future, will certainly provide useful information about the prop-
erties of resonances and the nucleon-nucleon interaction above the two pion production
threshold. The present model is also bound to have repercussions in the study of other
double pion production reactions such as Np — drm, pd — *Henrn and dd — *Herr that
are currently the subject of experimental research in several Laboratories and were actively
studied in the past in connection with the still unsolved problem of the ABC effect.
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Chapter 2

Final state interaction in
pp — ppmw T

2.1 Introduction

The study of nucleon-nucleon inelastic collisions provides a powerful tool to deepen our in-
sight into the properties of nucleon-nucleon interactions and baryonic resonances. A large
amount of theoretical work on threshold meson production has been performed over the
last years [58], stimulated by the precise data obtained at [UCF, CELSIUS and COSY [59].
The extraction of the relevant dynamical mechanisms governing these reactions is, how-
ever, not straightforward, due to the presence of nucleon-nucleon interaction effects that
should be properly taken into account, specially the NN final state interactions (FSI),
which could be strong close to threshold. In many works, it is assumed that the effect of
F'SI can be factorized from the transition matrix element, and the latter is calculated using
plane wave Born approximation [60, 61, 62] (Watson-Migdal scheme). However, this pro-
cedure has been criticized by other authors [63, 64]. They argue that the Watson-Migdal
procedure gives the correct energy dependence of the total cross section, but not necessarily
provides the right strength of the production mechanism.

Our aim here is to study nucleon-nucleon FSI effects in the case of two-pion produc-
tion. We will consider the reaction channel pp — ppm ™7~ close to threshold, so that we can
assume that the production amplitude is dominated by isoscalar excitation of the Roper
resonance and its subsequent decay into nucleon and two pions in s-wave, as shown in
the previous chapter. This channel has also the advantage that, close to threshold, the
strong FSI between protons is completely dominated by the singlet 1Sy state (the fact
that T'+ S 4+ L must be odd, and T' = 1 for proton pairs, together with the assumption
that L=0 imply that S=1, i.e. the triplet state is not allowed). On the other side, the
electromagnetic repulsion will be another source of distortions. Finally, since the energy
of the incoming nucleons has to be high enough to produce two pions, we will neglect
initial state interaction effects. This scenario is appreciably interesting provided that the
new data from CELSIUS have been measured close to threshold, where F'SI effects may be
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important.

2.2 The production amplitude

Our production amplitude is described by the diagram of Fig. 2.1. In order to derive it, let

Ps P,
\ —
p6 I
P

_‘ "
T=

0

p]_ p2

Figure 2.1: Dominant mechanism for pp — ppr™7~ at low energies with FSI included.

us first consider the case with plane waves in the final state. Excluding trivial kinematical
factors, the ¢ matrix is given by

2 0,0
. . m . .
<f| ¢ |Z>T37‘47‘1T2 X _ZQQNNUQN*NUf—; (Cl + % Cz) 51"37‘167‘47‘2
e ™

dq eiQ(fvl —5132)

(27)* ¢* — m},

F02. (Q) DN* (pN* )efiplwl efip25172 eip?,l’l 6ip4:L‘2 ei(p5+p6);pl (21)

X f d!L’ld!L’Q

Next we express x1,Xso in terms of the CM and relative coordinates r and R respectively

R = %(Xl + X2)
(2.2)
r = X1 — Xo.

Then, after performing the integrals over 9,23 and R, which lead to the delta of energy

and momentum conservation, one obtains the following expression for the amplitude
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: m2 (. pipe .
Mr3r4r1r2 (p37p47p17p2) - _ZQQNNUgN*N07 C, + m2 C, 67‘31"167‘41"2
d _ilpg—pa) . _.p.
< J ey s P2q) D (e e (2.3
where .
¢ =pi-1, P=da+5(Ps+Ps+P2—P1), px-=p1—0. (2.4)

In the spirit of the DWBA, we substitute

7i(P3;P4)r

:p4—P3
2

— pk(r), k (2.5)

and define

ok(P) :/alrgpk(r)e_ipr (2.6)

as the pp wave function in momentum space, obtaining

2 0,0
. . m « , P5Pg «
Mf;ﬁmm(pa,m,phpz) = —i20NNoeYN*No—m5 | € + oL C5 | Opary Orgrs D+ (P5 + D6 + D3)
72 m2
™ ™

[ o PP, 27)

(2m)* ¢? —mj °

where the 4-momentum of the N* propagator has been approximately taken to be equal
to the sum of the pion momenta and the asymptotic nucleon momentum (ps + ps + pg)
and taken out of the integral, instead of using py+ = p; — ¢; this approximation, whose
accuracy has been numerically found to be good (< 1 %), simplifies the calculation.

From Eq. (2.3), one can easily derive the expression for the amplitude within the
Watson-Migdal approximation [65]. If the interaction takes place at very small distances,
much smaller than the typical values of k="', then the precise r dependence of ¢y (r) should
be unimportant and one could perform the following substitution in Eq. (2.3)

; (P3—P4) 1 ;(P3—P4)
P s ()R ——e T 2.8
®~ 70 (28)
where Jy(k) is the s-wave Jost function. The approximation written above is exact in the
limit of r — 0. The amplitude then reads

st 1 ree
M1}“03T47‘17‘2 (p37p47p17p2) - J()(k) M£3r47‘17“2 (p37p47p17p2) . (29)
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In the effective range approximation for the s-wave scattering phase shifts

11
kcotés (k) ~ —— + §r0k2 (2.10)
Qo

the inverse of the Jost function is given by [62]

1 (+a)(r0/2)
Tok) ~ “1jag + (ro/2)k? — ik

(2.11)

where

1 2
a=— (1 +4/1— ﬁ) (2.12)
To Qo

Notice that the inverse of the Jost function has the required property that it goes to unity
for large values of k, where FSI should disappear [65]. Here we shall compare the re-

sults evaluated with this approximation to those found with the more accurate formula of
Eq. (2.7).

2.3 Nucleon-nucleon 'S, wave function from a sepa-
rable potential

At this stage, we should find an appropriate wave function to evaluate the amplitude. The
optimal choice would be to use the !Sy wave function that arises directly from the solution
of the Schrédinger equation with a realistic potential like Bonn or Paris potentials [30, 66].
However, the fact that we have four particles in the final state, and the difficulties in ob-
taining a good parameterization of the wave function for different asymptotic momenta,
makes this task quite complicated and imposes the need of strong approximations [4]. For
this reason, we will follow here an alternative approach and take a wave function obtained
from a separable potential. With such wave function, one can reproduce the basic proper-
ties of the NN interaction like the scattering length, effective radius and phase shifts, with
the significant advantage that it is possible to obtain an analytic expression for it. In fact,
let us consider a generalized form of the Schrodinger equation for the two-nucleon system
with a non-local potential [67]

‘i%m + / dr'V (x,¥')p(r') = Eeplr) (2.13)

with © = M/2 being the two-nucleon reduced mass. For V(r,r’) = V(r)dé(r — r') this
reduces to the usual Schrodinger equation with a local potential. In momentum space one
has

% (p* - ) o) = — / %V(p,p’)sé(p’) (2.14)
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where

V(p,p') = (p|V|p') = /drdr'eipreip,rV(r,r'). (2.15)

Following Refs. [68, 69], where a fit to p-n and p-p phase shifts was performed for
various partial waves, we take V' (p,p’) to be

VP, p) = Ma1(0) g1 (D) + A292(p) 92(p) (2.16)

with p = |p|,p’ = |p’| and

) S
a\p) =
1 R T AL
y . (2.17)
920P) = 5 ma Tt s
(P* + 63) (P + %)
With this potential, and for the scattering problem, the solution of Eq. (2.14) is
5 = (27)%§ k M
¢x(p) = (2m)°0(p — k) + m [Ag1(p)an (k) + Aaga(p)az (k)] (2.18)
with
dq - .
a;(k) = ng(q)gok(q) i=1,2. (2.19)

Multiplying Eq. (2.18) by gi(2)(p)/(27)* and integrating over p, one gets a system of two
linear equations for o )(k) whose solutions are

CY1(]€) =r [91 - )\2(91122 - 92112)]

(2.20)
az(k) =192 — M(92T11 — 1 Z12)]
with
r=[1=MTu — MTor + MA(Ti1 Lo — I7,)] (2.21)
and ;
70 = M [ o SO, (222)

These integrals can be calculated analytically for the given choice of g;(2); their explicit ex-
pressions are given in Appendix D. Once we have the solution of the Schrodinger equation,
it is straightforward to obtain the 'Sy phase shifts dg(k)

cot dg(k) = i — % Dgn (k) (k) + doga (K)o (k)] (2.23)

as well as the scattering length (ag) and effective radius (ry), defined from the expansion
of kcot ds(k) in powers of k?
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kcotos (k)

1 1
__+—T0]{72+...
Qo 2

(2.24)

With these ingredients, we can make use of the set of parameters obtained in Refs. [68,
69] for the strong part of the NN potential, from a fit to the experimental values of ay, ro

and k cot 0g(k).

The resulting phase shifts for the pp channel as a function of the incoming

| | n-p | p-p |

B (fm 1) 1.04556 0.8131678
Bia (Fm ") 1.30148 1.288463
(a1 (fm_l) 3.66099 7.496476
Bap (fm~1) 2.05321 1.661386
Y1 0.563456 2.698168
Yo 0.991115 0.3270664

A (MeV fm 1) | -52.7856/(2 n2) | -17.87098/(2 72

X, (MeV fm 1) | 48492.3/(2 %) | 82710.93/(2 %)

Table 2.1: Numerical values of the separable potential parameters [68, 69].
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Figure 2.2: 1S, p-p phase shifts as a function of LA kinetic energy. The solid line is ob-
tained from Eq. (2.23) with the parameters of Table 2.1, and the dash-dotted one is from
Nijmegen PWA93 [70].

proton kinetic energy in LA is shown in Fig. 2.2, compared to the corresponding ones from
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the Nijmegen multienergy partial wave analysis (PWA93) [70]. The overall agreement is
excellent, except at very low energies where the Coulomb repulsion, not considered in our
calculation, although taken into account for the fit [69], plays an important role. Notice
that the anzatz of Eq. (2.16) for the separable potential is suited to take into account
the repulsion at short distances (if A\; and Ay have opposite signs) as becomes clear form
the fact that the phase shifts become negative at 7, ~ 250 MeV. The pioneering work
of Yamaguchi [71] assumed only one term in the potential (the first of g;) and produced,
therefore, positive phase shifts. Apart from that, in the construction of the potential [68],
care was taken that its off-shell behavior was reasonable i.e. similar to that of the realistic
Paris potential.

2.4 Results and discussion

With the expression of Eq. (2.18) for the wave function, evaluated using the set of param-
eters of Table 2.1 for the p-p channel, one can substitute Eq. (2.7) in Eq. (1.24) in order

T T T T I T T T T I T T T T
100 TS
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1
—~~ C
Q r
I
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b L Pp—>ppnmnm m
01 1 Dakhno et al. (1983) =
a « Shimizu et al. (1982)
0.01 =
0.001 1 1 1 1 I 1 1 1 1 I 1 1 1 1
600 700 800 900

T, (MeV)

Figure 2.3: Total cross section for pp — pprtn~ with (dotted lines) and without (solid
lines) FSI. Labels 4 and 5 stand for the choice of ¢! and ¢} parameters (see Fig. 1.3).
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to see how the total cross section is modified by the strong part of the FSI. We restrict
ourselves to T, < 900 MeV, since it is the region where the mechanism of Fig. 2.1 is clearly
dominant, as can be viewed in Figs. 1.6,1.7(b). FSI causes an enhancement of more than
a factor 10 close to threshold and about a factor 2 at 7T}, ~ 900 MeV. Such increase brings
the calculation with point 5 much closer to the data. Next, we study how FSI affects
differential cross sections. In particular we choose the proton-proton invariant mass distri-
bution, since it is particularly sensitive to the effect of FSI. The plot of Fig. 2.4 is made
for T, = 750 MeV, corresponding to the energy of the first measurements at CELSIUS
[13]. The figure displays a large enhancement at low p-p masses, as one would naively
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Figure 2.4: Proton-proton invariant mass distribution with (dotted line) and without (solid

line) FSI. The choice of ¢}, corresponds to point 5.

expect since FSI should be stronger for those protons that travel together. However, one
should bear in mind that precisely at low masses, the Coulomb repulsion not considered
here could be important, inducing some decrease of the differential cross section.

At this stage, we would like to compare the previous results with the Watson-Migdal
approximation discussed at the end of Sec. 2.2, where the FSI was accounted by factor
(given by the inverse of the Jost function) that multiplies the free amplitude. For the sake
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of consistency, we take ag = —19.1 fm and ry = 2.85 fm; these values are obtained from
Eqs. (2.23),(2.24) with the choice of parameters considered above. The total cross section is
found to be very similar to the one we got with the full wave function, specially at lower en-
ergies. Meanwhile, the invariant mass distribution shows small but appreciable differences,
namely, a larger yield at higher pp masses, and a decrease at lower ones. This approach

1.2

100 |
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10 | } i 1
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=
£ 3
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3 3
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P

Figure 2.5: Different approaches to FSI. The dotted lines are the same as in Figs. 2.3,2.4.
The dashed lines correspond to the Watson-Migdal approximation using the effective range
expansion of Eq. 2.11 with ay = —19.1 fm and ry = 2.85 fm obtained from the strong p-p
separable potential potential. In the solid lines, Coulomb repulsion is included by taking
the experimental values ag = —7.83 fm and rq = 2.80 fm.

has the advantage that the effect of Coulomb repulsion, can be easily incorporated, just
substituting ag and r by their experimental values ag = —7.83 fm and ro = 2.80 fm [72].
Once more, the effect of this correction in the total cross section appears to be negligi-
ble. In the differential cross section, the enhancement at low masses is reduced (from 0.95
to 0.72 ub/MeV at M,, ~ 1.88 GeV) as expected. However, this result should be taken
only as a qualitative indication of the relevance of Coulomb repulsion in the absence of a
more accurate calculation, since, as pointed out in the literature in the case of single pion
production [63, 64], this procedure might not be well justified.
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2.5 Summary

In this chapter, we have studied the effect of NN final state interaction in double pion pro-
duction at low energies and for the pp — ppm* 7~ channel, where the reaction mechanism
is simple. The pp 'Sy wave function, which appears in the derivation of the amplitude
has been obtained as the solution of the Schrédinger equation with a separable potential,
whose parameters fit the pp phase shifts. An important enhancement (up to a factor 10
close to threshold) has been found for the total cross section. This increase is concentrated
at low pp invariant masses, since the FSI is stronger when the protons move in the same
direction. We have also tested an approximation of the FSI based on the multiplication of
the free amplitude by a factor that reflects how the wave function is modified at very short
distances with respect to the undistorted one. We have obtained that, for the mechanism
considered here, the results are compatible with those given by a more accurate expres-
sion. Then, we have shown that corrections due to the electromagnetic repulsion can be
appreciable for differential cross sections, and, therefore, a more accurate evaluation of its
effects should be undertaken.

Our main conclusion is that, in order to be able to extract physically meaningful in-
formation about the relevant dynamics involved in double pion production from the new
generation of experiments close to threshold, the final state interaction must be carefully
studied and properly taken into account in the analyses.
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The np — d(7w)Y reaction

3.1 Introduction

Most of the work, both experimental and theoretical, on two-pion production in nucleon-
nucleon collisions was performed in the seventies, and in connection with the so called ABC
effect. The ABC anomaly is an enhancement in the missing mass spectra close to the 7w
production threshold (Myx a 300 — 350 MeV). It was first observed in an experiment on
pd — 3HeX by A. Abashian, N. E. Booth and K. M. Crowe [73] carried on at the Berkeley
184 inc synchrocyclotron. The anomaly was detected as a sharp peak in the > He momen-
tum spectrum at a fixed LA angle of 11.7° and for incident proton energies ranging from
624 to 743 MeV. It was initially believed to be the sign of a new particle or 77 resonance.
No straightforward evidence for the ABC particle was found in the reaction pd — 3HX, so
it was concluded that the isospin of the ABC particle T ;- = 0. Later, similar structures
were discovered in np — dX [74, 12, 75] and were again absent in the case of T=1 pion
pairs: pp — drm [76]. The reaction dd — *HeX leads to a pure Ty = 0, which is probably
the reason for the more pronounced peaks in this case [77]. The full set of experiments re-
veals that the mass and the width of the effect vary according to the kinematic conditions,
excluding any interpretation of it as a resonance or a new particle. Moreover, in all three
reactions: np — dX, pd — *HeX and dd — *HeX, there are evidences that the ABC
effect disappears at low beam energies [78, 3, 79] suggesting that any explanation should
involve strongly energy and angular dependent amplitudes in order to reproduce the quite
different dynamics observed in the different energy regions.

Theoretical investigations have focused on the np — dX reaction since it is the sim-
plest one where the effect has been observed. Two different theoretical models have been
developed attempting to describe the data without assuming the existence of a new hadron
or a strong pion-pion interaction. The first one [80] proposes a double-nucleon exchange
model consisting of three separated diagrams summed incoherently in order to produce
the three peaks observed by Plouin et al. in the forward direction [75]. The approach fol-
lowed in this work in the evaluation of the npd vertex and the nucleon exchange amplitude
does not allow to predict the absolute normalization. In the relativistic model of Bar-Nir,
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Risser and Shuster [81], after a pion exchange an intermediate state of two A’s is formed
with a subsequent decay into the dnm state. In spite of the fact that both these models
show the characteristic triple-peak structure at a kinetic energy 7;,, = 1160 MeV of the
incoming neutron beam (where the ABC bumps are observed), they fail in describing the
isotropic angular behavior [75]. A recent paper [82] attempts to improve the AA model on
the basis of a coupled channel formalism, which allows to include the residual interaction
within the intermediate AA systems; this calculation also falls short at higher angles. A
better angular dependence were achieved in Ref. [83], where effective chiral Lagrangians
at tree level were considered in the evaluation of the amplitudes coming from more than
80 diagrams. Chiral bag model form factors were used for the vertices and the bag radius
was taken as a free parameter and fitted to the absolute value of the differential cross
section. The deuteron wave function included the d-wave part, which had been neglected
in the previous works. The agreement obtained with the data of Plouin et al. [75] at two
deuteron angles (6,5, = 0°,10.5°) is quite good. The major shortcoming of this approach
is the lack of intermediate nucleon excited states at an energy where they are important,
specially the A. The authors chose a value of the bag radius to fit the data and claimed
that this choice effectively accounts for the contribution of resonances.

An important step towards the understanding of the ABC effect has been taken in
Ref. [84], where the *He spectra from the dd — *HeX reaction at a deuteron beam energy
of 1250 MeV [77] has been explained assuming that pions are independently produced in
reactions involving two different pairs of nucleons from the projectile and target deuterons.
This model explains the ABC effect through the production of p-wave pions that emerge
with parallel momenta. It does not, however, describe the data close to threshold, where
the data are structureless and consistent with phase space [79]; moreover, the predicted to-
tal cross sections are a factor of about 20 too low. Such fact calls for some other mechanism,
which will be responsible for the behavior at threshold.

Here, I focus the attention on the deuteron spectrum in np — d(7m)° measured by
Hollas and collaborators [78] using a nearly monokinetic neutron beam with central mo-
mentum p, = 1.463 GeV/c. This experiment is somewhat similar to the one of Plouin et
al. [75], but at lower energies ( 7, = 795 MeV in [78] vs 1160 MeV in [75] ). Therefore, the
analysis is simpler since, once the m° peaks are subtracted, only the double pion production
mechanism is present (at higher energies, other mechanisms like three pion production and
subthreshold 7 production could contribute [85]). Apart from that, one expects that, being
closer to threshold, the reaction mechanism might be simpler. The ABC peaks are not
present in the data; they rather show a well defined bump at high 77 missing masses, in
disagreement with the models available in the literature [80, 81]. From this comparison,
the authors concluded [78] that neither double-A formation nor double-nucleon exchange
provides the appropriate description of the reaction at p, = 1.46 GeV/c. A similar en-
hancement has also been observed for the reaction pd — 3Her "7~ which is being studied
using a beam of protons from COSY ( MOMO experiment ) [3], at a Q value close to the
one of the experiment by Hollas et al. [78].

Our aim is to show that the deuteron spectra for np — d(7m)° at p, = 1.46 GeV/c
can be understood as a consequence of the interference of two mechanisms involving the
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excitation of the Roper resonance N*(1440) and its subsequent decay into N(7m)L=0

and A7 respectively [86]. The model will be also compared to the data at higher energies;
there, it is unable to describe the details of the spectra and angular distributions, but shows
the appearance of the so called ABC peaks. In spite of this, there is a clear indication that
the AA mechanism alone is not sufficient to solve this long standing problem.

3.2 The model

The model is schematically presented in Fig. 3.1. It is a reduced version of the model
presented in Chapter 1 and Ref. [4], modified for the case where one has a deuteron in-
stead of two free nucleons in the final state. The choice of the mechanisms was based
on their contribution to the total cross section for the pn — pnm™7~ reaction; the situ-
ation for the pn — pn7°7® channel is similar. At 7, = 800 MeV, the mechanism with
N* — N(rm)L=0  gives o ~ 11 ub, being by far the most important. The second largest
contribution comes from N* — Ax with o ~ 0.5 ub; as we will see, in the case of a deuteron
in the final state, its contribution is larger with respect to the dominant N* — N (7m)%=0
and crucial to obtain the right shape. All other mechanisms give o < 0.3 ub; I do not in-
clude them all, but just the double-A ( ¢ ~ 0.1ub ) one since it becomes the largest
contribution at 7, > 1140 MeV. In fact, at 7T, = 1160 MeV, which correspond to the
neutron beam energy of the experiment of Plouin et al. [75], where the ABC peaks were
directly observed in the np — dX reaction, the pn — pnm™ 7~ total cross sections are o ~
160 pb for both N* — N(wm)5=>  and N* — A7 mechanisms, while o ~ 200 pb for the
double-A one. The inclusion of the later mechanisms will also allow us to make contact

with the model of Ref. [81].
d d d

A
I . s ol

T=0,1 T=0,1 T=1

(a) (b) (c)
Figure 3.1: Set of diagrams of the model.

The deuteron momentum spectrum is the sum of the 7+7~ and the 7%7" contributions.
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In the Laboratory frame, the charged pions piece is given by

o1 1 MDMy(p,)?
dpl,dSY, 4 (2m)>  E'plpa
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Rrirs CM

Here, E) and p), are the deuteron energy and the modulus of its momentum, both in LA
frame; pgy is the modulus of the deuteron momentum in CM; M and My stand for the nu-
cleon and deuteron masses respectively. The integral in brackets must be calculated with
all the kinematical variables defined in CM; it runs over the polar angle and the energy of
one of the outgoing pions. The amplitude squared is summed over the deuteron spin (R)
and averaged over the spins of the incoming nucleons (71, r3). The rotation matrix R
has the same structure as the one defined in Eq. (1.26); by choosing the coordinate axes
in such a way that the third axis coincides with the direction of the incoming particle, and

the deuteron 3-momentum belong to the P»3 plane, one gets

0 -1 0
R = cos 0 0 sinf (3.2)
—sinff 0 cos@

with

cosf = (Pa)s sinf = V1 — cos? 0 (3.3)

Pd

For the neutral pions channel, the expression is the same but with and extra 1/2 factor,
which is a consequence of having two identical pions in the final state. The difference of
masses between charged and neutral pions is taken into account for the phase space, but
isospin symmetry is assumed in the calculation of the amplitude.

The amplitude can be expressed as

1,1 dq
MR :Z (57",157"12 1R> /WDTO,I(Q)X
rirh

{(@rt1Vlpr) (] Va [nrs) = (| V2 lprs) (prg] Va [nrs) ) @a(P2) - (34)

+ (] Valpro) G| V3 Inra) = (e Valpra) (prg] V3 fnra) ) @a(P) |

where ¢4(P) is the s-wave deuteron wave function in momentum space, normalized as

/% @a(k) = 1. (3.5)

The d-wave part has been neglected; I will come back to this question later. For the wave
function, different expressions and parameterizations can be used [66, 30, 87]. Their ex-
plicit expressions are given in Appendix E. The value of Py(2) depends on the mechanism;
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for those of Figs. 3.1 a and 3.1 b, Py(2) = q + P1(2) — Pa/2 and for the A — A mechanism
(Fig. 3.1 ¢) Py(2) = 9+ P1(2) — Pa/2 — P, P1(2) and pq being the momenta of the proton
(neutron) and deuteron respectively; p, is the momentum of the pion, over whose energy
the integral in Eq. (3.1) is performed.

The matrix elements in Eq. 3.4 are evaluated for the different mechanisms using the
phenomenological Lagrangians (Eqs. 1.50, 1.56, 1.61, 1.72, 1.77, 1.104, 1.105) and N*, A
propagators of Eqs. (1.67, 1.83), all defined in Chapter 1. In the case of Ly«nzr, point 5
in the ellipse of parameters ¢}, ¢} of Fig. 1.3 will be used except where a different choice
is explicitly indicated. The function Dr—g(q) stands for the meson propagators and form
factors of the exchanged particles. For T=0:

1 AZ —m2\?
Dy = 4 z ] . 3.6
T,[](Q) q2 _ mg— ( Ag— _ q2 > ( )
In the case of T=1, if one considers only 7™ exchange
(m) 1 A2 - m2 2
Dyt = u ) . 3.7
r=1(9) > —m2 < A2 —¢? ) (3.1

Then, in order to take into account the transversal rho exchange, and the short range
correlations that take into account the repulsive force at short distances one makes the
substitution

D (@)aia; = Vi(a)dids + Vi (a) (0 — dudy) (3.8)
with V/(q), V}(q) defined in Eq. (1.103); ¢ = (qo,q) is the 4-momentum transfer from
one nucleon to the other; ¢y is given by energy conservation in the vertices and, therefore,
depends on the energy of one of the outgoing nucleons, taken to be one half of the deuteron
energy. Explicit expressions for the amplitudes are given in Appendix F

3.3 Results and discussion

At p, = 1.46 GeV/c

With the ingredients described in the previous section, one can calculate the deuteron
spectra at p, = 1.46 GeV/c for different angles. The results are shown in Fig. 3.2. They
compare quite well with the data of Hollas et al. [78], and certainly much better than the
previous models [80, 81]. The curves, in general, underestimate the data, maybe because
there are many other mechanisms, not considered for the sake of simplicity, that, even
being individually small, could in sum enhance the cross section. Some of the approxima-
tions made, like the neglect of the deuteron d-wave and non-relativistic approximation in
the vertices, as well as the intrinsic uncertainties of the mechanisms included can also be a
source of discrepancies; they are discussed below. The large data point at the edges of the
spectra show the contamination of the 7° peaks [78]. I have also estimated the influence
of the width of the neutron beam by averaging the double differential cross sections over
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a Breit-Wigner profile of 40 MeV width and centered at p, = 1.46 GeV/c, corresponding
to the momentum resolution achieved, and the momentum of the primary proton beam
used to produce the neutron beam via the pd — npp reaction [78]; the contribution of this
effect is very small and irrelevant for our study. The plotted curves are obtained using the
deuteron wave function derived from the Paris potential [66]; with the Bonn wave functions
[30] the results are very similar, while for the Hulthen one [87] the distributions are overall
larger, up to a factor two at the position of the central bump.
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Figure 3.2: Deuteron momentum spectra for np — d(7m)° at p, = 1.46 GeV/c and dif-
ferent laboratory angles (solid lines) compared to the measured data [78]. The dotted
line corresponds to the N* — N(7m)L=0 — mechanism (Fig. 3.1 a); the short-dashed line
stands for the N* — Ax (Fig. 3.1 b).

The mechanism N* — N(7m)5=0 = (Fig. 3.1 a) produces spectra very similar to
phase space; its contribution is certainly the largest, but its relative size with respect to
the N* — Am mechanism is not as large as one would naively expect from estimations
based on the total cross sections obtained for both mechanisms in the free NN — NNz

reaction. Nevertheless, it is not surprising since here we are sensitive only to a reduced
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phase space region and choosing a particular combination of the quantum numbers of the
outgoing nucleons (those of the deuteron). For this mechanism, I have calculated the con-
tribution of the d-wave part of the deuteron wave function and found it negligible. The
situation could, however, be different at higher energies and for other mechanisms as stated
in Ref. [83], where the d-wave was found to account for 10-30 % of the cross section.

The N* — Arm mechanism (Fig. 3.1 b) exhibits a wide bump at the center of the spec-
tra (high 77 masses), whose maximum falls fast with the increase of the deuteron angle,
and small peaks at the edges of the spectra (low 77 masses); the size of these peaks does
not vary appreciably with the angle. This mechanism plays a crucial role in providing the
right shape to the distributions through its interference with the larger N* — N(7m)L=0
contribution. This interference is constructive at high 77 masses and destructive at low
ones. Such pattern can be understood by realizing that the N* — Am amplitude is dom-
inated by terms proportional to the scalar product of the outgoing pions three momenta;
this scalar product has different signs in the center of the spectra, where the pions go back
to back, and at the edges, where they travel together. In order to further illustrate the
effect of the interference, Fig. 3.3 shows the effect of changing the relative sign of the two
amplitudes. The data clearly favor a choice of the sign of gy«a, in agreement with earlier
works [6, 46, 37, 47].

d°c/dQ dp, (ub/sr MeV)
[av]
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Figure 3.3: Calculated spectra for two different choices of the gn+a, sign. The data clearly
favor the positive sign (solid line) with respect to the negative (dash-dotted line).

The double-A mechanism (Fig. 3.1) is too small to be represented in Fig. 3.2. In
Fig. 3.4, the contribution of this mechanism alone is shown for p,, = 1.5 GeV/c, 64, = 4.5°
and using the Hulthen wave function, in order to compare with the result of Bar-Nir, Risser
and Shuster (Fig. 4 b of Ref. [81]). The differential cross section obtained in the case of
only pion exchange is very similar to the one given by the relativistic model of Ref. [81]; the
inclusion of the rho exchange modifies the result, and the short range correlations between
the initial nucleons cause a strong reduction of the strength of this mechanism (see the
solid line of Fig. 3.4).
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Figure 3.4: Contribution of the double-A mechanism in the case of 7 exchange alone
(dashed line), m+ p exchange (dash-dotted line) and 7+ p+ short range correlations (solid
line). In this case the calculation uses a Hulthen wave function for the deuteron.
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Figure 3.5: Dependence of the spectrum on certain decay properties of the N*(1440). The
solid line in (a) shows the result for the point 5 of parameters ¢}, ¢ used everywhere else
(¢; = 0), and the dash-dotted one is obtained with point 4. In Fig. (b), different values of
the N* total width are considered: dashed line, 250 MeV; solid line, 350 MeV; dash-dotted
line, 450 MeV. The branching ratios of the different decay channels of the N* are modified
in (c), with the total width fixed to 350 MeV; dashed line: Br(N(rm)5=0 ) = 5% and

S—wave

Br(Am) = 30%; solid line: 7.5% and 25%); dash-dotted line: 10% and 20%.

Wherever dealing with the Roper resonance, the lack of a precise determination of its
properties is a problem that should be faced. In Fig. 3.5, I investigate how the results
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vary with some of the uncertainties. As can be noticed, the shape is not affected by these
changes, but some set of values are preferred. Fig. 3.5 a, shows how the spectrum changes
with the modification of ¢}, ¢; within the previously accepted values, while keeping the
total width and the partial branching ratios fixed; the set of values corresponding to the
point 4 in the ellipse of Fig. 1.3 gives a better agreement with the data. In Fig. 3.5 b,
we show the range of uncertainties that come from the variation of the total width of the
N* in the limits given by the Particle Data Book [18], that is from 250 MeV (lower line)
to 450 MeV (upper line). Finally, the dependence on the partial branchings of the N* to
N(rm)E=0 . and Am, with the total width fixed to 350 MeV, is studied in Fig. 3.5 c.

S—wave
The dashed line corresponds to a 5% branching of N* to N(7m)E=0  and a 30% to A,
while for the dash-dotted one, a larger 10% of N(7m)L=0  and a smaller 20% of Ar; the

data prefer the latter choice. These data alone do not allow to disentangle the different
effects, but, in combination with other data that will be available in the future (like the
data on pp — drm at T, = 600 — 775 MeV from CELSIUS), would be an important source
of information about the Roper resonance.

At p, = 1.70 GeV/c

Deuteron spectra (d?c/dQdp,) for the inclusive reaction np — dX have been recently mea-
sured at KEK, Japan, using a quasi-monochromatic neutron beam and a liquid hydrogen
target [88]. The measurements were performed at two different energies 7,, = 1,2 GeV.
The second of these energies is too high to be considered here; notice that at this energy
both p and n production are clearly identified in the spectra. Hence, the present analysis
is restricted to 7, = 1 GeV (p, = 1.70 GeV/c). At this energy, the three mechanisms of
the model appear to be the dominant ones in the case of the free pn — pnrt7~ reaction.

Our results compared to the data are shown in Fig 3.6. At forward angles, the model
produces the right strength in the center of the spectrum (high (77) invariant masses) as a
result of a constructive interference of the mechanisms. The contribution N* — A is the
largest one and conditions the obtained shape. At low (77) masses we see the appearance
of the ABC peaks, formed by the N* — An and double-A mechanisms. These peaks are
not seen at lower energies because the relative strength of these mechanisms is too small.
From the figures it seems that we miss strength at the edges of the spectra and in the region
of the deeps, but it is difficult to draw definitive conclusions since the data do not allow to
separate double-pion production from other mechanisms. In particular, the 7° peaks from
the reaction np — dr°, which are responsible for the measured deuteron yield below and
above the kinematic limits of two-pion production, cannot be disentangled. On the other
side, one should bare in mind that the error bars reflect only statistical uncertainties, and
the overall systematic uncertainty is about 30 % [88]. In spite of the experimental errors,
it seems that the model follows short at larger angles. It is interesting to notice that at
01.p = 12°, the central bump has already disappeared from the calculated spectrum.
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Figure 3.6: Deuteron momentum spectra for np — d(77)® at p, = 1.7 GeV /c and different
laboratory angles (solid lines) compared to the measured data [88]. The dotted line cor-
responds to the N* — N (7m)5=%  mechanism (Fig. 3.1 a); the short-dashed line stands
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for the N* — Ar (Fig. 3.1 b) and the long-dashed one, for the double-A (Fig. 3.1 c).
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At p, = 1.88 GeV/c

The experimental work of F. Plouin and collaborators [75] performed at Saclay syn-
chrotron (Saturne) was the first where the ABC effect was directly observed in the el-
ementary reaction pn — dX (earlier work extracted information about this reaction from
pd — dX +Dspect) and was an important incentive for the theoretical work in this field. The
experiment measured inclusive deuteron momentum spectra using a neutron beam with
pn = 1.88 GeV/c. At this energy, the ABC anomaly is in clear evidence at both ends of the
spectra. At this energy, the analysis of the reaction presents an additional complication
since 17 and 37 production could contribute to the spectra [85].
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Figure 3.7: Deuteron momentum spectra for np — d(7m)? at p, = 1.88 GeV/c and dif-
ferent laboratory angles (solid lines) compared to the measured data [75]. Line stiles have
the same meanings as in Fig. 3.6.

In Fig. 3.7 our results are compared to the data of Plouin et al. [75]. Even if a three
peak structure is clearly present, the model fails in explaining the details of the spectra. In
particular, the size of the central bump is clearly overestimated, and our ABC peaks are
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appreciably sharper than the measured ones. This is, in part, due to the fact that neither
the width of the neutron beam, nor the detector acceptance have been taken into account.
Calculated spectra also decrease too fast with the increase of the deuteron angle; this is a
common feature to most models of the np — d(7m)° reaction [80, 81, 82] (except the one
of Ref. [83]). Again, the strength of the N* — N(7m)L=0  is smaller than expected from
estimations based on the equivalent free reaction (all three mechanisms produce similar
total cross sections at this energy in the case of pn — pnrt7~). Therefore, our hope that
this mechanism could be responsible for the isotropic angular behavior [4] is not confirmed.
In spite of this, we show that the N* — Am, which has been systematically neglected in
all ABC models, is as large as the double-A one, and could play a significant role in any
further understanding of the ABC effect. For this reason, if the effects of AA and AN
rescatterings were important, as claimed in a recent paper [82], then the Roper resonance
should not be ignored in this type of calculations.

Total cross section

The relative importance of each mechanism of the model as a function of energy is clearly
shown in Fig. 3.8. In general, this calculation underestimates the total cross section as one
would expect form the results above, but the agreement is good, at least, not worse than
for the analogous free reaction pn — pnwt7~. Such agreement, specially at low energies,
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can be hardly understood without taking into account the Roper contribution. Notice that
the difference between the two graphics is due to the fact that in the experiments of Hollas
et al. [78], and Plouin et al. [75] only the deuteron is detected, and, therefore, both 77,
7070 channels must be included, whereas in the case of Bar-Nir et al. [74], charged pions
are detected by their trace in the bubble chamber.

3.4 Summary

In summary, a simple model for the np — d(77)° reaction has been developed, based

on a previous model for the free NN — NN77 and including the most important reso-
nance contributions. The total cross section has been calculated and the results found
to be in good agreement with the limited experimental information. At the level of
double differential cross section, it has been shown that the bump in the center of the
deuteron momentum spectra (high 77 masses) observed at a neutron beam momentum of
pn = 1.463 GeV/c (T, = 795 MeV) can be explained as a result of the interference of two
mechanisms involving the excitation of the Roper resonance: the dominant and phase-space
like N* — N(7m)§=0 .. (Fig. 3.1 a) and the smaller in size N* — Ar (Fig. 3.1 b), but
determinant to obtain the right profile. The mechanism of double-A (Fig. 3.1 ¢) excitation,
considered in an earlier model for the same reaction, but only including pion exchange,
is significantly reduced by the short range correlations. At high energy the model fails
to reproduce the details of the deuteron spectra, in particular, the almost isotropic an-
gular behavior observed at p, = 1.88 GeV/c (T,, = 1160 MeV). In spite of this we have
qualitatively understood how the ABC peaks disappear at low energies and remarked the
importance of the Roper resonance in this process. A further understanding of the ABC
effect would require a better knowledge of the deuteron wave function at high momentum
transfer and the NN — NN*, NN — AA transition potentials, as well as a renewed
relativistic treatment of the reaction. The present experimental program on double pion
production in NN collisions at CELSIUS can be the basis for such research.
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The study of the nucleon and its excitation spectrum has been pursued for a long time
both experimentally and theoretically, seeking a better understanding of the structure and
interactions of hadrons. These investigations provide insight into the non-perturbative
regime of QCD. In this context, the extraction of electromagnetic and weak form factors in
the N — A(1232) transition can appear as valuable source of information. There are clear
advantages in considering the A(1232) since it is nicely isolated from the densely popu-
lated region of excited states that appear at higher energies, and has a largely dominant
7N decay channel, which allows for an easier identification.

At low and intermediate energies, the study of various electromagnetic excitation pro-
cesses, induced by electrons and photons, has been made at many research facilities around
the world, and there exists extensive literature on electromagnetic transition form factors
[89, 90]. Similar studies on the corresponding weak form factors have been performed in a
series of experiments carried out with wide band neutrino beams at ANL, BNL and CERN
laboratories, where attempts have been made to isolate the transition form factors for the
charge changing weak current, and there exists a fair amount of data to determine these
form factors [91, 92, 93, 94, 95]. This is not the case with the neutral current processes,
where there are very few experiments [96] in the intermediate energy range, and no seri-
ous analysis has been made of the transition form factors. Although, the main interest in
the neutral current sector has been to study the parity violating asymmetry in polarized
electron scattering with nucleons and nuclei in order to explore the nonzero strangeness
content of the nucleon [97], it was also suggested to measure the parity violating asymme-
try for the N — A transition in order to extract the isovector part of the hadronic neutral
current [98], but it was a difficult experiment at the time.

The availability of continuous wave electron accelerators with 100 % duty cycle in the
energy range of few GeV, and the possibility of achieving very high luminosities at these
accelerators has led to the feasibility of performing electron scattering experiments in the
resonance region with very good statistics [99]. These experimental studies can be ex-
tended to explore weak interaction physics in the A resonance region. In particular, the
assymetry studies mentioned above have been reconsidered [100, 101, 102]. In Chapter 4,
we explore the possibility of doing similar experiments in the charge changing sector as an
alternative way to extract the transition form factors.

Since the vector N — A form factors are related to the isovector electromagnetic ones
and can be obtained from the electromagnetic production data, these experiments would
provide information about the axial form factors. Among them, the dominant one is
C#(¢%). The determination of its value at ¢> = 0 is important because the value of C:'(0)
obtained using the approximation of Partially Conserved Axial Current (PCAC) is found
to be 30 % larger than the theoretical estimates obtained in most of the quark models [103].
The situation is similar in the electromagnetic sector, where the magnetic dipole (M)
and electric quadrupole (E1, ) transition amplitudes, determined from the experiments on
photoproduction and electroproduction of the A resonance are found to be about 30 %
larger than those computed in many theoretical models of hadron structure [104]. This
underestimation of the electromagnetic and weak couplings in the N — A transitions may
be a manifestation of large violations of the SU(6) symmetry, while maintaining the chiral
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symmetry of the Lagrangian, and needs further investigation.

In Chapter 5 we study the reaction vd — p~A*Tn in order to extract CZ(0) from
the available low ¢? data, paying special attention to the effects of deuteron structure and
width of the A resonance. We also discuss the possibility of extracting the value of this
coupling from electron scattering experiments.



Chapter 4

Charged current weak
electroproduction of A resonance

4.1 Introduction

Our aim is to make a general analysis of the weak production of A through the processes

e”p— Ay, (4.1)

and
etp— AT, (4.2)

and to examine critically the feasibility of doing such an experiment at the Mainz Mi-
crotron and/or at TJINAF [105]. These reactions were earlier studied by Hwang et al.
[106], where a bag model was used to calculate the N — A form factors and the effect of the
A width was not taken into account. In this work we retain all the weak vector and axial
vector form factors in the matrix elements of N — A transitions. The present available
information on these form factors from the experimental data on electromagnetic and neu-
trino production of A has been fully utilized through the application of Conserved Vector
Current (CVC) and Partially Conserved Axial Current (PCAC) hypotheses in the N — A
sector [107, 103, 108, 109, 110, 111]. In addition, the width of the A resonance is properly
taken into account and is found to give important effects on the differential cross section.
The effect of various parametrizations of the NV — A form factors, discussed recently in the
literature [107, 103], has been studied to explore the possibility of distinguishing between
them experimentally. Finally, we have also estimated the production cross section for the
Roper, N*(1440), the next higher resonance, in order to understand its effect in the kine-
matic region of A production; we find it to be sufficiently small and well separated from
the kinematic region of present interest to allow for a clean identification of A through
observation of the pions and nucleons produced as decay products.

Next, we describe the transition currents for the production of A and N*(1440), and
derive expressions for the cross sections. In Sec. 4.3, we present the numerical results for
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the differential cross sections for the considered reactions and discuss the possibility of
experimentally observing them, in Sec. 4.4.

4.2 Transition currents and cross sections

4.21 e p— Ay, and etp = Att i,

Since the characteristic momentum transfers in these reactions are far below the W boson
mass |¢?| < M2, we can restrict ourselves to the effective contact weak interaction. Follow-
ing the standard notation, the matrix element for the process e (k) +p(p) — A%(p') +ve (k')
is then written in terms of a product of the leptonic and hadronic currents [108, 110, 111]

M = % cos O 1o J%, (4.3)

with
lo = (k" )Bau(k), Ba="a(1—"5), (4.4)

and

J* = u,(p) A" u(p),

cy cy cy
At = ﬁ(g”aé —q"y*) + W(g““q p = q"'p") + W(g““q D= q"p*)| s
C?iq 1%eY [Te' 414 j77e / W, Io A _pa Céq n, o
o = ) (D ) + O+ s d e (4.5)
where G is the well known Fermi constant
G 2
e 116639 x 1077 GeV 2, (4.6)

V2 8sin®6,, M2

cos B, = 0.975, the cosine of the Cabbibo angle and M, the nucleon mass; u,(p’) and u(p)
are the Rarita-Schwinger and Dirac spinors for A and nucleon of momentum p’ and p;
g=p —p=k—Fk is the momentum transfer. The hadronic current is conveniently ex-
pressed in terms of vector and axial vector transition form factors C} and C# (i = 3,4, 5, 6)
as defined by Llewellyn Smith [111]; they are discussed in detail in Sec. 4.2.2. With the
matrix element given in Eqs. (4.3)-(4.5), the differential cross section do/dQ2a is calculated
to be

do 1
dQ 12873

12 T 2
G2 C082 90/d|pl| |p| A(W)/

LagJ 4.7
E.E, (W — Mp)?2 + T3 (W)/4 ¢ (4.7)
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with the leptonic tensor L,z defined as

Las = o [(f+me)Bak +m,)Bs)

= 8 (kaky + kiks — gagk - k' + i€aprsk’k') (4.8)
and the hadronic tensor is
Jo = Ty [(;s n M)AWPWAVﬂ] (4.9)
where .
R=%RYy, R=Au, Ba. (4.10)
Here, P,, is the spin 3/2 projection operator which, for the usual choice A = —1 (see
Appendix B and Ref. [36]), is given by
P+ Ma 20,0, 1P =P 1
P 2 - e~ 411
h oMy \"" 732 T3 Ma 3 7 (4.11)

In Eq. (4.7), W is the invariant mass of the A given by W? = p'2, M is the A mass and
[ is its decay width given by Eq. (1.59). The A width has been accounted for in the cross
section calculation by means of the standard substitution

1 1
0(p* = M3) = ——5—Im[Da(p)] , (4.12)
™ QMA
with Da(p') being the non-relativistic A propagator, as defined in Eq. (1.67).
We now turn to the process e™ p — A*T ,. The matrix element is written in the same
way as in Eqgs. (4.3)-(4.5) with the following replacements:

(i) The leptonic current [, in Eq. (4.4), now involves antiparticles and is written in terms
of v spinors instead of u spinors,

(ii) The matrix element of the hadronic current J, in Eq. (4.5) is now evaluated between
initial proton and final A** states, with the relation

(AT alp) = V3 (A Jalp) (4.13)
which is a direct consequence of the Wigner-Eckart theorem.

With these two changes the differential cross section is effectively given by Eq. (4.7), with
Los(k, k") = Lag(K', k) and Jog(p,p’) — 3Jap(p, D).

4.2.2 N — A transition form factors

The N — A transition form factors relevant to the weak transition current have been dis-
cussed in the literature in connection with the analysis of neutrino scattering experiments
[108, 109, 110, 111, 112] and in the context of quark model calculations [107, 103]. We
summarize in this section some details of these form factors, needed for present calculations.
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Vector form factors

As stated in Sec. 4.2.1, there are four weak vector form factors C3', C}, CY and C} oc-
curring in this transition. The imposition of the CVC hypothesis, which in momentum
space reads g,Ji; = 0, implies C§ = 0. The other three form factors are then given in
terms of the isovector electromagnetic form factors of the p-A* electromagnetic transition
because, as a consequence of the global SU(2) invariance, the vector hadronic weak cur-
rent, its Hermitian conjugate and the isovector part of the electromagnetic current form
an isospin triplet of conserved currents [113]. Specifically, the hadronic matrix element for
the reactions (4.1) and (4.2) are given as

(A% TP |p) = (AT JE,(T = 1)Ip) (4.14)

and
(AT T |p) = VB (AT|JS,(T = 1)|p), (4.15)

where J% (T = 1) is the isovector electromagnetic current.

The information on the isovector electromagnetic form factors CY (¢%) (i = 3,4,5) is
obtained from the analysis of photo and electroproduction data of A, which is done in
terms of the multipole amplitudes F;, (electric quadrupole),M;, (magnetic dipole) and
Si+ (scalar quadrupole) [114]. The present data on FE;, and S;; amplitudes are very
meager and these amplitudes are expected to be small. Assuming M;, dominance of the
electroproduction amplitude, which is predicted by the non-relativistic quark model, the
form factors C} (¢?) satisfy the relations:

M

they have been used in the analysis of the electroproduction experiments and C3 (¢?) has
been determined. The following parametrizations of C§ (¢?), available in the literature
[107, 103], are used in our present calculations:

2.05
cy () = 4.17
3 () (1 —¢2/0.54GeV?)2’ (4.17)

1.39
cy () = : 4.18
5 (4) V1= ¢2/1.43GeV?)(1 — ¢2/0.71 GeV?)2 (4.18)

For the purpose of comparison with a simple form factor obtained in the SU(6) quark
model, we also use [107]
M 2
CV 2y e 7 /6
3 (q ) \/gm
where m = 330 MeV is the quark mass and ¢ = |q|/ayo, With a0 = 320 MeV, being the
harmonic oscillator parameter.

(4.19)
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Axial vector form factors

There are four axial vector form factors C3', C!, C2 and Cg', as defined in Eq. (4.5). If
we consider the one-pion exchange amplitude (Fig. 4.1), we find from the first term of the

p A++

l
|
1 T
1
T e P U "
+ —_—
e Ve

Figure 4.1: One-pion exchange diagram.

relativistic effective AN7 Lagrangian of Eq. (1.55) a contribution to C!

_ gAerfw M2
V6M m; — ¢

where F(q?) is the form factor of the ANT vertex, gans = 2f*M/m,, the AT — pr™
coupling constant and f, = 92.4 MeV, the pion decay constant. We neglect other contribu-
tions to Cgl(q?). Substituting Eq. (4.20) in the expression of the axial part of the hadronic
current, and making use of PCAC (g, J; = 0 in the limit of m, — 0) one gets

Ci' (%) Fr(q*), (4.20)

O ) = gj]g;fmq?) . (4.21)

The assumption that this result remains valid when m, takes its actual value leads to the
relation

M2
mi = ¢

Ci'(¢%) = C3'(a*) (4.22)
If, in addition, we assume that F(¢?) is a slowly varying function, and extrapolate from
q®> = m2, where F, = 1, to ¢*> = 0, we obtain the following formula for the axial vector

coupling CZ'(0) [110]

gAwaw
C:(0) = 4.23
(o) = e (1.23)
known as the off-diagonal Goldberger-Treiman relation. When the experimental values are
used, Eq. (4.23) gives C#'(0) = 1.15. We shall return to this coupling in the next chapter.
In absence of any other theoretical input, C3'(¢?), Cit(¢?) and C:'(¢?)/C:(0) remain
undetermined. The data on neutrino scattering are analyzed using these form factors as
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free parameters (CZ' is not determined from these experiments as its contribution is propor-
tional to the lepton mass, which is neglected in the analyses), and using Eqs. (4.16)-(4.18)
for the vector form factors. The parametrizations used for the various axial form factors
are given below, where dipole form factors have been modified for a better fit to the data
[91, 92, 93, 94, 95]

A aiq’ ¢\~
Clausla®) = 0 1= 2] (1- £ (4.20)
with C54(0) = 0, C4(0) = —0.3, ay = a5 = —1.21, by = b5 = 2 GeV? and M, = 1.28 GeV.
The value of M, comes from a best fit to the =A™t events at BNL [91] with the other
parameters fixed. For a comparison, with the phenomenological form factors, we also use
a recent non-relativistic quark model calculation [107]

c?(rf):(% 31[31 ) M) = e L Gl =0, (429

4.2.3 e p—> N'v,

The Roper resonance N*, with mass 1440 MeV and decay width of about 350 MeV [18],
is the next higher resonance which has appreciable strength into the N7 decay channel.
The N7 events coming from the N* decay can lie in the invariant mass region of the A
resonance. Therefore, we also calculate the production cross section of the N* resonance
and evaluate the possibility to separate it from the A resonance signal. It is to be noted
that there is no corresponding reaction with an et beam thus, the A™" production signal
is cleaner than the A° production signal.

The matrix element for the process e~ (k) + p(p) — N*(p') + v (k') is written assuming
standard properties of the charged weak current J* in the AS = 0 sector, neglecting sec-
ond class currents [115]. Using constraints free form factors and manifestly gauge invariant
operators for the vector current matrix element [116], J¢ is written as

T =an-(0) [P (@) (49 — a*7%) +iFy (¢%)0™ a5 + FY (@*)7* s + Fp (a*)gs] u(p)
(4.26)
where F\,(¢*) and F p(¢*) are the isovector vector and axial vector form factors. Note
that there are, in principle three vector form factors, but only two of them are independent
once the requirement of CVC is fulfilled.

The expression for the differential cross section do/dSQy- is given by Eq. (4.7) with Ma

and I'a replaced by the N* mass and its width respectively. The N* width is taken to be
I'* = T'ng + Cag, given by Egs. (1.70),(1.73).
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4.2.4 N — N* transition form factors

As in the A case, vector form factors F)'(¢?) and F}) (q?) are related to the isovector
electromagnetic ones
B = E - E, i=(1,2) (4.27)

and can, in principle, be determined from the available experimental data on photopro-
duction and electroproduction of the Roper resonance from protons and neutrons. The
data on photoproduction on protons and neutrons fix only F) (0). The electroproduction
of Roper resonance has been measured only for the proton, and data are not of very good
quality [117]. In absence of any data on the neutron target, we have to rely on a model to
determine the isovector form factors F) (¢?) and Fy (¢?)/Fy (0). There are many models
in the literature for the electroproduction of Roper resonance with very different results
[118, 119]. For the purpose of present estimates, we use the following relations

n 2

which are valid in the non-relativistic constituent quark model without configuration mix-
ing [120]. Therefore, for the isovector transverse and longitudinal helicity amplitudes

AY)5(%) and SY),(q?) one gets

ATp(d*) = Aﬁj/z( %), Sha(a®) = 7,(d) . (4.29)

The helicity amplitudes A} 1/2 and SY /9 (the superscript p referring to the proton) are defined
in the standard way [121],

2o,
Al = A\ (N e TN D),

pol.
(4.30)
27ra a
Sty = ﬁN*ﬂZ(” TN 1)
/2 em )
pol.
where o = 1/137; the electromagnetic current .J? is given by [116]

T8 = an-(0) [F1 (@) (e — a*7a) + FFi0agq”] u(p) (4.31)

where FY,(q*) are the electromagnetic p — p* transition form factors; ¢* = (¢°,q) is the
momentum of the virtual photon and kg is the energy of an equivalent real photon (i.e. ¢°
in the particular case of ¢> = 0). In the resonance rest frame, |q| and kr are expressed as

W2 — M2 ) (W2 _ M2 +q2)2 ) ) )
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The transverse polarization vectors are

1
) = —5(0,F1,i,0) (4.33)
and € satisfies
e e =1, €q" =€ =0. (4.34)

If one now goes to the resonance rest frame and takes the z axis along the direction of the
photon 3-momentum i.e. q = (0,0, |q|), then

€0 —

1
= (lal,0,0,4%); (4.35)

Using Eqgs. (4.29)-(4.35), the isovector helicity amplitudes are derived to be

Ale”) = lal o) |FY ) - oy V@) (4.30
SHl) = s o ala®) [P - ] (187
with
o ra(W + M)W?
)= \/ MV — M)W + M~ ) 39

Inverting Eqs. (4.36),(4.37) we calculate the isovector form factors F\'(¢*) and F) (¢?) in
terms of the helicity amplitudes and use Eq. (4.29) to obtain them from the presently

available data on Af ,(¢*) and S7,(¢*), quoted by Li et al. [118].

In the case of axial vector form factors F) (¢*) and FY (¢*), there is no experimental
information available. We use the pion pole dominance of the divergence of axial cur-
rent hypothesis, as done for the A in section 4.2.2 , to relate F) (¢*) and F} (¢?) to each
other and also to obtain a corresponding off-diagonal Goldberger-Treiman relation relating
FY(0) to the N* — N7 coupling f and f,. A straightforward calculation gives

f M + M*
FY(0)=2fr—, Fp =—5—

My m72r - q2

FY, (4.39)
where f is the N* — N7 coupling (see Sec. 1.5.3). A dipole form for the ¢2 dependence of
FY(q?) is used

F (0)
(1—q*/M3)*’
where M, = 1.0 GeV, as taken in the case of N — A form factors.

Fi(¢®) = (4.40)
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4.3 Numerical results

In this section we present numerical results for the differential cross section for the pro-
cesses e p — Av,, et p — AT, e p — N*v, and study them using various form
factors. We stress here the importance of the decay width in the angular dependence of
the cross sections and the effect of changing various form factors in the vector and axial
vector sectors.

4.3.1 e p— Ay,

We show in Fig. 4.2 the A angular distribution for energies F, = 0.5, 0.855 and 4.0 GeV
using the expressions for the form factors of N — A transition, given in Sec. 4.2.2. The
electron energies are chosen to correspond to those reachable at Mainz and TJNAF acceler-
ators. The invariant mass has been restricted to W < 1.4 GeV to include the A dominated
events only. The differential cross section is found to be forward peaked at lower electron
energies, for example at E, = 500 MeV, but the peak shifts to higher angles as we increase
the energy. There is a gain of 50 % in the total cross section as we go from the maximum
Mainz energy (0.855 GeV) to 4 GeV. We also study the cross section sensitivity to the tran-
sition form factors by employing three different sets of vector and axial vector form factors.
In the first set, we use Eqs. (4.16),(4.17) for the vector form factors and Eq. (4.24) for the
axial vector form factors, and the results are shown in Fig. 4.2 (solid line). In the second
set, we take the form factors recently discussed in Ref. [103], which use Egs. (4.16),(4.18)
for the vector form factors and Eq. (4.24) with C2(0) = 0.87, C{4(0) = —0.29 MeV for the
axial vector form factors. The results are shown by the short-dashed line. In the third set,
we use the non-relativistic quark model form factors given by Eqs. (4.19),(4.25) and taken
from Ref. [107]; the results are shown by the long dashed line.

In Fig. 4.3, using the first set of form factors, we show the effect of the decay width I' on
the differential cross sections do/dQa for E, = 500 and 4000 MeV. It is clear from Fig. 4.3
that the A width plays an important role in the angular cross section. In the limit of I' —
0, our results qualitatively agree with those of Hwang et al. [106]. The narrow angular
range in which the cross sections were earlier predicted to dominate is not there when the
effect of decay width is taken into account. On the other hand there is a considerable cross
section over a wide angular region, which increases as energy raises and corresponds to
0 < 0 < 45° for E, = 4.0 GeV. Therefore, a high angular resolution is not really needed in
the experiments and large acceptance detectors can be used to study this reaction. This
feature of angular dependence of the cross section is maintained with all the form factors
used in this study.

4.3.2 etp — Att i,

The results for et p — AT 7, are given in Fig. 4.4. For this process, the cross section
is overall enhanced by an isospin factor of 3 and reduced due to the different sign of the
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Figure 4.2: AY angular distribution for the reaction e~ p — A%v, with three different sets
of form factors.

interference term, which depends on energy and momentum transfer. The angular depen-
dence of the cross section and its increase with the energy are, otherwise, quite similar to
thee p — Aly,.

The role of interference terms is very interesting in the case of the N — A transition. As
a comparison of Figs. 4.2 and 4.4 shows, the suppression due to the opposite sign of inter-
ference terms is quite large at lower energies to overtake the overall increase by a factor of
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Figure 4.3: A% angular distribution for the reaction e~ p — Ay, with finite (solid line)
and zero (dashed line) widths. The form factors are taken to be the same as for the solid
line of Fig. 4.2.

3 due to isospin. As the energy increases, the relative importance of the interference terms
becomes small and the cross section et p — A** 7, dominates. At around E, ~ 1.5 GeV,
the cross sections for e~ p — A’y, and et p — A*T i, are comparable. The effect of the
decay width of the A is the same as discussed in Sec. 4.3.1, and our results with I' = 0
are in qualitative agreement with the results of Hwang et al. [106], except that we obtain
a larger cross section compared to the cross sections obtained by them in the region away
from the peak.

4.3.3 e p—> N'v,

The vector form factors required in this calculation are obtained from Eqs. (4.36)-(4.38)
by taking two different parametrizations of A? /o and SP /o from an analysis performed by
Gerhardt, as quoted by Li et al [118]. They are shown in Fig. 4.5. There is some confusion

in the literature concerning the sign of S7,,, as can be judged from Ref. [118, 119], but

our results are not sensitive to the change of this sign. In Fig. 4.6, we present the results
for the do/dQ2x- at E, = 4 GeV with the same invariant mass cut for N* production as
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Figure 4.4: Same as Fig. 4.2 for the reaction et p — A** .

for A production ( W < 1.4 GeV ). We find that the cross sections for N* production
are smaller than the A production cross sections by an order of magnitude. Furthermore,
the N* angular cross section peaks around cosf = 0.82 as compared to the A production
that peaks around cosf = 0.73. The present uncertainty in the determination of the form
factors F (¢?) and Fy (¢?) leads to an uncertainty of 20 % in the cross section in the peak
region, as shown in Fig. 4.2. This uncertainty does not affect the main conclusion of this
study as the contribution of N* production in the kinematic region of pions coming from A
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Figure 4.5: N — N*(1440) helicity amplitudes as a function of @Q? for two different
parametrizations of Gerhardt’s analysis [117]. The full dot is the PDG value [18] of A7,
at the photon point and the full squares are the results of Gerhardt’s analysis of the elec-
troproduction data.

decay is still too small and peaks at a different angle than the A’s. Increasing the invariant
mass cut from 1.4 GeV to (M*+m.), shifts the peak of N* to still lower angles. Therefore,
the larger width of the N* affects pion production rates in an angular region well separated
from the A produced pions.

4.3.4 Experimental considerations

We now address ourselves to the present experimental situation and the possibility of
observing these reactions at Mainz and/or TINAF accelerators. At these accelerators lu-
minosities of the order of 10®®cm 2 sec ™! or more are expected. The estimated count rate
is given by
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Figure 4.6: N* angular distribution for the reaction e™ p — N* 1, for the two parametriza-

tions of the vector form factors extracted from Gerhardt’s analysis [117] and shown in
Fig. 4.5.

d
counts/hour = A x d_fal X luminosity x 3600 sec/hour x detector efficiency.  (4.41)

Using this formula, for example at 4.0 GeV, in the peak region of around 40° where the
cross sections are of the order of 1073 cm?, we find the count rate to be

counts/hour ~ 360 x AQ(sr) x detector efficiency/hour. (4.42)

A similar count rate is expected at E, = 855 MeV in the vicinity of 20°, where the cross
sections are of the same order. Keeping in mind the finite angular range over which the
cross sections are appreciably larger than 1074 c¢m?, the estimates made above suggest

that the number of counts could be high enough for considering the feasibility of doing
such experiment.
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4.4 Summary

We have made a theoretical study of the weak production of A and N*(1440) through the
charge changing reactions induced by electron beams of energies corresponding to Mainz
and TJNAF accelerators. We find that :

1. The differential cross section for the weak production of A resonance with electron
beams is of the order of 10739 ¢m?/sr, which is quite sizeable. At E, = 855 MeV,
the cross section for e~ p — Ay, is larger than the cross section for et p — AT+ 7,
while at E, = 4.0 GeV, the cross section for et p — A™* I, process is about a factor
two larger than the e~ p — A%v,. As we increase the energy from 855 to 4000 MeV
the peak in the cross section shifts to a higher angle from 20° to 40°.

2. There is a large angular region in which the differential cross sections are apprecia-
ble. This feature of the differential cross sections facilitates the observation of this
reaction at current electron accelerators, where large angle acceptance detectors are
planned to be used in electron scattering experiments. There is no need for a sharp
angular resolution in the vicinity of 0.1° as found earlier, based on a calculation
neglecting the decay width of the A resonance.

3. The production cross section for N*(1440) is an order of magnitude smaller than the
production cross section of the A and peaks at an angle well separated from the A
production peak region. This makes the identification of A through the measure-
ment of pions and protons quite clean for the invariant mass cut of W < 1.4 GeV.
There is no such contamination from N* resonances in the identification of A*+.

4. The production cross section is dominated by the three form factors Cz', C3 and C}
and an experimental measurement could discriminate between the various models
used for these form factors. If the electromagnetic production cross sections for the
A resonance are precise enough to fix the Cy and C} form factors, this will make
the determination of CZ' quite model independent.

5. There is a very strong energy dependence of the V-A interference terms in A produc-
tion process which can be used for determining the other form factors like Cj'(¢?) and
C7(¢%). An experimental information on these form factors is extremely important
for the theoretical models currently used for nucleon structure as well as for some
earlier analyses which use quite different values of C3' and Ci' for explaining the
experimental data on neutrino scattering in the intermediate energy region.
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Chapter 5

vd — u~ ATT n reaction and axial
vector N — A coupling

5.1 Introduction

In this chapter, we focus our attention on the axial vector coupling C:(0), whose ex-
traction from experiment might be useful to discriminate among different models and to
understand better the nature of the SU(6) symmetry breaking [107, 103]. We undertake
the determination of CZ(0) [122] using the data from the BNL experiment of Kitagaki et
al. [91] on the ratio of the differential cross sections for the inelastic vd — p~ A+t n and
the quasielastic vd — u~pp reactions. We also analyze the experimental results from the
ANL experiment of Radecky et al. [93], which has about three times more events than the
experiment of Barish et al. [95]. In the case of the inelastic reaction, all the experimental
analyses [95, 91, 93] exclude the region of very low |¢?| i.e. |¢?| < 0.1 GeV?. In this region,
the nuclear corrections due to the deuteron target have not been calculated. We take into
account the effect of deuteron structure in the present work. We also study the effect of
the width of the A resonance on the differential cross section, and its influence in the de-
termination of C'(0). We use an energy dependent P-wave width for the A while in earlier
analyses of this reaction [95, 91, 93], an energy dependent S-wave width was considered.
These effects were not taken into account in a similar analysis [103], where the low ¢* data
was used to obtain C:'(0) from the ratio of the differential cross section of the inelastic
reaction vd — p~ATn and the quasielastic reaction vd — p~pp. The analysis presented
here brings out in detail the various uncertainties involved in the extraction of CZ(0) from
the data when extrapolated to ¢? = 0.

In Sec. 5.2, we calculate the effects of deuteron structure and width of the A resonance
on the differential cross sections. We determine the value of C:(0) in Sec. 5.3, where
the possibility of extracting it from electron scattering experiments is also discussed. Sec-
tion 5.4 provides a summary of the results.



94 Chapter 5. vd — p~ A™* n reaction and axial vector N — A coupling

5.2 Differential cross section

5.2.1 Differential cross section for vd — p~ A**tn

Let us first consider the case of the free reaction v, (k) + p(p) = p=(p') + ATH(F'), i.e. in
absence of nuclear effects. The differential cross section is written as

d*o 1 M 1
dg> 12872 Mp (s — M?

CA(W)
(W — Ma)? +TA(W) /4

)2G2 cos” 0, / k" Log T (5.1)
where s = (p+k)?; the other ingredients have been described in detail in the previous chap-
ter (Sec. 4.2). The expressions given there can be directly translated here, keeping in mind
that in Eq. (4.8) for the leptonic tensor L,g, k now refers to the initial neutrino and &' to the
final muon. As for the N — A transition vector and axial vector form factors C}*(i = 3—6)
is concerned, we take the phenomenological set consisting of Eqs. (4.16),(4.17),(4.22)-(4.24)

Effect of Deuteron Structure

When the reaction takes place in the deuteron, i.e. v(k)+d(p) — p= (k') +ATT(p}) +n(p)),
the differential cross section in the impulse approximation is calculated to be

d*o 1 M 5
= G cos 0, | dk"LogJ*’
dg? 12872 Ma(s — M2)2 O / g

(27?)32)/20 (W _ MA)2 + FQA(W)/4 (:52(|p12|) )

where M, is the deuteron mass and @(|p5|) is the Fourier transform of the deuteron radial
wave function, normalized as in Eq. (3.5). This expression is derived assuming the neutron
to be spectator, and neglecting meson exchange currents and final state interactions. The
contribution of these effects to the differential cross section do/dq* has been studied earlier
for the case of the quasielastic reaction [123] and found to be small in the kinematical re-
gion considered here. Using Eq. (5.2), we calculate the differential cross section for various
deuteron wave functions corresponding to Hulthen [87], Paris [66] and Bonn [30] potentials,
and compare them with the differential cross section obtained in the free case, calculated
from Eq. (5.1).

The results for do/dg* as a function of Q* = —¢? for the incident neutrino energy
E, = 1.6 GeV, which is the mean energy of the BNL v, beam [92], are shown in Fig. 5.1.
We see that deuteron effects are small, not exceeding 8 % even at low Q2 i.e. Q% < 0.1 GeVZ.
This is the region where they give a large reduction in the quasielastic reaction vd — p~pp
[123]. The different behavior of deuteron effects in these two reactions is due to the nature
of the vector current contribution. In the inelastic reaction, the vector part vanishes for
proton as well as for deuteron targets in the limit of Q? — 0, and the only contribution



5.2 Differential cross section 95

kyu+d7>A+++M7+n LI B — T T T i

1 - RRRENN

L E, = 1.6 GeV T s 1

—

do/dq® (107 cm®/Gev?)
o
)

Q® (GeV®)

Figure 5.1: Differential cross section for weak charged current neutrino production of the A
resonance on the deuteron. In the short-dashed line, deuteron effects are neglected while
dotted, long-dashed and solid lines include these effect using Hulthen, Bonn and Paris
deuteron wave functions respectively.

comes from the axial vector piece, which is only slightly affected by the deuteron struc-
ture. On the other hand, in the quasielastic reaction, while both vector and axial vector
currents contribute for the nucleon case, the vector piece is completely suppressed in the
deuteron. Therefore, the only contribution left in the case of the deuteron is from the
axial vector current with an effective strength, which is strongly reduced due to symmetry
considerations of the two nucleons in the final state [123]. In the range of Q? > 0.1 GeV?
the deuteron effects are found to be quite small on the differential cross section do/dg? for
both inelastic and quasielastic reactions.

We compare the deuteron structure effects in both reactions by computing the ratio
R(Q?) defined as

(do/dq*) (vd — p~AtTn)
(do/dg?) (vd — p~pp)

and plotting it as a function of Q2. In calculating R(Q?), we use the deuteron wave function
obtained from the Paris potential. The differential cross sections for the quasielastic reac-
tion is taken from Singh and Arenhoevel [123] for the case where meson exchange currents
and final state interaction effects are neglected, in order to be consistent with our present
calculation for the inelastic reaction. In Fig. 5.2, we show R(Q?) for the range of low Q?,

R(Q*) =

(5.3)
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Figure 5.2: Ratio of A production and quasielastic reactions differential cross sections with
(solid line) and without (dashed line) deuteron effects.

where deuteron effects are known to be important in the case of quasielastic reaction. We
also show in this figure the ratio for the equivalent reactions on the free nucleon, given by

(do/dq®) (vp — p~ A+
(do/dg?) (vn — pp) (54)

such a ratio is not directly measurable because of the absence of neutron targets. We see
that Ry(Q?) remains approximately constant for the range of Q? considered here. For val-
ues of Q? < 0.05 GeV?, the ratio increases; this is mainly due to the decrease in the cross
sections of the quasielastic reaction. In the region of 0.05 < Q? < 0.10 GeV?, the compar-
ison between R and R, shows that deuteron effects are always less than 7% according to
our calculation. At Q% > 0.1 GeV?, the region measured experimentally, R(Q?) ~ Ry(Q?);
this implies that one can treat the data on R(Q?) at @* > 0.1 GeV? obtained in Ref. [91],
as if they were data on Ry(Q?). This fact will be used in Sec. 5.3 to extract the coupling
C240).

In the region of very low Q%, the nonzero muon mass may play a role. In order to see its
effect, we have evaluated the differential cross section do/dg* from Eq. (5.2), keeping the
muon mass term and the induced pseudoscalar form factor Cg'(Q?). We show our results
in Fig. 5.3 for the case of the Paris wave function. The effect of the nonzero muon mass is
important in the region of very low Q% and is noticed in a fast decrease of the differential

cross section as Q* decreases and reaches a value Q% | below which the reaction is kine-

Ry(Q%) =
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Figure 5.3: Effect of the muon mass on the differential cross section for the vd — p~At*tn
reaction. In the upper line, the muon mass is neglected while it is considered in the lower
one. Both curves include deuteron effects using the Paris parametrization of the deuteron
wave function.

matically not allowed. In fact, in an earlier analysis of the Brookhaven experiment [92],
this trend is clearly visible (see Fig. 11 of Ref. [92]) but, as no cross sections are quoted in
this experiment, a direct comparison with our present theoretical results can not be made.

Finally, to conclude this section on the effect of deuteron structure in the reaction vd —
p~Attn, we would like to elaborate and extend the comments made by Kitagaki et al.
[91] about these effects and state that, at E, = 1.6 GeV:

e The effects of deuteron structure are small for all Q?, even for Q? < 0.1 GeV?, not
exceeding 10 %.

e There is an additional reduction in the cross sections in the region of Q? ~ 0.05 GeV?
due to the nonzero muon mass, which is about 5 %, and could be larger as Q? de-
creases further.

5.2.2 Effect of the width of A resonance

The analysis of Schreiner and von Hippel [110] uses an S-wave width for the A resonance,
which has also been used in the ANL and BNL experiments [95, 91, 93]. The recent pa-
per of Ref. [103], dealing with the N — A couplings and the extraction of CZ(0), uses an
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expression for the differential cross section at Q% = 0, which neglects the width of the A
resonance. In this situation, it seems worthwhile to examine the effect of the width of the
A resonance. Therefore, we study the sensitivity of the differential cross section for the
process vp — p~ATT to the width of the A resonance and its energy dependence. In order
to do this, we evaluate the differential cross section given in Eq. (5.1) with

e P-wave A resonance width given in Eq. (1.59)

e S-wave A resonance width given by [110]

e (W)

=" :
0Qcm(MA)

(5.5)
with Ty = 120 MeV [18].

e narrow resonance limit i.e. I' — 0, in which the differential cross section is given by

do 1 1
— = G? c0s® 0, Loz J*" 5.6
d® ~ 647 (s — M)z~ (0% ekt (5.6)

obtained from Eq. (5.1) by integrating over k" after taking the limit Ty — 0.

In Fig. 5.4, we present the results of R(Q?) for free nucleon targets in the three cases
discussed above. We see here that the inclusion of the width gives a considerable reduction
of the cross section, but the detailed form of its energy dependence is not very important
when an invariant mass of W < W,,; = 1.4 GeV is used. We have also found that the
uncertainties in the width of about 10 — 15 MeV [18] at the resonance energy do not lead
to any substantial change in the cross section.

5.3 Axial vector N — A coupling

5.3.1 Neutrino scattering experiments

In this section, we evaluate the value of C:'(0) using the data of Kitagaki et al. [91] on
R(Q?), and use it later to describe the data of Radecky et al. [93] for the differential cross
section do/dg*.

In the limit Q% — 0, the cross sections required to evaluate Ry(0) are

d |
d—;(q2 = 0) = (F} + Fy)5 -G cos” 0, (5.7)
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Figure 5.4: Effect of the A width in R(Q?): the solid line corresponds to a P-wave width,
the dash-dotted line, to an S-wave width and the dashed line, to the case of zero width
resonance. Deuteron effects have been neglected in all curves.

for the quasielastic reaction (details of the derivation of this formula and the values of Fjy,
Fyy are given in Appendix G), and

do V(M + Ma)*(s — M)

2 _ _ A 2 1 2 o2
d—q?(q =0) = [C’5 (0)] 247‘(’2G cos” 0, 5= MO
(5.8)
/0
kmaz o LA (W)
X dk 5 5
KO (W — Ma)? +TA(W)/4
for the inelastic one; k%, and k/°  are given by
— W2 — (M )2
kP = max 5= Deut o), kP = s = (M + ma) : (5.9)
2y/5 2/

This result depends only on the coupling constant CZ(0), at variance with the result of
Ref. [103], but in agreement with the result of Ref. [95]; it also agrees with Albright and
Liu [124] (Eq. (3.15)) when their Eq. (2.12) is used along with the conversion table of the
various definitions for the transition form factors given by Llewellyn Smith [111]. In an
expansion of Ry in powers of Q% the first term that depends on the axial mass and other
couplings is the one proportional to Q2. Thus, data at low enough Q? would allow a model
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independent extraction of CZ(0). The experimental data of Ref. [92] begin at quite low
Q? (Q* ~ 0.1 GeV?). In the region where the first points lie, we obtain an approximately
constant value for Ry(Q?) with the choice of parameters given in Eqs. (4.16),(4.17),(4.22)-
(4.24), as can be seen in Fig. 5.2; this behavior remains the same for moderate changes of
the form factors. For this reason, we can use a constant value to extrapolate the Ry data
to Q? = 0.

Equating the ratio of these two cross sections given in Eqgs. (5.7) and (5.8) i.e. Ry(Q* =
0) to the extrapolated experimental value of 0.55+0.05, obtained as an average of the data
on R(Q?) for R(Q?) > 0.1 GeV? [91] (that is, in the region where we know that R ~ Ry).
We obtain

C& =1.22+0.06. (5.10)

Eq. (5.8) could also be directly used to extract C:'(0) from data on the vp — p~A*+F
reaction. However, the uncertainties, both statistical and related to the neutrino flux, in
the existing data do not allow for a better determination of the coupling constants. The
quoted error comes exclusively from experiment. It does not include an estimation of
the theoretical uncertainties implicit in our approximations, such as the neglect of meson
exchange currents and final state interactions, that were discussed in Sec. 5.2.1.

In Table 5.1, we compare the values of this coupling constant with the theoretical values
obtained in various models. With the exception of the quark model treatment of Liu et
al. [107], all the quark models underestimate the value of C:'(0) when compared to the
central values quoted from experimental analyses. On the other hand, it is in good agree-
ment with the prediction of PCAC. It is expected that the various extensions of the quark
models currently proposed to explain the quadrupole moment of A, and the /M, ratio
measured in A photoproduction and electroproduction will be applied to the problem of
explaining C(0) and other N — A couplings in these models.

Using our value of C#'(0), at @? = 0 and its @Q? behavior, together with other form
factors as given in Eqgs. (4.16), (4.17), (4.22)-(4.24), we calculate the flux averaged differen-
tial cross section for the neutrino energy spectrum of the Argonne experiment of Radecky
et al. [93]. The v, spectrum at Argonne was calculated in Ref. [130]; it peaks around

Table 5.1: The numerical values of axial N — A coupling CZ' in various quark model and
empirical approaches. The earlier, prior to 1973, evaluations of these couplings in these
approaches have been summarized by Schreiner and von Hippel [110] and Llewellyn Smith
[111].

| | G |
Quark Model approaches | 0.97 [125, 126], 0.83 [127], 1.17 [107], 1.06 [128], 0.87 [103]
Empirical approaches 1.1540.23 [95], 1.394+0.14 [103], 1.1+0.2 [129], 1.22+0.06“

%Present result.
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E, = 0.5 GeV and has a tail extending to 6 GeV. The results are presented in Fig. 5.5. We
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Figure 5.5: Differential cross section for weak charged current neutrino production of A
on deuteron, averaged over the spectrum of the ANL experiment, compared to the exper-
imental results given in Ref. [93]. The solid curve includes both nonzero muon mass and
deuteron effects. The upper dashed curve neglects muon mass and deuteron effects. The
lower dashed curve neglects only deuteron effects.

see that the inclusion of deuteron and mass effects lead to a better description of the data.
It is to be emphasized that a small reduction in the differential cross section due to these
effects is quite important in bringing out a good agreement with the experimental data,
specially in the low ¢? region. The proper inclusion of the neutrino spectrum appears also
to be important, in contrast to the case where a ratio is considered.

5.3.2 Electron scattering experiments

It is possible to get information about the axial vector coupling C:(0) from the obser-
vation of the parity violating asymmetry in the polarized electron scattering experiments
performed in the A region. The feasibility of doing such experiments was discussed in the
past by many authors [98], but it seems now possible to perform them at high intensity
electron accelerators [97, 99, 100]. In the case of the neutral current reaction e p — e~ A™
with polarized electrons the asymmetry A(Q?) is defined as
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(do/dq?®) (+1) — (do/dg*) (1)

do/dg*(+1) + do/dg*(—1)
where do/dq?()) is the differential cross section for an electron with helicity A. It has been
calculated to be [100]

AQ) = (5.11)

B G
221«

AQ*) = Q7| [(1 — 2sin® fyy)

A MZ 2 MZ A
+ (1 — 4sin? QW)(%V (1 + =4 +2§\242 g—;;) P(Q?, s)] (5.12)

4+ mnon — resonant contribution,

where P(Q?, s) is a purely kinematical factor.

In principle, one can determine the value of CZ/Cy from asymmetry measurements by
selecting the kinematics where non-resonant contributions are negligible. However, as we
see from Eq. (5.12), the hadronic axial vector current contribution containing C%' is multi-
plied by a factor (1 — 4sin? fy), which reduces the sensitivity of the asymmetry A(Q?) to
this term. This makes the extraction of CZ' from a measurement of the asymmetry very
difficult. Even in the favorable kinematical region of 0.5 < E, < 1 GeV and Q? < 1.0
GeV?, this term contributes only (10-20) %, as emphasized by Mukhopadhyay et al. [100].

There is also a possibility of observing the charged current reaction e~ p — A%y with
unpolarized electrons through the detection of the protons and pions from the decay of the
A resonance [105], as discussed in the previous chapter. At an incident electron energy
of 4 GeV, the differential cross section do/dg* in the forward direction near Q* = 0 is
estimated to be 2.107° ¢cm?/GeV?. For an incident intensity of about 2. 10**cm? /sec [103]
and Q? bin of 0.05 GeV?, one would expect 72 events per hour for the production of A°,
assuming 100% efficiency of the detector. One third of these A’s will produce negatively
charged pions and protons, which can be easily observed. Since in the region of Q2 ~ 0, C:!
gives the dominant contribution, its determination from the weak charged current experi-
ment of A production seems feasible. Note, however, that in the analysis of this process, a
theoretical study of the non-resonant background is required to extract the resonant con-
tribution from the data, which would lead to further uncertainties. In the case discussed
in Sec. 5.3 (A*" production in deuterium), the non-resonant background was found to be
around 1 %, whereas for other isospin channels, it was found to be considerably larger [91].

5.3.3 Pion photoproduction and electroproduction experiments

It is well known that, in the threshold region of pion photoproduction and electro produc-
tion on the nucleon, the matrix element of these processes in the soft pion limit is related
with the nucleonic matrix element of the axial vector current using the methods of current
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algebra and PCAC. This relation has been exploited to obtain information about the axial
vector form factor of the nucleon [131]. In a similar way, threshold pion production in the
processes e~ p — e~ AT 7% and yp — AT 77 is related, in the soft pion limit, with the
N — A transition matrix element of the axial vector current. The axial vector transition
form factors can, in principle, be determined from these processes in the limit of soft pions.
Such attempts have been made in the past and they yield C2'(0) = 1.1 £ 0.2 [129].

However, in this case, the treatment of higher resonances and their effective couplings
used for evaluating the matrix elements of the time ordered product of the vector and ax-
ial vector current operators involve many approximations, which need further justification.
Recently, there has been some progress in calculating the contribution of higher resonances
to the production of two pions in the photo and electroproduction processes using effective
Lagrangians [45, 132]. It should be possible to isolate the dominant contributions from
higher order resonances, which are relevant for the Azn production in the soft pion limit.
This will help to reduce the theoretical uncertainties in the application of the methods of
PCAC and current algebra to the processes where a A resonance is produced. In addition,
when dealing with the A resonance, its width has to be properly taken into account as
remarked by Bartl et al. [129], and also shown by us in the weak charged current produc-
tion of the A resonance. The analysis of Ref. [129] uses the older data which suffers from
poor statistics. When the results of a recent experiment proposed at TINAF [133] become
available in near future, it will be possible to get precise information about the axial vector
form factor and, in particular, its value at ¢? = 0.

5.4 Summary

We have calculated the effect of deuteron structure and width of the A resonance in the
differential cross section for the reaction vd — p~ A*™n and found that these effects are
small, but important in order to explain the experimental results at low ¢, where they
were initially expected to be important. Furthermore, in the region of very low ¢2, the
muon mass, which is usually neglected in the calculations, also reduces the cross section.

The effect of the width of the A resonance on the cross section is important and plays
a crucial role in bringing out good agreement with the experimental data. The detailed
shape and 10-15 % uncertainty in the width of the resonance do not affect the cross sections
very much.

The axial vector N — A coupling CZ' is extracted from the BNL data on vd — pu~A*+n,
incorporating the effect of the deuteron structure and the width of the A resonance. This
value of CZ(0) is found to be larger than the values predicted in most of the quark models
and is consistent with the prediction of PCAC and Adler’s model.

Finally, we have discussed the possibility of determining this coupling from electron
scattering experiments, and find that the weak charged current electroproduction of the A
resonance is an interesting alternative to the asymmetry measurements.
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Chapter 6

Conclusions and outlook

Part I

We have developed the first microscopic model for the reaction NN — N Nmw, meant to
work in a wide range of energies, from threshold (7, = 600 MeV) up to 7, = 1400 MeV. It
includes the leading order terms of the effective pion-pion and pion -nucleon Lagrangians,
as well as the explicit inclusion of the low lying resonances A(1232) and N*(1440). The
phenomenological information presently available, specially the analyses of nucleon-nucleon
and pion nucleon elastic and inelastic reactions, has been used in order to obtain the re-
quired coupling constants and off-shell form factors. Contrary to naive expectations, the
Roper resonance plays a prominent role in this reaction through its two-pion decay channels
N* — Ar and N* — N(7m)L=0 . The N* — N(nm)L=0  decay, in spite of its small
relative strength (5-10 % branching ratio), is very important because its contribution to
the amplitude does not vanish at threshold. A similar feature has been already observed
in the (7, 77m) reactions in nucleons and nuclei. The NN — NN* transition has been
found to be dominated by an isoscalar potential, parametrized in terms of an effective o
exchange, whose strength was extracted in a recent analysis of the («, ') reaction on a
proton target. The isovector part is diminished because of the short range correlations.
Therefore, in those channels where the outgoing pions can be in isospin zero (77~ and
707%), the isoscalar excitation of the N*(1440) and its subsequent decay into N(7m)5=0 =
gives the dominant contribution to double-pion production below 7}, = 1 GeV. The mech-
anism with N* — Arx and the one with two A’s grow faster with the energy and become
important at higher energies. Finally, the double-A amplitude becomes dominant above
1.3 GeV; the presence of the A at T, ~ 1.4 GeV is clearly seen in the 7N invariant mass
distributions. In those channels where the pions cannot be in a T=0 state, the strength is
appreciably smaller and distributed between different mechanisms. Further experimental
information about this reaction at low energies and for most of the isospin channels will
become available from CELSIUS in the near future.

In order to be able to extract relevant information about the dynamics of double-pion
production in NN collisions at low energies, the role of the final state interaction should
be properly understood. We have studied the NN FSI in a simplified version of the model
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for the reaction channel pp — pprt7~ consisting only of the Roper isoscalar excitation
and its decay N* — N(mm)L=0 - this approximation is accurate below 900 MeV, which is
the region where FSI should be important. FSI is implemented by introducing the strong
part of the 1Sy proton-proton wave function in the amplitude. The wave function has been
obtained using a separable potential, whose parameters were obtained from a fit to the
phase shifts. This approach has the advantage that one can obtain an analytic expression
for the wave function, which simplifies appreciably the numerical calculations. FSI is found
to cause a strong enhancement of the cross section, concentrated mainly in the region of
low pp invariant masses. This is in agreement with the result obtained with a simplified
approach based on the multiplication of the free production amplitude by the inverse of the
Jost function for the pp scattering, calculated using the effective range approximation. We
have also estimated the effect of Coulomb repulsion between the protons and found that
it can be appreciable at low pp invariant masses; therefore, a more accurate calculation
including this effect is required.

Next, the reaction np — d(n7)° has been considered. This process received special
attention in the past since it was the simplest reaction where the ABC was observed.
In spite of the interest, many features of energy and angular behaviors observed remain
unexplained. Our model is a simplified version of the one for the free reaction including
the relevant resonance contributions: N* and double-A excitation. The inclusion of the
N* contribution improves considerably the agreement in the total cross sections with re-
spect to other models that do not include it, specially in the low energy region, where
we are also able to describe the bumps observed at high (77) masses in the deuteron
momentum spectra. This structure appears as a consequence of the interference of the
dominant N* — N(7m)%=0  and the smaller in size N* — Ax one. The contribution of
the AA mechanism is considerably reduced due to the short range correlations. At higher
energies, we see the appearance of the ABC peaks, but the model is not accurate in the
description of the deuteron spectra and clearly underestimates them at high angles. Fur-
ther understanding of this reaction would require a better knowledge of the NN — NN*,
NN — AA transition potentials, mainly its short range part, the deuteron wave function
at high momentum transfer and also a relativistic treatment.

The present findings will be useful to understand the low energy behavior of other
double pion production reactions. In the case of dd — aX, recent measurements close to
threshold obtain structureless data and cross sections 20 times larger than those obtained
with a model in which every pion is independently produced, and which is successful in the
ABC region. The Roper excitation mechanisms could be responsible for the strength at
low energies. On the other side, the reaction pd — 3Hernr is being currently investigated
experimentally at COSY and CELSIUS. The preliminary results show an enhancement at
high (7, 7) masses at T, ~ 500 MeV, which is not yet understood.

Part 11

We have studied the excitation of the A resonance via charge changing weak reactions in-
duced by electrons (e~ p — A%v, and e™ p — ATT,), making use of the present available
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information on the N — A vector and axial vector transition form factors in a relativistic
calculation and including a proper treatment of the A width. At the typical energies of
TJINAF or MAMI, the differential cross section are of the order of 1073% ¢m?/sr, which
are high enough to consider the possibility of measuring then. In addition, the differential
cross sections span over a large angular region; therefore, the angular resolution in the
vicinity of 0.1° predicted by a calculation that neglected the A width in the kinematics is
not required. Among the axial form factors, the large contributions to the cross section
comes from CZ. For this reason, relaying on a precise enough determination of CY and
CY from electromagnetic experiments, C'(¢?) and , in particular, the axial vector coupling
C2(0) could be obtained in a quite model independent way. Such a determination would
be valuable in order to reach a better understanding of the SU(6) symmetry breaking
pattern. We have also studied the excitation of the next resonance N*(1440) and found
that its differential cross section is small and peaks in a region well off the peak of A°
production; this implies that the contamination of the Roper resonance in the suggested
experiment is negligible.

Finally, we have tried to achieve the best possible determination of CZ'(0) using the
available data; we have extracted it from the BNL data on the ratio of A production events
upon quasielastic events measured with a wide band neutrino beam with a mean energy
of < E, >= 1.6 GeV and a deuterium target. The effects of the deuteron structure in
the ¢? dependence of the ratio are found to be important at low ¢ but negligible in the
region where the data were taken and, for this reason, are not taken into account in our
determination. On the contrary, the proper inclusion of the A width causes a 30 % reduc-
tion of the cross section and cannot be neglected in the extraction of C¢'(0). The value of
CZ(0) is in agreement with the prediction of PCAC, which is higher than the values given
by most quark model calculations. In addition, we have calculated the ¢? distribution for
the reaction v, d — A** ;= n averaged over the Argonne v, spectrum, and found that the
inclusion of deuteron effects and the muon mass leads to an appreciable improvement in
the agreement with the data, specially at low ¢2.
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Appendix A

Monte Carlo Quadrature

There are many numerical methods for the computation of integrals but, when the integra-
tion domain is complicated and/or there are many variables involved, Monte Carlo method
is one of the most efficient. A simple and straightforward algorithm for Monte Carlo inte-
gration is the so called Crude Monte Carlo [134]. It is a direct application of the central
limit theorem. In fact, let H be a hypercube of volume V3 and f(z) with x € D C H, the
function to be integrated ( f is obviously set to zero in H — D ). Then

a—/f da:—VH/f ) Us(a (A1)

which may be interpreted as the expectation value (f) with respect to the uniform distri-
bution

Un(x) :{ 1/3/7* | x‘;ff . (A.2)

multiplied by the volume. According to the central limit theorem

o=Vy(f) :hrn—X:fxZ (A.3)

Nooco N

and the variance is given by

§2 — (VTH)Q %Zﬁ(%) _ (% Zf(@) . (A.4)

This procedure can be directly used to evaluate the phase space integrals leading to
total cross section. It can also be easily adapted to the calculation of differential cross
sections. In order to illustrate this, let us assume that we want to obtain the observable
do/dx. We know that

/ d:v— ~ ZAazb Ar, (A.5)
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where {b} is a partition of the interval D. For a large enough value of N, using Eq. (A.3)
one obtains

V; A
az%zb:Zf(xi)zzb:Abe—; (A.6)

1€b

and hence

Ao 1V

This formula is more exact for larger values of N and smaller Az,. In practice, both N
and Ax; are chosen to correspond to the binning and the statistics of the experiment for
the observable under analysis.
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Non-relativistic baryon propagators

The nucleon

The nucleon propagator is not required for our calculations, but, in order to introduce
some details of the formalism, and also for the sake of completeness, we shall consider it
here. The nucleon propagator in momentum space can be written as a sum of positive and
negative states

1 1 M 1 M
= — A (E,p) ———FF=A_(E,— B.1
p—M p"—FE+ieFE +(E,p) P+ E—ieFE (B, =p) (B-1)
with £ = 1/p? + M? and
_ +M
L= S = L
(B.2)

_ p—M
Alp)= =2, 090, s) = — 557
The second term in the sum can be neglected with respect to the first. For instance, in
the vicinity of the pole (p° = M, p small), p® — E ~ p?/(2M), while p° + E gives a much
larger value of about 2M. If we now write A, in our usual non-relativistic approximation
(neglecting terms of order |p|/M), the result is

A+(E7p) = dmg(l,l,0,0) (B3)

i.e., the unity matrix for two component spinors. Hence, the non-relativistic nucleon prop-
agator can be written as

B 1 M
" —E+ieE
Needless to say that the separation of Eq. (B.1) is frame-dependent. In the vicinity of the
pole the result of Eq. (B.4) can strongly differ from one reference frame to another, at

least for large relative velocities of the frames. When p® > |p|, there is an alternative way
of writing the propagator, namely [135]

Dx(p) (B.4)
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11 p+W 1 p-Ww
p—M 2WW —M+ic 2WW+ M —ie’

(B.5)

with W = y/p?. This separation coincides with the one of Eq. (B.1) in the nucleon rest
frame. As in the previous case, the second term can be neglected. If one also neglects
|p|/W, the propagator reads

1
W =M +ie’

This formula is accurate in the vicinity of the pole independently of the reference frame.

DN(p) (B-6)

The Roper resonance

The discussion above applies to the case of the Roper resonance propagator with no mod-
ification but the mass. The major difference arises from the fact that the N*(1440) has a
width around 350 MeV, which cannot be ignored in the calculations. We then modify the
propagator following the usual procedure to account for the width

1

Dy-(p) = . : (B.7)
W — M* +i3T*(p)
Delta resonance
Let us recall the free Lagrangian for the massive spin 3/2 field.
L= FA,0" (B.8)
with
AMV = (_Z@ + MA)gMV - ZA(7M6V + /Yuau)
i
—5(3A2 + 24 + 1)7,87, — MA(3A* + 3A + 1)y, (B.9)

where A is an arbitrary parameter subject to the restriction A # —1/2. Since the physical
properties of the free field are independent of the parameter A, one can make a particular
choice and take A = —1. This yields to the expression most often found in literature for
the spin 3/2 propagator [36]

1 1 2PuPy | PuYv — PvY
Dy(p)=———— 9w — =V — —— d Y. B.10
wlP) = =530 <g" 30 T3 T 30 (B-10)
The factor m can be decomposed as done in Eq. (B.5). Neglecting the second term

one obtains
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1 A
Duw(p) = 35— e dw (B.11)
with . . 5
A Yo + PuPv PuYv — PvVpu
ANy =— v— =Vu Yy — . B.12
In the non-relativistic limit, AW is reduced to
N 1
Aij = 6ij — gO'Z'O'j
2 v
== g (Si]’ - 5 €ijk Ok (B13)

which gives precisely the closure sum for the 1/2 — 3/2 transition operator [Eq. (1.58)].
That is to say

D) = S Sil19) s1]

W — MA + €
Provided that the operators S, ST are already included in the phenomenological Lagrangians
of Egs. (1.56), (1.63) we drop them from our expression of the propagator. One shall also
include the width of the resonance as in the case of the N*. Therefore, the non-relativistic
A propagator takes the following final form

(B.14)

Palr) =y = ﬁisﬁz%;r'(p) | (B.15)
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Appendix C

Amplitudes for the pp — ppr™n™
channel

In this channel, the total double-pion production amplitude can be expressed as

M(T) — Mr3r4r17‘2(p37p47p17p2) - M(l A 2) + M(3 A 47 I < 2) - M(3 A 4) (Cl)

where the first term in the sum is given below for all mechanisms included in the calcula-
tion. The subindex stands for the number of the diagrams in Fig. 1.2

M1+2 -

1 (fNNw)2 { (091)rsr, (0(3d1 + G2))rars

i_
2 2 2
6f7r Mz ay —mz

(aql)rsrl (qu)r47‘2
T E—mZ @ —m? 2(q1q2) + 4(psps) + 3m2] ¢ Fr(q1) Fr(g2) (C.2)

1 (q10 + 2p50)5r3r1 (QIO + 2]950)57«41«2

My = 1§
’ 16f2 (q1 + ps)? — m2

(C.3)

f 7% m72r My My CI22

2 0.0 ~
Myys = —7;2% (Cf + D5 Do Cj) {fNN”i {(Uqﬁrsh(aqz)mrz

X (Vilaz) = Vi(a2)) + Vig2) (@) rsr, (0)rars]

)
+9NN09N*NU%F3(Q2)}
s — My

X [Dn+(ps + ps + p3) + Dn+(ps + ps — 1)] (C.4)
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Mgz = 0 (not allowed by isospin symmetry) (C.5)

MS _ ilﬁgN*Aw {fNNw f |:(0-q2)m7“1(0-q2)7"47“2 (V[,/(QZ)_V],’(QZ))

9m7r my My My Q22

6m7' 67‘ T
+V7(@2) ()i, (0)rary ] + gNNoJN*No @ i 7,;22 Fg(qQ)}
2 o

X {2(P5P6)0rym [Da(ps + p3) +3Da(ps + p3)] — i(o[Ps X Pe))rsm

X [Da(ps + p3) — 3Da(ps + p3)]} Dy (ps + ps + p3) (C.6)

N
My = i<f > fNN’rf—ADA(p5+p6+p3)

mg Mz My
L [ (0d2)rr (.
X |:§ {(qz% [5Z(q2 [p5p6])6r3m - (p5p6)(UQ2),«3,«1

+4(p5q2)(0'pﬁ)r3r1 - (pﬁ(l2)(o-p5)7"37"1] (Vll,(‘D) - VYI“(qQ))

+ [57:57“37"1 (U[p5 X pﬁ])mrz - (p5p6)(0-)7"37"1 (0’),«4,«2

+4(0-p6)r3r1 (o-p5)r4r2 - (o-p5)r3r1 (apﬁ)mrz] V],’(QZ) } DA (p5 + p3)

—é { Ps < pa} Da(ps + p3) ] (C.7)

. 1 f* ? 1 (Q20 + 2p60)5r T
— - 472 2 57- ,
Mo = g <m> {3 (4 + o )? — g (2P Pe))on

—i(O' [p5 X (q2 + pﬁ)])rarl} DA(p5 +p3)

(QQO + 2p50)6r T2
e eouas+ Do)

—i(o [Pe X (2 + P5)])rar } Da(ps + p3) (C.8)
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1N (@ + 206°)6rr,
+i(0' [p5 X (q2 + pﬁ)])rsh} DA(pl - p5)
1 (2" + 2p5°)61rs
et (ol P
+i(o [Pe X (A2 + Ps)])rsr } Da(pr — ps) (C.9)
M _.11<f*>4< 1 ) 5 .
2 = Zgg . m{ (P6(Ps + d2))0rir, — (0 [P6 X (A2 + P6)])rirs }

x {2(ps(P6 + A2))drsr, — (0 [Ps X (A2 + P6)])rars } (Vi (g2 +p6) — V(g2 + ps))

+ {(p5p6)(_25?47"1 67"37"2 + 557“37“157"47"2) + (a’p5),«4,«2 (Upﬁ)T3T1
+2i(0' [p5 X pﬁ])mrzérsm - 2i(0' [p5 X p6])r3r15r4rz} VT,(QQ + p6) )

X D (ps4 + ps)Da(ps + ps) (C.10)

My 2+ Ps

11/ 7\ 1 ,
M = i3 (L) (s (2(palba-+ aa))ar + il o ¢ (0 + P}
X {2(ps(P6 + 92))0ryr, +i(o [Ps X (A2 + P6)])rsr } (V1.(¢2 + P6) — V(g2 + ps))
+ {(p5p6)(_25r4r1 67‘37‘2 + 561"31“151"47‘2) + (Up5)T4T2 (a-p6)7"37‘1
_22(0- [p5 X pﬁ])r4r25r3r1 + 22(0- [p5 X pﬁ])r3r15r4r2} le“(‘h + pﬁ) )

XDA(M _p6)DA(p1 —p5) (C-H)

! 1 _
M, = Z§§<mﬁ> (m{z(p6<pﬁ+q2>>am+z(a[p6><(q2+ps>1>m}

x {2(Ps(Pe + 42))0rsr, — i(0 [Ps X (d2 + P6)])rsr } (Vi(@2 +P6) — Vi (g2 + p6))

+ {(p5p6)(_25?47"1 67"37"2 + 357“37“157"47"2) - (a’p5),«4,«2 (o-pﬁ)reﬁ"l
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—2i(0' [p5 X pﬁ])mrzérsm - 2i(0' [p5 X p6])7‘37"167‘47"2} VTI(QQ "‘pﬁ) )

X Da(p2 — ps)Da(ps + ps) (C.12)

RN 1 . y
Mis = ik <m> (mmpﬁ(pﬁqg)ém—z(a[pe (a2 + D6))rars}

x {2(Ps(Ps + A2))0rsry + (0 [P5 X (A2 + P6)])rsr } (VI (G2 + ps) — V7(g2 + ps))

+{(Ps5P6)(—20r4r, Orgrs + 30150, Or4rs) — (OP5)rsrs (OP6)rsry
+2i(0 [P5 X Pel)raradrar, +2i(0 [Ps X Pel)raririrs} Via2 + o) )

XDa(pa + ps) Da(p1 — ps) (C.13)

In these expressions py, p» (p = (p°, p)) are the momenta of the incoming nucleons while
p3, ps are the momenta of the outgoing ones; ps, pg are 7~ and 7+ momenta respectively
and ¢ (2) denote psuy — pi(2). Here r3,74,71,79,m = (1,2) are spin indices and a sum in m
is understood in Eq. (C.6).
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Integrals for the NN wave function

The integrals

T,(k) = M/(dq 9i(2)95(9)

27r)3k2—q2+ie

M 29i(0)9;(q) _ .7 o
appear in the solution of the Schroedinger equation for the scattering problem using the
separable potential of Ref. [68] (see Sec. 2.3). They can be evaluated analytically.

Since ¢? is a sum of three terms

1 24 2 2
) P N |\ S || S—
(¢®>+ Bt) (% + 0575) (2 + 52)(¢? + 52%)
then
In=TIf + I + If (D.2)
where
]_ M ) /32 o k2
= mwen) U D.3
! Ar (k2 +ﬂ%1) {Z TN } (D.3)
1 2M 6 4 1.2 1 2 1.4 6
I{JI = —_7172 ZkS + 612 + 5612]{] —+ 5512]{; 5k (D4)
dm (k2 + fip)* 16012
! Q’YIM -7.3 512 2 2
n = & K4+ == 3k
" am (K2 + B7) (K2 + 57,)° { + = B+ 3K7)
B2 + 2511 ) ) 2}
Y A : D.5
2(511 + 512)2( Bia) (D.5)
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Analogously,

7’ 7q*

@+ B @+ a) (@ + B+ B)?

91((1)92((1)

72614 4 7172q6
(% + B7)(@? + 55, (¢*+ BL)*(¢* + B5,)?

and therefore

with

a
I12

b
Zl2

C
I12

Tio =TIy + IV + I, + I}, (D.6)

1 521 )
A (k2 + B71)( k2 + 33,)? { (521 +3K°)

Bo1 + 20511 9

(511 + B1)? (k" + 521 (D.7)
b nM 2 12y7.4

A (k% + B75)% (K2 + 35,)? { 512 2Bz + fa1)3 [B51 = K*)K" B21 (3612 + )
RO+ R Ol 9+ B8+ TR -] b (0

1 1M N
A (k2 + B7,) (K2 + (3,)3 {Zk - 8(Bi1 + (22)? [

X (532 + 65§2k2 - 31‘74) + 5%1(3532 + 10532’“2 + 15522k4)

(3511522/52 + 5222k2)

(B + 6BLK + 208K — 8K9)] } (D.9)

A (k2 + (75)2 (k2 + 5,)° 8(Bi2 + f22)*

+(4B12 + B22) Baok* (Bas + 685,k — 3k™) + 27, Ba2k? (83, + 685,k + 2155, k" — 8KP)

480 (B3, + k?)°

AR (205, + Thak” + 1265,k — k°)

+ 815 (B3, + 685k + 13B5,k" + 16822k°)] } . (D.10)
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Finally,

and

with

4

272¢°

2.8
q V2q
5(9) 2

Tos =15 + Ig2 + I

@+ @+ e @+ BN+ By

1 M {Z_k5 N B8, + 505, k* + 1563 k* — 5k6}

-~ dm (K2 + 03,)*

1 VSM 19
- ik
I (2 + 5)° { *

16521

256322
+21005,k° + 31535,k — 63k'°] }

1 2y, M 1

_ 1.7
A (k2 + (3,)2 (k2 + 35,)° {Zk - 8(Fa1 + [a2)

(73109 + 4533,k* + 12635,k

- [485,(83, + K7)?

(D.11)

(D.12)

(D.13)

(481 4 Boz) B2k (Bay + 652,k> — 3k™) + 262, Bask® (85, + 635, k% + 2162,k — 8KkS)

AR K (205, + TBak” + 1265,k — k°)

+ 831 (B3, + 685,k + 13B5,k" + 16322k°)] } :

(D.14)
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Appendix E

Deuteron wave functions

The following formulae for the s-wave deuteron wave function in momentum space are
normalized according to Eq. (3.5).

e Hulthen wave function

The Hulthen wave function [87] is the exact solution for the deuteron problem using
the Hulthen potential

o
V(r) = —p —

1 —ewr

(E.1)

and whose parameters are adjusted to fit the observed properties of the deuteron system.
Its expression is

Lo af(a+ B) 1 1
Palk) =y /8 (a — B)? <a2+k2 a B2+k2> ’ (E2)

with a = 45 MeV/c, = Ta.
e Bonn and Paris wave functions

The deuteron wave functions obtained for the Paris and Bonn realistic boson exchange
potentials have been parameterized with the following ansatz [30, 66]; in coordinate space:

_ L) N
ulr) = i) = G (£

and in momentum space

N - 1
j=1 J
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where the coefficient (), is constrained to
Co=-Y C; (E.5)

in order to satisfy the boundary condition u(0) = 0. The masses m; are chosen to be
m; =a+ (5 —1)myg (E.6)

with a = (Meg)'/? = 0.23 fm~' (M is the nucleon mass and e; the deuteron binding
energy), and mo = 1(0.9) fm ! for the Paris (Bonn) solutions. Finally, the list of C;
( =1,n — 1) values can be found in the original references [30, 66].
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Amplitudes for np — d (77) Y

e N* — N(rm)L=0 .. mechanism (Fig. 3.1 a)

S—wave

m2[. . E.(2Ey— Es— E,) 1,1
Mggglrz = 7’2? |:Cl o m2 :| Z (57“,157“;
rirh

IR) X

{3fNN7r i [(O—j)r'lrl (O—l)r.'zrgl-jl + (Uj)r’lrl (O—j)r.'zrgl-l] - gNNUgN*NU6r'1r1 67‘.’21"21-2

My My

with

7 — / %@(Pznw(q)—v;(q>]DN*(p1—q>qjaz + (142)

7? = / da_ (P2) Dr—o(q)Dn+(p1 —q) + (12)

(F.1)

(F.2)

Notice that, when ¢ = 0, the amplitude squared can be factorized out from the phase
space integral 3.1. In the case of this mechanism, the previous expressions are valid for

both charged (777~) and neutral (7°7°) channels.

e N* — Ar mechanism (Fig. 3.1 b)

N AR 11
VI AN Z<§7J1§Té

Rrar O9m, m,

1R> {beNWi [(Uj)mn(al)r’zng’fm

Mg My

"l

+(0'j)mr1 (Uj)r’zrz.’[,}/lm] - gNNagN*Ng(Smrl(Sr(ﬂIf,lm + (1 <~ 2)}

(F.3)
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with
Iy = —2((Pa + Pr)Px) 6rm I} +i(a[pPa X Pal)rmI” & =(jl),1,2  (F.4)
and
= / (2‘% 54(P2) [Vi(g) — V()] D~ (1 — )

[cDaA(p1 — ¢ — px) £ dDA(pa + px — ¢ — p2)] 454

T 2) = / (;% 54 (P1) [Vi(q) - Vi(@)] Dy-(p2 — q)%

[dDA(p2 — ¢ — px) £ ¢DA(Pa + Pr — ¢ — P1)2] a0

. = / (Qd%) 54 (P2) Vi) Dyv- (01 — 4) %

[cDA(p1 — ¢ — px) & dDA(pa + Pr — q — p2)]
(F.5)

L1 62) = [ 5% 6P 0Dy (2~ )%

[dDA(p2 — ¢ — px) £ ¢DA(Da + Dr — ¢ — D1)]

72 = / (;:)3 ¢4 (P2) Dr—o(q)Dn-(p1 — q) ¥

[eDa(pr — ¢ — Px) £ fDa(pa + pr — ¢ — p2)]

T3 (14 2) = / % @4 (P1) Dr—o(q)Dn-(p1 — q) X

[fDa(p2 — q — pr) £ eDa(pa + pr — ¢ — p1)]

The coefficients take the following values:

| [a[bcfd]e]f]
11| 7]5]1]3
(7'7x% 213 |1[1|1]1
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e AA mechanism (Fig. 3.1 ¢)

(c) . a f* ! 1 /1 I
MRT'lT'Q - Za My Z 57"157"2
rirh

[_2(p7r + pd)lér’lrl + Z’Enml(o-n)r’lrl (pw + pd)m] Iﬂ

1R> {[2(pw)j5r’2r2 + iekmj (O-k)r’zrz (pﬁ)m] X

(F.6)
+ [_((pﬂ' + pd)pw)(_25r’2r1 67"17‘2 + 551"’11"151"’27‘2) - (U(pTr + pd))rérz (o-pﬂ)r’lrl
_27'(0-[pd X pw])r’zrzér’lrl + 27’(0-[pd X pw])r’lrlér’zrz] Il + bx (]- & 2)}
with p
. q - A
'~ [ ks 0P Vi) = Vi) Da(pr = 0D (p2 + )
(F.7)
7' = 9 () V() D D
= Wwd( 2) Vi(@)Da(p1 — @) Da(p2 + q)
and where a and b take the values
| [a]b ]
(mtn=) | 1] 11
(779 16| 1

In all these expressions pi2) = (Eo, P1(2)) is the momentum of the incoming proton
(neutron) in CM (p1 = p2); g0 = 1/2E4 — Ey, and Py(2) = q + p1(2) — Pa/2 for the first
two mechanisms, while for the third one Py(2) = q+ p1(2) — Pa/2 — P~ Where pgq is the CM
deuteron momentum, and p, is the momentum of the pion over whose energy the integral
in Eq. (3.1) is performed. The presence of integrals over the transfered momentum imply
that we will, in general, run into the poles of the meson propagators at g, = (g2 — m?)'/2.
To the present calculation, only the poles on the lightest m propagator will contribute. In
this case, the integrals can be evaluated as follows

dq 1 B dq 1
/Wf(q,---)m = V-P-/Wf(q,---)m

-m/é%ﬂ%mwf_@y (F.8)
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Appendix G

Charged current neutrino-nucleon
quasielastic scattering

The matrix element of the process v (k) +n(p) — (7 (k') + p(p') is given by

M = % cos 0.1, J", (G.1)

where [, is the standard V-A leptonic current of Eq. (4.4), and the hadronic current can be
written in terms of three vector F1‘,/2,3a the axial vector F4 and the pseudoscalar Fpp form
factors

Jt = a(p’)Atu(p),

. v qV
A = PV +iFy (¢°)o" i + FY(¢*)g" + Fa(d®)v"y° + Fr(g®)g"y’ . (G.2)

CVC implies that Fy’ = 0. The remaining two vector form factors are related to the
isovector electromagnetic ones through the relations

FB&) - Fg(M) - Fg(M) (G-3)

where the index p(n) stands for proton(neutron) and E(M), for electric(magnetic). The
proton(neutron) electric and magnetic form factors can be defined as

2
n n q n
@ = R+
(G.4)

GH = pre) 4 o)

with G%,(0) = 1, G%(0) = 0, G%,(0) = 1 + u, and G%,(0) = p, corresponding to proton
and neutron charges and magnetic moments. Electron scattering experiments reveal that
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G"., G%, and G, have the same ¢* dependence, which can be parametrized as
() Gh(e) _ Gule) <1 ¢ ) )
GE0)  Gy(0)  G3(0) M3
Also one finds G%(¢*) = 0.
Let us now consider the axial vector form factors. One of the contributions to the

pseudoscalar form factor comes from the one pion exchange diagram (analogous to the one
of Fig. 4.1). Assuming that Fp is dominated by this contribution one gets

Fp(q?) Sune 1
2M my g2 —m

= —2fr ~Fr(q?) - (G.6)

™

Then, substituting this result in the axial part of the hadronic current, and applying PCAC
one finds

fnnr

FA(QZ) = 2]%%5}((]2) (G.7)

The extrapolation of this relation to m, # 0 leads to
2M
2y _ 2

Fp(q”) = Fa(q") - (G.8)
Moreover, since F,(0) ~ F,(m%) =1

FA(0) = g4 = 2fx S (G.9)

™

We have actually derived the Goldberger-Treiman relation [19], which was introduced in
Chapter 1, Eq. (1.38). The ¢* dependence of F)4 is generally parametrized in a dipole form

2(5(;)) _ (1 _ z\%) - (G.10)

and the axial dipole mass M, is determined from the experimental data.
The ¢? distribution reads

do 1 1
dg®> 647 (s — M2)2
where L, is the standard leptonic tensor defined in Eq. (4.8) and H* is

G? cosf,. L, H" (G.11)

H™ =Ty [(;5 + M)A + M)A"] . (G.12)

If the mass of final lepton can be neglected and in the limit of ¢2 = 0, Eq. G.11 takes the
simple form

j—;(qz =0) = ([Fa(0)]* + [FY(0)]) %GZ cos? 0., (G.13)

where ' (0) = 1 and F4(0) = 1.26, which was used in Sec. 5.3.
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